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We demonstrate the fabrication of gold-polydimethylsiloxane nanocomposite electrodes, by super-

sonic cluster beam implantation, with tunable Young’s modulus depending solely on the amount of

metal clusters implanted in the elastomeric matrix. We show both experimentally and by atomistic

simulations that the mechanical properties of the nanocomposite can be maintained close to that of

the bare elastomer for significant metal volume concentrations. Moreover, the elastic properties of

the nanocomposite, as experimentally characterized by nanoindentation and modeled with molecu-

lar dynamics simulations, are also well described by the Guth-Gold classical model for

nanoparticle-filled rubbers, which depends on the presence, concentration, and aspect ratio of metal

nanoparticles, and not on the physical and chemical modification of the polymeric matrix due to

the embedding process. The elastic properties of the nanocomposite can therefore be determined

and engineered a priori, by controlling only the nanoparticle concentration. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916350]

Dielectric elastomer actuators (DEAs) are attracting a

rapidly increasing interest as lightweight and inexpensive

electromechanical transducers for the fabrication of soft

robots,1,2 smart actuators,3 haptic interfaces, and energy har-

vesting systems.4,5 DEAs are based on an elastomer sand-

wiched between two electrodes: this configuration results in

a deformation (in plane or out of plane) under compression

when the two electrodes are electrically polarized using vol-

tages of several kV.2,4

In view of a widespread utilization of DEAs and of their

integration in microdevices, one of the major challenges is

the (micro)fabrication of compliant and well-adherent elec-

trodes able to sustain a very large number of deformations

(millions of cycles) while remaining electrically conductive.

Their mechanical properties must be, as much as possible,

similar to those of the elastomeric material in order not to al-

ter the stiffness and deformation characteristics of the actua-

tor.4 Electrodes made by metal thin films deposited by

sputtering or evaporation show poor adhesion, deterioration,

and delamination after few deformation cycles.6,7 Moreover,

the Young’s modulus of a metal film is several orders of

magnitude higher than that of dielectric elastomers

(50–100 GPa compared to 0.2–1 MPa), causing a very low

actuation strain.4

Low-energy implantation of metallic ions in elastomers

has been used for the fabrication of thin polymer-metal nano-

composite layers acting as electrodes in DEAs.8,9 The nano-

composite layer is formed by metallic clusters, resulting

from the aggregation of atomic species subsequent to ion im-

plantation, embedded in the elastomeric matrix. This tech-

nique assures a good adhesion to the bare elastomer and a

high degree of compliance.8,9

Recently, we showed that neutral metal clusters, acceler-

ated in a supersonic expansion, can be implanted in elasto-

mers to form an electrically conductive nanocomposite.10,11

This process, called supersonic cluster beam implantation

(SCBI), avoids both sample heating and charging and it is

fully compatible with stencil mask micropatterning and lift-

off technology.11,12 Stretchable electrodes obtained by Au

nanoparticles (NPs) implantation in polydimethylsiloxane

(PDMS) are able to withstand more than 1 � 106 of uniaxial

stretching cycles (at 40% strain) preserving finite and repro-

ducible electrical resistance.10

Here, we demonstrate the fabrication of electrodes based

on Au/PDMS nanocomposite with a Young’s modulus

depending solely on the amount of metal clusters implanted

in the elastomeric matrix. We show both experimentally and

by numerical simulations that the mechanical properties of

the nanocomposite can be maintained close to that of the

bare elastomer for significant metal volume concentrations.

The elastic properties of the Au-PDMS nanocomposites are

experimentally characterized by nanoindentation and mod-

eled with molecular dynamics (MD) simulations and the

Guth-Gold classical model.13–15

We fabricated Au-PDMS electrodes by implanting dif-

ferent quantities of neutral Au nanoparticles with a size dis-

tribution reported in Fig. 1(a) (as obtained by transmission

electron microscopy (TEM) images. We used a deposition

apparatus equipped with a Pulsed Microplasma Cluster

Source (PMCS), as described in Ref. 10. Briefly, a PMCS

consists a ceramic body with a cavity in which a solid Au

target (purity 99.9%) is vaporized by a localized electrical

discharge ignited during the injection of a pulse of inert gas

(He or Ar) at high pressure (40 bars). The metal atoms, sput-

tered from the target, aggregate in the source cavity to form

metal clusters; the mixture of clusters and inert gas expands

subsequently through a nozzle forming a supersonic beam
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into an expansion chamber kept at 10�6 mbars. Electrically

neutral nanoparticles exiting the PMCS are aerodynamically

accelerated in a highly collimated beam with divergence

lower than 1� and with a kinetic energy typically of 0.5 eV/

atom.16 The central part of the supersonic cluster beam

enters, through a skimmer, a second vacuum chamber (depo-

sition chamber) where the beam is intercepted by the PDMS

substrate. The implanted Au nanoparticles volume fraction

(Au volume concentration) is defined as the ratio between

the total volume of the metal nanoparticles (the metal filler)

and the volume of polymer in which the nanoparticles are

implanted. Considering a homogeneously filled nanocompo-

site, this corresponds to the ratio between the equivalent

thickness of the implanted nanoparticles and the thickness of

the nanocomposite layer.10 The thickness of the nanocompo-

site layer (nanoparticle implantation depth) can be obtained

by TEM characterization (Fig. 1(b)). The equivalent thick-

ness teq of nanoparticles implanted into the PDMS is

obtained by measuring, by Atomic Force Microscopy

(Bioscope Catalyst AFM, Bruker), the thickness of the Au

cluster-assembled film deposited on a bare glass substrate

region next to the PDMS film (Fig. 1(c)).

In order to systematically characterize the role of the

nanoparticle volume fraction on the nanocomposite mechan-

ical properties, we produced samples with a nanoparticle

density gradient, as schematically shown in Fig. 1(c). This is

obtained by rastering the PDMS substrate against the super-

sonic cluster beam only along one axis in order to obtain a

homogeneous nanocomposite in the direction parallel to the

raster, with a gradient in the amount of implanted nanopar-

ticles along the orthogonal axis. The same nanoparticle gra-

dient is deposited on the glass substrate to allow the direct

measurement of the equivalent thickness. PDMS and glass

substrates underwent an implantation and deposition process,

respectively, for 27 min with a deposition rate of 0.06 nm

s�1, reaching teq¼ 100 nm in the center of the sample.

PDMS substrates were produced with a Sylgard 184

Elastomer Kit by mixing the base and the curing agent in a

10:1 ratio for about 15 min.

The evolution of the Young’s modulus of Au-PDMS

nanocomposites when teq is varying has been characterized

by recording force vs indentation curves17,18 with an AFM

equipped with custom-made micro-probes consisting of

spherical silica microparticles attached to tipless cantile-

vers19 with force constant k¼ 2.9 N/m. The AFM probe is

periodically pushed against the nanocomposite surface and

the elastic indentation of the material is measured as a func-

tion of the total applied force (Fig. 2). The use of spherical

probes with a diameter of 2 lm allows well-defined contact

geometry (sphere on flat) and the use of analytical contact
FIG. 1. (a) Experimental (red) and simulated (blue) Au cluster diameter dis-

tribution. The mean value of the normal distribution is 3.7 6 1.7 nm.

(b) TEM image of a thin section of the PDMS implanted with an equivalent

thickness of 30 nm. The penetration depth of the nanoparticles is approxi-

mately 180 nm. (c) Schematic representation of a typical sample. A symmet-

ric gradient of Au NPs on the clean glass surface is used to measure the

equivalent thickness teq of implanted Au (which ranges from 100 nm in the

center to 25 nm at the border). The same gradient of Au NPs implanted on a

uniform PDMS film, covering the upper half of the glass slide, is used to

characterize the Young’s modulus for different equivalent thicknesses. A

portion of PDMS is left unimplanted as reference in the nanomechanical

analysis.

FIG. 2. A representative force-indentation curve acquired on the Au-

implanted PDMS sample, with the modified JKR fit superimposed to the ex-

perimental data. In the inset, a schematic representation of the AFM indenta-

tion test is shown.
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mechanics models for data fitting; moreover, large spherical

probes provide an averaged and stable mechanical readout,

representative of the mesoscopic properties of the nanocom-

posite material.19,20

Twelve different regions of the Au-PDMS nanocompo-

site sample have been tested: 100 force curves have been

typically acquired in three different positions (separated by

10 lm) of each region. For large, adhesive contacts and soft

surfaces, the Johnson-Kendall-Roberts (JKR) model is

appropriate to describe indentation;21,22 we have used a

modified JKR equation to fit data, which takes into account

also a constant capillary adhesive force due to the presence

of a water meniscus (measurements have been carried out in

ambient conditions, at relative humidity of 35%) (Fig. 2).

The Poisson coefficient has been set to 0.5, as typical for

polymers.17,23 From force-indentation curves, the effective

Young’s modulus of the composite structure formed by the

thick PDMS substrate and the thin nanocomposite Au-

PDMS layer is extracted.9 The values of the effective

Young’s modulus have been normalized by the value of the

modulus of the unimplanted PDMS, in order to better evalu-

ate the Au concentration-dependent variations and compare

to numerical simulation data (the same normalization has

been applied to in silico data).

The characterization of the nanocomposite Young’s mod-

ulus via AFM indentation necessarily implies the use of meso-

scopic models aimed at the description of the tip-sample

interactions. The transferability of our findings to a macro-

scopic “bulk” scale is not straightforward; on the other hand,

the typical dimensions of our nanocomposite electrodes do

not allow the standard elasticity characterization approach for

bulk samples based on traction-elongation cycles.24 Hence,

we decided to complement the experimental investigation by

all-atom calculations aimed at predicting the dependence of

the Young’s modulus upon Au content by simulated traction-

elongation cycles on nanocomposite samples.

Computer-generated nanocomposite samples have been

obtained by simulating multiple implantations of Au clusters

into the PDMS substrate. The implantation process strictly fol-

lowed the procedure described in Refs. 11 and 25, although in

the present case more than one clusters were implanted, with

the size distribution obtained by TEM images reported in Fig.

1(a). Overall five different Au-PDMS nanocomposite samples

were generated with Au volume concentration ranging

between 8% and 29%. The corresponding number of particles

in our simulation cells ranged between 350 000 and 450 000.

An increasing number of Au nanoparticles were sequentially

implanted on the PDMS substrate. For computational conven-

ience in computer-generating the samples, the implantation

was emulated by setting an impact energy of 2 eV/atom and a

deposition rate of 50 ps�1. Such a rate, although higher than

in typical SCBI experiments, was nevertheless small enough

to allow the full relaxation of the PDMS substrate upon each

implantation event. Therefore, like in real SCBI experiments,

the next cluster impacted on a fully relaxed substrate.

Interatomic interactions have been modeled as reported in

Refs. 11 and 25.

Once the nanocomposite samples at different Au

nanoparticle concentrations were generated, we estimated

the corresponding Young’s modulus by simulating traction-

elongation cycles. In detail, each cubic simulation cell with

edge L0 (containing an Au-PDMS sample with given Au

content) was gently (strain rate¼ 1.75 ns�1) elongated at

constant room temperature for 0.8 ns, by imposing volume

conservation.26 During the traction cycle, intermediate con-

figurations have been saved every 0.2 ns, providing four dif-

ferent strained samples (with same Au content). Their final

extension L is defined as: L¼ k L0, where k¼ 1.1, 1.2, 1.3,

and 1.4. At this stage, each strained sample was carefully

relaxed at room temperature by a constant-volume annealing

as long as 2.5 ns, driving the corresponding atomic structure

at its minimum-energy configuration, where the tensile stress

rT was eventually calculated (such a stress value was calcu-

lated using the standard virial expression for the atomic-

scale stress tensor).27

A typical stress-strain plot from MD simulations is

shown in Fig. 3 for an Au-PDMS composite containing 8%

of metallic clusters, providing evidence of the stress-strain

dependence formulated in terms of the deformation parame-

ters k2� 1/k.

This dependence, which is as well found in all systems

here investigated, stands for the robustness of the present

results since it is in agreement with the prediction of elemen-

tary viscoelasticity theory,26 where it is proved that

rT ¼ Gðk2 � 1=kÞ: (1)

In this framework, G is the elastic modulus of the elastomer,

which is related to the corresponding Young’s modulus

through a very simple relation: E¼ 3G. The calculation of

the stress-strain curve through MD simulations of a traction-

elongation cycle directly offers a prediction on the Young’s

modulus of Au-PDMS composites.

Fig. 4 shows the normalized Young’s modulus measured

in silico and the normalized effective Young’s modulus

measured by AFM as a function of Au volume concentration.

The modulus is basically constant (slightly decreasing in the

case of experimental values) for concentration q below

�20%; above this threshold, we observe an exponential

increase of E up to 5 times E0 for q� 30%. The agreement

between the experimentally determined effective modulus

and the numerically determined modulus is remarkable.

Both experimental and numerical data can be fitted by an an-

alytical function in the form 1þ exp(�A(B� x)) (the blue

and red curves in Fig. 4), with A¼ 0.3, 0.2 and B¼ 23.1,

24.3 for the experimental and numerical data, accordingly.

FIG. 3. rT vs. k2� 1/k for an Au-PDMS nanocomposite having Au volume

concentration q¼ 8%. The black line represents the linear fit obtained

according to equation rT¼G(k2� 1/k).
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In the case of pristine PDMS, we estimated through the

above traction-elongation MD protocol a Young’s modulus

E0¼ 6.4 6 0.8 MPa. This value is about 3 times larger than

those measured in nanoindentation AFM experiments. This

discrepancy is likely due to a different distribution of the

length of the polymer chains: while in MD simulations this

distribution is by construction unimodal (corresponding to a

typical length of 40 monomers per chain), the corresponding

distribution of real PDMS samples is not known in detail.

We also remark that it has been shown28 that the Young’s

modulus in pristine PDMS can vary over 2 orders of magni-

tudes by increasing the chain length from 1 to 1000. In order

to reconcile simulations to experiments, the calculated/meas-

ured values of E in Au-PDMS composites have been renor-

malized to the corresponding value in pristine PDMS. This

procedure, while straightforward, is very effective in separat-

ing the role of the implanted Au nanoclusters on the elastic

properties of pristine PDMS (which is indeed the main target

of this investigation) from the possible effects due to a differ-

ent distribution of polymer chains.

It is remarkable that the agreement between the pre-

sented experimental/simulated results and the theoretical

expectations of the classical Guth-Gold model13–15 has been

proposed to describe the effect of a filler on the elastic prop-

erties of a continuous rubber matrix, as indicated by the

shadowed area in Fig. 4. The Guth-Gold model has been pro-

posed to predict the modification of the normalized Young’s

modulus E/E0 of a rubber-like polymer filled with metal

nanoparticles with a specific aspect ratio a and at a given

volume fraction q, according to the following equation:15

E=E0 ¼ 1þ 0:67ðaqÞ þ 1:62ðaqÞ2: (2)

The shadowed region in Fig. 4 corresponds to the area

spanned by the Guth-Gold curves obtained for different

nanoparticle aspect ratios a ranging from 1 (lower bound,

spherical particles) to 6 (upper bound, elongated particles).

The agreement is remarkable since the characterization

approaches of the Young’s modulus are based on very differ-

ent assumptions, approximations, and length scales. The

Guth-Gold model assumes that the modification of the nano-

composite elasticity only depends on the presence, concen-

tration, and aspect ratio of the metal nanoparticles and not on

the physical and chemical modification of the polymeric ma-

trix due to the embedding process. This supports the assump-

tion10,11 that SCBI is not causing bond breaking events along

the polymer chain, without modification of the underlying

chemistry. Rather, only a microstructure evolution of the

polymeric host is observed upon cluster incorporation. This,

however, strongly affects the elastic properties of the poly-

meric matrix, as stated in Ref. 29. The comparison among

different approaches reported in Fig. 4 actually indicates that

SCBI is effectively a cold implantation technique, not dam-

aging the chemical composition and structure of the poly-

meric chains and thus maintaining the mechanical properties

of the polymeric substrate unaltered. Another interesting ob-

servation is that AFM indentation results shift toward a

higher particles aspect ratio for increasing concentration of

nanoparticles; this suggests that nanoparticles coalesce to

form irregular larger aggregates towards the onset of a perco-

lative structure, as already observed by electrical characteri-

zation of the nanocomposites.10

In conclusion, we have demonstrated both experimen-

tally and theoretically the production of Au-PDMS nano-

composites with a Young’s modulus depending solely on the

amount of nanoparticle embedded in the elastomer. The elas-

tic properties of the nanocomposite can be determined and

engineered a priori, by controlling only one parameter thus

allowing the preparation of DEAs electrodes with suitable

mechanical properties.

A very important point is that the results of AFM inden-

tation tests of the nanocomposite can be modeled and repro-

duced both by atomic-scale MD simulations and by the

macroscopic Guth-Gold model: this shows that the assump-

tions of our approach are robust and they can be used to pre-

dict and design the functional and structural properties on a

novel class of nanocomposites obtained by SCBI and used

for stretchable electronics and optics.30
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