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We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to Bose-Einstein

condensation (BEC) in a two-dimensional Fermi gas at T ¼ 0 using the fixed-node diffusion Monte Carlo

method. We calculate the equation of state and the gap parameter as a function of the interaction strength,

observing large deviations compared to mean-field predictions. In the BEC regime our results show the

important role of dimer-dimer and atom-dimer interaction effects that are completely neglected in the

mean-field picture. Results on Tan’s contact parameter associated with short-range physics are also

reported along the BCS-BEC crossover.

DOI: 10.1103/PhysRevLett.106.110403 PACS numbers: 05.30.Fk, 03.75.Hh, 03.75.Ss

The study of ultracold atomic Fermi gases has become
an active and rich field of research [1]. Important areas of
investigation include the BCS-BEC crossover in a super-
fluid gas with resonantly enhanced interactions, the
Chandrasekhar-Clogston instability of the superfluid state
when spin polarization is increased, the possible onset of
itinerant ferromagnetism in a gas with repulsive interac-
tions [2], and the realization of the Hubbard model for
fermions loaded in optical lattices [3].

Low-dimensional configurations of degenerate Fermi
gases have also been the object of experimental and theo-
retical studies [1,3]. In particular, a two-dimensional (2D)
ultracold Fermi gas has been recently realized using a
highly anisotropic pancake-shaped potential, and the den-
sity profile of the cloud has been measured using in situ
imaging [4]. On the theoretical side, the evolution from a
superfluid state with large Cooper pairs to one with tight
molecules in a 2D system of attractive fermions was first
investigated by Miyake [5] and later by Randeria and
coworkers [6] aiming to describe high-Tc superconductors.
More recent studies address the problem of the superfluid
transition [7,8], of harmonic trapping [9], and of popula-
tion and mass imbalance [10]. These studies are in general
based on perturbative or mean-field (MF) approaches that
are suitable in the regime of weak coupling, but are bound
to break down for stronger interactions.

In this Letter we provide the first determination using
quantum Monte Carlo methods of the equation of state at
T ¼ 0 of a homogeneous 2D Fermi gas in the BCS-BEC
crossover. We also obtain results for the pairing gap and the
contact parameter as a function of the interaction strength.
In the strong-coupling regime the emergence of interaction
effects involving dimers produce large deviations com-
pared to MF predictions. A similar study carried out in
3D [11] has provided an important benchmark against
which experimental determination of the equation of state,
using measurements of the dispersion of collective modes
[12] or of in situ density profiles [13], have been

successfully compared. Hopefully, our results will stimu-
late more experimental efforts towards the realization of a
2D Fermi gas in the strong-coupling regime by means, for
example, of a Feshbach resonance to increase the interac-
tion parameter [4].
We consider a homogeneous two-component Fermi gas

described by the Hamiltonian

H ¼ � @
2

2m

�XN"
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where m denotes the mass of the particles, i, j; . . . and i0,
j0; . . . label, respectively, spin-up and spin-down particles
and N" ¼ N# ¼ N=2, N being the total number of atoms.

We model the interspecies interatomic interactions using
an attractive square-well (SW) potential: VðrÞ ¼ �V0 for
r < R (V0 > 0), and VðrÞ ¼ 0 otherwise. In order to ensure
that the mean interparticle distance is much larger than the
range of the potential we use nR2 ¼ 10�6, where n is the
gas number density, or equivalently kFR ¼ 0:0025 in terms

of the Fermi wave vector kF ¼ ffiffiffiffiffiffiffiffiffi
2�n

p
. We simulate a

strictly 2D system and describe the low-energy collisions
of the SW potential in terms of the 2D scattering length a2D
defined as a2D ¼ ReJ0ð�Þ=�J1ð�Þ; where J0ð1ÞðxÞ are Bessel

functions of the first kind and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0mR2=@2

p
[14]. The

scattering length is nonnegative and diverges at � ¼ 0 and
at the zeros of J1, corresponding to the appearance of new
two-body bound states in the well. Close to these points the
shallow dimers have size a2D and their binding energy is
given by "b ¼ �4@2=ðma22De

2�Þ, where � ’ 0:577 is
Euler’s constant [15]. The dependence of a2D on the depth
V0 in the region where the well supports only one bound
state is shown in the inset of Fig. 1. Two regions are clearly
identified by comparing a2D with the mean interparticle
distance 1=kF: (i) kFa2D � 1 corresponds to the BCS
regime where interactions are weak and dimers are large
and weakly bound, (ii) kFa2D � 1 corresponds to the BEC
regime of tightly bound composite bosons. Compared to
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the 3D case, the BCS-BEC crossover in 2D exhibits im-
portant differences. (a) For a purely attractive potential, a
two-body bound state exists for arbitrarily weak attrac-
tions. (b) The weak-coupling limit corresponds to a diverg-
ing scattering length a2D. (c) The 2D scattering amplitude
of particles colliding at low energy is given by fðkÞ ¼
2�=½logð2=ka2De�Þ þ i�=2� [16]. There is no range of
values of a2D for which fðkÞ is independent of interaction
(unitary limit). (d) The MF coupling constant can be
written as g ¼ ð2�@2=mÞ= logð1=kFa2DÞ with logarithmic
accuracy. Within the same accuracy, the region kFa2D � 1
identifies the strong-coupling crossover between the BCS
and the BEC regimes [see inset of Fig. 1].

Simulations are carried out in a square box of area L2 ¼
N=n with periodic boundary conditions, using the fixed-
node diffusion Monte Carlo (FN-DMC) method. This nu-
merical technique yields an upper bound for the ground-
state energy of the gas, resulting from an ansatz for the
nodal surface of the many-body wave function that is kept
fixed during the calculation (see Ref. [17] for more details).
The boundary condition is enforced using a trial function
that we choose of the general form [18] c TðRÞ ¼
�SðRÞ�AðRÞ. �S is a positive function of the particle
coordinates R ¼ ðr1; . . . ; rNÞ and is symmetric in the ex-
change of particles with equal spin, while �A satisfies the
fermionic antisymmetry condition and determines the no-
dal surface of c T . The symmetric part is chosen of the
Jastrow form �SðRÞ ¼ Q

i;i0f"#ðrii0 Þ, where two-body

correlation functions of the interparticle distance have
been introduced for antiparallel spins. The �A component
is chosen as an antisymmetrized product �AðRÞ ¼
Að�ðr110 Þ�ðr220 Þ . . .�ðrN"N# ÞÞ of pairwise orbitals of the

form �ðrÞ ¼ �
P

k��kF
eik��r þ ’sðrÞ. Here, k� ¼

ð2�=LÞð‘�xx̂þ ‘�yŷÞ indicate the plane-wave states in

the box, with integers ‘’s summed up to the maximum
value of the kth shell accommodating N=2 particles, and �
is a variational parameter controlling the relative weight of
the plane-wave sum to the spherical symmetric component
’sðrÞ. Two important regimes are described by the above
trial wave function: (i) if � ¼ 0 and ’sðrÞ ¼ fbðrÞ is the
two-body bound state of the potential VðrÞ, c TðRÞ de-
scribes a BCS state of dimers that is expected to be
appropriate in the deep BEC regime; (ii) if instead ’s ¼
0, the antisymmetric component in the trial function
coincides with the product of the plane-wave Slater deter-
minants for spin-up and spin-down particles, �AðRÞ ¼
D"ðN"ÞD#ðN#Þ [19], and c T is a typical Jastrow-Slater

(JS) function of a normal Fermi liquid. This description
is expected to hold in the BCS regime of a weakly inter-
acting gas where the effect of pairing on the ground-state
energy is negligible. The more general form of the trial
wave function written above interpolates between these
two regimes.
In Figs. 1 and 2 and in Table I we report the FN-DMC

results for the equation of state as a function of the inter-
action parameter in units of the energy per particle of the
noninteracting gas EFG ¼ @

2k2F=4m ¼ "F=2, where "F is

the Fermi energy. Calculations are carried out using c T of
the BCS and JS form as described above. The BCS wave
function (corresponding to� ¼ 0) provides a lower energy
for values of the interaction parameter � ¼ logðkFa2DÞ &
1, while the JS function (corresponding to � � 1) is more
favorable for larger values of �. The optimal parameter �
in the BCS orbital has been found to be zero even in the
region�� 1; finite values of� have not given a significant
improvement of the ground-state energy. The role of
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FIG. 1 (color online). Equation of state in the BCS-BEC cross-
over. Squares refer to the BCS and circles to the JS wave
function. The solid (red) line is a fit to the data, the dotted
(green) line is half of the molecular binding energy and the
dashed (blue) line is the prediction of MF theory. The horizontal
dotted (black) line denotes the energy per particle EFG of the
noninteracting gas. Inset: 2D scattering length a2D as a function
of the depth V0 for a SW potential of radius R. The BCS and
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finite-size effects has been investigated by carrying out
calculations with N ¼ 26 and N ¼ 98. No significant
change is seen when using the BCS trial function. In the
case of the JS function a large suppression of such effects is
obtained by using the theory of Fermi liquids. The differ-
ence in the energy per particle between the finite-size and
the infinite system, in the interacting case, is assumed to be
the same as in the noninteracting case, to lowest order in
the effective mass (see [20] for details). The result E=N ¼
EFG þ "b=2 obtained from the MF theory [5,6] is shown in
Figs. 1 and 2 for comparison. The inadequacy of the MF
approach is best shown in Fig. 2, where the molecular
contribution is subtracted from the energy per particle.
This figure has to be compared to Fig. 5 of Ref. [1],
concerning the 3D case: effects beyond MF are much
more pronounced in 2D than in 3D. In the BEC regime
the FN-DMC results are fitted with the equation of state of
a gas of composite bosons corresponding to hard disks of
diameter ad

E

Nd

þ j"bj ¼ 2�@2nd
md

1

logð1=nda2dÞ

�
�
1� loglogð1=nda2dÞ

logð1=nda2dÞ
þ log�þ 2�þ 1=2

logð1=nda2dÞ
�
;

(3)

wheremd ¼ 2m is the mass of the dimer, while the number
of dimers, and correspondingly their density nd, is half of
the total number of fermions Nd ¼ N=2. The above ex-
pression includes beyond MF terms [21] and allows for a
precise determination of the dimer-dimer scattering length
ad. We obtain ad ¼ 0:55ð4Þa2D, in agreement with the
four-body calculation in Ref. [7]. In the opposite BCS
regime, where the contribution of the pairing gap can be
neglected, the fermionic equation of state can be described

in terms of an attractive normal Fermi liquid (FL). Beyond
logarithmic accuracy one has the second-order expansion
in terms of � [22,23] E=N ¼ EFG½1� ð1=�Þ þ ðA=�2Þ�.
From a best fit we find the result A ¼ 0:06ð2Þ for the
coefficient of the second-order term [24].
In Fig. 3 we show the results for the pairing gap �gap in

the strong-coupling regime. This quantity is defined from
the difference of ground-state energy EðN"; N#Þ of systems

having one and two more (less) particles �gap ¼ 1
2 �

½2EðN=2 	 1; N=2Þ � EðN=2 	 1; N=2 	 1Þ � EðN=2;
N=2Þ� [25]. At the level of MF theory [5,6] the pairing gap

coincides with the result for the order parameter �gap ¼
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2"Fj"bj
p

if j"bj< 2"F, and is given by �gap ¼ "F þ
j"bj=2 for larger values of j"bj. In the BEC regime the
quantity �gap � j"bj=2, shown in the inset of Fig. 3, dis-

plays the repulsive interaction effects between unpaired
fermionic atoms and bosonic dimers. In fact, the energy of
the system with one extra spin-up particle can be written as
the sum of the contribution (3) of N=2 dimers and
the Fermi-Bose interaction energy EðN=2þ 1;
N=2Þ ¼ EðN=2; N=2Þ þ gBFnd, where gBF ¼ 3�@2=
½m logð1=nda2adÞ� is the coupling constant fixed by the

atom-dimer reduced mass 2m=3 and the effective scatter-
ing length aad. By using the definition of�gap and the value

ad ¼ 0:55a2D for the dimer-dimer scattering length in the
energy functional (3), we find aad ¼ 1:7ð1Þa2D from the fit
shown in the inset of Fig. 3.
Finally, we calculate the contact parameter C [26–28]

defined from the short-range behavior of the antiparallel
pair distribution function limr!0g"#ðrÞ ¼
4C=k4Flog

2ðr=a2DÞ [see inset of Fig. 2]. The contact pa-
rameter is also related to the derivative of the equation of
state with respect to the interaction parameter C ¼
ð2�m=@2ÞdðnE=NÞ=dðlogkFa2DÞ [27]. The results are
shown in Fig. 4. In the inset we show the quantity
C� C0, where C0 ¼ ð�m=@2Þdðn"bÞ=dðlogkFa2DÞ is the

TABLE I. Energy per particle and molecular binding energy in
the BEC-BCS crossover (energies are in units of EFG).

logðkFa2DÞ E=N "b=2 E=N � "b=2

�2:00 �137:761ð7Þ �137:832 0.070(7)

�1:50 � 50:593ð4Þ � 50:675 0.082(4)

�1:00 � 18:532ð4Þ � 18:637 0.105(4)

�0:50 � 6:714ð4Þ � 6:856 0.142(4)

0.00 � 2:318ð2Þ � 2:522 0.204(2)

0.25 � 1:283ð12Þ � 1:530 0.247(12)

0.50 � 0:638ð10Þ � 0:928 0.290(10)

0.75 � 0:201ð12Þ � 0:563 0.361(12)

1.44 0.349(6) � 0:143 0.492(6)

1.72 0.459(16) � 0:080 0.539(16)

2.15 0.552(2) � 0:034 0.587(2)

2.64 0.634(4) � 0:013 0.647(4)

3.34 0.706(2) � 0:003 0.709(2)

4.03 0.755(4) 0.000 0.755(4)

4.37 0.775(1) 0.000 0.775(1)

5.18 0.821(7) 0.000 0.821(7)
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contribution to the contact C from the molecular state. The
comparison between the two determinations of C is a
stringent consistency check of the theoretical approach.
We find a good agreement with Tan’s relation, apart from
the region �� 1 where small deviations are visible, both
with the JS and BCS-type wave function, showing the need
for a better optimization of c T .

An important question relates to the relevance of these
results for systems in harmonic traps. Two-dimensional
configurations are realized if the transverse confinement
is strong enough to reduce the kinematics to the xy plane:

@!z � "F ¼ @!?
ffiffiffiffi
N

p
, where we assumed isotropic trap-

ping in the radial direction !x ¼ !y ¼ !?. In these con-

ditions the effective 2D scattering length can be expressed
in terms of the 3D scattering length a3D and the transverse

harmonic oscillator length az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!z

p
being given by

a2D ¼ azð2
ffiffiffiffiffiffiffiffiffiffi
�=B

p
=e�Þ expð� ffiffiffiffiffiffiffiffiffi

�=2
p

az=a3DÞ, where B ’
0:905 [3,16]. For small, negative values of a3D the system
is found in the BCS regime corresponding to an exponen-
tially large a2D. The BEC regime is reached if the value of
a3D is increased such that ja3Dj � az= logð1=kFazÞ. An
additional requirement concerns the dimer state, which is
well described by the 2D expression only if j"bj � @!z

[16], or equivalently a2D � az. We believe that this latter
condition can be relaxed if, in the comparison with the
results reported in this work, one considers quantities
where the molecular contribution has been subtracted out.
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