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Abstract

Breast cancer is the most commonly diagnosed cancer and the second leading
cause of cancer death in women. Although recent improvements in the preven-
tion, early detection, and treatment of breast cancer have led to a significant
decrease in the mortality rate, the identification of an optimal therapeutic strat-
egy for each patient remains a difficult task because of the heterogeneous nature
of the disease. Clinical heterogeneity of breast cancer is in part explained by the
vast genetic and molecular heterogeneity of this disease, which is now emerging
from large-scale screening studies using “-omics” technologies (e.g. microarray
gene expression profiling, next-generation sequencing). This genetic and molecu-
lar heterogeneity likely contributes significantly to therapy response and clinical
outcome. The recent advances in our understanding of the molecular nature of
breast cancer due, in particular, to the explosion of high-throughput technolo-
gies, is driving a shift away from the “one-dose-fits-all” paradigm in healthcare,
to the new “Personalized Cancer Care” paradigm. The aim of “Personalized
Cancer Care” is to select the optimal course of clinical intervention for individ-
ual patients, maximizing the likelihood of effective treatment and reducing the
probability of adverse drug reactions, according to the molecular features of the
patient. In light to this medical scenario, the aim of this project is to identify
novel molecular mechanisms that are altered in breast cancer through the devel-
opment of a computational pipeline, in order to propose putative biomarkers and
druggable target genes for the personalized management of patients. Through
the application of a Systems Biology approach to reverse engineer Gene Regula-
tory Networks (GRNs) from gene expression data, we built GRNs around “hub”
genes transcriptionally correlating with clinical-pathological features associated
with breast tumor expression profiles. The relevance of the GRNs as putative
cancer-related mechanisms was reinforced by the occurrence of mutational events

related to breast cancer in the “hub” genes, as well as in the neighbor genes.



ii

Moreover, for some networks, we observed mutually exclusive mutational pat-
terns in the neighbors genes, thus supporting their predicted role as oncogenic
mechanisms. Strikingly, a substantial fraction of GRNs were overexpressed in
triple negative breast cancer patients who acquired resistance to therapy, sug-
gesting the involvement of these networks in mechanisms of chemoresistance. In
conclusion, our approach allowed us to identify cancer molecular mechanisms
frequently altered in breast cancer and in chemorefractory tumors, which may
suggest novel cancer biomarkers and potential drug targets for the development

of more effective therapeutic strategies in metastatic breast cancer patients.
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Chapter 1

Introduction

1.1 Cancer

Cancer is a multifactorial disease characterized at a macroscopic level by un-
controlled and limitless cell proliferation, self-sufficiency in growth signals, and
the ability to invade tissues, spread to distant organs (metastasize) and form
new blood vessels for nutrient supply to cancer cells (angiogenesis; Figure 1.1)
([1],[2]). With 1,665,540 new cases and 585,720 deaths estimated in the United
States, alone, in 2014 ([3]) cancer remains one of the main causes of death world-
wide. Therefore, the identification of innovative cancer biomarkers, as well as

more effective strategies for detection and treatment of cancer, is paramount.

Sustaining proliferative
signaling

Resisting Evading growth
cell death suppressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Figure 1.1: The hallmarks of cancer.

Schematic representation of the hallmarks of cancer. Recent advances in cancer biology
have improved our comprehension of cancer-related mechanisms required to sustain the
neoplastic phenotype. Taken from [2].
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1.1.1 Cancer classification

There are over 100 different types of cancer classified by the type of cell that is
initially affected. Cancer types can be grouped in five main categories according

to the histological type and the primary site:

e Carcinoma is a type of cancer that originates from epithelial cells lining
the inner or outer surfaces of the body. Many histological subtypes of car-
cinoma have been characterized including basal cell carcinoma, adenosqua-

mous carcinoma, transitional cell carcinoma and squamous cell carcinoma.

e Sarcoma is a type of cancer originating in blood vessels, nerves and ten-

dons, muscles, cartilage, bone, fat, connective tissue.

e Lymphoma and myeloma originate in the lymph system (lymph nodes

and lymphatic vessels) and in general involve cells of the immune system.

e Leukemia is a type of cancer that originates in blood-forming tissue (bone
marrow) allowing the formation of abnormal blood cells that will be released
in the blood.

e Central nervous system cancers are cancers originating in brain tissues.

1.1.2 Cancer development

Cancer development may be caused by environmental factors, harmful life habits,
and genetic inheritance. The accumulation of mutations in the DNA due to ex-
ogenous and endogenous DNA-damaging agents and the resulting genomic insta-
bility are at the basis of neoplastic transformation ([4]). More recently, a role
for epigenetic alterations was also proposed as an addictive factor that may in-
duce neoplastic transformation ([5],[6],[7],[8]). Genes that hold the potential to
promote neoplastic transformation are called oncogenes, while those that oppose
transformation are named tumor suppressor genes. Mutations or epigenetic al-
terations may cause overexpression or reduction/ablation of an oncogene or a
tumor suppressor, respectively, thereby contributing to neoplastic transforma-
tion [9],[10],[11]). In addition, many cancer-related mutations cause activation or
inactivation of specific signaling proteins, resulting in hyper-activation of signal-
ing pathways that promote proliferation, migration or invasion, and ultimately

neoplastic transformation ([12],[13],[14]).
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1.1.3 Cancer stem cells

An emerging field in cancer biology is related to the identification and charac-
terization of cancer stem cells ([15],[16]). Cancer stem cells are thought to be
the engine of the tumor since they are the only cells within the tumor that are
able to regenerate tumors in vivo. Cancer stem cells possess self-renewal and
differentiation capabilities similar to those of normal adult stem cells ([17],[18]).
The elucidation of the mechanisms that control such stem cell properties would
shed light on the disrupted pathways responsible for cancer stem cell generation
and tumor growth.

The first evidence of the existence of cancer stem cells came from the study of
leukemia; it was shown that only a small fraction of leukemia cells proliferated
extensively in vivo and in vitro ([15]). The involvement of cancer stem cells
in tumorigenesis is further sustained by their distinctive trait to be the only
long-lived cell population. This feature makes them preferential targets of ini-
tial oncogenic mutations because of their long exposure to genotoxic stresses. In
addition, two further observations support the cancer stem cell theory: the first
refers to tumor heterogeneity; the second concerns the number of cells required
for tumor growth. In the first case, although cancer cells originate from a single
transformed cell they display different phenotypic traits that were present in the
original normal tissue from which they derive ([19]). In the second case, the can-
cer stem cell hypothesis is supported by evidence showing that only cells with a
high capability of self-renewal, like the cancer stem cells, are able to sustain the

intensive proliferation of a tumor.

1.1.4 Cancer metastasis

Cancer cells may invade and colonize other tissues and organs through the lym-
phatic system and/or blood. This metastatic process is initially triggered by
stochastic events that allow the dispersion of cancer cells into the circulation,
and is dependent on the ability of a small fraction of cells to survive in distant
organs, giving rise to metastases ([20]). The ability of cancer cells to invade dis-
tant organ sites is tumor-specific, although in some cases different tumor types

are able to colonize the same organ site (Table 1.1).
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Table 1.1: Metastatic relapse sites for solid tumors.

Tumor typet Principal sites of metastasis

Breast Bone, lungs, liver, brain

Lung adenocarcinoma Brain, bones, adrenal gland, liver

Skin melanoma Lungs, brain, skin, liver
Colorectal Liver, lungs

Pancreatic Liver and lungs
Prostate Bones

Sarcoma Lungs

Uveal melanoma Liver

In the case of metastatic invasion through the lymphatic system, cancer cells
travel through the lymph system and they may end up in lymph nodes giving
rise to a metastatic lymph node tumor. In order to spread to new parts of the
body through the lymphatic system, cancer cells have to break away from the
original tumor and attach themselves to the outside wall of a lymph vessel. Then,
the cells move through the vessel wall to flow with the lymph to a new lymph
node. The progression of the tumor towards metastasis through the blood vessels

can be summarized by the following steps (Figure A.1):

e the local invasion: the cancer cells locally infiltrate through the basement

membrane into the surrounding/adjacent tissue.

e the intravasion, also called “endothelial transmigration”, of tumor cells
into vessels: the cancer cells invade the blood or lymphatic vessels through

the basal membrane.

e the hematogenous survival and translocation: the cancer cells are able
to survive in the circulatory system and disseminate through the blood-
stream to microvessels of distant tissues. The intravasion together with
the hematogenous survival constitute the “hematogenous dissemination”

process.
e the extravasion: cancer cells exit from the bloodstream.

e the colonization: cancer cells colonize distant organs. The cells adapt
to the foreign microenvironment of distant site and start proliferating and

forming macroscopic secondary tumors in competent organs.
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Introduction

Although the molecular mechanisms at the basis of the metastatic ability of
cancer cells are not fully characterized, the functional activity of some genes is
associated to the initiation and progression of metastasis. The metastasis initi-
ation genes promote cell motility, epithelial-to-mesenchymal transition (EMT),
extracellular matrix degradation and angiogenesis. The key genes that, for ex-
ample, promote EMT (local tumor invasion) through changes in cell adhesion
and migratory properties of tumor cells include the Snail (SNAI1 and SNAI2)
([22],]23]), Zeb (ZEB1 and ZEB2) ([24],[25]) and basic helix-loop-helix (bHLH:
EA7 and TWIST) ([26]) transcription factor families that contribute to the acti-

vation of a plethora of genes involved in the above mentioned EMT pathway.

Primary tumour Vascularization Detachment Intravasation

A
!

)
Circulating Adhesion to Growth of
tumour cell blood vesselwall Extravasation secondary tumour
e - Y- e

Figure 1.2: Mechanical processes of a metastatic event.

(Taken from [21]).
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1.2 Breast cancer

Breast cancer is the most common cancer diagnosed worldwide in women (sec-
ond most common cancer overall) with 232,670 new cases and 40,000 deaths
estimated in the US in 2014 ([27]). The incidence and overall mortality rates
are higher in high-income countries respect to low and middle-income countries
mainly because of an increasing adoption of cancer-causing behaviors, like for
example overweight/obesity, a sedentary lifestyle and smoking. Although the
incidence and the overall mortality rates are lower in low and middle-income
countries the fatality rates from breast cancer still remain high mainly because
of a scarcity of adequate facilities for detection and diagnosis, as well as poor
access to primary treatment ([28],[29],[30]). Breast cancer originates from the ep-
ithelial and myoepithelial cells lining the ductal or lobular part of the mammary
gland, and it occurs almost entirely in women, although there are rare cases of
breast cancer in men. The majority of breast cancers originate in cells lining
the ducts: tubes that carry the milk from the lobules to the nipple. Thus, these
cancers are named ductal carcinomas. Tumors originating from cells lining the
lobules are instead named lobular carcinomas (Figure 1.3). Ductal and lobular
carcinomas can be further classified as invasive or in situ carcinoma depending
on whether the cancer has spread into the surrounding tissues or to distant sites
(i.e., invasive ductal carcinoma, IDC, or invasive lobular carcinoma, ILC), or
whether it has remained localized at the site of origin (i.e., ductal carcinoma in
situ, DCIS, or lobular carcinoma in situ, LCIS). IDC accounts for 80% of inva-
sive breast cancers while ILC accounts for 10% of invasive breast tumors ([31]).
Generally, in situ carcinomas are classified as early stage (stage 0) tumors and if

untreated may become invasive and metastatic breast tumors.
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Lobular cells

Duct cells

Duct

Nipple

Lobules Collecting ducts

Fatty connective tissue

Figure 1.3: Breast cancer sites of origin.

Breast cancers may arise from the cells lining the milk lobules (glands) or from the cells
lining the milk ducts within the breast lobes. In the first case they are called lobular
carcinomas while in the second case they are called ductal carcinomas. Both types of
tumours are further classified as invasive or in situ carcinoma according to the site of
invasion. Taken from ([31]).
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1.2.1 Breast cancer is an heterogeneous disease

Breast carcinoma is a highly heterogeneous disease with multiple tumor sub-
types characterized by different histological and molecular features, which likely
impact on therapy response and clinical outcome ([32],[33],[34]). Despite recent
improvements in prevention, early detection, and treatment of breast cancer have
led to a significant decrease in the mortality rate ([27]), the identification of an
optimal therapeutic strategy for each patient remains a difficult task because
of the heterogeneous nature of the disease. Originally, breast cancer diagnosis
and subtype classification was based on specific histological and morphological
features (histological heterogeneity) that allow the classification of the disease
in 20 major tumor types and 18 minor subtypes ([35]). The recent advances
in microarray gene expression profiling, next-generation sequencing (NGS), and
high-throughput proteomics, is now allowing a more in-depth molecular char-
acterization of breast cancer at a genomic and proteomic level. This has led
to the identification of novel breast cancer subtypes ([36],[37],[38],[39]), and an
improvement in the diagnostic and prognostic evaluation of breast cancer pa-
tients ([40],[41]). In addition, recent NGS studies of breast tumors revealed a
certain level of intra-tumor heterogeneity ([42],[43]). In particular, Navin and
colleagues ([43]), through single-nucleus DNA sequencing, identified the presence
of intra-tumor distinct clonal subpopulations characterized by distinct genomic
alterations. In some cases, an almost identical profile was found in metastatic
tumor cells (i.e. synchronous metastatic lesions) respect to specific clonal sub-
populations in primary tumours. Indeed, Ding and colleagues ([42]) showed that
in basal-like breast tumors, metastatic lesions arise from sub-populations of can-
cer cells in the primary tumor with a specific repertoire of mutations, which were
suggested to be drivers for cancer progression. However, despite these recent ad-
vances in the characterization of the genomic profiles of breast cancer, the molec-
ular mechanisms involved in disease onset and progression remain mostly unclear.
Further studies are thus necessary to better characterize these breast cancer path-
ways and to identify reliable cancer biomarkers for improving therapeutic inter-
vention and survival of breast cancer patients ([37],[38],[44],[45],[46],[47],[48]).
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1.2.2 Molecular classification of breast cancer

Breast cancer can be classified into three main groups based on the expression
of different breast cancer markers, which are detected by immunohistochemistry

(IHC) or fluorescence in situ hybridization (FISH) assays:

e The hormone receptor positive group: these tumors express the ER

and/or PgR and account for 68% of breast cancers.

e The Her2 positive group: these tumors overexpress the Her2 receptor
at the protein level (detected by IHC), or carry an amplification of the
Her2 gene (detected by FISH). They do not express ER and/or PgR. The

frequency of occurrence is 11% in the female breast cancer population.

e The triple negative group: there tumors lack expression of all three

receptors, ER, PgR and Her2, and account for 19% of female breast cancers.

The hormone receptor positive group can be further divided into two additional
subtypes, according to the expression of the proliferation marker, Ki-67, and

Her2 receptor:

e The Luminal A subtype: these tumors express the ER and/or PgR, but
not Her2, and poorly express the Ki-67 proliferation marker. These tumors

account for 44% of female breast cancers.

e The Luminal B subtype: these tumors express the ER and/or PgR, and
Her2, and highly express the Ki-67 proliferation marker. The frequency of

occurrence is 24% in female breast cancer population.

The Luminal A subtype is the only breast cancer subtype that has a good prog-
nosis, high survival rates and low risk of recurrence ([49],[50],[51]). The low level
of aggressiveness of these tumors is attributed to their low rate of proliferation
and their positivity for ER expression, which allows the use of endocrine therapy
(also referred to as hormone therapy): a systemic therapy that blocks tumor cell
growth ([52]). In contrast, the Luminal B subtype is highly proliferative and
poorly-differentiated, and displays features associated with poor prognosis, such
as: 1) large tumor size; ii) high tumor grade; iii) the presence of tumor cells
in the lymph nodes. The Her2-positive and triple negative subtypes are highly
metastatic and exhibit the worse clinical outcome, although more effective ther-
apies are available for the former ([49],[53],[54],[55],[56]).
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1.2.3 Breast cancer treatment

Breast cancer is generally treated locally through surgery and/or radiation
therapy, or systemically using chemotherapeutic agents or hormone therapy.
Chemotherapy may be given in a neoadjuvant regimen to reduce tumor burden
before surgery, or in an adjuvant regimen after surgery to reduce the risk of
recurrence. Recently, it has been documented that chemotherapy treatments
including taxane (i.e., paclitaxel, Taxol and docetaxel, Taxotere) and anthra-
cycline (i.e., doxorubicin, Adriamycin and epirubicin, Ellence) in a neoadjuvant
setting is an effective strategy to increase overall survival in patients with lo-
cally advanced breast cancer ([57],[58]). Other chemotherapeutic agents for
breast cancer treatment include: Cyclophosphamide (Cytoxan), Capecitabine
(Xeloda) and fluorouracil (5 FU), methotrexate (Rheumatrex, Trexall), lapa-
tinib (Tykerb). Chemotherapy drugs are usually given in 2-4 week cycles, but
some may be used on a weekly basis. They can be also given in combinations
with two or more drugs. The hormone therapy drugs frequently used in clin-
ical practice to treat early, locally advanced or metastatic ER positive breast
cancers are: i) tamoxifen (Nolvadex), a selective ER modulator (SERM) that
binds to the receptor and prevents its activation by the ligand, estrogen, thereby
inhibiting tumor cell growth; ii) the aromatase inhibitors that act by blocking
the biosynthesis of estrogen, thus, reducing the availability of estrogen to cancer
cells ([52]). Patients diagnosed with Her2-positive tumors or with triple nega-
tive breast tumors are frequently unresponsive to standard chemotherapy. The
use of the hormone therapy is not an option since these tumors do not express
ER or PgR. For Her2-positive tumors, a molecularly targeted therapy is avail-
able based on monoclonal antibodies targeting the extracellular portion of the
Her2/neu receptor (i.e. Trastuzumab or Herceptin). Patients with metastatic
breast cancer (late-stage), who were treated with Trastuzumab displayed an
increase in overall survival of 20 to 25 months ([59]), while in patients with
Her2-positive non metastatic cancer (early-stage) Trastuzumab reduce the ab-
solute risk of relapse after the surgery of 9.5% and the absolute risk of death
of 3%([60]). Triple negative tumors are typically treated with the combination
of surgery radiation therapy and chemotherapy. They cannot be treated with
hormone therapy or Trastuzumab (Herceptin) because they are ER-negative and
Her2-negative. Target therapies are not available for these tumours because the
genes that are linked to this breast cancer subtype are still not well understood.
Although new treatments are being studied ([61]), more effective treatments are
urgently required for this group of breast cancer patients characterized to have

low five-year survival rate.
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1.2.4 Personalized Breast Cancer Care

Although metastatic breast cancer still remains an aggressive and incurable dis-
ease, early stage breast cancer is curable in most patients. Indeed, the decrease
in the mortality rate observed worldwide in the last 10 years ([27]) is, in part,
due to the diffusion of preventive mammography screening programs that allow
the detection of non-metastatic, early-stage disease that is curable by surgery
([62],[63]). In addition, our increased understanding of breast cancer biology
over recent years has led to the development of more effective, molecularly tar-
geted treatments like for example those making use of Lapatinib (Tykerb) and
Trastuzumab (Herceptin) for Her2-positive tumours, Tamoxifen ER-positive tu-
mours, that have helped to reduce the mortality of certain breast cancer sub-
types ([64]). The deeply understanding of breast cancer due, in particular, to
the explosion of “-omics” technologies, is driving a shift away from the “one-dose-
fits-all” paradigm to a new paradigm in healthcare, the so-called “Personalized
Cancer Care” or “Personalized Medicine”. Personalized medicine aims to select
the optimal course of clinical intervention for individual patients, maximizing
the likelihood of effective treatment and reducing the probability of adverse drug
reactions. The major determinant in the success of personalized medicine is the
identification of predictive and prognostic molecular biomarkers that reflect the
variability of breast cancer patients in terms of therapy response and clinical out-
come, respectively. The availability of such cancer biomarkers would allow the
stratification of patients in terms of risk of disease recurrence and responsiveness
to specific therapies, thereby overcoming the problems of undertreatment and
overtreatment of cancer. For instance, biomarkers that identify more aggressive
tumors can help avoid undertreatment, since such tumors can be treated with
more aggressive therapies. Whereas, biomarkers that are predictive of therapy
response, will help to prevent overtreatment of patients who would otherwise re-
ceive little benefit from the treatment, whilst being exposed to potentially adverse
side-effects ([65],[66],[67],[68],[69]).

1.2.5 Prognostic and predictive biomarkers in breast cancer care

As defined in Clark et al.,([70]) prognostic biomarkers are biological molecules
whose modulation, in terms of quantity or function, correlates with prognosis
([71],[72],[73]). These biomarkers can be used in clinical practice to stratify can-
cer patients and identify the optimal treatment regimens. Predictive biomarkers,

instead, correlate with treatment response and are used to predict whether or



Introduction 12

not a patient is likely to respond to a specific treatment. Predictive biomarkers
may overlap with prognostic biomarkers. For instance, the prognostic biomarkers
that are routinely used in the clinic for breast cancer, i.e., Her2 and ER/PgR, are
also predictive biomarkers. The levels of ER/PgR are used to predict response to
endocrine therapy, with high ER/PgR expressing tumors being more responsive
than low ER/PgR expressing tumor ([48],[74],[75],[76]). Likewise, Her2 overex-
pression, as well as being a risk factor for metastatic disease, is also an indicator
of responsiveness to targeted therapy with the anti-Her2 monoclonal antibod-
ies, Trastuzumab and Herceptin ([77],[78]). Cancer genomics is producing a
wealth of gene signatures with prognostic and predictive potential. However,
only few of them are commercially available and currently employed in clinical
practice ([79]): the Oncotype DX signature ([48]) and the MammaPrint signature
([45]). MammaPrint is a 70-gene expression assay that stratifies patients accord-
ing to high and low risk of distant recurrence, using marker genes associated
with proliferation, angiogenesis, stromal invasion and metastases ([45]). It has
been shown that this signature is able to predict relapse better than traditional
clinicopathological features ([45],[80]). The Oncotype DX classifies patients into
two groups: i) those with a low or intermediate-risk of recurrence who benefit
significantly from Tamoxifen treatment; ii) those with a high risk of recurrence
who may benefit from chemotherapy. The genes in the Oncotype DX signature
that have a high predictive value include proliferation genes, such as those en-
coding cyclin B1 (CCNB1), Ki67, Myb-related protein B (MyBL2), survivin, and
serine/threonine protein kinases (STKs), as well as genes encoding the ER and
PgR ([81]). Apart from these two examples of prognostic and predictive gene
signatures that are currently in clinical use, numerous other signatures have not
made it to the clinic. The major reasons why many gene signatures have not
been developed into clinical tools are: their poor overlap in terms of common
genes, the lack of validation in independent studies and limited improvement
in the predictive value with respect to that provided by standard clinicopatho-
logic parameters([79],[82],[83],[84],[85]). Historically, prognostic gene signatures
were derived using microarray gene expression profiles. Such profiles allow the
identification of the transcriptional variations amongst breast tumors that corre-
late with clinical outcome and therapy response. Despite the potential of such
genomics technologies, the poor overlap between the currently available signa-
tures is mainly due to: i) the large number of the differentially expressed genes
that correlate with prognosis; ii) the high tumor genetic heterogeneity added

to the intrinsic genetic heterogeneity of individuals of different ethnicities; iii)
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the different data analysis techniques; iv) poor experimental design and insuffi-
cent sample size ([86]). An alternative strategy towards the discovery of more
powerful prognostic and predictive tools is the definition of molecular biomark-
ers according to disease-related pathways, such as signal transduction pathways

directly implicated in disease phenotypes.
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1.3 The Systems Biology approach to cancer research:

Cancer Systems Biology (CSB)

Systems Biology is a field of biological research ([87]). The major goal of Sys-
tems Biology is to discover the general properties that govern biological sys-
tems at system-level through the characterization of the functional relationships
among biological molecules. Systems Biology integrates multi-scale types of high-
throughput biological data (i.e. genomic, transcriptomic, metabolic, proteomic
data) and uses mathematical modeling and simulations to understand the bio-
logical complexity. A second aim of Systems Biology, when applied to the human
health, is to investigate the impact of perturbations on the biological systems and
to determine whether these perturbations are linked to a specific disease, and
could thus be relevant to the development of novel therapeutic strategies ([88]).
The application of System Biology to cancer research is called Cancer Systems
Biology (CSB). CSB aims to unveil biological properties of cancer cellular sys-
tems through the characterization of molecular mechanisms involved in cancer
(ranging from genome-wide regulatory and signalling networks to more detailed
kinetic models of key biological reactions) to finally identify molecular therapeu-
tic targets. Traditional approaches to the study of complex diseases like cancer,
were based on the gene-centric analysis of constituent parts of the system under
study ([89],[90]) and their functional involvement in the pathology. Although this
has been a successful approach that has led to the discovery of genes (and mech-
anisms) involved in tumorigenesis, such as MYC, TP53, ERBB2, and EGFR, it
is unable to fully and comprehensively capture the complex nature of biologi-
cal systems ([91],[92],[93],[94]) and in particular of highly perturbed systems like
cancer cells. CSB aims to gain insights into such complexity using unbiased and
genome-wide high-throughput “-omics” data. The deconvolution of the structure
and topological properties of the molecular mechanisms actively involved in can-
cer will increase the understanding of tumor initiation and progression, unveil
mechanisms of action of anticancer drugs, and contribute to the elucidation of
mechanisms of resistance to pharmacological treatments towards more effective
therapeutic strategies. The ineffectiveness of some lifesaving pharmacological
treatments making use of anti-cancer drugs, with a failure rate of approxima-
tively 95% ([95]), is, in fact, mainly due to the ability of cancer cells to find
alternative mechanisms to escape the effect of anti-cancer molecules ([96],[97]).
In light of the flexible behavior of cancer cells it is of crucial importance to shed
light on the complex mechanisms governing cancer disease in order to increase

the probability of success of pharmacological therapies. A typical approach in
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CSB, is the inference of mechanisms of gene expression regulation (i.e. Gene Reg-
ulatory Networks (GRNs)) that are altered in cancer and that contribute to the
major hallmarks of the disease like the sustained cell proliferation, escape from
apoptosis and invasiveness. GRNs are collections of genes and regulators, con-
nected by physical and/or regulatory interactions. Some examples of GRNs are:
transcription factor (TF)-target genes network, microRNA-target genes network,
and networks deriving from the combinatorial activity of regulators like TFs,
microRNA, RNA binding proteins and their target genes. GRNs, and more in
general biological mechanisms and systems, are represented by graph diagrams,
i.e. networks, in which the functional relationships between the components are
represented by edges connecting nodes, i.e. biological molecules (see “Graph
Theoretical Models (GTMs)”, Subsection 1.4.4).

1.3.1 The Systems Biology pipeline to model cancer systems and
computational approaches to Systems Biology and Cancer

Systems Biology

The Systems Biology approach to cancer research involves:

1. The massive profiling of the tumor genome, transcriptome, proteome,
epigenome and metabolome (DNA/RNA sequencing, microarray gene ex-
pression profiling, proteome screening), to qualitatively and quantitatively

map the molecular profile of cancer cells.

2. The integration of multi-omics data layers to produce a comprehensive

molecular landscape.

3. The modelling of the system through realistic models (e.g. models of gene
expression regulation, GRNs), to infer the dynamical properties and key

features of the system.

4. The experimental validation of the reliability of the predicted models and

their biological relevance.

5. The identification of candidate molecular targets for disease therapy ac-
cording to the structure and topological properties of biologically relevant

models.

Computational approaches to Systems Biology, also applied to CSB, can be di-

vided into two major categories: data mining and simulation-based approaches.
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Computational approaches that focuses on data mining aim to extract hidden
patterns from high-throughput experimental data (knowledge discovery), while
simulation-based approaches test hypothesis from in silico experiments, produc-
ing predictions to be tested in wvitro and in vivo wet lab experiments ([98]).
Data-mining approaches make use of sophisticated machine learning algorithms
that are able to deal with high-dimensional data. In contrast, simulation-based
analysis methods predict the dynamics of systems and experimentally tests the
validity of such predictions in the wet lab. This approach is relies on the interplay

between computationally predicted models and experimental observation.

1.3.2 Bioinformatics tools used in Systems Biology and in Cancer

Systems Biology

Systems Biology and CSB strongly depend on software tools and resources to
achieve the goals of novel biological discovery and design of more effective drugs.
Over the last years, we have witnessed the explosion of a plethora of computa-

tional tools for Systems Biology and CSB (summarized in Figure 1.4).

Tools Standards Projects
Software Resources Ontologies File format ~ Minimum
information
Data and MAGE-TAB, ISA-TAB, KNIME, caGrid, BioCatalogue SBO,0BO, MGED MIAME, MIAPE,
knowledge  Taverna, Bio-STEER NCBO (MAGE), PSI, MIBBI, ISO
management MSI MDR, DCMI
Data-driven R, MATLAB, BANJO DREAM
network Initiative, Sage
inference Bionetworks
Deep CellDesigner, EPE, Jdesigner, KEGG, Reactome, SBML, SBGN, MIRIAM
curation PathVISIO Panther pathway CellML,
database, BioPAX, PSI-MI
BioModels.net,
WikiPathways
Inssilico COPASI, SBW, JSim, Neuron, SED-ML, MIASE
simulation GENESIS, MATLAB, ANSYS, SBRML, PNML,
FreeFEM, ePNK, ina, WoPeD, Petri SBML

nets, OpenCell, CellDesigner +
COPASI, CellDesigner + SOSlib,
PhysioDesigner (formerly insilicol DE)

Model MATLAB, Auto, XPPAut, BUNKI,

analysis ManLab, ByoDyn, SenSB, COBRA,
MetNetMaker, DBSolve Optimum,
Kintecus, NetBuilder, BooleanNet,

SimBoolNet
Physiological ]Sim, PhysioDesigner (formerly CellML, SBML, IUPS Physiome
modelling insilicolDE), CellDesigner (cellular NeuroML, Project, Virtual
modelling), FLAME, OpenCell, MML Physiological
Virtual Physiology (produced by Human,
clLabs), GENESIS, Neuron, Heart High-Definition
Simulator, AnyBody Physiology
Molecular AutoDock Vina, GOLD, eHiTS RCSBPDB,
interaction ZINC, PubChem,
modelling PDBbind

Figure 1.4: Softwares and computational resources commonly used in Systems Bi-
ology and in CSB. Taken from ([99]).
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Computational tools for Systems Biology and CSB can be divided into different

categories:

e tools for data knowledge management (e.g., MAGE-TAB, ISA-TAB,
Taverna) and in particular for the acquisition and storage of data ([100]).
These are of crucial importance especially in the current big-data era. A
critical challenge that faces the development of such tools concerns the
definition of standard formats and identifiers to facilitate data exchange

between different sources.

e tools for data-driven network inference (e.g., R, MATLAB and Banjo)
from high-throughput static and time-course data, which are able to infer

causal relationships among biomolecules ([101],[102]).

e tools to build molecular interaction maps from curated data(e.g.,
CellDesigner, PathVISIO). This is an alternative strategy to network in-
ference from data and it is based on the integration of different sources
of curated data ([103]). Networks generated using this approach do not
necessarily carry information on the causality of the relationships between

the molecular entities.

e tools for in silico simulation (e.g., MATLAB, COBRA, SenSB). These
tools are frequently use to model dynamic networks ([104]). This task is
not addressed by data-driven network inference methods nor from networks
built from curated data because of the static nature of such inferred mecha-
nisms. Dynamic simulations are often made on networks from curated data

because of the stoichiometry and the mechanistic information they carry.

e tools for multi-scale physiological modeling (e.g., JSim, PhysioDe-
signer, GENESIS). These tools allow the development of models describing
the association between genetic polymorphisms and network dynamics as-
sociated with such polymorphisms that are responsible for physiological

traits and diseases ([105]).

In light of such diversity in the tools used in systems biology, it is clear that the
emergence of analytical platforms and bioinformatics tools is at the core of the

development and application of systems biology.
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1.4 Data-driven Gene Regulatory Network Inference

1.4.1 Gene expression regulatory mechanisms of

eukaryotic cellular systems

The functional activities of a cell originate from information that is encoded in
the DNA. However, cell behavior depends ultimately on regulatory mechanisms
that influence gene expression at the transcriptional, post-transcriptional, trans-
lational, and post-translational level. Regulation of gene expression depends
on the cell’s functional state and may be also influenced by the environment.
Moreover, gene expression levels are mainly determined at the transcriptional
level by the activity of thousands of TFs and cofactors, chromatin modification
(i.e. DNA methylation), and histone modification (Figure 1.5). Instead, at the
post-transcriptional level, RNA editing and non-coding RNAs (i.e. microRNAs,
miRNAs; long intergenic non-coding RNAs, lincRNAs) are key regulators of gene
expression ([106],[107],[108],[109]). The control of gene expression programs is an
essential and vital process for living organisms and its alteration is often asso-
ciated with diseases, such as cancer ([110],[111],[112],[113]). DNA mutations in
CIS-regulatory elements (i.e. enhancers, promoters) or TRANS-regulatory ele-
ments (i.e. TFs, co-factors), as well as in chromatin modifiers, can have profound
effects on gene expression patterns, with relative pathological consequences. In-
deed, the association between mutations in these regulatory elements and cancer
has been extensively demonstrated ([114],[115],[116],[117]). For example: i) aber-
rant overexpression of the TAL1 TF in T cell acute lymphoblastic leukemia leads
to an increase in its transcriptional activity and activation of oncogenic pathways
([118],[119]); ii) amplification and overexpression of c-Myc, which controls tran-
scription of genes involved in cell proliferation, cell growth, differentiation and
apoptosis, leads to the activation of molecular pathways that are involved in can-
cer ([120]); iii) loss of RB gene function leads to a pro-tumorigenic activation of
the E2F TF activity ([121]).
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Figure 1.5: Mechanisms of transcriptional regulation.

The full set of mechanisms of transcriptional regulation is reported.

Binding of transcription factors to enhancer sequences and to coactivators.
RNA polymerase II (RNA Pol II) binds to TF coactivator complexes at the transcrip-
tional start sites. The loop formed between the enhancer sequences and the start site
at genomic level is stabilized by cofactors (e.g. mediator complex and cohesin) and is
necessary for transcription.

B. Initiation of the transcriptional activity by RINA Pol II. The initiation site is
the starting point for RNA polymerase II activity. Pause control factors stop RNA Pol
IT activity approximately 10 base pairs downstream of the initiation site.

C. Elongation of the mRNA molecule after removal of the pause control fac-
tors. Different elongation factors and cofactors allow the RNA Pol II to proceed and
elongate the mRNA molecule.

D. Accessibility to the DNA molecule. ATP-dependent remodeling complexes act
on the nucleosome allowing the transcriptional complex access to DNA regions to be
transcribed.

E. Histone components of nucleosomes are modified by proteins. This modifi-
cation influences transcriptional activity and can be summarized into five types of modifi-
cations: acetylation (Ac), methylation (Me), phosphorylation (P), sumoylation (Su) and
ubiquitination (Ub). The modifications are added by proteins called writers and they
are removed by proteins called erasers. Readers proteins are able to bind DNA via these
modifications.

F. Patterns of transcriptional activity determine the histone modifications.
Patterns of histone modifications relative to actively transcribed genes are reported as
examples: the histone H3 lysine 27 acetylation (H3K27Ac), histone H3 lysine 4 trimethy-
lation (H3K4me3), histone H3 lysine 79 dimethylation (H3K79me2), and histone H3 lysine
36 trimethylation (H3K36me3).

Taken from ([122]).
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1.4.2 Gene Regulatory Networks Inference from microarray gene

expression data: limitations and challenges

Recently, the application of Systems Biology approaches to cancer “-omics” data
has resulted in the identification of Gene Regulatory Networks (GRNSs) repre-
senting molecular mechanisms involved in cancer. The inference of GRNs is of
crucial importance to explain the homeostasis of a cell and, most importantly, to
understand the effect of genomic alterations on the disruption of these regulatory
networks which results in the onset and progression of diseases. Although many
regulatory molecular mechanisms have been already well characterized at the bio-
chemical and biophysical level, the availability of “-omics” data is now allowing a
more comprehensive data-driven characterization of them as well as of, more gen-
erally, complex cellular systems ([123], [124],[125],[126],[127],[128]). Microarray
gene expression profiles represented the commonly and widely used “-omic” data
source for Gene Regulatory Network Inference (GRNi) at mRNA level. The in-
ference of regulatory mechanisms that control the mRNA levels of a cell is based
on the assumption that the functional relationship between expressed molecules
generates statistical relations in the observed data. This simplification allows
the application of mathematical and statistical techniques to network inference
in an unbiased way, i.e. without priori knowledge on the functional relationships
between the expressed genes. Specifically, if groups of genes are expressed in a
cell at the same time, there is a possible functional relationship between these
genes, that might be explained by statistical correlations. Different statistical
frameworks have been successfully applied to infer networks of interacting genes
from microarray gene expression data ([129],[130],[131],[132],[133]). Despite the
great contribution of powerful statistical methods to the inference of regulatory
mechanisms from microarray gene expression data, some technical issues limits
the reliability of the inferred networks. In particular the available data sets lack
the quantitative and statistical power to infer GRNs, i.e. the number of possible
inferred interactions greatly exceeds the number of independent measurements.
This is the “underdetermination” problem, also called “the curse of dimensional-
ity” problem. To gain the statistical power necessary to generate data-driven ac-
curate maps of regulatory mechanisms, hundreds of biological samples are needed.
Consequently, it is difficult to derive reliable regulatory network models from the
available data, even for small size networks according to data requirements for
statistical significance. An innovative strategy to decipher GRNs was introduced
by Segal et al. (][134],[135],[136]) and is based on the definition of modules of
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co-expressed genes that constitute the building blocks of the GRN. The princi-
ple behind this approach is that genes that are grouped together into modules
share a common regulatory program. Grouping together functionally regulated
genes strongly reduces the complexity of the system that has to be modeled, and
further increases the statistical power needed for regulatory network inference.
Another crucial factor that affects the inference of gene regulatory networks from
microarray data and in general network inference biology is the lack of bench-
marking studies for biological data. Benchmarking studies are powerful tools that
allow the identification of the best mathematical and statistical framework for
finding true and realistic relationships between genes. Consequently, the evalua-
tion of the accuracy of the methods for regulatory network inference is measured
through simulated data that even if they represent the only possible way for the
validation of the methods they do not capture the true variability of biologi-
cal systems. To address all these problems, collaborative efforts have been made
worldwide through public initiatives, such as the Dialogue of Reverse Engineering
Assessments and Methods (DREAM) ([137],[138],[139],[140]) and Sage Bionet-
works (http://sagebase.org/). The aim of such projects is to catalyze world-
wide efforts towards the standardization and rigorous assessment of methods for
cellular network inference and quantitative model building in systems biology.
In particular, the DREAM project (http://www.the-dream-project.org/) is
a promising initiative that through a yearly competition allows algorithm de-
velopers to present their own methods for network inference and it provides an
unbiased assessment of these methods. From the recent DREAM competitions,
it has emerged that different algorithms for reverse engineering cellular networks,
highly complement each other ([141]), and that a community-based, consensus-
driven, reverse-engineering approach can lead to high quality network inference.
The reason why integration of reverse engineering algorithms is superior to the
selection of the best performing algorithm from a pool of proposed methods, is
mainly due to the compensatory effect of using multiple algorithms to balance
the strengths and weaknesses of each single algorithm. In conclusion, in spite
of the theoretical and technical limitations of network inference methods and
strategies, network biology offers an unprecedented opportunity to interpret and
reinterpret experimental findings in a global view, to unveil novel interactions

and molecular regulatory processes.


http://sagebase.org/
http://www.the-dream-project.org/
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1.4.3 Co-expression networks and transcription-regulatory

networks

Two types of GRNs can be inferred from high-throughput gene expression data:
co-expression networks and transcription-regulatory networks (Figure 1.6) [142].
In co-expression networks, nodes represent genes and edges represent connec-
tions between genes. Genes are connected to one another if they share similar
expression patterns under various biological conditions. The degree of similarity
between two genes can be formalized using statistical weights. Co-expression net-
works allow the identification of highly connected subgraphs, also called “cliques”,
corresponding to modules of genes having the same transcriptional profile. In
transcription-regulatory networks, networks are represented as bipartite graphs,
in which it is possible to identify a set of nodes representing transcription fac-
tors and a set of nodes representing target genes (i.e., modules of genes under
the control of transcription factors). While in co-expression networks the rela-
tionships between genes are undirected for large scale networks, in the case of
transcription-regulatory networks the edges are often directed reflecting a causal
relationship between genes determined by the transcription factor regulatory pro-
gram. Causal relationships in transcription-regulatory networks indicate that the
observed transcriptional correlation in a module of co-expressed genes, is caused
by the expression and regulation of a transcription factor on nodes representing
target genes. When a set of genes is under the control of multiple transcription

factors, a transcriptional program is defined.
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a Co-expression network

b Transcription-
regulatory
network

o Gene

O Transcription factor
—— Co-expression edge

= Regulation edge

Figure 1.6: Co-expression networks and transcriptional-regulatory net-
works.

The two types of GRNs are reported: a) co-expression networks in which genes show-
ing the same transcriptional pattern are grouped together forming modules of genes;
b) transcription-regulatory networks in which regulators (i.e., transcription factors) and
their target genes are distinguishable. Adapted from [142].
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1.4.4 Model Gene Regulatory Networks

Microarray technology have produced a plethora of gene expression data at
mRNA level ([143]), providing an unprecedented opportunity to decipher the
functional regulatory mechanisms (GRNs) that control gene expression in a
cell. Specifically, microarray technology allows a quantitative and simultaneous
measure of the transcriptome and relative fluctuations upon a genetic perturba-
tion ([144]), drug-induced perturbations ([145],[146]) or according to a disease
state. Whereas direct experimental investigation of the functional relationship
between genes is labor-intensive and time-consuming, computational analysis of
gene expression profiles, through the use of statistical inference algorithms, offers
a reliable alternative to explore the structure of GRNs that control molecular
mechanisms in the cell. In recent years there has been an explosion in the num-
ber of computational and mathematical methods to model complex GRNs from
different sources of data. Here, the generally used methods to model GRNs are
reported. The mRNA cellular levels measured through the microarray technol-

ogy represe