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I. HYBRID DFT AND GW : COMPUTATIONAL DETAILS

As discussed in the main text, DFT hybrid functional calculations can be very expensive using a plane-waves (PW)

basis set. In particular, the computational effort strongly depends on the choice of the Brillouin-zone (BZ) sampling.

This is illustrated in Fig. S1 for the test case of MgO.

In Table S1 we report k- and q-point grids of our PW calculations performed with the quantum espresso package.

In total energy calculations using the crystal09 code, convergence studies on the BZ sampling were carried out so

as to ensure accuracy within 1 meV on total energies for the various phases. This corresponds to 10x10x10 for MgO,

and at least 14x14x14 for ZnO, 6x6x6 for TiO2, 6x6x6 for ZrO2, and 4x4x4 for WO3.

Table S2 collects various cutoff parameters entering GW calculations for the materials investigated in Section III A

of the main text. The meaning of the single cutoff parameters is discussed in Section II C of the main text.
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TABLE S1: Computational parameters of DFT PW calculations: k- and q-point BZ sampling and PW kinetic energy cutoff

Ecut (in Ry).

k-point grid q-point grid Ecut

MgO 4x4x4 4x4x4 500

ZnO 4x4x2 4x4x2 300

TiO2 4x4x2 4x4x2 150

ZrO2 4x4x4 4x4x4 120

WO3 2x2x2 2x2x2 100

TABLE S2: Computational cutoff parameters used in GW calculations: cutoff energies E
eps
cut and Exc

cut (in Ry) controlling the

size of the dielectric matrix in reciprocal space and the number of plane waves in the expansion of xc potential, respectively;

number of empty states included in the evaluation of the polarizability χ and of the Coulomb hole (CH) term.

Empty states

E
eps
cut Exc

cut χ ΣCH

MgO 90 80 300 900

ZnO 70 200 200 2750

TiO2 14 50 500 1300

ZrO2 25 50 500 2100

WO3 16 60 800 2300
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FIG. S1: (a) CPU time and (b) band gap of MgO in hybrid PBE0 calculations with quantum espresso, using k- and q-point

grids of different sizes; Nk and Nq indicate, respectively, Nk ×Nk ×Nk and Nq ×Nq ×Nq Monkhorst-Pack grids.
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II. LATTICE PARAMETERS

In Table S3 we report experimental lattice constants used in all the relevant calculations presented in the main text

(see Section III A), together with the results of the geometry optimizations performed within LDA and PBE with

quantum espresso for the purpose of validating pseudopotentials. The tendency of LDA and GGA to underestimate

and overestimate, respectively, lattice constants is confirmed by our calculations.

Results of geometry optimizations carried out with crystal09 for the phases not included in Table VII of the

main text are reported in Table S4. Calculations were carried out within PBE, PBE0 and dielectric-dependent PBE0,

PBE0α
(1)
PBE.

TABLE S3: Lattice constants computed within LDA and PBE with quantum espresso, and comparison with experiments.

Type Parameter LDA PBE Expt.a

MgO rocksalt a (Å) 4.156 4.230 4.212

ZnO wurtzite

a (Å) 3.172 3.242 3.249

c (Å) 5.113 5.215 5.207

u 0.379 0.380 0.382

TiO2 anatase

a (Å) 3.748 3.795 3.781

c (Å) 9.427 9.645 9.515

u 0.209 0.207 0.208

ZrO2 tetragonal

a (Å) 3.559 3.613 3.571

c (Å) 5.116 5.268 5.182

dz 0.0434 0.0566 0.0574

WO3 γ-monoclinic

a (Å) 7.325 7.437 7.306

b (Å) 7.477 7.683 7.540

c (Å) 7.557 7.777 7.692

β (◦) 90.98 90.10 90.88

aExperimental lattice constants are found in the following references: Ref. 1 for MgO, Ref. 2 for ZnO, Ref. 3 for TiO2, Ref. 4 for ZrO2,

Ref. 5 for WO3.
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TABLE S4: Optimized cell parameters for selected polymorphs of the studied materials, computed at different levels of theory

with crystal09.

Type Parameter PBE PBE0 PBE0α
(1)
PBE Expt.a

ZnO zinc-blende a (Å) 4.584 4.547 4.541 4.620

TiO2

rutile
a (Å) 4.621 4.568 4.588 4.587

c (Å) 3.002 2.978 2.987 2.954

brookite

a (Å) 9.260 9.177 9.201 9.174

b (Å) 5.518 5.441 5.464 5.449

c (Å) 5.215 5.156 5.176 5.138

ZrO2

cubic a (Å) 5.148 5.103 5.112 5.110

monoclinic

a (Å) 5.224 5.189 5.192 5.151

b (Å) 5.293 5.246 5.253 5.212

c (Å) 5.382 5.330 5.334 5.317

β (◦) 99.57 99.51 99.51 99.23

WO3

cubic a (Å) 3.834 3.786 3.811 3.772

tetragonal
a (Å) 5.345 5.281 5.295 5.250

c (Å) 4.058 4.018 4.031 3.915

ε-monoclinic

a (Å) 5.532 5.286 5.295 5.277

b (Å) 5.259 5.193 5.202 5.155

c (Å) 7.880 7.794 7.805 7.663

β (◦) 91.16 91.18 91.19 91.76

triclinic

a (Å) 7.430 7.334 7.343 7.313

b (Å) 7.658 7.592 7.619 7.525

c (Å) 7.854 7.781 7.799 7.689

α (◦) 89.21 89.23 89.28 88.85

β (◦) 90.61 90.55 90.52 90.91

γ (◦) 90.72 90.64 90.60 90.94

orthorombic

a (Å) 7.518 7.419 7.430 7.341

b (Å) 7.779 7.705 7.715 7.570

c (Å) 7.926 7.848 7.859 7.754

aExperimental lattice constants are found in the following references: Ref. 6 for zinc-blende ZnO; Refs. 7,8 for rutile and brookite TiO2;

Refs. 9,10 for cubic and monoclinic ZrO2; Refs. 11–15 for cubic, tetragonal, low-temperature ε-monoclinic. triclinic and orthorombic WO3.
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