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Via Comelico 39 Milano, 20137, Italy

frasca@di.unimi.it

Abstract

As the number of sequenced genomes rapidly grows, automated prediction of
gene function (AFP) is now a challenging problem. Despite significant pro-
gresses in the last several years, the accuracy of gene function prediction still
needs to be improved in order to be used effectively in practice. Two of the
main issues of AFP problem are the imbalance of gene functional annotations
and the ‘multifunctional properties’ of genes. While the former is a well studied
problem in machine learning, the latter has recently emerged in bioinformatics
and few studies have been carried out about it. Here we propose a method for
AFP which appropriately handles the label imbalance characterizing biological
taxonomies, and embeds in the model the property of some genes of being ‘mul-
tifunctional’. We tested the method in predicting the functions of the Gene
Ontology functional hierarchy for genes of yeast and fly model organisms, in a
genome-wide approach. The achieved results show that cost-sensitive strategies
and ’gene multifunctionality’ can be combined to achieve significantly better
results than the compared state-of-the-art algorithms for AFP.

Keywords: Gene multifunctionality, biological networks, Hopfield networks,
gene function prediction, gene ranking, cost-sensitive learning.

1. Introduction

High throughput biomolecular technologies have made available a vast amount
of genomic, proteomic and transcriptomic data and the experimental determi-
nation of gene functions is the most reliable way to characterize genes and their
products. However, due to its inherent difficulty and expense, the experimental
characterization of functions cannot appropriately scale up and the automated
annotation of gene functions has therefore emerged as a challenging problem in
computational and molecular biology [1]. The Automated Prediction of gene
Functions (AFP) is a complex problem, with several distinctive features: func-
tional classes (biological functions) are structured in a hierarchy with different
levels of specificity (e.g. the Gene Ontology (GO) [2]) and labelings are not
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independent; each gene may have multiple labels (multi-label classification);
classes are thousands (GO) and often highly unbalanced, with few positive and
much more negative genes; negative instances are not uniquely defined, since
usually only positive gene memberships are known for functional classes, and
negatives in principle can be chosen with different strategies [3]; data are noisy
and usually large-scale and high-dimensional; several heterogeneous sources of
biological data are available, each one describing specific properties of genes,
and, to achieve more reliable predictions, their integration with suitable meth-
ods is needed [4].

In this work we take into consideration two of these issues: the imbalance of
class labelings and the multiple annotation of genes. Many attempts have been
proposed in the literature for AFP. More general approaches characterize genes
by a set of features, which in turn are exploited by machine learning algorithms
to typically address a set of binary classification problems: predict whether
or not a gene should be associated with a functional class [5]. Another com-
monly used approach is based on sequence homology, which adopts sequence
alignment tool, e.g. BLAST [6], to find sequences of gene products (such as
proteins) similar to the target sequence, and then transfers their known func-
tional annotations to the target sequence as predictions [7, 8]. Moreover, the
availability of large-scale networks of genetic and physical interactions, where
nodes are genes/gene products and connections among nodes the gene pairwise
relationships, has focused the investigation also on the design of network-based
algorithms for AFP. The first network-based approaches have been based on
the so called guilt-by-association (GBA) rule, which makes predictions based on
the interacting genes, assuming that interacting genes are likely to share similar
functions [9, 10, 11]. Indirect neighbours have also been exploited to modify
the notion of pairwise-similarities among nodes by accounting for pairs of nodes
connected through intermediate ones [12, 13, 14].

Furthermore, gene functions can be predicted by propagating node labels
through the network with an iterative process until convergence [15, 16], by
tuning the amount of propagation we allow in the graph through Markov Ran-
dom Walks [17, 18], by evaluating the functional flow through the nodes [19].
Other relevant studies also adopted techniques based on Global graph consis-
tency [20], on Hopfield networks [21, 22, 23], on Markov [24] and Gaussian
Random Fields [25, 26, 27].

Despite their proved effectiveness, these methods totally or partially neglect
two main issues of AFP. First, they do not appropriately handle the label imbal-
ance affecting classes in biological taxonomies. The Gene Ontology is the most
popular repository for biological functions and structures genes in three major
ontologies (direct acyclic graphs): Molecular Function (MF), Biological Process
(BP), and Cellular Component (CC). The most specific classes, which are those
better describe the functions of genes, have usually very few annotations (genes
that previous studies have shown having the function). This lack of information
makes the prediction task very difficult, and cost-insensitive algorithms may
suffer high decay in performance [28, 29]. Second, when predicting in a flat set-
ting, i.e. without considering the hierarchical structure of GO, such methods do
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not embed in their framework the multi-functional properties of genes. Indeed,
recent works have introduced the concept of gene multifunctionality [30], which
regards the property of some genes which are annotated with many classes of
being really multifunctional in the cell cycle. The authors have shown that
multifunctionality drives most computational predictions made by GBA-based
methods, and, furthermore, that there exists a relationship between multifunc-
tionality and the number of interacting partners in the network. Overall, mul-
tifunctionality has been investigated as a possible limitation of generalization
capabilities of algorithms that infer gene functions exploiting solely the GBA
rule, and some strategies have been suggested to prevent this limitation (e.g.
avoiding the network sparsification). On the other hand, they disregard high
gene degree may be a good indicator of the gene cell activity, and do not develop
any strategy which exploits gene multifunctionality to improve the reliability of
functional predictions.

In this work we propose an approach to cast gene multifunctionality in the
prediction model of a network-based imbalance-aware algorithm, COSNet [23],
recently proposed to predict node labels in partially labeled graphs. We analyzed
biomolecular networks from model organisms to investigate the role multifunc-
tionality has on the predictive capability of COSNet. Interestingly, we found
that for almost all GO functions, the considered networks (that as suggested,
we do not sparsify) contain several exceptional genes, which are genes annotated
with the function c being predicted, without interacting partners annotated with
c, but with high node degree (i.e. expected high multifunctionality). Such genes
are likely to be wrongly predicted by most of all network-based AFP methods.
Our strategy is designed to explicitly take into account the presence of excep-
tional genes and to exploit their multifunctionality to improve the accuracy
of the prediction. The experimental validation carried out on two eukaryotic
organisms in a genome-wide approach shows our method favourably compares
with the state-of-the-art algorithms for AFP.

In the following, the AFP problem is formalized in Section 2, Section 3 intro-
duces the multifunctionality in gene networks, whereas Sections 4.1 and 4.2 are
dedicated to the description of COSNet and its extension to multifunctionality,
respectively. The experimental validation of the proposed algorithm is discussed
in Section 5.

2. Automated Function Prediction in Gene Networks

In the Automated Function Prediction (AFP) problem, genes are represented
by a set of vertices V , and the relationships among genes are encoded in the
symmetric matrix W : V × V −→ [0, 1], where Wij is a precomputed measure
of ‘functional similarity’ between genes i, j ∈ V . For a given functional class c
(e.g. a term of the Gene Ontology), a labeling function Lc : S −→ {+,−} is
known, where S ⊂ V is the set of labeled vertices. Moreover, a bipartition (S+,
S−) of S is given, where S+ = {i ∈ S|L(i) = +} is the set of positive vertices
and S− = {i ∈ S|L(i) = −} the set of those negative.
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The aim is to derive a score function ψ : U −→ R, which ranks unlabeled
nodes according to the values of ψ(i): the higher the score, the higher the
likelihood that a gene belongs to the given functional class. U = V \ S is the
set of unlabeled vertices.

3. Multifunctionality in Gene Networks

The concept of ‘multifunctionality’ has been recently introduced in the sci-
entific community to analyze the role ‘multifunctional genes’ have in the com-
putational prediction of gene functions [30].The gene multifunctionality can be
defined as ‘the number of molecular functions a gene is involved in’, depending
on the context and the interacting partners (other gene products). From a com-
putational standpoint, multifunctionality is the number of classes an instance
is classified as member.

Using GO as source of functional annotations for genes, Ranking by multi-
functionality means assigning higher rank to genes annotated with more GO
terms. Indeed, if a gene is involved in many biological functions, the degree to
which the gene has also a chosen function is higher than another gene which
is, for example, annotated just with one GO term. In other words, algorithms
which assign new functions to genes which are already are annotated with many
GO terms are expected to achieve good performance for the majority of func-
tions. Gillis and Pavlidis [30] define the multifunctionality score of gene i as
follows:

Scorec(i) =
∑

c∈GO|i∈c

1

Ic ∗Oc
(1)

where Ic and Oc are respectively the number of genes annotated and not anno-
tated with term c. If we ignore the normalization by the product of Ic and Oc,
Scorec(i) is simply the number of functions the gene i has. This score provides
a ranking which makes correct predictions for almost all the considered GO
terms, achieving a mean AUC of 0.9. Unfortunately, when predicting a single
term with a flat approach, this score cannot be computed. On the other hand,
the authors have also shown that gene multifunctionality is related to the node
degree in gene networks, that is the number of genes interacting in a particular
context. A greater number of interaction partners reflects (at least partially)
the involvement in the biomolecular functions the partners have (hence expected
higher multifunctionality). They show that, if the data used for prediction is in
some way a proxy for multifunctionality, and the algorithm used for classifica-
tion can exploit this, very good prediction performance can result. Accordingly,
the node (gene) degree can be assumed as suitable estimate of gene multifunc-
tionality, and it can be exploited as prior knowledge to improve the predictive
capabilities of network-based AFP methods.
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Figure 1: COSNet main steps.

4. Methods

In this section we first recall a recently proposed method for AFP, COSNet,
designed to properly handle the class label imbalance, then we describe our
approach to take into account the gene multifunctionality.

4.1. COSNet

COSNet (COst-Sensitive neural Network) [23] is a semi-supervised learning
algorithm for predicting node labels in graphs with unbalanced labeling. COS-
Net is based on a family of parametric Hopfield networks H =<W , k, ρ > on
neurons V = {1, 2, . . . , n}, where k is the neuron activation threshold and ρ is
a real number in [0, π2 [ that determines the two different values {sin ρ, − cos ρ}
for neuron activation. Node labels and neuron activation values are conceptu-
ally separated, and neuron activation values are now parameters to be learned
to deal with data imbalance. A sketch of COSNet is given in the following
(Figure 1):

INPUT : a connection strength matrix W : V × V −→ [0, 1]; the function
Lc : S −→ {+,−}; the sets S and U of respectively labeled and unlabeled
instances w.r.t the functional class c to be predicted. Up to a permutation,
we assume U = {1, 2, · · · , h} and S = {h+ 1, h+ 2, · · · , n}.

OUTPUT : bipartition (U+, U−) of U .
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Step 1. A temporary solution (U+, U−) is generated such that |U+|
|U | ' |S+|

|S| .

Step 2. The optimal parameters (ρ̂, k̂) are estimated in order to make the state
Lc(S) (state represented by known labels) “as close as possible” to an
equilibrium state of the sub-network restricted to S.

Step 3. The parameters (ρ̂, k̂) are extended to the whole network and the sub-
network restricted to unlabeled nodes is simulated. Starting with initial
value ui(0) = 0 for each neuron i, the network evolves according to the
following asynchronous dynamics:

ui(t) =


sin ρ̂ if

i−1∑
j=1

Wijuj(t) +
h∑

k=i+1

Wikuk(t− 1)− θi > 0

− cos ρ̂ if
i−1∑
j=1

Wijuj(t) +
h∑

k=i+1

Wikuk(t− 1)− θi ≤ 0
(2)

where ui(t) is the value of neuron i ∈ U at time t. Here θi = k̂ −∑n
j=h+1WijLc(j) is the activation threshold of node i, which also in-

cludes the influence on this node of the labeled neurons S (whose values
are clamped during the network dynamics). At each time t, the state
of the network is u(t) = (u1(t), u2(t), . . . , uh(t)), and a Lyapunov state
function named energy function is associated to the network:

E(u) = −1

2

h∑
i,j=1
j 6=i

Wijuiuj +
h∑

i=1

uiθi (3)

The dynamics converges to an equilibrium state û corresponding to a
minimum of E [23]. The final solution (U+, U−) is:

U+ = {i ∈ U | ûi = +sin ρ̂}
U− = {i ∈ U | ûi = − cos ρ̂}

The step 1 provides a temporary solution in order to exploit the connections
among labeled and unlabeled nodes during learning phase. In step 2, each
labeled node is projected into a labeled point in the plane, where the abscissa is
the weighted sum of positive connections, the ordinate is the weighted sum of
negative connections. In this way the unbalance at each point is embedded in
the point position. Then, a fast quasi-linear approximated algorithm learns a
parametric straight line to separate positive and negative points by maximizing
a specific criterion that accounts for the label imbalance. The learned line
provides the values (ρ̂, k̂) for the parameters (ρ, k) to be adopted in the network
dynamics described at Step 3.

COSNet is fast and nicely scale on large-size data, taking overall time
O(|S| log |S| + |W |), which is quasi-linear when the input connection matrix
in sparse.
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4.2. Multifunctionality-Based Ranking: COSNetM

In this section we describe COSNetM (COSNet Multifunctionality-based
ranking), an algorithm for ranking genes to deal with AFP problem. COSNet is
a binary classifier and it has not been designed to rank instances; nevertheless,
in [31] COSNet has been adopted as ranker by assigning to each neuron a score
related to its internal energy at equilibrium. More precisely, the score assigned
to neuron i ∈ U is the following:

r(i) =
∑
j 6=i

(Wij ûj − θi) (4)

Reminding that the equilibrium state û is a minimum of the energy E, it
is interesting to observe that the score (4) corresponds to a global and local
consistency. Global because the dynamics allows to propagate the node labels
through the network, so that neurons can get information also from non neigh-
boring neurons, until an equilibrium of the whole network is reached. Local
because if we consider the contribution E(ûi) = −ûir(i) of node i to the energy
E, we can observe that for positive predictions (ûi = sin ρ̂), the score r(i) is
positive and the larger the presence of positives in its neighborhood (i.e. larger
values of r(i)), the lower the value of the energy E(ûi). For negative predic-
tions (ûi = − cos ρ̂), the score r(i) is negative and a larger presence of negative
neighbors corresponds to lower values of E(ûi).

Although this score has been shown being effective for ranking genes, there
are some specific cases in which it may ‘fail’. Indeed, due to lack of knowledge
and/or presence of noise both in the connection matrix W [32] and in GO
annotations (for less studied terms usually only few annotations are available),
some genes in the network, which we name ‘exceptional genes’ (EGs), may have
the following properties:

(i) Being positive for the GO term to be predicted

(ii) No positive interacting partners in the network

(iii) High node degree

For such genes, prediction algorithms based solely on the functions of interact-
ing partners definitely make wrong predictions. Nevertheless, the score (4) may
correctly classify exceptional genes, since the network dynamics propagates la-
bels through the network, and positive labels may come from neighbors at level
two or more.

4.2.1. Distribution of Exceptional Genes

We analyzed the gene networks of yeast and fly organisms described in Sec-
tion 5.1 and the corresponding GO annotations to detect the presence of EGs
for each function separately. We considered 3419 and 4317 GO terms with a
number of annotated genes ranging from 3 to 300, for 5775 yeast and 9361 fly
genes. In both networks, a large number of EGs has been found: 986 for yeast
and 5239 for fly data. Moreover, 759 and 2607 GO terms have at least one EG
respectively in yeast and fly, with maximum rate of EGs equal to 1 for 12 GO
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Table 1: Examples of exceptional yeast genes. ‘Rank by node degree’ is the position of the
gene in the ranking given by node degrees.

Gene GO term Positive annotations Rank by node degree

YKR031C GO:0016298 22 290

YOL027C GO:0030004 35 74

YER120W GO:0051224 4 172

YNL197C GO:0051224 4 11

YER151C GO:0048583 5 4

YNL264C GO:0006658 4 663

YOL011W GO:0006658 4 182

YCR094W GO:0031902 6 147

YGR270W GO:0042406 4 445

YER120W GO:0051051 5 172

YKR031C GO:0004620 11 290

terms (3 EGs out of 3 positive genes). At condition (iii) of exceptional gene, we
considered high node degree those degrees which rank in the top half of node
degree ranking.

In Table 1 we report some examples of exceptional yeast genes and GO terms
which have at least one EG. Interestingly, a gene may be ‘exceptional’ for more
than one term (e.g. genes YKR031C, YER120W), and the same GO term may
have more than one EG (for instance GO:0051224, GO:0006658). When no
further information is given, the gene multifunctionality thereby represents a
supplementary information which can be fundamental in correcting gene rank-
ings, mainly for those EGs which result in a very high node degree rank (e.g.
genes YNL197C, YER151C).

Furthermore, in order to understand how the EGs are distributed across the
functional classes, and whether some classes are expected having more EGs, in
Figure 2 we grouped the GO terms by number of positives, and then computed
the averaged per group proportion of positive genes which are exceptional. We
can observe a unimodal distribution, with modal peak (0.115 yeast and 0.188
fly) corresponding to the GO group with 3 positives. Interestingly, the average
proportion of EGs is higher for more unbalanced terms, and tends to decrease
when the number of positives increases; this is quite expected, since a real
positive is likely to have no positive neighbors when few positives are available
(condition (ii) of EG). This also suggests the complexity of predicting more
unbalanced GO terms is also due to the higher proportion of EGs. Finally, we
can observe a faster decreasing to 0 of EG proportion in yeast data w.r.t. fly
data, probably due to the different label imbalance (fly organism has much more
genes than yeast), leading us to hypothesize the existence of a direct relationship
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Figure 2: Proportion of EGs on yeast (a) and fly (b) data averaged across groups of GO terms
with the same number of positives (annotations).

(a) (b)

between the label imbalance and EGs proportion.

4.2.2. COSNetM Ranking

The analysis of EG distribution allows to modify the score (4) in order to
take into account the presence of exceptional genes:

ψ1(i) =
r(i)

R
+
d(i)

D
(5)

where R =
∑

i∈U r(i), D =
∑

i∈U d(i) and d(i) is the degree of node i. Without
normalization, the score (5) is simply the sum of node degree and node incoming
functional contribution at equilibrium. For exceptional genes, the score r(i) is

likely to be negative, but the term d(i)
D compensates this lack of information

and moves up the gene in the ranking, since, by definition of exceptional gene,
d(i) is large. The proposed ranking function thereby ensures a better ranking
of EGs. On the other hand, we want also to investigate how this score ranks
non-exceptional genes, and the following cases are possible:

(a) i is positive and r(i) is positive

(b) i is negative and r(i) is negative

(c) i is negative and r(i) is positive

In the case (a), since d(i) ≥ 0, we have ψ1(i) > 0 , i.e. the instance i is correctly
classified. In the case (b), ψ1 is likely to be negative (correct classification), but
it may happen that the score becomes positive when the instance i has many
connections. Finally, the instance i is misclassified by function r in the case (c),
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and even ψ1(i) > 0. However, when i has a low degree, ψ1 moves down the
instance i in the ranking w.r.t. r.

Overall, the ranking function (5) is able in correcting the ranking of excep-
tional genes, thus satisfying our initial purpose, and for non exceptional genes,
only in case (b) it may misclassify an instance correctly classified by score r.
Moreover this ranking can also exploit the properties of the equilibrium state of
the network to provide class-specific rankings. It is worth also noting that the
proposed ranking function exploits solely the information deriving from node
degree, although in principle each neighbor may be in turn multifunctional.
Having neighbors which are expected being multifunctional, provides further
information about the multifunctionality of the gene. Accordingly, we want
to modify the equation (5) to take into account also the degrees of level-two
neighbors as follows:

ψ2(i) =
r(i)

R
+
dn(i)

DN
(6)

where dn(i) = Wi ·d, · is the dot product, Wi is the vector of connection weights
of node i, d is the vector of node degrees and DN =

∑
i∈U dn(i). It easy to see

that this score preserves the properties described for the ranking function (5),
since high values of d(i) in general correspond to high values of dn(i).

5. Results and Discussion

5.1. Experimental Setup

To validate our approach, COSNetM has been applied in predicting func-
tions of the whole genome of two model eukaryotic organisms. 16 S. cere-
visiae and 10 D. melanogaster networks downloaded from the GeneMANIA
website (www.genemania.org) have been integrated through unweighted sum,
considering the union of genes in the single networks. The selected networks
cover different types of data, including co-expression, genetic interactions, pro-
tein ontologies and physical interactions. The details about selected networks
are reported in Tables 2 and 3. After integrating networks, we obtain a total of
5775 yeast and 9361 fly genes. No preprocessing has been applied to single net-
works, since GeneMANIA networks already provide a real score for each pair
of genes representing a measure of their functional similarity. Each network,
denoted by the corresponding connection matrix W , has been then normalized
as follows:

Ŵ = D−1/2WD−1/2

where D is a diagonal matrix and dii =
∑

j Wij its diagonal elements.
The Gene Ontology terms have been adopted as functional classes: GO

annotations release 23-3-13 for yeast and 15-5-13 for fly. In order to predict the
more specific (and thus more unbalanced) terms in the ontology, we selected
all the GO terms with 3 − 300 positive annotated genes, obtaining 3419 terms
(2021, 805 and 593 respectively for BP, MF and CC ontologies) for yeast and
4317 terms for fly (2769 BP, 1004 MF and 544 CC).
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Table 2: Yeast networks description.

Type Source Genes

Co-expression Busti et al. [33] 5436

Co-expression Chin et al. [34] 5585

Co-expression Beln Sanz et al. [35] 5585

Co-expression Kovacs et al. [36] 5585

Genetic interactions Aguilar et al. [37] 321

Genetic interactions Alamgir et al. [38] 90

Genetic interactions Costanzo et al. [39] 4346

Genetic interactions Libuda and Winston [40] 143

Genetic interactions BioGRID [41] 4280

Physical interactions Breitkreutz et al. [42] 887

Physical interactions Kaake et al. [43] 332

Physical interactions Muller et al. [44] 266

Physical interactions Ossareh-Nazari et al. [45] 406

Physical interactions BioGRID [41] 4752

Shared protein domains InterPro [46] 3964

Shared protein domains Pfam [47] 3541

Table 3: Fly networks description.

Type Source Genes

Co-expression Baradaran-Heravi et al. [48] 8857

Co-expression Busser et al. [49] 8857

Co-expression Colombani et al. [50] 8857

Co-expression Lundberg et al. [51] 8857

Genetic interactions BioGRID [41] 929

Genetic interactions Yu et al. [52] 1414

Physical interactions Guruharsha et al. A [53] 1866

Physical interactions Guruharsha et al. B [53] 3833

Physical interactions BioGRID [41] 558

Shared protein domains InterPro [46] 5627

11



5.2. Results

COSNetM has been compared with the state-of-the-art methods proposed
in the literature for the gene function prediction problem in a “flat” setting.
In particular, we considered GeneMANIA [26], an algorithm based on ridge
regression integration and Gaussian Random Fields, that ranked among the best
methods in the MouseFunc competition for mouse AFP [54], and, as a baseline,
the classical guilt-by-association algorithm (GBA) [55]. We also evaluated a
classical inductive method, the Support Vector Machine (SVM ), largely applied
in computational biology and in AFP; more precisely, we tested the probabilistic
version of SVM [56], which provides a probabilistic score to genes with respect
to the functional class being predicted. Moreover, since we extended COSNet,
we also consider its original version, which ranks instances through the ranking
function (4) presented in Sect. 4.2. Finally, we also report the results achieved
by simply ranking genes by their node degree.

To estimate the generalization performances of the considered methods, we
adopted a classical 10-fold cross-validation and we applied the Wilcoxon signed-
ranks test [57] to compare the overall results. The performances have been
assessed using the Area Under the ROC Curve (AUC) and the Area Under the
Precision-Recall Curve (AUPRC), pointing out that, unlike AUPRC, AUC is
not properly suitable for classes highly unbalanced toward negatives, like those
characterizing AFP.

5.2.1. Comparing Multifunctional Scores

In order to assess the contribution of the gene multifunctionality to the pre-
dictive capability of COSNet, in Table 4 we report the results of COSNet and
COSNetM (ranking functions ψ1 and ψ2) averaged by GO ontology. First of
all, the ranking function ψ2 outperforms ψ1 (Wilcoxon test, p-value < 10−5) in
all the data sets and in terms of both AUC and AUPRC, except for AUC values
on yeast data in MF and CC ontologies, where the difference is not statistically
significant. A severe improvement in AUC is registered for fly data in BP and
CC ontologies, suggesting that the multifunctionality contribution computed by
accounting also neighbor degrees (exploited by ψ2) is more informative than the
simple node degree. When comparing with COSNet, COSNetM achieves signif-
icantly better performance (Wilcoxon test, p-value < 10−6) in all the performed
experiments, considerably improving the AUPRC on yeast data. Particularly
interesting are the results w.r.t COSNet that COSNetM achieves in terms of
AUC on BP and CC terms when predicting fly genes, that are clearly due to the
multifunctionality information we embedded in the model. This confirms that
the node degree is a good estimator of multifunctionality and that, although
node degree scores alone do not achieve good results (see Section 5.2.2), the
combination of node degree and internal energy at equilibrium improves the
overall performance. To better understand the effect of multifunctionality, in
Figure 3 we also report the per class differences in terms of both AUC and
AUPRC for COSNet and COSNetM. Each point corresponds to a GO term.
The terms are increasingly sorted according to the number of annotations (pos-
itives). A positive difference (point above the line) means better performance
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Table 4: COSNet and COSNetM performance averaged across each GO ontology.

Method AUC AUPRC

YEAST

BP MF CC BP MF CC

COSNet 0.845 0.891 0.920 0.255 0.388 0.395

COSNetM-ψ1 0.883 0.907 0.946 0.277 0.413 0.423

COSNetM-ψ2 0.892 0.907 0.948 0.283 0.421 0.431

FLY

COSNet 0.681 0.814 0.763 0.108 0.283 0.212

COSNetM-ψ1 0.711 0.808 0.775 0.118 0.296 0.228

COSNetM-ψ2 0.805 0.831 0.829 0.126 0.299 0.233

for COSNetM, the difference is negative (point below the line) when COSNet
outperforms COSNetM. First, for both AUC and AUPRC, the large majority
of points lies above the line, and mainly for AUPRC results in both yeast and
fly organisms. Second, the absolute difference tends to be larger for more un-
balanced classes, and lower when the number of positives increases. This is
likely due to the fact that for more unbalanced terms the expected proportion
of positives which are EGs is higher (see Figure 2). Moreover, most of all the
differences become positive when the number of positive increases. The neg-
ative differences (i.e. COSNet performs better) may depend on the effect the
score ψ2 has on non-exceptional genes (see case (b) described in Section 4.2.2).
However, the number of points below the line is small, confirming the average
improvements shown in Table 4. Finally, and mainly for AUPRC results, the
larger improvements for COSNetM are related to the most specific terms, which
is of preeminent importance to lead biologists in the analysis of the functions
that better characterize the functional role of genes.

As final investigation, we also want to verify whether COSNetM is able in
improving the ranking of exceptional genes, thus in Table 5 we report the ranks
assigned by COSNet and COSNetM to EGs considered in Table 1. As expected,
COSNetM ranks EGs better than COSNet, and the improvement is noticeable
for some genes, e.g. YER151C and YNL197C, which are respectively ranked in
position 5733 and 5678 (almost at the bottom) by COSNet and in position 21
and 42 (almost at the top) by COSNetM. Confirming the results averaged across
all the terms, in the majority of classes the score function ψ2 assigns higher
ranks to EGs than ψ1; however, in some cases (for instance gene YER120W for
GO term GO:0051051) ψ1 ranks better than ψ2, probably for those EGs whose
neighbors are not highly multifunctional. Finally, due to its dynamics which
allows nodes to propagate their labels to nodes at more than one-edge distance,
also COSNet sometimes correctly ranks EGs (see gene YGR270W for GO term
GO:0042406).
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Figure 3: COSNet and COSNetM per term differences (∆) in terms of AUC ((a) yeast, (c)
fly) and AUPRC ((b) yeast, (d) fly). Each point corresponds to one of the considered GO
terms, and terms are increasingly sorted by number of positive annotated genes. Points above
the vertical line correspond to better performance for COSNetM.
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Table 5: Examples of rankings assigned by COSNet, COSNetM-ψ1 and COSNetM-ψ2 to
exceptional yeast genes.

Gene GO term COSNet COSNetM-ψ1 COSNetM-ψ2

YKR031C GO:0016298 5643 4584 2718

YOL027C GO:0030004 5748 5652 5172

YER120W GO:0051224 4607 351 605

YNL197C GO:0051224 5678 42 42

YER151C GO:0048583 5733 23 21

YNL264C GO:0006658 2645 1019 1160

YOL011W GO:0006658 1264 358 490

YCR094W GO:0031902 5562 967 735

YGR270W GO:0042406 149 157 138

YER120W GO:0051051 4903 377 601

YKR031C GO:0004620 5658 4365 2494

5.2.2. Comparison with State-of-the-art AFP Methods

In Figure 4 we show AUC and AUPRC results averaged across GO BP,
MF and CC ontologies also for the other AFP methods. The results in terms
of AUPRC show that COSNetM largely outperforms the compared methods in
both yeast and fly organisms, and the difference is always statistically significant
(Wilcoxon test, p-value < 10−33). Moreover, GBA outperforms GeneMANIA
and SVM on yeast data, whereas on fly data GeneMANIA is the second best
method. As expected, node degree is the worst method, since it assigns the
same gene ranking to all the GO terms. Nevertheless, in terms of AUC the
node degree algorithm has a certain learning, achieving a mean AUC > 0.57 in
all the considered experiments, which is significantly different than 0.5 (random
ranking) and confirming the results shown in [30]. COSNetM also achieves the
best AUC values (p-value < 10−7) in all the ontologies and organisms, except for
MF terms on yeast data. GBA is the best method when predicting yeast genes
in MF ontology (but no significant difference with COSNetM ), and the second
best in BP and CC ontologies. On fly data, GeneMANIA is the second top
method when predicting BP and CC terms, whereas GBA is the second method
in the MF ontology. Finally, the SVM algorithm poorly performs in almost all
the experiments, even worse in terms of AUC than Node Degree rankings.

6. Conclusions

The automated protein function prediction is a challenging problem. In this
paper we focused on the investigation of the labeling imbalance existing in func-
tional taxonomies and on the ‘multifunctional’ properties characterizing genes
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Figure 4: Results in terms of AUC (a) and AUPRC (b) averaged by GO ontology for all the
compared methods. Node degree corresponds to the score d(i) described in section 4.2.
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in biomolecular networks. We propose a strategy to cast ‘gene multifunctional-
ity’ in a parametric Hopfield Network designed to appropriately handle the label
imbalance when predicting gene functions. The method has been tested in a
genome-wide approach on yeast and fly model organisms in predicting functions
of the Gene Ontology hierarchy, favorably comparing with the state-of-the-art
methods for AFP. Moreover, the improvements of our method are larger on the
most specific functions in the hierarchy, which are those better describe gene
functions, and this is extremely important for biologist to suggest and guide the
expensive laboratory experiments for verifying the involvement of gene activities
in specific biomolecular functions.

We point out that our method purposely predicts functions without consid-
ering the structure of the Gene Ontology (direct acyclic graph) and thus the
functional relationship among functions. Embedding in the model the informa-
tion represented by the functional hierarchy may likely lead to higher prediction
accuracy, as shown in recent studies [58].
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