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Abstract – We rigorously establish the asymptotic equivalence between the height function of
interacting dimers on the square lattice and the massless Gaussian free field. Our theorem explains
the microscopic origin of the sine-Gordon field theory description away from the free fermion point,
which has previously been elusive. We use a novel technique, based on the combination of discrete
holomorphicity with exact, constructive, renormalization group methods, which has the potential
of being applicable to a variety of other non-integrable models at or close to criticality.

editor’s  choice Copyright c© EPLA, 2015

High-temperature superconductivity and the physics
of Resonance Valence Bonds (RVB) [1] was the original
motivation for studying two-dimensional (2D) quantum
dimers, which later became an important model for frus-
trated magnetism, cold bosons, and many other systems
with hard constraints [2]. In these contexts also classical
dimers are of interest, not only because they capture the
high-temperature physics of their quantum counterpart,
but also because for special values of the parameters the
quantum static correlations can be expressed in terms of
the classical ones [3]. The properties of a wide class of
classical dimer models can be understood by using a cel-
ebrated result of half a century ago, the Kasteleyn theo-
rem [4], ensuring exact solvability and explicit expressions
of the correlations, which can be written in terms of Pfaffi-
ans. By using this result and the above-mentioned equiv-
alence, the correlations of certain quantum dimer models
at special values of the parameters on the square [3] and
triangular lattice [5] were computed, finding a power law
(critical), and an exponential (massive) large distance de-
cay, respectively.

However, exact solvability is limited to a special class
of systems, and further progress in our understanding of
the physics of dimers requires the analysis of what hap-
pens away from integrability. We consider a prototypical
non-solvable dimer model obtained by assuming a local
interaction between parallel dimers: given a periodic box

Λ ⊂ Z
2 of side L (with L even), the partition function is

ZΛ(λ,m) =
∑

M∈MΛ

[ ∏
b∈M

t
(m)
b

]
eλ

∑
P ⊂ΛNP (M), (1)

where MΛ is the set of dimer coverings of Λ, λ = v/T
with T the temperature, P is a plaquette (face of Z

2)
and NP (M) = 1 if the plaquette P is occupied by two
parallel dimers in M , and NP (M) = 0 otherwise; the
m-dependence in the reference weight t

(m)
(x,x+êj)

= 1 +
δj,1m(−1)x1 tunes the distance from criticality; λ tunes
the distance from solvability, with λ > 0 correspond-
ing to a local attractive interaction. This model, in the
m = 0 case, describes polar crystals [6] and it was re-
cently reconsidered in [7–12] where its connection with
quantum dimer models, RVB physics and large spin quan-
tum anti-ferromagnets was worked out in detail and used
to infer information on the RVB spin-liquid order pa-
rameters. Monte Carlo simulations show the presence
of non-universal anomalous exponents in the dimer cor-
relations decay. This confirms the general picture that
the asymptotic properties can be captured by a Quan-
tum Field Theory (QFT) of the sine-Gordon type, the
fundamental field being a coarse-grained version of the
height function. Using this effective QFT description,
much information was derived about the phase diagram,
including the Kosterlitz-Thouless universality of the phase
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Fig. 1: A dimer configuration for L = 4 and the associated
height function. The height of the central plaquette is conven-
tionally set to 0.

transition from a liquid to a crystalline phase. The
same effective description is believed to be applicable to
a variety of dimer and interface models, and it is at
the basis of our current understanding of their physics.
However, while the validity of the QFT description is
supported a posteriori by the agreement of its prediction
with simulations, a purely deductive and rigorous micro-
scopic argument establishing its correctness is currently
not available [2], with the only exception of the integrable,
non-interacting, case. Even then, the derivation is very
non-trivial, and it has been provided only recently [13]
using Discrete Holomorphicity (DH) methods.

In this letter we present the first mathematical jus-
tification of the quantum field theory description of
non-integrable dimer models. We prove a theorem estab-
lishing the convergence, in the scaling limit, of the height
function of model (1) to the massless Gaussian Free Field
(GFF), in a suitable range of parameters. This is done by
a new method, based on the combination of DH methods
with Constructive Renormalization Group (CRG) tech-
niques [14], which can be applied in a much wider context,
including interacting dimers on different lattices (either
bipartite or not) and non-integrable deformations of Ising
models.

Given a dimer covering M , two faces of Λ centered at
x and y and a path Cx→y from x to y with trivial wind-
ing around the torus Λ, we define the height difference
between x and y as (see fig. 1)

hx − hy =
∑

b∈Cx→y

(
1b(M) − 1

4

)
σb, (2)

where σb = +1/−1 depending on whether Cx→y crosses
b with the white site on the right/left. Moreover, 1b(M)
is equal to 1 if b is occupied by a dimer in M , and 0
otherwise. A crucial property of the height function is
that hx − hy is independent of the choice of Cx→y. The
dimer correlation is given by 〈1b;1b′〉, where 〈. . . ; . . .〉 is
the truncated expectation with the weight in (1), and the

two point height correlation is

〈 (hx − hy)2 〉 =
∑

b1∈Cx→y

∑
b2∈Cx→y

σb1σb2〈1b1 ;1b2〉. (3)

Our main result is the following.

Theorem 1. For λ �= 0 sufficiently small, L → ∞, and
m → 0, the height correlation for x �= y verifies:

〈(hx − hy)2〉 =
K(λ)
π2 log |x − y| +R(x − y), (4)

with K(λ) an analytic function such that K(0) = 1, and
R(x) a bounded remainder. The higher-order truncated
correlations are bounded uniformly in |x − y|. At large
distances, the coarse graining of hx converges to the GFF,
in the sense that, if α ∈ R and f is a smooth, compactly
supported function on R

2 with
∫

R2 f(u)du = 0, one has

〈eiαε2
∑

x hxf(εx)〉 ε→0→ e
Kα2

4π2
∫
f(u)f(v) log |u−v|dudv, (5)

where ε−1 represents the coarse-grain scale, to be sent to
infinity after the thermodynamic limit.

Let us mention that the logarithmic growth of the height
variance (without sharp control of the constant in front of
the log) for some discrete (2 + 1)-dimensional interface
models (Solid-on-Solid and discrete Gaussian model) was
obtained in [15].

The choice of the specific interaction in (1) is just for
illustrative purposes: the same result remains valid for
generic finite-range interactions, translationally and rota-
tionally invariant.

Equation (5) can be re-read in a more evocative form:
if χ0 is a smooth, compactly supported, probability dis-
tribution centered at the origin, χξ(u) = χ0(u − ξ) is
its translate, and h̃ε(ξ) = ε2

∑
x hxχξ(εx), then choosing

f = χξ − χη in (5) we find

lim
ε→0

〈eiα(h̃ε(ξ)−h̃ε(η))〉 	 (const)|ξ − η|−Kα2/(2π2),

asymptotically as |ξ− η| → ∞. The left side is the coarse-
grained “electric correlator” (eiαhx being the lattice ana-
logue of the electric vertex operator in the Coulomb gas
picture): our theorem proves its anomalous power law de-
cay at large distances. In the λ = 0 case, the asymptotic
computation of the electric correlator 〈eiα(hx−hy)〉, with-
out any coarse graining, has been obtained in [16] for all
α ∈ (−π, π).

An important step in proving the above result is the
computation of the asymptotic behavior of the dimer cor-
relation by CRG methods [14,17]. In the limit L → ∞,
if m �= 0, it decays exponentially at large distances with
rate O(m1+ηm(λ)) (gaseous phase), with ηm(λ) an analytic
function such that ηm(0) = 0. If m → 0, it decays as a
power law (liquid phase): e.g., if b, b′ are both horizontal
with b′ − b = (x1, x2) and z = x1 + ix2, then it decays
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polynomially, with critical exponent min{2, 2+η(λ)}, and
η(λ) = −(32/π)λ+O(λ2) an analytic function of λ,

〈1b;1b′〉 =
(−1)x1+x2

2π2 K(λ)Re
1
z2 + (−1)x1

K̄(λ)
|z|2+η(λ) + h.o.

(6)
Here K(λ) is the same as in (4), K̄(λ) is another analytic
function such that K̄(0) = 1, and h.o. indicates faster de-
caying terms at infinity. The above formula reduces as
λ → 0 to the one known by Kasteleyn’s exact solution.
The main effect of the interaction is to produce an anoma-
lous exponent in the second term, in agreement with the
numerical simulations of [7]. Remarkably, there are no ra-
diative corrections to the exponent of the first term. The
model belongs to the same universality class as the XXZ
chain, vertex models and Luttinger liquids.

While the dimer characteristic function is a local ob-
servable, the height differences are non-local “string”
observables, as apparent from (3). Even at λ = 0, the
computation of the height correlation is very subtle. In-
deed, by inserting the λ = 0 version of (6) into (3), one
gets an apparently very singular expression: take, e.g.,
x and y on the same horizontal line. In the large separa-
tion limit, the object of interest is formally proportional to∫ η
ξ

dudv
(u−v)2 , where ξ, η are the (suitably rescaled) horizontal

coordinates of x and y. Such an integral requires a proper
interpretation, because of its singularity at u = v, and the
result depends on the specific ultraviolet regularization.
Of course, an “ad hoc” regularization can be chosen [18]
in order to reproduce the expected result, but the problem
remains of a general derivation, which can unambiguously
return the correct exponents without any external bias.
The problem was finally solved in [13], and the (1/π2) fac-
tor in front of the logarithm in (4) at λ = 0 was rigorously
computed, by taking advantage of DH (lattice) methods.
In the interacting case, the problem is much more puzzling.
In fact, in addition to the problem of the ultraviolet diver-
gences affecting the computation of the (1/π2) prefactor,
the anomalous decay in (6), once inserted into (3), may
change the logarithmic growth into an anomalous growth.
Our theorem proves that this is not the case: logarith-
mic fluctuations are robust, stability being guaranteed by
sophisticated cancellations arising from emerging chiral
symmetry. Spurious ultraviolet divergences are avoided
by using the irrelevant terms coming from the lattice: in
this respect, the use of exact CRG methods (which, in con-
trast to the field-theoretic RG, takes the irrelevant terms
into full account) is essential. A detailed proof of our main
theorem is rather technical and is given elsewhere [17]; be-
low we explain its main ideas.

Sketch of the proof. The first step consists in an exact
rewriting of the finite volume/finite lattice generating
function of dimer correlations, Z(A) (defined so that
〈1b1 ; · · · ;1bk

〉 = ∂k

∂Ab1 ···∂Abk

log Z(A))|A=0, bi labeling the
nearest-neighbor bonds) as a finite Grassmann integral

([17], sect. 2):

Z(A) =
1
2

∑
θ,τ

Cθ,τ

∫
θ,τ

Pθ,τ (dψ)eV (ψ)+B(ψ,A). (7)

Here ψx are Grassmann variables, V is the sum of mono-
mials in ψx of order 4 or higher, B(ψ,A) is a source
term, sum of monomials in ψ and in A, θ/τ ∈ {0, 1} la-
bel the boundary conditions for the Grassmann variables
in the horizontal/vertical directions (0/1 corresponding to
periodic/antiperiodic conditions), and C0,0 = −1, while
Cθ,τ = +1 otherwise. By cluster expansion methods,
we prove that V and B are analytic in λ. Pθ,τ (dψ) is
a Gaussian Grassmann integration with propagator

g(x,y)=
1
L2

∑
k

e−ik(x−y) i sink1+sink2+m(−1)y1 cos k1

2D(k,m)
,

(8)
where D(k,m) = m2 + (1 −m2)(sin k1)2 + (sin k2)2, and
k1, k2 are in (2π/L)Z or (2π/L)(Z + 1/2), depending on
boundary conditions.

If λ = 0, then V = 0, in which case the integral is
Gaussian and can be computed exactly. When λ �= 0
the integral is not Gaussian, and it can be evaluated by
a multiscale analysis using CRG methods [14]. We are
interested in the case of m small or vanishing. As L → ∞
and m → 0, the propagator in (8) becomes singular in
correspondence of four momenta, namely p1 = (0, 0), p2 =
(π, 0), p3 = (π, π), p4 = (0, π). Therefore, g(x,y) can be
naturally written as the superposition of four terms, each
of which is concentrated in momentum space around one
of the singularities. Correspondingly, we decompose the
Grassmann field as

ψx = eip1xψx,1 − ieip2xψx,2 + ieip3xψx,3 + eip4xψx,4, (9)

where ψx,γ are Grassmann variables, often referred to as
Majorana variables, since their effective action is a lattice
regularization of the standard 2D Majorana action. Their
propagator is block-diagonal, the fields with γ = 1, 2 being
independent of γ = 3, 4; the propagator G(x − y) of the
γ = 1, 2 fields is the same as that of the γ = 3, 4 fields,
and reads (using the symbol

∫
dk/(2π)2 as a shorthand

for the discrete sum in (8))

G(x) =
1
Z

∫
dk

(2π)2
χ(k)e−ikx

2D(k,m)

×
(
i sink1 + sin k2 im cos k1

−im cosk1 i sink1 − sin k2

)
,

where χ(k) is a smoothed characteristic function of the
set max{|k1|, |k2|} ≤ π/2, and Z = 1. To evaluate the
Grassmann integral (7) we use (9) and write the propa-
gator G(x) as sum of propagators living on momentum
scales 2h, h ≤ 0. After integrating the scales 0, . . . , h+ 1,
the (θ, τ) contribution to Z(A) is rewritten as

eSh(A)
∫
θ,τ

PZh,mh
(dψ(≤h))eV

(h)(
√
Zhψ

(≤h))+B(h)(
√
Zhψ

(≤h),A),
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where PZh,mh
has propagatorG(h)(x), defined in the same

way as G(x), with Z replaced by Zh, m by mh and χ(k)
by χh(k), a (smoothed) characteristic function of the set
|k| ≤ (π/2)2h. The effective potential V (h) is

V (h)(ψ) = λh
∑
x

ψx,1ψx,2ψx,3ψx,4 + ir.,

where ir. indicates the irrelevant terms (non-local quartic
terms, and terms of order 6 or higher in ψ). Remarkably,
the kernels of the irrelevant terms in V (h) are analytic in
λ provided that |Zh+1/Zh − 1|, |λh| are sufficiently small,
as long as |mh| < 2h: the proof of this fact uses fermionic
cluster expansion methods, including the use of Gram-
Hadamard determinant bounds. Similarly, under the same
assumptions, the effective source B(h) is analytic in λ. Its
structure is expressed most easily by using Dirac rather
than Majorana fields: the former are defined as ψ±

x,1 :=
1√
2
(ψx,1 ∓ iψx,3), ψ±

x,−1 := ± i√
2
(ψx,2 ∓ iψx,4), and they

are referred to as Dirac variables, because their action is
the lattice analogue of that of 2D Dirac fields. In terms
of ψ±

ω , the effective source reads

B(h)(ψ) =
Z

(1)
h

Zh
F1(ψ,J) +

Z
(2)
h

Zh
F2(ψ,J) + ir.,

where ir. are the irrelevant terms (non-local, or of higher
order in A or ψ as compared to Aψψ). Moreover, denoting
Jx,i = J(x,x+êi) with Jb = eAb − 1:

F1 = 2
∑

x, ω=±
(−1)x(Jx,1 + iωJx,2)ψ+

x,ωψ
−
x,ω,

F2 = 2
∑

x, ω=±

[
(−1)x1Jx,1 + iω(−1)x2Jx,2

]
ψ+

x,ωψ
−
x,−ω.

Summarizing, the effective theory on scale h has the
same structure as a theory of interacting 2D lattice Dirac
fermions with a wave function renormalization Zh, an
effective mass mh, an effective coupling λh, and effec-
tive source couplings Z(1)

h , Z
(2)
h . It is completely analo-

gous to that obtained in the multiscale analysis of the
8-Vertex, Ashkin-Teller, XXZ, or Luttinger liquid mod-
els [14]: the only differences have to be found in the os-
cillating factors appearing in the definition of F1, F2 and
in the specific structure of the irrelevant terms. The flow
equation for the effective couplings of all these models is
the same, up to irrelevant contributions, which are expo-
nentially negligible in the infrared limit. Therefore, λh ap-
proaches exponentially, as h → −∞, a line of fixed points:
λ−∞(λ) = −32λ(1 + O(λ)). Moreover, Zh ∼ 2η(λ)h,
Z

(i)
h ∼ 2ηi(λ)h, mh ∼ m 2ηm(λ)h, where “∼” means that

the ratio of the two sides is bounded from above and be-
low by two universal positive constants, uniformly in h.
Remarkably, using the emergent chiral gauge symmetry
of the theory, we find that η = η1, which implies the ro-
bustness (exact non-renormalization) of the exponent 2
in the first term of (6). The integration goes on until
mh 	 2h, at which point the Dirac field is massive and

x y

C(1)
x→y

C(2)
x→y

Fig. 2: A schematic view of the paths along which b1, b2 are
summed over, to be called C(1)

x→y and C(2)
x→y.

can be integrated in one step. If m → 0 and L → ∞, the
integration has no infrared cutoff.

In order to evaluate the height fluctuations, we use the
path independence of the height difference, which is a
(weak) instance of DH. We proceed as in the third of
refs. [13]. Consider, e.g., the height variance: on the right
side of (3) we deform the two paths along which b1 and b2
are summed over, in such a way that they are “as much
separated as possible”, as in fig. 2. In the vicinity of x and
y, the two paths are lattice approximations of straight
lines, departing from and arriving at the points x,y in
different directions. After the path deformation, we re-
place the dimer correlation on the right side of (3) by its
asymptotic expression (6) (and its analogues in the cases
in which b, b′ have different orientations). The h.o. terms
contribute a finite constant, uniformly in |x − y|. The
contribution to (3) from the term with decay exponent 2
reads

−K(λ)
2π2

∑
b1∈C(1)

x→y

∑
b2∈C(2)

x→y

Re
Dzb1Dzb2

(zb1 − zb2)2
, (10)

where zbi are the representatives in complex coordinates
of the centers of the bonds bi, and Dzbi are the oriented
elementary path elements of C(i)

x→y crossing bi, expressed
in complex coordinates. Note that no oscillatory factor
appears in (10): the factors σb1σb2 in (3) compensate
exactly the oscillatory factor of the term under consid-
eration in the dimer correlation. Equation (10) is the
Riemann approximation to −K(λ)

2π2 Re
∫
γ1

dz
∫
γ2

dw 1
(z−w)2 ,

where γ1 and γ2 are two completely disjoint complex paths
(this is what makes the integral non-singular!) going from
zx = z

b
(1)
x

to zy = z
b
(1)
y

, and from z′
x = z

b
(2)
x

to z′
y = z

b
(2)
y

,

where b(i)x and b(i)y are the first and last bonds of C(i)
x→y. Its

value is K
2π2 Re log

(z′
y−zx)(z′

x−zy)
(z′

y−zy)(z′
x−zx) , which is the same as (4)

up to a bounded error. Finally, let us consider the contri-
bution to (3) from the term with exponent 2 + η: in this
case the factors σb1σb2 do not compensate exactly with
the oscillatory signs in the dimer correlation; the left-over
oscillations act, after summation along the paths, as dis-
crete derivative, which effectively makes this term decay
faster, thus making its contribution to (3) finite, uniformly
in |x−y|. Similar considerations apply to higher-order cu-
mulants, and (5) follows as a corollary. �
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In conclusion, we presented a rigorous microscopic
derivation of massless Gaussian free field behavior of the
height field of a non-integrable interacting dimer model.
Our method combines constructive field theory techniques
with discrete holomorphicity ideas, which are used for the
first time in a unified way to analyze a non-local fermionic
observable. The method can be applied to several other
non-integrable 2D critical or quasi-critical theories and we
expect it to be capable, in perspective, of rigorously prov-
ing conformal invariance of the scaling limit.

The hypothesis of bipartite lattice, which we used ex-
tensively in this work (the very definition of height func-
tion requires the lattice to be bipartite), is not necessary
for the applicability of our method. Rather, the required
ingredient is that the model can be formulated as the
perturbation of a Gaussian Grassmann integral, a fea-
ture valid much more in general than for dimers on the
square lattice: models like the 2D Ising model with next-
to-nearest-neighbor interactions on the square, hexagonal
or triangular lattices, or interacting dimers on the hexag-
onal or triangular lattices fall all in the category of mod-
els treatable by our method. There are several important
open questions still to be investigated in these contexts, for
which the methods we introduced may play an important
role. Examples include: the study of the crossover from
the (anomalous) gapped RVB phase to the liquid phase
in interacting dimer models on the triangular lattice as
the diagonal hopping is sent to zero [5]; the computation
of other non-local fermionic observables such as the spin-
spin correlation in non-integrable 2D Ising models, or the
monomer and vison [2] correlations in interacting dimer
models. For these, the use of DH in a stronger form will
be needed, in the spirit of [16,19].
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