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Abstract 

The interaction of carbohydrates with a variety of biological targets, including antibodies, 

proteins, viruses and cells are of utmost importance in many aspects of biology. Glycan 

microarrays are increasingly used to determine the binding specificity of glycan-binding 

proteins. In this study, a novel slide is reported for the fabrication of glycan arrays that 
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combines the higher sensitivity of a layered Si-SiO2 with a novel approach to form a 

polymeric coating easily modifiable by subsequent click reaction. The alkyne-containing 

copolymer, adsorbed from an aqueous solution, produces a coating by a single step procedure 

and serves as a soft, tridimensional support for the oriented immobilization of carbohydrates 

via azide/alkyne Cu (I) catalyzed "click" reaction.  The equilibrium and kinetics parameters 

of the interaction of Concanavalin A with eight synthetic glycans were determined using 

fluorescence microarray and Reflective Phantom Interface (RPI), a recently proposed optical 

label-free detection approach. The enhancement of fluorescence provided by the Si-SiO2 

slides enabled to extend the limit of detection at lower surface densities of lectins, in turn 

enabling the study of the interaction for a wide range of glycans surface density. Equilibrium 

dissociation constants of a few nM were extracted for multivalent glycan-lectin binding, 

mimicking the conditions of biological membranes, whereas hundreds of nM were observed at 

the lower glycan surface densities. 

 

1 Introduction 

The use of high-throughput microarrays is gaining increasing acceptance as a method for the 

screening of libraries of biomolecules, such as DNA, proteins, peptides and sugars [1-4]. 

Among the different classes of molecules that can be assayed in multiplex format by microarray 

technology, glycans are of utmost importance as their interaction with a variety of biological 

targets, including antibodies, proteins, viruses and cells is crucial in many biological processes [5]. 

The array format is also of value in the quest for unnatural lectin ligands, such as glycomimetic 

molecules, that can be used to antagonize the action of specific lectins in natural settings. 

Glycomimetic antagonists have been developed for a limited number of lectins, mostly by trial and 

error processes, supported by molecular modeling of ligands and/or of ligand:lectin complexes [6-

10]. Such molecules find application as tools to interrogate the glycobiology of human lectins, 

which is still largely unknown in its molecular details, and can also be used as leads in the 
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development of antibacterial, antiviral and anti-inflammatory drugs. Drug discovery programs 

based on glycomimetics are greatly facilitated by the availability of glycomimetic arrays, which can 

be interrogated with individual lectins to identify specific leads. Glycan arrays have become widely 

available through public initiatives, such as the consortium for functional glycomics, and other 

similar consortia in Europe and Japan, and many groups use them to identify natural targets of 

newly discovered sugar-binding proteins (lectins) and to assess their specificity.  

In glycan microarray technology, the slide surface chemistry has significant impact on ligand 

presentation, background noise, spot size, morphology and reproducibility. All these factors 

influence lectin-carbohydrate recognition. One of the key issues in the context of a multiplex assay 

is the ability to immobilize a variety of different carbohydrates on the same surface, with proper 

spacing and orientation [11-13]. Mono- and oligosaccharides suitably immobilized on a solid 

surface can reach a high local concentration, miming the multivalent presentation of glycans on 

proteins or cell surfaces, hence yielding carbohydrate-protein interactions much stronger than those 

typically measured for a monovalent format [14,15]. In this context, a soft and biologically inert 

polymer coating providing adequate accessibility to the immobilized glycans and enabling to 

control their surface density would be highly beneficial. 

Cu-catalyzed azide/alkyne cycloaddition (CuAAC, click chemistry) has received a great deal of 

attention since its discovery, especially within glycobiology where several examples of 

carbohydrate arrays utilizing CuAAC have been published [16-21]. Most of the examples refer to 

'clickable' self-assembled monolayers (SAMs) on glass and gold substrates [20,21] whereas only a 

few examples of polymer-modified microarray slides allowing Cu(I)-catalyzed azide–alkyne 

cycloaddition of probes have been reported [22-25] and none of them has been used in glycan 

microarray technology.   

Herein we present a one-step method to functionalize glassy surfaces with alkynes using a polymer 

that produces a soft three-dimensional (3D) coating by a facile 'dip and rinse' method.  The alkyne 

groups can subsequently be linked to azide-containing carbohydrates using Cu-catalyzed 
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azide/alkyne cycloaddition (CuAAC, click chemistry) [26,27]. Both azides and alkynes are rare in 

biological systems and have been shown to be highly inert under biological conditions [28]. The 

advantages of a high quality click chemistry immobilization based on a 3D polymer coating are 

combined with the high fluorescence sensitivity and superior signal-to-noise ratio of a Si-SiO2 

substrate. The proposed approach enables the attachment of complex sugars on a silicon oxide 

surface via click chemistry by a method that does not require skilled personnel and chemistry 

laboratories.  

Eight α-mannoside derivatives, immobilized on the polymer-modified substrate, were screened 

against the mannose-binding lectin Concanavalin A (Con A), using α -mannose as the positive 

control and β-galactose as the negative control. The fluorescence array analysis showed specific 

interactions of the mannosylated support with ConA with a high signal-to-noise ratio. The same 

surface immobilization strategy was also used on the sensing surface of the Reflective Phantom 

Interface (RPI) analytical platform [29]. This recently proposed optical label-free technique enables 

real-time monitoring of surface interactions; hence it is suited for the determination of binding 

constants and kinetics parameters.  The detection principle is based on the simple measurement of 

the intensity of light reflected from a surface with very low reflectivity. At the highest surface 

densities of mannose derivatives, dissociation constants on the order of 1 nM were calculated from 

both the fluorescence microarray experiments and the RPI method. The equilibrium dissociation 

constant (KD) of the interaction was found to strongly depend on the surface concentration of 

glycans.  The fluorescence detection enhanced by the Si/SiO2 substrates enabled to investigate 

binding properties of Concanavalin A at low glycan density and to determine surface equilibrium 

constants in solution-like conditions. 
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2 Materials and methods 

2.1 Materials 

Trimethylsilylpropyn-1-ol, triethylamine (TEA), diethyl ether (Et2O), methacryloyl chloride 

(CH2CCH3COCl), dry tetrahydrofuran (THF), α,α’-azoisobutyronitrile (AIBN), petroleum ether 

(EtP), potassium carbonate (K2CO3), copper sulphate penta-hydrate (Cu2SO4∙5H2O), ascorbic acid, 

biotinylated ConcanavalinA (ConA), streptavidin-cyanine3, phosphate saline buffer (PBS), Bovin 

Serum Albumin (BSA), trizma base (Tris), chloridric acid (HCl), sodium chloride (NaCl), Tween 

20, manganese chloride (MnCl2), calcium chloride (CaCl2), sodium hydroxide (NaOH), N-(2-

hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) (HEPES) were purchased from Sigma Aldrich 

(St. Louis , MO, USA). Cyanine3 azide was purchased from Lumiprobe GmbH (Feodor-Lynnen 

Strasse 23, 30625 Hannover, Germany). All solvents were used as received. 

Silicon oxide chips with a 100 nm thermal oxide layer were bought from Silicon Valley 

Microelectronics (Santa Clara, CA, USA). The glass substrates with a silicon dioxide anti-reflection 

layer used in the RPI experiments were provided by ODL S.r.l. (Brembate Sopra, Bergamo, Italy). 

An Agilent 1200 series liquid chromatography system, (Agilent Technologies, Santa Clara, CA, 

USA) was used to carry out GCP. GPC columns were from Schodex (New York, NY, USA); 

MALLS system was purchased from Wyatt Technology (Santa Barbara, CA, USA).  

 

2.2 Polymer synthesis 

2.2.1 Synthesis of 3-trimethylsilyl-prop-2-ynyl methacrylate (PMA)  

According to Ladmiral V. and co-workers [30] 3-(trimethylsilyl)prop-2-yn-1-ol (2.31 ml, 15.6 

mmol) and triethylamine (2.83 ml, 20.27 mmol) were dissolved in Et2O (20 ml) and cooled to -

20°C. A solution of methacryloyl chloride (1.81 ml, 18.56 mmol) in Et2O (10 ml) was added drop 

wise over 1 hour. The mixture was stirred at -20°C for 30 minutes and then overnight at room 

temperature. Ammonium salts were removed by filtration and the volatiles were removed under 
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reduced pressure. The yellow oil residue was purified by flash chromatography (EtP:Et2O=50:1, 

Rf= 0.39) (2.48 g, 12.64 mmol, Yield 81%). 

1H-NMR (400 MHz, CDCl3): δ = 0.18 (s, 9H, Si(CH3)3); 1.97 (m, 3H, CH3C=CH2); 4.76 (s, 2H, 

OCH2); 5.62 (m, 1H, C=CHH); 6.17 (m, 1H, C=CHH). 

 

2.2.2 Synthesis of copoly(N,N-dimethylacrylamide (DMA)- 3-trimethylsilyl-prop-2-ynyl 

methacrylate (PMA)- 3-(Trimethoxysilyl)propyl methacrylate (MAPS)). 

The polymer was synthesized via a random radical polymerization in anhydrous tetrahydrofuran 

with a 20% w/v total monomer concentration. The DMA was filtered on aluminium oxide to 

remove the inhibitor. The molar fraction of the monomers DMA, PMA and MAPS was 97:2:1.  

The DMA and PMA monomers were dissolved in dried tetrahydrofuran (THF) in a round-bottom 

flask equipped with condenser, magnetic stirring. The solution was degassed by alternating argon 

purges with a vacuum connection, over a 10-min period. MAPS and α,α’-Azoisobutyronitrile (this 

latter at 2mM final concentration) were added to the solution, which was then warmed to 65 °C and 

maintained at this temperature under a slightly positive pressure of argon for 2 h.  

After the polymerization was completed, the solution was first diluted to 10% w/v with dry THF 

and the polymer precipitated by adding petroleum ether (10 times the reaction volume). The 

product, a white powder, was filtered on Buckner funnel and dried under vacuum at room 

temperature.  

The protective trimethylsilyl groups were removed in water under basic condition, using K2CO3 

(9mM) at pH 9. The reaction mixture was stirred at room temperature for 1h, then the polymer was 

dialyzed, lyophilized and the white powder obtained was stored at -20 °C.  

 

2.2.3 Polymer characterization by Gel Permeation Chromatography 

The size of each polymer was characterized using Gel Permeation Chromatography in tandem with 

an UV-detector (λ=214nm). 
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A JASCO 880 PU liquid chromatography system, consisting of an isocratic pump to control mobile 

phase flow throughout the system connected to a JASCO UVIDEC-100-III UV detector. 

ChromNAV Chromatography Data System -JASCO was used to analyze the sequence of sample 

injection and to calculate the calibration curve of polyacrylamide standards.  

The GPC setup consists of four Shodex aqueous GPC columns in series: OHpak SB-G (guard 

column), OHpak SB-804M HQ, OHpak SB-803 HQ, and OHpak SB-802.5 HQ. Each column is 

packed with a polyhydroxymethacrylate gel and connected in series with a decreasing exclusion 

limit. The columns were maintained at 40oC throughout each run using a thermostated column 

compartment.  

After the polymer sample is fractionated by GPC, the sample flows into a UV-detector. The 

molecular weight of the polymer was obtained by using a calibration curve. 

Copoly(DMA-PMA-MAPS) sample was diluted using the GPC mobile phase (GPC buffer: 100 

mM NaCl, 50 mM NaH2PO4, pH 3, 10% v/v Acetonitrile) to a concentration of 2.66 mg/ml and the 

sample was run three times through the GPC-UV system to test for reproducibility. Each run 

injected 20 μL of sample to be analyzed and the flow rate through the system was held at a constant 

0.3 mL/min.  

 

2.3 Goniometry 

Contact angle measurements were collected via the sessile drop method using a CAM200 

instrument (KSV Ltd), which utilizes video capture and subsequent image analysis. Deionized 

water was used, and its purity was confirmed by correlating the measured surface tension based on 

the pendant drop shape to the literature values for pure water (72 mN/m at 25°C). 

 

2.4 Dual Polarization Interferometry (DPI) 

Dual polarization interferometry (DPI) measurements were conducted using an Analight Bio 200 

(Farfield Group, Manchester, UK) running Analight Explorer software.  
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2.5 Fluorescence glycan microarray experiments 

Four hundreds pL of each glycan were spotted at various concentrations as detailed in the text from 

an aqueous solution of Cu2SO4 · 5H2O (2.5 mM) and ascorbic acid (12.5 mM) with a piezoelectric 

spotter (SciFlexArrayer S5, Scienion, Berlin Germany). The immobilization reaction took place 

during an overnight incubation in a humid chamber at room temperature. The printed slides were 

sequentially washed with PBS buffer for 10 minutes with DI water and dried by a nitrogen stream. 

The arrayed slides were then incubated with biotinylated α-mannose-binding lectin Concanavalin A 

(ConA) in the lectin binding buffer (LBB, 50 mM HEPES, pH 7.4, 5mM MnCl2, 5 mM CaCl2) in 

the presence of BSA (0.2 mg/ml). After 2 hours of incubation at room temperature on a lab shaker, 

the slides were washed 10 minutes in washing Buffer (0.05 M Tris/HCl pH9, 0.25 M NaCl, 0.05% 

v/v Tween 20), rinsed in DI water and dried by a nitrogen stream. A final incubation of 1 h with 

2μg/ml Cyanine3 labelled Streptavidin in PBS (Phosphate Saline Buffer) in a humid chamber at 

room temperature under static condition enabled the fluorescence detection of the surface bound 

ConA by means of a scanner (ProScanArray scanner from Perkin Elmer, Boston, MA, USA) used at 

70% of laser power and 60% of photomultiplier (PMT) gain. The fluorescence intensities of 11 spot 

replicates were confirmed by three experiments that provided the same fluorescence intensities for 

each glycomimetic, with a standard deviation lower than 5%. The experimental conditions used 

during the incubation were optimized to ensure attainment of the equilibrium.  

 

2.6  Reflective phantom interface (RPI) experiments 

The affinity and the kinetics of the interaction between two mannose derivatives and ConA were 

characterized by Reflective Phantom Interface (RPI), an optical label-free method, whose 

theoretical and technical details are given elsewhere [29,31]. A glass prism with an antireflection 

layer, functionalized with the copolymer and glycans 9 and 10, was placed into a cuvette containing 

a magnetic stir bar and the sensing surface was illuminated by the light of a LED at 595 nm. The 

image of the reflected light was acquired by a CCD camera, while increasing concentrations of 
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biotinylated ConA were added in a 10 mM Hepes buffer at pH 7.4, containing 2 mM CaCl2, 2 mM 

MnCl2, 150 mM NaCl and 0.2mg/ml BSA at room temperature. The brightness u(t) of each spot as 

a function of time was converted into the normalized surface density of target molecules  = 

(u(t)/u0 – 1)1/2, where u0 is the brightness of the bare chip surface. The binding curves obtained at 

different concentrations c of ConA were fitted with exponential functions, whose characteristic 

rates, ((c),  and amplitudes, A(c), were used to extract the values of the dissociation (koff) and 

association (kon) kinetic constants and of KD = koff / kon, being  = kon c + koff and A = A0/(1 + KD 

/c). 

 

3 Results and discussion 

3.1 Design of the polymer structure and substrate selection  

The performance of a solid phase sensor is dictated by a number of factors of which the most 

important are: the coupling efficiency of the analyte to the surface, the strength of recognition, and 

the method of detection. The microarray technology proposed by this work brings about significant 

improvements to these three factors, by exploiting a novel 3D, soft functional coating on Si/SiO2 

slides. 

Hydrophilic 3D coatings have found wide application in solid phase assays due to their ability to 

maximize the probe loading capacity and to simulate an aqueous environment [32]. Furthermore, 

they can mitigate the steric effects that alter the access of carbohydrate ligand to the protein binding 

pockets, spacing the targets from the surface and conferring to the interface mechanical properties 

similar to those of soft biological tissues.  

Concerning the method of detection, by replacing glass with Si/SiO2, slides a strong fluorescence 

enhancement is obtained. As previously shown, the optical interference (OI) phenomenon induced 

by layers of well-defined thickness and different refractive index, maximizes photo-absorption of 

the dye molecules in the vicinity of the surface and enhances the light emitted towards the detector 

[33]. The Si/SiO2 microarray slides display fluorescence intensity 4 times higher than that of 
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standard glass slides (See Figure 1S).  

The polymer coating introduced in this work, named  copoly(DMA-PMA-MAPS), is obtained from 

the polymerization of N,N-dimethylacrylamide (DMA), 3-trimethylsilanyl-prop-2-yn methacrylate 

(PMA) and 3(trimethoxysilyl)-propylmethacrylate (MAPS) (Figure 1). The GPC-MALLS analysis 

of copoly(DMA-PMA-MAPS) indicates that the polymer has a molecular weight (Mw) of 4.2 × 104 

g/mol and polydispersity of 2.6. This new copolymer is based upon a copolymer introduced by our 

group to form a hydrophilic 3D coating for microarray [34] on a variety of materials. As a general 

rule,  in order to perform as an efficient 3D coating array substrate the copolymer must have 1) a 

segment that interacts with the surface by weak, non covalent interactions such as hydrogen 

bonding, Van der Waals or hydrophobic forces (polymer backbone), 2) a pending hydrolysable 

silane functionality to promote condensation of the polymer with surface silanols and 3) chemically 

active monomers whose reactivity is selected on the basis of the reactivity of the molecules that 

have to be immobilized. In this work the reactive monomer bears an alkyne moiety, to allow 

immobilization of azide-modified glycans by azide alkyne Huisgen cycloaddition using a Copper 

(Cu) catalyst at room temperature (Figure 2). Binding glycans to the surface via click chemistry 

offers a number of advantages [22,35,36] over classical nucleophilic reactions between amino 

modified probes and surface-active esters. From the surface point of view, the stability of an alkyne 

group is far higher than that of an active ester, which typically needs to be freshly prepared right 

before the immobilization reaction. Additionally, when building arrays of natural glycans, the 

selectivity of the attachment point is guaranteed, as there are no natural glycans that contain azido 

functions. Last but not least, when building microarrays of glycomimetics for medicinal chemistry 

purposes, the chemoselectivity of the Huisgens cycloaddition is more tolerant of functional groups 

that can be explored in the mimics. The molar fraction of the three monomers and the coating 

protocol have been optimized starting from the conditions initially used with the parent 

copoly(DMA-NAS-MAPS). The polymer, as powder, is stable for one year whereas its coating 

solutions must be used within few hours.  Replacing NAS with PMA does not alter either the self-



11 
 

adsorbing properties of the polymer or its physical characteristics, therefore polymer concentration, 

additives and temperatures used in the coating process were similar to those optimized for the 

parent copolymer (DMA-NAS-MAPS) in previous works  [31-34]. The coating process requires 

immersing the slides in a 1% w/v solution of copoly(DMA-PMA-MAPS) in 0.8M ammounium 

sulphate for 30 minutes. Following incubation with the coating solution, the slides were rinsed in DI 

water, dried with nitrogen flow and then cured at 80°C under vacuum for 15 minutes. Before the 

coating, the surface was pre-treated for 10 min with oxygen plasma in a Plasma Cleaner from 

Harrick Plasma (Ithaca, NY, USA) with the oxygen pressure set at 1.2 Bar and the  power at 29.6 

W. The film was characterized by contact angle measurements both before and immediately after 

the coating deposition. Significant changes of the surface hydrophilicity resulting from the presence 

of a surface polymer layer were observed. The water contact angle could not be measured on an 

uncoated silicon chip after 10 minutes of plasma oxygen treatment because of its extremely high 

hydrophilicity (i.e. complete wetting). Thanks to this characteristic, the formation of a polymer 

coating is immediately evident because the water droplet contact angles increase on the coated 

surfaces from 0° to 33° ± 0.78 °C (the obtained contact angle value is the average of five 

measurements on five different chips).  

The physical parameters of the coating were characterized using dual polarization interferometry 

(DPI) [37]. DPI is currently one of the most powerful label-free biosensing techniques in 

heterogeneous format that allows measuring refractive index and thickness values of a thin film 

almost simultaneously by measuring two different interference fringe patterns. These patterns can 

be mathematically resolved into refractive index and thickness values, and hence, the final outcome 

is a measurement in real time of both parameters. In this technique, a silicon chip (AnaChipTM) with 

an oxynitride surface treated with oxygen plasma was inserted into the fluidic compartment of an 

Analight Bio 200 (Farfiled, UK) and a polymer solution (1% w/v in a 0.8M  ammonium sulphate 

solution ) was slowly introduced at a flow rate of 6 μl/min for a total time of 15 minutes into the 

channels of the chip. The flow was then stopped, and the solution was let in contact with the surface 
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for 30 minutes before washing the channel with water at a flow rate of 50 μl/min. As shown in 

Table 1, the polymer layer has a thickness of about 15 nm and it is massively hydrated as indicated 

by its low density.  

The saturation density of immobilization sites on the polymer was estimated measuring the 

fluorescence after spotting, immobilization and washing of an azide-modified Cyanine-3 dye (1, 

Figure 3), following a procedure described by Liang et al  [38]. A value of about 3 molecules/nm2 is 

obtained for printing concentration higher than 500 μM (ESI, Figure 3S). The surface density of the 

molecules immobilized in a spot shows an approximate linear dependence with the dye 

concentration in the spotting solution, as reported in Figure 4. The enhancement of fluorescence 

sensitivity provided by the Si/SiO2 slides enables the detection with high signal-to-noise ratio of 

rather low amounts of dyes onto the surface. Less than 0.05 molecules/nm2 are clearly imaged with 

the commercial scanner employed in this study, corresponding to a printing concentration of 0.5 μM 

of Cy3 dye.  

 

3.2 Determination of the equilibrium dissociation constant (KD) 

The eight α-mannose derivatives 2-9 shown in Figure 3 were spotted on the surface of a polymer 

coated Si/SiO2 slide at 50 μM concentration. α-mannose (10) and β-galactose (11) were used as 

positive and negative controls, respectively, whereas the Cy3 derivative was used as a reference to 

facilitate the imaging process. Concanavalin A (ConA) was chosen in this work, due to its well 

characterized affinity for mannose and glucose derivatives [39, 40].  

The surface-immobilized glycans, incubated with 100 ng/ml (0.943 nM) of biotinylated ConA and 

detected with Cy3-labelled streptavidin, show a variable degree of fluorescent intensity (Figure 5a) 

depending on their affinity for ConA. The interaction between α-mannose derivatives and ConA 

was specific as confirmed by the lack of fluorescence on the spots of β-galactose (11), the negative 

control. Spotted slides are stable for months when stored in a dry environment.  The graph of Figure 

5b reports the fluorescence intensity observed for different glycan spots. Except for ligand 5, all the 
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mannosides of this study as well as the control 10 have similar affinities for ConA, as expected 

from their strong structural similarities.  On the contrary, ligand 5 does not seem to interact, 

possibly due to steric hindrance from the large, lipophilic amide groups. The analysis reported 

above provided only a qualitative estimate of the affinity between the α-mannose derivatives 

immobilized onto the surface and the selected lectin. In order to measure the equilibrium 

dissociation constant (KD) of the interaction a more complex experiment was required. According 

to a method previously reported by Liang and co-workers [38], nine slides were spotted with 50 μM 

and 10 μM aqueous solutions of 11 replicates of the glycomimetics 2-11 (Figure 3). The chips were 

incubated with ConA solutions of increasing concentration, from 0.05 nM up to 9.4 nM. For each 

glycan, average values of fluorescence were plotted against ConA concentrations (logarithmic 

scale) and the curve was fitted as a sigmoidal/growth function using OriginPro-8 fixing the 

parameter p=1 and the parameter A1=0. Typical curves of high (3) and low affinity (5) 

glycomimetics are shown in Figure 4S (See ESI). The values of the equilibrium dissociation 

constant KD extracted from the fit, reported in Table 2, provide a quantitative estimation of the 

affinity between the glycomimetics and ConA, when the interaction occurs on a surface at a given 

ligand density. These values are considerably lower than those reported in the literature for 

interactions taking place in solution [41], but consistent with values determined by other authors 

based on surface interactions [38]. The observed discrepancies between the values of KD obtained 

in solution or on surface could be ascribed to the high local concentration of glycans that are likely 

to behave like cell-surface glycoconjugates [42, 43] and bind lectins through multiple, simultaneous 

interactions. Others have reported this effect in different experimental conditions [44,45]. ConA is 

mostly tetrameric [46] at pH 7.4, and, therefore, it has more than one binding site: a polyvalent 

presentation of the glycans is required to activate the intrinsic avidity of the lectin (Table 3).  

 

3.3 Effect of surface density of glycans 
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The enhanced sensitivity of the array slides proposed here enables to investigate the effect of probe 

density on ligand avidity [34]. Unlike most glass slides [38], where the detection of fluorescence 

signals at low surface density is rather challenging, the sugar interaction with ConA could be 

evaluated on Si/SiO2 slides in conditions were the glycans are spaced enough to mimic the 

monovalent interaction typical of an assay with free glycans in solution.   

We investigated this matter using the α - mannoside (10) and the α-mannose derivative (9) as 

probes.  Both glycans were printed on a copoly(DMA-PMA-MAPS) coated surface at four different 

concentrations and incubated with a wide range of ConA solutions (from 0.450 nM up to 13.4 μM). 

The density of probes immobilized in each spot as a function of their concentration in the spotting 

solution was assumed to be similar to that estimated using an azido-modified Cyanine 3 dye (details 

are reported in the Supplementary information file). In Figure 5S, typical dose response curves of 

fluorescence versus ConA concentrations at various glycan surface densities are depicted for 10. 

Similar curves were obtained for 9. By extrapolating KD from these curves, it is evident that as the 

glycan surface density decreases also the affinity decreases (see Table 3). However, in none of the 

experimental conditions used here we were able to reproduce values of KD higher than a few 

hundreds nM, whereas values in the range 0.3 – 10 μM were reported for competitive assay in 

solution [38], or using classical SPR analysis [47] with surface-immobilized lectins.  The 

discrepancy of KD values determined in this work and by SPR highlights the importance of the 

surface environment on interactions taking place at the solid-liquid interface.    

To confirm the increased avidity of glycans when immobilized on the proposed surface we have 

measured the strength and the kinetics of the interaction by an innovative label-free method 

[29] named Reflective Phantom Interface technology. The method enables quantifying the amount 

of target molecules bound to probes immobilized on a surface that has extremely low intrinsic 

reflectivity in an aqueous solution. The sensor, a glass chip with an anti-reflection layer of silicon 

dioxide, was coated with copoly(DMA-PMA-MAPS) and spotted with the mannose derivatives, 

similarly to the fluorescence microarray experiments. The choice of this platform instead of the 
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more consolidated Surface Plasmon Resonance is motivated by the use of the exact same 

immobilization chemistry in the two different platforms which wouldn't be possible with SPR that 

reqυires a gold sensor. The  glycans 9 and 10 were iµmobilized on glass chip treated with anti-

reflective SiO2 layer and coated by the polymer in spots with about 200 mm diameter obtained with 

a 5mM spotting solution. The addition of ConA in the buffer solution in contact with the surface in 

the measuring cuvette produced a real time increase of reflectivity related to the amount of protein 

binding to the mannose derivatives onto the surface. Figure 6a [48] shows the time dependent 

increase of the normalized surface density on top of the spots, while the concentration of ConA is 

brought from 0 to about 50 nM. The amplitudes and the characteristic times of each binding curve 

were extracted from the fit with exponential growth functions and plotted as a function of the 

concentration in Figure 6b. From their fit, the values of the kinetic dissociation constant koff and the 

value of KD = Koff / kon were obtained, yielding very similar values for the two glycans: KD = 4.9 

±0.7 nM and koff = 1.88 ±0.4 10-4 s-1 for 9 and KD = 4.5 ±0.7 nM and koff = 1.34 ±0.5 10-4 s-1 for 10. 

Equilibrium dissociation constants measured by RPI and by microarray technology are similar and 

both indicates a much stronger interaction  than those obtained in other approaches relying on 

monovalent glycan-lectin binding  [38],  [48].   

 

4. Conclusions 

In this work we introduced a new polymer obtained from the polymerization of N,N-

dimethylacrylamide (DMA), 3-trimethylsilanyl-prop-2-yn methacrylate (PMA) and 

3(trimethoxysilyl)-propylmethacrylate (MAPS), copoly(DMA-PMA-MAPS) and describe its use in 

the formation of a functional 3D, soft coating for microarrays. The backbone of the polymer bears 

alkyne moieties that allow binding azide-modified glycans to the surface by "Click" chemistry. This 

attachment mode offers a number of advantages in the immobilization of glycans, such as high 

grafting efficiency, oriented immobilization and insensitivity to functionalities present in natural 
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glycans. The novel surface chemistry was used to prepare microarrays substrates for two different 

analytical platforms: fluorescence microarray on Si/SiO2 slides and RPI label-free detection. The 

strength and the kinetics of the interaction between the surface immobilized glycans and ConA in 

solution were cross-validated on the two platforms, which provided similar values. The higher 

sensitivity to the fluorescence signal provided by the novel Si/SiO2 microarray substrate offers 

significant advantages over conventional glass slides allowing analysis at lower glycan surface 

density.        
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Legend  

Figure 1: Synthesis of the copoly(DMA-PMA-MAPS) copolymer. In brackets the molar fractions 

of the monomers. 

Figure 2: Reaction scheme of a typical click reaction between the surface and the glycan. 
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Figure 3: Chemical formula of azide cyanine dye (1), α-mannose derivatives (2-9) positive (10, α-

mannose) and negative (11, β-galactose) controls.  

Figure 4: Linear trend of the dye density (molecules/cm2) as a function of its printing concentration 

(μM). 

Figure 5: Mean fluorescence intensity of the glycomimetics of Table 1 (11 replicates per line) 

incubated with 100ng/ml of biotynilated ConA (0.943 nM) and revealed with Cy3 labelled 

streptavidin, (a) image of the glycomimetic microarray; (b) histogram of spot fluorescence intensity 

of 11 spot replicates. 

Figure 6: Characterization of glycan/ConA interactions by RPI. (a) The light reflected by spots of 9 

(red curves), 10 (green curves) and 11 (blue curves) is measured as a function of time, while 

increasing concentrations of ConA are added to the buffer solution. The vertical dashed lines 

indicate the addition times, and the corresponding concentrations are reported in the figure. The 

reflection signal is converted into normalized surface density and fitted with single exponential 

growth functions (black lines). At the highest concentration (48.5 nM), a small linear contribution is 

added to the fit, in order to account for non-specific adhesion taking place with very low kinetics34. 

(b) The equilibrium plateaus of the binding curves reported in panel a are shown as a function of the 

ConA concentration and fitted with a sigmoidal curve (see Materials and Methods), from which the 

dissociation constant KD for the interaction is obtained. Inset: the rate of the exponentials reported 

in panel a are fitted with a linear function of the concentration, with the slope and the intercept 

represented by kon and koff, respectively, and koff / kon = KD. 

 

 



 
 
 
Figure 1 
 



 
 

 
 
Figure 2



 
  

1 2 3 4 

N N

HN

N3

O

Cl

 

O

O

HO
HO

OH
OH

O
N3

N
H

O

NH

O

 

O

O

HO
HO

OH
OH

O
N3

N
O

O

N
O

O  

O

O

HO
HO

OH
OH

O
N3

H
N O

NH

O

 

5 6 7 8 

O

O

HO
HO

OH
OH

O
N3

N
H

O

NH

O

 

O

O

HO
HO

OH
OH

O
N3

N
H

O

H
N

N O

N

O

O

 

O

O

HO
HO

OH
OH

O
N3

H
N O

NH

O

 

O

O

HO
HO

OH
OH

O
N3

N
O

N

O

 

9 
10 

(α-mannose) 

11 

(β-galactose) 
 

O

O

HO
HO

OH
OH

O
N3

N
H

O

NH

O
HO

OH  

O

O

HO
HO

OH
OH

N3  

O
HO

OHOH

OH
O N3

 

 

 
Figure 3 



 
 
 

y = 4E+11x
R2 = 0.9705

0.00E+00

5.00E+13

1.00E+14

1.50E+14

2.00E+14

2.50E+14

0 100 200 300 400 500 600

Cy3 printing concentration (uM)

de
ns

ity
 (m

ol
ec

ul
es

/c
m

2)

 
 
Figure 4



 

 
 
Figure 5 
 



 

 
 
Figure 6 
  
 

0 5000 10000 15000

0.0

0.5

1.0

Su
rfa

ce
 d

en
sit

y 
(a

. u
.)

Time (s)

1.34 nM 5.18 nM 16.2 nM 48.5 nM

1 10 100
0.0

0.5

1.0

 

 

Fr
ac

tio
n 

co
ve

ra
ge

Concentration (nM)

a 

b 

1 10 10010-4

10-3

 

 

Ra
te

 (1
/s

)

Concentration (nM)


	Manuscript-rev-final-2
	2 Materials and methods
	2.1 Materials
	[2] A. Schulze, and J. Downward, Navigating gene expression using microarrays — a technology review, Nature Cell Biol. 3 (2001) 190–195.

	[3] G. Ramsay, DNA chips: state-of-the art, Nature Biotechnol. 16 (1998) 40–44.
	[4] D. Anderson, D. Putnam, E. B. Lavik, T. A. Mahmood, R. Langer, Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction, Biomaterials 26 (2005) 4892–4897.
	[11] O. Oyelaran, J. C. Gildersleeve, Glycan arrays: recent advances and future challenges, Curr. Opin. Chem. Biol. 13 (2009) 406-413.
	[12] C.D. Rillahan and J.C. Paulson,  Glycan microarrays for decoding the glycome, Annu. Rev. Biochem. 80 (2011) 797–823.

	[13] W. Peng, C. M. Nycholat, N. Razi, Glycan microarray screening assay for glycosyltransferase specificities, Methods Mol. Biol. 1022 (2013) 1-14.
	[15] O. Oyelaran, Q. Li and J. C. Gildersleeve, Microarrays with Varying Carbohydrate Density Reveal Distinct Subpopulations of Serum Antibodies, J. Proteom Res. 8 (2009) 3529-3538.
	[25] S. Saha , M.L. Bruening *, and G.L. Baker, Surface-Initiated Polymerization of Azidopropyl Methacrylate and its Film Elaboration via Click Chemistry, Macromolecules 22 (2012), 9063-9069
	[29] F. Giavazzi, M., Salina, R. Cerbino, M Bassi, D. Prosperi, E. Ceccarello, F. Damin, L. Sola, M. Rusnati,  M. Chiari, B. Chini, T. Bellini, M. Buscaglia, Multispot label-free biodetection at a phantom plastic–water interface, P. Natl. Acad. Sci. U...
	[30] V. Ladmiral, G. Mantovani, G. J. Clarkson, S. Cauet, J. L. Irwin, and D. M. Haddleton, Synthesis of Neoglycopolymers by a Combination of “Click Chemistry” and Living Radical Polymerization, J. Am. Chem. Soc. 128 (2006) 4823-4830.
	[34] G. Pirri, F. Damin, M. Chiari, E. Bontempi and L. E. Depero, Characterization of a polymeric adsorbed coating for DNA microarray glass slides, Anal. Chem. 76 (2004) 1352-1358.
	[39] R. Loris, T. Hamelryck, J. Bouckaert, L. Wyns, Legume lectin structure, Biochim. Biophys. Act. 1383 (1998) 9-36.
	[41] E. A. Smith, W. D. Thomas, L. L. Kiessling and R. M. Corn, Surface plasmon resonance imaging studies of protein-carbohydrate interactions, J. Am. Chem. Soc. 125 (2003) 6140-6148.
	[43] R. Liang, J. Loebach, N. Horan et al., Polyvalent binding to carbohydrates immobilized on an insoluble resin, Proceedings of the National Academy of Sciences of the United States of America 94 (1997) 10554-10559.
	[45] Y. C. Lee, R. T. Lee, Carbohydrate-Protein Interactions: Basis of Glycobiology, Acc. Chem. Res. 28 (1995) 321-327.

	figures-rev

