
Shock wave structure of multi–temperature Euler
equations from kinetic theory for a binary mixture

Marzia Bisi Giorgio Martalò Giampiero Spiga

Abstract

A multi–temperature hydrodynamic limit of kinetic equations is employed for
the analysis of the steady shock problem in a binary mixture. Numerical results for
varying parameters indicate possible occurrence of either smooth profiles or of weak
solutions with one or two discontinuities.

1 Introduction

Multi–temperature fluid–dynamic models are being quite widely studied in modeling and
investigating gas mixtures, either inert or reactive [10, 2]. They give rise typically to
hyperbolic systems of balance laws which can be studied in the frame of extended ther-
modynamics [9]. An interesting point in this respect is a comparison with the derivation
of fluid–dynamic equations of this type, with momentum and energy exchange rates, as
suitable hydrodynamic limit, starting from a kinetic theory description [7, 1]. Indeed this
paper belongs to the latter research line, and is aimed at testing a simple fluid–dynamic
model at Euler level, derived from the relevant Boltzmann equations, on a very classical
problem like the one dimensional steady shock waves in a binary mixture. The shock
problem has also been very extensively investigated, and significant results are available
on occurrence of a smooth solution or on the presence of discontinuities (so called sub–
shocks) [3, 5].

The present multi–temperature and multi–velocity model allows an explicit represen-
tation of all exchange terms. Results, still on preliminary stage, are in agreement with
those established in the fluid–dynamic literature, and show, even for such a simple phys-
ical scenario, possible occurrence of interesting phenomena like sub–shocks of different
kinds and weak solutions with more than one discontinuity.

Specifically, we consider a mixture of two mono–atomic and rarefied gases A1, A2,
whose particles, of mass m1 and m2, interact by means of elastic collisions. We assume
that the dominant process in the evolution is given by elastic encounters between particles
of the same species, i.e. we consider the following re–scaled Boltzmann equations [4]

∂f 1

∂t
+ v · ∇xf

1 =
1

ε
Q11(f 1, f 1) +Q12(f 1, f 2)

∂f 2

∂t
+ v · ∇xf

2 = Q21(f 2, f 1) +
1

ε
Q22(f 2, f 2) ,

(1)
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where f 1, f 2 are the distribution functions of gases A1, A2, respectively, Qsr is the Boltz-
mann collision operator describing effects due to collisions between particles of species s
and r, with s, r = 1, 2, and the small parameter ε stands for the Knudsen number. We are
concerned here with the corresponding fluid–dynamic equations at Euler level, obtained
by closing the macroscopic “conservation” equations relevant to the dominant operator
only. In case of one space dimension, to which we will stick here, we have thus to deal
with 6 evolution equations for 6 unknown fields, number densities n1, n2, mass velocities
u1, u2, and species temperatures T 1, T 2. It is well known that collision contributions arise
on the right hand sides due to exchange of momentum and energy in the slow scattering
process involving particles (A1, A2), and that they are provided by suitable weak forms of
the elastic Boltzmann operators Q12 or Q21. For the momentum and energy production
rates of species one, labeled by R12 and S12 respectively, under the simplifying assumption
of Maxwell molecule interactions [4], we have the explicit expressions [2]

R12 = −µ12n
1n2ν̄12

(
u1 − u2

)
, (2)

S12 = −µ12n
1n2ν̄12

[(
α12u

1 + α21u
2
) (

u1 − u2
)
+ 3

T 1 − T 2

m1 +m2

]
, (3)

where µ12 = m1m2/(m1 +m2) is the reduced mass, α12 = µ12/m2 and α21 = µ12/m1 are
mass ratios, and ν̄12 is a suitable (constant) collision frequency.

The equations for the steady shock problem are analyzed in the next section, going
through the relevant dynamical system, the Rankine–Hugoniot conditions, and the possi-
ble singularities. The different scenarios arising for varying Mach number and upstream
conditions are discussed in the following section, with reference to the pertinent jump
conditions and stability properties of the limiting equilibrium states. The article is com-
pleted by a sample of numerical results on the shock profiles and on the development of
different types of singularities when parameters are varied.

2 Shock wave structure

We shall test the multi–temperature and multi–velocity Euler equations deduced from
kinetic theory on the classical steady shock problem, in which case the 6 observable fields
are governed by the set of ordinary differential equations

d

dx

(
n1u1

)
= 0

d

dx

(
n2u2

)
= 0

d

dx

[
ρ1

(
u1
)2

+ n1T 1
]
= R12

d

dx

[
ρ2

(
u2
)2

+ n2T 2
]
= −R12

d

dx

[
1

2
ρ1

(
u1
)3

+
5

2
n1T 1u1

]
= S12

d

dx

[
1

2
ρ2

(
u2
)3

+
5

2
n2T 2u2

]
= −S12 ,

(4)
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where ρs = msns. The shock solution must join two limiting equilibrium states at x →
±∞, which are characterized by a common mass velocity u1

± = u2
± = u± and a common

temperature T 1
± = T 2

± = T±. Each state is then determined once we fix single number
densities n1

±, n
2
±, velocity u±, and temperature T±. These parameters define also the

relevant sound speeds c± and the corresponding Mach numbers

Ma2± =
u2
±

c2±
=

3 ρ± u2
±

5n±T±
, (5)

where n± = n1
± + n2

± and ρ± = ρ1± + ρ2±. From system (4) we may deduce four inde-
pendent conservation laws: the first two equations, the sum of third and fourth equation
(momentum conservation), the sum of fifth and sixth equation (energy conservation).
These four conservations establish four relations between downstream (+) and upstream
(−) parameters, the so–called Rankine–Hugoniot conditions:

ns
+u+ = ns

−u−, s = 1, 2

ρ+ (u+)
2 + n+T+ = ρ− (u−)

2 + n−T− =: κA

ρ+ (u+)
3 + 5n+T+u+ = ρ− (u−)

3 + 5n−T−u−− =: κB .

(6)

These allow to express the downstream parameters as functions of the upstream ones (and
of the upstream Mach number Ma−) [6]:

ns
+ =

4Ma2−
Ma2− + 3

ns
−, s = 1, 2, u+ =

Ma2− + 3

4Ma2−
u−

T+ =
(Ma2− + 3)(5Ma2− − 1)

16Ma2−
T− .

(7)

Moreover, conservations following from system (4) imply that, if we fix the upstream
configuration n1

−, n
2
−, u

1
− = u2

− = u−, T
1
− = T 2

− = T−, all points of the shock profile fulfill
the constraints

n1u1 = n1
−u−

n2u2 = n2
−u−

ρ1
(
u1
)2

+ n1T 1 + ρ2
(
u2
)2

+ n2T 2 = ρ− (u−)
2 + n−T−

ρ1
(
u1
)3

+ 5n1T 1u1 + ρ2
(
u2
)3

+ 5n2T 2u2 = ρ− (u−)
3 + 5n−T−u− .

(8)

These four relations should allow to express four of our six unknown fields in terms of the
remaining two. The first two equations yield n1 = n1

−u−/u
1 and n2 = n2

−u−/u
2. Then,

third and fourth conservations may be seen as a linear system for the two temperatures
T 1, T 2, that, if it is non singular, gives temperatures as functions of u1, u2. Unfortunately,
the determinant of coefficient matrix is 5n1n2(u2−u1) hence it vanishes for u1 = u2. This
is a problem because we want to determine an heteroclinic orbit joining two equilibrium
states, in which of course u1 = u2. More precisely, the four conditions (8) are not capable
to reproduce correctly the equilibrium states; in fact, if we have u1 = u2 = u−, the first two
equations correctly give n1 = n1

− and n2 = n2
−, but third and fourth equations reduce to
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the unique condition n1
−T

1 +n2
−T

2 = n−T− , that of course does not imply T 1 = T 2 = T−
(this result could be obtained only with the additional requirement T 1 = T 2).

For these reasons we will resort to a different strategy, that will lead us to study a
system of three ordinary differential equations. Other strategies can be devised, of course;
the one that we shall follow here is probably the simplest for motivation and machinery.
We introduce the new variables T̂ = (n1/n)T 1 + (n2/n)T 2 and θ = T 1 − T 2 in place of
temperatures T 1, T 2, from which

T 1 = T̂ +
n2

n
θ and T 2 = T̂ − n1

n
θ . (9)

We use the first three conservations (8) to obtain the three unknowns n1, n2, T̂ in terms
of the remaining ones u1, u2, θ. Last conservation law in (8) will be controlled later. We
avoid in this way the previous singular coupling between momentum and energy conser-
vations, and discard the most cumbersome energy algebraic equation. Consequently, one
differential equation suffices for momentum balance, whereas both differential equations
for energy have to be retained. Having that in mind, we get

ns =
ns
−u−

us
, s = 1, 2 T̂ =

u1u2κA

(n1
−u

2 + n2
−u

1)u−
−

(
ρ1−u

1 + ρ2−u
2
)
u1u2

n1
−u

2 + n2
−u

1
. (10)

Now rewriting the problem in terms of u1, u2, θ is only matter of some patient and
lengthy manipulations. Skipping all details, the subsystem of ODEs (4) made by one
balance equation for momentum (for instance, third equation in (4)) and by the two

balance equations for energy (last two equations in (4)) may be cast as A · dy
dx

= b, where

y = (u1, u2, θ)T , b = (R12, S12,−S12)
T , and the coefficient matrix A has the following

entries:

n2

nu1

[
ρ1 (u1)

2 − n1T 1
]

− n1

nu2

[
ρ2 (u2)

2 − n2T 2
] n1n2

n

ρ1(u1)
2− 5

2

n1

n

[
ρ1(u1)

2−n1T 1
]

−5

2

n1u1

nu2

[
ρ2 (u2)

2 − n2T 2
] 5

2

n1n2u1

n

−5

2

n2u2

nu1

[
ρ1 (u1)

2 − n1T 1
]

ρ2(u2)
2− 5

2

n2

n

[
ρ2(u2)

2−n2T 2
]

−5

2

n1n2u2

n


(11)

The determinant of matrix A turns out to be

det (A) =
1

4

n1n2

n

[
3ρ1

(
u1
)2 − 5n1T 1

] [
3ρ2

(
u2
)2 − 5n2T 2

]
(12)

and it vanishes if (M1)2 = 1 or (M2)2 = 1, where (Ms)2 = 3ρs (us)2 /(5nsT s) denotes the
Mach number we would have if we considered the evolution of species As only.

In all points in which matrix A is regular, we may compute the inverse matrix A−1

that allows to write the system of ODEs in normal form. Skipping again technical details,
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the final result is

dus

dx
=

5R12u
s − 2S12

3ρs (us)2 − 5nsT s
, s = 1, 2

dθ

dx
= −2

2∑
s=1

R12ρ
s (us)3 − S12

[
ρs (us)2 − nsT s

]
nsus

[
3ρs (us)2 − 5nsT s

] (13)

where n1, n2, T 1, T 2 are explicit functions of the unknown fields u1, u2, θ by means
of (9)–(10), and R12, S12 are collision contributions given in (2)–(3). Notice that the
right hand sides of equations (13) vanish when u1 = u2 and θ = 0, and in the particular
cases u1 = u2 = u± (with θ = 0) formulas (9)–(10) correctly reproduce n1 = n1

±, n
2 =

n2
±, T

1 = T 2 = T±. It can be checked by lengthy direct computations that a suitable
combination of equations (13) implies that also last conservation law in (8) holds, i.e.
ρ1 (u1)

3
+ 5n1T 1u1 + ρ2 (u2)

3
+ 5n2T 2u2 = κB.

Possible smooth shock wave solutions to the system (13) may exist only if denominators

Ds = 3ρs (us)2 − 5nsT s = 5nsT s
[
(Ms)2 − 1

]
, s = 1, 2 (14)

do not vanish during the evolution. We may evaluate such terms in the upstream and
downstream equilibria. Introducing concentration c = n1

−/n− (≡ c−) and the mass ra-
tio α = m1/m2, and bearing in mind the definition of Mach numbers (5) we have

Ma2− = c (M1
−)

2 + (1− c)(M2
−)

2 , (M1
−)

2 = α (M2
−)

2 , (15)

hence, if c and α are fixed, (M1
−)

2 and (M2
−)

2 are completely determined in terms of Ma2−:

(M1
−)

2 =
α

γ
Ma2− , (M2

−)
2 =

1

γ
Ma2− , γ = αc+ 1− c . (16)

From now on let us assume α < 1, but analogous considerations would hold of course
also for α > 1. Under this option we have immediately M1

− < M2
− and α < γ < 1.

It is well known [6] that the entropy flux condition imposed by the H–theorem implies
the constraint Ma− > 1 for existence of a shock wave. Hence, since Ma2− is a suitably
weighted mean of (M1

−)
2 and of (M2

−)
2, at least the greatest of the two species upstream

Mach numbers Ms
− will be greater than 1. As concerns the same Mach numbers in the

downstream equilibrium, it is not difficult to show that, owing to (16) and to relations (7),
we have

(M1
+)

2 =
α

γ

Ma2− + 3

5Ma2− − 1
(M2

+)
2 =

1

γ

Ma2− + 3

5Ma2− − 1
.

Once the configuration in the upstream equilibrium is fixed, forMa− = 1 we have (M1
−)

2 =
(M1

+)
2 = α/γ , (M2

−)
2 = (M2

+)
2 = 1/γ; if now we vary Mach number Ma2− from 1 to +∞

keeping fixed the concentration c (hence the parameter γ), then (M1
−)

2 and (M2
−)

2 will
linearly increase up to +∞, while (M1

+)
2 and (M2

+)
2 will decrease up to the limiting values

α/(5γ), 1/(5γ), respectively.
It is easy to see that D1

+ < 0 and D2
− > 0 for any Ma− ≥ 1. Existence of a smooth

shock wave is then possible only for Mach numbers such that D1
− < 0 and D2

+ > 0. It is
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Figure 1: Bifurcation values Ma∗− and Ma♯− versus concentration c, for mass ratio α = 0.1.
A smooth shock is admissible in region I, a weak solution with one jump characterizes
regions II and IV , while in region III we may build up a weak solution with two jumps.

clear that D1
− < 0 only for Ma2− < (Ma∗−)

2 = γ/α. As concerns D2
+, if γ < 1/5 then it is

positive for any Ma−, otherwise it is positive only for Ma2− < (Ma♯−)
2 = (γ + 3)/(5γ − 1).

It can be checked by direct computations that Ma∗− < Ma♯− for

c > c∗ =
1

10(1− α)

[
9− α−

√
α2 + 62α + 1

]
.

In conclusion, we have the following cases:

• if α >
1

5
, setting m = min

{
Ma∗−,Ma♯−

}
and m̄ = max

{
Ma∗−,Ma♯−

}
, a smooth

solution is allowed for 1 < Ma− < m, a solution with one jump is possible for
m < Ma− < m̄, while for Ma− > m̄ two jumps are required in order to overcome
singularities of both denominators D1 and D2;

• if α <
1

5
, this scenario does not change as long as c < c̄ = 4/[5(1− α)], whereas for

c̄ < c < 1 a smooth solution is allowed for 1 < Ma− < Ma∗−, otherwise we may look
only for a weak solution with a jump discontinuity.

Bifurcation values for upstreamMach number versus concentration are illustrated in Fig.1,
where α = 0.1, c̄ = 0.8̄, and c∗ = 0.6905.

3 Discussion

This analysis turns out to be consistent with investigation of stability of the two limiting
equilibria, performed with the help of symbolic manipulation. Eigenvalues of the Jacobian
matrix of system (13) have been evaluated at the downstream and upstream states. Both
equilibria obviously admit a vanishing eigenvalue, since equations (13) reproduce the
fourth conservation law in (8). The results following from the numerical investigation
of the several cases that have been run seem to indicate the following scenario for the
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remaining two eigenvalues. In the upstream state one eigenvalue is positive and the other
is negative for Ma− < Ma∗−, while they become both negative for Ma− > Ma∗−. In the

downstream equilibrium eigenvalues are both negative for Ma− < Ma♯−, when Ma♯− exists,

while one of them becomes positive for Ma− > Ma♯−.
Therefore, according to this scenario, for Ma− < m (region I in Fig.1) the down-

stream equilibrium is asymptotically stable, while the upstream one is a saddle with a
one–dimensional unstable manifold. So, the only way to reach it is following the unsta-
ble manifold tangent to the one-dimensional upstream unstable eigenspace, getting then
attracted by the stable downstream state, which provides the sought smooth shock so-
lution. For all cases run with Ma∗− < Ma♯−, both equilibria are asymptotically stable for

Ma∗− < Ma− < Ma♯− (region II in Fig.1), thus no smooth solution connecting the two lim-
iting states is allowed. In particular, the only admissible solution satisfying the upstream
condition is the constant solution, and the only way to reach the downstream point is
through a suitable jump discontinuity fulfilling the conservation laws (8); a smooth trajec-
tory may then join the point after the jump to the state at x → +∞. On the other hand,
in all cases that have been checked, if Ma♯− < Ma∗−, both equilibria are saddle points for

Ma♯− < Ma− < Ma∗− (region IV in Fig.1); the existence of a smooth solution is prevented
because of singularities in (13) analyzed above, but it might be possible to find a jump,
consistent with the conservation laws of the model, in which the solution moves from the
unstable manifold of the upstream equilibrium to the stable manifold of the downstream
point. Finally, for Ma− > m̄ (region III in Fig.1), in all considered cases the upstream
equilibrium is stable while the downstream one is a saddle. The solution starting from
the upstream point is again constant, then a jump discontinuity is necessary, but the tail
after the jump can not reach the downstream state in a smooth way; once more it might
be possible that the tail undergoes a further discontinuity leading eventually the solution
to the limiting equilibrium by a second tail on its stable manifold.

A mathematical investigation of the delicate questions arising especially in regions
III and IV is left as future work. We shall present here only a sample of numerical
simulations confirming the previous conjectures. We remark that, for weak solutions
with discontinuity in some point x = x0, we have to look for piecewise smooth solutions
whose limits for x → x0

− and x → x0
+ fulfill the constraints following from (4). Since the

contributions R12 and S12 on the right hand sides are bounded functions, those equations
imply continuity of the quantities under derivative operator across the jump. If we know
the configuration on one side of the jump (whose fields will be labelled by subscript ∗),
the corresponding one on the other side, denoted with subscript •, is provided by

ρ1•
(
u1
•
)2

+ n1
•T

1
• = kA

1

ρ1•
(
u1
•
)3

+ 5n1
•T

1
• u

1
• = kB

1

ρ2•
(
u2
•
)3

+ 5n2
•T

2
• u

2
• = kB

2

(17)

where kA
s := ρs∗ (u

s
∗)

2 + ns
∗T

s
∗ and kB

s := ρs∗ (u
s
∗)

3 + 5ns
∗T

s
∗u

s
∗. Appropriate manipulations

on equations (17) lead first to the algebraic equation for u1
•

4ρ1∗u
1
∗
(
u1
•
)2 − 5kA

1 u
1
• + kB

1 = 0 (18)

7



with solutions

u1
• = u1

∗ , or u1
• =

ρ1∗ (u
1
∗)

2
+ 5n1

∗T
1
∗

4ρ1∗u
1
∗

=: ũ1 , (19)

then to the expressions for temperatures

T 1
• =

kB
1 − kA

1 u
1
•

4n1
∗u

1
∗

, T 2
• =

kB
2 − ρ2∗u

2
∗ (u

2
•)

2

5n2
∗u

2
∗

, (20)

and finally to a quadratic equation analogous to (18) for u2
•, with roots

u2
• = u2

∗ , or u2
• =

ρ2∗ (u
2
∗)

2
+ 5n2

∗T
2
∗

4ρ2∗u
2
∗

=: ũ2 . (21)

There are thus four possible outputs for velocities after the jump, namely (u1
∗, u

2
∗), (u

1
∗, ũ

2),
(ũ1, u2

∗), and (ũ1, ũ2) (the first, however, must be obviously discarded). A discontinuity
necessarily exists due to the denominator(s) that would be bound to vanish if the solution
were continuous, but occurrence of other, even several, jumps may not be excluded at
this point. Similarly, one can not exclude simultaneous vanishing of both denominators
at some point. All other species parameters after the jump are determined by the knowl-
edge of velocities us

• (expressions are omitted here for brevity). In particular, they are
continuous across the jump for the species whose velocity is continuous. For any species
undergoing discontinuity it is interesting to notice that

Ds
• = 3ρs∗u

s
∗u

s
• − 5

ns
∗u

s
∗T

s
•

us
•

= − 1

us
•

[
3ρs∗ (u

s
∗)

2 − 5ns
∗T

s
∗
] ρs∗ (us

∗)
2 + 5ns

∗T
s
∗

4ρs∗u
s
∗

= −
[
3ρs∗ (u

s
∗)

2 − 5ns
∗T

s
∗
]
= −Ds

∗ ,

(22)

namely the relevant denominator changes sign keeping the same magnitude.

4 Numerical results

We shall show in this section the shock profiles resulting from the numerical integration
of system (13) for the fields u1, u2, θ. Smooth solutions are normalized in such a way that
u1(0) = (u+ + u−)/2, whereas for weak solutions with only one jump, this is localized
at x = 0. All computations were performed by integrating via standard Runge–Kutta
methods.

As reference case, we consider the mixture of Helium (species 1) and Argon (species 2)
considered in [8]. The dimensionless masses are taken to be m1 = 4, m2 = 40, so that
mass ratio follows as α = 0.1. Moreover, we will keep fixed the following upstream
parameters n1

− = 0.753, n2
− = 0.247, u− = 1.63 (thus n− = 1 and c = 0.753) while T−

will be changed in the various plots, in order to increase the upstream Mach number Ma−.
For the bifurcations values of the Mach number we get Ma∗− = 1.7953, Ma♯− = 2.3309 .
When Ma− is less than both bifurcation values, a smooth shock solution is admissible,
and can be found numerically by choosing an initial point in a close neighborhood of the
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Figure 2: Velocity and temperature profiles when c = 0.753 and Ma− = 1.75 (region I)

upstream equilibrium, in the direction of its one–dimensional unstable eigenspace. If Ma−
is close to 1, differences between velocities u1, u2 and temperatures T 1, T 2 along the shock
are hardly visible on the plots (not shown here), but they increase for increasing Ma−.

When we increase Ma− to 1.75, close to the lower bifurcation value, but still in the
“smooth” region, the situation looks like in Fig.2. In this case, T− = 6.7107, n1

+ =
1.5215, n2

+ = 0.4991, u+ = 0.8067, T+ = 11.8834, and the figure shows a fast detachment
from an almost constant trend upstream, and occurrence of overshooting in one species
temperature. Notice that there is a point during the evolution in which T 1 = T 2 (but
u1 ̸= u2), then the two species temperatures split again before reaching the common
equilibrium value T+.

If we now increase Ma− across the first bifurcation value, taking Ma∗− < Ma− < Ma♯−,
the existence of a smooth solution is prevented since a singularity of system (13) enters the
phase space, so we are led to look for a possible weak solution with one jump discontinuity.
As discussed above, the upstream equilibrium is here asymptotically stable, so the unique
way to fulfill the upstream condition is by constant profiles, with u1 = u2 = u− and
T 1 = T 2 = T−. We recall that in this region the denominator D2 is positive both in
the upstream and downstream equilibria, while the sign of D1 changes from positive (for
x → −∞) to negative (for x → +∞). Also, according to (22), any discontinuity in
the species s is accompanied by a change of sign of the denominator Ds. Among the
three possible choices of velocities (u1

•, u
2
•) for a jump compatible with conservation laws,

the only one that changes the sign of D1 and not of D2 is the one in which u2 remains

continuous (equal to u−) while u1 jumps to
ρ1− (u−)

2 + 5n1
−T−

4ρ1−u−
. After this discontinuity

the solution exhibits a tail that is attracted in a smooth way by the stable downstream
limiting point. The trend is shown in Fig.3, relevant to Ma− = 2, corresponding to
T− = 5.1379, n1

+ = 1.7211, n2
+ = 0.5646, u+ = 0.7131, T+ = 10.6772.

By increasing furtherMa−, crossing also the second bifurcation valueMa♯−, singularities
of both denominators D1 and D2 enter the phase space. Again the constant profile is the
unique solution compatible with the stable upstream equilibrium, but now the situation
gets more involved. Numerical simulations show that after the unique jump that would
change simultaneously the sign of both denominators (corresponding to discontinuity of
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Figure 3: Velocity and temperature profiles when c = 0.753 and Ma− = 2 (region II)
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Figure 4: Velocity and temperature profiles when c = 0.753 and Ma− = 5 (region III)

both velocities), evolution does not enter into the stable manifold of the downstream point
(now a saddle), thus no weak shock solution with only one jump seems to be allowed.
However, we are able to build up a weak solution with two discontinuities. Specifically,
we allow a first discontinuity with the same features of the previous case (same type of
jump for u1 and T 1, no jump for species 2) and consider the tail originating from it. On
the other hand, we move backward from +∞ starting tangent to its stable manifold.
We realize that there is exactly one pair of points (u1

•, u
2
•, θ•) (belonging to the solution

after the first jump) and (u1
∗, u

2
∗, θ∗) (belonging to the stable manifold of +∞) that fulfill

conservations (17); therefore, a jump between these two points is admissible, and this
allows to reach in a compatible way the downstream equilibrium. More precisely, we note
that in the second jump only quantities relevant to species 2 are really discontinuous, and
the sign of the denominator D2 changes as expected. When Mach number is close to the
bifurcation value Ma♯−, the second jump discontinuity (for u2 and T 2) is hardly visible, but
again it enlarges for increasing Ma−. It can be seen clearly in Fig.4 relevant to Ma− = 5,
for which T− = 0.8221, n1

+ = 2.6893, n2
+ = 0.8821, u+ = 0.4564, T+ = 7.1355.

Finally, let us change the upstream number densities, taking n1
− = 0.4 and n2

− = 0.6,

so that concentration becomes c = 0.4. In this case Ma♯− = 1.2863, Ma∗− = 2.5298 ,

and we focus our attention on cases with Mach number such that Ma♯− < Ma− < Ma∗−
for which both equilibria are saddle points, and at least one jump exists, due to D2.
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Figure 5: Velocity and temperature profiles when c = 0.4 and Ma− = 2 (region IV)

The situation is again involved; however, a (unique) pair of compatible points may be
found if we test (17) using on one side the stable downstream manifold (in the backward
direction), and on the other side the solution tangent to the upstream unstable manifold
(in the forward direction). We obtain in this way a weak shock solution with one jump,
where only species 2 is discontinuous. This is shown in Fig.5, relevant to Ma− = 2, with
T− = 10.2025, n1

+ = 0.9143, n2
+ = 1.3714, u+ = 0.7131, T+ = 21.2021.
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