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Soft bounds on diffusion produce skewed distributions and Gompertz growth
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Constraints can affect dramatically the behavior of diffusion processes. Recently, we analyzed a natural and a
technological system and reported that they perform diffusion-like discrete steps displaying a peculiar constraint,
whereby the increments of the diffusing variable are subject to configuration-dependent bounds. This work
explores theoretically some of the revealing landmarks of such phenomenology, termed “soft bound.” At long
times, the system reaches a steady state irreversibly (i.e., violating detailed balance), characterized by a skewed
“shoulder” in the density distribution, and by a net local probability flux, which has entropic origin. The largest
point in the support of the distribution follows a saturating dynamics, expressed by the Gompertz law, in line with
empirical observations. Finally, we propose a generic allometric scaling for the origin of soft bounds. These find-
ings shed light on the impact on a system of such “scaling” constraint and on its possible generating mechanisms.
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I. INTRODUCTION

Random processes describe a wide spectrum of phenomena
in complex systems [1]. Diffusion processes, for instance, are
used to understand trajectories of one- or multidimensional
fluctuating observables or order parameters in a great variety
of contexts within and outside physics. The validity of
such diffusive descriptions—often applicable with impressive
precision to real-world systems—is based on the assumption
that the probability of future events depends only on the present
state of the system [2]. Constraints have an influence on such
processes, as they limit the phase space that can be reached
from a given state.

In one-dimensional diffusion processes, constraints on
diffusing quantities are typically embodied by hard bounds,
i.e., by strict limits that the diffusing variable cannot overcome,
irrespectively of how close or distant to the boundaries
the variable already is. The presence of bounds can alter
qualitatively the properties of a system. It is well known
that absorbing or reflecting boundary conditions affect the
basic properties or a random walk, e.g., creating steady-state
distributions and affecting first-passage times. Additional
more subtle and intriguing phenomena may emerge with hard
bounds. For example, a random (diffusional) one-dimensional
multiplicative process, in the presence of a lower bound, can
give rise to power-law distributions for the value of the variable
at a given time [3–5].

However, one can imagine a system where the constraints
are not embodied by hard bounds but follow a different type
of behavior. For example, discrete diffusion steps may be
limited differently depending on the configuration they start
from. Recently, we found empirical evidence of precisely
this behavior, which we termed soft bound [6]. Note that
while a classical physical example of constrained diffusion
is a Brownian particle confined in a box, whose motion is
continuous in time, in other (often less tangible) examples,
such as stock prices [7] or the population of a city [8], the
quantity of interest is naturally measured at discrete time

intervals, and its evolution is best described by finite-sized
discrete jumps. As we will see, the difference between hard and
soft bounds is relevant for time-discrete diffusion processes
and we will thus consider this case here.

The scope of this work is to explore some of the basic
theoretical consequences of diffusion with soft bounds. It
is important to stress that the precise definition of a soft
bound—as we formulate it here—is motivated by compelling
empirical evidence [6]. The reasons for the emergence of
such a behavior constitute a partially unsolved problem (see
the Discussion section) and are not the main focus here.
Instead, the motivation for the present study is an exploration
of its effects. In particular, we present a description of the
general features of the stationary state, aided by the analytical
solution in a simple case, and we show that a soft upper
bound on diffusion causes a slowly saturating dynamics for
the maximum. Specifically, we show that detailed balance is
broken, and a net local probability current of purely entropic
origin is established (which suggests a novel rationalization
of the “Cope’s law,” a much debated feature of body-mass
evolution). Additionally, the steady-state distribution under
a soft bound cannot be obtained from a model with a hard
bound and an effective drift, and thus has to be regarded as
qualitatively distinct from previously known phenomenology.
Finally, the dynamics of the maximum follows exactly the
Gompertz function, a generalized logistic curve used in diverse
contexts and observed empirically. These findings can be
used to recognize soft bounds in real-world systems. Finally,
we argue how a generic allometric scaling mechanism can
generate soft bounds.

II. BACKGROUND: DEFINITION OF SOFT BOUND AND
EMPIRICAL EVIDENCE

We start by introducing the concept of soft bound through
a brief review of the recent empirical evidence suggesting its
existence. The first system where the phenomenon of a soft
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bound emerges from empirical data is the dynamics of software
packages, the individual bundled pieces of software that make
up an operating system, such as Linux [6]. Packages change
their sizes during their lifespan, as a result of development,
maintenance, or repackaging. Thus, the scalar variable “size”
recapitulates the result of a possibly long and complex series of
operations and processes acting on a package. A natural time
interval is set by the distance between consecutive package
releases: the size s (for instance in bytes) of a given package in
a release can be compared to the size s ′ of that same package in
the following release, defining a jump � = s ′/s. For Ubuntu
Linux packages, these jumps are distributed in a strikingly
regular way. While the bulk of their distribution does not
depend on time nor on the starting size s, its tails are cut-off
in a size-dependent way. For jumps toward lower sizes, one
expects that the size of a package cannot become smaller than
some system-wide minimum smin, i.e., the lower bound is a
hard bound. This implies that � � smin/s (the lower bound on
the jumps is inversely proportional to the starting size) and this
is indeed found in data. However, the same behavior has not
been observed for the upper tail of the distribution. In fact, the
cut-off for jumps to larger sizes is defined by � � (smax/s)γ ,
with exponent γ ≈ 0.5. This means that the larger a package
is, the larger it can become in one step, i.e., the maximum
attainable size in one step moves further away for increasingly
larger packages (Fig. 1).

More formally, in a one-dimensional multiplicative discrete
diffusion process limited by a lower hard bound and an upper
soft bound, as motivated by the case of Linux package size,
the bounds can be expressed by the formula

smin

s
� s ′

s
�

(
smax

s

)γ

, with 0 < γ < 1. (1)

Regardless of the probability distribution for the jumps s ′/s,
such a multiplicative process can be written in an additive
form by a logarithmic transformation. By setting y = log s,
x = log s ′, �min = log smin, and �max = log smax, the hard and
soft bounds Eq. (1) are then expressed by

�min � x � y + γ (�max − y), (2)

FIG. 1. Illustration of the “soft-bound” mechanism. In the draw-
ing, the dashed lines stand for the extremal attainable size s in either
direction (represented by both circle size and position along the
interval) in a single jump, from different initial conditions. Jumps
within these limits follow an assigned jump-size distribution. The
left-hand side of the interval is conditioned by a conventional hard
bound: the minimal size smin can be reached in a single step starting
from any initial size. By contrast, the right-hand part of the interval
is limited by a soft bound, as the maximum size attainable in one
step depends on the starting size. As a consequence, the absolute
maximum smax cannot be reached in one step from any initial size,
but it can only be approached asymptotically.

which makes evident the fact that the lower bound �min is a
hard bound while the upper one depends on the starting point
y. In the following, unless otherwise specified, we will refer
to this additive version of the process.

A second empirical system that is consistent with the
diffusion under soft bounds (although data are much sparser)
is the evolution of body masses for mammalian species [6].
Here, the time steps are fixed by the speciation events; the
“jumps” are realized during cladogenesis between the mass
s (in kilograms) of a mother species, and the mass s ′ of
the daughter species [9,10]. A notable consequence of the
assumption of a soft upper bound in this context is that
evolution of mammalian species requires longer time (i.e.,
more speciation events) to attain large increases in body mass
than it does for large decreases. This macro-evolutionary
asymmetry has been observed in fossil data: the tendency to
extreme dwarfism, for instance on islands, is more common
than the opposite trend [11].

III. DISCRETE DIFFUSION BETWEEN A HARD AND
A SOFT BOUND

We now define more technically the diffusion process of
interest. The formal framework is that of Markov chains. To
fix the notation, let Py→x denote the transition kernel, i.e., the
probability to jump from position y to x, and let ρt (x) be the
state of the system, i.e., the density distribution of the diffusing
particles at time t , e.g., the (logarithmic) package sizes or
species masses. This is an inherently discrete process, hence
t takes only integer values. State space, instead, is continuous
in general. The evolution is then given by

ρt+1(x) =
∫
R

dy ρt (y)Py→x. (3)

We will consider jump probabilities Py→x , which are the
superposition of two components: (i) an underlying transition
probability π (x − y), which is translationally invariant and
does not necessarily have a bounded domain, and (ii) the
bounding kernel β(x,y), which can be written in terms of
a characteristic function as

β(x,y) = χ[�min,y+γ (�max−y)](x). (4)

Py→x is then obtained by normalizing the product of the two
kernels:

Py→x = 1

Z(y)
π (x − y)β(x,y), (5)

where Z(y) is the position-dependent normalization,

Z(y) =
∫ y+γ (�max−y)

�min

π (x − y) dx. (6)

The dependence of Z on y makes it difficult in general to find
analytic solutions to the evolution, even in the long-time limit.
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IV. NUMERICAL AND ANALYTICAL
CHARACTERIZATION OF THE STATIONARY STATE

The dynamics defined above has a stationary state, i.e., a
distribution ρ(x) that satisfies the following equation:

ρ(x) =
∫
R

dy ρ(y)Py→x. (7)

The existence of a solution ρ(x) for the above equation
will be proven later in this section for a flat underlying
transition probability π (x − y). Numerical evidence shows
that a stationary state is reached also for more general forms
of π (x − y).

Note that the Markov chain given by the jump distribution
Px→y in Eq. (5) is irreversible, i.e., the probability of a
history (x1, x2, . . . , xm−1) in general differs from that of
(xm−1, xm−2, . . . , x1) [12]. This is witnessed by the violation,
at the stationary state ρ(x), of the detailed balance condition,

Px→y ρ(x) − Py→x ρ(y) ≡ 0, (8)

which imposes a vanishing probability flow between any two
states x and y. Indeed, let x and y be two states lying in
the interval [�min,�max) and such that x > y + γ (�max − y).
Since the condition in Eq. (2) is violated, the bounding kernel
β(x,y) vanishes and then a jump from y to x is suppressed by
Eq. (5), i.e., Py→x = 0. However, x > y implies Px→y �= 0,
due to the fact that backward jumps are always allowed by
Eq. (2). Consequently, since ρ(x) �= 0 (as we will show later
in this section), the detailed balance condition in Eq. (8)
can never be satisfied. A more detailed analysis based on
entropy production, not relying on the vanishing of P and
only involving two points for which β(x,y) �= 0, will be given
later in this section.

We explored the properties of the stationary state by
analytical and numerical calculations as well as by computer
simulations. An analytical approach is unfeasible in general,
but it can be carried out in the special case where the transition
probability π (x − y) is flat between the hard lower bound and
the soft upper bound. The salient qualitative features of the
steady state realized in this special case do not change if a
Gaussian distribution is chosen for π (x − y) (see below). To
investigate the cases where π (x − y) is not flat, one has to take
a numerical approach.

(a) Numerical solutions. We took two different numerical
approaches to the solution of the problem: direct numerical
integration and Monte Carlo simulations. A numerical approx-
imation of the density distribution ρt (x) at times t = 0,1, . . .

can be obtained by iterative integration, starting from an initial
density distribution ρ0(x), by means of Eq. (3). As Py→x is
different from zero only for x ∈ [�min,�max], so will be the
density distribution ρt (x), provided that ρ0(x) is supported
on the same interval. We defined a spatial discretization of
ρt (x) as follows. Let δx be a fixed and small integration step,
and define xk = �min + k δx, with k = 0,1, . . . ,M , where
M = �(�max − �min)/δy	 is the largest value of k for which
xk � �max. Then the discretized density distribution ρ1(xi) at
time t = 1 can be computed from the discretized version of
Eq. (3), using the trapezoidal rule. The density distribution at
successive time steps is then obtained by iterative application
of this procedure.

The Monte Carlo method is based instead on an implemen-
tation of the microscopic processes that lead to the continuum
description in Eq. (3). In practice, we used a pool of N

uncorrelated “particles,” whose positions yi (i is now the
particle index) evolve in discrete time steps by following the
jump distribution Py→x . In the following we will choose a
δ-shaped initial condition, which translates, at time t = 0, to
all particles being displaced at the same position x(0). At
later times, the new position xi(t + 1) = xi(t) + � for the ith
particle is randomly chosen according to the jump distribution
P:

� ∼ Pxi (t)→xi (t)+�. (9)

Note that the probability density for the variable � depends
explicitly on the position xi(t) of the ith particle at time t .
If the number of particles N is sufficiently large, the density
distribution ρt (x) can be sampled by a histogram, i.e., a count
of the number of particles in the interval [x,x + δx].

Although the two methods are different—numerical in-
tegration being deterministic, and Monte Carlo simulation
Eq. (9) being intrinsically stochastic—they are expected to
attain the same results in their “thermodynamic” limits N →
∞ and δy → 0. However, since extracting random numbers
is computationally more demanding than computing the sum
of real numbers, numerical integration results tend to be faster
and more precise than the stochastic method in this situation
(however, this is not always the case when different time scales
compete; see, e.g., Ref. [13]).

(b) Analytical solution for flat transition probability. Let us
consider a flat transition probability π (x − y) = const. This
gives rise to the simplest possible form of P with a soft bound.
Summing up the definitions given in Eqs. (4)–(6), we obtain
the following piecewise continuous function, which for brevity
we will term “box distribution”:

Py→x =
{
Z−1 �min < x < y + γ (�max − y)

0 otherwise,
(10)

where Z = y + γ (�max − y) − �min. The stationary distribu-
tion ρ(x) satisfies the definition, Eq. (7), which then assumes
the form

ρ(x) =
∫ �max

yinf

ρ(y)

y + γ (�max − y) − �min
dy, (11)

where the lower integration bound is

yinf = max

{
�min,

x − γ�max

1 − γ

}
, (12)

representing the smallest y from where x can be reached
in a single jump; the second term in brackets is obtained
by inverting the expression of the soft bound, Eq. (2), x =
y + γ (�max − y). Outside the interval [�min,�max], ρ(x) is
identically zero. In order to simplify the formulas, and without
loss of generality, we can fix �min = 0 and �max = 1 (we
will consistently use this convention in the remainder of this
section). Hence, ρ(x) becomes

ρ(x) =
∫ 1

max{0,
x−γ

1−γ
}

ρ(y)

y + γ (1 − y)
dy, (13)
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FIG. 2. (Color online) The stationary state ρ(x) can be computed
analytically by iterative recursion in the case of an underlying flat
transition probability. The nth step in the calculation gives the
analytical steady state (solid lines) in all intervals up to the nth.
(Operatively, one must resort to numerical integration after interval
III; see the Appendix.) Circles indicate the results from numerical
Monte Carlo simulations (with 106 particles). Notice the logarithmic
scale on the vertical axis.

or equivalently

ρ(x) = ρ0 −
∫ max{0,

x−γ

1−γ
}

0

ρ(y)

y + γ (1 − y)
dy, (14)

where ρ0 ≡ ∫ 1
0

ρ(y)
y+γ (1−y) dy. Note that in this case ρ(x) depends

on x only through the boundaries of the definite integral
in Eq. (14). Therefore, since the integral depends only on
0 < y <

x−γ

1−γ
for any given x, Eq. (14) translates into an

iterative procedure for computing the stationary distribution
ρ(x), yielding the piecewise analytical solution for adjacent
intervals. In fact, for x < γ (let us call it interval I), the density
distribution is constant and its value is ρ(x) = ρ0, because the
upper integration bound in Eq. (14) is zero. Now, interval II is
defined as the region for which ρ(x) can be calculated from
Eq. (14) solely in terms of ρ(y ∈ interval I), namely γ < x <

1 − (1 − γ )2. Iterating this procedure, the nth interval is found
to be 1 − (1 − γ )n−1 < x < 1 − (1 − γ )n, and the analytical
form of ρ(x) inside it can be calculated in terms of the n − 1
solutions already obtained. A few steps are explicitly presented
in the Appendix. Figure 2 shows the perfect accordance of the
analytical solution with Monte Carlo simulation.

It is important to stress here that the behavior of the steady
state for a soft bound is qualitatively distinct from a hard
bound. As noted before, the stationary state is constant for 0 <

x < γ (interval I) and then decreases quickly toward zero in
the following intervals. Viewed in logarithmic scale, its shape
displays a characteristic shoulder starting at x = γ , which
would be absent if the upper bound were hard (in which case
γ = 1). A qualitative comparison of the slope of the shoulder
as a function of γ can be obtained if one collapses different
plots, at different values of γ , by rescaling x �→ x/γ and
ρ(x) �→ ρ(x)/ρ0. The result is shown in linear scale in Fig. 3.

(c) Entropy production. As observed above, the diffusion
within a soft bound is irreversible; this is signaled by a nonzero
entropy production. The entropy production per time step at
stationarity [14] can be defined for the transition between two
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x/γ
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FIG. 3. (Color online) The stationary state is flat in the region
(0,γ ). The shoulder shrinks by increasing the parameter γ . The curves
are the steady-state distributions (computed by numerical integration)
for the case of flat transition probability and soft bounds, plotted as
a function of x/γ , for several values of γ . The probability density
ρ is rescaled by its value in the origin, in order to better compare
the different curves. As expected, when the upper bound becomes
a hard bound (γ → 1), one recovers the usual constant solution for
reflective boundary conditions [2].

states x and y as

�Sx,y = k ln
ρ(x)Px→y

ρ(y)Py→x

, (15)

where k is Boltzmann’s constant. It can be evaluated easily for
two states belonging to interval I in Fig. 2, where ρ(x)/ρ(y) =
1; the difference between the transition probabilities comes
from the normalization factor

�Sx,y∈I = k ln
y + γ (1 − y)

x + γ (1 − x)
. (16)

Since this expression is different from zero in general, Eq. (16)
shows that the Markov chain is irreversible in a regime where
neither Px→y nor Py→x are vanishing, thus complementing
the argument given at the beginning of this section. For small
jumps y = x + ε, the entropy Eq. (16) at first order in ε results

�Sx,x+ε ≈ kε

(
x + γ

1 − γ

)−1

, (17)

which is always positive. Consequently, there is a local net
imbalance toward larger sizes, which is due solely to the
different volumes of configuration space available to different
states; in fact, the bulk of the transition probability, close to
x = y, is symmetric. This tendency is largest for x close to the
lower bound and decreases for larger values of the variable. We
point out that a similar trend in the evolution of mammalian
body masses (called Cope’s law in this context) has been long
studied and debated [9,15,16], although it is usually ascribed
to an asymmetry or a drift in the bulk transition probability.
In the soft-bound framework, this feature has entropic origins
and emerges naturally.

(d) The stationary distribution is not simply the conse-
quence of effective drift and variance.We now explore in
further depth the qualitative differences between a hard and
a soft bound. The simple case of a flat π (x − y) illustrates
the fact that the transition kernel Py→x for a given position
y is asymmetric in x, and the asymmetry depends on y. It
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FIG. 4. (Color online) Approximation of the soft bound by an
effective Gaussian distribution with hard bounds. The Gaussian jump
distribution P ′

y→x (dashed curve) has mean μ̃ (vertical dashed line)
and variance σ̃ 2 (represented by the vertical solid lines) computed
from Py→x (solid curve) and is bounded in a size-independent way.

is then natural to ask whether the same form of the steady
state could in principle be obtained by using a symmetric
jump distribution P ′

y→x with only hard bounds, but adding an
effective position-dependent drift and a variance.

To illustrate this point, we consider the situation represented
in Fig. 4. Here, the jump distributionPy→x (solid curve) is built
as in Eq. (5), starting from a Gaussian underlying probability
π (x − y) with mean zero and variance σ 2. As a consequence
of the bounding kernel β(x,y), the mean and variance of Py→x

will be different, and they will have a dependence on y (and of
course on the softness parameter γ ). Let us call them μ̃(y,γ )
and σ̃ 2(y,γ ) respectively; they are defined as

μ̃(y, γ ) =
∫ 1

0
Py→x x dx (18)

and

σ̃ 2(y, γ ) =
∫ 1

0
Py→x x2 dx − μ̃2(y,γ ). (19)

In Fig. 4, mean and variance are represented, respectively, by
the vertical dashed line and the two vertical solid lines. Note
that, in general, μ̃(y, γ ) �= 0 and σ̃ 2(y, γ ) �= σ 2. The effective
distribution P ′

y→x (dashed curve in Fig. 4) is constructed as a
Gaussian with mean μ̃, variance σ̃ 2, and lower and upper hard
bounds:

P ′
y→x = Z−1χ[0, 1](x) exp

[
− (y − μ̃)2

2σ̃ 2

]
. (20)

Note that P ′
y→x �= Py→x and, more importantly, P ′

y→x does
not have any soft bound.

In order to understand if the effects of a soft bound can be
recovered by using effective drift and variance, we numerically
studied the steady state using both Py→x and P ′

y→x by varying
the variance σ 2 and the soft bound γ , also in the limit when
the soft bound becomes a hard bound. Figure 5 shows that
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FIG. 5. (Color online) The steady state produced by the soft bound (blue squares) is not realized by a discrete Gaussian diffusion with
effective drift and variance (green lines). Large values of σ give similar results to the analytical solution (orange disks) for a flat jump
distribution. Lower values of γ give rise to increasingly skewed distributions.
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the steady state of the effective jump distribution P ′
y→x (green

lines) is very different, for most choices of σ and γ , from
that obtained using the true soft bound Py→x (blue squares).
Hence, the effective drift model is in general ineffective. It
becomes an acceptable approximation only when σ 2 is small
and γ is large. In particular, the shoulder characteristic of the
soft bound is never well reproduced by the effective process
with hard bound and drift.

Figure 5 also shows the conditions for which the (analyt-
ically computable) steady-state distribution for a soft-bound
process with flat transition probability (orange disks in figure)
is a good approximation of the soft-bound jump process with
a Gaussian transition probability. In brief, for fixed γ < 1, the
true steady state approaches (i) the results of the effective drift
model when σ → 0, and (ii) those for the box distribution
when σ → ∞. This behavior is easily rationalized by the
two facts that (i) the soft bound affects the tail of the jump
distribution, and (ii) the Gaussian kernel becomes effectively
flat for large variance. The accord for intermediate values of σ

depends on γ , and improves for larger values of this parameter
(i.e., for harder bounds).

V. DYNAMICS OF THE MAXIMUM AND GOMPERTZ LAW

The nature of the soft bound also affects the relaxation to
the steady state. Given an initial distribution ρ0(x), supported
in a subinterval of [�min,�max), one can study the time
dependence of the maximum Xt , i.e., of the largest x on
which ρt (x) is nonzero. This may serve as an easily accessible
empirical observable, which often turns out to be relevant
to characterize the system. For instance, in the evolution of
software package sizes, the rightmost point in support of ρt (x)
represents the evolution of (the logarithm of) the “largest
package size” in the operating system. For mammalian body
masses, this quantity represents the logarithm of the mass Mt

of the largest species at a given time t , which is the object of
much attention in paleobiology, as it can hold information
on macro-evolutionary patterns [17]. For mammals it has
been observed, perhaps surprisingly, that this maximum is
not dominated by a single taxon nor by a single continent.
Different ecological and evolutionary approaches have been
applied to the evolution of the maximum mammalian mass.
In particular, an unconstrained multiplicative diffusion pre-
dicts [18] that it grows indefinitely as Xt = log Mt ∼ t1/2.
Another model is based on the Gompertz law, a particular
logistic function originally proposed as a phenomenological
description of mortality in a population [19] (used also in the
context of tumor growth [20,21]), and tries to capture in an
empirical way the overall effects of constraints, and assumes
the following saturating evolution (we use the notation of
Ref. [17]):

log M = log K − log
K

M0
e−αt , (21)

where M0 is the maximum mass at time 0, K plays the role
of a carrying capacity, and α is a characteristic exponent.
We show in this section that a Gompertz law for the
maximum emerges as a natural consequence of the soft-bound
mechanism.

Since we are interested in the evolution of the maximum,
the actual shape of π (x − y) is not important, as long as its
support contains that of β(x,y), so that the soft upper bound is
the only responsible for the dynamics of X. Let X0 = log M0

be the maximum at time 0. Because Py→x is bounded by
Eq. (2), the maximum X1 that can be reach at time t = 1
will be

X1 = �max + (1 − γ )(X0 − �max). (22)

At time t = 2, the maximum position that can be reached is

X2 = �max + (1 − γ )(X1 − �max)

= �max + (1 − γ )2(X0 − �max).

Therefore, the maximum position at time t will be

Xt = �max + (1 − γ )t (X0 − �max). (23)

This equation is the logarithmic version of the Gompertz
law, i.e., the corresponding law for additive diffusion. Indeed,
writing Eq. (23) explicitly for Mt yields

log Mt = �max − log
M0

K
elog(1−γ )t , (24)

which is the Gompertz law Eq. (21) with K = exp(�max)
and α = − log(1 − γ ). We stress that this result is valid
independently of the underlying jump distribution π (x − y):
it is simply the consequence of the functional form of the soft
bound, and thus it is very general. Quantitatively, the value γ ≈
0.2 measured from a compilation of 1109 ancestor-descendant
mass ratios for North American terrestrial mammals [6,22]
yields an estimate α ≈ 0.2. This is in line with the results
(α ≈ 0.1) obtained from fossil data on the evolution of the
largest mammalian mass [17].

Figure 6 compares the analytical solution of Eq. (23) with
numerical simulations. The accordance between the two is
remarkable. Note that a finite population of N particles does
not in general attain exactly the predicted maximum, but finite-
size deviations are expected for small N . In practice, we expect
these errors to likely be negligible for both Ubuntu packages
(N ≈ 40 000) and mammalian body masses (N ≈ 4 000 in the
MOM dataset [23], used in Ref. [6]). Also note that, contrary
to the maximum, the mean size can either increase or decrease
with time in this process, depending on the parameters and on
the initial conditions.

VI. DISCUSSION AND CONCLUSIONS

Having shown that the soft bound mechanism is qual-
itatively distinct from hard bounds, it will be important to
determine whether other empirical systems show features that
are compatible with the existence of soft bounds. We have
analyzed here two main signatures of a soft bound. The first
is the formation of a nontrivial shoulder in the steady-state
distribution, and the second is the Gompertzian growth of
the maximum. These two signatures can be used in practical
applications as “smoking guns” for this kind of behavior.
Importantly, the soft bound mechanism can be relevant only
when the underlying diffusion process has intrinsically discrete
nature. We speculate that the soft-bound mechanism can occur
in situations where the concerted action of many degrees
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FIG. 6. (Color online) The dynamics of the maximum follows
precisely the Gompertz function, as is shown analytically in the text.
The dynamics of the maximum is independent of the shape of the jump
distribution and only depends on γ . On the contrary, the dynamics
and the stationary value of the mean depend on the details of the
distribution; σ = 0.1 in panel (a), σ = 2 in panel (b). Dashed lines
are Gompertz functions, symbols are simulations.

of freedom is proxied by low- or one-dimensional variables
(such as “size” or “mass”). In this view, a single jump in size
can be seen as the result of a large number of changes in a
high-dimensional parameter space, each subject to complex
hard bounds (which are more natural to picture), which concur
to give rise to the soft bound phenomenon.

Another remarkable feature of a discrete-time diffusion pro-
cess with soft bounds is the nonreversibility (somewhat analo-
gous to the asymmetry found in the kinetic proofreading [24]),
giving rise to a probability flux of entropic nature. Interestingly,
this entropic unbalance, which is naturally present in our
model, can provide an alternative (purely entropic) explanation
of the Cope’s rule for mammalian evolution.

To conclude, we address a possible generic mechanism that
could give rise to soft bounds. Let us consider a complex
interacting system with many components or agents, where a
scalar order parameter s, which we can term “size,” effectively
follows a discrete diffusion process. This variable can be, for
instance, the number of lines of a software project, or the
mean mass of an animal species, the number of workers in a
firm, or the number of inhabitants in a city. We suppose that
there exists a function, similar to a power in nonequilibrium
thermodynamics, estimating the “effort” E that is put into
the system for a given span of time. For example, the effort
can be proxied by the total man-hours spent on the code by
programmers, or the food intake of an animal, or the money
spent by a firm or city administration. We further assume that

a scaling relation,

E ∝ sα, (25)

holds between effort and size, where α is an exponent
associated to E. This assumption can be seen as an instance
of allometric scaling, a feature commonly found in complex
systems, where some quantity has a power-law dependence
on size. It is observed, for instance, in general ontogenetic
growth and the metabolic rates of animals [25,26] (albeit with
some deviations [27]), transportation networks [28], and city
organization [29–31]. This relation expresses the principle that
the total amount of effort available for the system per unit time
can scale sub- or superlinearly with size, with, respectively,
α < 1 and α > 1; for the case at hand we suppose α < 1. Note
that Eq. (25), in a thermodynamic interpretation, is different
from a Green-Kubo relation where α = 1 strictly.

We assume the underlying hypothesis that the effort flow
is used both for maintaining the system and for increasing its
size; the maximum increase, corresponding to exhausting all
available effort, thus satisfies

sα = cms + cd (s ′ − s), (26)

where the two constants cm and cd are the efforts per unit
size needed for maintenance and development, respectively.
Therefore, the maximum multiplicative size change attainable
in a given time span is

s ′

s
= sα−1

cd

+
(

1 − cm

cd

)
. (27)

If the two cost constants are similar (cd ≈ cm), or when s ′/s
is large, Eq. (27) is just the soft bound Eq. (1), with γ =
1 − α and smax = (cd )−1/γ . In brief, this argument shows that
a scaling hypothesis on the relation between effort rate and
size implies a multiplicative soft bound (similar to the one
suggested by both software and mammal mass). We anticipate
that the “effort” is not necessarily an abstract quantity, but can
be possibly measured in different systems. For example, data
is available on the number, extent, and frequency of updates of
software packages. Thus, the above argument may be (in line
of principle) testable and opens a question for future work.
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APPENDIX

This appendix details some steps of the iterative procedure
presented in Sec. IV, for computing the stationary state in
the case of a flat jump probability distribution. Starting from
Eq. (14), the solution in the interval 0 < x < γ is the constant
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ρ(x) = ρ0. For γ < x < 1 − (1 − γ )2 (interval II) one obtains

ρ(x) = ρ0 −
∫ x−γ

1−γ

0

ρ(y)

y + γ (1 − y)
dy = ρ0

[
1 −

∫ x−γ

1−γ

0

1

y + γ (1 − y)
dy

]
= ρ0

[
1 − log(x/γ )

1 − γ

]
= ρ0 [1 − ρ1(x)]. (A1)

The function ρ1(x) = log(x/γ )/(1 − γ ) corresponds to the distribution at time t = 1 obtained by starting from a constant initial
distribution supported on interval I.

Interval III is defined by 1 − (1 − γ )2 < x < 1 − (1 − γ )3, and in this region ρ(x) can be calculated as

ρ(x) = ρ0

[
1 −

∫ γ

0

1

y + γ (1 − y)
dy −

∫ x−γ

1−γ

γ

1 − ρ1(y)

y + γ (1 − y)
dy

]

= ρ0

[
1 −

∫ x−γ

1−γ

0

1

y + γ (1 − y)
dy +

∫ x−γ

1−γ

γ

ρ1(y)

y + γ (1 − y)
dy

]
= ρ0 [1 − ρ1(x) − ρ2(x)], (A2)

where

ρ2(x) = −
∫ x−γ

1−γ

γ

ρ1(y)

y + γ (1 − y)
dy =

log
(

x
γ

)
log

[
γ (1−γ )
x−γ

]
(1 − γ )2

+
Li2(γ − 1) − Li2

(
1 − x

γ

)
(1 − γ )2

, (A3)

which corresponds to the solution at time t = 2. Unfortunately, due to the presence of dilogarithm functions Li2(·) in Eq. (A3),
the full analytical tractability of ρ(x) is broken for further intervals.
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