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Polycomb proteins control proliferation and
transformation independently of cell cycle
checkpoints by regulating DNA replication
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The ability of PRC1 and PRC2 to promote proliferation is a main feature that links polycomb

(PcG) activity to cancer. PcGs silence the expression of the tumour suppressor locus

Ink4a/Arf, whose products positively regulate pRb and p53 functions. Enhanced PcG activity

is a frequent feature of human tumours, and PcG inhibition has been proposed as a strategy

for cancer treatment. However, the recurrent inactivation of pRb/p53 responses in human

cancers raises a question regarding the ability of PcG proteins to affect cellular proliferation

independently from this checkpoint. Here we demonstrate that PRCs regulate cellular

proliferation and transformation independently of the Ink4a/Arf-pRb-p53 pathway. We

provide evidence that PRCs localize at replication forks, and that loss of their function directly

affects the progression and symmetry of DNA replication forks. Thus, we have identified a

novel activity by which PcGs can regulate cell proliferation independently of major cell cycle

restriction checkpoints.
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U
ncontrolled proliferation is one of the hallmarks of cancer
that is required for tumour growth and spreading1.
Normal cell cycle progression is tightly controlled by a

variety of molecular checkpoints that supervise the biological
processes that take place in the different phases of the cell cycle2.
Notably, the cell cycle checkpoint that involves the Ink4a/Arf-
p53-pRb axis has been described as the principle barrier to the
initiation and maintenance of neoplastic transformation3–6.

The crosstalk among the proteins active in these pathways and
the epigenetic control of Ink4a/Arf expression have been widely
investigated to characterize the role of proto-oncogenes that
negatively affect this molecular checkpoint7,8. Among these,
polycombs (PcGs) exert a fundamental role in controlling
Ink4a/Arf transcriptional repression to promote cell cycle
progression in physiological and pathological conditions9. PcGs
pro-proliferative and oncogenic activities have been tightly linked
with the transcriptional control of this locus, suggesting that
PcG-dependent regulation of proliferation mainly depends on its
ability to directly repress Ink4a/Arf expression10–23. Moreover,
the PcG proteins Ring1b and Bmi1 can also directly regulate
the p53 stability, further stressing their role in cellular
proliferation and tumorigenesis by negatively acting on the
pRb-p53 pathway24–26. In contrast, a few studies have also
highlighted that the proto-oncogene Bmi1 can regulate
proliferation independently of Ink4a/Arf expression27–29.
Although the characterization of the overall role of PRC1 and
PRC2 is incomplete, this finding suggests that additional
mechanisms exist by which PcGs can regulate cellular pro-
liferation. Several components of PRC1 and PRC2 are frequently
overexpressed in human tumours and correlate with negative
prognosis and poor survival30. Considering that the majority of
tumours are also characterized by mutations in the Ink4a/Arf-
p53-pRb axis31, we speculate that PcGs can affect cellular
proliferation through additional mechanisms that acquire a
particular significance during oncogenesis, thereby representing
a potential therapeutic value32–34.

Here we show that both PRC1 and PRC2 can regulate
development, proliferation and transformation independently of
the functionality of the Ink4a/Arf-p53-pRb pathway. We demon-
strate that the genetic loss of PcG activity compromises the
proliferation of both normal immortalized and fully transformed
cells in the absence of major transcriptional changes. We provide
evidence that PcG proteins are directly associated with replication
forks, and that loss of PcG functions induce checkpoint-
independent defects in the progression of DNA replication.

Results
PcG proteins are required for proliferation at low oxygen.
Mouse embryonic fibroblasts (MEFs), when placed in cell culture
at atmospheric oxygen tension (normoxia, 21%), stop pro-
liferating in a few passages and undergo oxidative-induced
senescence. In contrast, when the same cells are grown at lower
oxygen tension (hypoxia, 3% O2), they grow indefinitely with no
signs of senescence and maintain functional cell cycle restriction
checkpoints35 (Fig. 1a,b). However, in both conditions, cells
accumulate similar levels of the two products of the Ink4a-Arf
locus, namely, p19/Arf and p16 (ref. 35). This demonstrates that
cells grown at low oxygen concentrations are insensitive to levels
of p16 and p19/Arf that induce cell cycle arrest and senescence in
normoxia conditions35. Based on this evidence, we hypothesized
that loss of PcG repression would have a minor effect on the
expression of the Ink4a-Arf locus at low oxygen tension (as locus
expression is already activated in 3% O2 cultures), and further,
that loss of PcG activity would not have a major impact on
the proliferation of cells grown at low oxygen concentrations.

Thus, we analysed the role of PRC1 and PRC2 activity in the
proliferation of mouse embryonic fibroblasts (MEFs) grown
at low oxygen tension (3% O2). Indeed, in contrast to
normoxia (21% O2), MEFs cultured in hypoxia (3% O2) did not
undergo stress-induced senescence, crisis and spontaneous
immortalization but rather grew indefinitely (Fig. 1a,b).
Consistent with previous reports35, our MEFs cultured at 3%
O2 accumulated p16 and p19/Arf levels to a similar extent as
senescent cells grown at 21% O2 without undergoing cell cycle
arrest and senescence (Fig. 1a,b). At 3% O2, the expression of
PRC2 and PRC1 components such as Ezh2, Suz12, Eed and
Ring1b remained stable among the passages. In contrast, the PcGs
levels in MEFs cultured at 21% O2 reduced gradually with
passaging while cellular senescence markers appeared (Fig. 1a,b),
correlating the ability of cells to proliferate with an abundance of
PcG proteins. In addition, strong differences in p53 activation
were observed between normoxia and hypoxia conditions,
consistent with previous reports35.

To test if PcG activity was required for MEF proliferation at low
oxygen tension, we generated conditional knockout (cKO) MEFs
(Ezh2 fx/fx)36 under hypoxia conditions from mice that carried a
4-hydroxytamoxifen (OHT)–inducible oestrogen receptor fused to
a CRE recombinase (CRE-ERT2) that is constitutively expressed by
the Rosa26 locus (R26)37. Contrary to our initial hypothesis, we
observed that the proliferation of Ezh2 KO MEFs was strongly
impaired at 3% O2 after 1 week of OHT exposure, as shown by
growth curves and BrdU incorporation assays (Fig. 1c), in the
absence of any significant induction of cell death (Supplementary
Fig. 1A). Similarly, knockdown of Suz12 and Eed (two essential
PRC2 components38,39) by stable expression of specific short
hairpin RNAs also blocked MEF proliferation under hypoxia and
reduced the BrdU incorporation levels (Fig. 1d,e). Importantly,
loss of PRC2 activity only slightly increased p16, p19/ARF and p53
levels and upregulated p21 (Fig. 1c–e). p21 upregulation was not
involved in the proliferation block induced by loss of PRC2 activity
at 3% O2, as the shRNA-mediated knockdown of Suz12 expression
in p21 –/– MEFs still impaired cellular growth (Supplementary
Fig. 1B). Although these results suggest independency from Ink4a/
Arf and p21 expression, they cannot exclude that pRb and p53
have a role in PRC2-dependent proliferation defects.

Ink4a/Arf-p53-pRb-independent PRC2 proliferation control.
To test if PcG-dependent proliferation defects require p16 and
p19/Arf expression, we crossed the R26Cre-ERT2-Ezh2 fx/fx mice
with an Ink4a/Arf –/– strain5 and generated MEFs under hypoxia
(Supplementary Fig. 1C). After 7 days of OHT exposure, loss of
Ezh2 activity induced strong proliferation defects in the absence
of a functional p16 and p19/Arf response (Fig. 2a). Similarly, tip-
tail fibroblasts (TTF) derived from the same strain also had a
compromised proliferation upon deletion of Ezh2 activity
(Supplementary Fig. 1D). Consistent with this, the acute
knockdown of Suz12 and Eed in Ink4a/Arf –/– MEFs further
demonstrated that PRC2 affects proliferation independently of
Ink4a/Arf expression at low (Fig. 2b,c) and atmospheric (data not
shown) oxygen tension.

To gain in vivo insight for these observations, we took
advantage of the Suz12 KO mouse model that we had previously
generated38. Suz12 –/– embryos are blocked in embryonic
development and die around 8.5 days post coitum (dpc) with
strong proliferation defects38. We crossed Suz12 þ /– mice
into an Ink4a/Arf –/– background and tested whether loss of
Ink4a/Arf expression could rescue its developmental and
proliferative defects. Consistent with the results obtained
with MEFs, the embryonic development of Suz12-Ink4a/Arf
double KO embryos remained impaired, with a complete size
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Figure 1 | PRC2 regulates MEF proliferation at 3% O2 with high p16 and p19/Arf expression. (a) Cumulative population doublings of MEFs grown at 3%

or 21% O2. Insets show a representative picture of the MEF stained for senescence-associated b-galactosidase activity (SA-b-gal) at passage 5.

(b) Immunoblots using the indicated antibodies with protein extracts obtained from MEFs grown at 3 and 21% O2 at the indicated passages. b-tubulin

served as loading control. (c) Growth curves, immunoblots and BrdU FACS analysis of Ezh2 fx/fx and Ezh2 �/� MEFs grown at 3% O2 at the indicated

time. Left panels show crystal violet staining of cells at day 5 of the growth curve. The graph represents the quantification of crystal violet absorbance at

l¼ 590 nm at the indicated time points. Error bars indicate s.d., n¼ 3 for all graphs. Middle panel shows immunoblots using the indicated antibodies

with protein extracts prepared from Ezh2 fx/fx and Ezh2 �/� MEFs at day 5 of the growth curves. b-tubulin and total histone H3 served as loading

controls. Bar plot in the right panel shows the percentage of BrdU incorporation as measured by FACS analysis between Ezh2 fx/fx and Ezh2 �/�
MEFs. (d,e) As in c, using MEFs infected with Suz12- (d) or Eed- (e) specific shRNA-expressing lentiviral vectors. Empty or scrambled-expressing (ctrl)

vectors were used as negative controls, respectively. Growth curves were performed at 3% O2.
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block at 8.5 dpc (Fig. 2d and Supplementary Fig. 1E). Although
we cannot discern the contribution between proliferation and
differentiation defects, this result highlights in vivo the Ink4a/Arf-
independent proprieties of PRC2 activity and suggests that
defective proliferation could play a role in the PRC2-dependent
developmental defects.

To further investigate the role of pRb and p53 pathways in
PcG-dependent proliferation control, we knocked down Suz12
expression in p53- (p53–/–) or pRb (pRb–/–) deficient MEFs. This
experiment demonstrated that the loss of PRC2 activity induced
proliferative defects even in the absence of either pRb or p53
functional responses (Fig. 3a,b; Supplementary Fig. 2A,B). More-
over, to exclude that the two ‘arms’ of the pathway could generate
compensatory effects, we simultaneously inactivated p53 and pRb
functions by expressing the Large T oncoprotein encoded by the
simian virus 40 early region (SV40ER) in Ezh2 cKO MEFs3

(Supplementary Fig. 2C). Also in this case, OHT-mediated
deletion of the Ezh2 locus induced proliferation defects
(Fig. 3c,d). Differently from cells with proficient cell cycle
checkpoints, loss of Ezh2 activity did not induce a cell cycle arrest
but rather a constant reduction in the proliferation rate of the
MEFs (Supplementary Fig. 2D). Overall, these data demonstrate
that PRC2 can regulate cellular proliferation independently from
the Ink4a/Arf-pRb-p53 axis.

PRC2 regulates transformation independently of p53-pRb.
PRC2 components are frequently found to be highly expressed

in human tumours30, and this can be mirrored in cell culture
using cellular immortalization and transformation protocols
(Supplementary Fig. 3A). To assess whether the ability of PRC2
to regulate proliferation in a p53-pRb-independent manner could
be a determinant for cellular transformation, we independently
expressed the H-RASV12 and c-MYC oncogenes in R26Cre-
ERT2, Ezh2 cKO MEFs that were previously immortalized by
SV40ER expression (Supplementary Fig. 2C). First, we assayed
the requirement of Ezh2 for the transformation of MEFs
by expressing H-RASV12 or MYC in SV40ER-immortalized
EZH2 –/– MEFs (condition defined as PRE). By performing
colony and foci formation assays in cell culture or by inducing the
in vivo formation of subcutaneous tumours in immuno-
compromised mice, we demonstrated that loss of Ezh2 activity
prevented cellular transformation (Fig. 4a–c, Supplementary
Fig. 3B–E). Consistent with this, when Ezh2 deletion was
induced in MEFs that were already transformed by H-RASV12
or MYC expression (defined as POST), the neoplastic potential of
these cells was strongly compromised both in cell culture and in
in vivo transformation assays (Fig. 4a,d,e, Supplementary
Fig. 3D,F). Together, these results demonstrate that Ezh2 is
required for the transformation and maintenance of tumour
growth even though the p53 and pRb pathways are inactivated.

Redundant role of PRC1 in proliferation and transformation.
The PRC1 complex regulates the same target genes as PRC2
and shares common biological functions with PRC2, and its
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Figure 2 | PRC2 regulates proliferation and embryogenesis independently of Ink4a/Arf. (a–c) Growth curves measured with crystal violet (l¼ 590 nm,

top panels) and western blot analysis of protein extracts using the indicated antibodies (bottom panels) from Ezh2 fx/fx and Ezh2 �/� Ink4a/Arf �/�
MEFs (left panels) or Ink4a/Arf �/� MEFs infected with Suz12- (middle panels) or Eed- (right panels) specific shRNA-expressing lentiviral vectors

grown at 3% O2. Empty and scrambled-expressing (ctrl) vectors were used as negative controls, respectively. Error bars indicate s.d., n¼ 3. (d) Pictures of

embryos derived from Suz12 þ/� , Ink4a/Arf �/� mating at the indicated developmental stages. PCR genotypes of the single embryos at each
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recruitment to target gene promoters is, by large, dependent on
H3K27me3 deposition40. Thus, we decided to investigate if the
PRC1 complex also affects cellular proliferation in an Ink4a/Arf-
pRb-p53-independent manner. We first measured the expression
of Ring1b (the central catalytic subunit for all forms of PRC1)
during MEF passages under hypoxic and normoxic conditions
(Fig. 1b). We found that Ring1b expression was stable during
passages under hypoxia but was downregulated during passages
of MEFs grown under normoxia (for example, 21% O2) as
senescence occurred. Second, we generated R26Cre-ERT2 mice
that carry a constitutively deleted allele for Ring1a (Ring1a –/–,
Supplementary Fig. 4A) and a Cre-dependent conditional allele
for Ring1b (Ring1b fx/fx)41. MEFs generated at 3% O2 from these
mice and exposed to OHT treatment for 1 week displayed a rapid
cell cycle arrest (Fig. 5a). Compared with PRC2, loss of PRC1
activity induced a significant activation of p16 and p19/Arf
expression that correlated with p53 stabilization and activation
(Fig. 5a). This result suggests that PRC1 repression of Ink4a/Arf
may be largely independent of PRC2 activity, and that the
increased levels of p16 and p19/Arf could still induce a cell cycle
arrest in Ring1a/b KO hypoxic cultures. Thus, we crossed these
mice with an Ink4a/Arf –/– strain and tested if PRC1 activity was
required for the proliferation of MEFs deficient in p16 and p19/
Arf expression (Supplementary Fig. 4B). Consistent with our
previous results, loss of PRC1 activity in Ink4a/Arf –/– MEFs
impaired cellular proliferation under hypoxia conditions
(Fig. 5b). To further exclude that pRb and p53 activation could
still mediate a cell cycle arrest, we inhibited their activity by
expressing SV40ER in Ring1a –/–, Ring1b fx/fx R26Cre-ERT2

MEFs (Supplementary Fig. 2C). As for Ezh2 KO MEFs, the
inactivation of the Ring1b activity by OHT treatment inhibited

cellular proliferation in the absence of a functional pRb and
p53 pathway (Fig. 5c).

To further test if PRC1 activity is required for the transforma-
tion of MEFs and tumour growth, we inactivated Ring1b before or
after H-RASV12 ectopic expression (PRE and POST, respectively;
Fig. 5d). In both cases, colonies, foci formation and in vivo
tumour growth was strongly inhibited by the loss of Ring1a and
Ring1b functions, thus demonstrating that PRC1 is also essential
for tumour growth independent of the pRb-p53 pathway
(Fig. 5e,f, Supplementary Fig. 4C–E). These results were further
supported by the rapid exhaustion of the self-renewing potential
of normal and MYC-transformed hematopoietic stem cells upon
inactivation of PRC1 activity (Supplementary Fig. 4F). Together,
these results suggest the existence of alternative mechanisms of
PcG-dependent regulation of proliferation that could be in
common among different cell types.

PcG proteins regulate S-phase entry and DNA replication.
Since PcGs repressive activity is not exclusively recruited at the
Ink4a/Arf locus but potentially regulates the expression of more
than 2,500 genes in MEFs (Fig. 6a), we hypothesized that addi-
tional proliferation-related genes could be under the direct
transcriptional control of PcG proteins. To our surprise, expres-
sion analyses performed in Ink4a/Arf –/– Ezh2 –/– MEFs iden-
tified only 46 genes that were significantly upregulated upon loss
of Ezh2 activity (Fig. 6a), despite the strong proliferation
impairment displayed by these cells (Fig. 2a). In contrast,
expression analyses performed in Ink4a/Arf þ /þ Ezh2 –/– MEF
identified 792 genes that were upregulated compared with Ezh2
fx/fx MEFs, of which only 31 were found commonly regulated
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Figure 3 | PRC2 regulates proliferation in a p53- and pRb-independent manner. (a–c) Growth curves at 3% O2, measured with crystal violet
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between Ink4/Arf-proficient and KO MEFs (Fig. 6a and
Supplementary Table 1). Moreover, a low proportion of
H3K27me3-enriched genes42 (putative direct targets) was

transcriptionally upregulated upon inactivation of Ezh2 activity
in both wild-type and Ink4a/Arf –/– MEFs (B7% and B0.4%,
respectively). Finally, none of the proteins encoded by the genes
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upregulated in Ink4a/Arf –/– Ezh2 –/– MEFs retained known or
putative functions that could suggest an indirect effect on cell
proliferation. These data strongly suggest that the global
transcriptional regulation induced by loss of Ezh2 in wild-type
cells is likely a secondary event induced by checkpoint activation
and arrest of the cell cycle (Figs 2a and 6a). Indeed, once depleted
of Ezh2, Ink4a/Arf –/– MEFs only modestly regulated global gene
expression and did not significantly activate PcG putative direct
targets (9 out of 2,516), despite presenting strong proliferative
defects (Figs 2a and 6a). Together, these data point towards a
transcriptional-independent mechanism by which PcGs affect
cellular proliferation.

The loss of Suz12 expression from serum-starved quiescent
human fibroblasts impairs the cell cycle re-entry, as measured by
BrdU incorporation38. This result suggests that loss of PRC2
activity could affect the progression of G1 or S-phase. The finding
that PcG proteins can remain associated with chromatin during
DNA synthesis43, together with the localization of PRC2 subunits
at sites of ongoing DNA replication44, potentially suggests a direct
link between PcG activities and DNA replication. To test this, we

synchronized Ezh2 fx/fx and Ezh2 –/– MEFs at the G1/S
boundary with a double-thymidine block, allowed S-phase re-
entry for 30 min in the presence of BrdU and measured DNA
synthesis by flow cytometric analyses (FACS) with a BdrU-
specific antibody. Due to the polyploidy of RASV12 or MYC-
transformed MEFs45,46 (Fig. 6b and Supplementary Fig. 5A), we
restricted BrdU measurements to the 2C population to avoid
cross-contaminations of G1/S boundaries. This analysis
highlighted a reduced number of cells that synthesized DNA in
Ezh2 –/– MEFs, suggesting direct defects of DNA replication in
the absence of PRC2 activity (Fig. 6b). Consistent with this, Ezh2-
proficient cells displayed a high degree of overlap between core
PRC2 (Suz12) and PRC1 (Ring1b) subunits with sites of BrdU
incorporation during S-phase (Fig. 6c). Loss of Ezh2 strongly
reduced this colocalization, impairing Ring1b association with
newly synthesized DNA (Fig. 6c). These results were further
confirmed by proximity ligation assays using Suz12- or Ring1b-
specific antibodies together with Pcna (Fig. 6d), an established
marker of active DNA replication47. Consistent with the
immunofluorescence results, we observed a distinct reduction of
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Ring1b association with Pcna in the absence of Ezh2 expression
(Fig. 6d), strongly indicating a hierarchical recruitment at
replication sites between PRC2 and PRC1 as described for
several target genes48. Finally, to characterize the physical
association of PcG proteins with sites of active DNA
replication, we performed a native isolation of proteins on
nascent DNA (aniPOND)49, demonstrating that components of
PRC2 (Suz12) and PRC1 (Ring1b) directly associate with newly
synthesized DNA in both wild-type ( Supplementary Fig. 5B) and
transformed cells (SV40-RASV12, Fig. 6e).

To test whether PcG deficiency could affect DNA replication,
we performed DNA molecular combing experiments, which allow
the quantitative study of individual DNA replication events50.
Ezh2 fx/fx and Ezh2 –/– MEFs were pulse labelled with thymidine
analogues, first with iododeoxyuridine (IdU) and then with
chlorodeoxyuridine (CldU). DNA was purified and combed on
glass slides, and IdU and CidU incorporation on newly
synthesized DNA fibres was detected by fluorescent staining,
together with anti-single-strand DNA antibodies. First, we
measured the overall velocity of replication forks in the absence
of Ezh2 activity and found that, while Ezh2-proficient MEFs
displayed a unimodal fork speed distribution (centred around a
mean fork velocity of 2.02 kb min� 1), Ezh2 –/– cells displayed an
overall slower velocity (mean velocity 1.79 kb min� 1) and a
bimodal distribution, highlighting the presence of a significantly
slower DNA replication fork population (Fig. 7a). Similarly,
reduced fork speed was also observed in PRC1-deficient MEFs
(Supplementary Fig. 5C). Next, we determined the replication
symmetry by measuring the length of newly synthesized DNA
and comparing the progression of the left and right DNA
replication forks departing in opposite directions from the same
DNA replication origin. We observed three main patterns of
DNA replication: ‘symmetric fork progression’ in which DNA
replication fork progression is comparable between the left and
right forks (with less than 30% difference, Fig. 7b top panel);
‘asymmetric fork progression’, in which the difference between
the two DNA replication forks is more than 30% (Fig. 7b middle
panel); and ‘unidirectional fork progression’ in which only one
DNA replication fork departs from one origin (Fig. 7b, bottom
panel). Following this classification, the analysis of replicating
DNA from Ezh2 fx/fx and Ezh2 KO demonstrated that Ezh2 –/–
MEFs accumulated a greater number of asymmetric and
unidirectional DNA replication forks (Fig. 7c).

To test whether the reduction in fork speed was associated with
asymmetric fork progression within individual replicons, we
selected only the fork speed values derived from replicons,
regardless of their levels of symmetry (all fork speeds in replicons,
Supplementary Fig. 5D). By analysing fork speed only in
symmetric DNA replication operons (and thus excluding
asymmetric ones), we observed a consistent reduction in fork
speed in Ezh2 –/– MEFs as compared with wild-type MEFs
(symmetric fork speed in replicons, Fig. 7d). Overall, these results
show that lack of Ezh2 increases the rate of DNA replication fork
stalling, as demonstrated by increased levels of asymmetric and
unidirectional forks. In addition, Ezh2 inactivation also reduces
DNA replication fork speed, but, surprisingly, this is not
restricted to only stalled (asymmetric) DNA replication forks.

In yeasts, increased DNA replication fork stalling can trigger
firing of dormant origins51. To test this possibility, we analysed
the impact that loss of Ezh2 expression has on DNA replication
origin firing. Accordingly to an increased impairment in DNA
replication, Ezh2 KO cells showed an increased number of active
replication origins, as inferred by the decreased inter-origin
distances of Ezh2 –/– with respect to Ezh2 fx/fx cells (Fig. 7e).
These differences were maintained also when the inter-origin
distances was analysed on DNA fibres longer than three times the

average fibres length52 (Supplementary Fig. 5E). Furthermore,
these results are not a consequence of increased DNA fibres
fragmentation of Ezh2 KO samples, as both Ezh2 fx/fx and Ezh2
–/– DNA preparations displayed overlapping DNA length
distribution (Supplementary Fig. 5F).

Expression of oncogenes, such as RASV12, is known to infer a
strong replicative stress to cells53. Consistent with a positive role
in promoting DNA replication, Ezh2 requirement for cellular
proliferation positively correlated with increased oncogenic
pressure. In SV40-immortalized MEFs, loss of Ezh2 function
resulted in a 1.88-fold proliferation reduction (Fig. 8a,b), but in
H-RASV12-transformed MEFs (which grew 5.39-fold more than
SV40-immortalized MEFs), the proliferation reduction was
enhanced to 8.67-fold (Fig. 8a,b). These results underline the
role of Ezh2 in sustaining the hyperproliferation that is frequently
found in highly tumorigenic cells and highlight an important
correlation between PcG activity and oncogene-induced
replication stress.

Since altered DNA replication parameters, and in particular
DNA replication stalling events, may activate the DNA damage
response, we next monitored DNA damage response signalling at
the single-cell level by studying 53BP1 foci formation in
S-phase54. Ezh2-deficient MEFs present an increased number of
53BP1 foci with respect to wild-type cells (Supplementary
Fig. 6A). Finally, consistent with a defective replication, PRC1-
depleted cells displayed an increased level of damaged DNA, as
demonstrated by a significant increase in tail moment detected in
comet assays (Supplementary Fig. 6B). Overall, these data
demonstrate that PcG activity localizes at sites of DNA
synthesis and plays an important role in regulating the normal
progression of DNA replication.

Discussion
In the present work, we provide genetic proof for the role of
PRC2 and PRC1 in regulating normal and neoplastic cell
proliferation independently of Ink4a/Arf-p53-pRb cell cycle
regulation. This finding has a particular relevance in the context
of tumour development, where loss of Ink4a/Arf, pRb and or p53
response is a hallmark for all type of human tumours1. Ezh2
enzymatic activity has become an appealing pharmacological
target to stop tumour spreading32–34, and our data genetically
support the effectiveness of PcG inhibition for cancer treatment.
For example, it has recently been demonstrated that diffuse large
B-cell lymphomas that carry hyperactivating mutations of Ezh2
(whereby diffuse large B-cell lymphomas frequently present
defective p53 responses55,56), can be efficiently treated with Ezh2-
selective compounds33.

Our findings suggest a scenario in which PcG proteins exert a
parallel control over DNA replication and Ink4a/Arf transcrip-
tion. Loss of PcG activities in normal cells will affect at the same
time cellular proliferation, by favouring the efficient replication of
the DNA, and cell cycle checkpoints, by regulating the
transcription of Ink4a/Arf (Fig. 8c). While loss of Ink4a/Arf
repression can activate cell cycle checkpoints, a defective DNA
replication will trigger a parallel stress response to potentiate
Ink4a/Arf-, pRb- and p53-dependent cell cycle arrest in a positive
feedback loop (Fig. 8c). In the absence of functional checkpoints,
cells will not undergo a cell cycle arrest, but their proliferation will
still be dependent on PcG activity (Fig. 8c). An additional layer of
complexity could come from PcG-dependent transcriptional
regulation of additional targets. This could involve the de-
repression of lineage-specific genes, which would thus be essential
for the maintenance of cellular identity, or the activation of a
common set of targets genes with anti-proliferative functions in
all cell types. Although we cannot exclude these contributions,
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genome-wide transcription analysis performed in Ink4a/Arf –/–
MEFs both before and after Ezh2 deletion did not show
any relevant transcriptional effects despite their compromised
proliferation (Figs 2a and 6a). Our data suggest that changes in

gene expression detected in Ink4a/Arf-proficient cells (wild-type)
upon inactivation of Ezh2 expression (Fig. 6a) are likely an
indirect effect of cell cycle arrest rather than a loss of direct PcG
repression of these genes. Indeed, the expression of the vast
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l2 test. (e) Distribution of inter-origin distances measured for all DNA fibres between Ezh2 fx/fx and Ezh2 �/� cells described in a. Bar plots show the

average inter-origin distances of Ezh2 fx/fx and Ezh2 �/� cells. Error bars indicate s.d. n is indicated in the figure. P-value was determined by l2 test.
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majority of H3K27me3-positive genes was unaltered in the
absence of Ezh2 expression. Similarly, the majority of upregulated
genes in Ezh2 –/– cells were not direct targets of PRC2 activity
(Fig. 6a). These observations are consistent with recent studies
performed in 293T cells (which express the SV40 T-antigen) that
reported minor transcriptional changes upon loss of Suz12
expression57. It is likely that PcG repression of the Ink4a/Arf
locus plays a crucial role in the proliferation of wild-type cells,
thereby preventing checkpoint activation. However, our data
clearly demonstrate that PcG proteins retain additional
proprieties in regulating cell proliferation that do not involve
genes’ transcriptional regulation.

Tumour cells are exposed to continuous replication stresses
imposed by the activity of oncogenic signals. Common examples
are the constitutive activation of RAS signalling or the over-
expression of the MYC proto-oncogene53,58. When replication
stress is coupled to defective cell cycle checkpoints, it results in an
escape from cellular senescence. At the same time, this prolonged
replicative stress promotes the instability of cancer cell
genomes59. This could suggest that the direct role in regulating
DNA replication processes could render cancer cells more
sensitive to PcG inhibition. The finding that PcG proteins
colocalize and favour the progression of DNA replication suggests
a direct implication of PcG activity with the replication of the
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Figure 8 | Model of PcG regulation of cellular proliferation. (a) Normalized growth curves quantified by crystal violet staining of SV40 ER immortalized

and SV40, H-RASV12-transformed Ezh2 fx/fx MEFs treated with ethanol (Ezh2 fx/fx) or 4-OHT (Ezh2 �/� ) for 7 days. Error bars indicate s.d., n¼ 3.

(b) Bar plots indicating the number of population doublings after 5 days of growth curve calculated from a. Fold differences are indicated in the panel.

P-values were determined by student’s t-test. (c) The model highlights the role of PcGs in regulating DNA replication and cell cycle checkpoints in

normal and neoplastic cells. Also, the frequent genetic deletions and oncogenic activities that occur in tumours cells are highlighted, to emphasize the

requirement of PcG activities for the proliferation of cancer cells.
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DNA. PcGs could either play a role in origin firing, as depicted by
the decreased inter-origin distance of Ezh2 –/– MEFs, or they
could be involved in chromatin dynamics during the progression
of the replication forks. Alternatively, PcGs could play a role in
regulating the collision between RNA transcription and DNA
replication, for example through their ability to bind to and
disassemble the RNA polymerase II complex60. From our data, it
is also clear that PcGs directly affect global fork speed
independently of the degree of symmetry, indicating that they
are required in general for fork progression and not exclusively in
some stochastic events (for example, fork stalling). Nevertheless,
it is possible that PcGs could be involved in promoting the
progression of DNA replication in specific chromatin territories
rather than exerting a global effect on replication. Together, our
data provide evidence for a novel role of PcG proteins in
regulating cellular proliferation that further explains the
requirement of PcG activity for the growth of normal and
cancer cells, paving the way for understanding novel mechanisms
of PcG-dependent regulation of cellular proliferation.

Methods
Ethics statement. Experiments involving animals have been done in accordance
with the Italian Laws (D.L.vo 116/92 and following additions), which enforces EU
86/609 Directive (Council Directive 86/609/EEC of 24 November 1986 on the
approximation of laws, regulations and administrative provisions of the Member
States regarding the protection of animals used for experimental and other sci-
entific purposes). Mice have been housed accordingly to the guidelines set out in
Commission Recommendation 2007/526/EC, 18 June 2007 on guidelines for the
accommodation and care of animals used for experimental and other scientific
purposes.

MEF generation and growing conditions. All MEFs were derived from 13.5 dpc
embryos. Rosa26 CRE-ERT2, Ezh2 knockout, Ink4a/Arf knockout, Suz12 knockout,
p53 knockout, pRb knockout Ring1a knockout and Ring1b knockout genes used in
this work have been described elsewhere4,5,36,41,61,62. In all experiments, low
passages MEFs were grown in DMEM medium supplemented with 10% fetal
bovine serum (Euroclone), non-essential amino acids (Gibco), sodium pyruvate
(Gibco) and 1% penicillin/streptomycin (Gibco), in a CO2 incubator (5% CO2)
with reduced oxygen tension (3% oxygen) if not otherwise specified. MEFs were
passaged every 3–4 days. To induce CRE-ERT2 nuclear translocation, cells were
treated with 500 nM of 4-hydroxytamoxifen (4-OHT, Sigma) dissolved in absolute
ethanol (Panreac).

For G1/S synchronization using a double-thymidine block, sub-confluent
asynchronous MEFs were treated with 2 mM thymidine (Sigma) for 12 h, released
with normal medium for 8 h and treated again with 2 mM thymidine for an
additional 12 h.

Beta-galactosidase staining. MEFs (105) were grown in 3% oxygen or 21%
oxygen (and 5% CO2), plated at passage 5 (B20 days from derivation) on 0.1%
gelatin-coated slide chambers and analysed for b-galactosidase positivity using the
senescence b-galactosidase staining kit (Cell Signalling).

Growth curves colony and foci formation assays. Growth curves were per-
formed by plating 5� 104 cells per well in a 6-well plate, or 3� 104 cells per well in
a 12-well plate, in triplicate for each day of the growth curve. For daily measure-
ments, cells were fixed in cold (4 �C) 4% formaldehyde buffered at pH 6.9 (Pan-
reac) for 10 min at room temperature, washed twice with distilled water and air
dried. At the end of each curve, single wells were stained with a 0.1% w/v solution
of crystal violet (Sigma) for 30 min at room temperature. Plates were washed four
times in water and dried overnight. Crystal violet was solubilized in 10% acetic acid
(Carlo Erba), and absorbance measured at l¼ 590 nm. All growth curves were
plated 1 week after OHT administration for the conditional knockout MEFs, and 2
days after antibiotic selection for the lentiviral-infected cells. Growth curves are
representative of at least three independent experiments.

Colony formation assays were performed with triplicate plating of 104 cells in a
10-cm dish. After 12–14 days, cells were fixed and stained with crystal violet as
described above for growth curves.

Foci formation was obtained by plating 4� 106 SV40ER-immortalized MEFs
with 2� 105 SV40ER H–RASV12-transformed MEFs in a 10-cm dish. After 15–20
days, cells were fixed with 10% formaldehyde for 30 min at room temperature,
stained with a 4% Giemsa (Sigma) solution in 1� phsophate-buffered saline
(PBS) for 2 h at room temperature, washed four times in water and air dried
overnight. Foci formation assays are representative of at least two independent
experiments.

Colonies and foci counting were performed with ImageJ counting particle tools.
Equal threshold settings and other parameters were applied to all images.

Immunoblots. For immunoblots, cells were lysed in 300 mM salt lysis buffer
(20 mM Tris-HCl (pH 7.6), 300 mM NaCl, 5% glycerol, 0.2% Igepal). After lysis, the
slurry was centrifuged at 13,000 r.p.m. for 15 min to pellet the material enriched in
chromatin proteins that was not solubilized using 300 mM salt lysis buffer. Histones
were purified from that pellet in 1% SDS, 9 M urea, 25 mM Tris-HCl (pH 6.8),
1 mM EDTA and 0.7 M mercaptoethanol. Following standard SDS–polyacrylamide
gel electrophoresis (using different percentages according to the molecular weight of
the proteins of interest), proteins were transferred to nitrocellulose membranes
(Bio-Rad) and membranes were blocked in Tween 0.1% TBS (T-TBS), 5% milk
powder overnight at 4 �C. Blocked membranes were then incubated in primary
antibody diluted in blocking solution for 2 h at room temperature (for antibodies,
see Supplementary Table 2), washed 3� with T-TBS, and incubated for 1 h in
secondary antibody diluted in blocking solution. Membranes were again washed
3� with T-TBS, ECL (G&E Healthcare) was added to the membrane and the signal
was detected on film (G&E Healthcare)63. All blots were carried out with protein
lysates prepared 7–8 days after 4-OHT administration, or 2 days after antibiotic
selection for the infected cells. Representative uncropped raw scans of blots
generated with the most relevant antibodies used along the different figures are
presented in Supplementary Figs 7–9.

BrdU FACS analysis. Cells grown in the presence of 33 mM BrdU for the indicated
time were fixed with 75% ethanol (Panreac), permeabilized with 2N HCl (Panreac)
for 30 min at room temperature and pH equilibrated using 0.1 M BORAX (Sigma)
for 2 min. Cells were incubated with a mouse anti-BrdU antibody (BD) in 1% BSA,
1� PBS for 1 h at room temperature, washed and stained with a donkey anti-
mouse FITC-conjugated antibody (Jackson). Stained cells were treated with RNase
A (Sigma) followed by DNA staining with 2.5 mgml–1 propidium iodide (Sigma)
overnight at 4 �C. BrdU intensities were acquired by FACS Calibur and analysed
using the FlowJo software. Antibody details are given in Supplementary Table 2.

Viral transductions. Lentiviral transduction was carried out by infection with a
VSV-G pseudotyped lentivirus. Viral particles were produced by calcium–
phosphate transfection of 106 293T cells in a 10-cm dish using 10 mg of viral
delivery vector, 3 mg of VSV-G and 6 mg of D8.2 packaging vectors per dish. After
36 h post transfection, the supernatant containing viral particles was collected,
filtered at 0.45 mm and added to 5� 105 MEFs that had been plated the day before
on a 10-cm dish. Two rounds of infection (B8 h per day) were carried out for each
plate in the presence of 5 mg ml–1 of polybrene (Sigma) followed by selection with
the appropriate antibiotic selection.

Retroviral transductions were carried out by transfecting 10 mg of the viral
vector in 106 Phoenix-Eco cells plated on a 10-cm dish. Infections were carried out
as for lentiviruses with the introduction of two additional round of infection (two
per day) without polybrene. The vectors used for infections are listed in
Supplementary Table 3.

Embryo development. To obtain Suz12 –/–, Ink4a/Arf –/– double KO embryos,
Suz12 þ /– and Ink4a/Arf –/– were mated, and embryos analysed at the indicated
time from the detection of vaginal plugs (referred as 0.5 dpc). The morphology of
each embryo was recorded with a stereomicroscope and genotyped as previously
described61.

Nude mice tumour formation. 106 cells were subcutaneously injected in each
flank of 6-week-old female nude athymic mice (nu/nu) (Charles River laboratories)
in 100ml of 1� PBS. Mass growth was measured every 2–3 days from the injection
using an electronic caliper. Mice were killed after 14–15 days from injection and
the tumour masses were isolated and weighed using an electronic scale.

Immunofluorescence. Indicated MEFs were seeded on 0.1% gelatinized glass
coverslips and treated as indicated. To prepare nuclei on coverslips, cells were
treated with cold pre-extraction buffer (10 mM Tris-HCl pH 7.6, 100 mM NaCl,
2 mM MgCl2, 0.3 M sucrose and 0.25% Igepal) for 10 min at 4 �C. Nuclei were fixed
at –20 �C with 100% methanol (Panreac) for 10 min. Nuclei were further incubated
with 20 mU ml–1 of DNaseI (NEB) for 30 min at 37 �C to unmask incorporated
BrdU. Fixed nuclei were incubated with primary antibodies diluted in 0.1%
Tween-TBS for 1 h at room temperature, washed and incubated with secondary
antibodies conjugated with different fluorophores. Nuclei were counterstained with
40,6-diamidino-2-phenylindole and embedded in anti-fade glycerol (DABCO).

Images were acquired using a Leica SP2 confocal microscopy. Mender’s
colocalization coefficient was calculated on the entire images, Z-stacks, using the
JACoP tool of the ImageJ software.

Antibodies and reagents are listed in Supplementary Table 2.

Microarray expression analyses. RNA from two independent OHT or ethanol
treatments of Ezh2 fx/fx Ink4/Arf –/– MEF, and the RNA from one OHT or ethanol
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treatment in MEF Ezh2 fx/fx were hybridized independently to Mouse Gene 1.0 ST
Affymetrix Arrays. Signals were RMA-normalized and analysed using Affy and
limma bioconductor packages in R. Affy IDs were annotated using the mogen-
e10sttranscriptcluster.db package. Probeset with a log2(FC) 40.5 expression dif-
ference and a P-value less than 0.05 were considered as differentially expressed. The
microarray data have been deposited in the GEO database (GSE48520).

DNA combing. DNA combing was performed as previously described50,64. Briefly,
cells were sequentially labelled for 20 min with 25 mM IdU followed by 20 min of
200mM CldU incubation in the cell culture medium. Labelled cells were embedded
in agarose plugs, proteinase K-treated, DNA extracted and combed on silanized
coverslips. DNA fibres were incubated with a mouse anti-ssDNA antibody
(MAB3034, Chemicon) followed by anti-mouse IgG2a Alexa 546 coupled
secondary antibody staining (Molecular Probes). Incorporation of halogenated
nucleotides was detected with specific antibodies (IdU: mouse anti-BrdU, Becton
Dickinson; CldU: rat anti-BrdU, Abcam) and visualized with appropriate
secondary antibodies (goat anti-mouse IgG1-Alexa Fluor 647, Molecular Probes;
goat anti-rat- Alexa Fluor 488, Molecular Probes). Images were acquired
automatically with a spinning disk confocal microscope, and the individually
labelled DNA molecules were manually measured with ImageJ. Antibodies used in
the analyses are listed in Supplementary Table 2.

Comet assay. The comet assay was performed on Ring1a –/–; Ring1b fx/fx
R26CRE-ERT2 MEF and Ring1a –/–; Ring1b fx/fx R26CRE-ERT2 7 days after
treatment with ethanol or 4-OHT, using a commercially available kit from
Trevigen, 4250-050-K and following the neutral assay protocol.

aniPOND. Accelerated native isolation of proteins on nascent DNA (aniPOND)
has been carried out as described by Leung KH et al.49 Briefly, wild-type and SV40,
H-RASV12-transformed MEF (around 3� 107 cells for each experimental
condition) were pulsed with 10 mM of EdU (Life technologies, A10044) for 20 or
10 min, respectively. Click-IT reaction was performed using biotin azide (Life
Technologies, B10184) or dimethylsulphoxide as a negative control. Chromatin
was sonicated following the procedure described by Leung KH et al.49 Biotinylated
Edu was captured overnight at 4 �C using streptavidin-coated magnetic beads (Life
Technologies, 65602). Chromatin proteins bound to EdU were eluted and analysed
by immunoblot.

Proximity ligation assay. Cells were prepared as described in the immuno-
fluorescence section. The assay was developed following the manufacturer’s
instructions (Duolink manual from Olink Biosciences). Briefly, cells were incubated
with an anti-mouse PLUS (Sigma, DUO92001) and an anti-rabbit MINUS (Sigma,
DUO92005) for 1 h at 37 �C, washed twice and then incubated with the ligase mix
for 30 min at 37 �C (Sigma, DUO92014). After the ligase reaction, cells were
washed twice and then incubated with the polymerase reaction containing a green
intercalating dye for 100 min at 37 �C (Sigma, DUO92014). Finally, cells were
washed twice and stained with 40 ,6-diamidino-2-phenylindole staining to visualize
the nuclei (see immunofluorescence description). Pictures were taken using con-
focal microscopy (see immunofluorescence description). Cells were considered
positive if at least three dots per cells were observed after merging all images of
the Z-stack.

Hematopoietic stem cells and methylcellulose assay. Bone marrow cells col-
lected from the femur and tibia of Ring1a –/–; Ring1b fx/fx R26CRE-ERT2 mice
were subjected to lineage negative (Lin–) enrichment using the hematopoietic
progenitor enrichment kit (StemCell Technologies) to remove cells expressing
differentiation antigens. Lin– cells were cultured in DMEM (Lonza) complemented
with 10% fetal bovine serum for mouse myeloid colony-forming cells (scFBS
StemCell Technologies), 100 ng ml–1 ) Stem Cell Factor (SCF) (Peprotech),
20 ng ml–1 recombinant IL3 (Peprotech), 20 ng ml–1 IL6 (Peprotech) and infected
using a lentiviral-expressing vector EF1a-c-MYC. After two rounds of spin-infec-
tion using RetroNectin-coated plates and three days of 2 mg ml–1 puromycin
selection, 5� 103 Lin– cells were plated in each 35-mm dish and mixed with 1.2 ml
of Metho cult GF M3434 (StemCell Technologies) in the presence of either 500 nM
4-OHT (Sigma) or ethanol (Panreac) as a control. After 7 days, colonies were
counted and 5� 103 cells derived from the colonies were re-plated two additional
times in methylcellulose.

Tip tail fibroblasts. Mice Ink4a/Arf –/–; Ezh2 fx/fx were killed, and 4–5 cm of the
tail was cut and collected in cold 1� PBS (Lonza). After sterilization (with
ethanol), the tail was completely dried and incised with a razor for skin removal.
The tail was diced in small pieces and then plated in six-well, 0.1% gelatin-coated
plates in the same medium as described for MEFs.

Statistical analyses. Statistical analyses were carried out with R packages.
P-values for growth curves and in vivo tumour growth were determined by com-
puting the area under curve (AUC) using a kulife package applied for the

Student’s t-test between AUCs of two samples or groups. P-values for colonies and
foci counts were generated using a paired t-test. P-values for tumour mass weights
were generated using a Mann–Whitney test. P-values obtained for DNA combing
analyses were determined with a l2 test.
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