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Cornelia de Lange syndrome (CdLS) is a rare disorder characterized by an extensive clinical 

heterogeneity. The main features of the syndrome are characteristic facial dysmorphisms and a 

variable level of intellectual disability, growth retardation and developmental delay. Though, 

the number and severity of the clinical signs vary among patients. An extensive genetic 

heterogeneity partially accounts for the reported clinical variability. Mutations in different 

cohesin-associated proteins are in fact responsible for the onset of the syndrome. The known 

CdLS-genes include NIPBL, SMC1A, SMC3, RAD21 and HDAC8. Alterations in the cohesin 

loader NIPBL are found in more than half of CdLS cases and are associated with a classical 

phenotype and with a high frequency of limb malformations. In addition, mosaicism has been 

proven to play an important role in association with NIPBL. Mutations in the structural 

elements SMC1A, SMC3 and RAD21 and in the regulator HDAC8 account for about 10-15% of 

CdLS cases. The phenotype of those patients who harbor mutations in these genes is usually 

milder or atypical. The five genes all together, also taking into account the role of mosaicism, 

can explain about 70% of CdLS cases. 

In an internationally assembled cohort of patients we were able to identify 109 mutations in 

NIPBL, 8 mutations in SMC1A, 15 mutations in SMC3 and 11 mutations in HDAC8, thus 

increasing the total number of mutations so far described for CdLS. In addition, by the use of 

next generation sequencing techniques we were able to identify mutations in five genes 

different from cohesin in six unrelated patients with a clinical diagnosis of CdLS. The five 

genes include those encoding for different subunits of the chromatin remodeling complex 

named SWI/SNF and for the transcriptional repressor ANKRD11. Mutations in these genes 

have been so far associated to Coffin-Siris syndrome and KBG syndrome, respectively. 

Protein-protein interaction experiments also showed a direct interaction of the SWI/SNF 

subunit SMARCB1 with the cohesin-related proteins NIPBL and SMC3. These direct link 

between cohesin and SWI/SNF subunits indicate that mutations affecting the two protein 

complexes might determine the deregulation of overlapping sets of genes. 

Our newly identified variants contribute to a better understanding of the correlation between 

genotype and phenotype in the presence of mutations in the known-CdLS genes. 

Notwithstanding, different pehotypes have been observed in patients carrying the same DNA 

alteration, hence suggesting that environmental factors may play an important role in the 

delineation of the observed clinical features. Additionally, the identification of mutations in 

chromatin-associated factors responsible for syndromes different from CdLS indicate the 

existence of a broad pleiotropy that should be taken into account while assessing the clinical 

and molecular diagnosis. 



7 
 

Furthermore, we investigated the molecular mechanisms underlying the syndrome in the 

presence of missense substitutions or small in-frame deletions in SMC1A, a X-linked gene that 

localizes in a region of the X-chromosome that partially escapes X-inactivation in humans. Our 

expression analysis revealed that the transcript is expressed at higher levels in females as 

compared to males, and that there are no differences in the expression of the SMC1A protein 

between healthy and affected females. In addition, pyrosequencing analysis showed that CdLS 

female patients harboring mutations in SMC1A tend to express the wild type allele at higher 

levels as compared to the mutant allele. All together, these data suggests that the pathogenesis 

of the syndrome in the presence of mutations affecting SMC1A which do not disrupt the 

reading frame might be linked to a dominant negative effect exerted by the mutant protein on 

the wild type.  
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CORNELIA DE LANGE SYNDROME 

Cornelia de Lange syndrome (CdLS, OMIM #122470, 300590, 610759, 300882, and 614701) 

is a multisystem developmental disorder characterized by a dominant mode of inheritance. In 

the majority of cases it occurs de novo; though, also some familial cases have been described. 

 

HISTORY 

In 1933 the Dutch pediatrician Cornelia de Lange recognized and described for the first time in 

the “Archives de Medicine des Enfants” some comparable clinical features observed in two 

unrelated patients (de Lange, 1933). 

The first patient (Fig.1a) was a 17-months old girl hospitalized at the Emma Children’s 

Hospital of Amsterdam in 1932 because of bronchopneumonia. The child was born at 40 weeks 

of gestation with a birth weight of 1250 g; she presented with growth retardation, 

microcephaly, remarkably unusual facial features and feeding difficulties that persisted during 

the first year of life. 

The second patient (Fig.1b), hospitalized few weeks after, shared the growth impairment and 

the digestive disorder with the first girl. Nevertheless, the most striking resembling features 

were related to the facies.  
 

 

Figure 1. First two patients with the “Typus Degenerativus Amstelodamensis”described from doctor de Lange in 1933 
 

For both cases, doctor de Lange made a highly detailed description of the clinical features and 

assigned to this phenotype the definition of “Typus Degenerativus Amstelodamensis” (de 

Lange, 1933). 

During the following years a discreet number of patients with an analogous clinical 

presentation was described in the literature. Then, in 1964, Opitz and colleagues associated for 
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the first time the phenotype described by doctor de Lange in 1933 with the one described by the 

German doctor Winfried Robert Clemens Brachmann in a paper of 1916 titled “Ein Fall von 

symmetrischer Monodaktylie durch Ulnadefekt, mit symmetrischer Flughaurbildung in den 

Ellenbogen sowie anderen Abnormalitaten”, that likely represents the first description of the so 

called “Typus Degenerativus Amstelodamensis” syndrome. Because of this, Opitz and 

colleagues named the new clinical entity Brachmann-de Lange syndrome (Brachmann, 1916; 

Opitz et al., 1964). Today, the syndrome is mainly known and named as Cornelia de Lange 

syndrome (CdLS). Since 1964, many cases with similar features have been described, and a 

remarkable clinical heterogeneity of the syndrome has emerged. 

 

CLINICAL FEATURES 

Cornelia de Lange syndrome (CdLS) is characterized by distinct clinical features that involve 

different organs with variable extent; nevertheless, the muscoloskeletal, gastrointestinal, and 

nervous systems represent the most frequently affected systems (Kline et al., 2007). 

The incidence of CdLS in the population has been discussed for several years because of the 

difficulties in the formulation of the diagnosis, that is mainly based on clinical observations. 

The first assessment of the frequency was performed in 1967 by Pearce and Pitt, who estimated 

the prevalence to be around 1:100.000 (Pearce and Pitt, 1967). Currently, public scientific 

databases (OMIM, GeneReviews and GeneticsHomeReference) and more recent papers attest 

the incidence between 1:10.000 and 1:40.000 live births (Kline et al., 2007; Barisic et al., 

2008). 

To date, minimal diagnostic criteria have been established based on the consensus of the 

Scientific Advisory Committee of the World CdLS Federation (SAC) and the Clinical Advisory 

Board of the CdLS Foundation USA (CAB). A CdLS diagnosis requires the presence of 

specific facial features in combination with the involvement of at least two other systems 

responsible for growth, development or behavior (Kline et al., 2007). 

A scoring system (Table 1) is also available to determine the severity of the phenotype. This 

system assigns a score to each of the following categories: birth weight, age of sitting 

independently, age of walking independently, age of the first word, presence or absence of 

upper limbs malformations and presence or absence of hearing loss. Scores higher than 22 are 

associated with a severe phenotype, while scores between 15 and 22 indicate a moderate 



11 
 

presentation of CdLS; lastly, patients with a score lower than 15 are affected by a mild form of 

the syndrome (Table 1; Kline et al., 2007). 
 

 

Table 1. Scoring system that allows the classification of CdLS into three different categories, namely severe, moderate and 
mild (from Kline et al., 2007) 

 

Prenatal diagnosis and auxological data 

Despite the incidence of premature births is higher than in the normal population (30%), 

relevant obstetric complications rarely occur during CdLS pregnancies. As the majority of 

CdLS cases are de novo, the recurrence risk for asymptomatic parents has been estimated to be 

approximately 1.5% (Jackson et al., 1993). Nevertheless, in the presence of more than one 

affected child within one family, the existence of germline mosaicism should be considered 

(Slavin et al., 2012; Mariani et al., 2013). 

High-resolution ultrasound examination appears to be the best technique for a prenatal 

diagnosis of the syndrome. Intra-uterine growth retardation (IUGR) and limb malformations are 

the most discernible features, but reported ultrasound findings also include microcephaly and 

diaphragmatic hernia (Sekimoto et al., 2000; Huang and Porto, 2002). In some cases it was also 

possible to notice micrognathia with prominent maxilla and a depressed nasal bridge with 

anteverted nares, features that define the unique facial profile of CdLS (Clark et al., 2012). 

Maternal serum screening might also be performed: the levels of the Pregnancy-Associated 

Plasma Protein-A (PAPP-A) have shown to be reduced during the first and second trimester in 

pregnancies affected by CdLS; nevertheless, this biomarker is not specific for CdLS 

(Westergaard et al., 1983; Aitken et al., 1999; Arbuzova et al., 2003). Lastly, an increased fetal 

nuchal translucency during the first trimester has also been observed (Sekimoto et al., 2000; 

Huang and Porto, 2002). 

Auxological data are highly peculiar for CdLS; for this reason, specific charts are used to 

define the growth parameters of patients, who are usually characterized by pre- and postnatal 

growth retardation (Kline et al., 2007). In point of fact, the body parameters at birth are 
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frequently under the 10th centile, with an average weight of 2.28 kg, an average length of 45.5 

cm and an average head circumference of 30.9 cm. The growth curve runs parallel to the one of 

the healthy population but tends to decrease under the 5th centile during early childhood (Kline 

et al., 1993a; Kline et al., 1993b). During adulthood, the average weight and height are 47.6 kg 

and 156 cm for men, and 30.5 kg and 131 cm for women. The head circumference can reach 

the average value of 49 cm, consistent with a significant microcephaly (Kline et al., 1993a; 

Kline et al., 1993b). 

 

Facial dysmorphisms 

The facial features are the most recognizable findings in CdLS (Fig.2). Patients usually present 

with a short neck and a low anterior and posterior hairline. Eyebrows are typically arched, 

hypertrophic and fused above the bridge of the nose (synophrys). Eyelashes are thick, long and 

curly. Narrow palpebral fissures and ptosis are also reported. The midface is usually flattened 

and characterized by the presence of a short nose presenting with a depressed bridge and 

anteverted nares. Beneath, the philtrum is frequently smooth and long. Exemplary oral features 

include thin lips with down-turned commissures, downslanting superior lip, a high and arched 

palate, small and widely spaced teeth and micrognathia (Jackson et al., 1993).  

 

Figure 2. Typical facies observed in four patients with CdLS. These patients present with a variable degree of severity and are 
placed from the mildest to the most severe. Though, the striking facial features typical for CdLS are discernible in all of them 

(adapted from Liu and Krantz, 2009) 
 

Low-set dysplastic ears are also observed with a high frequency. The ear canal is often stenotic 

or narrow, thus causing predisposition to otitis media and sinusitis (Jackson et al., 1993).  

The facial features tend to evolve during aging: the face usually lengthens and becomes 

coarser. In some cases, the facial appearance also becomes less typical with age. For this 

reason, patients with a mild presentation of the syndrome would have been difficult to diagnose 

as CdLS if the clinical evaluation would have occurred in adulthood (Kline et al., 2007). 

Premature aging has also been reported (Kline et al., 2007). 
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Muscoloskeletal system 

The muscoloskeletal system is the district with the highest number of alterations: almost all 

patients present with upper limbs anomalies that range from the presence of small hands to the 

presence of severe reductions or malformations (Fig.3). Typical findings are disproportional 

shortening of the first metacarpal, proximally placed thumbs, brachydactyly, clinodactyly of the 

fifth finger, radial head dislocation, radioulnar synostosis and incomplete elbow extension 

(Jackson et al., 1993). 

 

 

Figure 3. Examples of upper limbs anomalies observed in CdLS patients, placed from the mildest to the most severe: almost all 
patients present with small hands, but in some cases absence of digits or of the entire forearms are also observed (adapted 

from Liu and Krantz, 2009) 
 

Lower extremities are usually less affected; the feet are small in almost all cases, and 

syndactyly of the second and third toes are frequently observed (Jackson et al., 1993). 

Other orthopedic complications include scoliosis, development of bunions, tight Achilles 

tendons, cervical malformations, pectum excavatum and hip dislocation or dysplasia, that 

occurs in 10-15% of patients and normally requires surgery during childhood. Osteoporosis 

may appear earlier than expected (Jackson et al., 1993). 

 

Gastrointestinal system 

Feeding problems are typical during infancy and young childhood, and can be caused by 

micrognathia, cleft palate and decreased muscle tone in the oral area. In addition, 

gastroesophageal reflux disease (GERD) is observed in more than 90% of patients and often 

requires surgical intervention (Luzzani et al., 2003). 

Malrotation, diaphragmatic hernia, increased risk for volvulus formation and intestinal 

obstruction and pyloric stenosis have also been frequently reported (Masumoto et al., 2001). 
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Cardiac system 

Congenital heart defects are observed in about 25% of CdLS patients. Ventriculo-septal defects 

or atrial-septal defects are the most commonly represented, but tetralogy of Fallot, pulmonic 

stenosis and hypoplastic left heart syndrome are also frequent (Jackson et al., 1993; Metha and 

Ambalavanan, 1997; Tsukahara et al., 1998; Kline et al., 2007). 

 

Genitourinary system 

Renal dysfunctions and malformations can be seen in approximately 40% of CdLS patients and 

include pelvic dilatation, vesiculoureteral reflux and renal dysplasia. Male patients frequently 

present hypoplastic genitalia and cryptorchidism; other common findings are hypospadias and 

micropenis. On the other hand, small labia majora and abnormally formed uteri can be 

observed in females. Fertility is decreased in severely affected individuals (Jackson et al., 

1993). 

 

Other malformations 

Ophthalmologically, almost all patients present peripapillary pigmentation. Other common 

findings are myopia, blepharitis, ptosis and mild forms of microcornea. Nystagmus, cataract, 

glaucoma and nasolacrimal duct obstruction have been reported with a lower frequency 

(Jackson et al., 1993). 

Vestibular and auditory anomalies include both conductive and sensorineural hearing loss 

together with recurrent otitis media and sinusitis (Marchisio et al., 2014). 

Neurologically, hypoplasia of the cerebellar vermis, enlarged ventricles particularly at the basal 

cisterns and atrophy of the white matter are frequently observed (Kline et al., 2007). 

Neurofibrillary tangles inside neurons, myelination defects and gyral structural abnormalities 

were also reported during autopsies (Yamaguchi K and Ishitobi F, 1999). Patients also present 

with high pain tolerance, which might be linked to peripheral neuropathy (Kline et al., 2007). 

Seizures are the main neuropathological manifestation. Though, no specific EEG patterns have 

been described and the seizures are usually well managed with standard medical treatments 

(Verrotti et al., 2013). The gait of those patients who achieve walking is often wide-based 

(Kline et al., 2007). 
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Patients often present with sleep disturbances, namely frequent awakenings, reduced need of 

sleeping with an average sleeping time of 2-4 hours per night, and ability to remain awake for a 

longer time compared to the normal population (Berney et al., 1999). 

The presence of diaphragmatic hernia is infrequent but important to mention because of the 

severe clinical implications (Masumoto et al., 2001). 

Generalized hypertrichosis is also one of the main manifestations of CdLS, particularly 

regarding the face, back and extremities; cutis marmorata is also another frequent finding. 

Small nipples and umbilicus have also been observed (Jackson et al., 1993). 

Puberty usually begins at ages 12-13 for girls and 13-14 for boys, slightly later if compared 

with the average onset of the healthy population (Basile et al., 2007). Menstrual cycles are 

observed in 76% of female patients, even though frequently irregular. Breast development is 

reported for 78% of the patients. Fertility is unaffected for those patients with a mild 

presentation of the syndrome (Kline et al., 2007). 

Obesity in association with type II diabetes has also been described (Kline et al., 2007). 

 

Cognitive impairment 

Cognitive impairment is always observed with an average IQ around 50. Nevertheless, the 

severity of the disability is highly variable: both borderline cases characterized by mild learning 

disabilities and severe impairments have in fact been reported. Learning continues throughout 

life without evidence of regression, but patients often need supervised living (Jackson et al., 

1993).  

Developmental delay is also a main feature of CdLS and speech acquisition is usually more 

severely affected than the motor development. Perceptual organization and visual-spatial 

memory are more preserved (Kline et al., 2007). Based on the period of language acquisition, 

patients are divided into four categories: 

• Talkers (3-4%): the psychomotor development is almost normal and they spontaneously 

start talking 

• Late talkers (35-40%): they sit independently after 18 months and walk independently 

after 30 months. They formulate the first words between four and eight years of age. 

They normally present with attention deficits 
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• Limited talkers (20-25%): they show a very slow psychomotor development, and 

pronounce the first words between seven and ten years of age; the ability to combine 

words appears after 10 years of age 

• NonTalkers (25-30%): they usually present with a very severe phenotype, including 

limb anomalies, hearing loss, autistic features and inability to walk before five years of 

age. They are unable to speak.  

 

Behavioral problems 

Almost all patients show behavioral issues that are usually caused or aggravated by physical 

complications. The following problems have been frequently reported: obsessive-compulsive 

disorders, self-injurious behavior, short attention span, attention deficit disorder with or without 

hyperactivity, depression, extreme shyness and autistic features (Basile et al., 2007). Many of 

these behavioral issues are thought to be secondary to frustration due to the inability to 

communicate or to the presence of GERD (Basile et al., 2007). 

Social and environmental interactions are achieved at variable degrees (Berney et al., 1999). 

 

Prognosis 

The prognosis is usually good in the absence of major malformations and life expectancy is 

estimated to be 10-20 years shorter compared to the healthy population, depending on the 

number and severity of the clinical signs (Coppus, 2013). 

The most common causes of death are mainly connected to gastrointestinal complications like 

diaphragmatic hernia, aspiration pneumonia complicated by GERD and volvulus at older ages 

(Schrier et al., 2011).  
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MOLECULAR BASIS: THE COHESIN COMPLEX 

CdLS is caused by mutations in different subunits or regulators of the cohesin complex; 

therefore, it falls within the category of the so called cohesinopathies (Krantz et al., 2004; 

Tonkin et al., 2004; Musio et al., 2006; Deardorff et al., 2007; Deardorff et al., 2012a; 

Deardorff et al., 2012b). 

Cohesin is a chromatin-associated multisubunit protein complex characterized by a high level 

of conservation during evolution. Cohesin was originally identified for its role in mediating 

sister chromatid cohesion during both meiosis and mitosis. Nevertheless, several studies have 

demonstrated an important role of the complex in different cellular processes including DNA 

repair, chromatin remodeling, regulation of gene expression and long-range interactions 

between distant genomic regions (Uhlmann, 2008; Sjögren and Ström, 2010; Cuylen and 

Haering, 2011; Dorsett, 2011; Feeney et al., 2012; Sofueva and Hadjur, 2012). Consequently, 

cohesin plays a very important role in the maintenance of genomic stability.  

Interestingly, cell lines of CdLS patients do not display cohesion defects. This finding suggests 

that the etiopathology of CdLS is probably not linked to the disruption of cohesion between 

sister chromatids but to the inability of the cohesin complex to mediate more dosage-sensitive 

cellular functions (Dorsett and Krantz, 2009). 

 

ARCHITECTURE OF THE COHESIN COMPLEX 

 

Figure 4. Architecture of the SMC proteins and of the cohesin complex (adapted from Onn et al., 2008) 
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The cohesin complex consists of four core subunits: SMC1A, SMC3, the α-kleisin protein 

RAD21 and the HEAT-repeat containing proteins STAG1 or STAG2 (Fig.4; Guacci et al., 

1997; Michaelis et al., 1997; Losada et al., 1998; Nasmyth and Haering, 2005). 

SMC1A (OMIM #300040, Xp11.22) and SMC3 (OMIM #606062, 10q25.2) are members of 

the Structural Maintenance of Chromosome (SMC) family, a very large family of ATPases 

characterized by a peculiar structure: one ATPase domain is localized at both the N- and C-

termini of the proteins and the two domains are then connected to each other through a long α-

helix. During the folding process, the α-helix bends on itself at the central hinge domain, thus 

forming 40 nm of anti-parallel coiled-coil structure. The bending of the α-helix brings the 

ATPases at the N- and C-termini close to each other, generating a globular ATPase head 

domain (Haering et al., 2002). By interacting through their respective hinge domains, SMC1A 

and SMC3 constitute the heterodimer that represents the core of the cohesin complex. The 

heads of both proteins are physically connected to RAD21, thus determining the generation of a 

tripartite ring structure. RAD21 (OMIM #606462, 8q24.11) belongs to the α-kleisin family; 

kleisin is a word that comes from the Greek language and means closure. In fact, RAD21 

determines the closure of the cohesin ring by bridging the head domains of the SMC proteins. 

Particularly, the N-terminus of RAD21 binds to the head domain of SMC3, whereas its C-

terminus interacts with the ATPase domain of SMC1A (Haering et al., 2002). Hence, SMC1A 

and SMC3 bind to each other directly through their respective hinge domains and indirectly 

through RAD21 at their head domains. The association of the SMC proteins with RAD21 

requires ATP: the binding of ATP determines the closure of the ring while its hydrolysis is 

needed for the dissociation of the complex (Arumugam et al., 2003; Weitzer et al., 2003). 

The fourth subunit of the cohesin complex, known as Stromalin Antigen (STAG), interacts 

with RAD21 and contains HEAT repeats that are important for protein-protein interactions 

(Neuwald and Hirano, 2000; Gruber et al., 2003). The functional role of this last subunit and of 

its HEAT repeats is still poorly understood. Vertebrates present two different isoforms of the 

STAG subunit, but the cohesin complex can contain only one subunit per time. STAG1-

containing cohesin seems to be responsible for transcriptional regulation and replication of 

telomeres, whereas complexes containing the STAG2 subunit are mainly involved in sister 

chromatid cohesion (Losada et al., 2000). 

It is worth to be noted that the meiotic cohesin complex differs from the mitotic one: in 

meiosis, the RAD21 subunit is substituted by the paralog REC8, while the STAG1/2 subunits 

are replaced by the protein STAG3. 



19 
 

COHESIN-ASSOCIATED PROTEINS 

In addition to the core subunits, many other cohesin-associated proteins have been identified 

that modulate cohesin activity and function (Table 2). 

The heterodimeric protein complex formed by NIPBL and MAU2 is the main regulator of 

cohesin and is responsible for the the loading of cohesin onto DNA (Krantz et al., 2004; Tonkin 

et al., 2004).  

NIPBL (OMIM #608667, 5p13.2) is the homologous of the Drosophila melanogaster Nipped-B 

gene and of the Saccharomyces cerevisiae Scc2 gene (Sister Chromatid Cohesion). The protein 

encoded by NIPBL, named Delangin, belongs to an evolutionary conserved family of proteins 

called adherins (Krantz et al., 2004; Tonkin et al., 2004). The human gene consists of 47 exons, 

while the coding sequence extends from exon 2 to exon 47 and can produce two main isoforms: 

the longer delangin-A (2804 aa) and the shorter delangin-B (2697 aa), that does not include 

exon 47 and results from the translation of an additional fragment of exon 46 (Krantz et al., 

2004; Tonkin et al., 2004). 

 

Figure 5. Structural organization of the NIPBL protein. The different domains of NIPBL and their localization are shown 
together with the amino acid sequences of the NIPBL specific repeats (from Yan et al., 2006) 

 

The amino acid sequence of NIPBL indicates different functional domains (Fig.5). From the N-

terminus to the C-terminus, the following domains are predicted: one caldesmon domain, one 

calponin domain, two calmodulin-binding motifs, one nuclear localization signal, one nuclear 

export signal, five HEAT repeats and one DNA binding domain (Yan et al., 2006). The 

caldesmon, calponin and calmodulin domains are so called for their analogy with the Ca2-

dependent proteins CALD1, CNN1 and calmodulin, that are involved in the contractility of the 

smooth muscle (Winder and Walsh, 1993). The HEAT repeats have instead been proven to play 

an important role in the establishment of cohesion, since they have been identified in other 
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cohesin-associated proteins. These repeats consist of sequences of 34-43 aa that are organized 

in clusters and are known for their role in mediating protein-protein interactions (Neuwald and 

Hirano, 2000). 

Northern Blot analyses have shown that the NIPBL transcript is ubiquitously expressed. 

Though, the level of transcription is tissue-specific. Wheras high levels of NIPBL expression 

are observed in cardiac and skeletal muscles, the expression appear to be very low in brain, 

lungs and intestine (Krantz et al., 2004; Tonkin et al., 2004). 

The adherin NIPBL is involved in various cellular processes including gene expression 

regulation, sister chromatid cohesion and DNA repair. It was also shown to be functionally 

linked to chromatin remodeling complexes through the direct interaction with the histones 

deacetylases (Jahnke et al., 2008). Its role in the regulation of gene expression has been well 

documented in Drosophila melanogaster. Here, the homolog Nipped-B activates the 

transcription of the cut, ultrabithorax and Notch signaling by mediating long-range interactions 

between distant enhancers and promoters (Rollins et al., 1999). Furthermore, NIPBL was 

reported to be involved in the loading of the cohesin complex onto chromatin by stimulating 

the ATP hydrolysis that determines the opening of the cohesin ring (Dorsett, 2004). 

The second component of the cohesin-loader complex MAU2 is characterized by the presence 

of TRP domains (Tetratricopeptide repeats) that are responsible for protein-protein interactions. 

Besides mediating the cohesin loading onto DNA in association with NIPBL, little is known 

about MAU2 functions (Watrin et al., 2006). 

PDS5 is also evolutionary conserved and contains HEAT repeats, similarly to other cohesin-

associated proteins (Neuwald and Hirano, 2000). Its function is to promote the generation of a 

cohesive state of the ring through the direct interaction with the structural elements SMC1A, 

SMC3 and RAD21 and the regulators ESCO1, sororin and WAPL (Tanaka et al., 2001; Dorsett 

et al., 2005; Losada et al., 2005; Losada and Hirano, 2005). Vertebrates present two different 

isoforms of PDS5, PDS5A and PDS5B, both involved in the regulation of the cohesin’ cycle. 

The depletion of PDS5 does not affect the binding of cohesin to the DNA, but prevents the 

establishment of cohesion (Tanaka et al., 2001; Losada and Hirano, 2005). 

Cohesin also interacts with a protein called WAPL (Wings-apart like) through RAD21 and 

STAG1/STAG2 (Kueng et al., 2006). The main role of WAPL is to mediate the removal of 

cohesin from chromosomes during prophase, thus playing an antagonist function compared to 

PDS5. In WAPL-depleted cells cohesin does not dissociate from chromosomes arms; as a 

consequence, metaphase chromosomes show low resolution of the sister chromatids (Kueng et 



21 
 

al., 2006). Conversely, the overexpression of WAPL was shown to cause premature separation 

of sister chromatids, thus driving tumorigenesis in mice (Oikawa et al., 2004). 

Sororin is another cohesin-associated protein that has been found only in vertebrate cells. As 

PDS5, Sororin is dispensable for the association of the cohesin complex with the DNA, but is 

needed for the establishment of cohesion. As point of fact, human cells that were depleted of 

Sororin display severe cohesion defects, despite the overall amount of chromatin-bound 

cohesin remains unchanged (Schmitz et al., 2007). Additionally, it has also been suggested that 

Sororin protects cohesin from a precocious dissociation from the DNA, possibly by inhibiting 

the activity of WAPL. This is in agreement with the finding that Sororin becomes dispensable 

for sister chromatid cohesion in the absence of WAPL (Nishiyama et al., 2010). Consequently, 

it can be assumed that Sororin plays a role both in cohesion establishment and maintenance 

(Diaz-Martinez et al., 2007). 

ESCO1/2, the human hortologues of the Saccharomyces cerevisiae Ctf7/Eco1, are also required 

for the establishment of a cohesive state (Ivanov et al., 2002). These genes encode for 

acetyltransferases whose human substrate is SMC3. It has been proved that depletion of 

ESCO1 or ESCO2 in different cell lines is responsible for massive cohesion defects (Unal et 

al., 2008; Zhang et al., 2008). Hence, ESCO1/2 are essential for the establishment of cohesion. 

As a proof, mutations in ESCO2 result in Roberts syndrome, a genetic disorder associated to a 

peculiar cytological phenotype characterized by heterochromatin repulsion of sister chromatids 

(OMIM #268300; Vega et al., 2005). 

After the separation of sister chromatids, SMC3 needs to be deacetylated in order to allow the 

proper dissolution of pro-cohesive elements and the recycling of cohesin for the next cycle. 

HDAC8 (OMIM #300269, Xq13.1) was recently identified as the vertebrate deacetylase for 

SMC3 (Deardorff et al., 2012b). Thus, the role of HDAC8 is indispensable for the 

establishment of a new functional cohesin complex. 

 

Table 2. Cohesin structural elements and regulatory proteins in different organisms (from Metha et al., 2013) 
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MODELS OF INTERACTION OF COHESIN WITH DNA 

Numerous models have been proposed in order to explain how the cohesin complex is able to 

hold sister chromatids together (Losada, 2007). These models can be classified into four 

categories: the embrace model, the two rings model, the bracelet model and the rod model 

(Fig.6). 

The embrace model (Fig.6a), also known as one ring model or topological model, seems to be 

the most plausible one; based on this theory, the tripartite structure formed by SMC1A, SMC3 

and RAD21 embraces the two DNA duplexes, that remain therefore entrapped into the cohesin 

ring following the closure of the ring determined by the binding of ATP. In the two ring model 

(Fig.6b), one single cohesin ring encircles one sister chromatid; the two chromatids are then 

hold together by direct or indirect interaction of the two cohesin complexes. Based on the 

bracelet model (Fig.6c), SMC heterodimers form multimeric filaments that entrap sister 

chromatids inside the oligomeric bracelet. The multiple heterodimers are connected to each 

other through RAD21. 
 

 

Figure 6. Models proposed to explain how the cohesin complex is able to mediate cohesion of sister chromatids during mitosis 
(from Mehta et al., 2012) 
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Lastly, for the fourth model (Fig.6d), a rod shaped structure of cohesin have been proposed. 

Transmission electron microscopy experiments in budding yeast have shown that cohesin 

present a rod shaped structure and that sister minichromosomes are able to interact at one end 

of the rod. Moreover, the width of the rod indicates that multiple cohesin complexes interact 

with each other along their arms in order to mediate cohesion.  

 

CELL CYCLE REGULATION BY COHESIN 

The activity of the cohesin complex is tightly regulated throughout the cell cycle in order to 

allow the proper dissociation of sister chromatids (Fig.7). Interactions with accessory proteins 

and post-translational modifications are responsible for this regulation. 

 

Figure 7. Schematic representation of the regulation of the cohesin complex throughout the cell cycle (from Zakari et al., 2015) 
 

The loading of cohesin onto chromatin 

In order to hold sister chromatids together, cohesin must bind to the DNA before its replication. 

In vertebrates, the loading of cohesin onto the DNA is performed during the telophase of the 

previous cell cycle by the protein complex NIPBL/MAU2 (Michaelis et al., 1997; Losada et al., 

2000; Haering et al., 2004). No sequence specificity has been observed for the loading of 

cohesin onto chromosomes: its initial positions and its permanent locations vary among 

different organisms (Michaelis et al., 1997; Losada et al., 2000; Haering et al., 2004).   

Once cohesin is bound to the DNA, the cohesin loader NIPBL/MAU2 becomes dispensable 

(Ciosk et al., 2000). This suggests that this complex is responsible for the physical association 

between cohesin and chromosomes, but it does not have any role in the assembly of the cohesin 

complex starting from the single subunits or in the establishment and maintenance of cohesion. 
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Therefore, it can be speculated that a preassembled cohesin ring gets loaded onto chromatin. 

For this to be possible, the cohesin complex should be opened in order to be able to embrace 

sister chromatids. In this context, evidence suggests that chromosomes enter the cohesin ring 

through its hinge domain (Gruber et al., 2006). The energy required for this opening is given by 

the mechanism through which the hinge bends towards the ATPase heads; in this way the head 

domains become able to provide the energy for the opening of the ring through the hydrolysis 

of ATP (McIntyre et al., 2007). 

 

Establishment of cohesion 

The association of the cohesin complex with chromosomes is not enough to keep sister 

chromatids together. For this purpose, DNA-associated cohesin must achieve a “pairing 

competent state”, a process known as establishment of cohesion. For this attainment, the key 

player are the conserved proteins ESCO1/ESCO2, that are responsible for the acetylation of 

SMC3 (Ivanov et al., 2002). Cell cycle dependent studies in yeasts and humans demonstrated 

that SMC3 is not acetylated during the G1 phase, but its level of acetylation rises during S 

phase. Accordingly, the essential function of ESCO1/ESCO2 in generating cohesion is 

confined to the S phase. Hence, these acetyltransferases are only required for the establishment 

of a cohesive state concomitant to replication, but are unable to mediate the maintaining of 

cohesion. Nevertheless, the “pairing competent state” should be preserved until the beginning 

of anaphase. In this context, PDS5 plays a very important role because it ensures cohesion 

throughout the G2 phase and during the transition between G2 and M. In point of fact, as 

previously mentioned, PDS5 interacts with other cohesin-associated proteins like Sororin and 

WAPL. It has been demonstrated that the association of PDS5 with Sororin maintains a 

cohesive state, while a non-cohesive state is promoted when PDS5 interacts with WAPL 

(Sutani et al., 2009; Nishiyama et al., 2010). In other words, Sororin and WAPL compete for 

the binding with PDS5 in order to mediate the maintenance or the disruption of cohesion, 

respectively.  
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The removal of cohesin from chromatin 

The dissociation of cohesin from the DNA is mediated by two different pathways based on the 

position of the complex along chromosomes: cohesins localized on chromosomes arms are 

removed during prophase whereas cohesins bound to pericentromeric and centromeric regions 

are preserved until the onset of anaphase (Waizenegger et al., 2000). The dissociation of 

cohesin during prophase is mediated by the two mitotic kinases Polo-like kinase 1 (Plk1) and 

Aurora B, which are responsible for the phosphorylation of RAD21 and of the STAG subunits, 

thus triggering the opening of the cohesin ring. During this phase, centromeric cohesins are 

protected from the activity of the kinases by the protein shugoshin and the phosphatase PP2A: 

Shugoshin directly interacts with PP2A and recruits it at the centromeres, thus neutralizing the 

activity of the kinases (Giménez-Abián et al., 2004; McNairn e Gerton, 2008). It is worth to be 

noted that this prophase pathway determines the dissociation of cohesin from chromosomes 

without cleaving the single subunits, thus sparing the complex from the destruction. As a result, 

cells exit mitosis with almost an unchanged pool of cohesin complexes available for a new 

loading immediately after the generation of the nuclear envelope. This is of high physiological 

significance because it has been demonstrated that cohesin plays an important role in gene 

expression regulation during the G1 phase, and so before the establishment of cohesion (Wendt 

et al., 2008). 

The dissociation of cohesin during anaphase and the complete dissolution of the complex are 

mediated by three elements: securin, separase and the Anaphase-Promoting Complex (APC). 

Before the onset of anaphase, the proteolytic activity of the separase is inhibited because of its 

physical association with securin. Once the sister kinetochores becomes bioriented on mitotic 

spindles, the anaphase checkpoint is inactivated, thus determining the activation of APC. 

Activated-APC mediates the ubiquitin-dependent degradation of the securin. The separase is 

now free to cleave RAD21: the cohesin complex dissociates from the DNA and sister 

chromatids can now reach the opposite poles of the cell (Ciosk et al., 1998; Uhlmann et al, 

1999). 

The deacetylation of SMC3 performed by HDAC8 is then essential in both prophase and 

anaphase pathways in order to allow the proper dissolution of the cohesin complex and the 

recycling of the subunits for the next cell cycle (Deardorff et al., 2012b). 
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COHESIN´S FUNCTIONS 

In the last decade, extensive research on the function and structure of cohesins has revealed that 

the complex is involved in many other cellular processes apart from mediating sister chromatid 

cohesion. These additional functions include transcriptional regulation, chromatin remodeling, 

DNA double-strand breaks (DSB) repair, chromosomes condensation and morphogenesis and 

centrosome-related activities (Fig.8; Uhlmann, 2008; Sjögren and Ström, 2010; Cuylen and 

Hearing, 2011; Dorsett, 2011; Feeney et al., 2012; Sofueva and Hadjur, 2012). It is worth to be 

noted that sister chromatid cohesion per se might be directly involved in these non-canonical 

roles of the cohesin complex.  

 

 

Figure 8. Schematic representation of the non-canonical functions of cohesins. (a) DSB repair is mediated by cohesin binding 
to the break site. In response to a DSB, cohesion is also re-enforced genome-wide. (b) Cohesin regulates gene expression 

through gene looping. (c) Cohesin promotes chromosome condensation (from Zakari et al., 2015) 
 

Transcriptional regulation 

The earliest evidence of the role of cohesin as a key regulator of transcription came with studies 

on Saccharomyces cerevisiae and Drosophila melanogaster (Donze et al., 1999; Rollins et al., 

1999).  

In budding yeast cohesin was found to play an important role at the silent mating type locus, 

where it acts as boundary element in order to restrict the spreading of transcriptional silencing 

(Donze et al., 1999). In fission yeast the cohesin complex was instead shown to regulate 

transcriptional termination (Gullerova and Proudfoot, 2008). 
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In Drosophila melanogaster, both Nipped-B and cohesin were found to be involved in gene 

expression regulation. Specifically, Nipped-B activates the transcription of the homeobox genes 

Cut and Ultrabithorax by mediating the long-range interaction of the promoters with the 

respective enhancers (Rollins et al., 1999). On the other hand, in postmitotic mushroom body γ-

neurons, cohesin is required for the transcriptional activation of the Ecdyson steiroid hormone 

Receptor (EcR), a factor indispensable for axon pruning (Schuldiner et al., 2008). Recent 

studies in Drosophila melanogaster have also proved that cohesin selectively binds to genes on 

which the RNA polymerase II is paused just downstream of the transcription start site. 

Therefore, it is presumable that cohesin is involved in the regulation of the transition of the 

polymerase between a paused state and an active transcription elongation state (Fay et al., 

2011). 

In the following years, the role of NIPBL and cohesin in the transcriptional regulation was 

demonstrated also in other model organisms. In addition, even translation has been proved to be 

influenced by cohesin, thought indirectly. In point of fact, cohesin was reported to augment the 

translational capacity of cells by increasing the level of transcription of rRNA in budding yeast 

and humans (Bose et al., 2012). 

Nevertheless, the mechanisms by which cohesin mediates the regulation of gene expression are 

still not fully understood and vary among different organisms. For instance, in Drosophila 

melanogaster cohesin accumulates together with Nipped-B at the transcriptional start sites of 

active genes (Misulovin et al., 2008). Instead, in humans, cohesin co-localizes with both 

NIPBL and the CCCTC-binding factor (CTCF), a well-known insulator (Wendt et al., 2008).  

The way cohesin fulfills its role in the regulation of gene expression is linked with the 

mechanism through which it mediates sister chromatid cohesion. As previously mentioned, 

cohesin is able to hold sister chromatids together by entrapping them in a ring-like structure. In 

the same way, the cohesin ring might be able to bring together non-contiguous genomic regions 

through the generation of DNA loops. Long-range interactions between distant genomic 

regions obtained thanks to DNA looping might therefore be the key event through which 

cohesin is able to influence gene expression (Rollins et al., 1999). Notably, cohesin can induce 

both transcriptional activation or repression depending on which elements are brought in close 

proximity and on whether an enhancer or a silencer is sequestered into the loop.  
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Chromatin remodeling 

Cohesin was also shown to interact with chromatin remodeling complexes. In particular, ChIP 

experiments showed a direct interaction between the cohesin subunit RAD21 and the ATPase 

SNF2h of a chromatin remodeling complex. This cooperation is needed to modify histone tails 

in order to regulate the accessibility of the DNA (Hakimi et al., 2002). In addition, NIPBL was 

found to interact with the deacetylases HDAC1 and HDAC3. The minimal region of interaction 

in NIPBL is confined to 163 aa at the C-terminal of the protein (1838-2000). Mutations in this 

region determine an impairment of the ability of NIPBL to bind HDAC1 and HDAC3 (Jahnke 

et al., 2008). It might be assumed that the previously reported interactions are needed to 

promote the binding of cohesin to the target DNA following the modification of the chromatin 

structure.  

 

DNA repair 

Studies on Saccharomyces pombe provided the first evidence for the involvement of cohesin in 

DNA repair, and so in the maintenance of genomic stability. In fact, in fission yeast, cohesin 

mutants are sensitive to γ-irradiation due to a defect in the repairing of DSBs (Birkenbihl and 

Subramani, 1992). Since then, the role of cohesin in DSBs repair was confirmed in different 

organisms (Sjörgen and Nasmyth, 2001; Musio et al., 2005; Cortés-Ledesma and Aguilera, 

2006). 

At the beginning, the repair of DSBs was thought to depend on the cohesin complexes already 

bound to the DNA during the S phase. Conversely, it has been demonstrated that, in the 

presence of DNA damage, cohesin can be loaded onto DNA and generate cohesion even in the 

post-replicative phase as a result of the increased activity of the cohesin loader and of the 

acetylases ESCO1/2 (Ström et al., 2004). It is worth to be noted that this damage-induced 

cohesion is generated globally on all chromosomes and not only at the site of damage (Unal et 

al., 2007). In this context, the job of cohesin is to bring sister chromatids together, so that the 

wild type chromatid can be used as template for homologous recombination in order to mediate 

the repair of the strand carrying the DSB.  

In budding yeast, epigenetic marks were analyzed to understand the targeting of the cohesin 

complex at the damage site. It has been demonstrated that the main epigenetic mark for this 

purpose is the phosphorylation of histone H2AX by the checkpoint kinases Mec1 and Tel1 at 

least 60 kb from the DSB site (Unal et al., 2004). In addition, also the MRX complex 
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(Mre11/Rad50/Xrs2) is able to promote the assembly of cohesin at breakage sites (Fig.9; Unal 

et al., 2004).  

In humans, cohesin has also been found to play an important role for the activation of the intra 

S phase and G2-M checkpoints following the generation of a DSB (Kim et al., 2002; Yazdi et 

al., 2002; Luo et al., 2008; Watrin and Peters, 2009).  

 

 

Figure 9. Schematic representation of DNA repair mediated by cohesin in yeast: upon a DSB, cohesin loading is directed to the 
region of the damage following the phosphorylation of H2AX and binding of MRX to the break site.The inhibition of Eco1 is 

then removed, thus allowing the generation of a cohesive-state (from Onn et al., 2008) 
 
 

Interestingly, it has been shown in budding yeast that a reduction of more than 80% of the 

cohesin’ activity is associated to normal cohesion, but leads to defects in DNA repair and 

chromosome condensation (Ellermeier and Smith, 2005). These data underlines the importance 

of cohesin stoichiometry for the regulation of cellular processes different from sister chromatid 

cohesion, that hence appear to be highly dosage-sensitive. Accordingly, a small amount of 

weakly bound cohesin seems to be sufficient to mediate sister chromatid cohesion whereas 

non-canonical functions depend upon high levels of strongly bound cohesin. This hypothesis is 

further confirmed by the absence of cohesion defects in cell lines of CdLS patients (Castronovo 

et al. 2009; Dorsett and Krantz, 2009). 
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Chromosomes condensation 

Chromosome morphogenesis is an essential step for the correct distribution of the genetic 

material during mitosis and depend on DNA condensation. Chromosome compaction is mainly 

mediated by condensins, a highly conserved cohesin-like complex containing SMC proteins 

(Lavoie et al., 2002).  

In fission yeast and budding yeast changes in the level of cohesin were found to be responsible 

for a hypo- or hyper-condensation of chromosomes, possibly due to altered targeting of 

condensins to the chromosomes (Hartman et al., 2000; Losada et al., 2002). These results 

suggest that cohesin might be involved in the control of the localization of condensins on 

chromosomes. This hypothesis was proved in 2004, when a study in budding yeast 

demonstrated that chromosome compaction occurs in two steps, and that the first step depends 

on cohesin (Lavoie et al., 2004). A further confirmation of this theory was given by Chromatin 

Immunoprecipitation (ChIP) experiments on budding yeast, which proved that occupancy sites 

of condensins overlap with those of the cohesin loader complex, thus implying a co-localization 

of condensins with cohesin (D’Ambrosio et al., 2008). Nevertheless, the mechanisms of 

interaction between condensin and cohesin are still poorly understood.  

 

Centrosome-related functions 

Several studies have demonstrated a role of cohesin in the duplication of the microtubule-

organizing centers, also known as centrosomes. The first evidence came in 2006, when it was 

shown that the separase is needed not only for the cleavage of the cohesin ring, but also for 

centriole disengagement and centrosome duplication (Tsou and Stearns, 2006). In the following 

years cohesin subunits were also identified at the spindle pole and centrosomes (Wong and 

Blobel, 2008; Kong et al., 2009). Moreover, depletion of RAD21 in HeLa cells was associated 

with a premature separation of paired centrioles, and also shugoshin was shown to be required 

for the protection of the cohesion between centrioles (Wang et al., 2008; Nakamura et al., 

2009). Lastly, the premature activation of the separase or the depletion of the shugoshin were 

found to cause both premature sister chromatid separation and premature centriole 

disengagement (Schockel et al., 2011). These data suggest that the chromosome and 

centrosome cycles might be coordinated with each other as a result of the dual role played by 

cohesin (Schockel et al., 2011). 
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THE CdLS-GENES: STATE OF ART 

To date, mutations in five different cohesin-related genes have been described as a genetic 

cause of CdLS, namely NIPBL, SMC1A, SMC3, RAD21 and HDAC8 (Krantz et al., 2004; 

Tonkin et al., 2004; Musio et al., 2006; Deardorff et al., 2007; Deardorff et al., 2012a; 

Deardorff et al., 2012b). 

 

NIPBL 

The cohesin loader NIPBL is the “major gene” of the syndrome: mutations can be identified in 

more than half of CdLS cases (Borck et al., 2004; Gillis et al., 2004; Selicorni et al., 2007). 

To date, more than 300 variants affecting NIPBL have been identified in CdLS patients. Most 

of the mutations arise de novo, though also a small number of familial cases has been 

described. All types of variants have been reported so far, including out-of-frame deletions or 

insertions, missense, nonsense, and splicing mutations. Large scale genomic alterations have 

also been identified, but with a lower frequency. Among point mutations, out-of-frame 

deletions resulting in premature termination codons are the most frequent (28%), followed by 

missense substitutions (21%), nonsense and splicing mutations (17% each), duplications (14%), 

insertions (1,5%) and indels (1,5%) (Mannini et al., 2013). 

Mutations in NIPBL are scattered along the entire gene without apparent hotspots. 

Nevertheless, a large number of variants has been identified in exons 10 and 47 because of their 

length (Oliveira et al., 2010). Out-of-frame deletions, nonsense and splicing mutations, all 

presumably leading to a truncated and nonfunctional NIPBL protein, are associated with a more 

typical and severe phenotype characterized by profound developmental and cognitive delay 

with absence of speech, severe pre- and postnatal growth retardation, typical facial 

dysmorphisms and high frequency of limb reductions or malformations. Conversely, missense 

substitutions are generally associated with a milder phenotype; in point of fact, limb anomalies 

are rarely observed and cognitive impairment, growth retardation and developmental delay are 

less severe (Fig.10 A-H) (Selicorni et al. 2007). Patients with large scale genomic 

rearrangements present instead with a phenotype that correlates with the size of the region and 

with the number of exons involved: patients with deletions spanning beyond NIPBL sequence 

or involving large portions of the gene are associated with severe growth and cognitive delay 

and with upper limb malformations. Contrariwise, deletions of one or few exons frequently 

result in a milder phenotype (Russo et al., 2012; Gervasini et al., 2013; Mannini et al., 2013).  
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The severity of the phenotype also depends on the functional domain involved. Indeed, variants 

affecting the HEAT repeats were shown to be associated with a more severe phenotype, 

putatively based on the modified ability of NIPBL to interact with other proteins (Mannini et 

al., 2013). Nevertheless, CdLS unrelated patients sharing the same mutation might present with 

different clinical features. This observation points out that, beside the effects of the mutations 

themselves, other genetic or environmental factors may play an important role in determining 

the phenotypcal expression (Mannini et al., 2013). 

Cell lines of CdLS patients carrying mutations in NIPBL show a reduction of the NIPBL 

transcript of 30%, thus suggesting that the pathogenic mechanism is likely to be linked to 

haploinsufficiency (Dorsett and Krantz, 2009). 

Furthermore, mosaicism was recently proved to play a very important role in association with 

NIPBL: more than 20% of patients who were reported to be mutation-negative on DNA 

extracted from blood were then found to carry a mutation in NIPBL on DNA isolated from 

buccal mucosa or fibroblasts (Husiman et al., 2012; Baquero-Montoya et al., 2014). No 

significant differences were identified between the phenotype of patients with somatic 

mosaicism o with a constitutional mutations, thus excluding the possibility to discern in 

advance the two categories of patients (Huisman et al., 2013). Three mechanisms have been 

proposed in order to explain the onset of mosaicism, namely somatic mutation after 

fertilization, negative selection of mutant lymphocytes or loss of the mutation due to reversion. 

Though, negative selection seems to be the most likely explanation, since no remarkable 

phenotypical differences were observed between patients with or without mosaicism, and since 

mutation reversion is mainly associated to skin disorders (Huisman et al., 2013). 

 

SMC1A 

Mutations in SMC1A have been identified in about 5% of CdLS patients. So far, 44 CdLS 

individuals harboring 29 different mutations have been described (Borck et al., 2007; Deardorff 

et al., 2007, Liu et al., 2009; Limongelli et al., 2010; Mannini et al., 2010; Pié et al., 2010; 

Hoppman-Chaney et al., 2011).  

Mutations were identified throughout the entire protein with the exception of the highly 

conserved hinge domain. Moreover, only missense mutations or in frame-deletions have been 

reported in CdLS patients with mutations in SMC1A. The observation that nonsense mutations 
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or out-of-frame deletions have never been reported points out that they might lead to a different 

phenotype or they are likely not tolerated (Mannini et al., 2013).  

In agreement with the X-linked dominant transmission, females present with a very broad 

spectrum of phenotypical features ranging from very mild to very severe. Conversely, males 

show a more homogeneous and severe clinical presentation. In general, patients harboring 

mutations in SMC1A are characterized by a milder phenotype compared to those who carry 

mutations in NIPBL: in point of fact SMC1A-patients present with a tendency towards normal 

auxological parameters, a mild to moderate cognitive impairment and less remarkable facial 

features (Fig.10 M-N; Mannini et al., 2013). 

Interestingly, SMC1A localizes at Xp11.22, a region of the X-chromosome that partially 

escapes X-inactivation in humans. The rate of escaping of the allele on the inactive X-

chromosome ranges from 15% to 30% (Carrell and Willard, 2005). It is worth to be noted that 

healthy females were shown to express SMC1A at higher levels compared to healthy males (Liu 

et al., 2009). Moreover, patients with mutations in SMC1A were shown to express equal levels 

of transcript and protein compared to controls (Revenkova et al., 2009). Furthermore, mutations 

in SMC1A do not prevent the incorporation of the mutant protein into the cohesin complex and 

SMC1A-mutated heterodimers show a higher affinity for chromatin than normal dimers 

(Revenkova et al., 2009; Gimigliano et al., 2012). All together, these findings suggest that a 

dominant negative effect might be the pathogenic mechanism associated to mutations in 

SMC1A. 

 

SMC3 

To date, only one mutation in SMC3 has been described in a single CdLS patient (Fig.10 Q-U). 

The mutation is a small in-frame deletion of three nucleotides (c.1464-1466delAGA) that 

results in the deletion of a single amino acid (p.E488del) and localizes in the coiled-coil region 

of the SMC3 protein (Deardorff et al., 2007). The patient showed pre- and postnatal growth 

retardation and moderate cognitive and developmental delay. He presented with GERD, but did 

not show any other major malformation (Deardorff et al., 2007). The low frequency of 

mutations in SMC3 indicates that this gene might play important roles beyond cohesion 

(Mannini et al., 2013). In agreement with this hypothesis, SMC3 acetylation was found to 

control the fork processivity in human cells (Zhang et al., 2008). 
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RAD21 

Mutations in RAD21 were identified in eight CdLS patients (Deardorff et al., 2012a; Minor et 

al., 2014). Cell lines expressing mutant-RAD21 showed significantly lower cell survival and 

elevated levels of chromosomal structural rearrangements compared to normal cells after 

irradiation (Deardorff et al., 2012a). 

Mutations in this gene are responsible for a human cohesinopathy that overlaps with CdLS and 

is mainly characterized by short stature, minor skeletal anomalies and facial features including 

synophrys, micrognathia and brachydactyly (Fig.10 O-P). Interestingly, individuals with 

mutations in RAD21 present with a significantly milder cognitive impairment (Deardorff et al., 

2012a). 

 

HDAC8 

To date, mutations in HDAC8 have been reported in about 5% of patients (Deardorff et al., 

2012b; Kaiser et al., 2014; Feng et al., 2014; Yuan et al., 2015). All types of mutations have 

been identified so far; nevertheless, no correlations between the mutation and the clinical 

phenotype could be deduced. Similarly to NIPBL haploinsufficiency, mutations in HDAC8 

were found to cause only a modest reduction of the levels of the transcript (Deardorff et al., 

2012b). 

Patients with mutations in HDAC8 tend to present with a phenotype that partially overlaps with 

CdLS but that is also characterized by atypical features including the late closure of the anterior 

fontanelle, a broad or bulbous nasal tip, hypertelorism, hooding of the eyelids, mosaic skin 

pigmentation and teeth anomalies (Fig.10 I-L; Kaiser et al., 2014). Importantly, HDAC8 is also 

an X-linked gene. Accordingly, as for SMC1A, males show a homogeneous and more severe 

clinical presentation while females, who represents the vast majority of HDAC8-mutated CdLS 

patients, present with a broad range of phenotypes also based on the level of X-inactivation. In 

point of fact, most of the female patients show complete skewing towards the wild type allele 

in blood, thus indicating a strong selection against the mutation (Deardorff et al., 2012b; Kaiser 

et al., 2014).  
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Figure 10. Phenotype of patients carrying mutations in the five cohesin-associated genes responsible for CdLS. (A-D) Female 
patient carrying a truncating mutation in NIPBL. (E-H) Male patient harboring a missense mutation in NIPBL. (I-L) Female 
patient with an in-frame deletion in HDAC8. (M-N) Female patient with a missense mutation in SMC1A. (O-P) Male patient 
with a deletion of RAD21. (Q-U) Male patient carrying the in-frame deletion in SMC3 (from Mannini et al., 2013). 
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MISSING HERITABILITY 

The five genes NIPBL, SMC1A, SMC3, RAD21, and HDAC8, also taking into account the role 

of mosaicism, are responsible for about 70% of CdLS cases. Thus, the molecular cause 

underlying the syndrome is still not known in about 30% of CdLS patients. 

A lot of effort has been invested in order to try to cover this missing heritability. It can be 

speculated that the remaining cases could be explained by the presence of undetectable 

mutations in the known CdLS genes as well as of mutations affecting genes with a function 

similar to the one of cohesin. The employment of high-throughput techniques such as next 

generation sequencing or CGH-array could help to shed light on this phenomenon. 

 

DIFFERENTIAL DIAGNOSIS 

Part of the missing heritability might also be linked to sometimes miscarried diagnosis due to 

phenotypical overlap between CdLS and other syndromes. The main syndromes that represent 

a differential diagnosis to CdLS are the following. 

 

KBG SYNDROME 

KBG syndrome (OMIM #148050) is a rare genetic disorder characterized by postnatal growth 

retardation, developmental delay, cognitive impairment, skeletal anomalies, brachycephaly and 

a typical round facies displaying broad and arched eyebrows, hypertelorism, a broad or bulbous 

nasal tip and a long philtrum (Hermann et al., 1975; Ockeloen et al., 2014). The hallmark of the 

syndrome is the presence of dental anomalies, a feature that is instead not common for CdLS 

(Ockeloen et al., 2014). 

KBG syndrome is caused by loss-of-function mutations in the ANKRD11 gene (OMIM 

#611192, 16q24.3), encoding for a transcriptional repressor also known as ankyrin repeat-

containing protein 11 (Sirmaci et al., 2011). ANKRD11 contains one activation domain that is 

able to stimulate transcription, two repression domains and five ankyrin repeats needed to 

mediate protein-protein interactions (Zhang et al., 2007). The protein is able to inhibit 

transcriptional activation by interacting with the deacetylases HDAC3, HDAC4 and HDAC5 

and by recruiting them to target genes of nuclear receptors, thus inhibiting their transcription 

(Sirmaci et al., 2011). ANKRD11 was also found to localize within the nuclei of neurons and to 
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accumulate in distinct inclusions after their depolarization. This data suggests that ANKRD11 

also plays a role in neural plasticity (Sirmaci et al., 2011). 

 

COFFIN-SIRIS SYNDROME 

Coffin-Siris syndrome (CSS, OMIM #135900) is a rare multisystem developmental disorder 

characterized by a coarse facies and typical facial features including thick and arched 

eyebrows, long eyelashes, a broad nasal bridge and nasal tip, a wide mouth and thick and 

everted lips (Schrier et al., 2012). CSS patients also present with short stature, cognitive 

impairment, psychomotor delay, feeding difficulties and hypoplasia or aplasia of the fifth 

fingernail or digit. Additionally, they can display hirsutism, microcephaly and sparse scalp hair 

(Schrier et al., 2012). 

Mutations in different subunits of the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex 

were found to be associated with the syndrome (Santen et al., 2012; Tsurusaki et al., 2012). 

 

Figure 11. Schematic representation of the SWI/SNF complex, that is highly conserved during evolution. The names of the 
main subunitsare indicated for different organisms (mouse and humans) 

 

The SWI/SNF complex (Fig.11) is a family of highly conserved chromatin remodelers. 

Though, the subunits of the complex can vary among different organisms. In addition, in 

humans, the numerous subunits are encoded by more than one gene, so that different 

combinatorial assemblies of the complex are possible. The various combinations are then 

tightly regulated during cell development and differentiation (Kosho et al., 2014). Typically, a 

human SWI/SNF complex contains a single ATPase, represented by SMARCA2 (OMIM 

#600014, 9p24.3) or SMARCA4 (OMIM #603254, 19p13.2), some core subunits including 

SMARCB1 (OMIM #601607, 22q11.23), SMARCC1 and SMARCC2 and some accessory 

subunits, the most important of which are ARID1A (OMIM #603024, 1p36.11), ARID1B 
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(OMIM #614556, 6q25.3) and SMARCE1 (OMIM #603111, 17q21.2). To date, CSS-causing 

mutations have been identified in ARID1B, ARID1A, SMARCA2, SMARCB1 and SMARCA4, 

thus indicating genetic heterogeneity (Santen et al., 2012; Tsurusaki et al., 2012). In addition, 

mutations in the SWI/SNF-associated protein PHF6 (OMIM #300414, Xq26.2) have also been 

proven to cause CSS (Wieczorek et al., 2013). ARID1B represents the major gene of the 

syndrome and loss-of-function mutations can be identified in more than 70% of CSS cases 

(Wieczorek et al., 2013). All the ARID1B-mutations so far identified are truncating and are 

predicted to determine haploinsufficiency (Wieczorek et al., 2013). 

As cohesin, the SWI/SNF complex is involved in various cellular processes including ATP-

dependent chromatin remodeling, gene expression regulation, cell cycle regulation and 

differentiation. Accordingly, mutations in subunits of the SWI/SNF complex have been 

identified in different types of cancer (Wieczorek et al., 2013). 

 

WIEDEMANN-STEINER SYNDROME 

Wiedemann-Steiner syndrome (WDSTS, OMIM # 605130) is a heterogeneous disorder also 

known as “hairy elbows syndrome” due to a peculiar and frequently observed excessive hair 

growth around the proximal third of the forearm and the distal third of the upper arm. The 

syndrome is also characterized by short stature, intellectual disability and distinctive facial 

features including thick eyebrows, long eyelashes, vertically narrowed and downslanted 

palpebral fissures, broad nasal bridge and nasal tip (Wiedemann et al., 1989; Steiner and 

Marques, 2000). 

Mutations in the KMT2A gene (OMIM #159555, 11q23.3) are responsible for WDSTS (Jones 

et al., 2012). KMT2A is a lysine-specific methyltransferase that plays an essential role in the 

regulation of gene expression during hematopoiesis and early development. The protein is 

highly conserved and consists in multiple functional domains, the most important of which is 

the SET domain, which is responsible for the enzymatic activity (Jones et al., 2012).  

Multiple chromosomal translocations involving KMT2A are described in association with acute 

lymphoid leukemias and acute myeloid leukemias (Nilson et al., 1996; Taki et al., 1996). 
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RUBINSTEIN-TAYBI SYNDROME 

Rubinstein-Taybi syndrome (RSTS, OMIM #180849) is characterized by postnatal growth 

retardation, intellectual disability, broad and angulated thumbs and halluces and typical facial 

features that include downslanted palpebral fissures, a beaked nose with the columella 

extending below the nares, grimacing smile, highly arched palate and Talon cusps (Rubinstein 

and Taybi, 1963; Hennekam, 2006).  

To date, mutations in two different genes have been associated with RSTS. The major gene of 

the syndrome is CREBBP (OMIM #600140, 16p13.3). CREBBP mutations are responsible for 

more than 50% of RSTS cases (Bartsch et al., 2005; Bentivegna et al., 2006; Spena et al., 

2014). The second gene EP300 (OMIM #602700, 22q13.2) accounts for about 8% of RTS 

cases (Roelfsema et al., 2005; Negri et al., 2015). Both CREBBP and EP300 are transcriptional 

co-activators involved in the regulation of the expression of various signaling pathways. The 

two genes encode for homologous proteins highly conserved during evolution that play an 

important role as acetyltransferases (Roelfsema et al., 2005). Interestingly, a patient with a 

clinical diagnosis of CdLS was found to carry a mutation in the EP300 gene in 2013 (Fig.12; 

Woods et al., 2013). 

 

 

Figure 12. Facial appearance of the CdLS patient carrying a mutation in the EP300 gene. To be noted the presence of thick 
and arched eyebrows with synophrys, long eyelashes, depressed nasal bridge with anteverted nares and smooth philtrum (from 

Woods et al., 2013) 
 

The patient, a Caucasian male born to healthy parents, presented with typical CdLS facial 

features including microbrachycephaly, thick and arched eyebrows with synophrys, ptosis, long 

eyelashes, depressed nasal bridge with anteverted nares, smooth and long philtrum, and thin 

lips. He also displayed growth retardation, cognitive impairment, developmental delay, 

hirsutism, respiratory distress, supraventricular tachycardia, hypospadias, cryptorchidism, 
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increased bifrontal subarachnoid spaces and a severe, progressive and rigid scoliosis. He died at 

the age of 5 years 3 months because of severe bronchopneumonia (Woods et al., 2013). 

The finding of a mutation in EP300 in a patient with a clinical diagnosis of CdLS is of 

particular interest and highlights the already suggested phenotypical overlap between CdLS and 

RSTS (Gorlin et al., 2001). A functional link between EP300 and the cohesin-associated genes 

has also been established. In point of fact, both EP300 and HDAC8 are key regulators of the 

transcriptional activity of p53 (Yan et al., 2013). In addition, EP300 and NIPBL have been 

shown to localize at putative enhancer regions in different cell types and were recently ranked 

as top enhancer signatures (Chen et al., 2012). It cannot be excluded that EP300 and the 

cohesin-associated genes are involved in the regulation of other common pathways, thus 

explaining the phenotypical overlap between the two syndromes.  
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AIM OF THE PRESENT WORK 
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CdLS is a heterogeneous disease characterized by clinical and genetic heterogeneity. Mutations 

in five genes have been so far identified as a genetic cause of CdLS, namely NIPBL, SMC1A, 

SMC3, RAD21 and HDAC8. Nevertheless, the impact each gene exerts on the syndrome has yet 

to be defined. In addition, mutations in the five genes are all together responsible for about 70% 

of CdLS cases. Hence, a molecular diagnosis is still not available for about 30% of CdLS 

patients. 

 

The present work originates from an international cooperation that involves different countries 

and is divided into the following section: 

 Definition of the mutational frequency of each CdLS-associated gene with particular 

attention to the role played by mosaicism. The assessment of the genotype-phenotype 

correlation is also of utmost importance for the definition of the most appropriate 

molecular testing in the presence of a diagnosis of CdLS 

 Investigation of the peculiar pattern of expression of SMC1A in healthy controls and in 

the CdLS population. In point of fact, this gene localizes on a region of the X 

chromosome that partially escapes X-inactivation. Therefore, the study of the overall 

and allele-specific expression of this gene could shed light on the pathogenic 

mechanisms underlying the syndrome in the presence of mutations in SMC1A 

 Identification of new causative genes by the use of next generation sequencing 

techniques. In this context, it can be speculated that genes encoding for proteins 

functionally associated with cohesin or with chromatin-related activity might be 

responsible for CdLS-overlapping phenotypes. Both targeted gene panel or genome-

wide approaches can be used for this purpose 
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MATERIALS AND METHODS 
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PATIENTS 

The patients herein described were recruited thanks to a large international cooperation that 

includes Italy, Spain, Germany, Sweden, Poland and the United States.  

All procedures involving human participants were performed in accordance with the ethical 

standards of the respective national research committees. Informed consent was obtained from 

all individuals participants included in this study. An additional consent was obtained for the 

publication of photographic material comprising patients. 

All children underwent complete physical and dysmorphologic evaluation by their referring 

clinical geneticists, who assigned a diagnosis of CdLS to most of the patients. Patients with an 

uncertain diagnosis but presenting CdLS-overlapping features were also included in this study. 

Patients’ DNA was analyzed through different techniques including Sanger sequencing and 

next generation sequencing approaches in order to identify the causative mutations. 

 

 

CELL CULTURE ESTABLISHMENT 

Cell cultures were generated from lymphoblasts or fibroblasts.  

Lymphoblastoid cell lines (LCLs) were established in collaboration with the Galliera Genetic 

Bank of the Galliera Hospital through Epstein-Barr virus transformation. LCLs were cultured 

in RPMI 1640 medium supplemented with 20% Fetal Bovine Serum (FBS) and 1% Antibiotics. 

Cells were grown at 37°C with 5% CO2. 

Skin biopsies were used to establish fibroblasts cell lines, which were grown in DMEM 

supplemented with 10% FBS and 1% Antibiotics at 37°C with 5% CO2. 
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DNA ISOLATION 

Genomic DNA was isolated from blood, LCLs, fibroblasts, buccal mucosa and urine. 

 

DNA ISOLATION FROM BLOOD, LCLs AND FIBROBLASTS 

DNA extraction from blood, LCLs and fibroblasts was performed with the QIAamp® DNA 

blood Mini Kit (Qiagen, Hilden, Germany), which enables rapid and efficient purification of 

high quality genomic DNA from a diverse variety of sample materials for a broad range of 

downstream applications. The isolation was performed according to the manufacturer’s 

instruction starting from 200 µl of whole blood or 5x106 cells. 

 

DNA ISOLATION FROM URINE 

Genomic DNA was isolated from 50 ml of urine.  

Cells were sedimented by centrifuging at 5000 rpm for 20 minutes at 4°C. The pellet was 

resuspended in 1 ml TNE buffer (10 mM Tris pH 8, 1 mM EDTA pH 8, 100 mM NaCl) and 

transferred to a 1,5 ml Eppendorf tube. Cells were then centrifuged again at 3000 rpm for 10 

minutes at 4°C and the pellet resuspended in 400 µl TNE plus (10 mM Tris pH 8, 1 mM EDTA 

pH 8, 100 mM NaCl, 1% SDS, 100 µg/ml Proteinase K). The resulting solution was incubated 

overnight in a thermo-shaker at 56°C and 500 rpm.  

The day after, 200 µl Phenol and 200 µl Clorophorm were added to the resuspension, which 

was then vortexed and incubated at room temperature for 10 minutes. After the incubation, a 

centrifugation at room temperature at 10000 rpm for 10 minutes was performed in order to let 

the different phases separate. 

The DNA contained in the supernatant was precipitated with 40 µl of 3M Sodium Acetate and 

1 ml of 100% Isopropanol (centrifugation at 14000 for 30 minutes at 4°C) and subsequently 

washed with 500 µl of 70% Ethanol (centrifugation at 14000 rpm for 5 minutes at 4°C).  

The purified DNA was dried in a speed vacuum and resuspended in 30 µl of distilled water. 
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DNA ISOLATION FROM BUCCAL MUCOSA 

Isolation of genomic DNA from buccal mucosa was performed with the MasterAmp™ Buccal 

Swab Kit (Epicentre, Cambridge, UK) according to the manufacturer’s instructions.  

The resulting DNA was precipitated with 1/10 volume of 3M Sodium Acetate and two volumes 

of Ethanol 100% by centrifuging at 14000 rpm for 30 minutes at 4°C. After discarding the 

supernatant, the DNA was washed with 500 µl of 70% Ethanol and centrifuged at 14000 rpm 

for 5 minutes at 4°C. The purified DNA was then dried in a speed vacuum and resuspended in 

20 µl of distilled water. 

 

 

SEQUENCING APPROACHES 

Different techniques were employed in order to identify the causative mutations of each patient. 

Specifically, patients were analyzed through Sanger sequencing or next generation sequencing 

approaches targeted to the exome or to a cluster of selected gene.  

 

SANGER SEQUENCING 

The genes of interest were amplified with primers flanking the intron-exon boundaries with the 

GoTaq® Flexi DNA Polymerase (Promega, Madison, WI, USA) with the following protocol: 

 

H2O    13,875 µl    
Buffer 5x   5 µl    95°C x 5’ 
dNTPs 2 mM   2,5 µl    95°C x 30’’ 
MgCl2 25 mM   1,5 µl    Ta°C x 30’’     x 35 cycles 
Primer Forward (25 µM) 0,5 µl    72°C x 30’’ 
Primer Reverse (25 µM) 0,5 µl    72°C x 5’ 
Taq (5 U/µl)   0,125 µl   4°C ∞ 
DNA (50 ng/µl)  1 µl 

 

PCR products were sequenced with the Big Dye terminator v3.1 Sequencing Kit following the 

manufacturer’s protocol and run on the ABI PRISM 3130xl Genetic Analyzer (Applied 

Biosystems, Foster City, CA, USA). Electropherograms were analyzed with the ChromasPro 

Software version 1.7.6 (Technelysium Pty Ltd, Tewantin QLD, Australia). 
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TARGETED GENE PANEL 

Targeted next generation sequencing was based on the design of a custom-made gene panel for 

the Personal Genome Machine (Ion Torrent PGM) with the AmpliSeq Designer Tool (Life 

Technologies, Darmstadt, Germany). The designed panel amplifies 75 kb of selected genomic 

sequences including the five known CdLS-associated genes, with an estimate coverage of 

>95%. After quantification with the Qubit® 2.0 Fluorometer (Life Technologies), libraries 

were prepared using 20 ng of gDNA as starting template with the Ion AmpliSeq Library Kit 

(Life Technologies) according to the manufacturer’s instructions. 

IonSphere particles were loaded with the clonally amplified templates through the Ion PGM 

Template OT2 200 Kit; the loaded template positive particles were then sequenced on the Ion 

316v2 TM Chip with the Ion PGM Sequencing 200 Kit v2 (Life Technologies). Given the high 

frequency of mosaic mutations in CdLS, the filtering process was adjusted to a low stringency 

protocol that excluded only those variants that were represented in less than 5% of the total 

reads. 

 

SNaPshot ASSAY 

SNaPshot assays (SNaPshot® Multiplex Kit, Life Technologies) were used to confirm low 

percentage variants emerged from the targeted gene panel. In fact, this primer-extension based 

assay allows the detection of DNA sequence alterations with a very high sensitivity by the use 

of fluorescent-labeled ddNTPs.  

The region of interest was amplified with the GoTaq® Flexi DNA Polymerase (Promega) as 

previously described. The PCR product was purified with ExoSAP-IT® (Affymetrix, Santa 

Clara, CA, USA) following the manufacturer’s instructions.The SNaPshot reaction was carried 

out as follows: 

     
H2O    1 µl     
SNaPshot Multiplex Ready      96°C x 10’’ 
Reaction Mix   5 µl    50°C x 5’’       x 25 cycles 
Sequencing primer (2 μM) 1 µl    60°C x 30’’ 
Purified PCR   3 µl    4°C ∞ 

    
 

SNaPshot samples were run on the ABI PRISM 3130xl Genetic Analyzer (Applied 

Biosystems) and evaluated with the GeneScan® 4.0 Analysis Software (Life Technologies). 
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EXOME SEQUENCING 

DNAs were assayed for quality and quantity with the Qubit® 2.0 Fluorometer (Life 

Technologies).  

The TruSeq Exome Enrichment Preparation Kit (Illumina, San Diego, CA, USA) was used for 

exome library preparation following the manufacturer’sprotocol. Briefly, 2 µg of gDNA were 

fragmented by Covaris E220; subsequently, end repair, A-tailing, adapter/barcode ligation and 

clonal amplification were performed.  

The pooled libraries, at a final concentration of 8 pMol, were then sequenced on the Illumina’s 

HiSeq 2500 system (Illumina). 

For bioinformatic analysis, read tags were aligned with the human reference genome (hg19) 

using bwa 0.6.1 (Li and Durbin, 2010). After removing duplicate and off-target reads, GATK 

(DePristo et al., 2011) was used to perform a joint call of SNPs and Indels. Variants were 

filtered after Variant Quality Score Recalibration and annotated to dbSNP using SnpSift. 

Functional impact of each variant was predicted using snpEff (Cingolani et al., 2012). Variants 

that were predicted to impact the coding sequences and with a frequency in the population 

lower than 2% were retained. Resulting variants were filtered according to a dominant/de novo 

inheritance model. 

 

CGH-ARRAY 

Peripheral blood DNA samples were tested with the qChip Post oligonucleotide microarray 

(Quantitative Genomic Medicine Laboratories, Barcelona, Spain). This CGH-array comprises 

60,000 probes mainly located in pericentromeric and subtelomeric regions, as well as regions 

associated to syndromes caused by recurrent genomic alterations. The overall median probes 

spacing is 35 Kb and the resolution is of  100-125Kb.  

After hybridization of the DNA of the patients and of the reference DNA, slides were scanned 

and analyzed for relative gain or loss of fluorescent signals. Genomic region analyses were 

performed according to the human reference sequence build 36.1 (hg18) with the Genomic 

Workbench software. 
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EXPRESSION STUDIES 

The level of expression of SMC1A was assessed in seven female patients carrying missense 

mutations. The X-inactivation status of each patient was first evaluated in order to discriminate 

between a random or skewed X-inactivation. Subsequently, Real Time PCR and 

semiquantitative Western Blot were performed in order to assess the level of expression of the 

SMC1A transcript and of the SMC1A protein, respectively. Lastly, a pyrosequencing assay was 

carried out in order compare the expression of the wild type and mutant alleles. 

 

X-INACTIVATION ANALYSIS 

Detection of the X-inactivation status was performed at the HUMARA (Human Androgen 

Receptor gene) and DXS6673E loci. For each sample, 250 ng of gDNA extracted from blood 

or LCLs were digested with the appropriate enzymes. 

Digestion of the HUMARA locus was performed with 2.5 U of the methylation sensitive 

restriction enzymes HhaI and HpaII (New England Biolabs, Ipswich, Massachusetts, USA), 

while the digestion of the DXS6673E locus was performed with 5 U of HhaI and RsaI (New 

England Biolabs). In both cases, gDNA was digested overnight at 37°C, and enzymes were 

inactivated for 20 minutes at 80°C. Additionally, a no enzymes control was set up, and a male 

control was additionally digested in order to verify the completeness of enzymatic cleavage. 

Digested and undigested samples were subsequently PCR-amplified; the HUMARA locus was 

amplified with the Fw 5’-FAM-TCCAGAATCTGTTCCAGAGCGTGC-3’ and Rev 5’-

GCTGTGAAGGTTGCTGTTCCTCAT-3’ primers, while the DXS6673E locus was amplified 

with the following primers: Fw 5’-FAM-ATGCTAAGGACCATCCAGGA-3’ and Rev 5’-

GGAGTTTTCCTCCCTCACCA-3’.  

PCR products were separated on the ABI PRISM 3130xl Genetic Analyzer (Applied 

Biosystems) and the GeneScan® 4.0 Analysis Software (Life Technologies) was used to 

determine peak position and area intensity of each allele. The level X-inactivation was 

calculated by dividing the ratio of the allele peak areas in the digested sample by the ratio of the 

allele peak areas in the undigested sample. 
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RNA EXTRACTION AND cDNA SYNTHESIS 

RNA extraction was performed from blood or LCLs. RNA isolation from blood was performed 

using the Tempus Spin RNA Isolation Reagent Kit (Applied Biosystems) according to 

manufacturer’s instructions. Extraction from LCLs was instead performed with the TRI reagent 

RNA Isolation Reagent (Sigma-Aldrich, St. Louis, MO, USA). Subsequent treatment with 

DNase I (RNase-free, New England Biolabs) was carried out on all RNA samples in order to 

avoid genomic DNA contaminations. 

The High Capacity cDNA Reverse Transcription Kit (Applied Biosystem) was used to retro-

transcribe 250 ng of RNA with random examers. cDNA synthesis was performed in two 

independent experiments for each sample.  

 

REAL TIME PCR 

The expression level of the SMC1A transcript was assessed by the use of the Real Time PCR 

assay. The investigation was run on the OneStep Real Time PCR System Instrument (Applied 

Biosystems). The TaqMan gene expression assay (assay ID: Hs01091953-m1; Applied 

Biosystems), spanning the junction between exons 19 and 20 of SMC1A, was used to carry out 

the Real Time PCR reaction. Based on efficiency and stability experiments, the RPLP0 gene 

was selected as endogenous normalizer and amplified with the TaqMan gene expression assay 

ID:4333761F (Applied Biosystems).  

Relative gene expression was determined using the ΔΔCt method, as previously described 

(Livak and Schmittgen, 2001). 

 

PROTEIN EXTRACTION AND WESTERN BLOT 

LCLs were lysed using lysis buffer (150 mM NaCl, 50 mM Tris pH 7.5, 1% NP-40, 0.25% 

deoxycholic acid) and a protease inhibitor cocktail (Roche, Mannheim, Germany). The 

suspension was incubated on ice for 30 minutes with occasional inversion to obtain complete 

lysis. The lysate was centrifuged at 14000 rpm for 25 minutes at 4°C. The supernatant (whole 

cell lysate) was stored at -20°C. Protein concentration was determined through the BCA 

Protein Assay Kit (Pierce, Rockford, IL, USA) according to the manufacturer’s protocol with 

the ND-1000 Spectrophotometer (Thermo Fisher Scientific Inc., NanoDrop Products). 
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For each sample, 20 µg of proteins were supplemented with Laemmli buffer (60 mM Tris-Cl 

pH 6.8, 2% SDS, 10% glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) and 

denatured at 95°C for 5 minutes. Proteins were separated by 8% SDS polyacrylamide gels and 

then transferred by electroblotting to a polyvinylidene fluoride (PVDF) membrane (Roche). 

Subsequently, membranes were washed twice in PBS-T (100 mM NaCl, 80 mM Na2HPO4, 20 

mM NaH2PO4, 0.3% Tween20) and non-specific binding was blocked by incubating the 

membranes in 5% skimmed milk in PBS-T for 1 hour at room temperature. Membranes were 

incubated overnight at 4°C in agitation with the respective antibodies, namely the rabbit anti-

SMC1A antibody (1:2000) (ab21583; Abcam, Cambridge, UK) and the mouse anti-GAPDH 

antibody (1:12500) (ab8245; Abcam), both diluted in PBS-T. After four washing steps in PBS-

T, the membranes were incubated at room temperature for one hour in agitation with the HRP-

conjugated secondary antibodies diluted in PBS-T: the goat anti-rabbit IgG (1:10.000) (sc-

2004; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and the goat anti-mouse IgG 

(1:25000) (sc-2005; Santa Cruz Biotechnology) were used for SMC1A and GAPDH detection, 

respectively. After four washes in PBS-T and two washes in PBS, bound antibodies were 

detected using enhanced chemiluminescence (Westar ηC; Cyangene, Bologna, Italy). 

Blot images were acquired with GboxChemi XT4 system (Syngene, Cambridge, UK) and 

semiquantitative analysis of the SMC1A protein expression was performed using the Gene 

Tools Gel Analysis software (Syngene) after normalization with the expression of the GAPDH 

protein. 

 

PYROSEQUENCING ASSAY 

Pyrosequencing is a quantitative technique based on the activity of the luciferase enzyme. 

Briefly, pyrosequencing consists of five main steps (Fig.13): 

1. The sequence of interest, after being amplified, is incubated with the four different 

enzymes DNA polymerase, ATP sulfurylase, luciferase and apyrase and the two 

substrates Adenosine 5'-phosphosulfate (APS) and luciferin.  

2. The four dNTPs are added one by one. Every time a dNTP is added, two different 

scenarios might occur: in the first case, the dNTP is degraded by the apyrase because 

there is no complementarity with the PCR-template. In the second scenario, the dNTP is 

complementary to the template, and the DNA polymerase incorporates it to the newly 
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forming strand, thus determining the release of one molecule of inorganic 

pyrophosphate (PPi) for each dNTP that has been added.  

3. After the release of the PPi and in the presence of the substrate APS, the ATP 

sulfurylase is able to catalyze the generation of one molecule of adenosine triphosphate 

(ATP) for each molecule of PPi that has been released. The so formed ATP is then used 

by the luciferase to convert its substrate luciferin into oxyluciferin with emission of 

light. The amount of produced light is directly proportional to the amount of produced 

ATP, and so to the amount of PPi that was released, and consequently to the number of 

dNTPs that were incorporated to the newly forming strand. The emitted light is then 

captured by a Charged Coupled Device (CCD) and converted into a single peak in the 

program generated by the analysis software. The height of the peak is directly 

proportional to the number of incorporated dNTPs.  

4. The apyrase catalyzes the degradation of the dNTPs which were not incorporated into 

the new DNA strand. 

5. Another dNTP is added, and the cycle starts over.  

 

 

Figure 13. Diagram of operation of pyrosequencing 
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For the run, the target region was amplified in a 50 µl reaction using the GoTaq Flexi DNA 

polymerase (Promega) and a specific couple of primers, one of which biotinylated. The 

analysis was performed with the Pyro Gold Reagent Kit (Qiagen). Briefly, 40 µl of biotinylated 

PCR product were mixed for 15 minutes at 1400 rpm with 40 µl of  a Binding Mix made up of 

37 µl of Binding Buffer (10 mM Tris-HCL; 2 M NaCl; 1 mM EDTA; 0.1 % TweenTM 20; pH 

7,6) and 3 µl of Streptavidin-Sepharose Beads. The PCR product bound to the beads was then 

denatured and washed with a vacuum pump. The resulting single strand biotinylated PCR 

product bound to the beads was hybridized with the sequencing primer at a final concentration 

of 2 µM in a 96 wells PSQ Plate (Qiagen) and incubated at 80°C for 2 minutes. The plate was 

then transferred to the Pyro MarkID instrument (Qiagen). The PyroMark Q96 ID Software 2.5 

(Qiagen) was used for the analysis. 

 

 

PROTEIN-PROTEIN INTERACTION STUDIES 

Protein-protein interaction studies were carried out in order to verify putative interactions of the 

subunits of the cohesin complex with other transcription factors. 

 

CLONING 

PCR based cloning was used to place DNA fragments encoding for the gene of interest into the 

backbone of the vectors needed for the yeast two hybrid assay.  

PCRs were carried out using primers containing the desired restriction sites at the 5’ position 

and with the high fidelity polymerase TaKaRa primeSTAR GXL DNA Polymerase (Clontech, 

Saint-Germain-en-Laye, France) with the following protocol: 

 

H2O    30 µl    
Buffer 5x   10 µl    98°C x 1’ 
dNTPs 10 mM  4 µl    98°C x 10’’   

 Primer Forward (10 mM) 1,5 µl    Ta°C x 15’’     x 35 cycles 
Primer Reverse (10 mM) 1,5 µl    68°C x 1’x kb 
Taq (5 U/µl)   1 µl    68°C x 5’ 
cDNA    2 µl    4°C ∞ 
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In order to produce PCR fragments suitable for a TA-cloning, 0,25 µl of Taq Poymerase (MP 

Biomedicals, Santa Ana, CA, USA) were added to the PCR reaction after the run, and the tubes 

were then incubated at 72°C for 20 minutes. 

PCR fragment were run on 1% agarose gel and the specific band corresponding to the fragment 

of interest was cut out. Gel extraction was subsequently performed with the QIAquick Gel 

Extraction Kit (Qiagen) according to the manufacturer’s instruction.  

The purified fragment was ligated with the shuttle vector pGEM®-T Easy (Promega) by the 

use of the T4 DNA Ligase (Promega). E. coli DH5α cells were then chemically transformed 

with the recombinant DNA construct and plated onto LB agar plates containing 100 μg/ml of 

ampicillin, in order to specifically select the transformed bacterial cells. Transformed bacteria 

containing the plasmid of interest were grown overnight at 37°C at 225 rpm in 3 ml of LB 

medium supplemented with 3 µl of ampicillin. Plasmids were then extracted using the 

QIAGEN Plasmid Mini Kit (Qiagen) following the manufacturer’s instructions, digested with 

the appropriate restriction enzymes and run on 1% agarose gel in order to check the restriction 

profile. Clones presenting the right profile were sequenced in order to verify the absence of 

mutations. Wild type plasmids were then subcloned into the expression vectors of the yeast two 

hybrid assay, namely pGADT7 and pGBKT7 (Clontech). Transformed bacteria containing the 

plasmid of interest were grown overnight at 37°C at 225 rpm in 50 ml of LB medium 

supplemented with 50µl of antibiotic. Plasmids were then extracted using the QIAGEN 

Plasmid Midi Kit (Qiagen) following the manufacturer’s instructions. 

 

YEAST TWO HYBRID ASSAY 

The yeast two hybrid assay is used to detect protein-protein interactions (Fig.14). The 

technique is highly sensitive and is able to identify also weak and transient interactions. This 

assay is based on the properties of the yeast transcriptional activator GAL4, which can be 

divided in two domains: one DNA binding domain (BD) responsible for the interaction of the 

protein with the DNA, and one activation domain (AD) responsible for the transcriptional 

activation of the target gene. In the yeast two hybrid assay, a gene of interest (bait gene) is 

fused to the GAL4 BD, while a putative interactor (prey gene) is expressed as a fusion to the 

GAL4 AD. If the proteins encoded by the bait and prey genes interact, the BD and AD domains 

of the GAL4 are brought into proximity, thus activating the transcription of four reporter genes 

in the AH109 yeast strain, namely ADE2, HIS3, MEL1 and LacZ, which confer nutritional 

advantage to the transformed yeasts. 
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Figure 14. Schematic representation of the yeast two hybrid assay 
 

Transformation of the yeast AH109 strain was carried out with the lithium acetate method 

(Gietz and Woods, 2002).  

Yeasts growing on an agar plate were inoculated in 5 ml of YPD medium (Yeast Extract-

Peptone-Dextrose) and grown for 2-3 days at 30°C and 250 rpm (pre-culture). The day of the 

transformation, the entire pre-culture was poured into 50 ml of YPD medium and grown at 

30°C at 250 rpm for 5-6 hours. Once the desired density was reached, yeasts were centrifuged 

at 3000 rpm for 5 minutes and then washed with 20 ml of sterile water. Two other washing 

steps were subsequently performed: one in 1 ml 1x TE Buffer (Tris/EDTA) and one in 1 ml of 

1x TE/LiAc (TE/Lithium Acetate). The resulting pellet was resuspended in 250-300 µl 

TE/LiAc. The transformation mix was prepared as follows: 50 µl of yeasts suspension, 5 µl of 

salmon sperm, 300 µl of PEG 40 (Polyethylenglycol) and 1 µg of each midi preparation (bait 

and prey plasmids). After vortexing, the transformation mix was incubated at 30°C for 30 

minutes. Subsequent heat-shock was carried out at 42°C for 15 minutes, followed by two 

minutes on ice. The entire transformation mix was then plated on -2 SD Plates. Three or four 

days after the transformation, -2 and -4 star plates were prepared and incubated at 30°C. 
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EXPRESSION CONTROLS 

Immunoblotting was performed in order to verify the expression of the protein of interests. 

Liquid cultures were established by inoculating yeasts in 3 ml of -2 SD medium and grown for 

2-3 days at 30°C at 250 rpm. The liquid culture was then centrifuged for 5 minutes at 3000 

rpm. After discarding the supernatant, the yeast pellet was freezed with liquid nitrogen and 

subsequently heat-shocked at 42°C. The freezing-thawing step was repeated five times in order 

to determine the lysis of the cell wall. The resulting lysed yeasts were resuspended in 50 µl of 

Laemmli Buffer and denatured at 95°C for 5 minutes. 

Proteins were separated on 10% SDS polyacrylamide gels and then transferred by 

electroblotting to a polyvinylidene fluoride (PVDF) membrane (Roche). Subsequently, 

membranes were incubated with the blocking solution (4% milk in PBS) for 1 hour at room 

temperature, in agitation. Membranes were incubated overnight at 4°C in agitation with the 

respective antibodies, namely the rabbit anti-GAL4 (DNA binding domain) antibody (06-262; 

Merck Millipore, Billerica, MA, USA) and the rabbit anti-Gal4 (Activation Domain) antibody 

(G9293; Sigma-Aldrich), both diluted in 1:1000 in 4% milk. After four washing steps in PBS, 

membranes were incubated at room temperature for 90 minutes in agitation with the HRP-

conjugated secondary antibody goat anti-rabbit IgG (sc-2004; Santa Cruz Biotechnology) 

diluted in 4% milk. After four more washes in PBS, bound antibodies were detected using 

enhanced chemiluminescence (Westar ηC; Cyangene). Blot images were acquired with 

GboxChemi XT4 system (Syngene). 

 

Co-IMMUNOPRECIPITATION 

Co-immunoprecipitation was performed to confirm the protein-protein interactions observed 

with the yeast two hybrid assay. 70 millions of HeLa cells were used for the analysis. Cells 

were harvested and washed with 1 ml of PBS. The lysis was performed with 500 µl of RIPA 

buffer (50 mM HEPES, 1 mM EDTA, 1% NP40, 0,5 M LiCl) and 2 µl of protein inhibitor 

cocktail (Roche).  

Briefly, 100 µl of beads (Affi-Prep® Protein A Matrix, Bio-Rad, Hercules, CA, USA) were 

transferred to a 1,5 ml Eppendorf tube and pelleted at 2500 rpm for 2 minutes at 4°C. The 

pellet was then washed twice with 1 ml of PBS/BSA (5 mg/ml) and resuspended again in 1 ml 

of PBS/BSA by gently inverting. 10 µl of the anti-NIPBL antibody (A301-779A, Bethyl 

Laboratories Inc, Montgomery, TX, USA) or anti-SMC3 antibody (A300-060A, Bethyl 
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Laboratories Inc) were added to the resuspension, which was then incubated for 5-6 hours in 

agitation at 4°C in order to immobilize the antibody on the beads. After the incubation, the 

complexes beads-antibody were centrifuged at 2500 rpm for 2 minutes at 4°C and resuspended 

in the HeLa cell lysate. A overnight incubation in agitation at 4°C was performed to let the 

protein of interest and its interactors bind the antibody immobilized on the beads. After 

centrifugation, the supernatant (unbound fraction) was transferred to a new tube, while the 

beads pellet was washed twice with 1 ml of RIPA buffer. The pellet was then resuspended in 50 

µl of Laemmli buffer and denatured at 95°C for 5 minutes (Immuno-precipitated fraction). 100 

µl of unbound fraction were mixed with 100 µl of Laemmli buffer and denatured at 95°C for 5 

minutes. Immunoblotting was performed on both fractions using the following antibodies for 

the detection of the proteins: rabbit anti-NIPBL antibody (A302-778A, Bethyl Laboratories 

Inc), mouse anti-SMC3 antibody (A300-060A, Bethyl Laboratories Inc) and mouse anti-SNF5 

antibody (ab58209, Abcam). 
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SEQUENCING ANALYSIS OF THE KNOWN CdLS-

GENES 

Sequencing analysis was carried out on an internationally assembled cohort consisting of more 

than 200 patients with a diagnosis of CdLS or with overlapping phenotypes resembling features 

characteristic for CdLS. 

Sequencing analyses were performed by Sanger sequencing and targeted gene panel in order to 

identify the causative mutation underlying the syndrome. When possible, the analysis was 

performed on different tissues to allow the detection of mosaic mutations.  

 

NIPBL 

By our investigations we could identify 109 distinct mutations in the NIPBL gene in 131 

individuals. The identified mutations comprise 37 missense substitutions (34%), 28 out-of-

frame deletions (25%), 12 nonsense mutations (11%), 25 splicing variants (23%), 3 in frame 

deletions/insertions (3%) and 4 deletions of one or multiple exons (4%). The alignment of the 

NIPBL protein sequence of six different organisms showed a high level of conservation of the 

mutant residues during evolution. Recurrence was not observed for any of the identified 

variants. 

Mutations localize throughout the entire gene without mutational hotspots. Among the 109 

mutations, 26 reside in exons coding functional domains. The most affected domains are the 

large caldesmon domain (11 mutations) and the HEAT repeats (9 mutations). In addition, 

sequence variants were also observed in the QR-rich region (1 mutation), in the nuclear export 

signal (1 mutation), in the DNA-binding domain (1 mutation) and in a region enriched in 

prolin, glutamic acid, serine and threonine (PEST, 3 mutations). 

Somatic mosaicism was identified in nine out of 131 patients (7%). The mosaic variants 

include three missense substitutions, two out-of-frame deletions, two splicing and two nonsense 

mutations. Patients carrying these variants present with variable phenotypes. 

Out of the nine mosaic mutations, three appear of particular interest because they were not 

detectable by Sanger sequencing neither using DNA extracted from blood nor using DNA 

extracted from buccal mucosa. Solely through high-coverage targeted next generation 

sequencing we were able to detect a very low amount of mutant reads on buccal mucosa DNA 
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(published as Braunholz et al., 2015). All mutations were confirmed by SNaPshot analysis and 

Sanger sequencing of DNA extracted from fibroblasts. 

The three patients carrying the low grade mosaic variants are all characterized by intellectual 

disability, a low weight and microcephaly (Fig.15). Patient A carries the nonsense mutation 

c.4094T>A, p.L1365* affecting exon 18 and represented in 17% of 64 reads. This patient, a 2-

year-old girl, displayed typical CdLS facial features including synophrys, long eyelashes, long 

philtrum and thin upper lip. In addition, she presented with strabismus, feeding problems, 

GERD, restriction of elbow movements and transverse palmar crease. Patient B is a 19-year-

old girl harboring a missense substitution in exon 23 (c.4751T>G, p.L1584R; 13% of 93 reads). 

She suffered from GERD and displayed a very characteristic CdLS facies with the following 

features: short neck, brachycephaly, low anterior hairline, depressed nasal bridge, long and 

smooth philtrum and thin lips. Lastly, patient C, a 6-year-old girl, carries a variant in the splice 

site of intron 27 that determines the skipping of the entire exon 27, thus resulting in a frame-

shift deletion of 103 bp (c.5328+1G>C, p.M1743Sfs*35; 21% of 267 reads). This patient 

presented with mild facial features and other major complications including a severe motor and 

verbal developmental delay and a brain tumor detected at the age of nine months. The presence 

of hemihypoplasia was the only feature suggestive for a mosaic mutation.  

 

Figure 15. Photographs and electropherograms of the three CdLS patients carrying mosaic mutations in NIPBL that were 
detectable by Sanger sequencing only on DNA extracted from fibroblasts (from Braunholz et al., 2015) 
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SMC1A 
(Published as Gervasini et al., 2013) 

Mutations in SMC1A were identified in eight patients with different ethnic origins including 

Europe, North Africa and South America. The eight patients comprise one male and seven 

females with ages ranging from 3 to 15 years (Fig.16).  
 

 

Figure 16. Facial appearance of seven out of the eight CdLS patients harboring mutations in the SMC1A gene. For four 
patients, pictures were taken at two different ages. For each patient, the respective mutation and the identification number are 

indicated below the photographs (from Gervasini et al., 2013) 
 

All patients displayed the characteristic facial features of CdLS, including thick and arched 

eyebrows, long eyelashes, anteverted nares, a long philtrum and thin lips with downturned 

commissures. Their clinical presentation ranges from mild to severe, with patients 1 and 8 

being the most severely affected. Intra-uterine growth retardation was reported for all patients, 

while postnatal growth appears to be less affected. No major limb malformations were 

observed. The reported clinical findings included GERD, feeding disorder, pulmonary stenosis, 

mild brain anomalies, supernumerary ribs, aortic coarctation, epilepsy and sensorineural 

hypoacusis. A severe developmental delay is the most striking feature of this cohort: sitting 

independently and walking independently were achieved at a median age of 1 year 4 months 

and 2 years 8 months, respectively; patient 1 was still not able to walk autonomously at the age 
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of 6 years. A moderate to severe cognitive impairment was observed in the entire cohort. 

Speech acquisition appears to be even more delayed, with patients 1, 5 and 6 being still unable 

to speak at the age of 6, 11 and 4 years, respectively. The remaining five patients were able to 

pronounce the first words at a median age of 3 years 6 months. The association of more than 

two words occurred at a median age of 4 years 6 months.  

The identified mutations comprise six missense substitution and one in frame-deletion, namely 

p.V58_R62del, p.R398G, p.V651M, p.R693Q, p.I784T, p.T790Q, p.N1166T and p.L1189F. 

The substitutions p.R398G and p.R693Q affect residues that were previously described in the 

literature, though with a different amino acid exchange (Liu et al., 2009). All variants were 

proven to arise de novo in the patients and none of them was observed in more than 400 X 

chromosomes of healthy individuals.  

The relative positions of each mutation according the localization of the structural domains and 

on the SMC1A/SMC3 heterodimer are depicted in Fig.17a and Fig.17b, respectively. The 

mutations localize throughout the entire protein with the exception of the hinge domain. It is 

worth to be noted that the substitutions p.N1166T and p.L1189F affect the C-terminal ATPase 

cassette, and p.L1189F is the first mutation residing in the functional motif H-loop. All variants 

were predicted to be disease causing by different in silico bioinformatic tools (Polyphen-2, 

SIFT and Mutation Taster). In addition, the alignment of multiple regions of the SMC1A 

protein across nine species highlighted a high level of conservation of the affected residues and 

of the surrounding amino acids.  

 

Figure 17. (a) Schematic representation of the SMC1A protein and of its domains. The position of novel and reported 
mutations are indicated. (b) Schematic representation of the core heterodimer of the cohesin complex with relative position of 

the described mutations (from Gervasini et al., 2013) 
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SMC3 
(Published as Gil-Rodrìguez et al., 2015) 
 

 

Figure 18. Phenotype of the patients harboring mutations in the SMC3 gene so far described in the literature, including the one 
reported in Deardorff et al., 2007 (P6). For each individual, photographs show a frontal view, a lateral view, hands and feet. 
The identification number and the relative mutation are also indicated above each picture (from Gil-Rodrìguez et al., 2015) 
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Sequencing analysis of patients with CdLS or CdLS-overlapping features led to the 

identification of 15 additional mutations in SMC3 in 15 unrelated individuals. 

The phenotypical appearance of these patients is shown in Fig.18. The most characteristic 

clinical feature in this group is a variable level of cognitive impairment. Considerable 

behavioral problems were not observed, and many patients of this cohort were described as 

having friendly personalities. Major limb malformations were also not reported. Typical CdLS 

facial features were observed with the following frequency: low anterior hairline (50%), 

brachycephaly (73%), synophrys (73%), arched eyebrows (93%), ptosis (27%), long eyelashes 

(94%), depressed nasal bridge (47%), anteverted nares (57%), long philtrum (67%), thin upper 

lip (81%), downturned commissures (60%), dental anomalies (38%), high palate (45%) and 

micrognathia (40%). Interestingly, despite often long, the philtrum of these individuals was 

typically not smooth, and only one patient presented with cleft palate.  

The SMC3 mutations so far identified are listed in Table 3 and comprise nine missense 

substitutions, one nonsense mutation and five in-frame deletions, one of which (p.E488del) 

observed in two unrelated patients. The SMC3 protein sequence of nine different organisms 

was aligned in order to verify the degree of conservation of the mutant residues. This analysis 

showed that the conservation can be traced back to yeast for all the amino acids of interest. In 

addition, all the variants were defined as disease causing by three different in silico 

bioinformatic tools (Polyhen-2, SIFT and Mutation Taster). 

ID DNA variant Protein change De novo Exon Protein domain 
P1 c.193T>C p.F47L na 4 Head 
P2 c.703_705del (mosaic) p.T235del + 9 Coiled-coil 

P3 c.707G>C p.R236P + 9 Coiled-coil 
P4 c.859_861dup p.E287dup na 11 Coiled-coil 
P5 c.1200_1202delGTC p.K400_S401delinsN na 13 Coiled-coil 
P6 c.1464_1466delAGA p.E488del + 15 Coiled-coil 
P7 c.1464_1466delAGA p.E488del + 15 Coiled-coil 
P8 c.1462G>A p.E488K + 15 Coiled-coil 
P9 c.1561C>T p.R521* na 16 Hinge 

P10 c.1964G>A p.G655D + 19 Hinge 
P11 c.1997G>C p.G666A + 19 Hinge 
P12 c.2494_2499del p.L832_N833del + 22 Coiled-coil 
P13 c.2515C>T p.R839C na 22 Coiled-coil 
P14 c.2750A>C p.H917P + 24 Coiled-coil 
P15 c.3439C>G p.Q1147E + 27 Head 
P16 c.3644C>T p.T1215I na 29 Head 

Table 3. List of all mutations so far identified in SMC3, including the one reported in Deardorff et al., 2007 (P6). For each 
mutation, the DNA and protein change are indicated. The localization of the mutations with regards to the exons and to the 

functional/structural domains of the protein are also designated. (na=not assessed) 
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Mutations are scattered across the entire protein without apparent hotspots (Fig.19). 

Interestingly, three mutations affect the highly conserved hinge domain, responsible for the 

interaction with the specular domain of the SMC1A protein. Some of the affected residues 

appear to play an important role in the tertiary structure of the protein. In point of fact, the 

substitution of G655D structurally destabilize the core of the hinge domain. In addition, the 

deletions of T235, R236, R839 and H917, all residing in the coiled-coil domain, are responsible 

for the displacement of the two antiparallel helices.  

 

Figure 19. Schematic representation of the core heterodimer of the cohesin complex with relative position of the described 
SMC3 mutations according to the localization of the functional domains of the protein (from Gil-Rodrìguez et al., 2015) 

 

Besides, Q1147 localizes in the functional D-loop motif, close to interaction surface between 

SMC1A and SMC3 and to the gamma-phosphate of ATP. Therefore, the substitution of this 

polar residue with the negatively charged glutamate amino acid might impair the interaction 

between SMC1A and SMC3 as well as the ATPase activity (Fig.20). 

 

Figure 20. Representation of the predicted tridimensional structure of the SMC3 protein in proximity of the ATPase active 
centre in the presence of a wild type (left) or mutant (right) residue at position 1147. The interaction surface between SMC3 
and SMC1A has been colored with regard to the electrostatic characteristics (blue=positive; red=negative; white=neutral). 

The negatively charged patch that appears in the presence of the mutation close to the gamma phosphate of ATP is highlighted 
(from Gil-Rodrìguez et al., 2015) 
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HDAC8 

Ten distinct mutations in the HDAC8 gene were identified in 11 patients, namely eight females 

and three males (Fig.21). Patients presented with a very broad range of phenotypical features 

that are summarized in Table 4 and include microcephaly (90%), brachycephaly (36%), late 

closure of the anterior fontanelle (36%), low anterior hairline (45%), short neck (90%), 

synophrys (90%), arched eyebrows (90%), long eyelashes (45%), hypertelorism (90%), 

hooding of the eyelids (45%), myopia (54%), astigmatism (45%), strabismus (36%), depressed 

nasal bridge (45%), anteverted nares (54%), broad/bulbous nasal tip (81%), long philtrum 

(36%), smooth philtrum (54%), thin upper lip (72%), downturned commissures (54%), 

micro/retrognathia (90%), widely spaced teeth (45%), highly arched palate (45%), small hands 

(72%), small feet (36%), clinodactyly (45%), proximally set thumbs (63%), short fifth finger 

(54%), hirsutism (63%), pigmentation defects of the skin (36%), gastroesophageal reflux 

(36%), feeding problems in infancy (45%), cryptorchidism (100% of males) and hearing 

problems (63%). Growth retardation, intellectual disability and motor and verbal 

developmental delay were reported in all patients.  

 

Figure 21. Facial features of the patients harboring mutations in the HDAC8 gene. For each patient, the mutation and the 
gender are indicated 
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 Females   Males   
General 

frequency Patient number 1 2 3 4 5 6 7 8 Relative 
frequency 

9 10 11 Relative 
frequency X-inactivation 99/1 100/0 17/83 100/0 100/0 100/0 100/0 100/0 - - - 

Head 

Microcephaly + + + + + + + - 87% + + + 100% 90% 
Brachycephaly + + + - - - - - 37% - - + 33% 36% 

Late closure of the 
anterior fontanelle + + na - - - - + 37% - + - 33% 36% 

Eyes 

Arched eyebrows + + + + - + + + 87% + + + 100% 90% 
Synophrys + + + + + - + + 87% + + + 100% 90% 

Hypertelorism + + + + + + + + 100% - + + 67% 90% 
Telecanthus - + - + - - - - 25% - - - 0% 18% 

Myopia/Astigmatism + + + - + - + + 75% + - - 33% 63% 
Strabismus - - - - + - + + 37% + - - 33% 36% 

Hooding of lids - - - - - - + + 25% + + - 67% 36% 
Lacrimal duct obstruction - - - - - na - - 0% - na + 33% 9% 

Nose 

Depressed nasal bridge + + - + - - - - 37% - + + 67% 45% 
Anteverted nares + + - + - + - - 50% - + + 67% 54% 

Long philtrum + - - + - - - - 25% - + + 67% 36% 
Smooth philtrum + + - - - - + + 50% + - + 67% 54% 
Broad nasal tip + + + + + + + + 100% + - - 33% 81% 

Mouth 
Thin lips + + - - - + + + 62% + + + 100% 72% 

Downturned commissures + + - + + - - - 50% - + + 67% 54% 
Micro/Retrognathia + + + + + + - + 87% + + + 100% 90% 

Ears Dysplastic ears + - - + - - - + 37% - - - 0% 27% 
Hearing problems + - - + + - + + 62% + + - 67% 63% 

Hands 
Small hands - + + + + - + - 62% + + + 100% 72% 

Proximally set thumbs + + + - + - + - 62% + - + 67% 63% 
Clinodactyly 5th finger - + + + - - - - 37% + + - 67% 45% 

Feet Small feet - + + - na - na - 25% na + + 67% 36% 
Syndactyly of toes - - + - - - - - 12% - - - 0% 9% 

Other 

Cardiac defects + - - + + + - - 50% - + + 67% 54% 
Genitourinary defects - + + - + - - - 37% + + + 100% 54% 

GER - - + - + - + - 37% + - - 33% 36% 
Feeding problems + + + - - - + - 50% - + - 33% 45% 

Seizures - - + - - - - - 12% - + + 67% 27% 

Development 

Growth retardation + + + + + + + + 100% + + + 100% 100% 
Intellectual disability + + + + + + + + 100% + + + 100% 100% 
Psychomotor delay + + + + + + + + 100% + + + 100% 100% 

Behavioral problems na + + - + - - - 37% na na - 0% 27% 

Table 4. Clinical features of the eleven patients with mutations in the HDAC8 gene 
 

The three male patients, who are hemizygous for the mutation, displayed very severe multi-

organ complications including cryptorchidism, vesicoureteral reflux, pulmonary stenosis, 

hypoacusis, inguinal hernia, corpus callosum agenesis and cerebral atrophy. In addition, they 

all showed marked growth retardation and prominent motor and verbal developmental delay. 

Patient 8 even died of pneumonia at the age of two years. Conversely, the eight female patients 

presented with a broad range of clinical features and a variable degree of severity of the 

phenotype. Accordingly, patient 2 presented with the mildest clinical presentation, while 

patient 7 showed the most severe features among females. The observed broad range of 

phenotypes could be partially explained by the X-inactivation status: in point of fact, all 

females except patient 3 were found to carry a completely skewed X-inactivation towards the 

wild type allele on blood DNA.  

The identified variants include one nonsense mutation (p.R166*), one out-of-frame deletion 

(p.F207Nfs*3), one splicing mutation (c.910+1G>A; p.V247Ffs*37) and seven missense 

substitutions (p.S150P, p.C153R, p.N156K, p.T280I, p.P257L, p.C287Y, and p.G320R) 

(Fig.22). Eight mutations are novel, while two affect amino acids (C153 and G320) that were 
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already found to be mutated in the literature (Deardorff et al., 2012b; Kaiser et al., 2014). None 

of these variants was identified in over a hundred of healthy X chromosomes. All mutations 

were proven to affect highly conserved residues and were predicted to be pathogenic by 

different in silico bioinformatic tools (PolyPhen-2, SIFT and Mutation Taster).  

 

Figure 22. Schematic representation of HDAC8 and of its functional domains, with relative position of already described 
(black bars) and novel (green bars) mutations. Stars indicate out-of-frame deletions or nonsense mutations, that lead to an 

early truncation of the protein 
 

Interestingly, the p.T280I missense exchange is shared by two siblings, a boy and a girl 

(patients 6 and 10). Next generation sequencing approaches highlighted the presence of the 

same mutation in a low number of reads on the DNA of the mother (18 of 200 reads). Hence, 

pyrosequencing was performed in order to investigate the suspected mosaicism. The analysis 

was carried out on blood DNA of the affected daughter (patient 6) as a control and on DNA 

extracted from three different tissues of the mother, namely blood, buccal mucosa and urine 

(Fig.23). This analysis pointed out the presence of tissue-dependent level of heterozygosity in 

the mother: while the daughter displayed an equal amount of wild type and mutant alleles, the 

mutation in the mother was totally absent on buccal mucosa, barely detectable on blood (2%) 

and was represented at a rate of 19% on DNA extracted from urine. In addition, X-inactivation 

analysis on blood DNA showed a complete skewing in the daughter (100/0) and a random 

selection of the inactive X-chromosome in the mother (40/60). 

The mother, who presents with short stature and appears cognitively normal, displayed facial 

features reminiscent of CdLS during childhood; anyhow, these features were not discernible 

anymore during adulthood. Both children showed instead CdLS features including intellectual 

disability, growth retardation, patent foramen ovale, microcephaly, hypertelorism, arched 

eyebrows, anteverted nares, micro/retrognathia and thin lips. In addition, the male sibling 

(patient 10) presented with short neck, hooding of the lids, synophrys, ptosis, a depressed nasal 

bridge, long philtrum, downturned commissures, small hands and feet, clinodactyly of the fifth 

finger, cystic renal degeneration, pulmonary stenosis, hypospadias, cryptorchidism, 
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sensorineural hearing loss, feeding problems and seizures. He died at the age of two years 

because of pneumonia.  

 

 

Figure 23. Pyrosequencing analysis of the mother of the siblings harboring the T280I variant on different tissues. The mutation 
is not detectable on buccal swab DNA (0%), barely detectable on blood DNA (2%) and detectable at a rate of 19% on DNA 

extracted from urine 
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OVERALL AND ALLELE-SPECIFIC EXPRESSION OF 

THE SMC1A GENE 
(Published as Parenti et al., 2014) 
 

SMC1A maps at Xp11.22, a region of the X chromosome that partially escapes X-inactivation 

in humans. Genes that localize in this region are characterized by a variable level of expression 

among females and between females and males. In particular, females were reported to express 

SMC1A at a higher level than males, but the ratio between the two genders vary among 

different studies (Craig et al., 2004; Johnston et al., 2008; Liu et al., 2009). Therefore, we 

established a Real Time PCR assay in order to assess the expression level of SMC1A in 17 

healthy controls, namely ten females and seven males. In this way we were able to prove that 

SMC1A expression in females is approximately 50% higher than in males (***P=0,0001; one 

tail Mann-Whitney U test) (Fig.24a). Subsequently, the same investigation was carried out at a 

protein level by mean of semi-quantitative western blot on protein lysates of five LCLs from 

females and four LCLs from males. Our results indicate that SMC1A expression in females is 

approximately 44% higher than in males, as shown in Fig.24b and 24c. (**P=0,0079; one tail 

Mann-Whitney U test). Hence, the examination of both SMC1A transcript and protein 

concordantly showed a higher expression in females as compared to males. 

 

Figure 24. SMC1A expression in the healthy population. (a) Graphical representation of the transcript analysis in seven males 
and ten females, indicating a 50% higher expression of the gene in females as compared to males. (b-c) Graphical 

representation of the protein analysis in four males and five females (b) The histograms indicate the relative expression of 
SMC1A in the female controls in comparison with the average level of expression in the males (set as 1 and represented by the 

horizontal black line) (c) Average expression of the protein in the two groups of controls. Females are shown to express 
SMC1A 44% more than males (from Parenti et al., 2014) 
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We then investigated the SMC1A protein in the CdLS population in order to assess whether the 

presence of mutations could impair the ability of the cell to synthesize the protein or the 

stability of the protein itself. The analysis was performed on five out of the seven CdLS female 

patients identified through the mutational analysis and on two previously described patients 

(Musio et al., 2006; Limongelli et al., 2010). The seven patients, herein indicated as patient 1-7, 

respectively carry the following mutations in SMC1A: p.Q831_D832delinsE, p.L1189F, 

p.N1166T, p.I784T (shared by patient 4 and 5), p.V58_R62del and p.R693Q. Semi-quantitative 

western blot analyses (Fig.25a) could show that all patients express SMC1A at comparable 

levels with few variability among samples (Fig.25b). No differences among the distinct 

mutations were observed. Subsequently, we compared the SMC1A expression of the CdLS 

population with the one of the five female controls. This analysis indicated that there are no 

significant differences in the protein level between the two groups (P=0,5; one tail Mann-

Whitney U test) (Fig.25c). 

 

 

Figure 25. Western blot analysis of the SMC1A protein in a group of CdLS female patients (a) Representative blot showing the 
SMC1A protein (150 kDa) and the normalizer GAPDH (36 kDa) (b) The histograms indicate the relative expression of the 

protein in the CdLS patients in comparison with the average level of expression of the five female controls (set as 1 and 
represented by the horizontal black line) (c) Average expression of SMC1A in controls and patients. No significant difference is 

observed (from Parenti et al., 2014) 
 

Lastly, we investigated the expression of the wild type and mutant alleles in the seven female 

patients with mutations in SMC1A in order to identify a possible differential expression of the 

two alleles. The X-inactivation status was first checked for each patient at the HUMARA or 

DSX6673E loci. A completely skewed X-inactivation was identified in patients 3, 4, 5 and 6. 

The remaining patients presented with a borderline or random X-inactivation. The allele-
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specific expression analysis was carried out by means of pyrosequencing on 15 female controls 

and on six out of seven CdLS patients (patient 6, carrying the p.V58_R62del, was excluded 

from this analysis due to the inability to establish an effective pyrosequencing assay). The SNP 

rs1264011 was used to discriminate the two alleles of the female controls; this SNP is 

characterized by a high level of heterozigosity in different populations and is localized in the 

5’UTR of the gene. Patients were analyzed with assays specific for each mutation. When 

possible, the analysis was carried out on RNA extracted from both blood and LCLs in order to 

verify whether the allele expression ratios might be affected by the type of starting material. In 

this context, no differences in the wild type/mutant ratio were observed between the two pools 

of RNA (Fig.26a). The pyrosequencing assays showed that the expression ratio of the two 

alleles of the SNP in the healthy population was 1:1. Conversely, the average ratio between 

wild type and mutant allele in the CdLS population was 2:1 (Fig.26b). In point of fact, in all 

patients, more than 60% of the total transcript carried the wild type allele, and the greatest 

difference between the wild type and mutant allele was observed in patient 1, carrying the in-

frame deletion p.Q831_D832delinsE, who expressed 73% of wild type allele and 27% of 

mutant allele. 

 

 

 
Figure 26. Results of the pyrosequencing assay (a) Level of expression of the wild type (allele 1) and mutant (allele 2) alleles of 

the SMC1A gene in six CdLS patients. Results from both peripheral blood (PB) and LCLs are shown. (b) Graphical 
representation of the pyrosequencing results. The level of expression of the wild type allele is indicated in blue, while the 

mutant allele is indicated in red. The 1:1 ratio between the two alleles observed in the control group is graphically represented 
as a black line (from Parenti et al., 2014) 
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IDENTIFICATION OF NEW CAUSATIVE GENES 

Mutations in the cohesin-related genes NIPBL, SMC1A, SMC3, RAD21, and HDAC8 are found 

in about 70% of CdLS patients. Hence, additional causative genes might explain the remaining 

30% of cases. In this context, genes functionally related to cohesin or genes responsible for 

clinical entities partially overlapping with CdLS might be able to cover this missing 

heritability. For this reason, we analyzed our cohort of patients with CdLS or CdLS-

overlapping features by different next generation sequencing techniques including exome 

sequencing, targeted gene panel and CGH-array.  

 

IDENTIFICATION OF MUTATIONS IN THE ANKRD11 GENE IN TWO 

PATIENTS WITH A TENTATIVE CLINICAL DIAGNOSIS OF CdLS 
(Published as Parenti et al., 2015) 
Exome sequencing led us to the identification of mutations in the ANKRD11 gene in two 

patients with a tentative diagnosis of CdLS. As previously mentioned, mutations in ANKRD11 

are responsible for KBG syndrome, a rare genetic disorder characterized by growth retardation 

and skeletal anomalies, cognitive impairment, developmental delay and characteristic facial 

features partially overlapping with CdLS, in particular concerning the ocular and peri-nasal 

regions (Ockeloen et al., 2014). 

Patient 1 (Fig.27a-h) is a German female born to healthy and non-consanguineous parents at 37 

weeks of gestation. The Apgar scores at 1 and 5 minutes were 9 and 10, respectively. Birth 

weight was 2350 g (3rd centile), birth length was 46 cm (3rd centile) and the Occipital Frontal 

Circumference (OFC) was 31.5 cm (3rd centile). The patient presented with general muscular 

hypertonia and persistent feeding difficulties. At the age of four months, weight was 5600 g 

(10th centile), height was 59 cm (10th centile) and the OFC was 38.3 cm (<3rd centile). At this 

age some dysmorphic features typical of CdLS were observed, including microcephaly, 

brachycephaly, short neck, open anterior fontanelle, broad eyebrows with synophrys, 

downslanting palpebral fissures, depressed nasal bridge, anteverted nares, long philtrum, thin 

upper and lower lips with downturned commissures and micrognathia. She also displayed 

proximally set thumbs and a mild brachydactyly. At the age of the last clinical evaluation (4 

years) the patient still needed assisted feeding. She was able to sit independently at the age of 

16 months and to walk independently at the age of 20 months, but was still unable to speak, 
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thus indicating a marked speech delay. She also showed intellectual disability and a self-

injurious and aggressive behavior associated with autistic features.  

 

 

Figure 27. Clinical features of the patients harboring mutations in the ANKRD11 gene. (a-h) Patient 1: (a-c) Facial gestalt at 
the age of four months and four years, respectively. (d) Teeth conformation at the age of four years, showing small and widely 

spaced teeth. (e-h) Pictures of the limbs, revealing clinodactyly of the fifth finger, shortened first metacarpal and proximally set 
thumb. (i-k) Patient 2: (i, j) Facial gestalt at the age of 8 and 15 years, respectively. (k) Left hand of the patient, characterized 

by proximally set thumbs and clinodactyly of the fifth finger (from Parenti et al., 2015) 
 

Patient 2 (Fig.26i-k) is an Italian male born to healthy and non-consanguineous parents at 39 

weeks of gestation. Birth weight was 3150 g (25th centile), lenght was 53 cm (90th centile) and 

the OFC was 33 cm (3rd centile). He presented with vesicoureteral reflux, kidney dysplasia, 

GERD and generalized epilepsy. At the age of four years he was able to speak in sentences, 

walk independently and to manage himself in daily life. He showed a moderate intellectual 

disability and an aggressive behavior towards himself and towards others. At the age of 15 
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years, weight was 41.2  kg (3rd centile),  height was 161 cm (10th centile) and the OFC was 54 

cm (3rd centile). The following facial dysmorphisms were observed: low anterior hairline, 

synophrys, broad and arched eyebrows, long eyelashes, high nasal bridge with a broad nasal 

tip, smooth philtrum, thin lips, large mouth, mild micrognathia and macrodontia of the superior 

central incisors. Lastly, he presented with hirsutism, astigmatism and myopia, clinodactyly of 

the fifth finger and proximally set thumbs.  

Both patients received a clinical diagnosis of CdLS during early childhood and were therefore 

analyzed for mutations in the five CdLS genes. The high coverage targeted gene panel could 

not detect any pathogenic variant on DNA extracted from blood, buccal mucosa and 

fibroblasts. Hence, the two patients were selected for a exome sequencing analysis. 

Four de-novo variants were identified in patient 1: a missense mutation in ACAP3 (ArfGAP 

with coiled-coil, Ankyrin repeat and PH domains 3), a possible splicing variant in BMPR2 

(Bone Morphogenetic Protein Receptor 2), a missense mutation in ERC2 (ELKS/RAB6-

interacting/CAST family member 2) and a nonsense mutation in ANKRD11. Different in silico 

bioinformatic tools predicted the variants in the ACAP3, BMPR2 and ERC2 genes to be not 

pathogenic. In addition, no functional overlap between these genes and the cohesin complex 

was identified. Therefore, we focused on the nonsense mutation in ANKRD11, which appeared 

as an ideal candidate because mutations in this gene were recently reported in three patients 

with clinical features reminiscent of CdLS (Ansari et al., 2014). The mutation in ANKRD11, 

namely c.5483G>T; p.S1828*, was found in 836 of 2664 sequencing reads (31%), hence 

raising the suspicion of mosaicism.  

Four variants were also identified in patient 2. Nevertheless, the missense variants in the ZW10 

(centromere/kinetocore protein zw10 homologue), SMC1B (Structural Maintenance of 

Chromosome protein 1B) and ASPM (Abnormal Spindle-like Microcephaly-associated protein) 

genes were all found to be inherited. Therefore, we focused on a four base-pairs deletion in 

ANKRD11, resulting in a premature stop codon. This deletion, c.2297_2300delAGAA;  

p.K766Rfs*10, was found in 13 of 60 sequencing reads (22%), thus suggesting a possible 

mosaic state also for this patient.  

Both ANKRD11 variants were confirmed by Sanger sequencing on DNA extracted from 

different tissues (Fig.28).  

Electropherograms of patient 1 showed an unequal distribution of the wild type and mutant 

alleles on DNA extracted from blood and fibroblasts, further supporting the presence of 
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mosaicism. Conversely, no significant differences between the two alleles were observed in 

three different tissues of patient 2.  

Pyrosequencing was performed in order to determine the role exerted by the putative 

mosaicism in the two patients (Fig.28). This assay could confirm the presence of mosaicism in 

patient 1, while the mutation in patient 2 was excluded to be mosaic. Particularly, the two 

alleles appear to be equally represented on all tissues of patient 2 and on fibroblasts DNA of 

patient 1, while a 70:30 ratio between the wild type and mutant allele was observed on blood 

DNA of this latter patient.  

 

 

Figure 28. Examination of the putative mosaicism by means of Sanger sequencing and pyrosequencing. Multiple tissues were 
analyzed for both patients. On the left, electropherograms of patient 1 suggests an unequal distribution of the wild type and 

mutant alleles, while no differences are observed in the electropherograms of patient 2. On the right, the results of the 
pyrosequencing assays are showed, with the wild type allele indicated in green and the mutant allele indicated in red (adapted 

from Parenti et al., 2015) 
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COHESINOPATHIES ARE BRANCHING OUT: CLINICAL AND 

MOLECULAR CORRELATION BETWEEN CdLS AND CSS 

As previously mentioned, several syndromes represent a differential diagnosis to CdLS. For the 

establishment of our gene panel we focused on the phenotypical overlap between CdLS and 

CSS and on the functional overlap between the protein complexes responsible for these clinical 

entities. Thus, our gene panel comprises the following 16 genes: the five known CdLS genes, 

five genes functionally related to cohesins (STAG1, STAG2, STAG3, HDAC1 and HDAC3) and 

six subunits of the SWI/SNF complex including SMARCA2, SMARCA4, SMARCB1, 

SMARCE1, ARID1A and ARID1B.  

Targeted gene panel and exome sequencing led us to the identification of mutations in different 

subunits of the SWI/SNF complex in four patients with a clinical diagnosis of CdLS. 

Patient 1 (Fig.29a,b) is a German female who carries a missense mutation in SMARCB1, 

namely c.998A>G; p.K333R. Patient 2 (Fig.29c), a boy from the United States, harbors the out-

of-frame deletion in ARID1A c.4682_4779del; p.V1561Afs*9. Patient 3 (Fig.29d) is a German 

boy carrying a splicing variant in ARID1B, namely c.3136-2A>G. Patient 4 (Fig.29e,f), a 

Spanish boy, was found to carry a gross deletion on chromosome six by means of exome 

sequencing. The deletion was subsequently confirmed and defined through CGH-array, which 

showed a loss in copy number at the 6q25.3q26 region spanning ~4.1 Mb[arr 

6q25.3q26(157,377,717-161,484,554)x1 hg18]. The deletion comprises 34 genes, including the 

entire ARID1B.  

Correspondingly, we were also able to find a missense substitution in the NIPBL gene in a 

patient with a clinical diagnosis of CSS (patient 5, Fig.29g,h). The mutation (c.6886A>G; 

p.S2296G) affects the HEAT repeats, indispensable for protein-protein interactions. This 

patient is of particular interest because she was described as CSS unsolved case in a paper of 

2013 (Wieczorek et al., 2013). In fact, she presented with clinical findings consistent with a 

diagnosis of CSS, namely a coarse face, low frontal hairline, synophrys, thick eyebrows, a 

broad nose with upturned nasal tip, a large mouth, hypoplasia of distal phalanges and 

fingernails, short metacarpals and metatarsals, delayed bone age, scoliosis and hirsutism. She 

also displayed severe intellectual disability, psychomotor delay, an autistic behavior, hearing 

loss and seizures.  
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Figure 29. Phenotype of the patients. (a,b) Pictures taken at different ages of patient 1, carrying the missense mutation in 
SMARCB1. (c) Facial features of patient 2, harboring the out-of-frame deletion in ARID1A. (d) Facies of patient 3, carrying 
the splicing mutation in ARID1B. (e,f) Frontal and lateral view of patient 4, presenting with the deletion of chromosome 6 

encopassing the entire ARID1B gene. (g,h) Pictures of the CSS patient (patient 5) carrying a missense mutation in NIPBL. To 
be noted the presence of hypoplasia of the distal phalanges and of the fingernails, clinical findings characteristic of CSS 

 

Importantly, a recent paper could demonstrate a direct interaction between the cohesin loader 

NIPBL and the SWI/SNF complex (Lopez-Serra et al., 2014). Particularly, in yeast, NIPBL 

was found to be recruited by the SWI/SNF complex to broad nucleosome-free regions. It is 

therefore tempting to speculate that NIPBL and the SWI/SNF complex cooperate in order to 

mediate the transcriptional regulation of multiple genes (Lopez-Serra et al., 2014). Based on 

this hypothesis, we checked for a putative direct interaction between cohesin-related proteins 

and subunits of the SWI/SNF complex by a yeast two hybrid approach (Y2H). Hence, we 

generated Y2H plasmids containing cohesin-related proteins as a BD-bait and SWI/SNF 

subunits as a prey in a AD-fusion-construct. In detail, the following expression constructs were 

generated: NIPBL F1 (aa 1-879), NIPBL F2 (aa 728-1555), NIPBL F3 (aa 1501-2470), NIPBL 

F4 (aa 2121-2804), RAD21 full length, SMARCB1 full length, SMARCA5 F1 (aa 1-668), 

SMARCA5 F2 (aa 558-1052), ARID1B F1 (aa 1-668), ARID1B F2 (aa 562-1273), ARID1B 

F3 (aa 1188-1818), ARID1B F4 (aa 1720-2249), ARID1A F1 (aa 1-708), ARID1A F2 (aa 602-

1297), ARID1A F3 (aa 1196-1871), ARID1A F4 (aa 1755-2285), SMARCA2 F1 (aa 1-701) 

and SMARCA2 F2 (aa 601-1590). Because of the peculiarity of their protein structures, 

SMC1A and SMC3 expression constructs were not generated.  

Through this technique we were able to detect an interaction of NIPBL fragment F1 (aa 1-879) 

with SMARCB1 (Fig.30).  
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Figure 30. Yeast two hybrid –4 plates (a) Negative control NIPBL F1-BD + AD-empty (b) Positive control NIPBL F1-BD + 
MAU2-AD (c) Positive growth observed for those yeasts which were transformed with NIPBL F1-BD and SMARCB1-AD, 

indicating the existence of an interaction between the two proteins 
 

We subsequently performed a Co-Immunoprecipitation (Co-IP) assay in HeLa cells in order to 

confirm the interaction between NIPBL and SMARCB1. By means of Co-IP we were able not 

only to confirm this interaction, but also to prove the existence of an interaction between SMC3 

and SMARCB1.  

We then assessed whether the identified interactions take place before or after the binding of 

the proteins to the DNA. Therefore, we separated the chromatin-bound and the soluble proteins 

of the cells and performed Co-IP on both protein fractions (Fig.31). By this we could 

demonstrate that the interaction of SMARCB1 with SMC3 as well as NIPBL takes place on 

both fractions, thus suggesting that cohesin and the SWI/SNF complex interact before binding 

to the DNA.  

                          
 

Figure 31. Results of the Co-IP experiments performed on two cellular fractions of HeLa cells: soluble proteins (left) and 
chromatin-bound proteins (right). A positive SMARCB1 signal is detected on the IP fraction of the α-NIPBL Co-IP as well as 
on the IP fraction of the α-SMC3 Co-IP, thus indicating that the interaction of SMARCB1 with the cohesin-related proteins 
takes place in both protein fractions. Inp (Input) represents the whole cell extract which was loaded as a positive control 
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Subsequently, we created smaller fragments of NIPBL and SMARCB1 in order to narrow 

down the protein domain responsible for the interaction. The new NIPBL fragments (Fig.32) 

include NIPBL F1-1 (aa 1-193), which comprises the domain responsible for the interaction of 

NIPBL with MAU2 (aa 1-38) and NIPBL F1-2, which does not contain any particular 

functional or structural domain. Similarly, SMARCB1 F2 (aa 157-404) contains the functional 

domain SNF5, while no functional or structural domains are localized in SMARCB1 F1 (aa 1-

193). In addition, all the mutations so far reported in the literature in association with CSS 

(p.K363N, p.K364del, p.R377H) as well the mutation identified in patient 1 of our cohort 

(p.K324R) localize within the second fragment of SMARCB1. The Y2H assay performed on 

the smaller fragments showed that the interaction involves the first fragment of NIPBL and the 

second fragment of SMARCB1. 

 

 

Figure 32. Schematic representation of the protein fragments created for the yeast two hybrid assay in order to narrow down 
the domains responsible for the interaction between NIPBL and SMARCB1. The first 879 aa of NIPBL were subdivided into 

two fragment: the first fragment (aa 1-193) comprises the domain of NIPBL responsible for the interaction with MAU2, 
whereas no functional or protein-protein interaction domains localize within the second fragment (aa 144-879). The full-length 
SMARCB1 was also subdivided in two fragments: the first fragment (aa 1-193) does not contain any relevant domain, while the 
second fragment (aa 157-404) contains the functional domain of the protein (SNF5 domain). In addition, all the mutations so 

far identified (red bars) localize in this fragment. Our experiments showed that the interaction between the two proteins is 
mediated by the first fragment of NIPBL and the second fragment of SMARCB1. 
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MUTATIONAL FREQUENCIES AND GENOTYPE-

PHENOTYPE CORRELATION 

CdLS is characterized by a wide clinical expressivity: the reported facial features as well as the 

number and severity of complications affecting other organs or systems are highly variable 

among patients (Kline et al., 2007). The broad range of phenotypes is partially accounted for by 

the genetic heterogeneity that underlies the syndrome. Up to date, mutations in five different 

genes have been reported in association with CdLS. These five genes comprise the structural 

components of the cohesin complex SMC1A, SMC3 and RAD21 and the regulators NIPBL and 

HDAC8 (Krantz et al., 2004; Tonkin et al., 2004; Musio et al., 2006; Deardorff et al., 2007; 

Deardorff et al., 2012a; Deardorff et al., 2012b). 

Thanks to a large and international cooperation we were able to assemble an extensive cohort 

of patients with CdLS or CdLS-overlapping phenotypes. By means of different techniques, 

patients were analyzed for the presence of mutations in the five CdLS-associated genes. This 

analysis led us to the identification of 109 mutations in NIPBL, 8 mutations in SMC1A, 15 

mutations in SMC3 and 10 mutations in HDAC8. Mutations in RAD21 were not identified in 

any of the investigated patients. All the observed alterations affect highly conserved amino 

acids, and were reported to be disease causing by different bioinformatic tools (PolyPhen-2, 

SIFT and Mutation Taster). Our newly identified variants raise the total number of mutations 

affecting NIPBL to 470, thus confirming the cohesin loader as the major gene of the syndrome, 

being responsible for more than half of CdLS cases (Fig.33) 

(http://www.hgmd.cf.ac.uk/ac/gene.php?gene=NIPBL). Out-of-frame deletions or insertions 

together with missense substitutions are the most frequent observed alteration. As previously 

reported, patients harboring mutations in NIPBL tend to present with a more canonical 

phenotype characterized by marked growth retardation and developmental delay and by typical 

facial dysmorphisms. Limb malformations are also observed with a high frequency, in 

particular in association with out-of-frame alterations (Selicorni et al., 2007). Importantly, nine 

patients were found to carry mutations in a mosaic condition. The identified mosaic alterations 

comprise two splicing variants, two out-of-frame deletions, three missense substitutions and 

two nonsense mutations. Hence, no correlation can be established between the onset of 

mosaicism and the type of alteration. Interestingly, the nine patients carrying the mosaic 

variants present with a broad range of clinical features. Classic facial dysmorphisms and severe 

limbs reductions were also observed in this group of patients, thus indicating that the mosaic 

condition is not necessarily correlated to a mitigation of the effect of the mutation. The 
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assessment of whether mosaicism arises from a somatic mutation after fertilization or from 

negative selection of the cells harboring the mutation is currently an issue of utmost 

importance. All together, our findings strengthen the need for the integration of highly sensitive 

sequencing technologies into routine molecular work up as well as the importance to 

investigate DNA samples derived from more than one tissue, given that mutations are 

frequently not detectable on blood DNA.  

All together, the remaining four genes SMC1A, SMC3, HDAC8 and RAD21 account for about 

10-15% of CdLS cases (Fig.33). Our work raises the total number of mutations in these genes 

to 49, 16, 38 and 8, respectively (Borck et al., 2007; Deardorff et al., 2007, Liu et al., 2009; 

Limongelli et al., 2010; Mannini et al., 2010; Pié et al., 2010; Hoppman-Chaney et al., 2011; 

Deardorff et al., 2012a; Deardorff et al., 2012b; Gervasini et al., 2013; Feng et al., 2014; Kaiser 

et al., 2014; Gil-Rodriguez et al., 2015; Lebrun et al., 2015; Goldstein et al., 2015; Yuan et al., 

2015). Albeit all kinds of variants have been reported for HDAC8, the vast majority of 

mutations in SMC1A or SMC3 do not disrupt the reading frame of the protein, thus suggesting 

that the pathogenic mechanism associated with alterations of the core subunits of the cohesin 

complex may act through a dominant negative effect. Nevertheless, very recently, one 

alteration of the splicing and two 4-bp deletions, all resulting in a premature stop, have been 

identified in SMC1A in three female patients presenting with epilepsy and with few or absent 

CdLS features (Goldstein et al., 2015; Lebrun et al., 2015). These findings might indicate that 

haploinsufficiency of SMC1A might lead to a phenotype different from CdLS, whereas a 

dominant negative pathomechanism results in CdLS or CdLS-overlapping phenotypes.  

The 34 patients herein described with mutations affecting SMC1A, SMC3 and HDAC8 present 

with a milder or less typical phenotype: several facial features commonly observed in typical 

CdLS are in fact absent or infrequent in this group of patients. For instance, synophrys is often 

absent or subtle, the nasal tip is often bulbous or broad and the nasal bridge is less frequently 

depressed. Nevertheless, these patients present with a broad range of phenotypes, for which a 

variable degree of cognitive impairment and a severe verbal and motor developmental delay are 

the only unifying features. The clinical heterogeneity is even wider in the presence of mutations 

affecting the X-linked genes SMC1A and HDAC8. Male patients with mutations in these genes 

usually display a highly recognizable, more homogeneous and severe CdLS phenotype. 

Conversely, females present with a broad range of clinical features and a variable degree of 

severity of the syndrome. In this context, the wide clinical expressivity observed in females 

might also be correlated with the extent of the skewing of the X-inactivation towards the 



84 
 

normal allele. Consistent with this possibility, a skewed X-inactivation was observed on blood 

DNA of almost all female patients harboring mutations in SMC1A and HDAC8. 

Interestingly, clinical comparisons between patients sharing the same mutations revealed that 

the displayed clinical signs are not identical. For instance, the two male patients harboring the 

single amino acid deletion p.E488del in SMC3 presented with a similar craniofacial appearance 

during infancy, but showed a different progression of the clinical signs with aging (Deardorff et 

al, 2007; Gil-Rodrìguez et al., 2015). The two patients also displayed a different degree of 

cognitive impairment and developmental delay, with one patient being unable to speak at the 

age of 23 years and with limited motor development and the other patient working as an adult. 

Similarly, the clinical comparison between two female patients carrying the variant 

p.V58_R62del in SMC1A indicated a similar limb involvement and the presence of GERD and 

myopia in both patients (Deardorff et al., 2007; Gervasini et al., 2013). Nevertheless, 

distinguishable clinical features were also observed: the patient described by Deardorff and 

colleagues displayed pulmonary stenosis, hearing loss and a borderline cognitive impairment 

whereas our patient presented with ptosis, highly arched palate, teeth malformations and a 

moderate degree of intellectual disability. Likewise, despite the existence of similar 

craniofacial features in the presence of the p.G320R substitution in HDAC8, the male patient of 

our cohort presented with pulmonary stenosis and vesicoureteral reflux, whereas the patient 

described in Deardorff et al., 2012b displayed hearing loss and seizures. These clinical 

comparisons reveal that the genetic background given by the combination of polymorphic and 

non polymorphic variants as well as the influence of environmental factors might contribute to 

the definition of the clinical phenotype, thus making the genotype-phenotype correlation 

complicated and difficult to interpret. All together, these findings suggest that the range of 

clinical features caused by alterations of the cohesin complex might be significantly broader 

than previously appreciated.  

 

Figure 33. Graphical representation of the contribution exerted by each of the identified CdLS-genes. Up to date, 470 
mutations have been observed in NIPBL, 45 in SMC1A, 16 in SMC3, 38 in HDAC8 and 8 in RAD21. Nevertheless, it is still not 

possible to identify the molecular cause of the syndrome in a large group of CdLS patients 
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OVERALL AND ALLELE-SPECIFIC EXPRESSION OF 

THE SMC1A GENE 

Several studies have contributed to define the genetic cause of CdLS (Krantz et al., 2004; 

Tonkin et al., 2004; Musio et al., 2006; Deardorff et al., 2007; Deardorff et al., 2012a; 

Deardorff et al., 2012b). Nevertheless, little is known on the pathogenic mechanism underlying 

the syndrome. In case of heterozygous mutations affecting the level of the synthetized NIPBL 

gene product, upregulation of the wild type allele as an attempt to compensate for the lower 

expression of the mutant allele was demonstrated in both mouse and humans cells (Dorsett and 

Krantz, 2009; Kawauchi et al., 2009).Compensatory upregulation of the wild type allele is even 

more relevant for the X-linked gene SMC1A, which partially escapes X inactivation in humans 

and show a variable expression of the allele lying on the inactive X chromosome (Carrell and 

Willard, 2005). The portion of the allele that escapes X inactivation further contributes to the 

wide variability of features observed in female patients with SMC1A mutations. Therefore, the 

analysis of the expression of SMC1A is highly relevant for the clinical evaluation of female 

patients.  

Previous studies in heterozygous females could demonstrate the presence of the mutant 

transcript and of normal levels of the SMC1A protein in patients (Musio et al., 2006; Liu et al., 

2009; Revenkova et al., 2009). In addition, Gimigliano and colleagues demonstrated the 

incorporation of the mutant SMC1A into the cohesin complex (Gimigliano et al., 2012). 

Therefore, in order to ascertain the pathogenic mechanism associated with SMC1A, we 

analyzed the overall and allele-specific expression of the gene in the healthy population and in 

female patients with X-linked CdLS, carrying SMC1A mutations. So far, different studies 

reported a variable but always higher expression of SMC1A in females as compared to males 

(Craig et al., 2004; Johnston et al., 2008; Liu et al., 2009). In line with the previous data, our 

Real Time PCR experiments could demonstrate that the level of expression of the SMC1A 

transcript in healthy female controls is 50% higher than in healthy males. In agreement with the 

results of the transcriptional analysis, our western blot experiments demonstrated for the first 

time that the level of the SMC1A protein in females is 44% higher than in males. The same 

analysis, when extended to our cohort of female patients, revealed that there are no significant 

differences between healthy females and CdLS patients in the total amount of the SMC1A 

protein, thus consolidating the hypothesis that the pathogenic mechanism associated to 

missense mutations in SMC1A in female patients is not linked to haploinsufficiency, but to a 

probable dominant negative effect.  
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Albeit the overall amount of SMC1A remains unchanged, a previous study reported a different 

level of expression of the wild type and mutant alleles in a single patient (Liu et al., 2009). For 

this reason, we carried out a pyrosequencing assay on a group of six SMC1A-mutated females 

and 15 SMC1A-heterozygous controls in order to assess the expression ratio between the wild 

type and mutant alleles. This analysis revealed that all female patients expressed the two alleles 

differentially. In point of fact, patients always expressed the wild type allele at higher levels as 

compared to the mutant allele, with an average ratio between wild type and mutant allele of 2:1. 

Our findings partially justify the existence of patients with mutations in SMC1A displaying 

very mild or borderline phenotypes. For this reason, the assessment of the expression ratio 

between the wild type and the mutant allele becomes of utmost importance for the 

comprehension of the wide clinical expressivity in females.  

Taken into account the dominant negative effect enacted by the altered SMC1A protein, it 

might be possible that level of expression of the mutant allele may act as modulator of the 

CdLS phenotype. In agreement with this hypothesis, patient 1, who presented with a borderline 

phenotype, displayed the lowest expression level of the mutant SMC1A allele. Anyhow, a clear 

correlation between the expression levels of SMC1A and the severity of the phenotype could be 

established only by extending the analysis to a larger cohort, and especially to those borderline 

cases that are frequently overlooked except for the identification of the affected progeny.   
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BEYOND COHESINOPATHIES: MUTATIONS IN 

CHROMATIN-ASSOCIATED FACTORS AS GENETIC 

CAUSE OF CdLS-OVERLAPPING PHENOTYPES 
 

 

Figure 34. (A-I) Facial features of patients with CdLS or CdLS-overlapping features harboring mutations in transcription 
factors different from cohesins. (J-L) Phenotypical appearance of patients affected by multisystem developmental disorders 

different from CdLS, who were found to carry mutations in CdLS-related genes 
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The employment of high-throughput sequencing techniques has helped to shed light on part of 

the missing heritability in CdLS: mosaicism has been proven to be responsible for a high 

percentage of CdLS cases previously found to be negative for the presence of mutations in the 

five CdLS genes investigating DNA extracted from blood. The role of mosaicism is of 

particular relevance in association with NIPBL, but few mosaic cases have also been reported 

for SMC1A, SMC3 and HDAC8 (Huisman et al., 2012; Ansari et al., 2014; Baquero-Montoya et 

al., 2014; Braunholz et al., 2015). Despite the significant role played by mosaicism, the 

molecular cause for more than 20% of CdLS patients is still unknown. In this context, genes 

functionally related to cohesin or genes responsible for clinical entities partially overlapping 

with CdLS might both be able to cover this missing heritability. 

Exome sequencing has recently led to the identification of mutations in chromatin-associated 

factors different from cohesin in patients with CdLS or CdLS-overlapping phenotypes 

(Fig.34A-I). These transcriptional regulators, which are responsible for the onset of other 

multisystem developmental disorders, include EP300, AFF4 and KMT2A (Woods et al., 2014; 

Izumi et al., 2015; Yuan et al., 2015). In addition, next generation sequencing techniques 

targeted to the exome or to a selected set of genes allowed us to identify mutations in our 

cohort of patients in ANKRD11  (Parenti et al., 2015) and in different subunits of the SWI/SNF 

complex, namely SMARCB1, ARID1A and ARID1B. EP300 is a transcriptional coactivator 

which is known to be responsible for Rubinstein-Taybi syndrome (Roelfsema et al., 2005). 

KMT2A is instead associated to Wiedemann-Steiner syndrome and encodes for a transcription 

factor that acts as a lysine-specific methyltransferase (Jones et al., 2012). The ANKRD11 gene 

codes for the ankyrin repeat-containing protein 11, a repressor of the transcription of nuclear 

receptors’ target genes and mutations in this gene are associated with KBG syndrome (Sirmaci 

et al., 2011). Mutations in different subunits of the SWI/SNF complex, responsible for 

chromatin remodeling, were instead associated to Coffin-Siris syndrome (Santen et al., 2012). 

Lastly, mutations in AFF4, a core component of the super elongation complex, were found to 

be responsible for a new syndrome that phenotypically overlaps with CdLS named CHOPS 

(Izumi et al., 2015). Correspondingly, mutations in the cohesin gene SMC1A were recently 

reported in two patients with a clinical diagnosis of Wiedemann-Steiner syndrome (Fig.34J-K) 

(Yuan et al., 2015). Similarly, we report herein of a mutation in the cohesin loader NIPBL in a 

patient with Coffin-Siris syndrome (Fig.34L).  

Interestingly, although the aforementioned disorders are de facto distinct syndromes, they all 

share some phenotypical features such as a variable degree of intellectual disability, a general 

developmental delay, growth impairment and some craniofacial features including 
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brachycephaly and thick and arched eyebrows. Despite the presence of some relatively unique 

features for each syndrome, the observed phenotypical overlap suggests the existence of a 

common pathophysiology among these disorders. In this context, it is worth to be noted that the 

genes responsible for these syndromes are all involved in the regulation of gene expression. In 

addition, our yeast two hybrid experiments could prove a physical interaction between the 

SWI/SNF subunit SMARCB1 and the cohesin genes NIPBL and SMC3, whereas Lopez-Serra 

and colleagues demonstrated that the cohesin loader NIPBL and the SWI/SNF complex 

cooperate in order to maintain nucleosome depletion at target regions of the genome in yeast 

(Lopez-Serra et al., 2014). It is therefore tempting to speculate that mutations in the previously 

mentioned genes might be responsible for the alteration of the expression of functionally 

interconnected sets of genes, thus giving a molecular explanation for the similarities observed 

among the different syndromes. For this reason,Yuan and colleagues recently conceived the 

term “transcriptomopathies” to describe those syndromes sharing core clinical features as a 

consequence of global disturbances in the transcriptional regulation of the cell (Fig.35). 

In conclusion, mutations in different transcription factors can result in clinical pictures that are 

difficult to distinguish from each other, thus indicating a wide pleiotropy that should be taken 

into account while addressing the clinical diagnosis. The extensive clinical and functional data 

reported in here indicate the existence of limitations of the current “state of the art” for the 

molecular diagnosis of CdLS and CdLS-overlapping phenotypes. The clinical heterogeneity of 

the syndrome and the numerous differential clinical diagnoses strongly suggest the integration 

of next generation sequencing technologies into the routine molecular diagnostics in order to 

enable a higher sensitivity and the concomitant analysis of multiple sets of genes. 

 

Figure 35. Mutations in different chromatin-associated factors are responsible for the so called “transcriptomopathies”, that 
is syndromes caused by alterations of interconnected sets of genes that  share a variable degree of cognitive impairment and a 

general developmental delay 
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An extensive clinical and molecular heterogeneity characterizes CdLS. The identification of 

new genes responsible for overlapping phenotypes and the recognition of the important role 

played by mosaicism has helped to shed light on the molecular basis of the syndrome. 

Nevertheless, further advances are needed to fully understand the causative molecular 

mechanisms. In this context, additional experiments will be addressed to the resolution of the 

following issues: 

 

 Definition of the mechanisms responsible for the onset of mosaicism 

 Analysis of the expression mechanisms responsible for the onset of different phenotypes 

in the presence of the same DNA alteration 

 Definition of the pathogenic mechanisms underlying the syndrome in the presence of 

out-of-frame deletions in SMC1A 

 Identification of new causative genes 

 Characterization of the interaction of SMARCB1 with NIPBL, with particular attention 

to the following aspects: 

• Does the presence of mutations disrupt the interaction between the two proteins? 

• Does MAU2 influence the interaction between NIPBL and SMARCB1? 

 

 

  



92 
 

 

 

 

 

 

 

 

 

REFERENCES 

  



93 
 

Aitken DA, Ireland M, Berry E, Crossley JA, Macri JN, Burn J, Connor JM (1999). Second-trimester pregnancy 
associated plasma protein-A levels are reduced in Cornelia de Lange syndrome pregnancies. Prenat Diagn 19(8):706-10 

Ansari M, Poke G, Ferry Q, Williamson K, Aldridge R, Meynert AM, Bengani H, Chan CY, Kayserili H, Avci S, 
Hennekam RC, Lampe AK, Redeker E, Homfray T, Ross A, Falkenberg Smeland M, Mansour S, Parker MJ, Cook JA, 
Splitt M, Fisher RB, Fryer A, Magee AC, Wilkie A, Barnicoat A, Brady AF, Cooper NS, Mercer C, Deshpande C, 
Bennett CP, Pilz DT, Ruddy D, Cilliers D, Johnson DS, Josifova D, Rosser E, Thompson EM, Wakeling E, Kinning E, 
Stewart F, Flinter F, Girisha KM, Cox H, Firth HV, Kingston H, Wee JS, Hurst JA, Clayton-Smith J, Tolmie J, Vogt J, 
Tatton-Brown K, Chandler K, Prescott K, Wilson L, Behnam M, McEntagart M, Davidson R, Lynch SA, Sisodiya S, 
Mehta SG, McKee SA, Mohammed S, Holden S, Park SM, Holder SE, Harrison V, McConnell V, Lam WK, Green AJ, 
Donnai D, Bitner-Glindzicz M, Donnelly DE, Nellåker C, Taylor MS, FitzPatrick DR (2014). Genetic heterogeneity in 
Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism. J Med 
Genet. 2014 Oct;51(10):659-68 

Arbuzova S, Nikolenko M, Krantz D, Hallahan T, Macri J (2003). Low first-trimester pregnancy-associated plasma 
protein-A and Cornelia de Lange syndrome. Prenat Diagn 23(10):864 

Arumugam P, Gruber S, Tanaka K, Haering CH,  Mechtler K, Nasmyth K (2003). ATP hydrolysis is required for 
cohesin's association with chromosomes. Curr. Biol (13) 1941–1953 

Baquero-Montoya C, Gil-Rodríguez MC, Braunholz D, Teresa-Rodrigo ME, Obieglo C, Gener B, Schwarzmayr T, 
Strom TM, Gómez-Puertas P, Puisac B, Gillessen-Kaesbach G, Musio A, Ramos FJ, Kaiser FJ, Pié J (2014). Somatic 
mosaicism in a Cornelia de Lange syndrome patient with NIPBL mutation identified by different next generation 
sequencing approaches. Clin Genet 86(6):595-7 

Barisic I, Tokic V, Loane M, Bianchi F, Calzolari E, Garne E, Wellesley D, Dolk H, EUROCAT Working Group 
(2008). Descriptive Epidemiology of Cornelia de Lange Syndrome in Europe. Am J Med Genet A 146A(1):51-9 

Bartsch O, Schmidt S, Richter M, Morlot S, Seemanová E, Wiebe G, Rasi S (2005). DNA sequencing of CREBBP 
demonstrates mutations in 56% of patients with Rubinstein-Taybi syndrome (RSTS) and in another patient with 
incomplete RSTS. Hum Genet 117(5):485-93 

Basile E, Villa L, Selicorni A, Molteni M (2007). The behavioural phenotype of Cornelia de Lange Syndrome: a study 
of 56 individuals. J Intellect Disabil Res 51(9):671-81 

Bentivegna A, Milani D, Gervasini C, Castronovo P, Mottadelli F, Manzini S, Colapietro P, Giordano L, Atzeri F, 
Divizia MT, Uzielli ML, Neri G, Bedeschi MF, Faravelli F, Selicorni A, Larizza L (2006). Rubinstein-Taybi Syndrome: 
spectrum of CREBBP mutations in Italian patients. BMC Med Genet 7:77 

Berney TP, Ireland M, Burn J (1999). Behavioural phenotype of Cornelia de Lange syndrome. Arch Dis Child 
81(4):333-6 

Birkenbihl RP, Subramani S (1992). Cloning and characterization of rad21 an essential gene of Schizosaccharomyces 
pombe involved in DNA double-strand-break repair. Nucleic Acids Res 25;20(24):6605-11 

Borck G, Redon R, Sanlaville D, Rio M, Prieur M, Lyonnet S, Vekemans M, Carter NP, Munnich A, Colleaux L, 
Cormier-Daire V (2004). NIPBL mutations and genetic heterogeneity in Cornelia de Lange syndrome. J Med Genet 
41(12):e128 

Borck G, Zarhrate M, Bonnefont JP, Munnich A, Cormier-Daire V, Colleaux L (2007). Incidence and clinical features of 
X-linked Cornelia de Lange syndrome due to SMC1L1 mutations. Hum Mutat 28(2):205-6 

Bose T, Lee KK, Lu S, Xu B, Harris B, Slaughter B, Unruh J, Garrett A, McDowell W, Box A, Li H, Peak A, 
Ramachandran S, Seidel C, Gerton JL (2012). Cohesin proteins promote ribosomal RNA production and protein 
translation in yeast and human cells. PLoS Genet 8(6):e1002749 

Brachmann E (1916). Ein Fall von symmetrischer Monodaktylie durch Ulnadefekt, mit symmetrischer Flughaurbildung 
in den Ellenbogen sowie anderen Abnormalitaten. Jahrbuch für Kinderheilkunde und physische Erziehung 84:225-235 

Braunholz D, Obieglo C, Parenti I, Pozojevic J, Eckhold J, Reiz B, Braenne I, Wendt KS, Watrin E, Vodopiutz J, Rieder 
H, Gillessen-Kaesbach G, Kaiser FJ (2015). Hidden mutations in cornelia de lange syndrome limitations of sanger 
sequencing in molecular diagnostics. Hum Mutat 36(1):26-9 

Carrel L, Willard HF (2005). X inactivation profile reveals extensive variability in X-linked gene expression in females. 
Nature 434(7031):400-4 

Castronovo P, Gervasini C, Cereda A, Masciadri M, Milani D, Russo S, Selicorni A, Larizza L (2009). Premature 
chromatid separation is not a useful diagnostic marker for Cornelia de Lange syndrome. Chromosome Res 17(6):763-71 

Chen CY, Morris Q, Mitchell JA (2012). Enhancer identification in mouse embryonic stem cells using integrative 
modeling of chromatin and genomic features. BMC Genomics 13:152 



94 
 

Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012). A program for 
annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila 
melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80-92 

Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, Nasmyth K (1998). An ESP1/PDS1 complex regulates 
loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93(6):1067-76 

Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K (2000). Cohesin's binding to 
chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5:1–20 

Clark DM, Sherer I, Deardorff MA, Byrne JL, Loomes KM, Nowaczyk MJ, Jackson LG, Krantz ID (2012). 
Identification of a prenatal profile of Cornelia de Lange syndrome (CdLS): a review of 53 CdLS pregnancies. Am J Med 
Genet A 158A: 1848-56 

Coppus AM (2013). People with intellectual disability: what do we know about adulthood and life expectancy? Dev 
Disabil Res Rev 18: 6-16 

Cortés-Ledesma F, Aguilera A (2006). Double-strand breaks arising by replication through a nick are repaired by 
cohesin-dependent sister-chromatid exchange. EMBO Rep 7(9):919-26 

Craig IW, Mill J, Craig GM, Loat C, Schalkwyk LC (2004). Application of microarrays to the analysis of the 
inactivation status of human X-linked genes expressedin lymphocytes. Eur J Hum Genet 12:639-46 

Cuylen S, Haering CH (2011). Deciphering condensin action during chromosome segregation. Trends Cell Biol 21 552–
559 

D'Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, Shirahige K, Uhlmann F (2008). Identification of cis-acting sites 
for condensin loading onto budding yeast chromosomes. Genes Dev 22(16):2215-27 

Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, Gil-Rodríguez C, Arnedo M, Loeys B, Kline AD, 
Wilson M, Lillquist K, Siu V, Ramos FJ, Musio A, Jackson LS, Dorsett D, Krantz ID (2007). Mutations in cohesin 
complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental 
retardation. Am J Hum Genet 80(3):485-94 

Deardorff MA, Wilde JJ, Albrecht M, Dickinson E, Tennstedt S, Braunholz D, Mönnich M, Yan Y, Xu W, Gil-
Rodríguez MC, Clark D, Hakonarson H, Halbach S, Michelis LD, Rampuria A, Rossier E, Spranger S, Van Maldergem 
L, Lynch SA, Gillessen-Kaesbach G, Lüdecke HJ, Ramsay RG, McKay MJ, Krantz ID, Xu H, Horsfield JA, Kaiser FJ 
(2012a). RAD21 Mutations Cause a Human Cohesinopathy. Am J Hum Genet 90(6):1014-27 

Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, Saitoh K, Komata M, Katou Y, Clark D, Cole KE, 
De Baere E, Decroos C, Di Donato N, Ernst S, Francey LJ, Gyftodimou Y, Hirashima K, Hullings M, Ishikawa Y, Jaulin 
C, Kaur M, Kiyono T, Lombardi PM, Magnaghi-Jaulin L, Mortier GR, Nozaki N, Petersen MB, Seimiya H, Siu VM, 
Suzuki Y, Takagaki K, Wilde JJ, Willems PJ, Prigent C, Gillessen-Kaesbach G, Christianson DW, Kaiser FJ, Jackson 
LG, Hirota T, Krantz ID, Shirahige K (2012b). HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin 
acetylation cycle. Nature 489(7415):313-7 

de Lange C 1933. Sur un type nouveau de dégénération (typus Amstelodamensis). Arch Med Enfants 36 :713-7193 

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna 
M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011). A 
framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491-8 

Díaz-Martínez LA, Giménez-Abián JF, Clarke DJ (2008). Chromosome cohesion - rings, knots, orcs and fellowship. J 
Cell Sci 1;121(Pt 13):2107-14 

Donze D, Adams CR, Rine J, Kamakaka RT (1999). The boundaries of the silenced HMR domain in Saccharomyces 
cerevisiae. Genes Dev. 13(6):698–708 

Dorsett D (2004). Adherin: key to the cohesin ring and cornelia de Lange syndrome. Curr Biol 14:R834-6 

Dorsett D, Krantz ID (2009). On the molecular etiology of Cornelia de Lange syndrome. Ann N Y Acad Sci 1151:22-37 

Dorsett D (2011). Cohesin: genomic insights into controlling gene transcription and development. Curr Opin Genet Dev 
(2):199-206 

Ellermeier C, Smith GR (2005). Cohesins are required for meiotic DNA breakage and recombination in 
Schizosaccharomyces pombe. Proc. Natl. Acad Sci USA 102, 10952–10957 

Fay A, Misulovin Z, Li J, Schaaf CA, Gause M, Gilmour DS, Dorsett D (2011). Cohesin selectively binds and regulates 
genes with paused RNA polymerase. Curr. Biol 21, 1624–1634 

Feeney AJ, Verma-Gaur J (2012). CTCF-cohesin complex: architect of chromatin structure regulates V(D)J 
rearrangement. Cell Res 22, 280–282 



95 
 

Feng L, Zhou D, Zhang Z, Liu Y, Yang Y (2014). Exome sequencing identifies a de novo mutation in HDAC8 
associated with Cornelia de Lange syndrome. J Hum Genet 59(9):536-9 

Gervasini C, Parenti I, Picinelli C, Azzollini J, Masciadri M, Cereda A, Selicorni A, Russo S, Finelli P, Larizza L 
(2013). Molecular characterization of a mosaic NIPBL deletion in a Cornelia de Lange patient with severe phenotype. 
Eur J Med Genet 56(3):138-43 

Gervasini C, Russo S, Cereda A, Parenti I, Masciadri M, Azzollini J, Melis D, Aravena T, Doray B, Ferrarini A, 
Garavelli L, Selicorni A, Larizza L (2013). Cornelia de Lange individuals with new and recurrent SMC1A mutations 
enhance delineation of mutation repertoire and phenotypic spectrum. Am J Med Genet A 161A(11):2909-19 

Gietz RD, Woods RA (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene 
glycol method. Methods Enzymol 350:87-96 

Gillis LA, McCallum J, Kaur M, DeScipio C, Yaeger D, Mariani A, Kline AD, Li HH, Devoto M, Jackson LG, Krantz 
ID (2004). NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome and evaluation of genotype-
phenotype correlations. Am J Hum Genet 75(4):610-23 

Gil-Rodríguez MC, Deardorff MA, Ansari M, Tan CA, Parenti I, Baquero-Montoya C, Ousager LB, Puisac B, 
Hernández-Marcos M, Teresa-Rodrigo ME, Marcos-Alcalde I, Wesselink JJ, Lusa-Bernal S, Bijlsma EK, Braunholz D, 
Bueno-Martinez I, Clark D, Cooper NS, Curry CJ, Fisher R, Fryer A, Ganesh J, Gervasini C, Gillessen-Kaesbach G, 
Guo Y, Hakonarson H, Hopkin RJ, Kaur M, Keating BJ, Kibaek M, Kinning E, Kleefstra T, Kline AD, Kuchinskaya E, 
Larizza L, Li YR, Liu X, Mariani M, Picker JD, Pié Á, Pozojevic J, Queralt E, Richer J, Roeder E, Sinha A, Scott RH, 
So J, Wusik KA, Wilson L, Zhang J, Gómez-Puertas P, Casale CH, Ström L, Selicorni A, Ramos FJ, Jackson LG, 
Krantz ID, Das S, Hennekam RC, Kaiser FJ, FitzPatrick DR, Pié J (2015). De novo heterozygous mutations in SMC3 
cause a range of Cornelia de Lange syndrome-overlapping phenotypes. Hum Mutat 36(4):454-62 

Giménez-Abián JF, Sumara I, Hirota T, Hauf S, Gerlich D, de la Torre C, Ellenberg J, Peters JM (2004). Regulation of 
sister chromatid cohesion between chromosome arms. Curr Biol 14(13):1187-93 

Gimigliano A, Mannini L, Bianchi L, Puglia M, Deardorff MA, Menga S, Krantz ID, Musio A, Bini L (2012). 
Proteomic profile identifies dysregulated pathways in Cornelia de Lange syndrome cells with distinct mutations in 
SMC1A and SMC3 genes. J Proteome Res 11(12):6111-23 

Goldstein JH, Tim-Aroon T, Shieh J, Merrill M, Deeb KK, Zhang S, Bass NE, Bedoyan JK (2015). Novel SMC1A 
frameshift mutations in children with developmental delay and epilepsy. Eur J Med Genet pii: S1769-7212(15)30019-7. 
doi: 10.1016/j.ejmg.2015.09.007. [Epub ahead of print] 

Gorlin RJ, Cohen M, Hennekam RCM (2001). Syndromes of the head and neck. Ney York, NY: Oxford University Press. 
pp. 382–387 

Gruber S, Haering CH, Nasmyth K (2003). Chromosomal cohesin forms a ring. Cell 112(6):765-77 

Gruber S, Arumugam P, Katou Y, Kuglitsch D, Helmhart W, Shirahige K, Nasmyth K (2006) Evidence that loading of 
cohesin onto chromosomes involves opening of its SMC hinge. Cell 127 523–537 

Guacci V, Koshland D, Strunnikov A (1997). A direct link between sister chromatid cohesion and chromosome 
condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91(1):47-57 

Gullerova M, Proudfoot NJ (2008). Cohesin complex promotes transcriptional termination between convergent genes in 
S. pombe. Cell 132 983–995. 

Haering CH, Löwe J, Hochwagen A, Nasmyth K (2002). Molecular architecture of SMC proteins and the yeast cohesin 
complex. Mol Cell 9(4):773-88 

Haering CH, Schoffnegger D, Nishino T, Helmhart W, Nasmyth K, Löwe J (2004). Structure and stability of cohesin's 
Smc1-kleisin interaction. Mol Cell 15(6):951-64 

Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R (2002). A 
chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418(6901):994-8 

Hartman T, Stead K, Koshland D, Guacci V (2000). Pds5p is an essential chromosomal protein required for both sister 
chromatid cohesion and condensation in Saccharomyces cerevisiae. J Cell Biol 151(3):613-26 

Hennekam RCM (2006). Rubinstein-Taybi syndrome. Eur J Hum Genet 14(9):981-5 

Herrmann J, Pallister PD, Tiddy W, Opitz JM (1975). The KBG syndrome-a syndrome of short stature, characteristic 
facies, mental retardation, macrodontia, and skeletal anomalies. Birth Defects Orig Artic Ser 11: 7–18 

Hoppman-Chaney N, Jang JS, Jen J, Babovic-Vuksanovic D, Hodge JC (2011). In-frame multi-exon deletion of SMC1A 
in a severely affected female with Cornelia de Lange Syndrome. Am J Med Genet A 158A(1):193-8 

Huang WH, Porto M (2002). Abnormal first-trimester fetal nuchal translucency and Cornelia De Lange syndrome. 
Obstet Gynecol 99:956-8 



96 
 

Huisman SA, Redeker EJ, Maas SM, Mannens MM, Hennekam RCM (2013). High rate of mosaicism in individuals 
with Cornelia de Lange syndrome. J Med Genet 50(5):339-44 

Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K (2002). Eco1 is a novel acetyltransferase 
that can acetylate proteins involved in cohesion. Curr Biol 12(4):323-8 

Izumi K, Nakato R, Zhang Z, Edmondson AC, Noon S, Dulik MC, Rajagopalan R, Venditti CP, Gripp K, Samanich J, 
Zackai EH, Deardorff MA, Clark D, Allen JL, Dorsett D, Misulovin Z, Komata M, Bando M, Kaur M, Katou Y, 
Shirahige K, Krantz ID (2015). Germline gain-of-function mutations in AFF4 cause a developmental syndrome 
functionally linking the super elongation complex and cohesin. Nat Genet. 2015 Apr;47(4):338-44 

Jackson L, Kline AD, Barr MA, Koch S (1993). De Lange syndrome: a clinical review of 310 individuals. Am J Med 
Genet 47(7):940-6 

Jahnke P, Xu W, Wülling M, Albrecht M, Gabriel H, Gillessen-Kaesbach G, Kaiser FJ (2008). The Cohesin loading 
factor NIPBL recruits histone deacetylases to mediate local chromatin modifications. Nucleic Acids Res 36(20):6450-8 

Johnston CM, Lovell FL, Leongamornlert DA, Stranger BE, Dermitzakis ET, Ross MT (2008). Large-scale population 
study of human cell lines indicates that dosage compensation is virtually complete. PLoS Genet 4:e9; PMID:18208332 

Jones WD, Dafou D, McEntagart M, Woollard WJ, Elmslie FV, Holder-Espinasse M, Irving M, Saggar AK, Smithson 
S, Trembath RC, Deshpande C, Simpson MA (2012). De novo mutations in MLL cause Wiedemann-Steiner syndrome. 
Am J Hum Genet 91(2):358-64 

Kaiser FJ, Ansari M, Braunholz D, Concepción Gil-Rodríguez M, Decroos C, Wilde JJ, Fincher CT, Kaur M, Bando M, 
Amor DJ, Atwal PS, Bahlo M, Bowman CM, Bradley JJ, Brunner HG, Clark D, Del Campo M, Di Donato N, Diakumis 
P, Dubbs H, Dyment DA, Eckhold J, Ernst S, Ferreira JC, Francey LJ, Gehlken U, Guillén-Navarro E, Gyftodimou Y, 
Hall BD, Hennekam R, Hudgins L, Hullings M, Hunter JM, Yntema H, Innes AM, Kline AD, Krumina Z, Lee H, 
Leppig K, Lynch SA, Mallozzi MB, Mannini L, McKee S, Mehta SG, Micule I; Care4Rare Canada Consortium, 
Mohammed S, Moran E, Mortier GR, Moser JA, Noon SE, Nozaki N, Nunes L, Pappas JG, Penney LS, Pérez-Aytés A, 
Petersen MB, Puisac B, Revencu N, Roeder E, Saitta S, Scheuerle AE, Schindeler KL, Siu VM, Stark Z, Strom SP, 
Thiese H, Vater I, Willems P, Williamson K, Wilson LC; University of Washington Center for Mendelian Genomics, 
Hakonarson H, Quintero-Rivera F, Wierzba J, Musio A, Gillessen-Kaesbach G, Ramos FJ, Jackson LG, Shirahige K, Pié 
J, Christianson DW, Krantz ID, Fitzpatrick DR, Deardorff MA (2014). Loss-of-function HDAC8 mutations cause a 
phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked 
inheritance. Hum Mol Genet 23(11):2888-900 

Kawauchi S, Calof AL, Santos R, Lopez-Burks ME, Young CM, Hoang MP, Chua A, Lao T, Lechner MS, Daniel JA, 
Nussenzweig A, Kitzes L, Yokomori K, Hallgrimsson B, Lander AD (2009). Multiple organ system defects and 
transcriptional dysregulation in the Nipbl(+/-) mouse, a model of Cornelia de Lange syndrome. PLoS Genet 
5(9):e1000650 

Kim ST, Xu B, Kastan MB (2002). Involvement of the cohesin protein, Smc1, in Atm-dependent and independent 
responses to DNA damage. Genes Dev 16(5):560-70 

Kline AD, Barr M, Jackson LG (1993a). Growth manifestations in the Brachmann-de Lange syndrome. Am J Med Genet 
47(7):1042-9 

Kline AD, Stanley C, Belevich J, Brodsky K, Barr M, Jackson LG (1993b). Developmental data on individuals with the 
Brachmann-de Lange syndrome. Am J Med Genet 47(7):1053-8 

Kline AD, Krantz ID, Sommer A, Kliewer M, Jackson LG, FitzPatrick DR, Levin AV, Selicorni A (2007). Cornelia de 
Lange syndrome: clinical review, diagnostic and scoring systems, and anticipatory guidance. Am J Med Genet A 
143A(12):1287-96 

Kong X, Ball Jr, Sonoda E, Feng J, Takeda S, Fukagawa T, Yen TJ, Yokomori K (2009). Cohesin associates with 
spindle poles in a mitosis-specific manner and functions in spindle assembly in vertebrate cells. Mol Biol Cell 20, 1289–
1301 

Kosho T, Miyake N, Carey JC (2014). Coffin-Siris syndrome and related disorders involving components of the BAF 
(mSWI/SNF) complex: historical review and recent advances using next generation sequencing. Am J Med Genet C 
Semin Med Genet 166C(3):241-51 

Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, 
Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto 
M, Jackson LG (2004). Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of 
Drosophila melanogaster Nipped-B. Nat Genet 36(6):631-5 

Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A, Mechtler K, Peters JM (2006). Wapl controls the dynamic 
association of cohesin with chromatin. Cell 127(5): 955–967 

Lavoie BD, Hogan E, Koshland D (2002). In vivo dissection of the chromosome condensation machinery: reversibility 
of condensation distinguishes contributions of condensin and cohesin. J Cell Biol 156, 805–815 



97 
 

Lavoie BD, Hogan E, Koshland D (2004) In vivo requirements for rDNA chromosome condensation reveal two cell-
cycle-regulated pathways for mitotic chromosome folding. Genes Dev (18) 76–87 

Lebrun N, Lebon S, Jeannet PY, Jacquemont S, Billuart P, Bienvenu T (2015). Early-onset encephalopathy with 
epilepsy associated with a novel splice site mutation in SMC1A. Am J Med Genet A doi: 10.1002/ajmg.a.37364. [Epub 
ahead of print] 

Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589–
595 

Limongelli G, Russo S, Digilio MC, Masciadri M, Pacileo G, Fratta F, Martone F, Maddaloni V, D’Alessandro R, 
Calabro P, Russo MG, Calabro R, Larizza L (2010). Hypertrophic Cardiomyopathy in a Girl With Cornelia de Lange 
Syndrome Due to Mutation in SMC1A. Am J Med Genet Part A 152A:2127-2129 

Liu J, Krantz ID (2009). Cornelia de Lange syndrome, cohesin, and beyond. Clin Genet 76(4):303-14 

Liu J, Feldman R, Zhang Z, Deardorff MA, Haverfield EV, Kaur M, Li JR, Clark D, Kline AD, Waggoner DJ, Das S, 
Jackson LG, Krantz ID (2009). SMC1A expression and mechanism of pathogenicity in probands with X-linked Cornelia 
de Lange syndrome. Hum Mutat 30(11):1535-42 

Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-
Δ Δ C(T)) Method. Methods 25:402-8 

Lopez-Serra L, Kelly G, Patel H, Stewart A, Uhlmann F (2014). The Scc2-Scc4 complex acts in sister chromatid 
cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat Genet 46(10):1147-51 

Losada A, Hirano M, Hirano T (1998). Identification of Xenopus SMC protein complexes required for sister chromatid 
cohesion. Genes Dev 12(13):1986-97 

Losada A, Yokochi T, Kobayashi R, Hirano T (2000). Identification and characterization of SA/Scc3p subunits in the 
Xenopus and human cohesin complexes. J Cell Biol 150(3):405-16 

Losada A, Hirano M, Hirano T (2002). Cohesin release is required for sister chromatid resolution, but not for condensin-
mediated compaction, at the onset of mitosis. Genes Dev (16) 3004–3016 

Losada A, Hirano T (2005). Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 
19(11):1269-87 

Losada A (2007). Cohesin regulation: fashionable ways to wear a ring. Chromosoma 116(4):321-9 

Luo H, Li Y, Mu JJ, Zhang J, Tonaka T, Hamamori Y, Jung SY, Wang Y, Qin J (2008). Regulation of intra S phase 
checkpoint by ionizing radiation (IR)-dependent and IR-independent phosphorylation of SMC3. J Biol Chem 283, 
19176–19183. 

Luzzani S, Macchini F, Valadè A, Milani D, Selicorni A (2003). Gastroesophageal reflux and Cornelia de Lange 
syndrome: typical and atypical symptoms. Am J Med Genet A 119A(3):283-7 

Mannini L, Liu J, Krantz ID, Musio A (2010). Spectrum and consequences of SMC1A mutations: the unexpected 
involvement of a core component of cohesin in human disease. Hum Mutat 31(1):5-10 

Mannini L, Cucco F, Quarantotti V, Krantz ID, Musio A (2013). Mutation spectrum and genotype-phenotype correlation 
in Cornelia de Lange syndrome. Hum Mutat 34(12):1589-96 

Marchisio P, Selicorni A, Bianchini S, Milani D, Baggi E, Cerutti M, Larizza L, Principi N, Esposito S (2014). 
Audiological findings, genotype and clinical severity score in Cornelia de Lange syndrome. Int J Pediatr 
Otorhinolaryngol 78(7):1045-8 

Mariani M, Bettini LR, Cereda A, Maitz S, Gervasini C, Russo S, Masciadri M, Biondi A, Larizza L, Selicorni A 
(2013). Germline mosaicism in Cornelia de Lange syndrome: dilemmas and risk figures. Am J Med Genet A 
161A(7):1825-6 

Masumoto K, Izaki T, Arima T (2001). Cornelia de Lange syndrome associated with cecal volvulus: report of a case. 
Acta Paediatr 90(6):701-3 

McIntyre J, Muller EGD, Weitzer S, Snydsman BE, Davis TN, Uhlmann F (2007). In vivo analysis of cohesin 
architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J (26) 3783–3793 

McNairn AJ, Gerton JL (2008). Cohesinopathies: One ring, many obligations. Mutat Research 647(1-2):103–111 

Mehta AV, Ambalavanan SK (1997). Occurrence of congenital heart disease in children with Brachmann-de Lange 
syndrome. Am J Med Genet 71(4):434-5 

Mehta GD, Rizvi SM, Ghosh SK (2012). Cohesin: a guardian of genome integrity. Biochim Biophys Acta 1823(8):1324-
42 



98 
 

Michaelis C, Ciosk R, Nasmyth K (1997). Cohesins: chromosomal proteins that prevent premature separation of sister 
chromatids. Cell 91(1):35-45 

Minor A, Shinawi M, Hogue JS, Vineyard M, Hamlin DR, Tan C, Donato K, Wysinger L, Botes S, Das S, Del Gaudio D 
(2014). Two novel RAD21 mutations in patients with mild Cornelia de Lange syndrome-like presentation and report of 
the first familial case. Gene 537(2):279-84 

Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S, Fay JC, Eisen MB, Pirrotta V, Biggin MD, 
Dorsett D (2008). Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila 
melanogaster genome. Chromosoma 117(1):89-102 

Musio A, Montagna C, Mariani T, Tilenni M, Focarelli ML, Brait L, Indino E, Benedetti PA, Chessa L, Albertini A, 
Ried T, Vezzoni P (2005). SMC1 involvement in fragile site expression. Hum Mol Genet 14(4):525-33 

Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S, Vezzoni P, Larizza L (2006). X-linked Cornelia de 
Lange syndrome owing to SMC1L1 mutations. Nat Genet 38(5):528-30 

Nakamura A, Arai H, Fujita N (2009). Centrosomal Aki1 and cohesin function in separase-regulated centriole 
disengagement. J Cell Biol 187, 607–614 

Nasmyth K, Haering CH (2005). The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595-
648 

Negri G, Milani D, Colapietro P, Forzano F, Della Monica M, Rusconi D, Consonni L, Caffi LG, Finelli P, Scarano G, 
Magnani C, Selicorni A, Spena S, Larizza L, Gervasini C (2015). Clinical and molecular characterization of Rubinstein-
Taybi syndrome patients carrying distinct novel mutations of the EP300 gene. Clin Genet 87(2):148-54 

Neuwald AF, Hirano T (2000). HEAT repeats associated with condensins, cohesins, and other complexes involved in 
chromosome-related functions. Genome Res 10(10):1445-52 

Nilson I, Lochner K, Siegler G, Greil J, Beck JD, Fey GH, Marschalek R (1996). Exon/intron structure of the human 
ALL-1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukemias. Br J Haematol 
93(4):966-72 

Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A, Bhaskara V, Bando M, Shirahige K, Hyman AA, Mechtler 
K,  Peters JM (2010). Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143 737–749 

Ockeloen CW, Willemsen MH, de Munnik S, van Bon BW, de Leeuw N, Verrips A, Kant SG, Jones EA, Brunner HG, 
van Loon RL, Smeets EE, van Haelst MM, van Haaften G, Nordgren A, Malmgren H, Grigelioniene G, Vermeer S, 
Louro P, Ramos L, Maal TJ, van Heumen CC, Yntema HG, Carels CE, Kleefstra T (2014). Further delineation of the 
KBG syndrome phenotype caused by ANKRD11 aberrations. Eur J Hum Genet doi: 10.1038/ejhg.2014.253 

Oikawa K, Ohbayashi T, Kiyono T, Nishi H, Isaka K, Umezawa A, Kuroda M, Mukai K (2004). Expression of a novel 
human gene, human wings apart-like (hWAPL), is associated with cervical carcinogenesis and tumor progression. 
Cancer Res 64(10):3545-9 

Oliveira J, Dias C, Redeker E, Costa E, Silva J, Reis Lima M, den Dunnen JT, Santos R (2010). Development of NIPBL 
locus-specific database using LOVD: from novel mutations to further genotype-phenotype correlations in Cornelia de 
Lange Syndrome. Hum Mutat 31(11):1216-22 

Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE (2008). Sister Chromatid Cohesion: A Simple Concept with 
a Complex Reality. Annu Rev Cell Dev Biol 24:105-129 

Opitz JM, Segal AT, Lehrke R, Nadler H (1964). Brachmann/de Lange syndrome. Lancet 2(7367):1019 

Parenti I, Rovina D, Masciadri M, Cereda A, Azzollini J, Picinelli C, Limongelli G, Finelli P, Selicorni A, Russo S, 
Gervasini C, Larizza L (2014). Overall and allele-specific expression of the SMC1A gene in female Cornelia de Lange 
syndrome patients and healthy controls. Epigenetics 9(7):973-9 

Parenti I, Gervasini C, Pozojevic J, Graul-Neumann L, Azzollini J, Braunholz D, Watrin E, Wendt KS, Cereda A, 
Cittaro D, Gillessen-Kaesbach G, Lazarevic D, Mariani M, Russo S, Werner R, Krawitz P, Larizza L, Selicorni A, 
Kaiser FJ (2015). Broadening of cohesinopathies: exome sequencing identifies mutations in ANKRD11 in two patients 
with Cornelia de Lange-overlapping phenotype. Clin Genet 2015 Feb 4. doi: 10.1111/cge.12564 

Pearce PM, Pitt DB (1967). Six cases of de Lange's syndrome; parental consanguinity in two. Med J Aust 1(10):502-6 

Pié J, Gil-Rodríguez MC, Ciero M, López-Viñas E, Ribate MP, Arnedo M, Deardorff MA, Puisac B, Legarreta J, de 
Karam JC, Rubio E, Bueno I, Baldellou A, Calvo MT, Casals N, Olivares JL, Losada A, Hegardt FG, Krantz ID, 
Gómez-Puertas P, Ramos FJ (2010). Mutations and variants in the cohesion factor genes NIPBL, SMC1A, and SMC3 in 
a cohort of 30 unrelated patients with Cornelia de Lange syndrome. Am J Med Genet A 152A(4):924-9 

Revenkova E, Focarelli ML, Susani L, Paulis M, Bassi MT, Mannini L, Frattini A, Delia D, Krantz I, Vezzoni P and 
others (2009). Cornelia de Lange syndrome mutations in SMC1A or SMC3 affect binding to DNA. Hum Mol Genet 
18(3):418-27 



99 
 

Roelfsema JH, White SJ, Ariyürek Y, Bartholdi D, Niedrist D, Papadia F, Bacino CA, den Dunnen JT, van Ommen GJ, 
Breuning MH, Hennekam RC, Peters DJ (2005). Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in 
both the CBP and EP300 genes cause disease. Am J Hum Genet 76(4):572-80 

Rollins RA, Morcillo P, Dorsett D (1999). Nipped-B, a Drosophila homologue of chromosomal adherins, participates in 
activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152(2):577-93 

Rubinstein JH, Taybi H (1963). Broad thumbs and toes and facial abnormalities. A possible mental retardation 
syndrome. AmJ Dis Child 105:588-608 

Russo S, Masciadri M, Gervasini C, Azzollini J, Cereda A, Zampino G, Haas O, Scarano G, Di Rocco M, Finelli P, 
Tenconi R, Selicorni A, Larizza L (2012). Intragenic and large NIPBL rearrangements revealed by MLPA in Cornelia de 
Lange patients. Eur J Hum Genet 20(7):734-41 

Santen GWE, Kriek M, van Attikum H (2012). SWI/SNF complex in disorder: SWItching from malignancies to 
intellectual disability. Epigenetics 7(11):1219-24 

Schmitz J, Watrin E, Lénárt P,  Mechtler K, Peters JM (2007). Sororin is required for stable binding of cohesin to 
chromatin and for sister chromatid cohesion in interphase. CurrBiol 17 630–636 

Schockel L, Mockel M, Mayer B, Boos D, Stemmann O (2011). Cleavage of cohesin rings coordinates the separation of 
centrioles and chromatids. Nat. Cell Biol  13, 966–972 

Schrier SA, Sherer I, Deardorff MA, Clark D, Audette L, Gillis L, Kline AD, Ernst L, Loomes K, Krantz ID, Jackson 
LG (2011). Causes of death and autopsy findings in a large study cohort of individuals with Cornelia de Lange 
syndrome and review of the literature. Am J Med Genet A 155A: 3007-24 

Schrier SA, Bodurtha JN, Burton B, Chudley AE, Chiong MA, D'avanzo MG, Lynch SA, Musio A, Nyazov DM, 
Sanchez-Lara PA, Shalev SA, Deardorff MA (2012). The Coffin-Siris syndrome: a proposed diagnostic approach and 
assessment of 15 overlapping cases. Am J Med Genet A 158A: 1865-76 

Schuldiner O, Berdnik D, Levy JM, Wu JS, Luginbuhl D, Gontang AC, Luo L (2008). PiggyBac-based mosaic screen 
identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 14(2):227-38 

Sekimoto H, Osada H, Kimura H, Kamiyama M, Arai K, Sekiya S (2000). Prenatal findings in Brachmann-de Lange 
syndrome. Arch Gynecol Obstet 263(4):182-4 

Selicorni A, Russo S, Gervasini C, Castronovo P, Milani D, Cavalleri F, Bentivegna A, Masciadri M, Domi A, Divizia 
MT, Sforzini C, Tarantino E, Memo L, Scarano G, Larizza L (2007). Clinical score of 62 Italian patients with Cornelia 
de Lange syndrome and correlations with the presence and type of NIPBL mutation. Clin Genet 72(2):98-108 

Sirmaci A, Spiliopoulos M, Brancati F, Powell E, Duman D, Abrams A, Bademci G, Agolini E, Guo S, Konuk B, Kavaz 
A, Blanton S, Digilio MC, Dallapiccola B, Young J, Zuchner S, Tekin M (2011). Mutations in ANKRD11 cause KBG 
syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia. Am J Hum Genet 89 
(2):289–294 

Slavin TP, Lazebnik N, Clark DM, Vengoechea J, Cohen L, Kaur M, Konczal L, Crowe CA, Corteville JE, Nowaczyk 
MJ, Byrne JL, Jackson LG, Krantz ID (2012). Germline mosaicism in Cornelia de Lange syndrome. Am J Med Genet A 
158A(6):1481-5 

Sofueva S, Hadjur S (2012). Cohesin-mediated chromatin interactions-into the third dimension of gene regulation. Brief 
Funct. Genomics 11(3):205-16 

Spena S, Milani D, Rusconi D, Negri G, Colapietro P, Elcioglu N, Bedeschi F, Pilotta A, Spaccini L, Ficcadenti A, 
Magnani C, Scarano G, Selicorni A, Larizza L, Gervasini C (2014). Insights into genotype-phenotype correlations from 
CREBBP point mutation screening in a cohort of 46 Rubinstein-Taybi syndrome patients. Clin Genet doi: 
10.1111/cge.12537. [Epub ahead of print] 

Sjögren C, Nasmyth K (2001). Sister chromatid cohesion is required for postreplicative double-strand break repair in 
Saccharomyces cerevisiae. Curr Biol 11(12):991-5 

Sjögren C, Ström L (2010). S-phase and DNA damage activated  establishment of sister chromatid cohesion–importance 
for DNA repair. Exp Cell Res 316, 1445–1453 

Steiner CE, Marques AP (2000). Growth deficiency, mental retardation and unusual facies. Clin Dysmorphol 9(2):155-6 

Ström L, Lindroos HB, Shirahige K, Sjögren C (2004). Postreplicative recruitment of cohesin to double-strand breaks is 
required for DNA repair. Mol Cell 16(6):1003-15 

Sutani T, Kawaguchi T, Kanno R, Itoh T, Shirahige K (2009). Budding yeast Wpl1(Rad61)-Pds5 complex counteracts 
sister chromatid cohesion-establishing reaction. Curr Biol 24 492–497 



100 
 

Taki T, Hayashi Y, Taniwaki M, Seto M, Ueda R, Hanada R, Suzukawa K, Yokota J, Morishita K (1996). Fusion of the 
MLL gene with two different genes, AF-6 and AF-5alpha, by a complex translocation involving chromosomes 5, 6, 8 
and 11 in infant leukemia. Oncogene 13(10):2121-30 

Tanaka K, Hao Z, Kai M, Okayama H (2001). Establishment and maintenance of sister chromatid cohesion in fission 
yeast by a unique mechanism. EMBO J 20 5779–5790 

Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004). NIPBL, encoding a homolog of fungal Scc2-type sister 
chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36(6):636-41 

Tsou MF, Stearns T (2006). Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947–951 

Tsukahara M, Okamoto N, Ohashi H, Kuwajima K, Kondo I, Sugie H, Nagai T, Naritomi K, Hasegawa T, Fukushima Y, 
Masuno M, Kuroki Y (1998). Brachmann-de Lange syndrome and congenital heart disease. Am J Med Genet 75(4):441-
2 

Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y, Kaname T, Naritomi K, Kawame H, Wakui K, 
Fukushima Y, Homma T, Kato M, Hiraki Y, Yamagata T, Yano S, Mizuno S, Sakazume S, Ishii T, Nagai T, Shiina M, 
Ogata K, Ohta T, Niikawa N, Miyatake S, Okada I, Mizuguchi T, Doi H, Saitsu H, Miyake N, Matsumoto N (2012). 
Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet 44(4):376-8 

Uhlmann F, Lottspeich F, Nasmyth K (1999). Sister-chromatid separation at anaphase onset is promoted by cleavage of 
the cohesin subunit Scc1. Nature 400(6739):37-42 

Uhlmann F (2008). Molecular biology: cohesin branches out. Nature 451 777–778 

Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004). DNA damage response pathway 
uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16(6):991-1002 

Unal E, Heidinger-Pauli JM, Koshland D (2007). DNA double-strand breaks trigger genome-wide sister-chromatid 
cohesion through Eco1 (Ctf7). Science 317(5835):245-8 

Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van Gosliga D, Kayserili H, Xu C, Ozono K, Jabs 
EW, Inui K, Joenje H (2005). Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 
that is essential for the establishment of sister chromatid cohesion. Nat Genet 37(5):468-70 

Verrotti A, Agostinelli S, Prezioso G, Coppola G, Capovilla G, Romeo A, Striano P, Parisi P, Grosso S, Spalice A, 
Foiadelli T, Curatolo P, Chiarelli F, Savasta S (2013). Epilepsy in patients with Cornelia de Lange syndrome: a clinical 
series. Seizure 22: 356-9 

Yamaguchi K, Ishitobi F (1999). Brain dysgenesis in Cornelia de Lange syndrome. Clin Neuropathol 18(2):99-105 

Yan J, Saifi GM, Wierzba TH, Withers M, Bien-Willner GA, Limon J, Stankiewicz P, Lupski JR, Wierzba J (2006). 
Mutational and genotype-phenotype correlation analyses in 28 Polish patients with Cornelia de Lange syndrome. Am J 
Med Genet A 140(14):1531-41 

Yan W, Liu S, Xu E, Zhang J, Zhang Y, Chen X, Chen X (2013). Histone deacetylase inhibitors suppress mutant p53 
transcription via histone deacetylase 8. Oncogene 32:599–609 

Yuan B, Pehlivan D, Karaca E, Patel N, Charng WL, Gambin T, Gonzaga-Jauregui C, Sutton VR, Yesil G, Bozdogan 
ST, Tos T, Koparir A, Koparir E, Beck CR, Gu S, Aslan H, Yuregir OO, Al Rubeaan K, Alnaqeb D, Alshammari MJ, 
Bayram Y, Atik MM, Aydin H, Geckinli BB, Seven M, Ulucan H, Fenercioglu E, Ozen M, Jhangiani S, Muzny DM, 
Boerwinkle E, Tuysuz B, Alkuraya FS, Gibbs RA, Lupski JR (2015). Global transcriptional disturbances underlie 
Cornelia de Lange syndrome and related phenotypes. J Clin Invest 125(2):636-51 

Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J (2002). SMC1 is a downstream effector in the ATM/NBS1 branch 
of the human S-phase checkpoint. Genes Dev 16(5):571-82 

Waizenegger IC, Hauf S, Meinke A, Peters JM (2000). Two distinct pathways remove mammalian cohesin from 
chromosome arms in prophase and from centromeres in anaphase. Cell 103 399–410 

Wang X, Yang Y, Duan Q, Jiang N, Huang Y, Darzynkiewicz Z, Dai W (2008). SSgo1, a major splice variant of Sgo1, 
functions in centriole cohesion where it is regulated by Plk1. Dev Cell 14, 331–341 

Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, Peters JM (2006). Human Scc4 is required for cohesin 
binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol 16(9):863-74 

Watrin E and Peters JM (2009). The cohesin complex is required for the DNA damage-induced G2/M checkpoint in 
mammalian cells. EMBO J 28, 1128 2625–2635 

Weitzer S, Lehane C, Uhlmann F (2003). A model for ATP hydrolysis-dependent binding of cohesin to DNA, CurrBiol 
13 1930–1940 



101 
 

Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata 
K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM (2008). Cohesin mediates 
transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796-801 

Westergaard JG, Sinosich MJ, Bugge M, Madsen LT, Teisner B, Grudzinskas JG (1983). Pregnancy-associated plasma 
protein A in the prediction of early pregnancy failure. Am J Obstet Gynecol 145(1):67-9 

Wieczorek D, Bögershausen N, Beleggia F, Steiner-Haldenstätt S, Pohl E, Li Y, Milz E, Martin M, Thiele H, Altmüller 
J, Alanay Y, Kayserili H, Klein-Hitpass L, Böhringer S, Wollstein A, Albrecht B, Boduroglu K, Caliebe A, 
Chrzanowska K, Cogulu O, Cristofoli F, Czeschik JC, Devriendt K, Dotti MT, Elcioglu N, Gener B, Goecke TO, 
Krajewska-Walasek M, Guillén-Navarro E, Hayek J, Houge G, Kilic E, Simsek-Kiper PÖ, López-González V, Kuechler 
A, Lyonnet S, Mari F, Marozza A, Mathieu Dramard M, Mikat B, Morin G, Morice-Picard F, Ozkinay F, Rauch A, 
Renieri A, Tinschert S, Utine GE, Vilain C, Vivarelli R, Zweier C, Nürnberg P, Rahmann S, Vermeesch J, Lüdecke HJ, 
Zeschnigk M, Wollnik B (2013). A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes 
identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum Mol Genet 
22(25):5121-35 

Wiedemann HR, Kunze J, Grosse FR, Dibbern H (1989). A syndrome of abnormal facies, short stature, and 
psychomotor retardation. In: Atlas of Clinical Syndromes: A Visual Aid to Diagnosis for Clinicians and Practicing 
Physicians. 2nd ed. London, United Kingdom: Wolfe Publishing Ltd; 1989:198–199 

Winder SJ, Walsh MP (1993). Calponin: Thin filament-linked  regulation of smooth muscle contraction. Cell Signal 
5:677–686 

Wong RW, Blobel G (2008). Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole. Proc Natl 
Acad Sci USA 105, 15441–15445 

Woods SA, Robinson HB, Kohler LJ, Agamanolis D, Sterbenz G, Khalifa M (2014). Exome sequencing identifies a 
novel EP300 frame shift mutation in a patient with features that overlap Cornelia de Lange syndrome. Am J Med Genet 
A 164A(1):251-8 

Zakari M, Yuen K, Gerton JL (2015). Etiology and pathogenesis of the cohesinopathies. Wiley Interdiscip Rev Dev Biol 
doi: 10.1002/wdev.190 

Zhang A, Li CW, Chen JD (2007). Characterization of transcriptional regulatory domains of ankyrin repeat cofactor 1. 
Biochem Biophys Res Commun 358: 1034–1040 

Zhang J, Shi X, Li Y, Kim BJ, Jia J, Huang Z, Yang T, Fu X, Jung SY, Wang Y, Zhang P, Kim ST, Pan X, Qin J (2008). 
Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31 
143–151 

  



102 
 

 

 

 

 

 

 

 

 

PUBLICATIONS 

  



103 
 

Parenti I, Gervasini C, Pozojevic J, Graul-Neumann L, Azzollini J, Braunholz D, Watrin E, Wendt KS, Cereda A, 
Cittaro D, Gillessen-Kaesbach G, Lazarevic D, Mariani M, Russo S, Werner R, Krawitz P, Larizza L, Selicorni A, 
Kaiser FJ.  
Broadening of cohesinopathies: exome sequencing identifies mutations in ANKRD11 in two patients with Cornelia 
de Lange-overlapping phenotype.  
Clin Genet. 2015 Feb 4. doi: 10.1111/cge.12564. [Epub ahead of print] 
 
Bramswig NC, Lüdecke HJ, Alanay Y, Albrecht B, Barthelmie A, Boduroglu K, Braunholz D, Caliebe A, 
Chrzanowska KH, Czeschik JC, Endele S, Graf E, Guillén-Navarro E, Kiper PÖ, López-González V, Parenti I, 
Pozojevic J, Utine GE, Wieland T, Kaiser FJ, Wollnik B, Strom TM, Wieczorek D. 
Exome sequencing unravels unexpected differential diagnoses in individuals with the tentative diagnosis of Coffin-
Siris and Nicolaides-Baraitser syndromes. 
Hum Genet. 2015 Jun;134(6):553-68 
 
Gil-Rodríguez MC, Deardorff MA, Ansari M, Tan CA, Parenti I, Baquero-Montoya C, Ousager LB, Puisac B, 
Hernández-Marcos M, Teresa-Rodrigo ME, Marcos-Alcalde I, Wesselink JJ, Lusa-Bernal S, Bijlsma EK, 
Braunholz D, Bueno-Martinez I, Clark D, Cooper NS, Curry CJ, Fisher R, Fryer A, Ganesh J, Gervasini C, 
Gillessen-Kaesbach G, Guo Y, Hakonarson H, Hopkin RJ, Kaur M, Keating BJ, Kibaek M, Kinning E, Kleefstra 
T, Kline AD, Kuchinskaya E, Larizza L, Li YR, Liu X, Mariani M, Picker JD, Pié Á, Pozojevic J, Queralt E, 
Richer J, Roeder E, Sinha A, Scott RH, So J, Wusik KA, Wilson L, Zhang J, Gómez-Puertas P, Casale CH, Ström 
L, Selicorni A, Ramos FJ, Jackson LG, Krantz ID, Das S, Hennekam RC, Kaiser FJ, FitzPatrick DR, Pié J. 
De Novo Heterozygous Mutations in SMC3 Cause a Range of Cornelia de Lange Syndrome-Overlapping 
Phenotypes. 
Hum Mutat. 2015 Apr;36(4):454-62 
 
Braunholz D, Obieglo C, Parenti I, Pozojevic J, Eckhold J, Reiz B, Brænne I, Wendt KS, Watrin E, Vodopiutz J, 
Rieder H, Gillessen-Kaesbach G and Kaiser FJ. 
Hidden Mutations in CdLS – Limitations of Sanger Sequencing in Molecular Diagnostics. 
Hum Mutat. 2015 Jan;36(1):26-9 
 
Azzollini J, Rovina D, Gervasini C, Parenti I, Fratoni A, Cubellis MV, Cerri A, Pietrogrande L, Larizza L. 
Functional characterisation of a novel mutation affecting the catalytic domain of MMP2 in siblings with 
multicentric osteolysis, nodulosis and arthropathy. 
J Hum Genet. 2014 Nov;59(11):631-7 
 
Parenti I, Rovina D, Masciadri M, Cereda A, Azzollini A, Picinelli C, Limongelli G, Finelli P, Selicorni A, Russo 
S, Gervasini C and Larizza L. 
Overall and allele-specific expression of the SMC1A gene in female Cornelia de Lange syndrome patients and 
healthy controls. 
Epigenetics 2014 Jul 1;9(7):973-9 
 
Gervasini C*, Russo S*, Cereda A, Parenti I, Masciadri M, Azzollini J, Melis D, Aravena T, Doray B, Ferrarini 
A, Garavelli L,  Selicorni A, Larizza L.  
Cornelia de Lange Individuals with New and Recurrent SMC1A Mutations Enhance Delineation of Mutation 
Repertoire and Phenotypic Spectrum. 
American Journal of  Medical Genetics Part A 2013 Nov;161A(11):2909-19 
 
Gervasini C, Parenti I, Picinelli C, Azzollini J, Masciadri M, Cereda A, Selicorni A, Russo S, Finelli P, Larizza L. 
Molecular characterization of a mosaic NIPBL deletion in a Cornelia de Lange patient with severe phenotype. 
European Journal of Medical Genetics 2013 Mar;56(3):138-43 


	UNIVERSITA’ DEGLI STUDI DI MILANO
	Corso di Dottorato di Ricerca in
	Patologia e Neuropatologia Sperimentali

	ABSTRACT
	INTRODUCTION
	CORNELIA DE LANGE SYNDROME
	HISTORY
	CLINICAL FEATURES
	Prenatal diagnosis and auxological data
	Facial dysmorphisms
	Muscoloskeletal system
	Gastrointestinal system
	Cardiac system
	Genitourinary system
	Other malformations
	Cognitive impairment
	Behavioral problems
	Prognosis


	MOLECULAR BASIS: THE COHESIN COMPLEX
	ARCHITECTURE OF THE COHESIN COMPLEX
	COHESIN-ASSOCIATED PROTEINS
	MODELS OF INTERACTION OF COHESIN WITH DNA
	CELL CYCLE REGULATION BY COHESIN
	The loading of cohesin onto chromatin
	Establishment of cohesion
	The removal of cohesin from chromatin

	COHESIN´S FUNCTIONS
	Transcriptional regulation
	Chromatin remodeling
	DNA repair
	Chromosomes condensation
	Centrosome-related functions


	THE CdLS-GENES: STATE OF ART
	NIPBL
	SMC1A
	SMC3
	RAD21
	HDAC8

	MISSING HERITABILITY
	DIFFERENTIAL DIAGNOSIS
	KBG SYNDROME
	COFFIN-SIRIS SYNDROME
	WIEDEMANN-STEINER SYNDROME
	RUBINSTEIN-TAYBI SYNDROME


	AIM OF THE PRESENT WORK
	MATERIALS AND METHODS
	PATIENTS
	CELL CULTURE ESTABLISHMENT
	DNA ISOLATION
	DNA ISOLATION FROM BLOOD, LCLs AND FIBROBLASTS
	DNA ISOLATION FROM URINE
	DNA ISOLATION FROM BUCCAL MUCOSA

	SEQUENCING APPROACHES
	SANGER SEQUENCING
	TARGETED GENE PANEL
	SNaPshot ASSAY
	EXOME SEQUENCING
	CGH-ARRAY

	EXPRESSION STUDIES
	X-INACTIVATION ANALYSIS
	RNA EXTRACTION AND cDNA SYNTHESIS
	REAL TIME PCR
	PROTEIN EXTRACTION AND WESTERN BLOT
	PYROSEQUENCING ASSAY

	PROTEIN-PROTEIN INTERACTION STUDIES
	CLONING
	YEAST TWO HYBRID ASSAY
	EXPRESSION CONTROLS
	Co-IMMUNOPRECIPITATION


	RESULTS
	SEQUENCING ANALYSIS OF THE KNOWN CdLS-GENES
	NIPBL
	SMC1A
	SMC3
	HDAC8

	OVERALL AND ALLELE-SPECIFIC EXPRESSION OF THE SMC1A GENE
	IDENTIFICATION OF NEW CAUSATIVE GENES
	IDENTIFICATION OF MUTATIONS IN THE ANKRD11 GENE IN TWO PATIENTS WITH A TENTATIVE CLINICAL DIAGNOSIS OF CdLS
	COHESINOPATHIES ARE BRANCHING OUT: CLINICAL AND MOLECULAR CORRELATION BETWEEN CdLS AND CSS


	DISCUSSION
	MUTATIONAL FREQUENCIES AND GENOTYPE-PHENOTYPE CORRELATION
	OVERALL AND ALLELE-SPECIFIC EXPRESSION OF THE SMC1A GENE
	BEYOND COHESINOPATHIES: MUTATIONS IN CHROMATIN-ASSOCIATED FACTORS AS GENETIC CAUSE OF CdLS-OVERLAPPING PHENOTYPES

	PERSPECTIVES
	REFERENCES
	PUBLICATIONS

