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Abstract

Breast cancer is the most commonly diagnosed cancer and the second leading

cause of cancer death in women. Although recent improvements in the preven-

tion, early detection, and treatment of breast cancer have led to a significant

decrease in the mortality rate, the identification of an optimal therapeutic strat-

egy for each patient remains a difficult task because of the heterogeneous nature

of the disease. Clinical heterogeneity of breast cancer is in part explained by the

vast genetic and molecular heterogeneity of this disease, which is now emerging

from large-scale screening studies using “-omics” technologies (e.g. microarray

gene expression profiling, next-generation sequencing). This genetic and molecu-

lar heterogeneity likely contributes significantly to therapy response and clinical

outcome. The recent advances in our understanding of the molecular nature of

breast cancer due, in particular, to the explosion of high-throughput technolo-

gies, is driving a shift away from the “one-dose-fits-all” paradigm in healthcare,

to the new “Personalized Cancer Care” paradigm. The aim of “Personalized

Cancer Care” is to select the optimal course of clinical intervention for individ-

ual patients, maximizing the likelihood of effective treatment and reducing the

probability of adverse drug reactions, according to the molecular features of the

patient. In light to this medical scenario, the aim of this project is to identify

novel molecular mechanisms that are altered in breast cancer through the devel-

opment of a computational pipeline, in order to propose putative biomarkers and

druggable target genes for the personalized management of patients. Through

the application of a Systems Biology approach to reverse engineer Gene Regula-

tory Networks (GRNs) from gene expression data, we built GRNs around “hub”

genes transcriptionally correlating with clinical-pathological features associated

with breast tumor expression profiles. The relevance of the GRNs as putative

cancer-related mechanisms was reinforced by the occurrence of mutational events

related to breast cancer in the “hub” genes, as well as in the neighbor genes.
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Moreover, for some networks, we observed mutually exclusive mutational pat-

terns in the neighbors genes, thus supporting their predicted role as oncogenic

mechanisms. Strikingly, a substantial fraction of GRNs were overexpressed in

triple negative breast cancer patients who acquired resistance to therapy, sug-

gesting the involvement of these networks in mechanisms of chemoresistance. In

conclusion, our approach allowed us to identify cancer molecular mechanisms

frequently altered in breast cancer and in chemorefractory tumors, which may

suggest novel cancer biomarkers and potential drug targets for the development

of more effective therapeutic strategies in metastatic breast cancer patients.
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Chapter 1

Introduction

1.1 Cancer

Cancer is a multifactorial disease characterized at a macroscopic level by un-

controlled and limitless cell proliferation, self-sufficiency in growth signals, and

the ability to invade tissues, spread to distant organs (metastasize) and form

new blood vessels for nutrient supply to cancer cells (angiogenesis; Figure 1.1)

([1],[2]). With 1,665,540 new cases and 585,720 deaths estimated in the United

States, alone, in 2014 ([3]) cancer remains one of the main causes of death world-

wide. Therefore, the identification of innovative cancer biomarkers, as well as

more effective strategies for detection and treatment of cancer, is paramount.

Figure 1.1: The hallmarks of cancer.

Schematic representation of the hallmarks of cancer. Recent advances in cancer biology
have improved our comprehension of cancer-related mechanisms required to sustain the
neoplastic phenotype. Taken from [2].

1



Introduction 2

1.1.1 Cancer classification

There are over 100 different types of cancer classified by the type of cell that is

initially affected. Cancer types can be grouped in five main categories according

to the histological type and the primary site:

• Carcinoma is a type of cancer that originates from epithelial cells lining

the inner or outer surfaces of the body. Many histological subtypes of car-

cinoma have been characterized including basal cell carcinoma, adenosqua-

mous carcinoma, transitional cell carcinoma and squamous cell carcinoma.

• Sarcoma is a type of cancer originating in blood vessels, nerves and ten-

dons, muscles, cartilage, bone, fat, connective tissue.

• Lymphoma and myeloma originate in the lymph system (lymph nodes

and lymphatic vessels) and in general involve cells of the immune system.

• Leukemia is a type of cancer that originates in blood-forming tissue (bone

marrow) allowing the formation of abnormal blood cells that will be released

in the blood.

• Central nervous system cancers are cancers originating in brain tissues.

1.1.2 Cancer development

Cancer development may be caused by environmental factors, harmful life habits,

and genetic inheritance. The accumulation of mutations in the DNA due to ex-

ogenous and endogenous DNA-damaging agents and the resulting genomic insta-

bility are at the basis of neoplastic transformation ([4]). More recently, a role

for epigenetic alterations was also proposed as an addictive factor that may in-

duce neoplastic transformation ([5],[6],[7],[8]). Genes that hold the potential to

promote neoplastic transformation are called oncogenes, while those that oppose

transformation are named tumor suppressor genes. Mutations or epigenetic al-

terations may cause overexpression or reduction/ablation of an oncogene or a

tumor suppressor, respectively, thereby contributing to neoplastic transforma-

tion [9],[10],[11]). In addition, many cancer-related mutations cause activation or

inactivation of specific signaling proteins, resulting in hyper-activation of signal-

ing pathways that promote proliferation, migration or invasion, and ultimately

neoplastic transformation ([12],[13],[14]).
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1.1.3 Cancer stem cells

An emerging field in cancer biology is related to the identification and charac-

terization of cancer stem cells ([15],[16]). Cancer stem cells are thought to be

the engine of the tumor since they are the only cells within the tumor that are

able to regenerate tumors in vivo. Cancer stem cells possess self-renewal and

differentiation capabilities similar to those of normal adult stem cells ([17],[18]).

The elucidation of the mechanisms that control such stem cell properties would

shed light on the disrupted pathways responsible for cancer stem cell generation

and tumor growth.

The first evidence of the existence of cancer stem cells came from the study of

leukemia; it was shown that only a small fraction of leukemia cells proliferated

extensively in vivo and in vitro ([15]). The involvement of cancer stem cells

in tumorigenesis is further sustained by their distinctive trait to be the only

long-lived cell population. This feature makes them preferential targets of ini-

tial oncogenic mutations because of their long exposure to genotoxic stresses. In

addition, two further observations support the cancer stem cell theory: the first

refers to tumor heterogeneity; the second concerns the number of cells required

for tumor growth. In the first case, although cancer cells originate from a single

transformed cell they display different phenotypic traits that were present in the

original normal tissue from which they derive ([19]). In the second case, the can-

cer stem cell hypothesis is supported by evidence showing that only cells with a

high capability of self-renewal, like the cancer stem cells, are able to sustain the

intensive proliferation of a tumor.

1.1.4 Cancer metastasis

Cancer cells may invade and colonize other tissues and organs through the lym-

phatic system and/or blood. This metastatic process is initially triggered by

stochastic events that allow the dispersion of cancer cells into the circulation,

and is dependent on the ability of a small fraction of cells to survive in distant

organs, giving rise to metastases ([20]). The ability of cancer cells to invade dis-

tant organ sites is tumor-specific, although in some cases different tumor types

are able to colonize the same organ site (Table 1.1).
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Table 1.1: Metastatic relapse sites for solid tumors.

Tumor typet Principal sites of metastasis

Breast Bone, lungs, liver, brain

Lung adenocarcinoma Brain, bones, adrenal gland, liver

Skin melanoma Lungs, brain, skin, liver

Colorectal Liver, lungs

Pancreatic Liver and lungs

Prostate Bones

Sarcoma Lungs

Uveal melanoma Liver

In the case of metastatic invasion through the lymphatic system, cancer cells

travel through the lymph system and they may end up in lymph nodes giving

rise to a metastatic lymph node tumor. In order to spread to new parts of the

body through the lymphatic system, cancer cells have to break away from the

original tumor and attach themselves to the outside wall of a lymph vessel. Then,

the cells move through the vessel wall to flow with the lymph to a new lymph

node. The progression of the tumor towards metastasis through the blood vessels

can be summarized by the following steps (Figure A.1):

• the local invasion: the cancer cells locally infiltrate through the basement

membrane into the surrounding/adjacent tissue.

• the intravasion, also called “endothelial transmigration”, of tumor cells

into vessels: the cancer cells invade the blood or lymphatic vessels through

the basal membrane.

• the hematogenous survival and translocation: the cancer cells are able

to survive in the circulatory system and disseminate through the blood-

stream to microvessels of distant tissues. The intravasion together with

the hematogenous survival constitute the “hematogenous dissemination”

process.

• the extravasion: cancer cells exit from the bloodstream.

• the colonization: cancer cells colonize distant organs. The cells adapt

to the foreign microenvironment of distant site and start proliferating and

forming macroscopic secondary tumors in competent organs.
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Although the molecular mechanisms at the basis of the metastatic ability of

cancer cells are not fully characterized, the functional activity of some genes is

associated to the initiation and progression of metastasis. The metastasis initi-

ation genes promote cell motility, epithelial-to-mesenchymal transition (EMT),

extracellular matrix degradation and angiogenesis. The key genes that, for ex-

ample, promote EMT (local tumor invasion) through changes in cell adhesion

and migratory properties of tumor cells include the Snail (SNAI1 and SNAI2)

([22],[23]), Zeb (ZEB1 and ZEB2) ([24],[25]) and basic helix-loop-helix (bHLH:

E47 and TWIST) ([26]) transcription factor families that contribute to the acti-

vation of a plethora of genes involved in the above mentioned EMT pathway.

Figure 1.2: Mechanical processes of a metastatic event.

(Taken from [21]).
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1.2 Breast cancer

Breast cancer is the most common cancer diagnosed worldwide in women (sec-

ond most common cancer overall) with 232,670 new cases and 40,000 deaths

estimated in the US in 2014 ([27]). The incidence and overall mortality rates

are higher in high-income countries respect to low and middle-income countries

mainly because of an increasing adoption of cancer-causing behaviors, like for

example overweight/obesity, a sedentary lifestyle and smoking. Although the

incidence and the overall mortality rates are lower in low and middle-income

countries the fatality rates from breast cancer still remain high mainly because

of a scarcity of adequate facilities for detection and diagnosis, as well as poor

access to primary treatment ([28],[29],[30]). Breast cancer originates from the ep-

ithelial and myoepithelial cells lining the ductal or lobular part of the mammary

gland, and it occurs almost entirely in women, although there are rare cases of

breast cancer in men. The majority of breast cancers originate in cells lining

the ducts: tubes that carry the milk from the lobules to the nipple. Thus, these

cancers are named ductal carcinomas. Tumors originating from cells lining the

lobules are instead named lobular carcinomas (Figure 1.3). Ductal and lobular

carcinomas can be further classified as invasive or in situ carcinoma depending

on whether the cancer has spread into the surrounding tissues or to distant sites

(i.e., invasive ductal carcinoma, IDC, or invasive lobular carcinoma, ILC), or

whether it has remained localized at the site of origin (i.e., ductal carcinoma in

situ, DCIS, or lobular carcinoma in situ, LCIS). IDC accounts for 80% of inva-

sive breast cancers while ILC accounts for 10% of invasive breast tumors ([31]).

Generally, in situ carcinomas are classified as early stage (stage 0) tumors and if

untreated may become invasive and metastatic breast tumors.
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Figure 1.3: Breast cancer sites of origin.

Breast cancers may arise from the cells lining the milk lobules (glands) or from the cells
lining the milk ducts within the breast lobes. In the first case they are called lobular
carcinomas while in the second case they are called ductal carcinomas. Both types of
tumours are further classified as invasive or in situ carcinoma according to the site of
invasion. Taken from ([31]).
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1.2.1 Breast cancer is an heterogeneous disease

Breast carcinoma is a highly heterogeneous disease with multiple tumor sub-

types characterized by different histological and molecular features, which likely

impact on therapy response and clinical outcome ([32],[33],[34]). Despite recent

improvements in prevention, early detection, and treatment of breast cancer have

led to a significant decrease in the mortality rate ([27]), the identification of an

optimal therapeutic strategy for each patient remains a difficult task because

of the heterogeneous nature of the disease. Originally, breast cancer diagnosis

and subtype classification was based on specific histological and morphological

features (histological heterogeneity) that allow the classification of the disease

in 20 major tumor types and 18 minor subtypes ([35]). The recent advances

in microarray gene expression profiling, next-generation sequencing (NGS), and

high-throughput proteomics, is now allowing a more in-depth molecular char-

acterization of breast cancer at a genomic and proteomic level. This has led

to the identification of novel breast cancer subtypes ([36],[37],[38],[39]), and an

improvement in the diagnostic and prognostic evaluation of breast cancer pa-

tients ([40],[41]). In addition, recent NGS studies of breast tumors revealed a

certain level of intra-tumor heterogeneity ([42],[43]). In particular, Navin and

colleagues ([43]), through single-nucleus DNA sequencing, identified the presence

of intra-tumor distinct clonal subpopulations characterized by distinct genomic

alterations. In some cases, an almost identical profile was found in metastatic

tumor cells (i.e. synchronous metastatic lesions) respect to specific clonal sub-

populations in primary tumours. Indeed, Ding and colleagues ([42]) showed that

in basal-like breast tumors, metastatic lesions arise from sub-populations of can-

cer cells in the primary tumor with a specific repertoire of mutations, which were

suggested to be drivers for cancer progression. However, despite these recent ad-

vances in the characterization of the genomic profiles of breast cancer, the molec-

ular mechanisms involved in disease onset and progression remain mostly unclear.

Further studies are thus necessary to better characterize these breast cancer path-

ways and to identify reliable cancer biomarkers for improving therapeutic inter-

vention and survival of breast cancer patients ([37],[38],[44],[45],[46],[47],[48]).
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1.2.2 Molecular classification of breast cancer

Breast cancer can be classified into three main groups based on the expression

of different breast cancer markers, which are detected by immunohistochemistry

(IHC) or fluorescence in situ hybridization (FISH) assays:

• The hormone receptor positive group: these tumors express the ER

and/or PgR and account for 68% of breast cancers.

• The Her2 positive group: these tumors overexpress the Her2 receptor

at the protein level (detected by IHC), or carry an amplification of the

Her2 gene (detected by FISH). They do not express ER and/or PgR. The

frequency of occurrence is 11% in the female breast cancer population.

• The triple negative group: there tumors lack expression of all three

receptors, ER, PgR and Her2, and account for 19% of female breast cancers.

The hormone receptor positive group can be further divided into two additional

subtypes, according to the expression of the proliferation marker, Ki-67, and

Her2 receptor:

• The Luminal A subtype: these tumors express the ER and/or PgR, but

not Her2, and poorly express the Ki-67 proliferation marker. These tumors

account for 44% of female breast cancers.

• The Luminal B subtype: these tumors express the ER and/or PgR, and

Her2, and highly express the Ki-67 proliferation marker. The frequency of

occurrence is 24% in female breast cancer population.

The Luminal A subtype is the only breast cancer subtype that has a good prog-

nosis, high survival rates and low risk of recurrence ([49],[50],[51]). The low level

of aggressiveness of these tumors is attributed to their low rate of proliferation

and their positivity for ER expression, which allows the use of endocrine therapy

(also referred to as hormone therapy): a systemic therapy that blocks tumor cell

growth ([52]). In contrast, the Luminal B subtype is highly proliferative and

poorly-differentiated, and displays features associated with poor prognosis, such

as: i) large tumor size; ii) high tumor grade; iii) the presence of tumor cells

in the lymph nodes. The Her2-positive and triple negative subtypes are highly

metastatic and exhibit the worse clinical outcome, although more effective ther-

apies are available for the former ([49],[53],[54],[55],[56]).
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1.2.3 Breast cancer treatment

Breast cancer is generally treated locally through surgery and/or radiation

therapy, or systemically using chemotherapeutic agents or hormone therapy.

Chemotherapy may be given in a neoadjuvant regimen to reduce tumor burden

before surgery, or in an adjuvant regimen after surgery to reduce the risk of

recurrence. Recently, it has been documented that chemotherapy treatments

including taxane (i.e., paclitaxel, Taxol and docetaxel, Taxotere) and anthra-

cycline (i.e., doxorubicin, Adriamycin and epirubicin, Ellence) in a neoadjuvant

setting is an effective strategy to increase overall survival in patients with lo-

cally advanced breast cancer ([57],[58]). Other chemotherapeutic agents for

breast cancer treatment include: Cyclophosphamide (Cytoxan), Capecitabine

(Xeloda) and fluorouracil (5 FU), methotrexate (Rheumatrex, Trexall), lapa-

tinib (Tykerb). Chemotherapy drugs are usually given in 2-4 week cycles, but

some may be used on a weekly basis. They can be also given in combinations

with two or more drugs. The hormone therapy drugs frequently used in clin-

ical practice to treat early, locally advanced or metastatic ER positive breast

cancers are: i) tamoxifen (Nolvadex), a selective ER modulator (SERM) that

binds to the receptor and prevents its activation by the ligand, estrogen, thereby

inhibiting tumor cell growth; ii) the aromatase inhibitors that act by blocking

the biosynthesis of estrogen, thus, reducing the availability of estrogen to cancer

cells ([52]). Patients diagnosed with Her2-positive tumors or with triple nega-

tive breast tumors are frequently unresponsive to standard chemotherapy. The

use of the hormone therapy is not an option since these tumors do not express

ER or PgR. For Her2-positive tumors, a molecularly targeted therapy is avail-

able based on monoclonal antibodies targeting the extracellular portion of the

Her2/neu receptor (i.e. Trastuzumab or Herceptin). Patients with metastatic

breast cancer (late-stage), who were treated with Trastuzumab displayed an

increase in overall survival of 20 to 25 months ([59]), while in patients with

Her2-positive non metastatic cancer (early-stage) Trastuzumab reduce the ab-

solute risk of relapse after the surgery of 9.5% and the absolute risk of death

of 3%([60]). Triple negative tumors are typically treated with the combination

of surgery radiation therapy and chemotherapy. They cannot be treated with

hormone therapy or Trastuzumab (Herceptin) because they are ER-negative and

Her2-negative. Target therapies are not available for these tumours because the

genes that are linked to this breast cancer subtype are still not well understood.

Although new treatments are being studied ([61]), more effective treatments are

urgently required for this group of breast cancer patients characterized to have

low five-year survival rate.
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1.2.4 Personalized Breast Cancer Care

Although metastatic breast cancer still remains an aggressive and incurable dis-

ease, early stage breast cancer is curable in most patients. Indeed, the decrease

in the mortality rate observed worldwide in the last 10 years ([27]) is, in part,

due to the diffusion of preventive mammography screening programs that allow

the detection of non-metastatic, early-stage disease that is curable by surgery

([62],[63]). In addition, our increased understanding of breast cancer biology

over recent years has led to the development of more effective, molecularly tar-

geted treatments like for example those making use of Lapatinib (Tykerb) and

Trastuzumab (Herceptin) for Her2-positive tumours, Tamoxifen ER-positive tu-

mours, that have helped to reduce the mortality of certain breast cancer sub-

types ([64]). The deeply understanding of breast cancer due, in particular, to

the explosion of “-omics” technologies, is driving a shift away from the “one-dose-

fits-all” paradigm to a new paradigm in healthcare, the so-called “Personalized

Cancer Care” or “Personalized Medicine”. Personalized medicine aims to select

the optimal course of clinical intervention for individual patients, maximizing

the likelihood of effective treatment and reducing the probability of adverse drug

reactions. The major determinant in the success of personalized medicine is the

identification of predictive and prognostic molecular biomarkers that reflect the

variability of breast cancer patients in terms of therapy response and clinical out-

come, respectively. The availability of such cancer biomarkers would allow the

stratification of patients in terms of risk of disease recurrence and responsiveness

to specific therapies, thereby overcoming the problems of undertreatment and

overtreatment of cancer. For instance, biomarkers that identify more aggressive

tumors can help avoid undertreatment, since such tumors can be treated with

more aggressive therapies. Whereas, biomarkers that are predictive of therapy

response, will help to prevent overtreatment of patients who would otherwise re-

ceive little benefit from the treatment, whilst being exposed to potentially adverse

side-effects ([65],[66],[67],[68],[69]).

1.2.5 Prognostic and predictive biomarkers in breast cancer care

As defined in Clark et al.,([70]) prognostic biomarkers are biological molecules

whose modulation, in terms of quantity or function, correlates with prognosis

([71],[72],[73]). These biomarkers can be used in clinical practice to stratify can-

cer patients and identify the optimal treatment regimens. Predictive biomarkers,

instead, correlate with treatment response and are used to predict whether or
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not a patient is likely to respond to a specific treatment. Predictive biomarkers

may overlap with prognostic biomarkers. For instance, the prognostic biomarkers

that are routinely used in the clinic for breast cancer, i.e., Her2 and ER/PgR, are

also predictive biomarkers. The levels of ER/PgR are used to predict response to

endocrine therapy, with high ER/PgR expressing tumors being more responsive

than low ER/PgR expressing tumor ([48],[74],[75],[76]). Likewise, Her2 overex-

pression, as well as being a risk factor for metastatic disease, is also an indicator

of responsiveness to targeted therapy with the anti-Her2 monoclonal antibod-

ies, Trastuzumab and Herceptin ([77],[78]). Cancer genomics is producing a

wealth of gene signatures with prognostic and predictive potential. However,

only few of them are commercially available and currently employed in clinical

practice ([79]): the Oncotype DX signature ([48]) and the MammaPrint signature

([45]). MammaPrint is a 70-gene expression assay that stratifies patients accord-

ing to high and low risk of distant recurrence, using marker genes associated

with proliferation, angiogenesis, stromal invasion and metastases ([45]). It has

been shown that this signature is able to predict relapse better than traditional

clinicopathological features ([45],[80]). The Oncotype DX classifies patients into

two groups: i) those with a low or intermediate-risk of recurrence who benefit

significantly from Tamoxifen treatment; ii) those with a high risk of recurrence

who may benefit from chemotherapy. The genes in the Oncotype DX signature

that have a high predictive value include proliferation genes, such as those en-

coding cyclin B1 (CCNB1), Ki67, Myb-related protein B (MyBL2), survivin, and

serine/threonine protein kinases (STKs), as well as genes encoding the ER and

PgR ([81]). Apart from these two examples of prognostic and predictive gene

signatures that are currently in clinical use, numerous other signatures have not

made it to the clinic. The major reasons why many gene signatures have not

been developed into clinical tools are: their poor overlap in terms of common

genes, the lack of validation in independent studies and limited improvement

in the predictive value with respect to that provided by standard clinicopatho-

logic parameters([79],[82],[83],[84],[85]). Historically, prognostic gene signatures

were derived using microarray gene expression profiles. Such profiles allow the

identification of the transcriptional variations amongst breast tumors that corre-

late with clinical outcome and therapy response. Despite the potential of such

genomics technologies, the poor overlap between the currently available signa-

tures is mainly due to: i) the large number of the differentially expressed genes

that correlate with prognosis; ii) the high tumor genetic heterogeneity added

to the intrinsic genetic heterogeneity of individuals of different ethnicities; iii)
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the different data analysis techniques; iv) poor experimental design and insuffi-

cent sample size ([86]). An alternative strategy towards the discovery of more

powerful prognostic and predictive tools is the definition of molecular biomark-

ers according to disease-related pathways, such as signal transduction pathways

directly implicated in disease phenotypes.
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1.3 The Systems Biology approach to cancer research:

Cancer Systems Biology (CSB)

Systems Biology is a field of biological research ([87]). The major goal of Sys-

tems Biology is to discover the general properties that govern biological sys-

tems at system-level through the characterization of the functional relationships

among biological molecules. Systems Biology integrates multi-scale types of high-

throughput biological data (i.e. genomic, transcriptomic, metabolic, proteomic

data) and uses mathematical modeling and simulations to understand the bio-

logical complexity. A second aim of Systems Biology, when applied to the human

health, is to investigate the impact of perturbations on the biological systems and

to determine whether these perturbations are linked to a specific disease, and

could thus be relevant to the development of novel therapeutic strategies ([88]).

The application of System Biology to cancer research is called Cancer Systems

Biology (CSB). CSB aims to unveil biological properties of cancer cellular sys-

tems through the characterization of molecular mechanisms involved in cancer

(ranging from genome-wide regulatory and signalling networks to more detailed

kinetic models of key biological reactions) to finally identify molecular therapeu-

tic targets. Traditional approaches to the study of complex diseases like cancer,

were based on the gene-centric analysis of constituent parts of the system under

study ([89],[90]) and their functional involvement in the pathology. Although this

has been a successful approach that has led to the discovery of genes (and mech-

anisms) involved in tumorigenesis, such as MYC, TP53, ERBB2, and EGFR, it

is unable to fully and comprehensively capture the complex nature of biologi-

cal systems ([91],[92],[93],[94]) and in particular of highly perturbed systems like

cancer cells. CSB aims to gain insights into such complexity using unbiased and

genome-wide high-throughput “-omics” data. The deconvolution of the structure

and topological properties of the molecular mechanisms actively involved in can-

cer will increase the understanding of tumor initiation and progression, unveil

mechanisms of action of anticancer drugs, and contribute to the elucidation of

mechanisms of resistance to pharmacological treatments towards more effective

therapeutic strategies. The ineffectiveness of some lifesaving pharmacological

treatments making use of anti-cancer drugs, with a failure rate of approxima-

tively 95% ([95]), is, in fact, mainly due to the ability of cancer cells to find

alternative mechanisms to escape the effect of anti-cancer molecules ([96],[97]).

In light of the flexible behavior of cancer cells it is of crucial importance to shed

light on the complex mechanisms governing cancer disease in order to increase

the probability of success of pharmacological therapies. A typical approach in
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CSB, is the inference of mechanisms of gene expression regulation (i.e. Gene Reg-

ulatory Networks (GRNs)) that are altered in cancer and that contribute to the

major hallmarks of the disease like the sustained cell proliferation, escape from

apoptosis and invasiveness. GRNs are collections of genes and regulators, con-

nected by physical and/or regulatory interactions. Some examples of GRNs are:

transcription factor (TF)-target genes network, microRNA-target genes network,

and networks deriving from the combinatorial activity of regulators like TFs,

microRNA, RNA binding proteins and their target genes. GRNs, and more in

general biological mechanisms and systems, are represented by graph diagrams,

i.e. networks, in which the functional relationships between the components are

represented by edges connecting nodes, i.e. biological molecules (see “Graph

Theoretical Models (GTMs)”, Subsection 1.4.4).

1.3.1 The Systems Biology pipeline to model cancer systems and

computational approaches to Systems Biology and Cancer

Systems Biology

The Systems Biology approach to cancer research involves:

1. The massive profiling of the tumor genome, transcriptome, proteome,

epigenome and metabolome (DNA/RNA sequencing, microarray gene ex-

pression profiling, proteome screening), to qualitatively and quantitatively

map the molecular profile of cancer cells.

2. The integration of multi-omics data layers to produce a comprehensive

molecular landscape.

3. The modelling of the system through realistic models (e.g. models of gene

expression regulation, GRNs), to infer the dynamical properties and key

features of the system.

4. The experimental validation of the reliability of the predicted models and

their biological relevance.

5. The identification of candidate molecular targets for disease therapy ac-

cording to the structure and topological properties of biologically relevant

models.

Computational approaches to Systems Biology, also applied to CSB, can be di-

vided into two major categories: data mining and simulation-based approaches.
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Computational approaches that focuses on data mining aim to extract hidden

patterns from high-throughput experimental data (knowledge discovery), while

simulation-based approaches test hypothesis from in silico experiments, produc-

ing predictions to be tested in vitro and in vivo wet lab experiments ([98]).

Data-mining approaches make use of sophisticated machine learning algorithms

that are able to deal with high-dimensional data. In contrast, simulation-based

analysis methods predict the dynamics of systems and experimentally tests the

validity of such predictions in the wet lab. This approach is relies on the interplay

between computationally predicted models and experimental observation.

1.3.2 Bioinformatics tools used in Systems Biology and in Cancer

Systems Biology

Systems Biology and CSB strongly depend on software tools and resources to

achieve the goals of novel biological discovery and design of more effective drugs.

Over the last years, we have witnessed the explosion of a plethora of computa-

tional tools for Systems Biology and CSB (summarized in Figure 1.4).

Figure 1.4: Softwares and computational resources commonly used in Systems Bi-

ology and in CSB. Taken from ([99]).
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Computational tools for Systems Biology and CSB can be divided into different

categories:

• tools for data knowledge management (e.g., MAGE-TAB, ISA-TAB,

Taverna) and in particular for the acquisition and storage of data ([100]).

These are of crucial importance especially in the current big-data era. A

critical challenge that faces the development of such tools concerns the

definition of standard formats and identifiers to facilitate data exchange

between different sources.

• tools for data-driven network inference (e.g., R, MATLAB and Banjo)

from high-throughput static and time-course data, which are able to infer

causal relationships among biomolecules ([101],[102]).

• tools to build molecular interaction maps from curated data(e.g.,

CellDesigner, PathVISIO). This is an alternative strategy to network in-

ference from data and it is based on the integration of different sources

of curated data ([103]). Networks generated using this approach do not

necessarily carry information on the causality of the relationships between

the molecular entities.

• tools for in silico simulation (e.g., MATLAB, COBRA, SenSB). These

tools are frequently use to model dynamic networks ([104]). This task is

not addressed by data-driven network inference methods nor from networks

built from curated data because of the static nature of such inferred mecha-

nisms. Dynamic simulations are often made on networks from curated data

because of the stoichiometry and the mechanistic information they carry.

• tools for multi-scale physiological modeling (e.g., JSim, PhysioDe-

signer, GENESIS). These tools allow the development of models describing

the association between genetic polymorphisms and network dynamics as-

sociated with such polymorphisms that are responsible for physiological

traits and diseases ([105]).

In light of such diversity in the tools used in systems biology, it is clear that the

emergence of analytical platforms and bioinformatics tools is at the core of the

development and application of systems biology.
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1.4 Data-driven Gene Regulatory Network Inference

1.4.1 Gene expression regulatory mechanisms of

eukaryotic cellular systems

The functional activities of a cell originate from information that is encoded in

the DNA. However, cell behavior depends ultimately on regulatory mechanisms

that influence gene expression at the transcriptional, post-transcriptional, trans-

lational, and post-translational level. Regulation of gene expression depends

on the cell’s functional state and may be also influenced by the environment.

Moreover, gene expression levels are mainly determined at the transcriptional

level by the activity of thousands of TFs and cofactors, chromatin modification

(i.e. DNA methylation), and histone modification (Figure 1.5). Instead, at the

post-transcriptional level, RNA editing and non-coding RNAs (i.e. microRNAs,

miRNAs; long intergenic non-coding RNAs, lincRNAs) are key regulators of gene

expression ([106],[107],[108],[109]). The control of gene expression programs is an

essential and vital process for living organisms and its alteration is often asso-

ciated with diseases, such as cancer ([110],[111],[112],[113]). DNA mutations in

CIS-regulatory elements (i.e. enhancers, promoters) or TRANS-regulatory ele-

ments (i.e. TFs, co-factors), as well as in chromatin modifiers, can have profound

effects on gene expression patterns, with relative pathological consequences. In-

deed, the association between mutations in these regulatory elements and cancer

has been extensively demonstrated ([114],[115],[116],[117]). For example: i) aber-

rant overexpression of the TAL1 TF in T cell acute lymphoblastic leukemia leads

to an increase in its transcriptional activity and activation of oncogenic pathways

([118],[119]); ii) amplification and overexpression of c-Myc, which controls tran-

scription of genes involved in cell proliferation, cell growth, differentiation and

apoptosis, leads to the activation of molecular pathways that are involved in can-

cer ([120]); iii) loss of RB gene function leads to a pro-tumorigenic activation of

the E2F TF activity ([121]).
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Figure 1.5: Mechanisms of transcriptional regulation.

The full set of mechanisms of transcriptional regulation is reported.
Binding of transcription factors to enhancer sequences and to coactivators.
RNA polymerase II (RNA Pol II) binds to TF coactivator complexes at the transcrip-
tional start sites. The loop formed between the enhancer sequences and the start site
at genomic level is stabilized by cofactors (e.g. mediator complex and cohesin) and is
necessary for transcription.
B. Initiation of the transcriptional activity by RNA Pol II. The initiation site is
the starting point for RNA polymerase II activity. Pause control factors stop RNA Pol
II activity approximately 10 base pairs downstream of the initiation site.
C. Elongation of the mRNA molecule after removal of the pause control fac-
tors. Different elongation factors and cofactors allow the RNA Pol II to proceed and
elongate the mRNA molecule.
D. Accessibility to the DNA molecule. ATP-dependent remodeling complexes act
on the nucleosome allowing the transcriptional complex access to DNA regions to be
transcribed.
E. Histone components of nucleosomes are modified by proteins. This modifi-
cation influences transcriptional activity and can be summarized into five types of modifi-
cations: acetylation (Ac), methylation (Me), phosphorylation (P), sumoylation (Su) and
ubiquitination (Ub). The modifications are added by proteins called writers and they
are removed by proteins called erasers. Readers proteins are able to bind DNA via these
modifications.
F. Patterns of transcriptional activity determine the histone modifications.
Patterns of histone modifications relative to actively transcribed genes are reported as
examples: the histone H3 lysine 27 acetylation (H3K27Ac), histone H3 lysine 4 trimethy-
lation (H3K4me3), histone H3 lysine 79 dimethylation (H3K79me2), and histone H3 lysine
36 trimethylation (H3K36me3).
Taken from ([122]).
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1.4.2 Gene Regulatory Networks Inference from microarray gene

expression data: limitations and challenges

Recently, the application of Systems Biology approaches to cancer “-omics” data

has resulted in the identification of Gene Regulatory Networks (GRNs) repre-

senting molecular mechanisms involved in cancer. The inference of GRNs is of

crucial importance to explain the homeostasis of a cell and, most importantly, to

understand the effect of genomic alterations on the disruption of these regulatory

networks which results in the onset and progression of diseases. Although many

regulatory molecular mechanisms have been already well characterized at the bio-

chemical and biophysical level, the availability of “-omics” data is now allowing a

more comprehensive data-driven characterization of them as well as of, more gen-

erally, complex cellular systems ([123], [124],[125],[126],[127],[128]). Microarray

gene expression profiles represented the commonly and widely used “-omic” data

source for Gene Regulatory Network Inference (GRNi) at mRNA level. The in-

ference of regulatory mechanisms that control the mRNA levels of a cell is based

on the assumption that the functional relationship between expressed molecules

generates statistical relations in the observed data. This simplification allows

the application of mathematical and statistical techniques to network inference

in an unbiased way, i.e. without priori knowledge on the functional relationships

between the expressed genes. Specifically, if groups of genes are expressed in a

cell at the same time, there is a possible functional relationship between these

genes, that might be explained by statistical correlations. Different statistical

frameworks have been successfully applied to infer networks of interacting genes

from microarray gene expression data ([129],[130],[131],[132],[133]). Despite the

great contribution of powerful statistical methods to the inference of regulatory

mechanisms from microarray gene expression data, some technical issues limits

the reliability of the inferred networks. In particular the available data sets lack

the quantitative and statistical power to infer GRNs, i.e. the number of possible

inferred interactions greatly exceeds the number of independent measurements.

This is the “underdetermination” problem, also called “the curse of dimensional-

ity” problem. To gain the statistical power necessary to generate data-driven ac-

curate maps of regulatory mechanisms, hundreds of biological samples are needed.

Consequently, it is difficult to derive reliable regulatory network models from the

available data, even for small size networks according to data requirements for

statistical significance. An innovative strategy to decipher GRNs was introduced

by Segal et al. ([134],[135],[136]) and is based on the definition of modules of
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co-expressed genes that constitute the building blocks of the GRN. The princi-

ple behind this approach is that genes that are grouped together into modules

share a common regulatory program. Grouping together functionally regulated

genes strongly reduces the complexity of the system that has to be modeled, and

further increases the statistical power needed for regulatory network inference.

Another crucial factor that affects the inference of gene regulatory networks from

microarray data and in general network inference biology is the lack of bench-

marking studies for biological data. Benchmarking studies are powerful tools that

allow the identification of the best mathematical and statistical framework for

finding true and realistic relationships between genes. Consequently, the evalua-

tion of the accuracy of the methods for regulatory network inference is measured

through simulated data that even if they represent the only possible way for the

validation of the methods they do not capture the true variability of biologi-

cal systems. To address all these problems, collaborative efforts have been made

worldwide through public initiatives, such as the Dialogue of Reverse Engineering

Assessments and Methods (DREAM) ([137],[138],[139],[140]) and Sage Bionet-

works (http://sagebase.org/). The aim of such projects is to catalyze world-

wide efforts towards the standardization and rigorous assessment of methods for

cellular network inference and quantitative model building in systems biology.

In particular, the DREAM project (http://www.the-dream-project.org/) is

a promising initiative that through a yearly competition allows algorithm de-

velopers to present their own methods for network inference and it provides an

unbiased assessment of these methods. From the recent DREAM competitions,

it has emerged that different algorithms for reverse engineering cellular networks,

highly complement each other ([141]), and that a community-based, consensus-

driven, reverse-engineering approach can lead to high quality network inference.

The reason why integration of reverse engineering algorithms is superior to the

selection of the best performing algorithm from a pool of proposed methods, is

mainly due to the compensatory effect of using multiple algorithms to balance

the strengths and weaknesses of each single algorithm. In conclusion, in spite

of the theoretical and technical limitations of network inference methods and

strategies, network biology offers an unprecedented opportunity to interpret and

reinterpret experimental findings in a global view, to unveil novel interactions

and molecular regulatory processes.

http://sagebase.org/
http://www.the-dream-project.org/
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1.4.3 Co-expression networks and transcription-regulatory

networks

Two types of GRNs can be inferred from high-throughput gene expression data:

co-expression networks and transcription-regulatory networks (Figure 1.6) [142].

In co-expression networks, nodes represent genes and edges represent connec-

tions between genes. Genes are connected to one another if they share similar

expression patterns under various biological conditions. The degree of similarity

between two genes can be formalized using statistical weights. Co-expression net-

works allow the identification of highly connected subgraphs, also called “cliques”,

corresponding to modules of genes having the same transcriptional profile. In

transcription-regulatory networks, networks are represented as bipartite graphs,

in which it is possible to identify a set of nodes representing transcription fac-

tors and a set of nodes representing target genes (i.e., modules of genes under

the control of transcription factors). While in co-expression networks the rela-

tionships between genes are undirected for large scale networks, in the case of

transcription-regulatory networks the edges are often directed reflecting a causal

relationship between genes determined by the transcription factor regulatory pro-

gram. Causal relationships in transcription-regulatory networks indicate that the

observed transcriptional correlation in a module of co-expressed genes, is caused

by the expression and regulation of a transcription factor on nodes representing

target genes. When a set of genes is under the control of multiple transcription

factors, a transcriptional program is defined.
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Figure 1.6: Co-expression networks and transcriptional-regulatory net-
works.
The two types of GRNs are reported: a) co-expression networks in which genes show-
ing the same transcriptional pattern are grouped together forming modules of genes;
b) transcription-regulatory networks in which regulators (i.e., transcription factors) and
their target genes are distinguishable. Adapted from [142].
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1.4.4 Model Gene Regulatory Networks

Microarray technology have produced a plethora of gene expression data at

mRNA level ([143]), providing an unprecedented opportunity to decipher the

functional regulatory mechanisms (GRNs) that control gene expression in a

cell. Specifically, microarray technology allows a quantitative and simultaneous

measure of the transcriptome and relative fluctuations upon a genetic perturba-

tion ([144]), drug-induced perturbations ([145],[146]) or according to a disease

state. Whereas direct experimental investigation of the functional relationship

between genes is labor-intensive and time-consuming, computational analysis of

gene expression profiles, through the use of statistical inference algorithms, offers

a reliable alternative to explore the structure of GRNs that control molecular

mechanisms in the cell. In recent years there has been an explosion in the num-

ber of computational and mathematical methods to model complex GRNs from

different sources of data. Here, the generally used methods to model GRNs are

reported. The mRNA cellular levels measured through the microarray technol-

ogy represent the data source to model regulatory networks.

Graph Theoretical Models (GTMs)

Graph Theoretical Models (GTMs) belong to the group of qualitative network

models together with the Boolean Network models, that will be discussed later,

because they do not yield any quantitative prediction of gene expression in the

system. GTMs are the most frequently used models to explore the structure

of regulatory networks from gene expression data ([147],[148]). GTMs are used

to decipher the topological structure of biological regulatory networks and are

well suited for networks graphical representation or for the representation of the

dynamical evolution of the networks (i.e. the topological evolution of biological

networks according to the time, cellular context and conditions). In a graph

structure, the network G(N,E) is made up of genes as nodes N = {1, 2, ..., n}
connected by thousands of edges E = {(i, j)|i, j ∈ N} which represent the rela-

tionships between the genes (Figure 1.7). The types of the relationships between

the genes range from physical-interactions, i.e. the protein-protein interaction

networks (PPI networks) and the DNA-protein interaction networks, to gene

expression correlations for co-expression networks. Graphs can be directed (ori-

ented) or undirected (unoriented). In the first case the gene node from which

the edge starts is the precursor of the node towards the edge is directed and are

represented usually by arrows. Directed graph from microarray gene expression

data, can be built, for example using time-series data, because using temporal
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information associated with gene expression profiles allows the inference of the

causality of the connections ([149]). In the case of undirected graphs it is not

possible to assign a direction, i.e. causal relationship to the edges connecting

the network nodes. A graph of such type is also called “unoriented graph” in

contrast with the first case in which the graph is called “oriented graph”. Since

undirected graphs do not imply a direct causality between the nodes the network

can be built by using static (i.e. stationary) gene expression measurements. Fi-

nally, in both directed and undirected graphs, the edges can be weighted, where

the weights indicate the strength of the connections.

Figure 1.7: A typical representation of a biological network with nodes and edges.

A representation of a typical biological network is reported with circles representing the
genes (nodes) and blue lines (edges) representing the relationships between genes. The
size of the circles varies according to the number of connections each gene establishes
with the other genes. The higher is the number of connections, the biggest is the circle
size.
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Bayesian networks

Besides GTMs, another model that is used to explore the structure of regula-

tory networks from gene expression data is based on Bayesian networks, which

combine probability and graph theory, i.e. they are a class of graphical proba-

bilistic models. A Bayesian network consists of an annotated Directed Acyclic

Graph (DAG) where the nodes xiεX are random variables representing genes’

expression values and the edges indicate the probabilistic dependencies between

the nodes. The relationships between the connected nodes are specified by a

conditional probability distribution ([150],[129]) for each node given its par-

ents: P (xi|Parents(xi)). A Bayesian network implicitly encodes the Markov

Assumption where each gene (child node) is conditionally independent from

each non-descendants given the parents nodes (genes) of the network. Besides

the set of dependencies (children nodes depend on parent nodes) a Bayesian

network implies a set of independencies too. The Bayesian networks allow to

infer causalities between genes but at the same time they need an additional

level of information with respect to the GTMs, that is the prior knowledge on

the conditional relationships between the genes. In addition, Bayesian networks

need the discretization of gene expression measures into a few values, gener-

ally -1 for the underexpression, 0 for no expression and +1 for overexpression.

Although Bayesian networks are a valuable tool to infer functional relation-

ships between genes and expression values, the available data suffer from the

dimensionality curse (i.e. number of genes, n � number of experiments, m) so

that gene expression data are insufficient for the accurate gene network inference.

Boolean networks

The explosion of computational and mathematical methods to model complex

GRNs is the result of recent progress in molecular biology and the explosion of

genome-wide technologies. However a pioneering work in modeling GRNs dates

back to 1960s by Stuart Kauffman and colleagues. In their work they considered

an idealized random gene network because of the absence of experimental data

([151]). In this modeling attempt Kauffman defined genes as equivalent entities

able to receive inputs from a variable number of K neighbors. According to the

inputs that each gene receives it can be in only one of two states: the ON (1)

or OFF (0). A Boolean function that governs the ON/OFF state of each gene

is a statement that uses logical operators AND, OR and NOT. The output is

1 if the statement is true and 0 if it is false. A Boolean network is a directed

graph G(X,E) where the nodes xi ∈ X are boolean variables (e.g. mRNA mea-

surements). At any given time, the state of each node represents the state of
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the network. Although the dynamic properties of Boolean networks, and the

reproducibility and the possibility of a finite number of states that make them

attractive to model GRNs of living systems, the strong discretization of gene

expression values into only two states (up and down) limits the representation

of the realistic regulatory mechanisms where expression values are continuous.

Another drawback concerns the high computing times (NP-complete problem,

[152]) required to build biological networks. As a consequence it performs well

for networks with a limited number of nodes and a small in degree value (i.e.

with low levels of node connectivity). Finally, the network states are synchronous

while realistic biological states of a network are generally asynchronous.

Differential Equations (DEs)

Differential Equations (DE) are used to quantitatively model complex systems.

DEs describe gene expression changes as a function of the expression of the other

genes and environmental factors. They are well suited to model the non-linear

dynamic behaviour of GRNs in a quantitative manner through a continuous and

deterministic modelling formalism. DEs are highly flexible models that allow

to describe even complex relations among components. The general form of

equations for the modelling of gene expression dynamics that apply Ordinary

Differential Equations (ODEs) is:

dx

dt
= f(x, p, u, t)

where x(t) = (x1(t), ...., xn(t)) is the gene expression vector of the genes 1,...., n

at time t, f is the function that describes the rate of change of the state vari-

able xi according to the parameter set p and the external perturbations u. In

network inference the function f and parameters p are derived from measured x,

u and t. The identification of the model structure (f) and model parameters (p)

requires specifications of the function f and constraints like prior knowledge, ap-

proximations and simplifications because without constraints there are multiple

solutions to ODEs system. One of the possible constraints is for example the prior

assumption of the linearity or non-linearity of the f function. Generally, regula-

tory processes are characterized by complex and non-linear dynamics. However,

many GRNs are modeled by using linear models because of the complexity to

model non-linear f function ([153]). Other variants of DEs include stochastic

differential equations that consider the stochasticity of gene expression occurring

especially for low cellular levels of TFs molecules ([154]).
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1.4.5 Reverse engineering Gene Regulatory Networks from

“genome-wide” expression data

Different approaches have been proposed for Gene Regulatory Network infer-

ence (GRNi) using “genome-wide” expression data, and a consensus on the best

strategy to adopt to optimize and standardize analyses is still lacking. The

heterogeneity of methodologies proposed for GRNi is strictly dependent on the

variability of biological systems, which determines the adoption of different the-

oretical assumptions for statistical inference. However, all GRNi methods are

based on the common biological assumption that mRNA measurements, can pre-

dict protein activities, and, thus, the function of regulatory mechanisms. The

key concept at the basis of the gene regulatory network inference (GRNi) is that

tightly co-expressed genes, i.e., genes having the same transcriptional pattern,

may be functionally related. Different types of functional relationships may exist

for co-expressed genes. For example, co-expressed genes may be part of the same

protein complex, or may be indirectly involved in the same pathway, or they

may share similar regulatory DNA sequence motifs (i.e. transcriptional regula-

tory sites) that allow genes to respond similarly to developmental or environ-

mental changes. Traditionally, groups of co-expressed genes have been identified

by using clustering algorithms ([155]). Gene expression clustering is still the

widely used tool to analyze and visualize gene expression data. Genes sharing

a similar gene expression profile are clustered together to highlight a possible

functional relationship that can be direct or indirect ([156]). The degree of simi-

larity of the expression profiles between different genes is often measured through

distance metrics. One of the most frequently used metric is the Pearson correla-

tion coefficient. Other measures of association are: the Euclidean distance, the

Spearman rank correlation coefficient, the partial correlation coefficient and the

Mutual Rank. The most frequently used clustering methods are: the Hierar-

chical Clustering (HCL) ([156]), the k-means ([157]), the Self Organizing Map

(SOM) ([158]), the Principal Component Analysis (PCA) ([159]) and the Expec-

tation Maximization algorithm ([134],[160]). The major limitation of clustering

methods concerns the best number of clusters needed to partition the gene ex-

pression data. Usually, the number of clusters is not known in advance. One

frequently used strategy regarding, for example, the k-means method, to over-

come this limitation is to iteratively try different numbers of clusters (k) and then

choose the k number that best fits the data. In addiction, another limitation of

genome-wide clustering of expression profiles concerns the biological interpreta-

tion of clusters of genes. Indeed the clustering method groups together genes
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that exhibit similar transcriptional responses, under different cellular conditions;

however it cannot distinguish direct pair-wise transcriptional interactions from

non-direct transcriptional interactions, because most of the similarity measures

used by this method are linear. Despite the limitations of the cluster analysis in

identifying the functional relationships between genes, it allows the user to hy-

pothesize functions of unknown genes based on genes with known functions in the

same cluster ([161],[162]). Moreover, the clustering of gene expression patterns,

although not suitable for network inference of functionally related genes, allows

the identification of signatures of co-differentially expressed genes according to a

cell’s phenotype ([45],[163],[164]). To overcome the intrinsic limitations relating

to the identification of functional relationships based on cluster analysis, model

networks methods are frequently applied to infer causal relationships among genes

from their activity profile (See Subsection 1.4.4). Although graphical models for

network inference are powerful probabilistic tools to infer conditional relation-

ships between genes, they are affected by some limitations:

• they are based on the assumption of parametric probability distribution.

• they are powerful only with small lists of genes. For largest lists of genes

(∼10,000 genes) many observations are required to reliably estimate the

conditional dependencies between genes, which are not available from gene

expression profiling studies.

• The set of models that can be inferred from multidimensional data (like

microarray gene expression data) grows superexponentially, thus, only a

subset of them can be reasonably tested considering the computational

power of a well-equipped research lab.

• they are based on the assumption of conditional independence that may

generate unrealistic models.

To overcome such limitations, methods based on Mutual Information (MI) for

GRNi were recently proposed. MI captures non-linear dependence relationships

between quantitative variables, in addition to positive and negative correlations

([165],[166]). Specifically, it computes the differential entropy between differen-

tially expressed genes. For two random variables it computes:

Iij = S(Xi) + S(Xj)− S(Xi, Xj)
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where S(t) is the entropy of an arbitrary variable (t). For a discrete variable,

the entropy is computed as follows:

S(t) = −〈logp(ti)〉 = −
∑
i

p(ti)logp(ti)

where: p(ti) is the probability of each discrete state (value) of the variable. Like

many other correlation metrics, the MI measures the statistical dependency be-

tween two variables. The advantage of using MI is that it remains invariant

after re-parametrization, unlike, for example, the Pearson correlation measure.

In addition, using linear correlation metrics (such as Pearson correlation) the

correlation coefficient might be 0 even for clearly dependent variables (non-linear

relationships), while the MI is always different from 0 for statistically dependent

variables ([167]). The first attempt to build networks by using MI was by Butte

and Kohane (RELNET, RELevance NETworks; [168]). In this approach, genes

are connected with edges only if they correlate with an MI score above a threshold

established by using a permutation test. In such a way, the genes that interact

indirectly will still have high values of MI scores. Recently, in the ARACNE (Al-

gorithm for the Reconstruction of Accurate Cellular Networks) algorithm ([133])

to overcome the problem of indirect interactions, the Data Processing Inequality

(DPI) measure was introduced. Briefly it states that if g1 and g3 interact only

through a third gene g2, then:

I(g1, g3) ≤ min[I(g1, g2); I(g2, g3)]

The MI score calculated between g1 and g3 will result from an indirect interaction.

The advantage of DPI is that it allows the identification of indirect interactions

between genes, even if they have high MI scores (i.e. significant MI scores). The

ARACNE algorithm starts assigning pairwise connections to genes according to

the computed MI score. Before assigning connections, a threshold of significance

of the computed MI score is established. Then, the algorithm compares all the

possible triplets and removes the edge with the smallest value representing the

indirect interaction. The major advantage of the ARACNE algorithm (based on

MI and DPI measures) with respect to graph models, is that it does not assume

any restraints on the network model, even if the interaction network is greatly

simplified to the unrealistic pair-wise interactions while biological interactions

are multivariate and of a higher order. Other approaches have been proposed to

discriminate between direct and indirect interactions. The Context Likelihood
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of Relatedness (CLR) ([169])) algorithm, for example, modifies the MI score

according to the empirical distribution of all MI values while the Minimum Re-

dundancy Network (MRNET) ([170]) algorithm uses a feature selection method

based on a maximum relevance/minimum redundancy criterion. All of them are

based on robust and well defined mathematical and statistical formulations and

are commonly used to infer reliable GRNs from high-throughput gene expression

data.
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1.5 Rationale of the project

Breast cancer is a complex disease. Although most breast cancer cases are cur-

able, with a 5-year survival rate of 96% for localized (i.e. early stage) dis-

ease and 77% for regional disease, metastatic breast cancer is still incurable

with a 5-year survival rate of ∼23% (SEER Cancer Statistics Review (CSR),

http://seer.cancer.gov/publications/csr.html). The curability of early-

detected and locally-recurrent non-metastatic disease is mainly due to effective

treatment regimens involving surgical resection and therapeutic interventions

(i.e., radiation therapy and pharmacological treatment), while for metastatic dis-

ease, pharmacological treatment is often the only option to control the growth

of the tumor. Despite a steady decrease in the breast cancer mortality rate

observed over the last decades, attributable to early detection and more effec-

tive treatment strategies employing predictive and prognostic biomarkers and

targeted therapies, breast cancer remains the leading cause of cancer death in

women worldwide ([27]). The high level of intra- and inter-tumor molecular

heterogeneity of breast cancers is one of the main determinants of the failure of

current therapeutic strategies that follow the “one-dose-fits-all” paradigm ([171]).

In particular, the lack of knowledge, on the molecular mechanisms that underlie

disease progression, on a patient-by-patient basis, represents a major hurdle to

development of more effective personalized therapies for breast cancer. In this

study, we developed a bioinformatic approach to identify altered transcriptional

regulatory networks using a “pathway-centric” approach in order to get more in-

sights in the biology of breast cancer. Our computational pipeline exploited the

huge amount of publicly available “genome-wide” transcriptional (steady-state)

data on breast cancer, and identified, through the application of sophisticated

computational algorithms used in Systems Biology for the reverse engineering

the Gene Regulatory Networks (GRNs), a set of GRNs that correlate, at the

gene expression level, with clinical-pathological parameters of breast cancer pa-

tients (i.e. tumor grade, stage, estrogen status, prognosis, response to therapy).

Specifically, we:

• identified modules of genes (i.e. Cancer Modules (CMs)) that transcription-

ally correlated with several clinical-pathological parameters starting from

oncogenic gene-signatures.

• Built cancer-related GRNs by assuming each gene in CMs, i.e. each CM-

gene, as the “hub” gene (i.e. the highly interconnected gene) of the network.

Probabilistic dependencies were inferred from the mRNA levels of the hub

http://seer.cancer.gov/publications/csr.html
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gene and of the expressed genes in cancer cells, generating networks that

indirectly represent much more sophisticated molecular and biochemical

mechanisms of gene expression regulation.

• Performed the mutational annotation of the of the inferred GRNs in order

to gain insights into the oncogenic role of the networks in breast cancer

biology.

• Predicted candidate transcriptional Master Regulator (MR) genes of GRNs

by performing an in-deep network deconvolution analysis.

• Described the transcriptional state of each network in breast cancer patients

defining an active/inactive state according to the expression regulation of

the gene neighbours with respect to the hub gene.

• Further investigated the transcriptional correlation of the active networks

with chemotherapy response in Triple Negative Breast Cancer (TNBC) pa-

tients.

Using this approach we hypothesize that an in-depth characterization of the

transcriptional regulatory networks that are associated with breast cancer, will

allow the identification of novel predictive and prognostic biomarkers for high-

resolution patient stratification, as well as the identification of new molecular

targets for the development of more effective pharmacological treatments.
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Materials & Methods

2.1 Cancer Modules (CMs) identification

2.1.1 Oncogenic gene signatures selection

We retrieved a total of 23 transcriptional gene sets representing different onco-

genic events form the Molecular Signatures Database (MSigDB) and other previ-

ously published studies (Table 2.1). Most of the gene signatures were downloaded

from C2 curated gene sets (MSIGdb v.3.0; [172]), with the following exceptions

(Table 2.2): VEGF signature ([173]); EGFR signature ([174]); Chromosomal In-

stability (CIN) ([175]); E1A signature ([176]); JAP/TAZ ([177]); JAG1/NOTCH

signature ([178]).

34
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Table 2.1: MSigDB Gene sets details.

Gene Sets Name Cancer gene(s) Genes Sample type Organ(s) and Tissue(s) Organism(s)

(Up/Down) Up Down Total

M14590 ZEB1 - - 29 Cell Lines Breast H.sapiens

M7062/M6189 HIF1A/HIF2A 41 104 146 Cell Lines Breast H.sapiens

M7160/M12455 TGFB1 106 35 141 Cell Lines Pancreas H.sapiens

M16229/M11403 TP53 48 16 64 Cell Lines Lung H.sapiens

M3456 MYC - - 176 Cell Lines Blood H.sapiens

M17742/M1217 TERT 128 71 199 Tissue Sample Breast H.sapiens

M16737/M3464 BRCA1 33 38 71 Tissue Sample Breast H.sapiens

M2706/M2704 E2F3 238 34 272 Tissue Sample Breast, Ovary, Lung H.sapiens

M2714/M2713 SRC 8 53 61 Tissue Sample Breast, Ovary, Lung H.sapiens

M2703/M2702 BCAT 11 73 84 Tissue Sample Breast, Ovary, Lung H.sapiens

M12029 HRAS - - 321 Tissue Sample Breast, Ovary, Lung H.sapiens

M2776/M6315 KRAS/PTEN 228 429 657 Tissue Sample Lung M.Musculus

M9118/M9362 KRAS 196 141 337 Tissue Sample Lung M.Musculus

M366-M3102/M8901-M1219 ERBB2 306 163 469 Tissue Sample Breast M.Musculus

M18438/M15346 E2F1 63 65 128 Tissue Sample Liver H.sapiens/M.Musculus

M4420/M5636 MYC/E2F1 57 66 123 Tissue Sample Liver H.sapiens/M.Musculus

M3432/M17372 MYC/TGFA 61 66 127 Tissue Sample Liver H.sapiens/M.Musculus

The description of the 17 gene sets retrieved from MSigDB is reported. Specifically are reported: the MSigDB systematic gene set name (Gene Sets Name).
For each gene set two systematic gene set names are reported if the genes are divided into Up-regulated and Down-regulated genes, otherwise only one
systematic name is reported; the relative official gene symbol (Cancer gene(s)) of the gene(s) on which the experimental perturbation was applied to generate
the transcriptional signature; the number of genes in each gene sets (Genes) divided in up-regulated genes (Up) and down-regulated genes (Down) together
with the total amount of genes in the signature (Total); the experimental source of sample (Sample type); the sample type organ and tissue of origin (Organ(s)
and Tissue(s)) and the sample type organism of origin (Organism(s)).
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Table 2.2: Literature derived gene sets details.

Cancer gene(s) Genes Sample type Organ(s) and Tissue(s) Organism(s)

Up Down Total

VEGF - - 58 Tissue Sample Blood Vessels H.sapiens

EGFR - - 487 Cell Lines Breast H.sapiens

CIN - - 70 Tissue Sample Breast, Ovary, Lung H.sapiens

E1A 473 16 348 Cell Lines Breast M.Musculus

JAP/TAZ - - 93 Cell Lines Breast H.sapiens/M.Musculus

JAG1/NOTCH 250 206 456 Cell Lines Breast H.sapiens/M.Musculus

The description of the 6 gene sets retrieved from the literature is reported. Specifically are reported: the official gene symbol (Cancer gene(s)) of the gene(s)
on which the experimental perturbation was applied to generate the transcriptional signature; the number of genes in each gene sets (Genes) divided in
up-regulated genes (Up) and down-regulated genes (Down) together with the total amount of genes in the signature (Total); the experimental source of
sample (Sample type); the sample type organ and tissue of origin (Organ(s) and Tissue(s)) and the sample type organism of origin (Organism(s)).
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2.1.2 Microarray gene expression datasets selection, quality

control and normalization

Breast cancer microarray data sets (Discovery and Validation sets) and the as-

sociated clinical information were downloaded from Gene Expression Omnibus

(GEO, http://www.ncbi.nlm.nih.gov/geo/) database. We retrieved microar-

ray data from 9 independent cohorts of patients with breast cancer. The cohorts

were subdivided in a Discovery set (5 cohorts of patients) and a Validation set

(4 cohorts of patients) (see Table 2.3). We then applied the following quality

control procedure on .CEL files to identify flawed arrays, using Relative Log Ex-

pression (RLE) values and Normalized Unscaled Standard Error (NUSE) values

([179],[180]):

• We computed the median value and the IQR of both the NUSE and the

RLE statistics for each array. This gave four values for each chip: MNUSE ,

MRLE , IQRNUSE and IQRRLE .

• We compared each of these values with a corresponding cutoff value. If any

value exceeded the cutoff, the chip was tagged as “dubious”.

• We calculated IQRs of MNUSE , MRLE , IQRNUSE and IQRRLE across the

arrays. This gave four values: IQRMNUSE
, IQRMRLE

, IQRIQRNUSE
and

IQRIQRRLE
.

• If any of these IQR values was greater than q3 + 1.5IQR or less than q1 -

1.5IQR where q1 and q3 are the first and the third quartile of the distribu-

tion, we considered such values as outliers and flagged the corresponding

array as “rejected”.

• We made diagnostic plots for both the dubious and the rejected arrays for

a successive visual analysis.

Cutoff values were chosen heuristically, with a preference for overestimating the

number of poor quality chips rather than failing to identify a compromised chip.

The four cutoff values are shown in Table 2.4. Arrays identified as defective were

removed from the dataset before normalization. Further details on the number

of microarrays flagged as: dubious, rejected and accepted for each dataset are

reported in the next Subsection 2.1.3. After the filtering, a total amount of 1019

transcriptional profiles for the full collection of the Discovery datasets and 916

for the Validation datasets were retained. The quality control procedure was

http:// www.ncbi.nlm.nih.gov/geo/
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implemented using the R (version 2.15.1) language for statistical computing and

the libraries affy, affyPLM and geneplotter of the Bioconductor suite.
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Table 2.3: The datasets used in the breast cancer microarray screening.

datasets Year Samples Platform used GEO acc. Reference

raw filtered

Discovery datasets

Ivshina 2006 289 239 Aymetrix HG-U133A GSE4922 ([183])

Pawitan 2005 159 149 Aymetrix HG-U133A GSE1456 ([46])

TRANSBIG 2007 198 189 Aymetrix HG-U133A GSE7390 ([185])

Wang 2005 286 286 Aymetrix HG-U133A GSE2034 ([186])

EORTC 10994BIG 00-01 clinical trial 2007 161 156 Hu-X3P GSE6861 ([187])

Validation datasets

Minn 2005 121 115 Aymetrix HG-U133A GSE2603 ([188])

Sotiriou(KIU) 2006 64 63 Aymetrix HG-U133A GSE2990 ([189])

Hatzis 2011 508 437 Aymetrix HG-U133A GSE25066 ([190])

Kao 2011 301 301 Affymetrix HG-U133 Plus 2.0 Array GSE20685 ([191])

The year of publication, number of samples before and after the filtering (in parenthesis), the microarray gene expression platform selected, the relative GEO
accession number and pubblication.
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After the quality control procedure, for each dataset the accepted microarrays

were normalized using the RMA algorithm ([181]) with default parameters ex-

cept for the GSE2034 dataset. In this case Affymetrix MAS5.0 algorithm was

used (see “The Wang dataset” in Subsection 2.1.3.4). Microarray gene expres-

sion normalization was performed using the R (version 2.15.1) library affy of

the Bioconductor suite. For each normalized gene expression dataset a gene-

level annotation of the Affymetrix probe sets was performed using the probeset-

gene mapping tables provided at NetAffx, the official gene-level annotation of

Affymetrix probesets ([182]).

Table 2.4: Cutoff chosen in the quality control procedure.

MNUSE MRLE IQRNUSE IQRRLE

1.10 0.2 0.10 1.0

The chosen cutoff values for the four quantities defined in step 1 of the quality control
procedure.
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2.1.3 Gene Expression datasets

2.1.3.1 The Ivshina dataset

The Ivshina et al. dataset included gene expression data from two cohorts of

patients with primary invasive breast cancer, referred to as the Uppsala and

Singapore cohorts ([183]). Affymetrix HG-U133A and HG-U133B microarrays

were used for the expression profile, for a total of 578 arrays. We restricted

the analysis on HG-U133A microarrays (i.e. 289 arrays) because the HG-U133B

arrays were not available for all the other breast cancer data sets we selected

originally. Samples from the Singapore cohort (40 samples) were also excluded

from analysis due to the lack of clinical information. After the quality control

analysis, 14 arrays were flagged as “dubious” of which 7 were removed after

visual inspection and 3 were rejected. The clinical parameters we considered for

subsequent analysis were:

• Elston (NGS) histologic Tumor Grade.

• Estrogen Receptor (ER) status.

• Disease-Free Survival (DFS).

• Disease-Free Survival in Lymph Node negative (N-) ER+ patients (N- ER+

DFS).

The number of patients per clinical information is reported in Table 2.5

Table 2.5: Ivshina dataset clinical information detail.

Tumor Grade ER status N- ER+ DFS DFS

G1 (66) ER+ (204) Relapse (33) Recurrence or Death (85)

G2 (121) ER- (34) Non-Relapse or Censored (33) Censored (157)

G3 (55) - - -

The number of patients (in parenthesis) relative to the following clinical information: the
Tumor Grade (Grade 1 [G1], Grade 2 [G2], Grade 3 [G3]), the ER status (ER+, ER-), the
Disease-Free Survival in Lymph Node negative (N-) ER+ patients (Relapse, Non-relapse
or Censored), the Disease-Free Survival (Recurrence or Death, Censored).
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2.1.3.2 The Pawitan dataset

The Pawitan dataset consists of 159 patients with primary invasive breast cancer

operated at the Karolinska Hospital from January 1994 to December 1996 ([46]).

We applied the quality control procedure to the dataset: 10 arrays were fagged as

“dubious” of which 9 were excluded after visual inspection and one as “rejected”.

The clinical information (see Table 2.6) we considered for subsequent analysis

refers to:

• Elston (NGS) Tumor Grade.

• Breast Cancer Relapse.

• Death due to Breast Cancer.

Table 2.6: Pawitan dataset clinical information detail.

Tumor Grade Breast Cancer Relapse Death due to Breast Cancer

G1 (28) Relapse (38) Dead from Breast Cancer (27)

G2 (58) Non-relapse or Censored (112) Alive or Censored (123)

G3 (61) - -

The number of patients (in parenthesis) relative to the following clinical information: the
Tumor Grade (Grade 1 [G1], Grade 2 [G2], Grade 3 [G3]), the Breast Cancer Relapse
(Relapse, Non-relapse or Censored) and Death due to Breast Cancer (Dead from Breast
Cancer, Alive or Censored).



Materials & Methods 43

2.1.3.3 The TRANSBIG dataset

TRANSBIG is an international network that was launched in 2004 to promote

the scientific collaboration in translational research ([184]). It comprises 39 world

class institutions in 21 countries. The dataset stored in the GEO data base

with accession ID GSE7390 contains 198 expression profiles of primary lymph

node negative untreated breast cancer patients. A complete description of the

dataset can be found in (Buyse 2006) and ([185]). We applied our quality control

procedure, which led to the exclusion of 9 arrays from the dataset, leaving 189

for the successive analysis. We also checked for the presence of batch effects by

plotting an array-wise boxplot using the raw data. No obvious batch effects were

observed (see Figure 2.1).

Figure 2.1: Batch effect inspection of TRANSBIG dataset.

Different colors indicate the different hospitals that provided patient samples.

The available clinical data for the TRANSBIG dataset includes information on:

• Elston (NGS) Tumor Grade.

• Estrogen Receptor (ER) status.

• Relapse due to Distant Metastasis (event of time to distant metastasis

[E.TDM]).
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• Disease-Free Survival in Lymph Node negative (N-) ER+ patients (Relapse

in N- ER+).

• Overall Survival (OS).

Overall Survival was defined as time from diagnosis to death from any cause. See

Table 2.7 for the number of patients with associated relative clinical information

we considered for subsequent analysis.

Table 2.7: TRANSBIG dataset clinical information detail.

Tumor Grade ER status E.TDM Relapse in N- ER+ OS

G1 (27) ER+ (128) Relapse (51) Relapse (28) Dead (56)

G2 (80) ER- (61) Non-Relapse (138) Non-Relapse (100) Alive (133)

G3 (80) - - - -

The number of patients (in parenthesis) relative to the following clinical information: the
Tumor Grade (Grade 1 [G1], Grade 2 [G2], Grade 3 [G3]), the ER status (ER+, ER-), the
Relapse due to Distant Metastasis (Relapse, Non-Relapse), the Relapse in Lymph Node
negative (N-) ER+ patients (Relapse, Non-Relapse), the Overall Survival (Dead, Alive).
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2.1.3.4 The Wang dataset

The Wang dataset ([186]) consists of 286 samples from LN-patients. This dataset

presents some technical issues. First, the raw data were not available on GEO

database. Thus no quality control procedure was possible. Second, the clinical

information was limited to:

• The ER status.

• The occurrence of the Relapse in Lymph Node negative (N-) ER+ patients

(Relapse in N- ER+).

• The occurrence of the relapse.

See Table 2.8 for the number of patients with associated relative clinical infor-

mation we considered for subsequent analysis.

Table 2.8: Wang dataset clinical information detail.

ER status Relapse in N- ER+ Relapse

ER+ (209) Relapse (80) Relapse (107)

ER- (77) Non-Relapse (129) Non-Relapse(179)

The number of patients (in parenthesis) relative to the following clinical information: the
ER status (ER+, ER-), the occurrence of the relapse in Lymph Node negative (N-) ER+
patients (Relapse, Non-Relapse), the occurrence of Relapse (Relapse, Non-Relapse).

Another technical issue concerned the gene expression arrays normalization. As

a matter of fact the available gene expression matrix was normalized by using

MAS5 algorithm, while we used RMA to normalize all the other datasets. To

evaluate the effect of a different normalization method on gene expression data,

we renormalized our previously collected gene expression datasets with the MAS5

method, repeated the analyses, and compared the results with those obtained

with the RMA normalized data. We found that the lists of significantly regulated

probe sets were almost identical with similar p-values and fold changes. The

addiction of this dataset in our analysis allowed us to have three datasets with

information on ER status (not available in the Pawitan and EORTIC datasets).



Materials & Methods 46

2.1.3.5 The EORTC 10994BIG 00-01 dataset

The EORTIC dataset is composed by 161 arrays and is part of EORTC

10994 phase III breast cancer clinical trial comparing non-taxane regimen (5-

fluorouracil, cyclophosphamide, epirubicin) with a taxane regimen (epirubicin,

docetaxel) in women with estrogen receptor negative breast cancer ([187]). The

gene expression was measured using Affymetrix Hu-X3P chip containing the

whole exome. After the quality control procedure 5 arrays were flagged as du-

bious and retained after visual inspection while the remaining 156 arrays were

classified as good quality arrays. Finally we retained 156 arrays for subsequent

analysis. The clinical information we considered were:

• Elston (NGS) Tumor Grade:

– G1 (0).

– G2 (36).

– G3 (68).

2.1.3.6 The Minn dataset

The Minn dataset ([188]) is composed by an initial set of 121 expression profiles.

22 expression profiles were of breast cancer cell lines and 99 were of primary

breast tumors. We performed the quality control procedure only on the 99 sam-

ples of primary breast tumors. The expression profiles of the cell lines were

removed because no clinical information is possible for cell lines. After quality

control 4 arrays were flagged as dubious and removed after visual inspection and

2 arrays were flagged as rejected. 93 arrays were retained as good quality arrays

for GSEA analysis. Gene expression analysis was performed using HG-U133A

GeneChip (Affymetrix). The clinical information we considered for GSEA anal-

ysis were (see Table 2.9):

• Estrogen Receptor (ER) status

• Relapse due to Metastatic Event
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Table 2.9: Minn dataset clinical information detail.

ER status Relapse due to Metastatic Event

ER+ (52) Relapse (26)

ER- (41) Non-Relapse (52)

The number of patients (in parenthesis) relative to the following clinical information: the
ER status (ER+, ER-), the occurrence of relapse due to the Metastatic Event (Relapse,
Non-Relapse).

2.1.3.7 The Sotiriou dataset

The Sotiriou dataset contains information on 189 patients with primary operable

invasive breast cancer. The frozen tumor specimens were obtained from two

institutes: the John Radcliffe Hospital (Oxford, UK) and the Uppsala University

Hospital (Uppsala, Sweden). RNA samples from Oxford (101 total samples)

were processed at the Jules Bordet Institute in Brussels, Belgium ([189]). For

the Uppsala samples (88 in total), RNA was extracted at the Karolinska Institute

and processed at the Genome Institute of Singapore. Some of the patients were

treated with tamoxifen while others were not. Table 2.10 shows the partition of

the samples with respect to the institute of origin and treatment.

Table 2.10: Sotiriou dataset institutes of origin.

Origin (label) Samples Treatment

Uppsala (KIT) 24 YES

Oxford (OXFT) 40 YES

Uppsala (KIU) 64 NO

Oxford (OXFU) 61 NO

Partition of the samples in the Sotiriou dataset with respect to the institute of the origin
and the treatment.

Gene expression analysis was performed with Affymetrix Human Genome U133A

microarray platform. We performed the quality control procedure on the Sotiriou

dataset, which led to the exclusion of 5 arrays, leaving 184 for the successive anal-

ysis. The fact that the samples were from different institutes and had undergone
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different manipulations was a reason of concern. We checked for the presence

of batch effects by analyzing the distribution of the measured signal before and

after the normalization procedure (raw and normalized signal). Unfortunately

even after the normalization, the difference between the Oxford and the Uppsala

data sets was still present: the Uppsala and the Oxford samples form two per-

fectly separated groups. Specifically the OXFT and the OXFU form two separate

groups while there is no difference between the KIT and the KIU groups. We,

therefore, concluded that it was inappropriate to treat the data as a single data

set. Thus, we analyzed only the arrays from the Uppsala group that had passed

the initial quality control and specifically the 63 (on 64 total) samples from the

KIU group. We excluded the samples of the KIT group because of the clinical

information were not available. The clinical information we considered for GSEA

analysis were (see Table 2.11):

• Elston (NGS) Tumor Grade.

• Estrogen Receptor (ER) status.

• Relapse Free Survival [RFS].

Table 2.11: Sotiriou dataset clinical information detail.

Tumor Grade ER status RFS

G1(26) ER+ (53) Relapse (11)

G2(27) ER- (10) Non-Relapse (52)

G3(9) - -

The number of patients (in parenthesis) relative to the following clinical information: the
Tumor Grade (Grade 1 [G1], Grade 2 [G2], Grade 3 [G3]), the ER status (ER+, ER-),
the occurrence of Relapse (Relapse, Non-Relapse).
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2.1.3.8 The Hatzis dataset

The Hatzis dataset ([190]) is composed by 508 total patients with newly diag-

nosed ERBB2 (Her2 or Her2/neu) negative invasive breast cancer treated with

taxane and anthracycline (and endocrine therapy for estrogen receptor positive

patients) in neoadjuvant and adjuvant regime in a multicentric study. They are

divided into the Discovery and Validation set. The Discovery set comprises 310

patients while the Validation set comprises 198 patients. All gene expression

microarrays were profiled in the Department of Pathology at the M. D. Ander-

son Cancer Center (MDACC), Houston, Texas with Affymetrix Human Genome

U133A microarray platform. We performed the quality control on the full set

of patients: the discovery and the validation set. Three chips were classified as

bad quality chips and they were rejected while 68 were classified as doubt chips.

We decided to reject all the dubious chips because this dataset was used to vali-

date the cancer modules identified through the GSEA analysis. This allowed us

to avoid the effects of technical artifacts on the validation step of our pipeline.

Finally we retained 437 arrays for subsequent analysis. The clinical information

we considered were (see Table 2.12):

• Elston (NGS) Tumor Grade.

• Estrogen Receptor (ER) status.

• Distant Relapse Free Survival [DRFS].

The Distant Relapse Free Survival was defined as “the interval from initial diag-

nostic biopsy until diagnosis of distant metastasis or death from breast cancer,

non breast cancer or unknown causes”.
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Table 2.12: Hatzis dataset clinical information detail.

Tumor Grade ER status DRFS

G1(30) ER+ (245) Relapse (100)

G2(146) ER- (186) Non-Relapse (128)

G3(224) - -

The number of patients (in parenthesis) relative to the following clinical information: the
Tumor Grade (Grade 1 [G1], Grade 2 [G2], Grade 3 [G3]), the ER status (ER+, ER-),
the Distant Relapse Free Survival [DRFS] (Relapse, Non-Relapse).
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2.1.3.9 The Kao dataset

The Kao dataset ([191]) is composed by 327 total patients. 312 breast cancer

patients were diagnosed and treated between 1991 and 2004 at the Koo Founda-

tion Sun-Yat-Sen Cancer Center (KFSYSCC) while 15 lobular breast carcinoma

samples were collected between 1999 and 2004 at the KFSYSCC. All patients

received radiotherapy, adjuvant chemotherapy, and/or hormonal therapy if indi-

cated, after the surgical resection of the tumor. Patients with locally advanced

disease received the neoadjuvant chemotherapy too. Gene expression analysis

was performed with Affymetrix Human Genome U133 Plus 2.0 platform. After

the quality control analysis, 26 arrays were classified as doubt chips and were

removed. Finally we retained 301 good quality chips. The clinical information

we considered were (see Table 2.13):

• Relapse (Metastatic Event).

• Survival.

Table 2.13: Kao dataset clinical information detail.

Relapse (Metastatic Event) Survival

Relapse (74) Dead (74)

Non-Relapse (227) Alive (227)

The number of patients (in parenthesis) relative to the following clinical information:
the Relapse due to a metastatic Event (Relapse, Non-Relapse), and the Survival (Dead,
Alive).
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2.1.4 Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) was performed using the R-GSEA pro-

gram (GSEA-P-R.1.0). The Signal2Noise (S2N) metric was used for gene rank-

ing according to the gene expression regulation across the phenotype labels. The

statistical significance of the Enrichment Score (ES) was assessed through an em-

pirical phenotype-based procedure consisting of 1,000 permutations of the Phe-

notype Labels (PhLs). In addition, we randomly selected a set of 20 lists of genes

by using, as universe, the 4,697 unique genes derived from all the collected 23

signatures. These random gene lists were used as an additional control for the

significance of our results (see Results, Subsection 3.1.1). The initially collected

23 oncogenic gene signatures and the 20 randomly generated gene sets represent

our a priori defined set of genes S while each gene expression cohort previously

retrieved, preprocessed, normalized and annotated for gene symbols represents

the Expression datasets. All the remaining parameters were as by default.
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2.2 GRN inference analysis on Cancer Modules genes

(CM-genes)

Network inference on cancer module genes (CM-genes) was performed using

ARACNE algorithm ([133],[131]). CUDA-MI ([192]) and WGCNA ([193])

algorithms were used to benchmark the pairwise interactions inferred using

ARACNE. The Loi et al. breast cancer dataset ([194]) was used for Gene

Regulatory Network inference (GRNi). This dataset was an independent tran-

scrptional dataset with respect to those previously used for the GSEA analysis

in order to avoid data overfitting, and it was large enough (≥ 100 samples)

to account for ARACNE network inference analysis requirements ([133]). Mi-

croarray gene expression profiles (Affymetrix HG-U133A array 2.0 array) were

retrieved from GEO database, (http://www.ncbi.nlm.nih.gov/geo/) at the

following accession number: GSE6532. We applied the quality control procedure

previously described (see Subsection 2.1.2) retaining 327 microarrays classified

as good quality microarrays for subsequent analysis. No “doubt chips” or “re-

jected chips” were flagged. Microarray chips were normalized by using MAS5

algorithm (Affymetrix 2002) because, as demonstrated by Lim et al. ([195]) it

provides the most faithful cellular network reconstruction (i.e. with a reduced

fraction of False Positive (FP) inferred interactions) respect to the normalization

performed with RMA, GCRMA and Li-Wong ([196]) representing the frequently

used normalization methods for microarray data. The normalized data were log2

transformed and Affymetrix probesets were annotated to Unique Gene Symbols

(see Subsection 2.1.2). Gene expression relative to 13,211 unique gene symbols

and 1,258 not annotated probe sets was finally considered for network infer-

ence analysis. For each network inferred around each single CM-gene by using

ARACNE, CUDA-MI and WGCNA algorithms, the first 100 best correlating

genes (neighbors) having the highest measured correlation score with respect to

the hub gene (CM-gene) were considered. The concordance analysis was per-

formed to measure the extent of the overlap of the inferred networks by using

the three independent algorithms. The Cohen test (R, version 2.15.1) was used

to test significance of the concordance analysis results.

http://www.ncbi.nlm.nih.gov/geo/
GSE6532
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2.2.1 GRN inference analysis using ARACNE

The adaptive partitioning algorithm was used for gene expression values dis-

cretization. The statistical p-value for mutual information (MI) threshold was

set to 1e-7, while the data processing inequality (DPI) tolerance was set to 0.1

(default settings). One thousand bootstrap iterations were performed to assess

the statistical significance of the inferred transcriptional pairwise gene interac-

tions. The p-value threshold to construct the consensus network after bootstrap

analysis was set to 1e-6. A total of 1,516 genes (i.e. representative of the 7 major

Cancer Modules) out of 1,652 total genes in Cancer Modules were used as marker

list (hubs) for network inference. We further reduced the gene list to 1516 genes

because the FANCD2 gene was not represented on the Affymetrix HG-U133A 2.0

chip but it is represented on the Affymetrix HG-U133B 2.0 array. The analysis

was performed on a Linux cluster of 12 nodes with a total of 288 hyperthreaded

cores and 1.2 TB RAM memory.

2.2.2 GRN inference analysis using CUDA-MI

The number of bins for gene expression data discretization and the order of spline

functions were set to 10 and 3, respectively. The algorithm was run on a NVIDIA

Tesla C3050 GPU machine.

2.2.3 GRN inference analysis using WGCNA

Soft thresholding power estimate for scale-free topology approximation was set

to 8. The resulting adjacency matrix was used. WCGNA R package was used to

infer GRNs.



Materials & Methods 55

2.3 Cancer Modules (CMs) somatic mutation

annotation

CM-genes were annotated for the presence of somatic mutations using the Cat-

alogue Of Somatic Mutations in Cancer (COSMIC http://cancer.sanger.ac.

uk/cancergenome/projects/cosmic/) and The Cancer Genome Atlas (TCGA

http://cancergenome.nih.gov/) repositories. All the statistical tests were per-

formed using the R (version 2.15.1) library stats.

2.3.1 Cancer Modules (CMs) somatic mutation annotation:

COSMIC

Only the breast cancer mutations relative to primary tumors annotated in the

Cancer Gene Census of COSMIC v61 database were considered for the annotation

for a total of 5,416 mutations (238 genes). The following criteria were applied in

order to further identify a subset of candidate mutations for the annotation:

• Available PubMed ID.

• Available genomic position.

• Validation of the mutation as somatic mutation.

• Mutation identified in primary tumors (i.e. tumor origin).

From the initial set of 5,416 breast cancer mutations in Cancer Gene Census,

1,781 final somatic mutations were retained for a total amount of 238 unique

genes. The final set of mutated genes was used for the annotation of 1,652 genes

composing the Cancer Modules. To check for the statistical significance of the

enrichment of mutated genes in Cancer Modules, a set of 1,000 random lists of

1,652 genes length was generated through sampling with replacement using 19,639

genes as starting universe (i.e. all the genes annotated in the original microarray

platforms used for CMs identification: Affymetrix HG-U133A and HuX3P chip).

A Shapiro-Wilk test to check for the normality of the distribution of annotated

mutated genes in random lists was performed with a p-value < 0.05 (2.2e-16).

The enrichment of mutated genes in CMs was evaluated by performing a propor-

tion test between the total amount of mutated genes of each random list and the

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
http://cancergenome.nih.gov/
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total amount of mutated genes in the Cancer Modules. A Benjamini-Hochberg

multiple testing correction was applied on the full set of comparisons. Only the

comparisons showing an FDR< 0.01 were considered statistically significant.

2.3.2 Cancer Modules (CMs) somatic mutation annotation:

TCGA

The mutational annotation was performed by using the breast invasive car-

cinoma [BRCA] dataset (CGA Network, 2012, http://www.cbioportal.org/

public-portal/). A total amount of 7,136 unique mutated genes on 463 total

complete tumors (available data relative to: mRNA, miRNA, methylation, CNA,

whole exome-sequencing) were used for the mutational annotation. The statisti-

cal analysis pipeline to check for a the significance of the enrichment of mutated

genes in Cancer Modules was as previously described for COSMIC mutational

annotation (see Subsection 2.3.1).

2.3.3 Mutational annotation of GRNs and mutual mxclusivity

analysis

Mutual exclusivity analysis was performed on the gene neighbors of the GRNs

found to be mutated according to the mutational annotation performed us-

ing TCGA [BRCA] data (CGA Network, 2012, http://www.cbioportal.org/

public-portal/). Mutational data relative to only complete tumors (available

data relative to: mRNA, miRNA, methylation, CNA, whole-exome sequencing)

were used, for a total amount of 463 tumor samples matching the selection criteria

and 7,136 unique mutated genes. For the generation of the 1,000 random gene

lists we used the genes represented on the Affymetrix HG-U133A platform as

universe prior to random lists generation because the networks from CM-genes

were inferred from Affymetrix HG-U133A transcriptional profiles (see Subsec-

tion 2.2.1). This allowed us to be consistent with the network inference analysis

we performed, avoiding the effect of the overrepresentation of genes in the ran-

dom set due to a different universe of genes. We firstly annotated the 22.215

Affymetrix HG-U133A probe sets to 14,469 unique gene symbols that were sub-

sequently mapped on the TCGA dataset gene symbol annotation. This was done

in order to remove the discrepancies of gene names annotation between two dif-

ferent sources of data. Finally, the universe was composed by a curated list of

http://www.cbioportal.org/public-portal/
http://www.cbioportal.org/public-portal/
http://www.cbioportal.org/public-portal/
http://www.cbioportal.org/public-portal/
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13,397 genes. Both, random lists and the inferred networks were annotated for

the presence of mutated genes. Multiple mutations per gene were considered only

once to avoid the bias of different frequency of mutation per gene. We performed

a two-tailed proportion test (with 95% CI) followed by a BH correction for mul-

tiple testing in order to investigate for a statistically significant enrichment (i.e.

in terms of number of genes) of mutually exclusive mutated genes in the inferred

GRNs respect to the random gene lists. Specifically we compared the number

of genes having a mutually exclusive pattern in each GRN with the number of

genes with a mutually exclusive pattern in each one of the 1,000 gene lists. The

statistical tests were performed using R version 2.15.1. Only the comparisons

showing an FDR< 0.01 were considered statistically significant.
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2.4 The Concordance analysis

The occurrence of gene expression patterns defining the transcriptional activity

(activation/inhibition) of the inferred GRNs and MR-gene networks was deter-

mined by a scoring strategy. By using this approach, it was possible to deter-

mine the concordance of the GRNs in terms of the gene expression regulation

of the gene neighbors. The concordance (i.e. the transcriptional activity of

the networks) was evaluated on the transcriptional profiles of 997 breast tumors

(Metabric study Discovery set [36]). The pre-processed gene expression matrix

was used. The Illumina Human WG-v3 probes were annotated to human gene

symbols by using HUGO gene name annotation. The absolute intensities ex-

pressed on a logaritmic scale were transformed to obtain a log ratio of the gene

expression measures by subtracting raw-wise (gene-wise) the median expression

from the measurement in each sample. For further details on the scoring strategy

see Results, Subsection 3.5.1.
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2.5 Gene set analysis of transcriptionally active net-

works in Triple Negative Breast Cancer (TNBC)

patients

The gene expression dataset for the enrichment analysis was retrieved form

GEO at the following accession ID GSE25066 ( http://www.ncbi.nlm.nih.gov/

geo/). It contains a discovery and a validation cohort of patients. In both co-

horts, patients were treated with neoadjuvant taxane-anthracycline chemotherapy

(NACT). The gene expression profiles refer to human breast tissues before any

systemic therapy. For our analysis both cohorts of patients were considered (508

total patients) to increase statistical power. Raw data were downloaded and pre-

processed (see Subsection 2.1.2 for the quality control procedure, normalization

and gene symbol annotation). After the quality control procedure we retained 437

total expression profiles. The gene expression matrix was raw-wise (gene-wise)

centered on the median gene expression value across all samples by subtracting

for each gene and for each patient the median gene expression value from the

log2 normalized expression measures. The gene set analysis was performed by

using two independent computational methods: the GSEA ([197]) and the GSA

([198]). GSEA analysis was run by using the R-GSEA program (GSEA-P-R.1.0)

and the GSA analysis by using the R software package GSA. The analysis was per-

formed on data normalized according to three different normalization procedures:

the RMA, the MAS5 normalization and the normalization reported in [190] on a

set of 152 Triple Negative Breast Cancer (TNBC) transcriptional profiles passing

the quality control procedure. TNBC patients were selected, from the associated

clinical data, according to the histopathological negativity to ER, PgR and Her2

receptors. The pathologic response following NACT was considered as clinical

variable for gene ranking. Specifically, the enrichment of the transcriptionally ac-

tive networks was evaluated respect to the pathologic complete response (pCR;

52 patients) and Residual Disease (RD; 100 patients) based on RECIST criteria.

For the GSEA analysis parameters setting see Subsection 2.1.4. For the GSA

analysis we used the maxmean method for summarizing a gene set as by default

and we performed 1,000 permutations to estimate false discovery rates.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Results

A synthetic representation of the computational pipeline used to infer

breast cancer-related GRNs from microarray gene expression data.

To infer breast cancer-related GRNs from microarray gene expression data we

used a pathway-centric approach (Figure 3.1) in which we firstly retrieved pub-

licly available oncogenic gene sets representing collections of genes whose ex-

pression levels are modulated according to an experimentally induced genetic

perturbation on known oncogenes and tumor suppressor genes. We then investi-

gated, through the Gene Set Enrichment Analysis (GSEA), the enrichment of the

oncogenic gene sets in breast cancer microarray expression profiles from tumor

patients (Discovery set) according to a set of clinical-pathological parameters

(i.e., tumor grade, ER status, nodal status and prognosis) used as Phenotype

Labels (PhLs). We then identified, by clustering, groups of “core genes” (i.e.

Cancer gene Modules, CMs) from the enriched oncogenic gene sets whose ex-

pression significantly correlated with the pathological variables we used. We

confirmed the enrichment of the CMs according to the clinical-pathological vari-

ables we used before, by performing the GSEA analysis of CMs on an indepen-

dent set of breast cancer microarray expression profiles (Validation set). GRNs

were then inferred by assuming each gene in CMs (i.e. CM-gene) as marker

or ‘hub” gene of the network and by searching for all possible gene neighbours

among all the expressed genes in cancer cells. Networks were inferred by using

primarily ARACNE algorithm ([133]). We also performed a network inference

analysis by using two independent algorithms (CUDA-MI ([192]) and WGCNA

([193]) in order to confirm the transcriptional statistical interactions predicted by

the ARACNE algorithm. A statistical concordance analysis was then performed

60
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in order to compare the gene neighbours of the CM hub gene predicted by the

three independent algorithms. A mutational annotation was then performed on

CM-genes and on the GRN genes, in order to gain insights into the possible

role of the CM-genes as oncogenic gene drivers and of the inferred GRNs as

possible oncogenic mechanisms. The mutational annotation was performed by

using the mutational data from COSMIC (Census) and TCGA databases. We

then performed a mutual exclusivity analysis of the mutated genes composing the

GRNs in order to investigate the role of the breast cancer mutated genes (i.e.

the mutational landscape of breast cancer) in a network context of predicted

interacting genes. We then selected two subsets of putative biologically relevant

networks in breast cancer biology: the first set of networks contains GRNs in-

ferred from mutated CM-genes while the second set contains GRNs enriched in

mutually exclusive mutated genes. From the two sets of networks, we performed

an in deep network deconvolution analysis in order to identify the transcriptional

“hub” of the network (i.e. the transcriptional candidate regulator), to overcome

the initial bias of assuming each one of the CM-genes as the hub genes of the

network. We then inferred GRNs (MR-GRNs) from the predicted transcriptional

hub gene we called candidate Master Regulator (MR) gene of each CM-GRN. A

transcriptional analysis of the CM and MR-GRNs inferred from the two sets of

CM-networks was performed by using the Metabric breast cancer gene expres-

sion dataset in order to investigate the transcriptional profile of the networks. A

concordance scoring strategy was identified to define the transcriptional activity

of each one of the networks according to the number of gene neighbours having

the same or the opposite gene expression modulation (up or down-regulation)

with respect to the expression of the hub gene. From the concordance analysis, a

subset of CM and MR-networks was selected as transcriptionally significantly ac-

tive. Through the GSEA analysis, the enrichment of them was evaluated in gene

expression profiles from Triple Negative Breast Cancer (TNBC) patients with

Residual Disease (RD) pathological condition after neoadjuvant chemotherapy

versus patients with Pathological Complete Response (pCR) in order to propose,

for further investigation, putative mechanisms of gene expression regulation as-

sociated with the clinical condition and novel candidate biomarkers and drug

targets for therapy.
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Figure 3.1: The computational pipeline used to infer breast cancer-related GRNs

from microarray gene expression data.
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3.1 Breast Cancer gene Modules (CMs)

3.1.1 Oncogenic gene sets enrichment analysis

We characterized the expression profiles of 23 oncogenic gene sets in independent

cohorts of breast cancer patients, with the aim of identifying groups of genes (gene

modules) whose expression significantly correlated with clinical-pathological pa-

rameters (i.e., tumor grade, ER status, nodal status, and prognosis, Figure 3.2).

We preferred to use the Gene Set Enrichment Analysis (GSEA) algorithm for

this characterization, since it analyzes the expression profiles of entire gene sets,

representative of specific biological functions, rather than the expression pro-

files of individual genes. We retrieved microarray gene expression data from

5 independent cohorts of breast cancer patients (the “Discovery Set”), making

a total of 1,019 patients (Table 2.3), with complete clinical-pathological infor-

mation (Table 3.1). In the Discovery Set we performed GSEA to assess the

enrichment (ES, enrichment score) of the 23 oncogenic gene sets in breast cancer

patients stratified by tumor grade (e.g., G3 or G1), ER status (ER+ or ER-

), survival (dead or alive), and relapse (regional or distant). Importantly, the

GSEA enrichment analysis of the 23 gene sets was performed independently in

the 5 cohorts of breast cancer patients, in order to preserve cohort-dependent bi-

ological variability. Clinical-pathological characteristics of patients were defined

as “Phenotype Labels (PhLs)” and the ESs were calculated using the Weighted

Kolmogorov-Smirnov test that reflects the degree of differential expression of a

gene set according to the selected PhLs.
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Figure 3.2: Oncogenic gene sets enrichment strategy.

The in silico pipeline relative to the enrichment analysis of the 23 oncogenic gene sets on
expression profiles is reported. The transcriptional correlation of the oncogenic gene sets
(i.e. groups of genes showing a coordinate change in gene expression upon experimen-
tally induced stimuli on oncogenes and tumor suppressor genes representing the major
hallmarks of cancer) was evaluated through the GSEA algorithm on 5 breast cancer gene
expression datasets. 4 out of 5 expression profiles were performed on Affymetrix HG-
U133A platform while 1 was performed on Hu-X3P platform. The GSEA analysis was
performed by considering the following PhLs: tumor grade, ER status, survival and re-
lapse. A typical enrichment plot is reported showing the running ES of a gene sets when
comparing ER+ tumours versus ER- tumours.

The statistical significance of the computed ESs was estimated by a 1,000 time

permutation test (as by default) in which the PhLs associated with each microar-

ray expression profile were randomly shuffled. This allowed us to create a robust

empirical null distribution of the ES measures for the nominal p-value calculation.

Furthermore, to prevent errors in the inference of significantly enriched gene sets,

we used the False Discovery Rate (FDR) q-value, instead of the nominal p-value,

to account for the multiple testing problem. Gene sets were deemed significantly

enriched if the FDR was less than 25%. In addition, we applied a normalization

procedure on the full set of GSEA enriched gene sets (FDR < 25%), in order

to control the effect of non-homogeneous distribution of clinical-pathological pa-

rameters in the datasets (see Table 3.1). Briefly, for each gene set and for each
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clinical-pathological condition (PhL), we counted the number of patient cohorts

in which the gene set was enriched. This number was then divided by the total

number of cohorts with the relative clinical-pathological condition (PhL). The

normalization rule is summarized in the following equation:

S =
Sxj
Nj

where S represents the Normalization Score; Sxj represents, for each significantly

q-value < 25%) enriched gene set (x= 1,...23), the number of cohorts in which it

was enriched (j = 1,...5); and Nj represents the total number of cohorts in which

the clinical-pathological variable was available (Nj = 1...5 for the Discovery Set).

We then established a threshold for the selection of enriched gene sets after

the normalization procedure. To do this, we performed GSEA on a set of 20

randomly generated gene sets in the Discovery Set. After the enrichment anal-

ysis and the normalization procedure, three random gene sets appeared to be

enriched (q-value < 25%) according to tumor grade (in 1 out of the 11 cohorts,

considering each grade independently; 9%), and to ER status (in 1 out of 4

cohorts; 25%), (Table 3.2). Therefore, according to the “Normalization Score,

(S)” obtained using random gene sets, we established cut-off for selection of the

final core of significantly enriched oncogenic gene sets, which should have an

“S” above the 25%, i.e. the S relative to enrichment of random signatures in

the ER pathological condition. We found 18 gene sets with S> 25% that we

considered significantly enriched (Table 3.2). This “core set” represents 78% of

the initial set of oncogenic gene sets (18 out of 23). Specifically, the gene sets

composing the “core set” are: E1A, ZEB1, TP53, TERT, MYC/TGFA, E2F1,

MYC, KRAS, HRAS, YAP/TAZ, HIF1A/HIF2A, ERBB2, BCAT, BRCA1, CIN,

E2F3, EGFR, MYC/E2F1.



R
esu

lts
66

Table 3.1: Breast cancer Clinical-pathological conditions and cohort-specific samples distribution relative to the Discovery set.

Clinical-pathological parameter Ivshina Pawitan TRANSBIG Wang EORTC Total

G1 66 28 27 - - 121

G2 121 58 80 - 36 295

G3 55 61 80 - 68 264

ER+ 204 - 128 209 - 541

ER- 34 - 61 77 - 172

Relapse 85* 38 51 107 - 281

Non-Relapse 157* 112 138 179 - 586

N0 ER+ Relapse 33 - 28 80 - 141

N0 ER+ Non-Relapse 33 - 100 129 - 262

Dead (Survival) 85* 27 56 - - 168

Alive (Survival) 157* 123 133 - - 413

Table reports the number of patients associated with specific clinical-pathological characteristics, used as phenotype labels (PhLs) in the GSEA analysis,
for each of the 5 cohorts (Ivshina, Pawitan, TRANSBIG, Wang, EORTC) of the Discovery Set. Clinical-pathological parameters reported include: tumor
grade (G1, G2, G3); estrogen receptor (ER) status, ER-positive (ER+) vs. ER-negative (ER-); relapse status (relapse vs. non-relapse); local/distant relapse
(node-negative (N0) ER+ relapse vs. N0 ER+ non-relapse primary tumors; survival (dead or alive). *patients were assigned to both relapse and survival
clinical pathological variables due to ambiguous definition by the authors.
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Table 3.2: Significantly enriched gene sets after the normalization procedure.

Gene set Grade(%) ER(%) Relapse(%) N0 ER+ Relapse(%) Survival(%)

E1A 77 100 40 75 100

ZEB1 - 25 - - 33

TP53 55 62 20 - 33

TERT 55 100 - - -

MYC/TGFA - 50 - - -

E2F1 9 50 - - -

MYC 86 58 40 25 67

KRAS - 25 - - 33

HRAS - 75 - - -

YAP/TAZ 55 75 - - -

HIF1A/HIF2A 63 63 40 25 67

ERBB2 36 25 20 - 33

BCAT 18 - 20 - 33

BRCA1 55 88 - - 33

CIN 82 100 60 100 68

E2F3 9 50 - - -

EGFR - 50 - - -

MYC/E2F1 64 75 20 25 33

RANDOM 12 9 - - - -

RANDOM 20 9 25 - - -

RANDOM 6 9 25 - - -

Number of cohorts per clinico-pathological parameter 11 4 5 4 3

The GSEA significantly enriched gene sets, along with associated normalization score (S, shown as a percentage), is reported for each clinical-pathological
condition. For each condition, the number of cohorts in the “Discovery Set”, for which data on the selected condition was available, is also reported. For the
clinical variable “Grade” , the G1, G2 and G3 levels were considered independently and the availability of the clinical information across the cohorts of the
“Discovery Set” was considered for each level. In red are highlighted the rejected gene sets according to the cut-off derived from the enrichment observed in
the random gene lists RANDOM 12, RANDOM 20 and RANDOM 6 (see main text). The absence of enrichment after GSEA analysis (q-value > 25%) is
reported as “-” symbol.
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3.1.2 Definition of Cancer Modules

We subsequently selected those genes in the 18 “core” gene sets that contributed

most to the enrichment of these gene sets in the PhLs analyzed. This group of

genes, identified as “core genes” by GSEA analysis is made up of 1,652 unique

genes. We summarized the enrichment results for each PhL in an N x M binary

matrix, in which the rows (N) represent the full set of 1,652 genes and the

columns (M) represent the full list of PhLs considered. We numerically indexed

the matrix with two integers: 1, indicating the gene-wise significant enrichment

in a particular PhL; 0, indicating the gene-wise non-significant enrichment in

a particular PhL. We then applied the Hierarchical Cluster Analysis (HCA) to

the binary matrix in order to cluster together the core genes according to the

relative PhLs enrichment. The cluster analysis allowed us to identify 15 groups

of core genes (clusters) enriched according to each single PhL or according to

combinations of PhLs (Figure 3.3). Of the full set of 15 gene clusters, we selected

7 “major clusters” that contained a number of genes greater than 5% of the total

(1,652 genes). By using this criterion we wanted to prioritize more “biologically”

informative clusters of genes in the specific PhLs (Figure 3.3). This subset of

clusters represents our set of “Cancer Modules (CMs)”, i.e., groups of genes whose

expression correlates with specific clinical-pathological conditions associated with

breast cancer. The number of the genes relative to each one of the 7 selected

CMs is reported in Table 3.1.2 (i.e., 1,516 out of 1,652, 92%).
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Figure 3.3: Definition of Cancer Modules.

The heatmap of the enrichment of the GSEA “core genes” (y-axis) belonging to the 18
enriched “core” gene sets, with respect to the PhL considered (reported on the x-axis).
The “core genes” were clustered (HCL) according to the enrichment observed in each
PhL. Red color indicates the enrichment of a core gene in the PhL considered ( x-axis).
The color bar on the right-side of the y-axis highlights the 7 CMs. From the top to the
bottom the CMs are defined as: Grade, Grade/ER, All, Relapse/Survival/Grade/ER,
Survival/Grade/ER, ER, Survival.



Results 70

Table 3.3: Gene content of Cancer Modules.

CMs Gene(s) content

Grade 366

Grade/ER 328

All 105

Relapse/Survival/Grade/ER 162

Survival/Grade/ER 83

ER 338

Survival 134

Tot 1516

The number of genes in each Cancer Module (CMs) is reported.

The composition of the CMs in terms of the enriched gene sets is reported in

Figure 3.4. The most representative gene sets per CM are:

• Grade: MYC, E1A, ERBB2.

• Grade/ER: MYC, E1A, BRCA1, TERT, TP53.

• All: YAP/TAZ, E1A, CIN, MYC.

• Relapse/Survival/Grade/ER: MYC, E1A, HIF1A/HIF2A.

• Survival/Grade/ER: BRCA1, ERBB2, E1A, MYC/E2F1, E2F1, MYC/T-

GFA.

• ER: HRAS, EGFR, HIF1A/HIF2A.

• Survival: ERBB2, BCAT.
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Figure 3.4: Oncogenic gene set distribution across the Cancer Modules (CMs).

The most representative gene sets for each Cancer Module (CM) are reported. On the
x-axis the genes of the relative Cancer Module are reported. On the y-axis the enriched
gene sets are shown. Yellow bars indicate the fraction of the genes in each Cancer Module
relative to enriched gene set reported on the y-axis. Overlapping bars indicate that the
enriched gene sets share a fraction of genes that are in common.
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3.1.3 Independent validation of Cancer Modules

We performed an in silico validation of the CMs using GSEA on an independent

set of 4 breast cancer patient cohorts (the “Validation set”) for a total of 916

individuals (Figure 3.5; Tables 2.3 and 3.4). This in silico validation was per-

formed in order to assess the robustness of the observed CM enrichment with

respect to the PhLs in an independent set of patients (“Validation set”). As

for the Discovery Set, after a 1,000 times permutation test of PhLs, we defined

only the CMs with an FDR q-value of less than 25% as significantly enriched.

We were able to confirm 6 out of 7 CMs as significantly enriched in at least one

dataset of the “Validation Set”, (Table 3.5 and Figure 3.5). The enrichment we

observed confirmed the association, at the level of gene expression, of the genes

composing the CMs with the considered PhLs. The schematic computational

pipeline used to identify and validate CMs is reported in Appendix A in green.
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Table 3.4: Clinical-pathological characteristics of breast cancer patients belonging
to the 4 cohorts constituting the Validation Set.

Clinical-pathological condition Minn Sotiriou Hatzis Kao Total

G1 - 26 30 - 56

G2 - 27 146 - 173

G3 - 9 224 - 233

ER+ 52 53 245 - 298

ER- 41 10 186 - 196

Relapse 26 11 100 74* 211

Non-Relapse 52 52 128 227* 459

N0 ER+ Relapse - - - - -

N0 ER+ Non-Relapse - - - - -

Dead (Survival) - - - 74* 74

Alive (Survival) - - - 227* 227

Table reports the number of patients associated with specific clinical-pathological charac-
teristics, used as phenotype labels (PhLs) in the GSEA analysis, for each of the 4 cohorts
(Minn, Sotiriou, Hatzis, Kao) of the Validation Set. Clinical-pathological parameters re-
ported include: tumor grade (G1, G2, G3); estrogen receptor (ER) status, ER-positive
(ER+) vs. ER-negative (ER-); relapse status (relapse vs. non-relapse); local/distant re-
lapse (node-negative (N0) ER+ relapse vs. N0 ER+ non-relapse primary tumors; survival
(dead or alive).
*patients were assigned to both relapse and survival clinical pathological variables due to
ambiguous definition by the authors.

Table 3.5: Computational validation of Cancer Modules (CMs) enrichment.

Cancer Module ER Grade Relapse Survival

Grade - 2 - -
Grade/ER 3 2 - -
All 3 2 1 0
Relapse/Survival/Grade/ER 3 2 1 0
Survival/Grade/ER 3 2 - 1
ER 3 - - -
Survival - - - 0

Tot 3 2 4 1

Table reports the number of cohorts in which each Cancer Module (CM) shows a statis-
tically significant enrichment with respect to the total (Tot) number of cohorts, in the
Validation set, possessing the relative pathological information. The absence of a statis-
tically significant enrichment is reported as 0, while “-” indicates the absence of datasets
with the specific PhL (reported as columns).
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Figure 3.5: Validation strategy for the Cancer Modules and Enrichment Results.

The in silico validation pipeline for the 7 CMs is reported. GSEA analysis was performed
using the CMs as gene sets on 4 independent cohorts of patients, the Validation Set.
The phenotype labels (PhLs) used in the GSEA analysis are: tumor grade, ER status,
survival, relapse. Four GSEA enrichment plots are reported as representative examples
of CM validation: Grade, All, ER and Grade/ER with associated FDR q-values. (Hatzis
et al. dataset([190]), 437 patients).
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3.2 Reverse Engineering Gene Regulatory Networks

3.2.1 Reverse engineering of Gene Regulatory Networks

using ARACNE algorithm

We inferred networks of transcriptionally correlating genes starting from the full

list of genes of the 7 CMs (see the computational pipeline in Appendix A, black

section). We performed the network inference analysis in order to identify bio-

logical processes relevant to breast cancer progression that can be used for the

selection of cancer biomarkers and possible novel drug targets. Specifically, we

performed a network inference analysis by centering network growth on each of

the CM-genes (1,516 genes in total) that represent the hub/marker gene around

which the transcriptional correlations (i.e. the edges connecting two genes of

a network) were inferred. Using this strategy, we built a total of 1,516 gene

networks to be further investigated for their breast cancer relevance. The GRN

inference (GRNi) analysis (also called network deconvolution analysis) was per-

formed using the data-driven Algorithm for the Reconstruction of Accurate Cel-

lular Networks (ARACNE) ([131], [133])(see Subsection 2.2.1), which is based

on an information-theoretic method for system-wide reconstruction of complex

transcriptional networks from gene expression data. The transcriptional correla-

tion among genes was calculated through the Mutual Information (MI) measure

that estimates the amount of information one variable (gene X) contains about

another (gene Y), i.e., their mutual dependency. The total number of genes in

the full set of 1,516 GRNs was 14,293 genes and the MI measures spanned from

a minimum of 0.10 to a maximum of 1, where the higher the MI the stronger the

transcriptional correlation between two genes (i.e., the hub gene and its neigh-

bor). In order to select, for each network, the core genes that displayed the

highest degree of transcriptional correlation with the hub gene (i.e. the gene

neighbors of the hub gene with the highest MI score), we investigated the shape

of the distribution of the MI values for each inferred network. Due to the low

degree of overlap between the distributions of the MI scores across the networks

(Figure 3.6), the use of a unique MI based cut-off for the selection of the best

neighbor genes with respect to the hub gene was not feasible. We then used a

ranking strategy for the selection of the best correlating genes. For each network,

we ranked the neighbors by their MI values, from the highest to lowest, and se-

lected as best neighbors, the first 100 genes for each network with the highest

ranked MI measure. The total number of genes in the full set of 1,516 networks

was thus reduced to 11,721 unique genes.



Results 76

Figure 3.6: Distributions of Mutual Information measures.

The distributions of the Mutual Information (MI) measures of a representative subset of
the full set of 1,516 GRNs is reported. Different colours highlight the distribution of MI
measures relative to each single GRN. The distributions are clearly non-overlapping for
MI values greater than 0.2.
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3.2.2 In silico validation of the transcriptional correlations

predicted by ARACNE

To assess the robustness of the identified GRNs, in terms of their gene content and

predicted pair-wise transcriptional relationships, we performed GRNi analysis us-

ing two other independent methods: the Compute Unified Device Architecture-

Mutual Information computation (CUDA-MI) and the Weighted Correlation Net-

work Analysis (WGCNA) algorithms (see the computational pipeline in Ap-

pendix A, black section). As for the network inference analysis we performed

by using ARACNE algorithm, we assumed that each CM-gene was a hub gene

around which we could build the network of transcriptionally correlating genes.

Specifically, the CUDA-MI software implements the MI estimation using B-spline

functions proposed by Daub et al., to infer transcriptional correlations from high-

throughput gene expression data ([199]). The B-spline approach is an alternative

to the kernel-based MI estimation proposed by Margolin et al. ([133]); it propose

the use of polynomial B-spline functions to deal with the problem of assign data

points (expression values) to one bin or to the nearest one, in the discretization

(binning) phase of continuous gene expression measurements, when they are ex-

tremes of the numerical range of discrete intervals (bins). For data points near to

the border of a bin, in fact, small fluctuations due to biological or measurement

noise might shift these points to neighbouring bins affecting the resulting mutual

information, especially for datasets of small or moderate size ([199]) and gener-

ating unstable gene networks. To overcome such limitations, the gene expression

data point in the B-spline approach can be assigned simultaneously to weighted

multiple bins by a set of B-spline functions. The CUDA-MI software is based

on the Compute Unified Device Architecture (CUDA) programming model on

a graphics processing unit (GPU), in order to accelerate the B-spline function

for MI estimation in the case of large datasets. The WGCNA algorithm builds

weighted gene co-expression networks by “soft-thresholding” the correlation co-

efficient for gene-to-gene interaction predictions. Specifically, it thresholds the

pair-wise connection between two genes by a number in [0,1]. Thus, the tran-

scriptional correlation becomes a connection strength. The advantage of using

such a methodology is that it preserves the continuous nature of correlation infor-

mation, avoiding information loss due to dichotomization (1 = connected genes,

0 = unconnected genes), as well as sensitivity issues relating to choosing a sta-

tistical threshold. To build networks with WGCNA, we set the soft-thresholding

power β to 8 after visual inspection of network indices, in order to approximate
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the scale-free topology (Figure 3.7). The distributions of the correlation mea-

surements calculated using the three independent methods, ARACNE, CUDA-

MI and WGCNA, is reported for a subset of networks, as representative example

(Figure 3.8). As already observed in Subsection 3.2.1 the distributions of the

correlation measurements relative to each network are non-overlapping also ac-

cording to CUDA-MI and WGCNA algorithms, highlighting that the inferred

networks are heterogeneous between them, in terms of the degree of transcrip-

tional correlations with the gene neighbours, despite the computational method

used to infer them. Moreover, although ARACNE and CUDA-MI algorithms are

both based on MI computation, we observed that the distributions of the MI

measurements substantially differ between them, i.e., they are not overlapping.

This behaviour might be explained not only by the different way they perform

data discretization but also by the Data Processing Inequality (DPI) procedure

that is implemented in ARACNE and not in CUDA-MI algorithm. By remov-

ing putative indirect interactions through the DPI (i.e. according to the DPI

threshold, see Methods, Subsection 2.2.1), the set of gene neighbours of the hub

genes predicted by the two algorithms may differ as well as, consequently, the

MI measurements distributions. For each GRN inferred using ARACNE, CUDA-

MI and WGCNA, we subsquently selected the top 100 neighbors after ranking

interaction scores with the hub gene, as reported in Subsection 3.2.1.
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Figure 3.7: Network topology for various soft-thresholding power indices.

Left panel, the graph shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). Right panel, the mean connectivity degree
(y-axis) is reported as a function of the soft-thresholding power (x-axis).
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Figure 3.8: Distribution of the correlation measurements computed by ARACNE,

CUDA-MI and WGCNA algorithms for a representative subset of GRNs.

The distributions of the correlation measurements computed respectively by ARACNE,
CUDA-MI and WGCNA methods relative to a representative subset of GRNs are re-
ported.
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To assess the robustness of GRNs derived, we evaluated the concordance (i.e.

gene content and predicted pair-wise transcriptional relationships) of the “first

100 network neighbors” inferred using the three independent methods. We ap-

plied the Cohen test on each triplet of networks inferred from each CM-gene.

In total, we performed comparisons for 1,516 triplets. Based on the Cohen’s es-

timated coefficients for agreement, 1,498 networks were found to be concordant

(p-value < 0.05), while 18 were not (p-value > 0.05). Among the set of 1,498 sta-

tistically significant coefficients, 1,124 (75%) triplets showed a “good agreement”

(i.e. with “almost perfect”, “substantial” or “moderate” agreement; Figure 3.9),

while 374 (25%) showed a “bad agreement” (i.e. with “slight” or “fair” agree-

ment; Figure 3.9). Based on this concordance analysis, it emerges that a large

fraction of GRNs share the same set of transcriptionally correlating genes with

respect to the relative hub gene, independently of the method used for GRNi

(i.e., ARACNE, CUDA-MI, or WGCNA) thus highlighting the strength of the

transcriptional correlations inferred.

Bad agreement 
Good agreement 

Figure 3.9: Concordance analysis agreement distribution.

The concordance analysis agreement distribution is reported. On the x-axis the number of
GRNs is reported (Nets); on the y-axis the extent of agreement is reported (Agreement).
Percentages indicate the number of GRNs showing the observed agreement with respect
to the total set of networks (see main text). Green circles group together networks having
a bad agreement, while red triangles group together networks with a good agreement.
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3.3 Mutational annotation for the identification of

cancer-mutated genes and mutated GRNs

3.3.1 Mutational annotation of Cancer Module genes

and enrichment tests

The mutational annotation of CM-genes was performed in order to identify those

genes mutated in breast cancer, which may ultimately affect biological functions

predicted by our GRNi analysis. We focused on somatic mutations annotated

in the COSMIC-Census relative to Breast cancer (238 genes; see Methods, Sub-

section 2.3.1 for details) and TCGA datasets (7136 total mutated genes; whole-

genome sequencing, TCGA[BRCA], CGA Network, 2012. See Methods, Sub-

section 2.3.2). On a total of 1652 CM-genes, 49 were mutated according to

the COSMIC-Census set of mutated genes, while 812 genes were mutated ac-

cording to TCGA dataset (see the computational pipeline in Appendix A, red

section). These mutated genes represent ∼0.2% and ∼4%, respectively, of the

entire genome (∼20.000 genes:http://www.ncbi.nlm.nih.gov/), or ∼3% and

∼49%, respectively, of the full list of CM-genes (1,652 total genes). This means

an enrichment in mutated genes of 10- to 15-fold in CMs with respect to the en-

tire genome. The mutational analysis was intentionally repeated twice using the

COSMIC and TCGA databases, to balance the benefits and limitations of the

two approaches. Indeed, the COSMIC dataset contains mainly experimentally

validated mutations, but since it is a literature-curated database it may be biased

by the number of papers focused on specific sets of cancer genes. In contrast, the

TCGA dataset is not biased by the literature, since it is the result of unsuper-

vised screening by next-generation sequencing analysis; however, this dataset is

likely to contain false positives because many of the mutations reported have not

been experimentally validated. Importantly, 73% (35 out of 49; p=4x10−38) of

mutated CM-genes according to COSMIC, were present also in the TCGA mu-

tational annotation. We next tested the statistical significance of the enrichment

of mutated genes in the set of CM-genes. We generated a set of 1,000 random

gene lists that we annotated for mutations using both COSMIC and TCGA. We

then performed 1,000 runs of proportion tests (with a 99% confidence interval)

to compare the number of mutated genes found in the CMs with respect to the

number of mutated genes in each one of the 1,000 randomly generated gene lists.

The computed p-values were adjusted for multiple comparisons by Benjamini-

Hochberg correction and the relative FDR calculated (see Tables 3.6 and 3.7 for

http://www.ncbi.nlm.nih.gov/


Results 83

the statistical test results relative to the COSMIC-Census and TCGA datasets,

respectively).

Table 3.6: Proportion test results for COSMIC-Census mutational annotation.

Random gene list Number of mutated genes Q-value

R1 29 0.0227

R2 27 0.0116

R3 26 0.0083

R4 25 0.0058

R5 24 0.0039

R6 23 0.0026

R7 22 0.0017

R8 21 0.0011

R9 20 0.0007

R10 19 0.0004

R11 18 0.0002

R12 17 0.0001

R13 16 8.51e-05

R14 15 4.72e-05

R15 14 2.55e-05

R16 13 1.34e-05

R17 12 6.90e-06

R18 11 3.47e-06

R19 10 1.73e-06

R20 9 8.51e-07

R21 8 4.29e-07

R22 7 2.30e-07

R23 6 1.57e-07

The results of the proportion tests relative to the COSMIC-Census mutational annotation
are reported. For each random gene list, the number of mutated genes and the adjusted
q-value are reported. Each proportion test was performed by comparing the mutated
gene content in each random list versus the number of mutated genes found in the CMs
(i.e. 49). In this table, only the results relative to 23 random gene lists are reported on
the full set of 1000, because, for some of them, the number of mutated genes is equal;
hence, here, “replicated” comparisons (i.e. referring to gene lists with the same content
of mutated genes) are represented once.
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Table 3.7: Proportion test results for TCGA mutational annotation.

Random gene list Number of mutated genes Q-value

R1 503 2.86E-18

R2 515 1.51E-18

R3 520 1.09E-18

R4 547 4.11E-19

R5 497 2.96E-19

R6 510 1.53E-19

R7 505 7.87E-20

R8 544 4.02E-20

R9 536 2.88E-20

R10 515 2.06E-20

R11 522 1.46E-20

R12 543 1.04E-20

R13 484 7.39E-21

R14 491 5.25E-21

R15 506 3.72E-21

R16 505 2.64E-21

R17 497 1.86E-21

R18 514 1.32E-21

R19 499 9.33E-22

R20 511 6.58E-22

R21 530 4.64E-22

R22 483 3.26E-22

R23 516 2.30E-22

The results of the proportion tests (23 out of 98 comparisons are shown as an example)
relative to the TCGA mutational annotation are reported. Each proportion test was per-
formed by comparing the mutated gene content in each random list versus the number of
mutated genes found in the CMs (i.e. 812). As for the Table 3.6 “replicated” comparisons
(i.e. proportion tests performed on random gene lists having the same content of mutated
genes) are reported once.
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The distribution of the number of mutated genes in the random gene lists was

plotted against the number of mutated genes in CMs for both the COSMIC-

Census and TCGA mutational annotations (see Figure 3.10 A and B, respec-

tively). A Shapiro-Wilk test was performed to check the normality of the mutated

gene content distribution of the random gene lists. For both mutational anno-

tations, COSMIC-Census and TCGA, the Shapiro-Wilk test demonstrated that

the number of mutated genes in the random gene lists was normally distributed

with a p-value < 0.05. In contrast, the number of mutated genes in CM-genes

is significantly higher with respect to the number of mutations in the random

lists (square boxes in Figure 3.10). The statistically significant enrichment of

cancer-related mutated genes in the full set of CM-genes further reinforced their

relevance to breast cancer.
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Figure 3.10: Distribution of mutated genes after the mutational annotation in ran-

dom gene lists and in CMs.

The distribution of the number of mutated genes in percentage (x-axis) in the 1000 ran-
dom gene lists and in the CMs is reported according to:
A: COSMIC-Census mutational annotation;
B: TCGA [BRCA] (CGA Network, 2012) mutational annotation.
The mutated genes content relative to the 1,000 random gene lists is normally distributed
(red line). The mutated genes content relative to CMs is highlighted by square boxes
outside the distribution.
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3.3.2 Mutational annotation and mutual exclusivity analysis of

GRNs

We extended the mutational annotation to the “top-100” gene neighbors of the

1,516 GRNs inferred by ARACNE (see Subsection 3.2.1 and the computational

pipeline in Appendix A, red section). The mutational annotation and the mutual

exclusivity analysis of the inferred GRNs were performed to: i) place breast can-

cer mutated genes in a network context in order to unveil functional relationships

and regulation among cancer genes; ii) investigate the functional role of mutually

exclusive and low frequently mutated genes in the breast cancer population of pa-

tients in a mechanistic context; iii) to prioritize driver genes in high-throughput

cancer mutation data. Because of the huge amount of genes from the inferred

networks to be annotated for the presence of mutated genes (11,721 total unique

genes), we performed the mutational annotation by using the comprehensive list

of 7,136 mutated genes (with respect to the COSMIC-Census mutational data

on 238 mutated genes; see Subsection 3.3.1) from the TCGA [BRCA] dataset

(CGA Network, 2012 http://www.cbioportal.org/public-portal/; see Meth-

ods, Subsection 2.3.3). For each network we firstly mapped the gene names on

the TCGA database gene symbols removing networks genes not recognized by

the TCGA annotation. A total of 10,936 out of 11,721 networks genes were

recognized as valid gene symbols.The remaining 785 not annotated genes (∼6%)

according to TCGA dataset gene symbols annotation, were part of the not anno-

tated Affymetrix HG-U133A probe sets we included in ARACNE GRNi analysis

(see Methods, Subsection 2.2). The distribution of the mutated genes in the

1,516 GRNs (5,849 out of 10,936 genes;∼53%) is reported in Figure 3.11. We

next investigated the presence of patterns of occurrence of mutated genes in the

GRNs across breast tumors, and, in particular, the presence of mutually exclu-

sive mutated genes. As shown in Figure 3.12 (the EFNA3 network is reported

as an example), the GRNs inferred from CM-genes contain genes mutated at

low and high frequency in breast cancer population (< 1% and ∼37%, respec-

tively). Importantly, some GRNs displayed a clear mutually exclusive mutational

pattern of mutated gene neighbours as from the visual inspection of the muta-

tional profile of breast cancer patients . This, might suggest an oncogenic role of

the GRNs according to the recent observations that genes commonly involved in

the same cancer pathway tend not to be mutated together in the same patient

([200],[201],[202]).

http://www.cbioportal.org/public-portal/


Results 88

Figure 3.11: Distribution of mutated genes in the GRNs.

The distribution of the number of mutated genes, reported as a percentage (x-axis), in the
GRNs (1,516 total networks) is reported according to TCGA [BRCA] mutational data
(CGA Network, 2012).
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Figure 3.12: Mutual Exclusivity pattern of networks mutated genes.

The Mutual Exclusivity pattern of the EFNA3 mutated network neighbors is reported. The set of patients in which the gene neighbors of the network were
found to be mutated is reported on the x-axis. The list of the mutated genes of the network according to TCGA mutational annotation is reported on the
y-axis. The box highlight the mutually exclusive pattern of the low frequency mutated genes (dark red dots) between them and respect to the high frequency
mutated gene (PIK3CA).
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We then investigated whether the mutually exclusive pattern observed in some

GRNs was statistically significant. To do this, we generated 1,000 random gene

sets of 100 genes each (the same size as our “top-100” gene neighbors) and per-

formed a mutational annotation using the TCGA[BRCA] dataset, as previously

described for the GRNs. The distribution of mutated genes in these random lists

is shown in Figure 3.13. Finally, we checked for the presence of mutually exclu-

sive mutated genes in these random gene lists, and analyzed whether there was a

significant difference in the number of mutually exclusive mutated genes between

the GRNs and the random gene sets. For this analysis, we applied the statisti-

cal proportion test (see Methods, Subsection 2.3.3), running a total of 1,516,000

tests. A schematic representation of the comparisons performed is reported in

Figure 3.14.

Figure 3.13: Distribution of mutated genes in the 1,000 random gene lists.

The distribution of the number of mutated genes, reported as a percentage (x-axis), in the
1,000 random gene lists is reported according to TCGA [BRCA] mutational data (CGA
Network,2012).
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Figure 3.14: Schematic representation of the comparisons performed by the pro-

portion tests.

A schematic representation of the comparisons performed by the proportion tests is re-
ported. CM-Net indicates the GRN inferred using the ARACNE algorithm. “R” indicates
the random gene list and “#1# freq” indicates the presence of one mutated gene of the
network per breast cancer patient.

The results obtained can be summarized as follows:

• for each network (1,516 total GRNs), we found a fraction of statistically

significant proportion tests (i.e., the GRN was significantly enriched in mu-

tually exclusive mutated genes compared with the random lists) and a frac-

tion of not statistically significant proportion tests (i.e. the GRN was not

significantly enriched in mutually exclusive mutated genes). The number

of statistically significant proportion tests range from 992 (i.e., the GRN is

enriched in mutually exclusive mutated genes with respect to 992 random

gene lists while it is not with respect to 8 random lists) to 10 (i.e., the

GRN is enriched in mutually exclusive mutated genes with respect to only

10 random gene lists while it is not with respect to 990 random lists).

• we observed a “negative correlation” between the number of not statisti-

cally significant proportion tests for some GRNS, and the total number

of patients in which at least one gene of the GRN was found to be mu-

tated in a mutually exclusive way (Figure 3.15). Specifically, genes that
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are highly frequently mutated in the population and that are also mutated

in a mutually exclusive way with respect to the other genes in the network

can influence the proportion tests results. When these genes are present in

GRNs they will drive the significance towards them; on the contrary they

will favour the significance of random gene lists when they are represented

in random gene lists instead of in GRNs. Since we observed an increase in

the number of not statistically significant proportion tests as the mutually

exclusive mutated genes were infrequently mutated in the population for

some GRNs, we argued that this might be one possible reason of the lack

of significance of our GRNs. Different normalization procedures exists in

order to control the effect of the frequency of mutation. In our case we

did not normalized according to the frequency of mutation since we were

interested to investigate the role of low frequency mutually exclusive mu-

tated genes with respect to, also, high frequency mutated genes (as for the

case of EFNA3 network, see Figure 3.12) as putative cancer driver genes

playing a role in a network context.

• the statistically significant difference in the number of mutually exclusive

mutated genes between the GRNs and the 1,000 random networks (i.e. the

FDR q-value was < 0.01 after multiple correction on the set of 1,000 ran-

dom gene lists), might be the result of the left-tail effect of the two-tailed

proportion test. Indeed, the statistical significance of the comparisons (q-

value < 0.01), might result from a higher content of mutually exclusive

mutated genes in the random gene lists rather than in the GRN. Accord-

ing to this left-tail effect of the proportion test, there is still a significant

difference in the number of mutually exclusive mutated genes between the

GRN and the random lists, but the enrichment is relative to the random

gene lists instead of the GRNs.
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Figure 3.15: The number of non significant comparisons as a function of the sample

size.

The number of non significant comparisons as a function of the sample size is reported.
As the sample size (i.e. the number of breast cancer patients with at least one gene of
the network mutated) increase, the number of non significant comparisons decrease.

To select the GRNs significantly enriched in mutually exclusive mutated genes

from the proportion tests considering both, the number of statistically signifi-

cant comparisons and the left-tail effect of the two-tailed proportion test on the

significance, we used the following Enrichment Score ES:

ES =
NSC +NF

1000

Where:

-“NSC” represents the fraction of “Non-statistically Significant Comparisons”,

i.e. the number of proportion tests run on GRNs versus random networks, which

did not pass the significance threshold; FDR = 0.01;

-“NF” represents the “Negative Frequencies”, i.e., the number of statistically
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significant comparisons resulting from a higher content of mutually exclusive

mutated genes in random gene lists with respect to the GRNs.

The score ES, was then normalized on the total number of random gene lists

(i.e., 1,000). According to this scoring system, the lower the score (ES), the

higher is the significance of the enrichment of mutually exclusive mutated genes

in the GRNs. The networks were then sorted according to ES and only the

networks with a score < 0.25 were finally considered as significant. Based on

these statistical tests and selection criteria, we identified a core of 50 GRNs that

were significantly enriched in mutually exclusive mutated gene neighbors (see

Table 3.8). Interestingly, this set of networks was unique with respect to the

48 networks prioritized according to the COSMIC-Census mutational annotation

(see Subsection 3.3.1), with the exception of one network MSH2 that was in

common.
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Table 3.8: List of 50 GRNs significantly enriched in mutually exclusive mutated
genes.

GRN MGs SCs NSCs NFs PFs Score

RASA2 50 992 8 0 992 0.008
EFNA3 55 991 9 0 991 0.009
FADS2 49 991 9 0 991 0.009
TXNIP 45 991 9 0 991 0.009
NIPAL3 45 991 9 0 991 0.009
MYBBP1A 46 990 10 0 990 0.01
G3BP1 57 990 10 0 990 0.01
SMARCC1 62 990 10 0 990 0.01
AATF 53 990 10 0 990 0.01
RRP1 46 990 10 0 990 0.01
DDB2 57 989 11 0 989 0.011
OSBPL8 59 987 13 8 979 0.021
FOXC1 61 972 28 8 964 0.036
CDH3 62 971 29 8 963 0.037
SR140 54 968 32 9 959 0.041
ARL4C 58 964 36 9 955 0.045
ITPR2 57 952 48 9 943 0.057
KDM4B 52 947 53 9 938 0.062
IVD 55 928 72 9 919 0.081
DHCR7 52 928 72 9 919 0.081
CAMP 55 928 72 9 919 0.081
ADM 52 920 80 9 911 0.089
PMAIP1 56 920 80 9 911 0.089
SKP2 57 920 80 9 911 0.089
CEBPB 58 909 91 9 900 0.1
GSTP1 58 897 103 9 888 0.112
NPY1R 54 897 103 9 888 0.112
ENO1 58 897 103 9 888 0.112
NDN 61 886 114 10 876 0.124
NQO1 55 886 114 10 876 0.124
SLC7A5 57 886 114 10 876 0.124
HMGCS2 51 871 129 10 861 0.139
PNP 58 856 144 10 846 0.154
PHGDH 56 840 160 10 830 0.17
IL8 59 840 160 10 830 0.17
ANGPTL2 57 823 177 10 813 0.187
PLAU 62 823 177 10 813 0.187
CXCL12 58 823 177 10 813 0.187
LUM 55 823 177 10 813 0.187
ACTN1 65 823 177 10 813 0.187
XPO4 62 823 177 10 813 0.187
KRT15 56 823 177 10 813 0.187
SERPINH1 53 798 202 10 788 0.212
PMP22 58 798 202 10 788 0.212
ASAH1 65 798 202 10 788 0.212
PENK 65 798 202 10 788 0.212
MSH2 51 798 202 10 788 0.212
POLB 58 798 202 10 788 0.212
KCNN4 61 771 229 10 761 0.239
THOP1 51 771 229 10 761 0.239

The list of 50 GRNs significantly enriched in mutually exclusive mutated genes is reported
followed by: the number of Mutated Genes (MGs) according to TCGA mutational an-
notation; the number of Significant Comparisons (SCs), i.e. the number of statistically
significant proportion tests; the number of Non-Significant Comparisons (NSCs), i.e. the
statistically non-significant proportion tests; the Negative Frequencies (NFs), represent-
ing the number of random gene lists enriched in mutually exclusive mutated genes; the
Positive Frequencies (PFs), representing the number of random lists not enriched in mu-
tually exclusive mutated genes compared to the GRNs; the Score calculated as described
in the main text.
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3.4 Identification of higher order

regulatory mechanisms

We performed an in-depth GRN deconvolution analysis to identify putative tran-

scriptional Master Regulator (MR) hub genes for the 48 and 50 networks priori-

tized by the COSMIC-Census mutational annotation and the mutual exclusivity

analysis, respectively (see Subsections 3.3.1 and 3.3.2 and the computational

pipeline in Appendix A, blue section). A hub gene is defined as a highly inter-

connected gene within a complex network, that has a key biological role in the

cell ([203],[204]). In the case of gene expression, the connections with other genes

represent the degree of correlation between expression measurements. Typically,

for GRNs, a hub gene is a transcription factor (TF) or co-factor that is the MR of

expression of neighboring genes, making it highly interconnected. Specifically, the

TF or co-factor is at the top of a of a regulatory hierarchy. Besides TFs, MRs can

also be genes whose expression is critical to the transcriptional activation of mul-

tiple downstream genes (including TFs) involved in cell signaling cascades ([205]).

Since the expression of CM-genes correlates with pathological conditions associ-

ated with breast cancer, we attempted to identify cancer-related mechanisms at

the transcriptional level. For the full list of CM-genes (1516 total genes), we

performed a network inference analysis in which we assumed that each CM-gene

was a hub gene, i.e. a transcriptionally highly interconnected gene (Figure 3.16,

panel ‘a’). From this analysis, we inferred 1,516 GRNs (CM-gene GRNs), how-

ever, we were unable to determine whether a gene was likely to be a real hub or

not. In addition, we observed that for some of these CM-gene GRNs, the hub

genes shared common neighbors supporting the possibility of a higher-order regu-

latory program under the control of a common putative transcriptional MR (Fig-

ure 3.17). To overcome the bias of assuming that all CM-genes were hub genes in

the network inference analysis, and to identify potential MRs of transcriptional

programs, we performed a transcriptional network deconvolution analysis using

the ARACNE algorithm (Figure 3.16, panel ‘b’). In this analysis, we considered

that for each one of the 48 and 50 GRNs (CM-gene GRNs) each gene neighbor

within the network is a hub gene around which to build a new “transcriptional”

network. The MR was then defined as the gene neighbor that occurs most fre-

quently among the new networks (Figure 3.16, panel ‘b’). Once the MR gene

was identified, we finally built a GRN around the MR hub gene. The networks

inferred from the MRs were called MR-gene GRNs (or MR-networks). Using

this strategy, we were able to identify in an unbiased way, the MR of transcrip-

tional mechanisms identified through the network inference analysis performed
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on CM-genes. For some networks inferred from CM-genes as hub genes, the tran-

scriptional MR appeared to be the CM-gene itself, confirming the relevance of

CM-genes in these putative oncogenic networks. In contrast, for other networks

the MR was a neighboring gene of the original network hub. Interestingly, some

GRNs inferred from CM-genes shared a common MR (Figure 3.18), allowing

these networks to be grouped together, representing branches of a higher-order

regulatory mechanism. The full list of MRs for the set of 48 and 50 GRNs is

reported in Table 3.9 and 3.10. We identified 23 and 31 unique MRs for the set of

48 and 50 GRNs respectively, with the exception of the RUNX1T1 gene that was

in common. 14 out of 54 total MR genes are described as transcription factors

in TRANSFAC database (http://www.gene-regulation.com/pub/databases.

html/). They are: ATF6B, CREBL2, E2F4, ESR1, FOXM1, FOXO1, HOXA5,

MAX, MLXIPL, MYBL2, NFAT5, RUNX1T1, TCF4 and TCF7L1.

http://www.gene-regulation.com/pub/databases.html/
http://www.gene-regulation.com/pub/databases.html/
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Figure 3.16: Identification of higher order regulatory mechanisms.

Schematic representations of the network inference analysis performed on CM-genes (a)
and the network analysis performed for the identification of higher-order regulatory mech-
anisms (b). In panel (a), the network inference analysis performed to build GRNs from
CM-genes (CM-gene GRNs) is shown. Each CM-gene was assumed to be a hub gene to
identify transcriptionally correlating genes, i.e. gene neighbors (Nghb). In panel (b), the
network inference analysis to investigate for the presence of higher-order regulatory mech-
anisms is shown. Each neighboring gene for each GRN inferred from CM-genes (shown in
‘a’) was assumed to be a hub gene; the network was then built around the hub gene based
on gene expression data using the ARACNE algorithm. The master regulator (MR) was
then identified as the gene with the highest frequency of occurrence, as a neighbor gene,
across all networks inferred from the original GRN (shown in ‘a’). Once identified, a new
network composed of genes from the original GRN, was built around the MR gene.
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Figure 3.17: Overlapping neighbors of the ARL4C, NDN and GSTP1 CM-gene

GRNs.

The GRNs inferred from ARL4C, NDN and GSTP1 CM-genes are reported. The gene
neighbors of the networks and the relative hub genes are highlighted in blue, red and green
for ARL4C, NDN and GSTP1, respectively. For each network, the edges connecting the
hub gene with its neighbors are in gray, while the edges connecting the hub genes with
neighbors of other networks (i.e. shared neighbors) are highlighted in black.
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Figure 3.18: FOXO1 gene as Master Regulator (MR) of ARL4C, NDN and GSTP1 CM-gene GRNs.

FOXO1 is a master regulator of the ARL4C, NDN and GSTP1 CM-gene GRNs. FOXO1 expression correlates at a transcriptional level with the expression
of all the genes composing the networks inferred from the CM-genes ARL4C, NDN and GSTP1. FOXO1 therefore represents the transcriptional master
regulator of a higher-order regulatory mechanism. On the left of the figure, the genes of each network are listed. In red are reported the gene neighbours
relative to the ARL4C network, in green those relative to the GSTP1 network, and in blue the gene neighbours relative to the NDN network. Black curved
lines represent pairwise transcriptional correlations inferred by ARACNE algorithm between the CM-gene as hub gene and the relative neighbours listed in
the gene list. At the top of the list the gene FOXO1 is connected with all the genes in the list as Master Regulator (MR) of ARL4C, NDN and GSTP1
CM-gene GRNs.
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Table 3.9: Master regulators relative to the set of 48 CM-gene GRNs identified through the COSMIC-Census mutational annotation of CM-genes.

Master Regulator (MR) Full gene name CM-gene hub(s)

ACRV1 acrosomal vesicle protein 1 CASC5, HOXD13
AGPAT1 1-acylglycerol-3-phosphate O-acyltransferase 1 EWSR1
CAV1 caveolin 1, caveolae protein, 22kDa GPC3
CCDC9 coiled-coil domain containing 9 FGFR2
CD2 CD2 molecule SOCS1
CD48 CD48 molecule JAK2
CDK1 cyclin-dependent kinase 1 BRCA1
DAZAP1 DAZ associated protein 1 TOP1
DMWD dystrophia myotonica, WD repeat containing BAP1, CDK12, CDKN2A, MYD88, ETVC
DPYSL3 dihydropyrimidinase-like 3 EXT2
EGR1 early growth response 1 JUN
FAM171A1 family with sequence similarity 171, member A1 RET
HSPA8 heat shock 70kDa protein 8 MSH6
KCNMB1 potassium large conductance calcium-activated channel MET
MMP2 matrix metallopeptidase 2 COL1A1
MYO15B myosin XVB pseudogene CDK4
PABPN1 poly(A) binding protein, nuclear 1 PMS1
PSG6 pregnancy specific beta-1-glycoprotein 6 EGFR
RUNX1T1 runt-related transcription factor 1; translocated to, 1 (cyclin D-related) CCND2
TPX2 TPX2, microtubule-associated, homolog (Xenopus laevis) BRCA2, BRIP1, BUB1B,
TRBC1 T cell receptor beta constant 1 POU2AF1
TROAP trophinin associated protein (tastin) BLM
UBE2C ubiquitin-conjugating enzyme E2C RECQL4,WHSC1
ZNF160 zinc finger protein 160 APC

Table lists the master regulators relative to the set of 48 CM-gene GRNs identified through the COSMIC-Census mutational annotation of CM-genes, followed
by their full gene name and relative CM-gene hub(s).
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Table 3.10: Master regulators relative to the set of 50 CM-gene GRNs identified through the mutual exclusivity analysis.

Master Regulator (MR) Full gene name CM-gene hub(s)

ACTL6A Actin-Like 6A TXNIP
ASH1L ash1 (absent, small, or homeotic)-like (Drosophila) XPO4
ATF6B activating transcription factor 6 beta NIPAL3
BCL11A B-Cell CLL/Lymphoma 11A (Zinc Finger Protein) PHGDH
CHD3 cadherin 3, type 1, P-cadherin (placental) MYBBP1A
CREBL2 cAMP responsive element binding protein-like 2 ASAH1
E2F4 E2F transcription factor 4, p107/p130-binding THOP1
ELK3 ELK3, ETS-domain protein (SRF accessory protein 2) ITPR2
ESR1 estrogen receptor 1 IVD
FOXM1 forkhead box M1 DHCR7, HMGCS2, NPY1R
FOXO1 forkhead box O1 ARL4C, GSTP1, NDN
GATA3 GATA binding protein 3 IL8, KDM4B, PMAIP1,POLB
HOXA5 homeobox A5 KRT15
IFI16 interferon, gamma-inducible protein 16 ADM
LRPPRC leucine-rich PPR-motif containing MSH2
MAX MYC associated factor X G3BP1
MLXIP MLX interacting protein KCNN4
MYBL2 v-myb myeloblastosis viral oncogene homolog (avian)-like 2 PNP, SLC7A5
NFAT5 nuclear factor of activated T-cells 5, tonicity-responsive RASA2
PRRX1 paired related homeobox 1 PLAU, SERPINH1
PTTG1 pituitary tumor-transforming 1 CAMP
RBMS1 RNA binding motif, single stranded interacting protein 1 OSBPL8
RUNX1T1 runt-related transcription factor 1; translocated to, 1 (cyclin D-related) PENK
SOX10 SRY (sex determining region Y)-box 10 CDH3, FOXC1
TAF6 TAF6 RNA polymerase II, TATA box binding protein (TBP)-associated factor EFNA3
TCF4 transcription factor 4 CXCL12
TCF7L1 transcription factor 7-like 1 (T-cell specific, HMG-box) NQO1
TGFB1I1 transforming growth factor beta 1 induced transcript 1 ACTN1, ANGPTL2
TP53BP1 tumor protein p53 binding protein 1 RRP1
ZFPM2 zinc finger protein, multitype 2 LUM, PMP22
ZNF45 Zinc Finger Protein 45 (A Kruppel-Associated Box (KRAB) Domain FADS2
ZNF302 zinc finger protein 302 SR140

Table lists the master regulators relative to the set of 50 CM-gene GRNs identified through the mutual exclusivity analysis, followed by their full gene name
and relative CM-gene hub(s).
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3.5 Clinical relevance of GRNs

3.5.1 Transcriptional activity of GRNs: the concordance analysis

We then assessed the clinical and pathological relevance of the 48 and 50 sets of

GRNs (CM-gene GRNs) prioritized by the COSMIC-Census mutational annota-

tion and the mutual exclusivity analysis respectively and of the relative MR-gene

GRNs (inferred as described in Section 3.4) to breast cancer (see the computa-

tional pipeline in Appendix A, pink section). We first established a scoring

system to predict the activation/inhibition of the inferred networks in breast

cancer (see Methods, Section 2.4). The transcriptional activity of the networks

was evaluated using an independent microarray gene expression dataset of 997

breast tumors (the Metabric study, Discovery set ([36])). The log2 median cen-

tered gene expression matrix was sorted across breast cancer patients according

to the transcriptional profiles of the CM-gene ‘hub’ or the MR gene, around

which the networks were built. The sorted dataset was then transformed into

a binary matrix assigning +1 to positive gene expression measurements (genes

up-regulated) of the gene neighbors of the network and of the hub gene, and -1

to the negative gene expression measurements (genes down-regulated). From the

binarized data, a Concordance Score (CS) was computed as follows:

CSup = ∀PHup(Ngup −Ngdn)

Where:

-CSup is the network concordance score in the case of up-regulated hubs;

- (Ngup−Ngdn) is the difference between the number of up-regulated genes and

the number of down-regulated genes of the network, computed for each breast

cancer sample (∀PHup) when the hub gene is up-regulated.

or

CSdn = ∀PHdn(Ngdn −Ngup)

Where:

-CSdn is the network concordance score in the case of down-regulated hubs;

-(Ngdn − Ngup) is the difference between the number of down- regulated genes

and the number of up-regulated genes of the network, computed for each breast

cancer sample (∀PHdn) when the hub gene is down-regulated.
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CSdn is the network concordance score in the case of down-regulated hub,

(Ngdn − Ngup) is the difference between the number of down-regulated genes

and the number of up-regulated genes of the network computed for each breast

cancer sample (∀PHdn) when the hub gene is down-regulated. According to the

computed difference ∆, the extent of the concordance was defined as follows:

CSup =


Positive Concordance if ∆up > 0

Negative Concordance if ∆up < 0

Non Concordance if ∆up = 0

CSdn =


Positive Concordance if ∆dn > 0

Negative Concordance if ∆dn < 0

Non Concordance if ∆dn = 0

We then defined three distinct patterns of transcriptional activation/inhibition

of the networks in breast cancer according to the scoring system:

• Absence of transcriptional activation/inhibition of the network (Non Con-

cordance): 50% of the neighbors of the network have the same transcrip-

tional profile with respect to the hub gene, while the remaining 50% of

neighbors have the opposite transcriptional regulation (Figures 3.19 and

3.20 box a).

• Positive transcriptional activation/inhibition (Positive Concordance): >

50% of gene neighbors in the network have the same transcriptional regula-

tion as the hub gene (up-regulated/activated or downregulated/inhibited)

(Figures 3.19 and 3.20 box b).

• Negative transcriptional activation/inhibition (Negative Concordance): >

50% of gene neighbors in the network have the opposite transcriptional

regulation with respect to the hub gene (Figures 3.19 and 3.20 box c).

The gene expression values of the network neighbors plotted with respect to the

computed CSs for the three transcriptional patterns is shown in Figure 3.21. For

the absence of a transcriptional activation/inhibition pattern, the gene expression

profiles of the CM-gene AATF network neighbors (reported as a representative

example) is plotted against the computed CSs. As shown, when half of the neigh-

bors are up-regulated and half are down-regulated, the computed CS is close to
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0. In contrast, in the case of positive transcriptional activation/inhibition (as

displayed by the CM-gene PLAU network), when the majority of the neighbors

have the same direction of gene expression regulation (either up-regulated or

down-regulated) as the hub gene, the CS is greater than 0. Finally, when the

majority of the neighbors of the network have an opposite gene expression regu-

lation compared to the hub gene, (as disaplyed by the CM-gene CEBP network),

the CS is less than 0. The full list of the networks, grouped by transcriptional

activation/inhibition patterns is reported in Table 3.11 for the set of 48 networks

and in Table 3.12 for the set of 50 networks relative to networks inferred from

CM-genes and MR-genes. For subsequent analyses, we focused on the set of

networks with positive and negative transcriptional activation patterns, because

they could indicate activation/inhibition of molecular mechanisms represented by

the networks in breast cancer.
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Figure 3.19: The transcriptional activation of CM-gene GRNs on Metabric cohort

of breast cancer patients.

Hierarchical cluster analysis of the Concordance Scores (CSs) computed on the CM-gene
GRNs inferred from the set of 48 networks resulting from the COSMIC-Census mutational
annotation and from the set of 50 networks resulting from mutual exclusivity analysis.
Columns represent breast cancer patients from the Metabric cohort, while rows represent
the networks scores. The heatmaps refer to the set of 48 CM-gene GRNs (A) and to the
set of 50 CM-gene GRNs (B). The boxes highlight the three transcriptional activation
patterns of the networks resulting from the concordance analysis: box a, the absence of
a transcriptional activation/inhibition; box b, the presence of a positive transcriptional
activation/inhibition pattern; box c, the presence of a negative transcriptional activa-
tion/inhibition pattern.
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Figure 3.20: The transcriptional activation of MR-gene GRNs on Metabric cohort

of breast cancer patients.

Hierarchical cluster analysis of the Concordance Scores (CSs) computed on the MR-gene
GRNs inferred from the set of 48 networks resulting from the COSMIC-Census mutational
annotation and from the set of 50 networks resulting from mutual exclusivity analysis.
Columns represent breast cancer patients from the Metabric cohort, while rows represent
the networks scores. The heatmaps refer to the set of 48 MR-gene GRNs (A) and to the
set of 50 MR-gene GRNs (B). The boxes highlight the three transcriptional activation
patterns of the networks resulting from the concordance analysis: box a, the absence of
a transcriptional activation/inhibition; box b, the presence of a positive transcriptional
activation/inhibition pattern; box c, the presence of a negative transcriptional activa-
tion/inhibition pattern.
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Figure 3.21: Transcriptional patterns of CM-gene GRNs: gene expression vs. concordance.

The CM-gene GRN expression profiles plotted against the GRN Concordance Scores (NET SCORE) for three networks representative of the three tran-
scriptional activation patterns: a) the absence of a transcriptional activation pattern (CM-gene AATF network); b) the positive transcriptional activation
pattern (CM-gene PLAU network); c) the negative transcriptional activation pattern (CM-gene CEBP network).
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Table 3.11: The concordance analysis results relative to the 48 CM-gene and MR-gene networks.

Non Concordance Positive Concordance Negative Concordance

CM-gene GRN

CCND2, ATM, DDX10, HOXD13, CDK12, CDK4, RET, CASC5, ATRX,

THOP1, APC, FGFR2, EGFR, TFRC, EML4, ERBB2, MUC1, BRCA2

CREBBP, KRAS, CBLB, MSN, ETV5, BAP1,

PMS1, EWSR1, MSH6, RECQL4, BLM, JUN,

CDH1, KLF6, MSH2, GPC3, SOCS1, POU2AF1,

NRAS, MYD88, CDKN2A, COL1A1, JAK2, EXT2,

ELF4, MET, BRIP1 BUB1B, WHSC1, BRCA1

MR-gene GRN

ZNF160 APC, CCDC9 FGFR2, TPX2 BUB1B, TROAP BLM, UBE2C WHSC1, TPX2 BRIP1,

ACRV1 CASC5, PABPN1 PMS1, CDK1 BRCA1, PSG6 EGFR, ACRV1 HOXD13, DMWD BAP1,

DAZAP1 TOP1, RUNX1T1 CCND2, DMWD CDK12, MYO15B CDK4, UBE2C RECQL4, TPX2 BRCA2,

AGPAT1 EWSR1, HSPA8 MSH6, MYO15B CDK4, EGR1 JUN, DMWD MYD88, DMWD CDKN2A

KCNMB1 MET CAV1 GPC3, TRBC1 POU2AF1,

CD2 SOCS1, CD48 JAK2,

MMP2 COL1A1, FAM171A1 RET,

DPYSL3 EXT2

The concordance analysis results relative to the set of 48 CM-gene and MR-gene networks are reported. The networks are grouped according to the
transcriptional activation pattern : Non Concordance, Positive Concordance, or Negative Concordance patterns. The CM-gene networks are represented
by their hub gene (i.e. the CM-gene imposed as the hub gene of the network). The MR-gene networks are represented by two gene symbols separated by
underscore. The first gene name refers to the MR-gene. The second gene symbol refers to the original CM-gene.
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Table 3.12: The concordance analysis results relative to the 50 CM-gene and MR-gene networks.

Non Concordance Positive Concordance Negative Concordance

CM-gene GRN
THOP1, XPO4, NIPAL3, ITPR2, IL8, SR140, DDB2, SKP2, PNP,
NQO1, FADS2, RASA2, MYBBP1A, FOXC1, KDM4B, SMARCC1, ENO1, CAMP
KCNN4, RRP1, G3BP1, CDH3, ADM, PENK, CEBPB
EFNA3, POLB, HMGCS2, OSBPL8, ARL4C, GSTP1,
ASAH1, AATF, IVD, NDN, CXCL12, LUM,
PHGDH, KRT15, DHCR7, ACTN1, PLAU, PMP22,
TXNIP, MSH2, PMAIP1, ANGPTL2, SERPINH1
SLC7A5, NPY1R

MR-gene GRN
E2F4 THOP1, ATF6B NIPAL3, FOXO1 GSTP1, FOXO1 NDN, GATA3 IL8, ELK3 ITPR2,
NFAT5 RASA2, MLXIP KCNN4, FOXO1 ARL4C, TGFB1I1 ANGPTL2, CHD3 MYBBP1A, ZNF302 SR140,
ASH1L XPO4, TCF7L1 NQO1, TGFB1I1 ACTN1, TCF4 CXCL12, SOX10 FOXC1, RUNX1T1 PENK
ZNF45 FADS2, PTTG1 CAMP, ZFPM2 LUM, ZFPM2 PMP22,
TAF6 EFNA3, MAX G3BP1, PRRX1 PLAU, PRRX1 SERPINH1,
GATA3 POLB, ESR1 IVD, GATA3 KDM4B, GATA3 PMAIP1,
BCL11A PHGDH, CREBL2 ASAH1, SOX10 CDH3, IFI16 ADM,
TP53BP1 RRP1, FOXM1 DHCR7, RBMS1 OSBPL8
FOXM1 HMGCS2, HOXA5 KRT15,
ACTL6A TXNIP, MYBL2 SLC7A5,
MYBL2 PNP, LRPPRC MSH2,
FOXM1 NPY1R

The concordance analysis results relative to the set of 50 CM-gene and MR-gene networks are reported. The networks are grouped according to the
transcriptional activation pattern : Non Concordance, Positive Concordance, or Negative Concordance patterns. The CM-gene networks are represented
by their hub gene (i.e. the CM-gene imposed as the hub gene of the network). The MR-gene networks are represented by two gene symbols separated by
underscore. The first gene name refers to the MR-gene. The second gene symbol refers to the original CM-gene.



Results 111

3.5.2 Gene set enrichment analysis of transcriptionally active

networks in triple-negative breast cancer (TNBC) patients

Triple-Negative Breast Cancer (TNBC) is an aggressive breast cancer subtype

that lacks the expression of the hormone receptors, ER and PgR, and does not

overexpress Her2/neu. Consequently, these tumors are unresponsive to the cur-

rently available targeted therapies for breast cancer, such as endocrine therapies

(e.g. Tamoxifen) and anti-Her2 agents (e.g. Trastuzumab). Indeed, treatment

options are limited for TNBC and chemotherapy remains the mainstay of treat-

ment ([206]). Although chemotherapy can delay tumor progression in TNBC

patients, it is not curative and the development of chemoresistance, resulting

in disease progression, is common. Therefore, a better understanding of the

mechanisms of chemoresistance in TNBC could help in the identification of novel

molecular targets for the development of more effective breast cancer therapies.

To determine whether the transcriptionally active networks that we identified in

breast cancer (71 positively and 27 negatively concordant networks derived from

the CM-gene and MR-gene GRNs) could be relevant to chemoresistance, we per-

formed an enrichment analysis of these networks in the Hatzis et al.,([190]) cohort

of 152 TNBC patients ([190]). In this cohort, the 152 TNBC patients had received

neoadjuvant taxane-anthracycline chemotherapy (NACT; see Methods, Subsec-

tion 2.1.3.8 and Section 2.5). The response to this treatment varied from a patho-

logic complete response (pCR) with significant improvements in both disease-free

survival and overall survival, to residual invasive disease (RD) with no benefit in

terms of survival rate. Through this enrichment analysis, we aimed to identify

networks “enriched” in chemorefractory tumors, in order to predict their involve-

ment in chemoresistance mechanisms. Our ultimate goal was to identify putative

molecular targets for the development of novel treatment strategies for TNBC.

To identify networks associated with chemoresistance, we performed the Gene

Set Enrichment Analysis (GSEA) and the Gene Set Analysis (GSA) in pCR and

RD patients from the 152 TNBC cohort, using the transcriptionally active GRNs

as gene sets. The GSEA and GSA algorithms are two of many computational

tools, known as Functional Class Scoring (FCS) methods, available to investigate

the transcriptional enrichment of gene sets with respect to different phenotype

conditions. Briefly, the GSEA analysis tests whether the distribution of the ranks

of genes in a gene set differs from an empirical null distribution, using a weighted

Kolmogorov-Smirnov statistical test. The genes in the gene list are ranked by

the strength of association with the phenotype, defined by, for example, the t-

test, signal-to-noise ratio, correlation coefficients, or fold-change etc. Instead, the



Results 112

GSA analysis uses the maxmean statistic to determine whether the strongest evi-

dence for a particular gene set is the up-regulation or the down-regulation. Both

methods are optimized to investigate harmonized changes of expression levels of

genes, within a particular gene set, according to a desired condition (phenotype).

For the enrichment analysis, we used the two methods GSEA and GSA, on gene

expression data normalized according to three different normalization methods

(i.e. RMA, MAS5 and MAS5-based normalization reported in Hatzis et al., 2011.

See Methods, Section 2.5). We chose three normalization techniques in order to

control the effect of the normalization methods on the enrichment results, and

two methods for the enrichment analysis to verify the robustness of them. The

rationale behind this choice was that if the active networks represent biologically

relevant transcriptional mechanisms in RD TNBC, we expect to observe the en-

richment, independently of the different theoretical formulations of the method

(i.e. GSEA or GSA) used to perform the enrichment analysis. The statisti-

cal significance of the enrichment of the transcriptionally active networks was

evaluated according to the nominal p-value resulting from the GSEA and GSA

analysis output. We did not consider the FDR q-value to identify the statistically

significantly enriched networks, since our aim was not to select the most enriched

networks (i.e. it was not to perform network selection or to compare networks

between them) from the set of networks used as inputs, but, instead, to evaluate

the enrichment of each network as single mechanisms. The FDR computation,

in fact, considers the distribution of the enrichment scores computed across all

the gene sets ([197]). Moreover, we considered as significantly enriched, those

networks found to be enriched (p-value≤ 0.1) according to at least one normal-

ization method and according to both enrichment analysis algorithms. Using

this approach, we observed the enrichment of 6 transcriptionally active networks

in RD TNCB: TCF4, TGFB1I1, ZFPM2, PRRX1, ELF4, COL1A1 (Table 3.13;

Figure 3.22 and 3.23; Appendix A, orange section). A typical enrichment plot

from the GSEA analysis is shown in Figure 3.22 for the TGFB1I1 transcriptional

network. The gene neighbors of the network were ranked according to the Sig-

nal2Noise (S2N) metric, which is defined as the difference of means of expression

levels of the two phenotype classes (PhLs), RD and pCR, scaled by their stan-

dard deviation. The genes of the TGFB1I1 network were sorted from high S2N

(high association with RD pathological condition) to low S2N (low association

with RD pathological condition) values. A representative set of the core genes

of the enrichment analysis, i.e. the genes that contributed most to the enrich-

ment of the entire TGFB1I1 network are also reported in Figure 3.22, including

the PDGFRB receptor, a putative druggable target gene that functions as a cell
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surface kinase receptor. A more comprehensive list of the GSEA core genes for

each one of the 6 enriched networks is reported in Appendix B.
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Table 3.13: Enrichment results of the transcriptionally active networks in RD TNBC.

Transcriptionally active network in BC (RMA) (MAS5) (MAS5, Hatzis 2011)

NES; p-val NES; p-val NES; p-val

GSEA

TCF4 - - 1.54; 0.074

TGFB1I1 1.43; 0.051 1.54; 0.052 1.63; 0.022

ZFPM2 1.39; 0.072 1.52; 0.061 1.56; 0.023

PRRX1 1.44; 0.021 1.64; 0.031 1.63; 0.011

ELF4 1.53; 0.044 1.72; 0.045 1.80; 0.002

COL1A1 1.46; 0.044 1.54; 0.054 1.61; 0.025

GSA

TCF4 - - 0.60; 0.100

TGFB1I1 0.78; 0.025 0.81; 0.020 0.82; 0.021

ZFPM2 0.96; 0.015 1.05; 0.005 1.03; 0.004

PRRX1 1.27; 0.002 1.24; 0.004 1.24; 0.002

ELF4 0.72; 0.023 0.74; 0.012 0.77; 0.006

COL1A1 1.69; 0.004 1.69; 0.004 1.64; 0.004

The enrichment results of transcriptionally active networks in TNBC patients resistant to neoadjuvant taxane-anthracycline chemotherapy (RD). The
normalized enrichment score (NES) followed by the nominal p-value (p-val) is reported for the GSEA and GSA analyses, relative to the three normalization
methods: RMA, MAS5 and the MAS5-based normalization proposed in Hatzis et al 2011 (MAS5 Hatzis 2011)([190]). Networks with an enrichment p-value
≥ 0.1 are indicated with the “-” symbol. The hub genes TCF4, TGFB1I1, ZFPM2 and PRRX1 are MR-hub genes relative to the original set of 50 GRNs
enriched in mutually exclusive mutated genes. ELF4 and COL1A1 are CM-hub genes from the original set of 48 COSMIC-Census mutated genes.
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TGFB1I1: coactivator of the androgen 
receptor 

*	
  cell surface 
tyrosine kinase 
receptor for 
members of the 
platelet-derived 
growth factor 
family   

	
  

Figure 3.22: Enrichment analysis plot for the TGFB1I1 network in RD TNBC tu-

mors.

The GSEA enrichment plot relative to the TGFB1I1 network enrichment analysis is re-
ported. The TGFB1I1 gene neighbors in the network representation were sorted according
to the S2N, from high (high association with RD pathological condition) to low (low as-
sociation with RD pathological condition) values. Red circles and corresponding vertical
black lines in the graph, highlight a subset of core genes that contributed most to the
enrichment of the entire network in RD TNBC. For some of these genes, the Hugo gene
name is reported next to the enrichment plot. The PDGFRB receptor is highlighted with
a red line.
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Figure 3.23: GSEA plots relative to the enrichment analysis in RD TNBC of the

transcriptionally active networks TCF4, ZFPM2, PRRX1, ELF4 and COL1A1.

The GSEA enrichment plots relative to the TCF4, ZFPM2, PRRX1, ELF4 and
COL1A1 networks enrichment analysis are reported. Red circles highlight the
core genes of the networks that mostly contributed to the Running Enrichment
Score (RES). A representative set of 12 core genes ranked according to the S2N
metric from high to low values are reported.
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Discussion

4.1 Summary

In this project, we aimed to identify GRNs associated with breast cancer from

microarray gene expression data, in order to predict cancer biomarkers and novel

druggable targets. Initially, we identified oncogenic gene sets whose collective

expression profiles significantly correlated with different clinico-pathological pa-

rameters of breast cancers (e.g., ER status, tumor grade and prognosis). We

then derived cancer gene modules (i.e., CMs) from these gene sets, by identify-

ing those genes that contributed most to the correlation between the gene set

expression profiles and the clinico-pathological parameters. Finally, regulatory

networks were inferred from these CMs by assuming that each CM-gene was a

hub gene around which to build the network. For the network inference analy-

sis, we used a statistically representative gene expression dataset (the Loi et al.,

dataset [194]), in terms of number of tumors screened, which was derived using

the Affymetrix HG-U133A chip. From the full set of 1,652 CM-genes, networks

were inferred on a subset of 1,516 genes that were represented on the Affymetrix

HG-U133A chip. For the remaining 136 genes, network inference was not possible

(these genes are represented on the Affymetrix HG-U133B chip). The inference

analysis was performed by using the ARACNE algorithm along with two other

independent methods for network inference analysis: CUDA-MI and WGCNA.

For each CM-gene from which a network was inferred, we observed a good agree-

ment of the pair-wise transcriptional correlations according to the three methods

supporting the robustness of the inferred networks. To gain insights into the

functional relevance of CM-genes in breast cancer, we performed a mutational

annotation of the full set of CM-genes (1,652 total genes). We identified 49

117
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and 812 CM-genes mutated according to mutational annotation based on the

COSMIC-Census and TCGA datasets, respectively. The significance of the of

mutated genes in the set of CM genes was statistically verified. We prioritized

the set of 49 mutated genes with respect to the 812 mutated genes for subsequent

analyses, because of its small size and the fact that mutations in the COSMIC-

Census dataset are documented in the literature. We considered networks derived

from 48 CM-mutated genes, instead of the complete set of 49 genes, because for

one gene, network inference analysis was not possible since it is represented on

the Affymetrix HG-U133B chip. The mutational annotation was also performed

on the gene neighbors of the full set of 1,516 networks in order to identify mutated

genes that might impair the function of entire networks. This analysis allowed

us to identify an additional set of 50 networks enriched in mutually exclusive

mutated gene neighbors. The set of 48 networks and the set of 50 networks were

finally considered as potentially functionally relevant networks for subsequent

investigation in breast cancer. Using these two sets of networks, we performed

an additional phase of network inference analysis, aimed at identifying the pu-

tative transcriptional MR-gene of each network. This analysis was performed to

overcome the bias of a priori assuming CM-genes as transcriptional hub genes of

networks. The identification of the MR-genes was performed as follows: for each

CM-gene network, each neighboring gene was assumed to be a hub gene around

which a new network was built using ARACNE. In these new networks, the set

of transcriptionally interacting genes were the genes represented in the original

CM-gene network. The most frequently occurring gene neighbor in the full set

of new networks was considered as the putative transcriptional MR-gene. Once

the MR-gene was identified, a final network was built, in which the MR-gene

was assumed to be the hub gene and the full set of CM-genes in the original net-

work were considered as putative transcriptionally interacting genes. Using this

strategy, we identified MRs that were unique to specific CM-gene networks and

MRs that were in common to different CM-gene networks. This analysis allowed

us not only to identify putative transcriptional MR-genes, but also to group to-

gether CM-networks with common transcriptional regulatory programs that were

under the control of the same MR-gene. By considering the set of 48 and 50 net-

works (i.e. the networks inferred from CM-genes [98 total networks] and the new

networks inferred from MR-genes [76 total networks. CM-gene networks with

the same MR gene were not collapsed to a unique network]), we subsequently

evaluated the transcriptional activity of the entire networks in breast cancer tu-

mors. We defined networks as transcriptionally active if more than half of the

neighboring genes had the same or the opposite transcriptional modulation as
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the corresponding hub gene (positive and negative concordance, respectively). In

contrast, transcriptionally inactive networks were those in which half of the neigh-

boring genes have the same transcriptional modulation as the hub gene, while

the remaining half have the opposite transcriptional regulation. Using this strat-

egy, we were able to further prioritize our set of networks to those most relevant

to breast cancer in terms of transcriptional activity (98 total active networks:

71 positively and 27 negatively concordant networks). The clinical relevance of

our computational predictions, in terms of putative transcriptional mechanisms

deregulated in breast cancer, was assessed by evaluating the correlation between

the expression profiles of transcriptionally active networks and the occurrence

of RD in TNBC patients after neoadjuvant taxane-anthracycline chemotherapy.

Interestingly, we identified six active networks (i.e. TCF4, TGFB1I1, ZFPM2,

PRRX1, ELF4, COL1A1) whose transcriptional profiles correlated with RD in

TNBC patients. These networks represent putative mechanisms responsible for

the chemoresistance in these patients. Moreover, the genes of these networks

could represent candidate biomarkers of therapy response, as well as putative

druggable targets for the development of more effective therapeutic strategies.
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4.2 Cancer Modules (CMs) definition from oncogenic

gene sets: a biased approach

Carcinogenesis is mainly caused by genetic alterations, i.e. somatic mutations in

oncogenes and tumor-suppressor genes ([207],[208],[209],[210]). Oncogenes con-

trol cell proliferation and apoptosis, while tumor-suppressor genes (also called

anti-oncogenes) normally inhibit or “suppress” abnormal cell proliferation and

induce apoptosis of abnormal cells. Genomic alterations (i.e., mutations) in

proto-oncogenes and tumor-suppressor genes, cause such normal genes to be-

come cancer-causing genes. Given the role of these genes in cancer, we iden-

tified modules of genes transcriptionally related to breast cancer (CMs) from

publicly available oncogenic gene sets. An oncogenic gene set is a collection of

genes showing a coordinate gene expression modulation upon the perturbation

of known oncogenes and tumor suppressor genes. Such perturbations are gen-

erally experimentally-induced down-regulation, in the case of tumor-suppressor

genes, or overexpression, in the case of oncogenes, which causes alterations in

the expression of downstream genes in the oncogenic pathway. The induced

perturbations in gene expression and subsequent alteration in the activity of

such genes, recapitulates, in a biased way ([211]), the transcriptional regula-

tory events that are downstream of oncogenes and tumor suppressor genes in

cancer cells. We collected experimentally-derived oncogenic gene sets represen-

tative of the major hallmarks of cancer, such as: i) cell proliferation, apoptosis

and differentiation (i.e., MYC, MYC/TGFA, MYC/E2F1, MYB, TGFB1, SRC,

JAG1/NOTCH, EGFR, KRAS, KRAS/PTEN, BCAT, HRAS, ERBB2, BRCA1,

TERT, E2F1, E2F3, TP53, E1A); ii) EMT (i.e., ZEB1, JAP/-TAZ); iii) angio-

genesis (i.e., VEGF, HIF1A/HIF2A); chromosomal instability (i.e., CIN). GSEA

analysis allowed us to investigate if the genes belonging to these oncogenic gene

sets were also transcriptionally modulated (up-/down-regulated) in breast tu-

mors as the result of inactivation of the normal function of proto-oncogenes and

tumor suppressor genes. We found that the genes belonging to 18 of the original

23 oncogenic gene sets were up-/down-modulated in tumors and also accord-

ing to different pathological conditions that characterize breast cancer: i.e., ER

status, tumor grade and prognosis. Further analysis revealed that genes com-

ing from the full list of significantly enriched oncogenic gene sets identified by

GSEA, clustered into 7 “major” gene modules, the CMs: Grade, Grade/ER,

All, Relapse/Survival/Grade/ER, Survival/Grade/ER, ER, and Survival. These

findings support the notion that the experimentally-derived oncogenic gene sets

recapitulate the activation of oncogenic pathways in breast tumors and also that
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the related genes are transcriptionally modulated according to the pathological

condition of the disease (Figure 3.2). For example, we observed the enrichment

of the genes belonging to the E1A, as well as to the CIN or MYC gene sets, in

different and non-overlapping CMs (Figure 3.3). This result suggests a differ-

ential functional involvement of the genes originating from a common oncogenic

lesion, according to the state of the tumor, thus, helping in the identification

of the molecular determinants of the clinical state of the disease. Importantly,

our predictions (i.e., the CMs) were in silico verified in an independent set of

breast cancer datasets, confirming that the observed enrichment was not cohort-

dependent. Although the selected gene sets represent only a small fraction of

all the cancer-related oncogenic events occurring in a tumor cell, this approach

represents a flexible strategy towards the deconvolution of the altered molecu-

lar mechanisms responsible for the disease and may be easily extended as new

oncogenic gene sets become available.

4.3 Gene Regulatory Networks inference analysis:

identification of cancer-related mechanisms

Network inference from CM-hub-genes

In this project, we applied a semi-unsupervised data-driven approach to re-

verse engineer GRNs, starting from publicly available gene expression microarray

datasets. Data-driven network inference analysis methods can be classified into

two groups: “unsupervised” and “supervised”. Unsupervised methods infer func-

tional relationships between genes directly from the data. The unsupervised re-

construction of regulatory networks from “genome-wide” expression data is com-

putationally intensive because of the high-dimensional space of transcriptional

data (i.e. it considers the full set of genes expressed in a cell under a particular

condition). Moreover, the biological interpretation of the predicted functional

relationships between genes is often unfeasible because of the huge amount of

inferred interactions. In order to reduce the complexity of the analysis and to

simplify the biological interpretation of data, alternative “supervised” methods

have been proposed for GRNi. These methods consist of inferring GRNs from a

set of genes whose regulatory interactions are already known; this set of genes is

used as the training set. Although this approach reduces the complexity of the in-

ference analysis, it is biased towards well characterized genes, which are weighted

in the analysis more than less studied genes. In addition, for the vast majority of

the human genes the regulatory interactions are still unknown. To overcome the
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limitations of the unsupervised and supervised methods for GRNi, we adopted a

semi-unsupervised network inference approach. Specifically, networks were built

starting from the CMs that we identified using published gene sets, representing

known oncogenic stimuli; i.e., the GRNi analysis started from a set of cancer-

relevant genes (CM-genes) that we used as hub genes around which functional

relationships were predicted among genes found correlating with the hub gene ex-

pression profile (i.e. the gene neighbors). These CM-genes worked as “routers”

to guide the inference of regulatory interactions in the multidimensional tran-

scriptional space, in an unsupervised way using high-throughput expression data.

Regulatory network inference at a global expression level in mammalian cellular

contexts (i.e. considering the full set of expressed genes in a human or mouse pri-

mary cell) is a complex task because of the complexity of the regulatory programs

characterizing such living organisms, at high end of the evolutionary ladder. In-

deed, the majority of algorithms were developed to infer GRNs in simpler model

organisms ([168],[170],[212]). Nevertheless, several algorithms have been devel-

oped to infer regulatory mechanisms from the full set of gene expression data

in mammalians ([131],[133],[193],[213],[214]). These algorithms, however, suffer

from a number of limitations. The first limitation concerns the inference analysis

from static expression data for the vast majority of them. Cells, in fact, are adap-

tive systems with dynamic properties and “static measurements” of expression

levels do not incorporate temporal, spatial and conditional information except

indirectly. The modeling of regulatory networks that take into consideration the

dynamic properties of cellular systems (i.e. the evolution of cellular systems over

the time), requires time-series gene expression data. The time-related changes

of expression levels allow the inference of causal relationships between biological

molecules and of more accurate regulatory mechanisms. In particular, time-series

expression data might be useful to gain insights into the transcriptional programs

that govern the cellular behavior of highly perturbed and highly evolving living

systems like cancer cells. Unfortunately, with the exception of model organ-

isms and cell lines systems, the generation of expression profiles at different time

points directly from human cancer tissues is unfeasible because of ethical rea-

sons and because individuals with cancer quickly undergo surgical resection or

pharmacological treatments. Thus, it is not possible to monitor changes in gene

expression levels over several time points directly from tumor biopsies. Static

expression profiles from cancer tissues before treatment are, therefore, the only

source of data from which to infer regulatory probabilistic mechanisms. In this

project, GRNi analysis was performed using primarily the ARACNE algorithm
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([133]). This algorithm was preferred because of its literature documented relia-

bility as a “genome-wide” network inference algorithm in the mammalian context

([131]), consisting in the experimentally validated subset of gene-to-gene interac-

tions. In addition, from a theoretical perspective, the ARACNE algorithm infers

transcriptional interactions also from non-linearly dependent variables (genes)

through the MI measure, extending the possible pair-wise associations with re-

spect to the correlation-based methods, such as those used in the clustering,

which instead infer interactions only from linearly-dependent variables. Finally,

the ARACNE algorithm implements the DPI procedure that allows the removal

of putative indirect interactions. Although the ARACNE algorithm infers reliable

(i.e. experimentally-proved) pair-wise interactions and despite the fact that we

performed 1,000 bootstrap replications to prove the statistical significance of the

transcriptional correlations, the ability of reverse engineering methods, includ-

ing ARACNE, to infer realistic gene-to-gene associations from microarray gene

expression data faces two limitations. The first limitation concerns the impact

of measurement noise, especially for genes expressed at very low levels, which

affects the reliability of the predictions. The second limitation concerns the di-

mensionality curse phenomena (i.e. the number of genes is higher than samples)

that prevents to accurately recover the pair-wise gene interactions from their ex-

pression level. Two possible strategies to verify the reproducibility and hence the

robustness of the inferred interactions are: i) to perform the network inference

analysis using one or more independent dataset of expression profiles, i.e. the

validation datasets; ii) to perform network inference analysis on the same dataset,

but using different network inference methods. In our case, the first strategy was

unfeasible because gene expression datasets with the same or comparable num-

ber of expression profiles were not available (327 breast tumor transcriptional

profiles). Thus, we applied the second strategy under the assumption that if

an ARACNE-predicted pair-wise interaction is statistically robust (i.e. it does

not represent a false positive finding, but instead a true finding), it will also be

inferred using alternative algorithms, based on alternative measures to score the

gene-to-gene transcriptional correlation. We therefore performed GRNi analyses

using the CUDA-MI ([192]) and the WGCNA ([193]) algorithms. CUDA-MI algo-

rithm implements the MI computation through the use of the B-spline functions,

while WGCNA builds weighted gene co-expression networks by “soft threshold-

ing” the Pearson correlation coefficient for gene-to-gene interaction predictions.

We chose these two alternative algorithms because in the first case, although

the correlation is estimated through the MI measure, data discretization is per-

formed using B-spline functions instead of the ARACNE adaptive partitioning,
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while in the second case, the correlation is measured using a totally different

measure. Notably, using the Cohen test to compare the networks inferred from

each CM-gene using the three methods, we observed that for the vast majority of

ARACNE-inferred networks (i.e. 75% of the 1,498 statistically significant Cohen

tests, from a total of 1,516 networks), the pair-wise transcriptional interactions

were the same as those inferred using the two alternative methods. The agree-

ment we observed between the three algorithms, reinforced the relevance of the

inferred transcriptional networks to breast cancer.

4.4 Mutational annotation of CM-genes and the

mutual exclusivity analysis

4.4.1 Mutational annotation of CM-genes

Cancers arise mainly as the result of the acquisition of a number of somatic

genomic alterations, such as point mutations, copy number alterations, epige-

netic changes and karyotypic rearrangements, which confer a selective advantage

characterized by uncontrolled cell proliferation with respect to normal cells and

escape from apoptotic control ([215],[216]). Recent advances in massively par-

allel, high-throughput sequencing of DNA (exome and whole genome sequenc-

ing) has allowed a comprehensive characterization of DNA somatic mutations

through the sequencing of a large number of tumor samples, and provided an

unprecedented opportunity to gain biological insights to the origin and evolution

of cancer. Much of the available mutational data (and genomic data in general)

comes from a handful of large international collaborations: The Cancer Genome

Atlas (TCGA, NCI and NHGRI), The Catalogue of Somatic Mutations in Cancer

(COSMIC, UK Cancer Genome Project) and the more general Cancer Genome

Consortium (ICGC) that allows access to both TCGA and COSMIC data. The

aim of such collaborative efforts is to comprehensively understand the molecular

basis of cancer, not only at mutational level, but more generally at a genomic

level; gene expression data, methylation data and other genomic data are also

available. To better characterize the functional role of CM-genes previously pre-

dicted to be associated at the gene expression level (GSEA analysis) to breast

cancer, we performed a mutational annotation of the CM-genes representing the

hub genes around which the networks were built. This analysis allowed us, not

only to gain insights into the involvement of CM-genes in cancer, but also to
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reduce the set of 1,516 networks to those most biologically relevant. The muta-

tional annotation was primarily performed (on the full set of 1,652 CM-genes)

using the Cosmic Cancer Gene Census ([217]) dataset relative to breast cancer,

because this collection of mutated genes has been causally implicated in cancer.

According to this analysis, 49 CM-genes appeared to be mutated. We also per-

formed the mutational annotation by using TCGA mutational data relative to

breast cancer. This analysis was performed to overcome the bias of the muta-

tional annotation performed according to a subset of well-characterized mutated

genes. Many mutated genes, in fact, still lack biological validation, but might

nevertheless be equally involved in breast cancer. TCGA data allows an unbiased

whole-genome mutational annotation. According to TCGA mutational annota-

tion, 812 CM-genes appeared to be mutated in breast cancer. Importantly, for

both mutational annotations, we observed a statistically significant enrichment

of mutated genes in CM-genes with respect to the empirical null distribution we

generated from a collection of 1,000 random gene lists (p-value< 0.001). This

significant enrichment suggests that the CM-genes might be involved in breast

cancer, not only at the gene expression level, but also at the mutational level.

Moreover, this finding indicates that the strategy we used for evaluating the

enrichment of oncogenic gene sets in breast cancer PhLs, might be relevant to

select putative key cancer-related genes. Undoubtedly, further investigations are

needed to clarify the relationship between the presence of the mutational event

in CM-genes and their transcriptional association with the disease. Although we

subsequently focused our attention on the networks derived from the smaller set

of 48-CM-mutated genes (for one of the set of 49 genes, network inference was not

possible), the set of 812 TCGA mutated genes might contain novel, biologically

uncharacterized mutated genes, which could have an important role in cancer.

4.4.2 Mutual Exclusivity analysis

Cancer genomes contain “driver” mutations and “passenger” mutations. The

former are causative of the tumor, while the latter are neutral mutations that oc-

cur randomly, during cell division, without functional consequences. Large-scale

cancer genomic projects, like the TCGA (http://cancergenome.nih.gov/) and

ICGC (https://dcc.icgc.org/), with their high-resolution view of molecular

defects, at the DNA level, in different types of tumors, and whole-genome se-

quencing that allows the analysis of more than 20,000 protein-coding genes, offer

an unprecedented opportunity to determine which mutations are drivers and

which mutations are passengers. According to a large fraction of sequencing

http://cancergenome.nih.gov/
https://dcc.icgc.org/
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projects, the mutational profile, for most cancer types, consists of a small num-

ber of genes altered in a high percentage of tumors, the so-called “mountains”

and a large faction of genes altered infrequently in the population (< 1%), the

so-called “hills” ([218]). High frequency mutations in the population (i.e. the

mountains), such as mutations in the TP53, MYC, KRAS, ATM, APC, EGFR,

PIK3CA, BRAF, JAK2, and FGFR2 genes, confer a selective growth advantage

to cancer cells. Although the role of these high frequency mutations as drivers in

cancer has been extensively demonstrated through genome sequencing of a large

number of individuals and experimental validation, the role of low frequency mu-

tations (i.e. the “hills”), as drivers, is still not fully characterized. The main

reason for this, is that their low frequency of occurrence in the population, re-

sembles the frequency expected for neutral passenger mutations. One possibility

for elucidating the role of low frequency mutations in individuals and to address

inter-tumor heterogeneity, is to investigate the function of these infrequently mu-

tated genes in a pathway-context. Indeed, it is well-known that different gene

mutations can target the same pathway ([219],[220]). Moreover, the presence of

a single mutated gene is sufficient to perturb the entire pathway ([220], [201]),

such that the mutation of key genes belonging to the same pathway exhibit a

mutually exclusive behavior. In this project, we inferred networks of transcrip-

tionally correlating genes from CM-genes, predicted to be associated with breast

cancer at the transcriptional level. Hence, we have network tools (i.e. pathway

tools) to investigate for the presence and to predict the role of low frequency

mutations in individual breast cancer patients. From the mutational annota-

tion of the gene neighbors of each network (TCGA[BRCA] mutational data), we

observed that some genes were mutated with a frequency of < 1% in the popu-

lation, i.e. low frequency mutations or “hills”, while others were mutated with

a frequency of ∼37%, i.e. high frequency mutations genes or “mountains”, as

expected. Moreover, we observed a mutually exclusive behavior of a fraction of

mutated gene neighbors of the inferred networks (Figure 3.11). For a subset of

50 networks, out of the total set of 1,516 networks, the enrichment of mutually

exclusive mutated genes was statistically significant. Interestingly, among the

set of mutually exclusive mutated genes, we observed that, not only high fre-

quency mutated genes (e.g. PIK3CA) exhibited a mutually exclusive mutational

behavior, but also low frequency mutated genes. This result suggests that the

presence of a mutational event in these latter genes might confer the same selec-

tive advantage as known high frequency driver mutations in the population. To

further assess the robustness of the mutually exclusive relationships of genes, we

plan to benchmark our in silico predictions by applying computational methods
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based on different mathematical and statistical frameworks like those reported

in: [200],[221],[222],[223].
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4.5 Identification of putative Transcriptional Master

Regulators

The network inference analysis to identify cancer-related mechanisms was primar-

ily performed by assuming that each CM-gene was the hub gene of the network.

This assumption derived from the observed transcriptional regulation of CM-

genes in breast cancer gene expression profiles, according to the pathological state

of the disease, thus sustaining their centrality as cancer-related genes. Despite the

biological rationale behind this assumption, the transcriptional centrality of such

CM-genes as regulators of transcriptional programs required additional investi-

gation. For this reason, we performed an additional network inference analysis

in order to assess the role of these CM-genes as transcriptional hubs, and to

identify the putative transcriptional MRs at the top of the transcriptional reg-

ulation hierarchy. The inference analysis was performed by assuming iteratively

each gene neighbor of each CM-gene network (i.e. from the set of 48 GRNs iden-

tified through the COSMIC-Census mutational annotation and from the set of

50 GRNs significantly enriched of mutually exclusive mutated genes), as the hub

gene for a new network. Then, the most frequently occurring gene neighbor, i.e.

the most highly interconnected gene in the new networks was considered to be

the putative transcriptional MR-gene. For a set of CM-gene networks (i.e., 78%

on 98 total CM-gene networks), the MR-gene was different with respect to the

CM-gene, i.e. it was a neighbor from the original CM-gene hub network. Among

this group, for a subset of CM-gene networks, the putative inferred MR-gene was

the same, meaning that we were able to group together CM-gene networks repre-

senting sub-mechanisms of a global regulatory transcriptional network. Notably,

for a set of CM-gene networks (i.e., 22% on 98 total networks), the putative MR-

gene was confirmed as the CM-gene. This observation confirmed the centrality

and the putative transcriptional relevance of the CM-genes, as well as the validity

of the approach used to identify cancer-relevant genes. Although the identifica-

tion of the MR-genes was limited to the set of the gene neighbors composing

the initial CM-gene network, our approach has the advantage of simplifying the

search space of candidate MRs, which would otherwise be infeasible considering

the full transcriptome of a cell. Using this approach, we have intermediate levels

of regulation, among which to investigate for the presence of MRs.
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4.6 Clinical relevance of breast cancer-related

networks

TNBC is a subtype of breast cancer characterized by the lack of the ER, the PgR

and Her2 ([206]). Drugs like Tamoxifen or Trastuzumab, which are routinely used

in clinic as pharmacological treatments for ER-, PgR- or Her2-positive breast can-

cers cannot be used to treat TNBC. In addition, TNBCs are clinically charac-

terized by high malignancy, high risk of the local recurrence, poor prognosis (i.e.

poor disease-free survival), and poor cancer-specific survival ([224],[225]). Molec-

ularly, they are characterized by high proliferation and mitotic rates. The risk of

recurrence in TNBC is higher in the 3-5 years after diagnosis with respect to ER-

positive breast cancers ([226],[227]). Few therapeutic strategies are available for

TNBC and chemotherapy is the only effective treatment for TNBC patients after

surgery ([228]). Several studies have shown that TNBCs are much more sensitive

to adjuvant or neoadjuvant chemotherapy than other subtypes of breast cancer

([229]). pCR to neoadjuvant chemotherapy (mainly anthracyclines alone or in

combination with taxanes) correlates with a better prognosis in responsive TNBC

patients, with an overall survival similar to that of the non-TNBCs. Despite the

therapeutic benefits achieved in TNBC patients showing a pCR to neoadjuvant

chemotherapy, accounting for approximately 30% of TNBCs, there is a fraction of

TNBC patients who arae resistant to neoadjuvant chemotherapy. These patients

present RD after neoadjuvant chemotherapy and are characterized by high rates

of metastatic recurrence (because of the presence of viable cancer cells in breast

or in lymph nodes), and overall poor clinical outcome ([227],[230]). Thus, new

treatments are urgently needed to treat TNBCs resistant to chemotherapy. To

achieve this, it is crucial to elucidate the molecular mechanisms responsible for

chemoresistance, in order to molecularly sensitize cancer cells to pharmacological

treatments in a targeted way. In this project, we inferred gene networks repre-

sentative of putative breast cancer-related mechanisms. The case of unresponsive

RD TNBC patients represented a good opportunity to evaluate the clinical rel-

evance of our predictions, i.e. to “translate” our findings to the clinic to meet

an unmet clinical need. The clinical relevance of the inferred cancer mechanisms

was assessed by investigating the transcriptional profiles of the breast cancer ac-

tive networks (GSEA analysis) in RD TNBCs. Active networks were defined as

mechanisms in which the vast majority of neighboring genes had the same or the

opposite transcriptional regulation with respect to the hub gene around which

the network was built (i.e., the CM-gene or MR-gene), as assessed by the con-

cordance analysis. The importance of defining the transcriptional activity of a
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network lies in the possibility to pharmacologically revert the cancer-associated

transcriptional profile of an entire mechanism to a non-cancer profile. More

specifically, in the case of RD TNBC, to identify alternative drug targets for

overcoming mechanisms of chemoresistance. From the initial full set of active

networks, we identified a small subset of 6 networks (TCF4, TGFB1I1, ZFPM2,

PRRX1, ELF4, COL1A1) transcriptionally regulated (up-/down-modulated) in

RD TNBCs with respect to pCR TNBCs. These networks represent putative

mechanisms associated with chemoresistance, and although further investigation

is needed to define their precise role in RD TNBC, evidence in literature sup-

ports the functional involvement of at least some of these networks in the RD

TNBC biology. For example, PDGFRB is one of the core genes of the TGFB1I1

network that contributed most to the enrichment of this network in RD TNBCs

(i.e. it highly correlated at the transcriptional level with the RD pathological

condition with respect to the pCR condition; see Figure 3.21). Notably, it has

been recently demonstrated that PDGFR signaling contributes to TGFB-induced

EMT in oncogenic mammary epithelial cells, and, consequently, to the metastatic

potential of these cells ([231]). Moreover, the vast majority of the enriched core

genes in the TGFB1I1 network are involved in remodeling of the extracellular

matrix (COL6A3, COL3A1, COL5A1, COL5A2, LOXL1, MMP2, PCOLCE),

supporting the involvement of the TGFB1I1 network as a whole in the EMT

process in highly metastatic TNBCs. These genes represent, also, a fraction of

the enriched core genes of the remaining 5 networks (Figure 3.22), i.e. they are

in common between all the 6 networks, suggesting a cooperative involvement of

all the 6 networks in the EMT process as branches of a more global molecular

mechanism and offering multiple putative alternatives to pharmacologically tar-

get the entire EMT process. Using our strategy, we identified putative molecular

mechanisms that, at the transcriptional level, might provide predictive biomark-

ers of resistance to currently available therapies for TNBC. In contrast to typical

biomarker studies that screen for aberrant expression of single genes in tumors

to derive standalone tumor markers, our approach has the advantage that we

first defined the association of well-known cancer mechanisms (i.e. proliferation,

apoptosis, angiogenesis, tissue invasion and metastasis mechanisms) with specific

pathological conditions and then derived biomarkers involved in these mecha-

nisms. As reported in [79], there are approximately 150,000 papers documenting

the identification of thousands of biomarkers, however, only ∼100 of them have

been validated and approved for clinical practice. There are many reasons that

account for this failure in translation to the clinic. One main reason concerns
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the lack of an in-depth knowledge on the molecular mechanisms involved in dis-

ease. In this project, we developed a computational pipeline to infer molecular

mechanisms functionally related to breast cancer that might be used, not only

as sources of novel cancer biomarkers, but also of new druggable targets.
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4.6.1 Ongoing work and future plans

Experimental validation of the transcriptionally regulated active

networks in RD TNBCs

To determine the biological relevance of the in silico predicted networks that

transcriptionally correlate with RD TNBC, we are now performing RNA inter-

ference (RNAi) experiments on the hub genes of the networks. Specifically we

firstly selected a panel of basal-like breast cancer cell lines expressing the hub

genes: TCF4, TGFB1I1, ZFPM2, PRRX1, ELF4, and COL1A1. The expression

of them was assessed through the quantitative real-time RT-PCR (RT-qPCR).

By using the short hairpin RNAs (shRNAs) we are now perturbing the expres-

sion of the hub genes. We expect to observe a gene expression modulation of

the gene neighbours of the entire network upon the loss-of-function of the hub

gene, if the statistically inferred dependencies, biologically reflect molecular and

biochemical mechanisms of gene expression regulation acting in breast cancer

cells. We are using the high-throughput OpenArray technology to investigate the

changes in the mRNA levels of the gene neighbours of each candidate network

upon interference with the expression of the hub gene.

Computational analysis

We will build CM and MR-GRNs from breast cancer TCGA RNA-Seq expres-

sion data in order to confirm the gene expression interactions predicted by using

Affymetrix expression data. We will perform an in-depth in silico molecular

characterization of the networks that we predicted to correlate with RD TNBC

expression profiles through the integration of multi-level large “-omics” data in

order to gain insights into the molecular mechanisms that might govern the tran-

scriptional state of them. In particular, we will annotate the genes of the net-

works for the presence of targets of known TFs through the integration of publicly

available ChIP-Seq data on breast cancer. We will, also, annotate the genes, for

the presence of predicted targets of miRNA that might control the expression

levels of them as well as for the presence of breast cancer related patterns of

DNA methylation that, together with miRNA, might represent mechanisms of

epigenetic gene expression regulation of the networks associated with RD clinical

condition in TNBCs. TCGA methylation data and miRNA expression data as

well as Metabric miRNA expression profiles will be used to investigate for the

presence of epigenetic mechanism of gene expression regulation. We will also

annotate the genes of the networks for the presence of protein-protein interac-

tions, taking advantage of recently generated proteomic profiling data ([232]),
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to investigate for the presence of physical interactions that might give rise to

molecular events responsible for the resistance to the neoadjuvant pharmaco-

logical treatment. Finally, we will interrogate databases of drugs and bioactive

molecules (Mantra 2.0 https://http://mantra.tigem.it/, Connectivity Map

2, https://www.broadinstitute.org/cmap/) in order to in silico predict pu-

tative molecules (agents) able to target the genes of the networks associated

with RD pathological condition thus representing candidate alternative pharma-

cological treatments in TNBC patients that do not respond to the neoadjuvant

taxane-anthracycline chemotherapy.

https://http://mantra.tigem.it/
https://www.broadinstitute.org/cmap/
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23 oncogenic gene sets 

GSEA analysis and 
Normalization  

18 enriched gene sets (“core set”; 1652 total genes) 
“Discovery” set:  
5 cohorts of patients, 
1019 total pts  
(PhLs: tumor grade, ER status, 
relapse and survival) 

Cluster Analysis  
of 1652 genes 

15 Cancer Modules (CMs): 
7 “major” CMs (1516 genes) 

GSEA analysis 
 “Validation” set:  
4 cohorts of patients, 
916 total pts 
   

6/7 CMs validated 

ARACNE GRNs 
inference analysis 

1516 GRNs 

CUDA-MI and WGCNA 
benchmark analysis 

1124 good agreement  
GRNs; 374 bad agreement. 
18 GRNs non significant  
(Cohen test) 
 

Mutational 
annotation: 
Breast cancer  
COSMIC-
Census,  
TCGA (CGA 
Network, 2012) 

49 mutated genes 
(COSMIC-Census) 

812 mutated 
genes (TCGA) 

TCGA (CGA Network, 
2012) mutational 
annotation of GRNs 
gene neighbors 

50 GRNs enriched in mutually exclusive 
mutated gene neighbors 

Master Regulator (MR) prediction 

50 GRNs 
(CM-net) 

48 GRNs 
(CM-net) 

32/48 GRNs have a MR 44/50 GRNs have a MR 

32 MR-GRNs + 48 CM-GRNs 
 (80 total GRNs) 

44 MR-GRNs + 50 CM-GRNs 
 (94 total GRNs) 

Concordance analysis (Metabric, Discovery set, 997 pts) 

Non Conc   Positive Conc   Negative Conc   

48 CM-GRNs          21                21                      6 
32 MR-GRNs           9                 15                      8          
 

Non Conc   Positive Conc   Negative Conc   

50 CM-GRNs          23                20                      7 
44 MR-GRNs          23                15                      6          
 

Enrichment analysis in RD TNBC (Hatzis et al., 152 pts): 

6 Enriched GRNs: TCF4 
TGFB1I1
ZFPM2 
PRRX1 
ELF4 
COL1A1 

MR-GRNs 

CMs-GRNs 

71 positively concordant GRNs 
27 negatively concordant GRNs 

Figure A.1: Computational pipeline used to identify transcriptional breast cancer

networks.
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The computational pipeline used to infer breast cancer relevant

transcriptional networks from microarray gene expression data.

Green section: to identify groups of genes (gene modules) whose expression

correlate with clinical-pathological features of breast cancer disease, we per-

formed the Gene Set Enrichment Analysis (GSEA) of 23 oncogenic gene sets

on microarray gene expression profiles relative to 5 cohorts of breast cancer pa-

tients (“Discovery set”) for a total of 1,019 patients. From the GSEA, 18 out of

23 oncogenic gene sets (the “core set”) resulted significantly enriched in breast

tumours according to the following clinical-pathological variables (Phenotype

Labels, PhLs): the tumor grade, the ER status, the survival and the relapse. We

then performed the cluster analysis of the 1,652 genes, composing the 18 enriched

oncogenic gene sets, in order to cluster together the core genes according to the

relative PhLs enrichment. We identified 15 total groups of genes (i.e. clusters)

we called “Cancer gene Modules” (CMs). Of the full set of CMs 7 were “major”

CMs (1,516 total genes), i.e. they represented clusters with a higher content of

genes with respect to the other clusters. We further validated the enrichment

of the 7 CMs by performing GSEA on an independent set of microarray gene

expression profiles relative to 4 cohorts of breast cancer patients (“Validation

set”, 916 total patients). The clinical-pathological variables we considered were

the same we used for the GSEA analysis performed on the “Discovery set”, i.e.

he tumor grade, the ER status, the survival and the relapse. We finally validated

6 out of 7 CMs.

Black section: to identify breast cancer relevant mechanisms at gene expression

level, we performed the GRNs inference analysis using ARACNE algorithm on

the full set of 1,516 genes composing the 7 CMs. We assumed each gene of the

full set of 1,516 genes to be the “hub” gene of the network. We inferred 1,516

total networks (CM-GRNs). We also performed the network inference analysis

by using two independent algorithms with respect to ARACNE, i.e. CUDA-MI

and WGCNA, to assess the in silico reliability of the predicted networks. We

performed the Cohen test in order to evaluate the statistical significance of the

overlap of the neighbours of each network inferred by using the three algorithms.

1,498 networks on 1,516 total GRNs were found to be statistically significantly

concordant of which, 1,124 showed good agreement and 374 bad agreement. 18

networks were found to be not statistically significantly concordant.
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Red section: we performed the mutational annotation (COSMIC-Census and

TCGA, CGA Network 2012, mutational data) of the full set of 1,652 genes com-

posing the 15 total CMs to further assess their association with breast cancer

disease not only at transcriptional level. We found 49 mutated genes according

to the COSMIC-Census mutational annotation and 812 according to the TCGA

annotation. We also performed the mutational annotation of the gene neigh-

bours of the 1,516 networks inferred by ARACNE in order to investigate their

relevance in breast cancer disease as oncogenic mechanisms. We identified 50

GRNs significantly enriched in mutually exclusive mutated gene neighbours. We

then considered the set of 50 GRNs and 48 GRNs (98 total CM-GRNs) we pri-

oritized through the mutual exclusivity analysis and the mutational annotation

for further investigation. We reduced the set of 49 GRNs to 48 GRNs because

for one hub gene the network inference analysis by ARACNE was not possible.

Blue section: we then performed an in-depth GRN deconvolution analysis to

identify putative transcriptional Master Regulator (MR) hub genes for the set

of 48 and 50 CM-GRNs. For 44 out of 50 GRNs and for 32 out of 48 GRNs

we identified a putative MR hub gene different from the CM gene we previously

assumed to be the hub gene of the transcriptional network. New networks were

then inferred considering each MR-gene as the hub gene of the GRN.

Pink section: we performed the concordance analysis (i.e. we characterized

the transcriptional regulation of the gene neighbours of each GRN with respect

to the hub gene) in order to characterize the transcriptional activity of the set

of 94 GRNs (44 MR-GRNs and 50 CM-GRNs) and of the set of 80 GRNs (32

MR-GRNs and 48 CM-GRNs) in breast tumours. The concordance analysis was

performed on Metabric cohort of patients (Discovery set, 997 patients). For the

set of 50 CM-GRNs we found 23 Non Concordant GRNs, 20 Positively Concor-

dant GRNs and 7 Negatively Concordant GRNs; For the set of 44 MR-GRNs

we found 23 Non Concordant GRNs, 15 Positively Concordant GRNs and 6

Negatively Concordant GRNs; For the set of 48 CM-GRNs we found 21 Non

Concordant GRNs, 21 Positively Concordant GRNs and 6 Negatively Concor-

dant GRNs and for the set of 32 MR-GRNs we found 9 Non Concordant GRNs,

15 Positively Concordant GRNs and 8 Negatively Concordant GRNs.

Orange section: we predicted the clinical relevance of our findings by investi-

gating the transcriptional correlation of the full set of 71 Positively Concordant

networks (relative to the 50 CM-GRNs, 44 MR-GRNs and to the 48 CM-GRNs

and 32 MR-GRNs) and 27 Negatively concordant networks (relative to the 50

CM-GRNs, 44 MR-GRNs and to the 48 CM-GRNs and 32 MR-GRNs) with
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the expression profiles of 152 TNBC with Residual Disease (RD) pathological

condition after neoadjuvant taxane-anthracycline chemotherapy. We identified 6

enriched GRNs: TCF4, TGFB1I1, ZFPM2, PRRX1, ELF4 and COL1A1 repre-

senting putative mechanisms involved, at transcriptional level, in the metastatic

process of RD TNBC tumours. The first four networks were inferred from the

MR gene (MR-GRNs) while the last two were inferred from CM-genes (CM-

GRNs). The 6 GRNs represent our final candidate set of breast cancer related

mechanisms for the experimental validation of their biological relevance.
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Table B.1: A representative list of 42 core genes (GSEA analysis) of the TCF4 network enriched in RD TNBC.

Gene Symbol Description

TCF4 transcription factor 4

CRISPLD2 cysteine-rich secretory protein LCCL domain containing 2

FSTL1 follistatin-like 1

SPARC secreted protein, acidic, cysteine-rich (osteonectin)

FAP fibroblast activation protein, alpha

CFH complement factor H

PCOLCE procollagen C-endopeptidase enhancer

MXRA5 matrix-remodelling associated 5

DPT dermatopontin

FILIP1L filamin A interacting protein 1-like

HEG1 HEG homolog 1 (zebrafish)

CAV1 caveolin 1, caveolae protein, 22kDa

ADAMTS5 ADAM metallopeptidase with thrombospondin type 1 motif, 5

OLFML2B olfactomedin-like 2B

A2M alpha-2-macroglobulin

MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)

CXCL12 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)

CILP cartilage intermediate layer protein, nucleotide pyrophosphohydrolase

CFI complement factor I

COL15A1 collagen, type XV, alpha 1

ITGBL1 integrin, beta-like 1 (with EGF-like repeat domains)

SPARCL1 SPARC-like 1 (hevin)

EFEMP2 EGF-containing fibulin-like extracellular matrix protein 2

NDN necdin homolog (mouse)

ZCCHC24 zinc finger, CCHC domain containing 24

IGF1 insulin-like growth factor 1 (somatomedin C)

GPR124 G protein-coupled receptor 124

SFRP4 secreted frizzled-related protein 4

COL6A3 collagen, type VI, alpha 3

CDH5 cadherin 5, type 2 (vascular endothelium)

LDB2 LIM domain binding 2

SERPINF1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 1

NID1 nidogen 1

HTRA1 HtrA serine peptidase 1

GNG11 guanine nucleotide binding protein (G protein), gamma 11

SLIT2 slit homolog 2 (Drosophila)

LAMB1 laminin, beta 1

ZFPM2 zinc finger protein, multitype 2

MEIS2 Meis homeobox 2

PTRF polymerase I and transcript release factor

DCN decorin

IGFBP6 insulin-like growth factor binding protein 6

A representative list of 42 core genes (GSEA analysis) of the TCF4 network enriched in RD TNBC is reported. The HUGO Gene Symbol is reported,
followed by the full gene name (i.e. Description). Only 42 genes are reported for simplicity.
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Table B.2: A representative list of 42 core genes (GSEA analysis) of the TGFB1I1 network enriched in RD TNBC.

Gene Symbol Description

TGFB1I1 transforming growth factor beta 1 induced transcript 1

PDGFRB platelet-derived growth factor receptor, beta polypeptide

COL3A1 collagen, type III, alpha 1

COL5A1 collagen, type V, alpha 1

LOXL1 lysyl oxidase-like 1

COL5A2 collagen, type V, alpha 2

FAP fibroblast activation protein, alpha

AEBP1 AE binding protein 1

CNN1 calponin 1, basic, smooth muscle

MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)

LRRC32 leucine rich repeat containing 32

FHOD3 formin homology 2 domain containing 3

PCOLCE procollagen C-endopeptidase enhancer

BGN biglycan

COL6A3 collagen, type VI, alpha 3

NID1 nidogen 1

COL16A1 collagen, type XVI, alpha 1

HEG1 HEG homolog 1 (zebrafish)

RCN3 reticulocalbin 3, EF-hand calcium binding domain

SPOCK1 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1

SFRP4 secreted frizzled-related protein 4

THY1 Thy-1 cell surface antigen

TAGLN transgelin

COL1A1 collagen, type I, alpha 1

GPR124 G protein-coupled receptor 124

PTRF polymerase I and transcript release factor

HTRA1 HtrA serine peptidase 1

OLFML2B olfactomedin-like 2B

SPARC secreted protein, acidic, cysteine-rich (osteonectin)

MYL9 myosin, light chain 9, regulatory

SERPINF1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 1

DKK3 dickkopf homolog 3 (Xenopus laevis)

FSTL1 follistatin-like 1

CRISPLD2 cysteine-rich secretory protein LCCL domain containing 2

LAMB1 laminin, beta 1

FILIP1L filamin A interacting protein 1-like

MXRA8 matrix-remodelling associated 8

ZFPM2 zinc finger protein, multitype 2

SYNPO synaptopodin

MXRA5 matrix-remodelling associated 5

ITGA5 integrin, alpha 5 (fibronectin receptor, alpha polypeptide)

A representative list of 42 core genes (GSEA analysis) of the TGFB1I1 network enriched in RD TNBC is reported. The HUGO Gene Symbol is reported,
followed by the full gene name (i.e. Description). Only 42 genes are reported for simplicity.
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Table B.3: A representative list of 42 core genes (GSEA analysis) of the ZFPM2 network enriched in RD TNBC.

Gene Symbol Description

ZFPM2 zinc finger protein, multitype 2

COX7A1 cytochrome c oxidase subunit VIIa polypeptide 1 (muscle)

POSTN periostin, osteoblast specific factor

COL3A1 collagen, type III, alpha 1

TAGLN transgelin

LOXL1 lysyl oxidase-like 1

COL10A1 collagen, type X, alpha 1

LRRC15 leucine rich repeat containing 15

FAP fibroblast activation protein, alpha

CFH complement factor H

PCOLCE procollagen C-endopeptidase enhancer

DPT dermatopontin

COL1A1 c ollagen, type I, alpha 1

COMP cartilage oligomeric matrix protein

AEBP1 AE binding protein 1

WISP1 WNT1 inducible signaling pathway protein 1

RCN3 reticulocalbin 3, EF-hand calcium binding domain

FBN1 fibrillin 1

MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)

THY1 Thy-1 cell surface antigen

COL16A1 collagen, type XVI, alpha 1

VCAN versican

SFRP4 secreted frizzled-related protein 4

COL6A3 collagen, type VI, alpha 3

NOX4 NADPH oxidase 4

COL5A2 collagen, type V, alpha 2

BGN biglycan

C20orf103 chromosome 20 open reading frame 103

SULF1 sulfatase 1

ASPN asporin

LUM lumican

NID1 nidogen 1

SNAI2 snail homolog 2 (Drosophila)

GNG11 guanine nucleotide binding protein (G protein), gamma 11

INHBA inhibin, beta A

ODZ3 odz, odd Oz/ten-m homolog 3 (Drosophila)

COL11A1 collagen, type XI, alpha 1

SPOCK1 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1

CNN1 calponin 1, basic, smooth muscle

COL5A1 collagen, type V, alpha 1

DCN decorin

COL1A2 collagen, type I, alpha 2

A representative list of 42 core genes (GSEA analysis) of the ZFPM2 network enriched in RD TNBC is reported. The HUGO Gene Symbol is reported,
followed by the full gene name (i.e. Description). Only 42 genes are reported for simplicity.
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Table B.4: A representative list of 42 core genes (GSEA analysis) of the PRRX1 network enriched in RD TNBC.

Gene Symbol Description

PRRX1 paired related homeobox 1

POSTN periostin, osteoblast specific factor

COL3A1 collagen, type III, alpha 1

MMP11 matrix metallopeptidase 11 (stromelysin 3)

SPARC secreted protein, acidic, cysteine-rich (osteonectin)

TAGLN transgelin

LOXL1 lysyl oxidase-like 1

COL10A1 collagen, type X, alpha 1

LRRC15 leucine rich repeat containing 15

FAP fibroblast activation protein, alpha

PCOLCE procollagen C-endopeptidase enhancer

MYL9 myosin, light chain 9, regulatory

COL1A1 collagen, type I, alpha 1

GREM1 gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)

AEBP1 AE binding protein 1

WISP1 WNT1 inducible signaling pathway protein 1

UNC5B unc-5 homolog B (C. elegans)

OLFML2B olfactomedin-like 2B

FBN1 fibrillin 1

MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)

FN1 fibronectin 1

LRRC32 leucine rich repeat containing 32

THY1 Thy-1 cell surface antigen

VCAN versican

COL6A3 collagen, type VI, alpha 3

NOX4 NADPH oxidase 4

COL5A2 collagen, type V, alpha 2

BGN biglycan

SULF1 sulfatase 1

ASPN asporin

LUM lumican

NID1 nidogen 1

HTRA1 HtrA serine peptidase 1

TIMP3 TIMP metallopeptidase inhibitor 3

INHBA inhibin, beta A

MMP13 matrix metallopeptidase 13 (collagenase 3)

SPOCK1 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1

WNT2 wingless-type MMTV integration site family member 2

COL11A1 collagen, type XI, alpha 1

PTRF polymerase I and transcript release factor

COL5A1 collagen, type V, alpha 1

COL1A2 collagen, type I, alpha 2

A representative list of 42 core genes (GSEA analysis) of the PRRX1 network enriched in RD TNBC is reported. The HUGO Gene Symbol is reported,
followed by the full gene name (i.e. Description). Only 42 genes are reported for simplicity.
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Table B.5: A representative list of 42 core genes (GSEA analysis) of the ELF4 network enriched in RD TNBC.

Gene Symbol Description

ELF4 E74-like factor 4

ARHGAP25 Rho GTPase activating protein 25

PLEKHO2 pleckstrin homology domain containing, family O member 2

CRISPLD2 cysteine-rich secretory protein LCCL domain containing 2

LOXL1 lysyl oxidase-like 1

SERPING1 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1

IL15RA interleukin 15 receptor, alpha

C1S complement component 1, s subcomponent

CCR1 chemokine (C-C motif) receptor 1

PCOLCE procollagen C-endopeptidase enhancer

ADCY7 adenylate cyclase 7

SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1

GFPT2 glutamine-fructose-6-phosphate transaminase 2

GREM1 gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)

TCIRG1 T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 subunit A3

ITGA5 integrin, alpha 5 (fibronectin receptor, alpha polypeptide)

ITGAX integrin, alpha X (complement component 3 receptor 4 subunit)

COL6A2 collagen, type VI, alpha 2

OLFML2B olfactomedin-like 2B

THY1 Thy-1 cell surface antigen

HSPG2 heparan sulfate proteoglycan 2

SLC7A4 solute carrier family 7 (cationic amino acid transporter, y+ system), member 4

CHST11 carbohydrate (chondroitin 4) sulfotransferase 11

COL6A3 collagen, type VI, alpha 3

CD97 CD97 molecule

CD74 CD74 molecule, major histocompatibility complex, class II invariant chain

COL5A2 collagen, type V, alpha 2

BGN biglycan

CTSZ cathepsin Z

NNMT nicotinamide N-methyltransferase

ARPC1B actin related protein 2/3 complex, subunit 1B, 41kDa; similar to Actin-related protein 2/3 complex subunit 1B (ARP2/3 complex 41 kDa subunit) (p41-ARC)

SERPINF1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 1

IL4R interleukin 4 receptor

LEPRE1 leucine proline-enriched proteoglycan (leprecan) 1

C3AR1 complement component 3a receptor 1

ADAP2 ArfGAP with dual PH domains 2

INHBA inhibin, beta A

XBP1 X-box binding protein 1

ANGPTL2 angiopoietin-like 2

BIN2 bridging integrator 2

COL5A1 collagen, type V, alpha 1

TGFBI transforming growth factor, beta-induced, 68kDa

EGFL6 EGF-like-domain, multiple 6

A representative list of 42 core genes (GSEA analysis) of the ELF4 network enriched in RD TNBC is reported. The HUGO Gene Symbol is reported,
followed by the full gene name (i.e. Description). Only 42 genes are reported for simplicity.
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Table B.6: A representative list of 42 core genes (GSEA analysis) of the COL1A1 network enriched in RD TNBC.

Gene Symbol Description

COL1A1 collagen, type I, alpha 1

COL3A1 collagen, type III, alpha 1

CRISPLD2 cysteine-rich secretory protein LCCL domain containing 2

MMP11 matrix metallopeptidase 11 (stromelysin 3)

FSTL1 follistatin-like 1

SPARC secreted protein, acidic, cysteine-rich (osteonectin)

LOXL1 lysyl oxidase-like 1

DKK3 dickkopf homolog 3 (Xenopus laevis)

COL10A1 collagen, type X, alpha 1

LRRC15 leucine rich repeat containing 15

FAP fibroblast activation protein, alpha

MXRA8 matrix-remodelling associated 8

PCOLCE procollagen C-endopeptidase enhancer

PDGFRB platelet-derived growth factor receptor, beta polypeptide

ADAM12 ADAM metallopeptidase domain 12

MXRA5 matrix-remodelling associated 5

MYL9 myosin, light chain 9, regulatory

HEG1 HEG homolog 1 (zebrafish)

GREM1 gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)

AEBP1 AE binding protein 1

COL6A2 collagen, type VI, alpha 2

UNC5B unc-5 homolog B (C. elegans)

WISP1 WNT1 inducible signaling pathway protein 1

OLFML2B olfactomedin-like 2B

MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)

LRRC32 leucine rich repeat containing 32

THY1 Thy-1 cell surface antigen

COL16A1 collagen, type XVI, alpha 1

VCAN versican

COL6A3 collagen, type VI, alpha 3

COL5A2 collagen, type V, alpha 2

BGN biglycan

ASPN asporin

NID1 nidogen 1

HTRA1 HtrA serine peptidase 1

INHBA inhibin, beta A

SPOCK1 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1

CTSK cathepsin K

NBL1 neuroblastoma, suppression of tumorigenicity 1

PTRF polymerase I and transcript release factor

COL5A1 collagen, type V, alpha 1

A representative list of 42 core genes (GSEA analysis) of the COL1A1 network enriched in RD TNBC is reported. The HUGO Gene Symbol is reported,
followed by the full gene name (i.e. Description). Only 42 genes are reported for simplicity.
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[23] Cano A, Pérez-Moreno MA, Rodrigo I, et al: The transcription factor snail

controls epithelial-mesenchymal transitions by repressing E-cadherin expres-

sion. Nat Cell Biol 2(2): 76-83, (2000).

[24] Comijn J, Berx G, Vermassen P, et al: The two-handed E box binding zinc

finger protein SIP1 downregulates E-cadherin and induces invasion. Semin

Mol Cell 7(6): 1267-78, (2001).

[25] Eger A, Aigner K, Sonderegger S, et al: DeltaEF1 is a transcriptional

repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells.

Semin Oncogene 24(14): 2375-85, (2005).

[26] Yang J, Mani SA, Donaher JL, et al: Twist, a master regulator of mor-

phogenesis, plays an essential role in tumor metastasis. Semin Cell 117(7):

927-39, (2004).

[27] Siegel R, Ma J, Zou Z, et al: Cancer statistics, 2014. CA Cancer J Clin

64(1): 9-29, (2014).

[28] Porter P: “Westernizing” women’s risks? Breast cancer in lower-income

countries. N Engl J Med 358(3): 213-6, (2008).

[29] Sloan FA, Gelband H: Cancer Control Opportunities in Low- and Middle-

Income Countries. The National Academies Collection: Reports funded by

National Institutes of Health (2007).

[30] Shulman LN, Willett W, Sievers A, et al: Breast cancer in developing coun-

tries: opportunities for improved survival. J Oncol 2010: 595167, (2010).

[31] Sharma GN, Dave R, Sanadya J, et al: Various types and management of

breast cancer: an overview. J Adv Pharm Technol Res 1(2): 109-26, (2010).

[32] Weigelt B and Reis-Filho JS: Histological and molecular types of breast can-

cer: is there a unifying taxonomy? Nat Rev Clin Oncol 6(12): 718-30,

(2009).

[33] Stephens PJ, Tarpey PS, Davies H, et al: The landscape of cancer genes

and mutational processes in breast cancer. Nature 486(7403): 400-4, (2012).



Bibliography 149

[34] Lawrence MS, Stojanov P, Polak P, et al: Mutational heterogeneity in cancer

and the search for new cancer-associated genes. Nature 499(7457): 214-8,

(2013).

[35] Ellis P, Schnitt SJ, Sastre-Garau X, et al: Invasive breast carcinoma. F.A.

Tavassoli, P. Devilee (Eds.), WHO Classification of Tumours Pathology and

Genetics of Tumours of the Breast and Female Genital Organs, Lyon Press,

Lyon 9-110, (2003).

[36] Curtis C, Shah SP, Chin SF, et al: The genomic and transcriptomic archi-

tecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):

346-52, (2012).

[37] Perou CM, Sørlie T, Eisen MB, et al: Molecular portraits of human breast

tumours. Nature 406(6797): 747-52, (2000).

[38] Sørlie T, Perou CM, Tibshirani R, et al: Gene expression patterns of breast

carcinomas distinguish tumor subclasses with clinical implications. Proc Natl

Acad Sci U S A 98(19): 10869-74, (2001).

[39] Desmedt C, Haibe-Kains B, Wirapati P, et al: Biological processes associated

with breast cancer clinical outcome depend on the molecular subtypes. Clin

Cancer Res 14(16): 5158-65, (2008).

[40] Ginestier C, Cervera N, Finetti P, et al: Prognosis and gene expression

profiling of 20q13-amplified breast cancers. Clin Cancer Res 12(15): 4533-44,

(2006).

[41] Geiger T, Madden SF, Gallagher WM, et al: Proteomic portrait of hu-

man breast cancer progression identifies novel prognostic markers. Cancer

Res 72(9): 2428-39, (2012).

[42] Ding L, Ellis MJ, Li S, et al: Genome remodelling in a basal-like breast

cancer metastasis and xenograft. Nature 464(7291): 999-1005, (2010).

[43] Navin N, Kendall J, Troge J, et al: Tumour evolution inferred by single-cell

sequencing. Nature 472(7341): 90-4, (2011).

[44] Sorlie T, Tibshirani R, Parker J, et al: Repeated observation of breast tumor

subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A

100(14): 8418-23, (2003).

[45] van ’t Veer LJ, Dai H, van de Vijver MJ, et al: Gene expression profiling

predicts clinical outcome of breast cancer. Nature 415(6871): 530-6, (2002).



Bibliography 150
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