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Abstract

The aging phenotype in humans has been thoroughly studied but a detailed metabolic profiling capable of shading light on
the underpinning biological processes of longevity is still missing. Here using a combined metabonomics approach
compromising holistic 1H-NMR profiling and targeted MS approaches, we report for the first time the metabolic phenotype
of longevity in a well characterized human aging cohort compromising mostly female centenarians, elderly, and young
individuals. With increasing age, targeted MS profiling of blood serum displayed a marked decrease in tryptophan
concentration, while an unique alteration of specific glycerophospholipids and sphingolipids are seen in the longevity
phenotype. We hypothesized that the overall lipidome changes specific to longevity putatively reflect centenarians’ unique
capacity to adapt/respond to the accumulating oxidative and chronic inflammatory conditions characteristic of their
extreme aging phenotype. Our data in centenarians support promotion of cellular detoxification mechanisms through
specific modulation of the arachidonic acid metabolic cascade as we underpinned increased concentration of 8,9-EpETrE,
suggesting enhanced cytochrome P450 (CYP) enzyme activity. Such effective mechanism might result in the activation of an
anti-oxidative response, as displayed by decreased circulating levels of 9-HODE and 9-oxoODE, markers of lipid peroxidation
and oxidative products of linoleic acid. Lastly, we also revealed that the longevity process deeply affects the structure and
composition of the human gut microbiota as shown by the increased extrection of phenylacetylglutamine (PAG) and p-
cresol sulfate (PCS) in urine of centenarians. Together, our novel approach in this representative Italian longevity cohort
support the hypothesis that a complex remodeling of lipid, amino acid metabolism, and of gut microbiota functionality are
key regulatory processes marking exceptional longevity in humans.
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Introduction

The aging phenotype in humans is very heterogeneous and can

be described as a complex mosaic resulting from the interaction of

a variety of environmental, stochastic and genetic-epigenetic

variables [1] .Decades of research on aging have found hundreds

of genes [2] and many biological processes [3] that are associated

to the aging process, but at the same time, these are still based on

few targeted biological outcomes mostly lacking a general

molecular footprint which would encompass the longevity process

as a as a multi-factorial event [4]. Moreover, the identification of

biological markers specific of exceptional longevity is still on its

infancy, and their characterization could provide insights into

specific molecular mechanisms and/or biological processes of

aging. Indeed, aging appears to be characterized by an increasing

chronic, low grade inflammatory status indicated as inflamm-aging

[5,6] but centenarians, despite showing some markers of

inflammation, avoid or delay the major inflammation-driven

age-related diseases, such as cardiovascular disease (CVD),

diabetes mellitus (DM) Alzheimer disease (AD), and cancer [7].

Metabonomics is considered today a well-established system

approach to characterize the metabolic phenotype, which results

from a coordinated physiological response to various intrinsic and

extrinsic parameters including environment, drugs, dietary

patterns, lifestyle, genetics, and microbiome [8]. Recently,

metabonomics had successfully been applied to study the
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modulation of the aging processes following nutritional interven-

tions, including caloric restriction-induced metabolic changes in

mouse [9], dogs [10], and non-human primates [11]. Beyond the

insight provided by these studies, a comprehensive metabolic

phenotype of longevity in humans has not yet been reported.

Using a combined holistic nuclear magnetic resonance (NMR)

profiling in urine, targeted liquid chromatography–mass spec-

trometry (LC-MS/MS) approaches in serum, and a powerful

human model of aging and longevity (large group of subjects with

an age range of 21–111 years old) objective of this study was to

identify the molecular footprints of longevity. Highly informative

age groups are represented by centenarians (mean age 100.9 yrs),

accepted model of healthy aging and extreme longevity [12],

elderly (mean age 70 yrs), and young adults (mean age 31 yrs), all

recruited in Northern Italy. Our longevity cohort is composed

mostly by females due to reported mortality and genetic

characteristics of the Northern Italian population [13], therefore

our choice was here to have samples representative of the overall.

The elderly individuals were recruited according to strict

demographic criteria, an approach which allowed us to further

subdivide these subjects having the same chronological age on the

basis of their different familial longevity, i.e. offspring of non long-

lived parents (mean parental death age, 59.3) and offspring of

centenarians, reported to experience a better health and marked

delay in the onset of age-related diseases [14]. Moreover, a group

of subjects affected by Down ’s syndrome (DS, mean age 28 yrs)

was studied as a model of premature aging [15] in order to further

validate the identified putative metabolic signatures/biomarkers of

aging (Figure S1, Text S4, Table S15). Finally, we assessed the

associations between changes in bacterial communities’ structure

and dynamics of host metabolic patterns taking advantage of the

fact that a subgroup of young, elderly and centenarians subjects

was previously fully characterized for the composition of their

intestinal microbiota [16].

Materials and Methods

Study Design and Subjects Sampling
Overall a total of 396 subjects belonging to different age groups

were enrolled from three Italian cities (Bologna, Milan, and

Florence). The group of centenarians consisted of 143 subjects (30

males and 113 females, mean age 100.962.1 yrs) born in Italy

between the years 1900 and 1908. The elderly group is composed

of 210 centenarian’s offspring (91 males and 119 females, mean

age 7066.2 yrs) with one centenarian parent born in Italy in the

1900–1908 yrs, and 73 age-matched offspring of non long-lived

parents (37 males and 36 females, mean age 7064.8 years) with

both parents born in Italy in the same birth cohort of centenarians

but dead before the average life expectancy at 15 years of age (67

years for the father and 72 years for the mother) according to

Italian mortality tables. The group of young individuals includes

21 subjects (11 males and 10 females, mean age 30.665 yrs).

Subjects with Down’s syndrome (DS) were also recruited. In

particular, a total of 51 DS (26 males, 25 females) of different age,

from 12 to 70 years (mean age 28.54613.0), were enrolled. From a

karyotype point of view, 38 were free trisomy, 7 were mosaic, 3

translocations and 3 were diagnosed as DS clinically. The study

protocol was approved by the Ethical Committee of Sant’Orsola-

Malpighi University Hospital (Bologna, Italy). After obtaining

written informed consent, a standard questionnaire (Text S1) to

collect demographic data, anthropometric measurements, cogni-

tive and health status, clinical anamnesis, and drug use was

administrated to the subjects or to their proxy in case of DS

subjects. The health questionnaire was administered by trained

personnel and the history of major age-related diseases contrib-

uting to morbidity and mortality was accurately reported.

Overnight fasting blood samples were obtained in the morning

(between 7 and 8 a.m.). Serum was obtained after clotting and

centrifugation at 760 g for 20 min at 4uC, and immediately frozen

and stored at 280uC. The first morning urine samples were

collected in a sterile tube, and immediately stored at 280uC. Full

hematochemical and cytokines methods are reported in Supple-

mentary information (Text S2).

Untargeted serum MS metabonomics
Targeted LC-MS/MS global metabonomic approach on serum

samples from the aging cohort (Table 1) was used by combining

the Biocrates Life Sciences AbsoluteIDQTM kit for serum samples

and was based on previously published work [17,18].Well plate

preparation and sample application and extraction were carried

out according to the manufacturer’s instructions. A final volume of

10 ml of serum was loaded onto the provided 96-well plate,

containing isotopically labeled internal standards. Liquid chroma-

tography was realized on a Dionex Ultimate 3000 ultra high

pressure liquid chromatography (UHPLC) system (Dionex AG,

Olten, Switzerland) coupled to a 3200 Q TRAP mass spectrom-

eter (AB Sciex; Foster City, CA, USA) fitted with a TurboV ion

source operating in electrospray ionization (ESI) mode. Sample

extracts (20 ml) were injected two times (in positive and negative

ESI modes) via direct infusion using a gradient flow rate of 0–

2.4 min: 30 ml/min, 2.4–2.8 min: 200 ml/min, 2.9–3 min: 30 ml/

min. MS source parameters were set at: desolvation temperature

(TEM): 200uC, high voltage: 24500 V (ESI2), 5500 V (ESI+),

curtain (CUR) and nebuliser (GS1 and GS2) gases: nitrogen; 20,

40, and 50 psi; respectively, nitrogen collision gas pressure: 5

mTorr. MS/MS acquisition was realised in scheduled reaction

monitoring (SRM) mode with optimised declustering potential

values for the 163 metabolites screened in the assay. Raw data files

(Analyst software, version 1.5.1; AB Sciex, Foster City, CA, USA)

were imported into the provided analysis software MetIQ to

calculate metabolite concentrations.

Targeted serum eicosanoids analysis
A LC-MS/MS method to measure and quantify a panel of 63

inflammatory markers (eicosanoids) was developed in house.

Method was based on previously published work [17,18]. 300 ml

of serum samples from remaining available biological material

from the three age groups (Table 1) were homogenized with 10 ml

of BHT-buffer (butylated hydroxytoluene; 79.2 mg/ml PBS) using

the FastPrepH 24 system. 5 ml of the internal standard solution

(0.1 ng/ml) is added to 100 mL of plasma sample.10 ml of butylated

hydroxytoluene (0.359 mM) is added and the mixture is acidified

by adding 15 ml of citric acid (1N). A volume of 550 ml of

methanol/ethanol (1:1, v:v) was added and samples were mixed

during 15 min at 4uC before being centrifuged (3500 rpm, 10 min,

4uC). The organic phase was evaporated to dryness under constant

nitrogen flow and the residues were solubilised with 80 ml water,

followed by the addition of 20 mL of acetonitrile, before being

centrifuged at 3500 rpm for 1 min at 4uC. The supernatant was

transferred into LC-MS vials before analysis. Analyses were

carried out by liquid chromatography coupled to tandem mass

spectrometry (LC-MS/MS). LC was realized on a Dionex

Ultimate 3000 ultra pressure liquid chromatography (UPLC)

system (Dionex AG, Olten, Switzerland). MS detection was

realized on a 5500 Q TRAP mass spectrometer (AB Sciex; Foster

City, CA, USA) operating in ESI mode. Gradient chromato-

graphic separation was performed on an Acquity BEH C18

column (2.16150 mm, 1.7 mm; Waters, Milford, USA). The
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injection volume was 5 ml and the column was maintained at

50uC. The mobile phase consisted of water containing 1% acetic

acid (eluent A) and acetonitrile (eluent B) at a constant flow rate set

at 450 ml/min. Gradient elution started from 20% B with a linear

increase to 50% B at 6 min, from 50% to 95% B at 13 min, hold

for 3 min at 95% B, before going back to 20% B at 16.1 min and

reequilibration of the column for additional 11 min. Analytes were

monitored in the scheduled selected reaction monitoring (sched-

uled SRM) mode provided within the Analyst software (version

1.5.1; AB Sciex, Foster City, CA, USA). All mass transitions and

MS source parameters are given in supplementary data. The SRM

detection window time was set at 120 sec with a target scan time of

0.5 sec. Nitrogen was used as curtain and desolvation gas at the

respective pressure of CUR: 20, GS1: 70, GS2: 20 (arbitrary unit).

Block source temperature was maintained at 600uC, with the

respective voltages: ISV: 24000 V, EP: 210 V, CXP: 25 V. A

15-points calibration curve was realized prior to sample analysis by

measuring different dilutions of the standard solution (0–10 ng).

Data processing was realized using Analyst software (version 1.5.1;

AB Sciex, Foster City, CA, USA). Peak area ratio of each analyte

versus its corresponding internal standard or surrogate marker was

calculated. It is worth to mention that PGJ2, PGF2a, PGE2,

PGE1, 15-oxo-HETE, 15-deoxy-D12,14-PGJ2, 6-keto PGF1a,

and 5-oxo-ETE were below their detection limit in serum samples

and therefore were not taken into account for statistical analysis.

Annotation of lipid species
LPC, Lysophosphatidylcholines; PC, Phosphatidylcholines; PC-

O, 1-O-alkyl-2-acylglycerophosphocholines; SM, Sphingomye-

lines; SM-OH, Hydroxy-Sphingomyelin. Individual lipid species

were annotated as follows: [lipid class] [total number of carbon

atoms]:[total number of double bonds]. For example, PC 34:4

reflects a phosphatidylcholine species comprising 34 carbon atoms

and 4 double bonds.

Untargeted urine metabonomics profiling
Urine metabolic profiles were measured on a Bruker Avance III

600 MHz NMR spectrometer equipped with an inverse 5 mm

cryogenic probe at 300 K (Bruker Biospin, Rheinstetten,

Germany). For each urine 1H NMR spectra were registered using

pulse sequences including a standard 1H detection with water

suppression as previously reported [59–60]. The peak assignment

to specific metabolites was achieved using an internal library of

compounds and the literature [61] and confirmed by standard

two-dimensional NMR spectroscopy (JRES, TOCSY, HSQC,

HMBC) on selected samples. Full method is reported in

Supplementary information (Text S3).

Multivariate Data Analysis
For all the analysis Multivariate Data Analysis (MVA) was

performed in several software environments. Thus, data import

and pre-processing steps for both 1H NMR and targeted MS data

were done using ‘in-house’ routines written in MATLAB (version

7.11.0, The Mathworks Inc., Natick, MA, USA). For urine

analysis full resolution 1H-NMR spectra incorporating data points

within the d 0.4–9.5 region were used for statistical multivariate

analysis excluding the water residue signal between d 4.5–6.5 [19].

In NMR data analysis OPLS-DA models were carried out by

using the SIMCA-P+ software (version 12.0, Umetrics AB, Umeå,

Sweden). The 1H-NMR discriminant model obtained between

centenarians and elderly groups (Table S10) generated a model

with an AuROC (expressed as area under the ROC curve,

AuROC) validation error of 0.93 using again a 13.7% of the total

X variance. In NMR data analysis OPLS-DA models (Figure S2)

were carried out by using the SIMCA-P+ software (version 12.0,

Umetrics AB, Umeå, Sweden). Targeted MS data was analyzed by

Random Forests by using the package ‘randomForest’ [20]

(http://www.R-project.org/). Spearman autocorrelation matrices

were calculated using R and corresponding graphs were produced

using the package Rgraphviz v.1.32.0. Univariate significance tests

for confirmation were also performed in R.

Urine metabotypes integration with microbiome data
The fecal microbiota of a randomly selected number of

individuals from the aging cohort (16 centenarians, 21 elderly

and 19 young) was characterized by HITChips as previously

published [16].

Results

Clinical Characteristics of the age cohort
We performed targeted liquid chromatography–mass spectrom-

etry (LC-MS/MS) in serum and nuclear magnetic resonance (1H-

NMR) profiling in urine in human model of aging and longevity,

compromising young, elderly, and centenarian individuals

(Table 1). Cohort sampling was based on availability of biofluid

samples (urine) and availability of remaining (serum) samples from

different targeted LC-MS/MS profiling applied methods assuring

proper uniform distribution among genders (elderly) and parental

longevity (centenarians’ offspring and offspring of not long living

parents). As expected, centenarians were characterized by a

number of significant differences regarding a variety of parameters

(Table S1, BMI p,0.001, HOMA p,0.001, total cholesterol

p,0.01, triglycerides p,0.05, HDL p,0.01, LDL p,0.01, A-

SAA p,0.001, and CRP p,0.001 among others) in comparison

to elderly (including offspring of centenarians and offspring of non

long-lived parents) and young subjects. In addition, centenarians

Table 1. Demographic characteristics of the recruited age cohorts.

Metabonomics Centenerians
Elderly-Offspring of
centenarians

Elderly-Offspring of
non long-lived parents Young

Serum-Untargeted LC-MS/MS: Gender,
male/female, Age, years

30/113, 100.962 (99–111) 14/32, 68.466 (56–81) 19/25, 70.766 (59–86) 11/10, 30.65 (24–40)

Serum-Quantitative LC-MS/MS Eicosanoids:
Gender, male/female, Age, years

2/10, 10162 (99–104) 11/6, 66.366 (59–74) 10/10, 73.163 (68–76) 9/9, 31.265 (25–40)

Urine-Untargeted 1H-NMR metabonomics:
Gender, male/female, Age, years

18/74, 100.962 (99–111) 91/119, 70.166 (55–88) 37/36, 70.365 (57–79) 11/10, 30.965 (24–40)

Values are presented as mean 6SD with the range in parentheses.
doi:10.1371/journal.pone.0056564.t001
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showed low prevalence of severe cognitive decline, as measured by

the Mini-Mental State Examination test (MMSE) [21].

Serum lipidome signatures of aging and longevity
To unravel comprehensive metabolic signatures of aging we

implemented targeted LC-MS/MS global metabonomic approach

on serum samples from 143 centenarians, 90 elderly and 21 young

individuals (Table 1). We performed multivariate data analysis

using Random Forest (RFTM) on pre processed semi-quantitative

data on the given 160 metabolites (amino acids, sugars, acyl-

carnitines, sphingolipids, and glycerophospholipids). Using the

variable importance feature implemented in RFTM, we uncovered

the metabolic signatures that better discriminates among the three

age groups. To assess the individual discriminant ability of each

component of the signature, we applied Wilcoxon Rank sum tests

among the age groups. While the overall concentration of

glycerolphospholipids and sphingolipids increased and decreased

depending on the fatty acid composition, we identified three

distinct metabolic patterns : (i) set of compounds that that

monotonically increased or decreased (statistically significant) with

age (Fig. 1A, Table S3), likely representing metabolic signatures of

the aging process, such as decreased concentrations of Tryptophan

(Trp), lysophospatidylcholines (LPC 18:2, LPC 20:4), increased

levels of PC 32:0 and sphingomyelins (SM 24:1, SM 16:0); (ii) a set

of compounds remaining largely unchanged until age 70 and

undergoing significant changes in centenarians (Fig. 1B, Table S3),

characterized by a complex pattern of decreased concentration in

sphingomyelins and specific glycerophospholipids (SM-OH 22:1,

LPC 18:0, SM 24:0, PC-O 34:3, PC-O 36:4, PC-O 40:1, PC 36:2)

and increased concentration in specific glycerophospholipids (PC-

O 32:1, PC-O 34:1); (iii) set of compounds which changes in the

elderly, but is remarkably similar in young subjects and

centenarians, (Fig. 1C, Table S3), putatively representing the

metabolic phenotype of longevity, characterized by an increased

concentration of specific glycerophospholipids (PC34:4, PC36:6,

PC 36:5, PC 38:4, PC 38:6, PC 40:6, PC-O 38:0, PC-O 38:6).

To further investigate the centenarian’s response to immune

and inflammatory processes we performed a quantitative LC-MS/

MS eicosanoids profiling on serum samples from a restricted

number of 12 centenarians, 37 elderly and 18 young subjects

(Table 1). Compared to elderly and young individuals, RFTM on

quantitative data displayed statistical changes in the centenarian

group, (Fig. 2) as assessed by Wilcoxon rank sum test (all

significantly regulated metabolites are listed in Table S6).

Specifically, centenarians exhibit lower concentration of 11,12-

dihydroxy-eicosatrienoic acid (11,12-DiHETrE), 9-hydroxy-octa-

decadienoic acid (9-HODE), and 9-oxo-octadecadienoic acid (9-

oxo-HODE), and increased concentrations of 15-hydroxy-eicosa-

tetraenoic acid (15-HETE), and leukotriene E4 (LTE4). Com-

pared to elderly levels of eicosapentaenoic acid (EPA) decreased

also in centenarians. Furthermore, to maximize metabolic changes

between centenarians and elderly, we applied pair-wise Multiple

Regression/Correlation (MRC) analysis between these two age

groups displaying increased serum concentration levels of 8,9-

epoxyeicosatrienoic (8,9-EET) in centenarians.

Lastly, we have reported concentration values for the selected

metabolites of interest for female and male individuals in both

global metabonomic and eicosanoids analysis. For global meta-

bonomic profiling no differences were displayed for selected

metabolites after gender separation (Tables S4, S5). For targeted

eicosanoids analysis the majority of samples represent females

individuals (Table 1), therefore the displayed statistical differences

remain when looking only in females (Tables S7), while in males,

as the number among centenarians is very low, and we report their

values with the overall metabolic changes kept (Tables S8), it is

worth to mention that this leads to limited statistical power.

Metabolic phenotypic differences within the elderly
group according to parental longevity

To identify metabolomic biomarkers capable of distinguishing

between the two subgroups (elderly offspring of centenarians and

elderly offspring of non long-lived parents), we further analyzed by

RFTM the group of elderly taking into account the age of their

parents (familial longevity, Table S2). Here, we underpinned in

centenarian’s offspring (46 subjects, average age 68.4), compared

to offspring of non long-lived parents (44 subjects, average age

70.5) (Figure 3, Table S9), higher concentrations of specific

lysophospatidylcholines (LPC 16:0, LPC 16:1, LPC 18:0, LPC

18:1, LPC 18:2), glycerophospholipids (PC-O 36:3) and two amino

acids (serine, phenylalanine). In the measured eicosanoids panel,

no metabolic differences were noted among centenarians’

offspring (17 subjects, average age 66.3) and offspring of non

long-lived parents (20 subjects, average age 73.1). No metabolic

differences in urine profiling were discerned among centenarian’s

offspring (210 subjects, average age 70.1) and offspring of non

long-lived parents (73 subjects, average age 70.3).

Metabolic signature of longevity in 1H-NMR urine profiles
mirroring changes in centenarians gut microbiota

To underpin longevity-induced changes in urine we performed

600 MHz 1H-NMR metabolic profiling on the three age-groups

(Table 1, 92 centenarians, 283 elderly and 21 young adults). We

processed the data by multivariate analysis while we applied

Orthogonal Projection on Latent Structures – Discriminant

Analysis (OPLS-DA) (Fig. S11A) on unit variance scaled data.

Interpretation of the O-PLS-DA regression coefficients (Figure

S2B) for the first latent component [19], displayed higher levels of

phenylacetylglutamine (PAG), p-cresol-sulfate (PCS), and 2-

Hydroxybenzoate (2-HB) in centenarians compared to elderly.

To gain semi-quantitative information, peak areas in the original

spectra were integrated for these three metabolites and differences

with statistical significance were confirmed by using Wilcoxon

Rank Sum test (Figure 4, Table S11). Lastly, we have reported

values for three metabolites of interests in urine in females and

males individuals, displaying no gender differences for PAG, PCS,

2-HB (Tables S12, S13).

Discussion

In the present study we have characterized for the first time, by

using a complementary NMR and MS-based metabonomics and

lipidomic approach, in both serum and urine, the metabolic

phenotype (metabotype) of extreme longevity in a representative

Northern Italian population composed mostly by female individ-

uals. While the young individuals are limited in numbers they

serve, from an observational point of view, as a representative

aging group to distinguish specific metabolic changes delayed or

preserved during the ageing of centenarians, from metabolic

features that are either a continuation of normal ageing or

indicative of a drift in the ageing processes. Comprehensive MS-

based targeted metabonomics serum analysis revealed important

biological changes associated to aging (Fig. 1, Table S3). Among

these changes we reveal an age-related reduction of Tryptophan

(Trp) concentration, supporting the proposed link among its

decreased level and the raise of chronic low-grade inflammatory

conditions [22].Several studies found patients with inflammatory

diseases to have significant elevations in serum kynurenine and

depletion of Trp compared to control population [23]. Recent

The Metabolic Footprint of Extreme Longevity
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work also displayed the relationship between reduced serum Trp

and increase immune activation [24]. With increasing age we

observed lower concentration of lysophospatidylcholines (LPC

18:2, LPC 20:4). While LPCs exhibit different physical and

biological properties based on fatty acid chain length and degree of

unsaturation, phospholipids are inflammatory mediators [25], with

atherogenic properties [26] and their altered levels are linked to

age-related physiological changes [27]. Lastly, with increasing age

we found an increase in SM 24:1 and SM 16:0. Consistent with

our findings, alteration of plasma lipid profiles were previously

observed in different aging and caloric restriction animal models

[11,28].

Interestingly, the metabolic differences seen in the elderly

cohort support the notion that siblings of longevity parents have a

distinctive aging metabolic phenotype from their age matched

controls [29] (Figure 3, Table S9). While the exact biological

significance of the noted LPCs and amino acids changes, and how

these might be related to longer life expectancy and/or delay in

age-related diseases, are not clear at the moment, and worth

further investigation, it is crucial to denote that serine is needed for

Figure 1. Metabolic signature of aging and longevity in serum. Targeted LC/MS metabonomics on the aging cohort (young, elderly, and
centenarians) revealed three trends within the identified markers. (A) Set of metabolites that decreased/increased within age. (B) Set of metabolites
that deceased or increased in centenarians only. (C) Set of metabolites maintained at similar concentration level in centenarians and young people
but not in the elderly. Reported is median value in mM among the three age groups. Blue denotes negative/decreased concentration, orange denotes
positive/increased correlation, black denotes no changes. All significantly regulated metabolites are listed in Table S3.
doi:10.1371/journal.pone.0056564.g001
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the metabolism of fats and fatty acids, muscle growth, and to

maintain a healthy immune system and was previously found to

decrease in plasma under inflammatory conditions [30], while

phenylalanine exhibits anti-inflammatory properties and it is often

used to treat arthritis and Parkinson’s disease [31].

Further, our study reveals that longevity can be ascribed as a

distinct metabolic phenotype marked by specific changes in serum

lipid profile (Fig. 1A, 1C, Table S3). Centenarians are character-

ized by decreased concentrations of the sphingomyeline SM 24:0

and SM-OH 22:1, and the diacylphosphatidylcholine PC 36:2.

SMs species are important cellular membrane constituents which

are tightly associated with cholesterol in construction, metabolism

and transport, and which are enriched in lipid rafts. The

physiological role of SM is still unclear and previous studies

report diverging hypothesis on their relationship with cardiovas-

cular risk conditions [32,33]. Centenarians exhibited also specific

monotonic changes in concentration of LPC 18:0, while varying in

concentrations of several acyl-ether, PC-O species (decreased PC-

O 34:3, PC-O 36:4, PC-O 40:1, and increased PC-O 32:1, PC-O

34:1). Plasmalogens containing a vinyl ether bond link to the sn-1

aliphatic chain of the glycerol backbone are endogenous

antioxidant. Several studies have indicated that plasmalogens are

Figure 2. Metabolic signature of aging and longevity in serum as per LC/MS eicosanoids profiling. Reported is median value in ng/
100 ml serum among the three age groups. Blue denotes negative/decreased concentration, orange denotes positive/increased correlation, black
denotes no changes. All significantly regulated metabolites are listed in Table S6.
doi:10.1371/journal.pone.0056564.g002
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depleted in a number of human pathologies with their levels

changing in response to oxidative damage [34].

We also uncovered a set of compounds remarkably similar in

circulating levels among young subjects and centenarians, while

varying in the elderly only, characterized by an increased

concentration of specific glycerophospholipids mostly polyunsatu-

rated diacyl phospholipids (PC) (Fig. 2C, Table S3). PC is a major

structural lipid of the cell membrane and it is involved in lipid

metabolism being crucial for lipid transport. Interestingly,

increased concentrations of plasma polyunsaturated fatty acids

have been implicated in the pathogenesis of chronic diseases [35].

At the moment we do not know how modification of cell

membrane lipid composition leads to functional changes in

longevity metabolic processes, including response to chronic

diseases. If replicated in larger studies, the altered metabolites

might be considered as potential biomarkers in the generation of

new hypotheses on the biological mechanisms behind longevity.

Yet, although our observational data cannot drive any concluding

statements on the possible causality linkage between inflammatory

status, aging, and modulation of lipid metabolism, it is nowadays

well accepted that the down-regulation of the mammalian target of

rapamycin (mTOR) signaling pathway is a central regulatory

process of pro-longevity in mammals [36]. The mTOR encom-

passes a series of regulatory multi-protein complexes from the the

kinase family involved in cellular response to multiple triggers

including nutrients, and reactive oxygen species (ROS), and

trough the mTORcomplex 1 (mTORC1) possibly controlling lipid

biosynthesis [37]. The down-regulation of this pathway has

Figure 3. Differences in metabolic profiles as displayed by LC/MS-MS targeted approach between centenarian’s offspring (46
subjects average age 68.4 yrs) and offspring of non long-lived parents (42 subjects average age 70.7 yrs). Bar plots indicating mean
(mM) 6standard error. All significantly regulated metabolites and statistical changes are listed in Table S9. Significant differences were assessed by
Mann-Whitney U test where *p,0.05., **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0056564.g003

Figure 4. Markers of longevity as per 1H-NMR urine profiling. Bar plots indicating mean (relative concentration) 6standard error.
PAG = Phenylacetylglutamine, PCS = p-cresol-sulfate, 2HB = 2-hydroxybenzoate. All significantly regulated metabolites and statistical changes are
listed in Table S12. Significant differences were assessed by Mann-Whitney U test where ***p,0.001.
doi:10.1371/journal.pone.0056564.g004
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resulted in observing an extension of lifespan in multiple organisms

[38]. The regulation of mTOR also cross-talks with AMP-

activated kinase, Sirt1, and Insulin/IGF-1 in a concerted manner

that points to consider this complex network as a model of

longevity [39]. The down-regulation of mTOR can activate Sirt1

and the AMPK pathways, and expression of specific mitochondrial

genes and fatty acid oxidation. One could hypothesize that the

downstream effect of these complex intracellular processes would

lead to the expression of a specific blood lipid profile with a

plausible remodeling on the composition of phospho/sphingolipids

and lipoprotein particles specific to the centenarian phenotype.

Indeed correlation analyses (Table S14) display that the LDL

concentration is correlated to specific SMs (SM 16:0 r2 = 0.34,

SM-OH 22:1 r2 = 0.40, SM 24:0 r2 = 0.39), while PC-O species

(PC:O 34:3 r2 = 0.57, PC:O 38:0 r2 = 0.38, PC:O 38:6 r2 = 0.39)

are positively correlated to the HDL circulating level, a feature

previously reported for ageing [40]. Thus it appears also that the

displayed differences in concentration levels of PC-O species in

centenarians might be due to variation in coping ROS, while

supporting their role as serum antioxidants preventing lipoprotein

oxidation.

Furthermore, we depicted specific changes in the longevity

phenotype in arachidonic acid synthesis (Fig. 2, Table S6), key

mediator of immune and inflammatory reactions. Here we

discerned higher concentration of leukotriene 4 (LTE-4), which

plays a pivotal role in allergic and inflammatory diseases, causing

increased vascular permeability and vasodilatation [41]. Cente-

narians displayed higher circulating levels of 15-hydroxy-eicosate-

traenoic acid (15-HETE), a major product of 15-lipoxygenase (15-

LOX) enzyme, known for its anti-inflammatory properties [42].

Increased activation of cytochrome P450 pathway in centenarians

is further supported by increased circulating levels of 8,9-

epoxyeicosatrienoic (8,9-EpETrE) and decreased concentration

of 11,12-dihydroxy-eicosatrienoic acid (11,12-DiHETrE). EpE-

TrE are important components of many intracellular signaling in

both cardiac and extracardiac tissues [43]. EETs display anti-

inflammatory effects by inhibiting nuclear factor kappa B (NF-kB)-

mediated gene transcription [43,44]. EpETrEs can be further

metabolized by soluble epoxide hydrolase (sEH) to dihydroxy-

eicosatrienoic acids (DiHETrE), reducing their original biological

activity. Therefore, the decreased concentration of 11,12-DiHE-

TrE might reveal decreased sEH’s effect on its precursor 11,12-

EpETrE. Most important, centenarians displayed lower circulat-

ing levels of 9-hydroxy-octadecadienoic acid (9-HODE), a

biological active molecule, marker of lipid peroxidation, and in

9-oxo-octadecadienoic acid (9-oxo-HODE), a stable oxidation

product of linoleic acid, the generations of which is increased with

increasing oxidative stress [45]. Previous studies determined the

positive relationship among lower 9-HODE concentrations and

Mediterranean diet to reduced cardiovascular disease risk [46],

and our results might underpin this trend, while at the same time

revealing decreased oxidative damage in centenarians. Increased

levels of lipid oxidation products such as 9-oxoODE are normally

detected in plasma samples of patients suffering rheumatoid

arthritis [47], and arthrosclerosis [48]. Interestingly, regulatory

process involving activation of cellular detoxification, through the

nuclear erythroid 2-related factor (Nrf2) signaling pathway, is also

being proposed as an element of increased lifespan [49]. Our

findings on the increased concentration of 8,9-EpETrE, suggesting

increased activity of CYP enzyme, would support promotion of

Figure 5. Spearman correlation map between urine markers of longevity (PAG = phenylacetylglutamine, PCS = p-cresol sulfate, 3-
HB = 3-hydroxybenzoate) and order/genus-like bacterial phylogroups. Blue denotes negative correlation, orange denotes positive
correlation, and black denotes no correlation.
doi:10.1371/journal.pone.0056564.g005
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cellular detoxification mechanisms through specific modulation of

the arachidonic acid metabolic cascade in centenarians. Such

effective mechanism might results in the activation and successful

antioxidative response, as displayed by the decreased concentra-

tion of 9-HODE, and 9-oxoODE in centenarians. Compared to

elderly, centenarians also presented depletion of eicosapentanoic

acid (EPA), an omega-3 fatty acid, which can be synthesized in

humans from alpha-linoleic acid or in greater amount directly

from oily fishes. Importantly, EPA exerts anti-inflammatory effects

mostly by increasing the biosynthesis of beneficial v-3 eicosanoids,

resolvins [50].

Taken all together, we propose that the overall lipidome

changes, above elucidated, might putatively reflect centenarians’

unique capability to adapt/respond to the accumulating oxidative

and chronic inflammatory processes characteristics of their

extreme aging phenotype.

In the elderly population associations among gut microbiota

and inflammatory status had been clearly displayed [51,52]. In our

study urine metabolic profiling revealed that the longevity

phenotype is affected by significant changes in the gut microbiome

as displayed by increased excretion of PCS and PAG (Fig. 4, Table

S11) in centenarians compared to elderly. Our findings support

the initial hypothesis suggesting that late aging process might lead

to increase p-cresol production, driven by age-related changes in

the composition of the gut bacteria [53]. Gut microbiota

extensively catabolized protein and aromatic amino acids,

including phenylalanine and tyrosine, to form PAG and PCS

[54]. Moreover, centenarians display increased concentration of 2-

HB (Figure 4) a compound present in most fruits and vegetables,

with anti-inflammatory activity and with known capabilities to

inhibit transcription of cyclooxygenase-2, an enzyme that catalyses

the formation of prostaglandins during inflammation [55]. Lastly,

we assessed the relationships between urine metabotypes and

microbiota composition correlating the three markers of longevity

(PAG, PCS, 2-HB) with phylogenetic bacterial groups (Fig. 5).

PAG displays positive correlation with Proteobacteria species,

namely Campylobacter, E. coli, Haemophilus, Pseudomonas, Serratia,

Yersinia et rel, while both PCS and PAG correlating to Vibrio.

Although it has been reported that some species of Clostridia

produce phenol and p-cresol together with ammonia and

hydrogen by anaerobic degradation of aromatic amino acids

[56], our data suggest that Proteobacteria might also contribute to

the pool of PAG and PCS. Previous studies have shown that E. coli

isolated from Crohn’s Disease patients have pathogen-like

behavior in vitro, and may play a role in the inflammatory

process [57]. Of particular interest is the negative correlation of

PAG and PCS with several butyrate-producing bacteria belonging

to Clostridium cluster XIVa species, namely Butyrivibrio crossotus et

rel., E. hallii, E. rectale, E. ventriosum, F. prausnitzii, Roseburia intestinalis

as it is demonstrated that butyrate, a short chain fatty acid mainly

produced in the gut by Firmicutes of Clostridium clusters IV and

XIVa, has a protective role against chronic inflammatory diseases

[58]. Of interest is also the positive correlation of 2-HB with Proteus

et. rel. Taken together these data display that the longevity process

deeply affects the structure and composition of the human gut

microbiota, with centenarians displaying lower contribution of

Clostridium cluster XIVa, and relatives symbiotic species with

reported anti-inflammatory properties, and relative increase of

facultative anaerobes including Proteobacteria [16].

It is imperative to note that while this study portrays a sampling

representative of a limited geographic area (northern Italy), where

dietary and lifestyle factors can be assumed similar, our newly

reported longevity metabolic footprint needs further validation

across populations with different genetic backgrounds, environ-

mental conditions, and increased representation of both the

genders. While it is difficult to recruit a larger number of male

centenarians, due to significant acknowledged differences in male

to females ratio distribution in the north of Italy [12], we have

reported values for selected metabolites after gender separation

which provides a first insight into the displayed metabolites of

interest. Here, whilst the displayed metabolic differences of

longevity are maintained, after gender separation, our findings

will be compared and validated in much bigger cohorts to provide

future predictive utility, such as the ongoing EU Mark-Age

(http:// edukon.biologie.uni-konstanz.de/mark-age). Further fu-

ture studies will also have to address how nutritional challenges

and different dietary regimes in human aging populations impact

these biomarkers confirming the observed changes in the discussed

metabolic pathways.

In conclusion, our study contributes to shed light onto the

complex mosaic of human aging and longevity providing

comprehensive metabolic outcomes in biofluids that can be

paralleled with the currently investigated mechanistic routes of

the mTOR, AMPK, inflammation, and changes in the gut

microbiota, underlining the expression of human longevity

phenotype. As centenarians well represent the model of healthy

and successful aging, there are many important implications in

understanding the underlying molecular mechanisms behind such

acquired longevity and how environmental factors and nutrition

might aid in shaping such acquired successful metabolic pheno-

type.
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