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Abstract. The interest for lupin is continuously growing: one driving force are the numerous studies 

showing it provides useful health benefits. This review discusses available literature in the area of 

dyslipidaemia, diabetes, and hypertension prevention, providing hints on the mechanism of action. 

The addition of lupin protein to the diet of different models of hypercholesterolaemia, such as rat, 

rabbit, hamster and pig, induce decreases of total and non-HDL cholesterol. The clinical 

investigations on the cholesterol lowering activity provided controversial results. Those involving 

hypercholesterolaemic subjects and based on improved lupin foods gave statistically significant total 

and/or LDL-cholesterol reductions: both protein and fibre are relevant. The moderate hypotensive 

activity observed in some studies is probably linked to digestion-released ACE-inhibitory peptides. 

The hypoglycaemic activity, observed in post-prandial studies, is due to gamma-conglutin, a specific 

protein fraction. All this information suggests that lupin seeds may become a source of ingredients of 

innovative functional foods. 

 

Abbreviations: ACE, angiotensin converting enzyme; Akt, protein kinase B; DBP; diastolic blood 

pressure; GSK3, glycogen synthase kinase 3; HDL-C, high-density-lipoprotein cholesterol; 

HMGCoA, 3-hydroxy-3-methylglutaryl coenzyme A; LDL-C, low-density-lipoprotein cholesterol; 

NL-LUP, narrow-leaf lupin protein isolate; NPS, non-starch polysaccharides; PI3K, 

phosphatidylinositol 3’-kinase; SBP, systolic blood pressure; SCAP, SREBP-cleavage activating 

protein; SREBP, sterol regulatory element binding protein; TAG, triacylglycerides; TOC, tocopherol; 

W-LUP, white lupin protein isolate. 
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1. Introduction  

 

The interest for sweet lupin seeds is continuously growing stimulated by its flexibility in food 

preparation as well as by the increasing knowledge of the health benefits it provides. Although 

different lupin species are used as food, this review will consider only Lupinus albus (white lupin) 

and Lupinus angustifolius (narrow-leaf lupin), because available data on the biological activity refer 

only to these species. The use of white lupin as food is consolidated in the Mediterranean area from 

many centuries, whereas the application in human nutrition of narrow-leaf lupin, which is mainly 

cultivated in Australia, is much more recent. Both are rich in protein as well as dietary fibre and poor 

in digestible carbohydrates.  

Lupin seeds contain many bioactive components. The protein, which may correspond to 35-40% of 

the dry weight (Sujak, Kotlarz, & Strobel, 2006), is mostly composed of albumins and globulins in 

an approximate 1 to 9 ratio (Duranti, Consonni, Magni, Sessa, & Scarafoni, 2008). The most abundant 

families are known as α-conglutin (legumins), β-conglutin (vicilins), γ-conglutin, and δ-conglutin 

(Magni, Scarafoni, Herndl, Sessa, Prinsi, Espen, et al., 2007; Ogura, Ogihara, Sunairi, Takeishi, 

Aizawa, Olivos-Trujillo, et al., 2014; E. Sirtori, Resta, Brambilla, Zacherl, & Arnoldi, 2010; Wait, 

Gianazza, Brambilla, Eberini, Morandi, Arnoldi, et al., 2005). Lupin kernel is also an excellent source 

of fibre, containing up to 39% fibre, composed by 75-80% soluble fibre, 18-25% insoluble fibre, and 

5-9% hemicellulose (M. Bähr, Fechner, Hasenkopf, Mittermaier, & Jahreis, 2014). The digestible 

carbohydrate content is smaller than in most legumes and comprises mostly oligosaccharides, 

whereas starch is absent or scarce. The fat content is variable, falling in the interval 8-12% depending 

on species, with a good presence of α-linolenic acid (about 8-10% of the oil) (Boschin, D'Agostina, 

Annicchiarico, & Arnoldi, 2008; Chiofalo, Lo Presti, Chiofalo, & Gresta, 2012). The unsaponifiable 

fraction of lupin oil is composed by sterols (mainly β-sitosterol) and triterpene alcohols (Hamama & 

Bhardwaj, 2004; Hudson, Fleetwood, & Lewis, 1983). Lupin seeds also contain 6-13 mg/100 g of 

tocopherols, mainly γ-tocopherol (Boschin & Arnoldi, 2011; Coisson, Arlorio, Locatelli, Garino, 

Resta, Sirtori, et al., 2011); 50-230 µg/100 g seed of carotenoids, mainly zeaxantin accompanied by 

lutein, β-carotene, and α-carotene (Wang, Errington, Yap, Wang, & Yap, 2008).  

Figure 1 shows the main families of polyphenols in lupin seeds. The phenolic acids (in total 43 mg/kg 

dry seed in white lupin and 58 mg/kg in narrow-leaf lupin) are: gallic acid A (3.5 mg/kg in white 

lupin and 0.6 mg/kg in narrow-leaf lupin), protocatechuic acid B (13.8 mg/kg in white lupin and 13.1 

mg/kg in narrow-leaf lupin), p-hydroxybenzoic acid C (25.3 mg/kg in white lupin and 43.2 mg/kg in 

narrow-leaf lupin), caffeic acid D (0.3 mg/kg in white lupin and 0.7 mg/kg in narrow-leaf lupin), and 

p-coumaric acid E (0.1 mg/kg in white lupin and 0.4 mg/kg in narrow-leaf lupin) (Siger, Czubinski, 
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Kachlicki, Dwiecki, Lampart-Szczapa, & Nogala-Kalucka, 2012). Isoflavones are represented by 

genistein F and 2′-hydroxygenistein G, at the concentration of 3-5 mg/kg and 1-5 mg/kg, respectively 

(Katagiri, Ibrahim, & Tahara, 2000; Mellenthin & Galensa, 1999). The main flavonoids are two C-

glucosides of apigenin, i.e. apigenin-6,8-di-C-β-glucopyranoside H (131 mg/kg in white lupin and 

290 mg/kg in narrow-leaf lupin) and apigenin 7-O-β-apiofuranosyl-6,8-di-C-β-glucopyranoside I 

(258 mg/kg in white lupin and 419 mg/kg in narrow-leaf lupin) (Siger, Czubinski, Kachlicki, 

Dwiecki, Lampart-Szczapa, & Nogala-Kalucka, 2012), which are the most abundant polyphenols in 

this seed. Compound I is a rare kind of glycoside, which has been detected mostly in Lupinus 

(Elbandy & Rho, 2014; Kamel, 2003).  

Different potential health benefits of lupin have been investigated, particularly in the area of 

dyslipidaemia, hyperglycaemia, and hypertension prevention. In order to select all relevant papers, 

the systematic Latin names of each species alone and together with one of the following words 

“clinical trial”, “human”, “cholesterol”, “glucose”, “hypertension”, “diabetes”, “rat” were used by 

two persons independently as keywords in Web of Sciences and PubMed. As far as the clinical studies 

are concerned, this is a systematic review, since all available studies were discussed. 

 

2. Prevention of dyslipidaemia  

The studies in the area of dyslipidaemia prevention were stimulated by the similarities of the 

composition of lupin and soybean, which is one of the main functional ingredient for dyslipidaemia 

prevention (Harland & Haffner, 2008; Jenkins, Mirrahimi, Srichaikul, Berryman, Wang, Carleton, et 

al., 2010; C R Sirtori, Eberini, & Arnoldi, 2007).  

 

2.1. Animal studies  

Available data on animal studies are summarised in Table 1. Initially, the interest was focused on 

whole grain. The hypocholesterolaemic property of the heat treated flour of white lupin has been 

investigated using the hyperlipidaemic rat model (Chango, Bau, Villaume, Schwertz, Nicolas, & 

Mejean, 1993). Small but significant decreases of total serum cholesterol and triacylglycerol (TAG) 

levels were observed in animals treated with lupin (total cholesterol change -17.8%) versus control 

animals.  

Further studies received a great impulse from the approval of the health claim on soy protein and 

cardiovascular prevention (FDA, 1999) and the demonstration that the protein itself is a main 

hypocholesterolaemic ingredient in soybean (Consonni, Lovati, Parolari, Manzoni, Morazzoni, 

Magni, et al., 2011; Duranti, Lovati, Dani, Barbiroli, Scarafoni, Castiglioni, et al., 2004; Lovati, 

Manzoni, Gianazza, Arnoldi, Kurowska, Carroll, et al., 2000). In a first paper (C. R. Sirtori, Lovati, 
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Manzoni, Castiglioni, Duranti, Magni, et al., 2004), rats fed a cholesterol-rich diet containing 20% 

casein were treated by gavage for 14 d with 50 mg/rat/d of a lab-prepared total protein extract from 

white lupin versus the vehicle (control). The lupin-treated rats showed significant decreases in total 

cholesterol (-22.7%) and low-density-lipoprotein cholesterol (LDL-C, -30.2%) versus the control.  

A few years later, the possibility of performing biological studies was increased by the availability of 

large amounts of a purified protein isolate (W-LUP) from white lupin (D'Agostina, Antonioni, Resta, 

Arnoldi, Bez, Knauf, et al., 2006), containing mostly legumins + vicilins, prepared by the Fraunhofer 

Institute IVV (Freising, Germany). The cholesterol-lowering activity of this material was successfully 

assessed in the hypercholesterolaemic rat model: the total cholesterol change was -11.2% and LDL-

C change -38.7% (Bettzieche, Brandsch, Weisse, Hirche, Eder, & Stangl, 2008). The potential anti-

atherosclerotic activity was tested, instead, in a rabbit model of atherosclerosis (Marchesi, Parolini, 

Diani, Rigamonti, Cornelli, Arnoldi, et al., 2008). This is an expensive model, very rarely used in 

dietary studies: small perivascular injuries at both common carotid arteries provoke the development 

of a focal plaque, whose composition is very similar to the human atherosclerotic one (Chiesa, Di 

Mario, Colombo, Vignati, Marchesi, Monteggia, et al., 2001). After recovery from surgery, the 

animals were fed for 90 d with three different cholesterol-rich diets all containing 20% protein: the 

protein sources were casein (control), W-LUP, or a 1:1 mixture of casein + W-LUP. Lower 

cholesterolaemia was detected in the W-LUP group versus the casein group at 60 and 90 d of 

treatment (total cholesterol changes -40.3% and -33.5%, respectively). Cryosection analyses of the 

carotids indicated a significant reduction in focal lesion progression in the W-LUP versus the casein 

group (-37.4%; P < 0.05). This important study showed that white lupin exerts a protective activity 

against the progression of atherosclerosis. Similar changes were observed treating the same model 

with soybean protein (Castiglioni, Manzoni, D'Uva, Spiezie, Monteggia, Chiesa, et al., 2003). 

Finally, the cooked flour and a total protein extract from white lupin have been tested in hamsters 

again versus casein (Guagagnucci Fontanari, Batistuti, da Cruz, Saldiva, & Areas, 2012). This model 

showed that the lupin diet not only induces the expected decrease of total cholesterol (-16.8% and -

15.3%, respectively) and non-HDL-C (-43.4% and -28.6%, respectively), but also reduces the level 

of liver steatosis (level 1) versus the control diet based on casein (level 4). 

The researches on narrow-leaf lupin are more recent. An investigation (Bettzieche, Brandsch, 

Schmidt, Weisse, Eder, & Stangl, 2008) compared the hypocholesterolemic activities of the total seed 

protein extract from the kernel and of a protein isolate containing mostly legumins + vicilins (NL-

LUP) (again prepared by the Fraunhofer Institute IVV) included at a low percentage in the diet (5%), 

demonstrating that NL-LUP is more effective than the total protein extract in lowering cholesterol 

(total cholesterol changes +9.7% and -5.1% and VLDL-C + LDL-C changes -12.7% and -15.1%, 
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respectively). The study was completed by a molecular investigation, which showed lower hepatic 

mRNA concentrations of genes involved in fatty acid synthesis and a parallel up-regulation of genes 

involved in TAG hydrolysis (Bettzieche, Brandsch, Schmidt, Weisse, Eder, & Stangl, 2008). 

Finally, another study on rats showed that a diet containing 20% NL-LUP markedly lowered total 

cholesterol (-55.3%) and LDL-cholesterol levels (-61.2%) compared to casein, whereas no significant 

differences were observed for TAG and HDL-C levels (Parolini, Rigamonti, Marchesi, Busnelli, 

Cinquanta, Manzini, et al., 2012). This study included also some molecular investigations: in 

particular, the treatment produced significantly higher hepatic mRNA level of SREBP-2, the major 

transcriptional regulator of intracellular cholesterol levels, and of cholesterol 7α-hydroxylase 

(CYP7A1) level, the rate-limiting enzyme in bile acid biosynthesis (Parolini, et al., 2012). 

Another model applied to narrow-leaf lupin was the hyperlipidaemic pig, initially in 2005 (Martins, 

Riottot, de Abreu, Viegas-Crespo, Lança, Almeida, et al., 2005) and then again in 2014 (Radtke, 

Geissler, Schutkowski, Brandsch, Kluge, Duranti, et al., 2014). In both researches, significant 

decreases of total and LDL-cholesterol were observed: in the former the changes in total cholesterol 

and LDL-C were -29.2% and -37.9%, respectively, in the latter the changes were -32.6% and -28.9%, 

respectively. The observed reductions of total cholesterol and LDL-C concentrations were explained 

with an increased faecal cholesterol output (Radtke, et al., 2014).  

In conclusion, there are clear experimental evidences suggesting that both species, i.e. white lupin 

and narrow-leaf lupin, may have potential applications in the area of dyslipidaemia prevention. 

Unfortunately, the lack of a paper reporting a direct comparison between the two species and the 

different protocols used in published papers do not permit to sort out which lupin species is the most 

active. 

 

2.2. Human studies  

Table 2 shows the specific features of all available clinical trials, whereas Table 3 reports the effects 

on lipid profile of the subjects involved. These nine studies may be divided in three groups depending 

on the different lupin ingredients investigated: the first gathers three studies on foods or beverages 

obtained from whole grain or kernel; the second two studies on lupin fibre; and the last four studies 

on purified lupin protein. Surprisingly, only the first study was performed on white lupin (Nowicka, 

Klosiewicz-Latoszek, Sirtori, Arnoldi, & Naruszewicz, 2006), whereas all the others were on narrow-

leaf lupin. 

Group 1. The first was an uncontrolled study on smokers (Nowicka, Klosiewicz-Latoszek, Sirtori, 

Arnoldi, & Naruszewicz, 2006), in which the patients consumed a model drink obtained from white 

lupin whole grain. Significant decreases in total cholesterol (-0.42 mmol/L) and LDL-C (-0.32 
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mmol/L) were observed in respect to the same values measured during the preceding low lipid diet. 

This decrease was larger in highly hypercholesterolaemic patients (initial total cholesterol level > 6.2 

mmol/L). A decrease of blood pressure was also observed, which was more evident in hypertensive 

subjects (see section 4.2).  

The others are blind studies on model foods containing whole kernel flour: lupin bread in the former 

(Hodgson, Lee, Puddey, Sipsas, Ackland, Beilin, et al., 2010) and a portfolio of different lupin foods 

in the latter (Belski, Mori, Puddey, Sipsas, Woodman, Ackland, et al., 2011). Both studies, involving 

only subjects with normal or borderline initial cholesterol levels, were essentially inactive on 

cholesterol. However, decreases of insulin (-16.8%) and HOMA-IR levels (-32.5%) were observed 

in the latter. 

Group 2. These studies have investigated purified narrow-leaf lupin fibre, which had been included 

in different foods (Fechner, Kiehntopf, & Jahreis, 2014; R. S. Hall, Johnson, Baxter, & Ball, 2005). 

Both studies produced significant decreases of total and LDL-C, but the changes were much less 

favourable in the old study (R. S. Hall, Johnson, Baxter, & Ball, 2005), where the changes in total 

cholesterol and LDL-C were -0.22 mmol/L and -0.19 mmol/L, respectively, than in the recent one 

based on subjects with higher baseline cholesterol levels (Fechner, Kiehntopf, & Jahreis, 2014), 

where the changes in total cholesterol and LDL-C were -0.42 mmol/L and -0.33 mmol/L, 

respectively. In the latter study, a significant decrease of blood pressure was also observed (section 

4.2.) and, monitoring the formation of short-chain fatty acids in the intestine, it was observed that 

lupin fibre significantly increases the excretion of propionate, which may be directly related to the 

cholesterol-lowering activity (Fechner, Kiehntopf, & Jahreis, 2014).  

Group 3. In all these studies, the tested material was the lupin protein isolate NL-LUP. In two cases, 

this material was included in dietary bars and the control bars contained casein (C. R. Sirtori, Triolo, 

Bosisio, Bondioli, Calabresi, De Vergori, et al., 2012; Weisse, Brandsch, Zernsdorf, Nkengfack 

Nembongwe, Hofmann, Eder, et al., 2010). In the fist study on subjects with a very moderate 

hypercholesterolaemia (Weisse, et al., 2010), the lupin treatment significantly decreased the lipid 

parameters compared to the baseline values (total cholesterol and LDL-C changes -0.50 mmol/L and 

-0.31 mmol/L, respectively), but similar improvements were observed also in the control group (total 

cholesterol and LDL-C changes -0.47 mmol/L and -0.15 mmol/L, respectively). In the second study 

on hypercholesterolaemic subjects, which was aimed at investigating the effects of combinations of 

plant proteins and fibres (C. R. Sirtori, et al., 2012), the lupin bar gave a significant decrease of total 

cholesterol (-0.30 mmol/L) versus the control, whereas no changes were observed in the group fed 

the control bar (casein). LDL-C was, instead, essentially unchanged in both groups. 

In the third study, in which NL-LUP was incorporated into a lupin drink, LDL-C was significantly 
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lower at the end of the study versus the baseline value, however, this decrease was non-significant 

versus the control (M Bähr, Fechner, Kramer, Kiehntopf, & Jahreis, 2013). Better results were 

obtained in the fourth study of the same group (M. Bähr, Fechner, Kiehntopf, & Jahreis, 2014), where 

the patients received a portfolio of different food items containing NL-LUP, very similar to normal 

foods. LDL-C was significantly lower at the end of the study versus the control, whereas both total 

cholesterol and LDL-cholesterol were significantly lower at the end of the study versus baseline 

values. Possibly, the better efficacy of this study may be explained with a relevant improvement of 

the compliance consequent to the varied portfolio of products that the subjects could easily include 

in their daily diet. 

In conclusion, although the data are still scarce, it seems possible to affirm that either lupin protein 

or fibre may be potentially useful in the area of dyslipidaemia prevention, especially in 

hypercholesterolaemic subjects, but that more work is necessary to improve the sensory quality and 

acceptance of lupin foods. The mechanism of the hypocholesterolemic activity has not been 

investigated further in these studies, but some explanation may be provided by the results of the 

experiments described in section 2.3. 

The fact that subjects with higher cholesterol are more sensitive to treatment with lupin foods is not 

unexpected. In particular, a meta-analysis on soybean has shown that the square of the initial serum 

cholesterol is the main significant predictor of the observed changes of total and LDL cholesterol 

concentrations observed after soy protein consumption (Anderson, Johnstone, & Cook-Newell, 

1995). The same phenomenon takes place also while consuming other grain legumes (Arnoldi, 

Zanoni, Lammi, & Boschin, 2015). 

 

2.3. In vitro studies  

Very recently, a study on human hepatic HepG2 cells has provided a detailed elucidation of the 

molecular mechanism by which lupin peptides exert their hypocholesterolaemic activities (Lammi, 

Zanoni, Scigliuolo, D'Amato, & Arnoldi, 2014). These experimental evidences (Table 4) indicate that 

lupin peptides deriving from the hydrolysis of white lupin protein with pepsin (P peptides) and trypsin 

(T peptides) interfere with the 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase 

activity, up-regulating the LDL receptor (LDLR), and sterol regulatory element binding proteins 

(SREBP)-2 and increasing the LDL-uptake in HepG2 cells. The transcription of most enzymes 

involved in cholesterol biosynthesis is regulated by the SREPBs, a family of transcription factors 

including SREBP-1a, SREBP-1c, and SREBP-2. This last is directly involved in cholesterol 

metabolism regulation, whereas SREBP-1a and SREBP-1c are involved in fatty acid and TAG 

metabolism. Usually, both SREBP-1 and SREBP-2 are associated with another endoplasmic 
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reticulum membrane protein, the SREBP-cleavage activating protein (SCAP). This complex behaves 

in two different ways depending on intracellular sterol levels. When there is a decrease or a depletion 

of intracellular sterols, the SREBP/SCAP complex moves from the endoplasmic reticulum to the 

Golgi apparatus. When the complex arrives into the Golgi apparatus, SREBP is cleaved by two 

proteases and the transcription factor domain is activated. In contrast, when the level of intracellular 

sterols is high, SCAP interacts with insulin-induced genes (Insigs). This interaction hinders the 

movement of the SREBP/SCAP complex from the endoplasmic reticulum to the Golgi apparatus 

(Goldstein, DeBose-Boyd, & Brown, 2006; Sato, 2010). 

In this context, although it was generally thought that cholesterol and its oxysterol derivatives were 

the only effectors regulating the SREBP/SCAP pathway, recent evidence suggests that 

phosphatidylinositol 3’-kinase (PI3K) / protein kinase B (Akt) activates the SREBPs (Luu, Sharpe, 

Stevenson, & Brown, 2012). The molecular mechanism by which Akt activates SREBP-2 is 

controversial; in fact, Akt might influence SREBP in numerous ways from mRNA transcription to 

protein degradation (Krycer, Sharpe, Luu, & Brown, 2010). In particular, recent studies have 

identified various candidates that could mediate this process, one of which is glycogen synthase 

kinase 3 (GSK3) that is a direct substrate of Akt. More in details, the Akt-mediated GSK3 inactivation 

through phosphorylation leads to an indirect stabilisation of the mature form of SREBP-2. In fact, 

emerging evidences correlate the phosphorylation of SREBP-2 by GSK3 with an increase of the 

SREBP-2 degradation by ubiquitination and proteasomal activation. For this reason, the GSK3 

inactivation, through Akt activation, leads to an increase of SREBP-2 activity (Bengoechea-Alonso 

& Ericsson, 2007; Frame & Cohen, 2001; Punga, Bengoechea-Alonso, & Ericsson, 2006).  

In this context, Lammi and co-workers showed, for the first time, the involvement of Akt/GSK3β 

activation in LDLR-SREBP-2 pathway regulation after treatment of human hepatic cells with lupin 

peptides (Lammi et al., 2014). Both P and T peptides enhanced the LDLR protein levels and induced 

an increased fluorescent LDL-uptake at HepG2 cells (Table 4), but the LDL uptake was blocked in 

the presence of 1 µM wortmannin (CAS number 19545-26-7), a potent well-known inhibitor of 

PI3K/Akt (Feldman & Shokat, 2011). This demonstrated that the inhibition of PI3K/Akt has general 

effects on cellular lipid homeostasis, although the precise Akt target(s) is(are) not definitely assigned 

yet. These results prospect that the hypocholesterolaemic activities observed in vivo in animals and 

humans after lupin protein consumption may be related to some peptides with “statin-like activities” 

that are released by digestion and absorbed (Carmen Lammi, Zanoni, & Arnoldi, 2015).  

 

3. Prevention of hyperglycaemia 
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There are some ethnobotanical indications that lupin may be beneficial in diabetes, which have 

stimulated research also in this area. In post-prandial experiments, healthy volunteers have consumed 

bread added with narrow-leaf lupin flour (R. Hall, Thomas, & Johnson, 2005; Keogh, Atkinson, 

Eisenhauer, Inamdar, & Brand-Miller, 2011) or kernel fibre (Y P Lee, Mori, Sipsas, Barden, Puddey, 

Burke, et al., 2006), and the consequent glucose, insulin, and satiety responses have been compared 

with those induced by regular white bread consumption. In all these papers, significant decrease in 

the post-prandial levels either of glucose or insulin have been observed versus the control, as well as 

positive effects on satiety. Also the post-prandial plasma ghrelin concentrations remained lower after 

consuming lupin fibre enriched bread (Y P Lee, et al., 2006). Another post-prandial study was 

performed on individuals affected by type 2 diabetes who consumed three beverages containing 50 g 

glucose, 50 g glucose plus narrow-leaf lupin flour, or 50 g glucose plus soy fibre and protein (Dove, 

Mori, Chew, Barden, Woodman, Puddey, et al., 2011): the glycaemic response was decreased by 

lupin, but less efficiently than by soy, whereas lupin improved the insulin response versus the control 

better than soy (Dove, et al., 2011). The differences in the composition of lupin bread and beverage 

may possibly explain the different outcomes of these studies. 

 

3.1. Animal and human studies on γ-conglutin 

Numerous studies indicate that the main hypoglycaemic component in lupin is γ-conglutin (Magni, 

Sessa, Accardo, Vanoni, Morazzoni, Scarafoni, et al., 2004), an unusual basic 7S protein, which is 

equally soluble in water and salt solutions and corresponds to 4-5% of the total proteins (Duranti, 

Consonni, Magni, Sessa, & Scarafoni, 2008). Each monomer is composed by two disulphide linked 

subunits, deriving from the post-translational proteolytic cleavage of a pro-polypeptide (Schiarea, 

Arnoldi, Fanelli, De Combarieu, & Chiabrando, 2013). This protein is particularly stable to hydrolysis 

and gives strong interactions with metal ions, especially Zn (Duranti, Scarafoni, Di Cataldo, & Sessa, 

2001). It has been purified from white lupin and thoroughly investigated in vitro and in vivo. A study 

in acute has shown that, by oral administration, it reduces the plasma glucose levels in rats in a dose 

dependent manner (Magni, et al., 2004). A three-week treatment with this protein lowered fasting 

glucose and insulin blood concentrations by about 20-25% in rats treated with a hyperglycaemic diet 

(Lovati, Manzoni, Castiglioni, Parolari, Magni, & Duranti, 2012). The administration of the same 

protein to a neonatal streptozotocin induced rat model, which mimics type 2 diabetes,  has confirmed 

the hypoglycaemic effects (Vargas-Guerrero, Garcia-Lopez, Martinez-Ayala, Dominguez-Rosales, & 

Gurrola-Diaz, 2014).  

In order to assess that indeed this protein is more active than other lupin proteins, the hypoglycaemic 

effect was tested in rats fed a glucose-rich diet in which regular pasta or pastas added with γ-conglutin 
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or with an enriched α+β+δ fraction was included (J. Capraro, Magni, Scarafoni, Caramanico, Rossi, 

Morlacchini, et al., 2014). The sample including γ-conglutin was much more efficient than that 

comprising α+β+δ-conglutins in reducing the glycaemic response versus the control.  

Finally, γ-conglutin was also tested in humans, in a placebo-controlled study conducted on 15 healthy 

volunteers (males and females): the protein was provided as a powder in sachets and the control 

material was cellulose. A dose of 157 mg (expressed as pure γ-conglutin) decreased the post-prandial 

glucose response in a statistically significant way, whereas the overall insulin response was only 

marginally affected (Bertoglio, Calvo, Hancke, Burgos, Riva, Morazzoni, et al., 2011).  

 

3.2. Mechanism of action of γ-conglutin 

The mechanism of action of γ-conglutin has been investigated using different experimental models. 

In particular, it has been shown that the intact protein is absorbed by the human intestinal epithelium 

(Jessica Capraro, Clemente, Rubio, Magni, Scarafoni, & Duranti, 2011) using two different models. 

Caco2 were treated with a purified sample of γ-conglutin and the protein was measured by 

chemiluminescence-enhanced Western blotting, demonstrating that the intact protein is transferred 

from the apical to the basolateral side of the intestinal cell monolayer (Jessica Capraro, Clemente, 

Rubio, Magni, Scarafoni, & Duranti, 2011). The paper, however, does not clarify the modality of γ-

conglutin transit, i.e. receptor-mediated versus endocytic mechanism. In parallel, in an ex vivo model, 

the unmodified lupin protein was detected inside the intestinal everted sacs of rat ileum again by using 

chemiluminescence-enhanced Western blotting for the quantification (Jessica Capraro, Clemente, 

Rubio, Magni, Scarafoni, & Duranti, 2011). As a consequence, most molecular investigations have 

been performed on intact γ-conglutin.  

The mechanism of the antidiabetic activity was investigated in a myocyte model of C2C12 cells 

(Terruzzi, Senesi, Magni, Montesano, Scarafoni, Luzi, et al., 2011). This experimentation showed 

that the glucose-lowering ability of γ-conglutin is related to the activation of the insulin IRS-

1/PI3/Akt/p70S6k signalling pathway. This means that this protein is able to modulate the muscle 

glucose metabolism displaying an insulin-mimetic activity. Moreover, γ-conglutin can be internalised 

into hepatic HepG2 cells (Jessica Capraro, Magni, Faoro, Maffi, Scarafoni, Tedeschi, et al., 2013) 

and, once in the cytoplasm, it is phosphorylated on multiple residues, what probably initiates the 

activation of the signalling pathway previously mentioned. In this context, it was also shown that γ-

conglutin increases the glucose consumption of HepG2 cells and potentiates the activity of insulin 

and metformin in cell glucose consumption (Lovati, Manzoni, Castiglioni, Parolari, Magni, & 

Duranti, 2012). Finally, an experiment using diabetic rats has shown that γ-conglutin increases the 

expression of the Ins-1 gene and the insulin protein content of pancreatic beta cells, possibly 
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explaining the effect on hepatic gluconeogenesis (Vargas-Guerrero, Garcia-Lopez, Martinez-Ayala, 

Dominguez-Rosales, & Gurrola-Diaz, 2014).  

The area of diabetes prevention is certainly one of the most interesting for lupin application. The fact 

that a single protein seems to be responsible for this activity opens the possibility of its future 

exploitation in nutraceuticals. 

 

4. Prevention of hypertension  

Another main area of interest is the prevention of hypertension (W. Y. Huang, S. T. Davidge, & J. 

Wu, 2013).  

 

4.1. Animal studies 

Only one study (Pilvi, Jauhiainen, Cheng, Mervaala, Vapaatalo, & Korpela, 2006) has investigated 

the potential hypotensive effect of the lupin protein isolate W-LUP, by using the Goto-Kakizaki rat 

model, which develop hypertension when fed a salt-rich diet (6% NaCl). The protein sources in the 

diet were either a W-LUP or a soy protein isolate (20% weight/weight). At the end of the two-week 

treatment, the systolic blood pressure (SBP) was 18.6 mmHg lower in the lupin group and 12.0 mmHg 

lower in the soy group than in the control group (casein). The authors explained the attenuation of the 

hypertension with the improved vascular function observed in the lupin and soy groups in respect to 

the control group. The difference between soy and lupin is possibly linked with the improved 

endothelium-dependent vasodilatation observed only with the latter protein (Pilvi, Jauhiainen, Cheng, 

Mervaala, Vapaatalo, & Korpela, 2006).  

 

4.2. Human studies 

Some studies on humans, mainly with other primary end-points, reported also positive effects on 

blood pressure. In particular, in an uncontrolled study on subjects with moderate 

hypercholesterolemia and hypertension (Table 2), 42 smokers consumed 35 g white lupin protein 

daily in a model beverage (Nowicka, Klosiewicz-Latoszek, Sirtori, Arnoldi, & Naruszewicz, 2006). 

Besides positively affecting total and LDL-cholesterol, this treatment significantly reduced also SBP, 

-9.5 mmHg after 1 month and -9.1 mmHg after 3 months, and diastolic blood pressure (DBP), -3.0 

mmHg and -4.4 mmHg, respectively. The changes were more evident in hypertensive subjects (initial 

SPB>140 mmHg): in this case the changes were SBP -16.6 mmHg at 1 month and -22.0 mmHg at 3 

months; DPB -1.6 mmHg at 1 month and -5.0 mmHg at 3 months.   

Moreover, two long-term randomized controlled studies showed that the consumption of foods 

supplemented with narrow-leaf lupin flour produced small but statistically significant decreases in 
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blood pressure versus the control foods (Belski, et al., 2011; Ya P. Lee, Mori, Puddey, Sipsas, 

Ackland, Beilin, et al., 2009). Overweight and obese subjects (88) consumed white wheat bread 

(control group) or a lupin flour-enriched bread (treated group) for 16 weeks. At the end of this period, 

the pressure differences in the treatment group versus the control group were -3.0 mmHg in SBP, -

0.6 mmHg in DBP, and -3.5 mmHg in pulse pressure (Ya P. Lee, et al., 2009). The effect of lupin-

enriched foods (bread, biscuits and pasta) was evaluated in a double-blind trial during 12 months 

(Tables 3) (Belski, et al., 2011). Normotensive participants (n = 131) were randomly assigned to 

consume lupin-enriched foods or high carbohydrate control foods. At month 12, the 24-h ambulatory 

SBP (-1.3 mmHg) and DBP (-1.0 mmHg) of the lupin group were significantly lower than in the 

control group. The mechanisms behind the observed effects on blood pressure are uncertain. The 

decrease in blood pressure might possibly result from an improvement in vascular tone mediated by 

nitric oxide, a potent endothelium-derived relaxing factor, since this effect had been observed in rats 

(Pilvi et al., 2006). Interestingly, lupin protein is arginine rich (Sujak et al., 2006). Unfortunately, no 

direct experiment to test this hypothesis was performed in these trials. Finally, significant pressure 

decreases (-4.13 mmHg in SBP and -2.26 mmHg in DBP) were observed in the recent study focused 

on narrow-leaf lupin fibre (Fechner, Kiehntopf, & Jahreis, 2014). A significant 0.82-kg reduction of 

the body weight of the group consuming lupin fibre could partly account for this effect.  

 

4.3. In vitro studies on ACE-inhibitory peptides 

A possible explanation of the mild hypotensive activity observed either in human or animal studies 

after lupin consumption is that the proteins are cleaved in the gastrointestinal apparatus generating 

hypotensive peptides previously encrypted in the parent protein sequence. In fact, it is known (García, 

Puchalska, Esteve, & Marina, 2013; Guang & Phillips, 2009; Puchalska, Marina Alegre, & García 

López, 2015) that some food peptides are able to inhibit the activity of ACE (EC 3.4.15.1), which 

plays an important role in regulating blood pressure in the renin-angiotensin system, because it 

catalyses the conversion of the biologically inactive angiotensin I to the potent vasoconstrictor 

angiotensin II and inactivates the potent vasodilator bradykinin (Puchalska, Marina Alegre, & García 

López, 2015). Inhibitors bind tightly to the ACE active site competing with angiotensin I for 

occupancy; as a consequence, ACE cannot convert angiotensin I to angiotensin II. Milk proteins have 

been initially investigated to identify ACE-inhibiting peptides, but also peptides derived from plants 

proteins possess this kind of activity (Guang & Phillips, 2009; Puchalska, Marina Alegre, & García 

López, 2015). The investigations on grain legumes were primarily focused on soybean (Margatan, 

Ruud, Wang, Markowski, & Ismail, 2013; Tomatsu, Shimakage, Shinbo, Yamada, & Takahashi, 

2013; Wu & Ding, 2002), and pea (Aluko, 2008; Barbana & Boye, 2010; Humiski & Aluko, 2007), 
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but other legumes were considered subsequently (Arnoldi, Zanoni, Lammi, & Boschin, 2015; 

Boschin, Scigliuolo, Resta, & Arnoldi, 2014a). 

We have recently investigated lupin considering white lupin and narrow-leaf lupin as well as yellow 

lupin (Lupinus luteus) (Boschin, Scigliuolo, Resta, & Arnoldi, 2014a, 2014b). Total protein extracts 

from these seeds were digested with different proteolytic enzymes and the ACE-inhibitory activity 

was measured obtaining the results shown in Table 5 (Boschin, Scigliuolo, Resta, & Arnoldi, 2014b). 

The IC50 values ranged from 136±4 µg/mL in the case of the yellow lupin sample treated with 

chymotrypsin to 1053±78 µg/mL in the case of the white lupin sample treated with umamizyme. In 

general, the most effective peptide mixtures were obtained with pepsin (mean IC50 value of the three 

species 186±10 µg/mL), followed by pepsin + trypsin (mean IC50 value 198±16 µg/mL), 

chymotrypsin (mean IC50 value 213±83 µg/mL), trypsin (mean IC50 value 405±54 µg/mL), corolase 

PP (mean IC50 value 497±32 µg/mL), umamizyme (mean IC50 value 865±230 µg/mL), and 

flavourzyme (mean IC50 value 922±91 µg/mL). Interestingly, the hydrolysates of the three species 

obtained with the same enzyme showed equivalent activities (Table 5).  

With the objective of sorting out the effective components, some purified protein fractions or protein 

isolates from white lupin prepared in a pilot plant were compared (Boschin, Scigliuolo, Resta, & 

Arnoldi, 2014a), after hydrolysis with pepsin (Boschin, Scigliuolo, Resta, & Arnoldi, 2014b). The 

most active lupin protein component is the vicilins + legumins fraction, since both the hydrolysates 

from the lab sample (IC50 value 138±5 µg/mL) and the pilot-scale preparation W-LUP (IC50 value 

142±4 µg/mL) were more active than the respective total protein extracts (268±11.9 µg/mL and 

165±3 µg/mL, respectively). On the contrary, both γ-conglutin and δ-conglutin hydrolysates were 

completely inactive.  

Although there are not yet direct experimental evidences, on the basis of these results, the hypothesis 

that the formation of ACE-inhibitory peptides may explain at least in part the hypotensive effects 

observed in vivo appears, therefore, feasible.  

A completely unexplored area is the possible role of polyphenols on the hypotensive effects exerted 

by lupin foods: in fact, numerous polyphenols have major role in the hypotensive activity of different 

plant extracts, such as cocoa, tea, grain, vegetables, fruits (Fernandez-Arroyo, Camps, Menendez, & 

Joven, 2015; Galleano, Pechanova, & Fraga, 2010; W. Y. Huang, S. T. Davidge, & J. P. Wu, 2013). 

In particular, apigenin has been demonstrated to be an inhibitor of angiotensin I converting enzyme 

(ACE) either in vitro (Ayouo & Melzig, 2006) or in silico (Hafeez et al., 2014).  

 

 

5. Final considerations 
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Available experimental evidences, both in animals and humans, indicate that lupin may provide some 

useful health benefits in the area of hypercholesterolaemia, diabetes, and hypertension prevention. 

The observed effects probably derive from the synergistic combination of the activities of many seed 

components. In particular, human studies indicate that either the fibre (Fechner, Kiehntopf, & Jahreis, 

2014; R. S. Hall, Johnson, Baxter, & Ball, 2005) or the protein (M. Bähr, Fechner, Kiehntopf, & 

Jahreis, 2014; C. R. Sirtori, et al., 2012) are hypocholesterolemic components. The fibre activity 

seems to depend on effects at intestine level, in particular on cholesterol and cholic acid binding and 

on the formation of short-chain fatty acids (Fechner, Kiehntopf, & Jahreis, 2014), with mechanisms 

which are common to other dietary fibres (Aleixandre & Miguel, 2008; Delzenne & Cani, 2011). The 

hypoglycaemic activity seems to be related to a specific protein i.e. γ-conglutin, possibly absorbed 

intact from the intestine (Jessica Capraro, Clemente, Rubio, Magni, Scarafoni, & Duranti, 2011). The 

explanation of the hypocholesterolemic and hypotensive activities of the protein, instead, seems to 

depend on specific peptides (Boschin, Scigliuolo, Resta, & Arnoldi, 2014a, 2014b; C. Lammi, 

Zanoni, Scigliuolo, D'Amato, & Arnoldi, 2014), which originally encrypted in the protein sequences 

are released during digestion. Of course, there is still an open question whether these peptides are 

really absorbed in vivo. Although the experimental evidences are still scarce, a very recent paper on 

Caco2 cells has demonstrated that peptides deriving from the hydrolysis of soy proteins may be easily 

absorbed and transferred in the basolateral compartment (Amigo-Benavent, Clemente, Caira, Stiuso, 

Ferranti, & del Castillo, 2014). This makes feasible the absorption of lupin peptides from the gut.  

In the meanwhile, only a limited attention has been paid to the possible roles of other components. In 

particular, surprisingly, the health benefits provided by lupin polyphenols have been rarely 

investigated, although these phytochemicals are main bioactive food components, providing 

numerous health benefits. In particular, they are strong antioxidants, useful for preventing lipid 

oxidation and atherosclerosis formation, and efficient ACE-inhibitors (Sato, Mukai, Yamate, Kato, 

Kurasaki, Hatai, et al., 2008; Shahidi & Chandrasekara, 2013; Taku, Umegaki, Sato, Taki, Endoh, & 

Watanabe, 2007). As already indicated in the introduction, the two most abundant polyphenols in 

lupin are apigenin-6,8-di-C-β-glucopyranoside H and apigenin 7-O-β-apiofuranosyl-6,8-di-C-β-

glucopyranoside I. The latter is typical of the genus Lupinus, whereas the former has been identified 

in phytocomplexes of other plants whose health benefits have been investigated: for example those 

of Potentilla discolor (Song, Huang, Rong, Zhou, Peng, Yu, et al., 2012) and Ocimum gratissimum 

(Casanova, da Silva, Sola-Penna, Camargo, Celestrini, Tinoco, et al., 2014) are hypoglycaemic and 

that of Aspalathus linearis (Beltran-Debon, Rull, Rodriguez-Sanabria, Iswaldi, Herranz-Lopez, 

Aragones, et al., 2011) is hypocholesterolaemic. 
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It is now useful to observe that most of the experimental and clinical studies discussed in this review 

have been performed on purified proteins or protein isolates. Considering that polyphenols may 

strongly interact with proteins either by covalent or non-covalent binding, a still open issue is the 

possible role of polyphenols in the observed effects. Unfortunately, literature does not report any 

analytical data on the concentration of polyphenols in the materials used in these clinical studies, 

although a recent paper has shown that lupin seed globulins form stable complexes with flavonoids 

and in particular with apigenin C-glucosides H and I (Czubinski, Dwiecki, Siger, Kachlicki, Neunert, 

Lampart-Szczapa, et al., 2012). In fact, a study has shown that the digestion of the lupin protein with 

pepsin releases these apigenin derivatives that may be easily identified by mass spectrometry 

(Czubinski, et al., 2012). This important issue would certainly deserve a detailed investigation. 

Another main open question is the actual bioavailability of these C-glucosides, since data are very 

incomplete (Escudero-Lopez, Calani, Fernandez-Pachon, Ortega, Brighenti, Crozier, et al., 2014; 

Stalmach, Mullen, Pecorari, Serafini, & Crozier, 2009). 

Other important properties of lupin underlined by recent literature, such as the antioxidant activity 

(Siger et al., 2012) and the anti-inflammatory activity (Millan-Linares, Bermudez, Yust, Millan, & 

Pedroche, 2014), should depend principally on phenolic acids and these flavonoids. These activities 

confirms the multifunctional features of lupin and provide further hints on the possible role of lupin 

products among functional foods for cardiovascular disease protection (Braithwaite, Tyagi, Tomar, 

Kumar, Choonara, & Pillay, 2014; Chen, Ma, Liang, Peng, & Zuo, 2011; Scicchitano, Cameli, 

Maiello, Modesti, Muiesan, Novo, et al., 2014). 
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Figure 1. Structures of the main polyphenols in lupin seed. 


