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We illustrate, in this short survey, the current state of the art of fractal-based techniques and their application to the solution of
inverse problems for ordinary and partial differential equations. We review several methods based on the CollageTheorem and its
extensions. We also discuss two innovative applications: the first one is related to a vibrating string model while the second one
considers a collage-based approach for solving inverse problems for partial differential equations on a perforated domain.

1. Inverse Problems for Fixed Point Equations

According to Keller [1], “we call two problems inverse of
one another if the formulation of each involves all or part
of the solution of the other. Often, for historical reasons,
one of the two problems has been studied extensively for
some time, while the other one is newer and not so well
understood. In such cases, the former is called the direct
problem, while the latter is the inverse problem.” In practice,
a general inverse problem asks us to use observed data to
estimate parameters in the functional form of the governing
model of the phenomenon under study [2–6].

There is a fundamental difference between the direct
and the inverse problem; often the direct problem is well-
posed while the corresponding inverse problem is ill-posed.
Hadamard [7] introduced the concept of well-posed problem
to describe a mathematical model that has the properties of
existence, uniqueness, and stability of the solution. When
one of these properties fails to hold, the mathematical model
is said to be an ill-posed problem. There are several inverse
problems in literature that are ill-posed whereas the corre-
sponding direct problems are well-posed. The literature is

rich in papers studying ad hoc methods to address ill-posed
inverse problems by minimizing a suitable approximation
error along with utilizing some regularization techniques [8–
13].

Many inverse problems may be recast as the approxima-
tion of a target element 𝑥 in a complete metric space (𝑋, 𝑑)
by the fixed point 𝑥 of a contraction mapping 𝑇 : 𝑋 →

𝑋. Thanks to a simple consequence of Banach’s Fixed Point
Theoremknown as theCollageTheorem,most practicalmeth-
ods of solving the inverse problem for fixed point equations
seek an operator 𝑇 for which the collage distance 𝑑(𝑥, 𝑇𝑥) is
as small as possible.

Theorem 1 (“CollageTheorem” [14]). Let (𝑋, 𝑑) be a complete
metric space and let 𝑇 : 𝑋 → 𝑋 be a contraction mapping
with contraction factor 𝑐 ∈ [0, 1). Then, for any 𝑥 ∈ 𝑋,

𝑑 (𝑥, 𝑥) ≤

1

1 − 𝑐

𝑑 (𝑥, 𝑇𝑥) , (1)

where 𝑥 is the fixed point of 𝑇.
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This vastly simplifies this type of inverse problem as it is
much easier to estimate 𝑑(𝑥, 𝑇𝑥) than it is to find the fixed
point 𝑥 and then compute 𝑑(𝑥, 𝑥). One now seeks a con-
tractionmapping 𝑇 that minimizes the so-called collage error
𝑑(𝑥, 𝑇𝑥), in other words, a mapping that sends the target 𝑥 as
close as possible to itself. This is the essence of the method of
collage coding which has been the basis ofmost, if not all, frac-
tal image coding and compression methods. Barnsley et al.
[14, 15] were the first to see the potential of using the Collage
Theorem above for the purpose of fractal image approxima-
tion and fractal image coding [16]. However, this method
of collage coding may be applied in other situations where
contractive mappings are encountered.

We have shown this to be the case for inverse prob-
lems involving several families of differential equations and
application to different areas: ordinary differential equations
[17–19], Urison-type integral equations [20], random differ-
ential equations [21, 22], boundary value problems [23–25],
parabolic partial differential equations [26], stochastic differ-
ential equations [27–29], and others [3, 30]. In practical appli-
cations, from a family of contraction mappings 𝑇𝜆, 𝜆 ∈ Λ ⊂
R𝑛, one wishes to find the parameter 𝜆 for which the approx-
imation error 𝑑(𝑥, 𝑥𝜆) is as small as possible. In practice,
the feasible set is often taken to be Λ 𝑐 = {𝜆 ∈ R𝑛

: 0 ≤ 𝑐𝜆 ≤

𝑐 < 1} which guarantees the contractivity of 𝑇𝜆 for any 𝜆 ∈
Λ 𝑐. The main difference between this “collage” approach and
the one based on the Tikhonov regularization is the following
(see [12, 13]): in the collage approach, the constraint 𝜆 ∈ Λ 𝑐

guarantees that 𝑇𝜆 is a contraction and, therefore, it replaces
the effect of the regularization term in the Tikhonov approach
(see also [6, 8, 11]).

The collage-based inverse problem can be formulated as
an optimization problem as follows:

min
𝜆∈Λ
𝑐

𝑑 (𝑥, 𝑇𝜆𝑥) . (2)

This is a nonlinear and nonsmooth optimization model.
However, as the next sections below show, the above model
(2) can often be reduced to a quadratic optimization pro-
gram. Several algorithms can be used to solve it including,
for instance, penalization methods and particle swarm ant
colony techniques.

The paper is organized as follows. Section 2 presents the
method for the case of differential equations while Section 3
illustrates the case of different families of partial differential
equations (PDEs), namely, elliptic, parabolic, and hyperbolic
equations. Section 4 presents applications to a randomly
forced vibrating string and also to an inverse problem on
perforated domains.

2. Inverse Problems for IVPs by
the Collage Theorem

In [18], and subsequent works [17, 20–22, 25], the authors
showed how collage coding could be used to solve inverse

problems for systems of differential equations having the
form

𝑢̇ = 𝑓 (𝑡, 𝑢) ,

𝑢 (0) = 𝑢0,

(3)

by reducing the problem to the corresponding Picard integral
operator associated with it

(𝑇𝑢) (𝑡) = 𝑢0 + ∫

𝑡

0

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠. (4)

Let us recall the basic results in the case where 𝑓 belongs
to 𝐿2. Let us consider the complete metric space 𝐶([0, 𝑇])
endowed with the usual 𝑑∞ metric and assume that 𝑓(𝑡, 𝑥)
is Lipschitz in the variable 𝑥; that is, there exists a𝐾 ≥ 0 such
that |𝑓(𝑠, 𝑥1) − 𝑓(𝑠, 𝑥2)| ≤ 𝐾|𝑥1 − 𝑥2|, for all 𝑥1, 𝑥2 ∈ R. For
simplicity, we suppose that 𝑥 ∈ R, but the same consideration
can be developed for the case of several variables. Under these
hypotheses, 𝑇 is Lipschitz on the space 𝐶([−𝛿, 𝛿] × [−𝑀,𝑀])
for some 𝛿 and𝑀 > 0.

Theorem 2 (see [18]). The function 𝑇 satisfies

‖𝑇𝑢 − 𝑇V‖2 ≤ 𝑐‖𝑢 − V‖2 (5)

for all 𝑢, V ∈ 𝐶([−𝛿, 𝛿] × [−𝑀,𝑀]), where 𝑐 = 𝛿𝐾.

Now, let 𝛿󸀠 > 0 be such that 𝛿󸀠𝐾 < 1. In order to solve
the inverse problem for (4), we take the 𝐿2 expansion of the
function 𝑓. Let {𝜙𝑖} be a basis of functions in 𝐿

2
([−𝛿

󸀠
, 𝛿

󸀠
] ×

[−𝑀,𝑀]) and consider

𝑓𝜆 (𝑠, 𝑥) =

+∞

∑

𝑖=1

𝜆𝑖𝜙𝑖 (𝑠, 𝑥) . (6)

Each sequence of coefficients 𝜆 = {𝜆𝑖}
+∞

𝑖=1
then defines

a Picard operator 𝑇𝜆. Suppose further that each function
𝜙𝑖(𝑠, 𝑥) is Lipschitz in 𝑥 with constants𝐾𝑖.

Theorem 3 (see [18]). Let 𝐾, 𝜆 ∈ ℓ2(R). Then,
󵄨
󵄨
󵄨
󵄨
𝑓𝜆 (𝑠, 𝑥1) − 𝑓𝜆 (𝑠, 𝑥2)

󵄨
󵄨
󵄨
󵄨
≤ ‖𝐾‖2‖𝜆‖2

󵄨
󵄨
󵄨
󵄨
𝑥1 − 𝑥2

󵄨
󵄨
󵄨
󵄨

(7)

for all 𝑠 ∈ [−𝛿󸀠, 𝛿󸀠] and 𝑥1, 𝑥2 ∈ [−𝑀,𝑀], where ‖𝐾‖2 =
(∑

+∞

𝑖=1
𝐾
2

𝑖
)

1/2 and ‖𝜆‖2 = (∑
+∞

𝑖=1
𝜆
2

𝑖
)

1/2.

Given a target solution 𝑥, we now seek to minimize the
collage distance ‖𝑢 − 𝑇𝜆𝑢‖2.The square of the collage distance
becomes

Δ
2
(𝜆) =

󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑇𝜆𝑢

󵄩
󵄩
󵄩
󵄩

2

2

= ∫

𝛿

−𝛿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢 (𝑡) − ∫

𝑡

0

+∞

∑

𝑖=1

𝜆𝑖𝜙𝑖 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡

(8)

and the inverse problem can be formulated as

min
𝜆∈Λ

Δ (𝜆) , (9)
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whereΛ = {𝜆 ∈ ℓ2(R) : ‖𝜆‖2‖𝐾‖2 < 1}. To solve this problem
numerically, let us consider the first 𝑛 terms of the 𝐿2 basis;
in this case, the previous problem can be reduced to

min
𝜆∈Λ̃

Δ̃
2
(𝜆) = ∫

𝛿

−𝛿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 (𝑡) − ∫

𝑡

0

𝑛

∑

𝑖=1

𝜆𝑖𝜙𝑖 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡, (10)

where Λ̃ = {𝜆 ∈ R𝑛
: ‖𝜆‖2‖𝐾‖2 < 1}. This is a

classical quadratic optimization problemwhich can be solved
bymeans of classical numericalmethods. A penalized version
of (10) is the following:

min
𝜆∈R𝑛

Δ̃
2
(𝜆) + 𝜎1max {0, 1 − ‖𝜆‖2

2
‖𝐾‖

2

2
}

2

+ 𝜎2

𝑛

∑

𝑖=1

max {0, −𝜆𝑖}
2
.

(11)

Let Δ̃𝑛min be the minimum value of Δ̃ over Λ̃. This is a
nonincreasing sequence of numbers (depending on 𝑛) and as
shown in [16] it is possible to show that lim inf𝑛→+∞Δ̃

𝑛

min =
0. This means that the distance between the target element
and the unknown solution of the differential equation can be
made arbitrarily small. In Kunze et al. [21], the authors con-
sidered the case of inverse problems for random stochastic
differential equations while in Capasso et al. [29] the case of
stochastic differential equations is analyzed.

Example 4. Suppose that the stochastic process𝑋𝑡 is believed
to follow a geometric Brownian motion; then it satisfies the
stochastic differential equation

𝑑𝑋𝑡 = 𝑎𝑋𝑡𝑑𝑡 + 𝑏𝑋𝑡𝑑𝑊𝑡, (12)

where𝑊𝑡 is a Wiener process and the constants 𝑎 and 𝑏 are
the percentage drift and the percentage volatility, respectively.
We consider the following inverse problem: given realiza-
tions/paths𝑋𝑖

𝑡
, 1 ≤ 𝑖 ≤ 𝑁, estimate the values 𝑎 and 𝑏. Taking

the expectation in (12), we see that E(𝑋𝑡) satisfies the simple
fixed point equation

E (𝑋𝑡) = 𝑇 (E (𝑋𝑡)) = 𝑋0 + ∫

𝑡

0

𝑎E (𝑋𝑟) 𝑑𝑟.
(13)

Hence, to solve the inverse problem, we construct the mean
of the realizations

𝑋
∗

𝑡
=

1

𝑁

𝑁

∑

𝑖=1

𝑋
𝑖

𝑡
(14)

and use collage coding to determine the value of 𝑎 that
minimizes the collage distance 𝑑2(𝑋

∗

𝑡
, 𝑇𝑋

∗

𝑡
). We can then

estimate the value of 𝑏 by using the known formula var(𝑋𝑡) =

𝑒
2𝑎𝑡
𝑋
2

0
(𝑒
𝑏
2

𝑡
−1), approximating var(𝑋𝑡) from the realizations.

As an example, we set 𝑎 = 2, 𝑏 = 4, and 𝑋0 = 1 and then
generate 𝑁 paths on [0, 1], dividing the interval into 𝑀
subintervals in order to simulate the Brownian motion on
[0, 1]. Beginning with these paths, we seek estimates of 𝑎
and 𝑏 using collage coding. Figure 1 shows five paths for the
Brownian motion and the process 𝑋𝑡. Table 1 presents the
numerical results of the example.

1.5

1

0.5

0

−0.5

−1

0.2 0.4 0.6 0.8 1

t

Figure 1: Different paths of the Brownian motion with𝑀 = 1000

and𝑁 = 300.

Table 1: Minimal collage distance parameters for different 𝑁 and
𝑀, to five decimal places.

𝑁 𝑀 𝑏 𝑎

100 300 3.78599 1.69618
100 600 4.33750 1.78605
100 1000 4.05374 1.85780
300 300 3.34231 1.80282
300 600 3.54219 1.81531
300 1000 3.84973 1.78323

3. Inverse Problems for BVPs by
the Generalized Collage Theorem

3.1. Elliptic Equations. Let us consider the following varia-
tional equation:

𝑎 (𝑢, V) = 𝜙 (V) , V ∈ 𝐻, (15)

where 𝜙(V) and 𝑎(𝑢, V) are linear and bilinear maps, respec-
tively, both defined on a Hilbert space 𝐻. Let us denote by
⟨⋅, ⋅⟩ the inner product in𝐻, ‖𝑢‖2 = ⟨𝑢, 𝑢⟩ and 𝑑(𝑢, V) = ‖𝑢 −
V‖, for all 𝑢, V ∈ 𝐻. The inverse problem may now be viewed
as follows: suppose that we have an observed solution 𝑢 and
a given (restricted) family of bilinear functionals 𝑎𝜆(𝑢, V),
𝜆 ∈ R𝑛. We now seek “optimal” values of 𝜆. The existence
and uniqueness of solutions to this kind of equation are pro-
vided by the classical Lax-Milgram representation theorem.
Suppose that we have a “target” element 𝑢 ∈ 𝐻 and a family of
bilinear functionals 𝑎𝜆. Then, by the Lax-Milgram theorem,
there exists a unique vector 𝑢𝜆 ∈ 𝐻 such that 𝜙(V) = 𝑎𝜆(𝑢𝜆, V)
for all V ∈ 𝐻.Wewould like to determine if there exists a value
of the parameter 𝜆 such that 𝑢𝜆 = 𝑢 or,more realistically, such
that ‖𝑢𝜆 − 𝑢‖ is small enough. The following theorem will be
useful for the solution of this problem.



4 Mathematical Problems in Engineering

3

2

1

1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

3

2

1

1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

3

2

1

1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

3

2

1

1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

3

2

1

1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

3

2

1

1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

3

2

1

1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

3

2

1

1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

Figure 2: (Left to right, top to bottom) for two-dimensional Example 4, the graphs of our actual 𝜅(𝑥, 𝑦), and the collage-coded approximations
of 𝜅 with𝑁 = 𝑀 = 3 through𝑁 = 𝑀 = 9.

Theorem 5 (Generalized Collage Theorem [24]). Suppose
that 𝑎𝜆(𝑢, V) : Λ × 𝐻 × 𝐻 → R is a family of bilinear forms
for all 𝜆 ∈ Λ and 𝜙 : 𝐻 → R is a given linear functional.
Let 𝑢𝜆 denote the solution of the equation 𝑎𝜆(𝑢, V) = 𝜙(V) for
all V ∈ 𝐻 as guaranteed by the Lax-Milgram theorem. Given a
target element 𝑢 ∈ 𝐻,

󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢𝜆

󵄩
󵄩
󵄩
󵄩
≤

1

𝑚𝜆

𝐹 (𝜆) , (16)

where

𝐹 (𝜆) = sup
V∈𝐻, ‖V‖=1

󵄨
󵄨
󵄨
󵄨
𝑎𝜆 (𝑢, V) − 𝜙 (V)

󵄨
󵄨
󵄨
󵄨
. (17)

In order to ensure that the approximation 𝑢𝜆 is close to
a target element 𝑢 ∈ 𝐻, we can, by the Generalized Collage
Theorem, try to make the term 𝐹(𝜆)/𝑚𝜆 as close to zero as
possible. The appearance of the 𝑚𝜆 factor complicates the
procedure as does the factor 1/(1−𝑐) in standard collage cod-
ing, that is, (1). If inf𝜆∈Λ𝑚𝜆 ≥ 𝑚 > 0, then the inverse problem
can be reduced to the minimization of the function 𝐹(𝜆)
on the space Λ; that is,

min
𝜆∈Λ

𝐹 (𝜆) . (18)

The choice of 𝜆 according to (18) for minimizing the residual
is, in general, not stabilizing (see [8]). However, as the next
sections show, under the condition inf𝜆∈Λ𝑚𝜆 ≥ 𝑚 > 0, our
approach is stable. Following our earlier studies of inverse
problems using fixed points of contraction mappings, we
will refer to the minimization of the functional 𝐹(𝜆) as a
“generalized collage method.” Such an optimization problem
has a solution that can be approximated with a suitable
discrete and quadratic program, derived from the application
of the Generalized Collage Theorem and an adequate use of
an orthonormal basis in the Hilbert space𝐻, as seen in [24].

Example 6. We now present an inverse problem for the two-
dimensional steady-state diffusion equation. With 𝐷 = {0 <
𝑥, 𝑦 < 1},

−∇ ⋅ (𝜅 (𝑥, 𝑦) ∇𝑢 (𝑥, 𝑦)) + 𝑞 (𝑥, 𝑦) 𝑢 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ 𝐷,

𝑢 (𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ 𝜕𝐷,

(19)

where 𝜅(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) vary in both 𝑥 and 𝑦. Given
𝑢(𝑥, 𝑦), 𝑞(𝑥, 𝑦), and 𝑓(𝑥, 𝑦) on [0, 1]

2, we wish to find
an approximation of 𝜅(𝑥, 𝑦). As the first example, we set
𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦), 𝑞(𝑥, 𝑦) = 0, and use the function
𝜅(𝑥, 𝑦) = 1 + 6𝑥

2
𝑦(1 − 𝑦) to determine 𝑓(𝑥, 𝑦) via (29).

Now, given the functions 𝑢(𝑥, 𝑦),𝑓(𝑥, 𝑦), and 𝑞(𝑥, 𝑦), we seek
to approximate 𝜅(𝑥, 𝑦). This inverse problem is treated as
Example 3 in [9], using a modified Uzawa algorithm. In
Figure 2, we present graphs of our actual 𝜅(𝑥, 𝑦), as well as
the results obtained by minimizing (18). For 𝑁 and𝑀 fixed
natural numbers, we define ℎ𝑥 = 1/𝑁 and ℎ𝑦 = 1/𝑀, as well
as the (𝑁 + 1)(𝑀 + 1) nodes in [0, 1]2 as follows:

(𝑥𝑖, 𝑦𝑗) = (𝑖ℎ𝑥, 𝑗ℎ𝑦) , 0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀. (20)

The corresponding finite element basis functions 𝜉𝑖𝑗(𝑥, 𝑦) are
pyramids with hexagonal bases, such that 𝜉𝑖𝑗(𝑥𝑖, 𝑦𝑗) = 1 and
𝜉𝑖𝑗(𝑥𝑘, 𝑦𝑙) = 0 for 𝑘 ̸= 𝑖, 𝑙 ̸= 𝑗 (see [24] for more details on
this).

Next, we perturb the target function 𝑢(𝑥, 𝑦), leaving
𝑓(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) exact. Table 2 presents the 𝐿2 error ‖𝑢 −
𝑢noisy‖ between the true solution 𝑢 and the noised target 𝑢noisy
and the resulting error ‖𝜅−𝜅collage‖ between the true 𝜅 and the
collage-coded approximation 𝜅collage for numerous cases of𝑁
and𝑀. Note that ‖𝜅‖2 = 1.38082 and ‖𝑢‖2 = 0.5.
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Table 2: Numerical results for the inverse problem with different levels of noise.

𝑁 = 𝑀

‖𝜅 − 𝜅collage‖2
𝑢noisy = 𝑢 ‖𝑢 − 𝑢noisy‖2 = 0.025 ‖𝑢 − 𝑢noisy‖2 = 0.05

3 0.06306 0.09993 0.17050
4 0.03480 0.07924 0.15561
5 0.02246 0.07275 0.15128
6 0.01564 0.07118 0.15065
7 0.01160 0.07051 0.15039
8 0.00902 0.07008 0.15014
9 0.00733 0.06981 0.14996
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Figure 3: (Left to right) for two-dimensional Example 6, the graphs of our actual 𝜅(𝑥, 𝑦), and the collage-coded approximations of 𝜅 with
𝑁 = 𝑀 = 3, 4, 5.

As the second example, let us follow Example 7 of [10],
and we set 𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦), 𝑞(𝑥, 𝑦) = 4 + cos(𝜋𝑥𝑦),
and 𝜅(𝑥, 𝑦) = (1 + 𝑥

2
+ 𝑥𝑦)/1000. With these choices,

we determine the function 𝑓(𝑥, 𝑦). The inverse problem is
to estimate 𝜅(𝑥, 𝑦) when given 𝑢(𝑥, 𝑦), 𝑓(𝑥, 𝑦), and 𝑞(𝑥, 𝑦).
In Figure 3, we present graphs of the results obtained by
minimizing (18) with𝑁 = 𝑀 = 3 through𝑁 = 𝑀 = 5.

These results have been extended to a wider class of
elliptic equations problems in [31, 32], by considering not only
Hilbert but also reflexive Banach spaces, and even replacing
the primal variational formulation of such a problem, (15),
with a more general constrained variational one. Let us
mention that this kind of formulation arises, for instance,
when the boundary constraints are weakly imposed.

Theorem 7 (see [32, 33]). Let 𝑋, 𝑌, 𝑍, and 𝑊 be reflexive
Banach spaces, let 𝜙 : 𝑌 → R and 𝜓 : 𝑊 → R be bounded
and linear functionals, and letΛ be a nonempty set and assume
that for each 𝜆 ∈ Λ, 𝛼𝜆 and 𝛽𝜆 are positive real numbers and
𝑎𝜆 : 𝑋 × 𝑌 → R, 𝑏𝜆 : 𝑌 × 𝑍 → R, and 𝑐𝜆 : 𝑋 ×𝑊 → R are
bounded and bilinear forms. If one writes

𝐾𝑏
𝜆

:= {𝑦 ∈ 𝑌 : 𝑏𝜆 (𝑦, 𝑧) = 0, ∀𝑧 ∈ 𝑍} ,

𝐾𝑐
𝜆

:= {𝑥 ∈ 𝑋 : 𝑐𝑗 (𝑥, 𝑤) = 0, ∀𝑤 ∈ 𝑊}

(21)

and suppose that

𝑥 ∈ 𝐾𝑐
𝜆

, 𝑎𝜆 (𝑥, 𝑦) = 0, ∀𝑦 ∈ 𝐾𝑏
𝜆

󳨐⇒ 𝑥 = 0,

𝑦 ∈ 𝐾𝑏
𝜆

󳨐⇒ 𝛼𝜆

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
≤ sup

𝑥∈𝐾
𝑐
𝜆

, ‖𝑥‖=1

󵄩
󵄩
󵄩
󵄩
𝑎𝜆 (𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩
,

𝑤 ∈ 𝑊 󳨐⇒ 𝛽𝜆 ‖𝑤‖ ≤ sup
𝑥∈𝑋, ‖𝑥‖=1

󵄩
󵄩
󵄩
󵄩
𝑐𝜆 (𝑥, 𝑤)

󵄩
󵄩
󵄩
󵄩
,

(22)

then the constrained variational equation

𝑥 ∈ 𝑋 𝑤𝑖𝑡ℎ {

𝑦 ∈ 𝐾𝑏
𝜆

󳨐⇒ 𝑎𝜆 (𝑥, 𝑦) = 𝜙 (𝑦)

𝑤 ∈ 𝑊 󳨐⇒ 𝑐𝜆 (𝑥, 𝑤) = 𝜓 (𝑤)
(23)

admits a unique solution 𝑥𝜆 ∈ 𝑋 and in addition for all 𝑥0 ∈ 𝑋
there holds
󵄩
󵄩
󵄩
󵄩
𝑥𝜆 − 𝑥0

󵄩
󵄩
󵄩
󵄩
≤

1

𝛼𝜆

sup
𝑦∈𝑌,‖𝑦‖=1

󵄨
󵄨
󵄨
󵄨
𝜙 (𝑦) − 𝑎𝜆 (𝑥0, 𝑦)

󵄨
󵄨
󵄨
󵄨

+

1

𝛽𝜆

(1 +

󵄩
󵄩
󵄩
󵄩
𝑎𝜆

󵄩
󵄩
󵄩
󵄩

𝛼𝜆

) sup
𝑤∈𝑊, ‖𝑤‖=1

󵄨
󵄨
󵄨
󵄨
𝜓 (𝑤) − 𝑐𝜆 (𝑥0, 𝑤)

󵄨
󵄨
󵄨
󵄨
.

(24)

If inf𝜆∈Λ𝛼𝜆 > 0, inf𝜆∈Λ𝛽𝜆 > 0, and sup𝜆∈Λ‖𝑎𝜆‖ < ∞, then
the corresponding inverse problem leads to theminimization
problem

min
𝜆∈Λ

( sup
𝑦∈𝑌,‖𝑦‖=1

󵄨
󵄨
󵄨
󵄨
𝜙 (𝑦) − 𝑎𝜆 (𝑥0, 𝑦)

󵄨
󵄨
󵄨
󵄨

+ sup
𝑤∈𝑊, ‖𝑤‖=1

󵄨
󵄨
󵄨
󵄨
𝜓 (𝑤) − 𝑐𝜆 (𝑥0, 𝑤)

󵄨
󵄨
󵄨
󵄨
) ,

(25)

for which an approximated quadratic program follows from
the preceding collage-type result and some properties of
Schauder bases in the involved reflexive Banach spaces (see
[32] for the details).
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3.2. Parabolic Equations. Suppose that we have a given
Hilbert space 𝐻 and let us consider the following abstract
formulation of a parabolic equation:

⟨

𝑑

𝑑𝑡

𝑢, V⟩ = 𝜓 (V) + 𝑎 (𝑢, V) ,

𝑢 (0) = 𝑓,

(26)

where 𝜓 : 𝐻 → R is a linear functional, 𝑎 : 𝐻 × 𝐻 → R is
a bilinear form, and 𝑓 ∈ 𝐻 is an initial condition. The aim of
the inverse problem for the above system of (29) consists of
getting an approximation of the coefficients and parameters
starting from a sample of observations of a target 𝑢 ∈ 𝐻. To
do this, let us consider a family of bilinear functionals 𝑎𝜆 and
let 𝑢𝜆 be the solution to

⟨

𝑑

𝑑𝑡

𝑢𝜆, V⟩ = 𝜓 (V) + 𝑎𝜆 (𝑢𝜆, V)

𝑢0 = 𝑓.

(27)

We would like to determine if there exists a value of the
parameter 𝜆 such that 𝑢𝜆 = 𝑢 or, more realistically, such that
‖𝑢𝜆 − 𝑢‖ is small enough. To this end, Theorem 8 states that
the distance between the target solution 𝑢 and the solution
𝑢𝜆 of (27) can be reduced by minimizing a functional which
depends on parameters.

Theorem 8. Let 𝑢 : [0, 𝑇] → 𝐿
2
(𝐷) be the target solution

which satisfies the initial condition in (29) and suppose that
(𝑑/𝑑𝑡)𝑢 exists and belongs to 𝐻. Suppose that 𝑎𝜆(𝑢, V) : Λ ×
𝐻 × 𝐻 → R is a family of bilinear forms for all 𝜆 ∈ Λ. One
has the following result:

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢𝜆

󵄩
󵄩
󵄩
󵄩𝐻
𝑑𝑡 ≤

1

𝑚
2

𝜆

∫

𝑇

0

( sup
‖V‖=1

⟨

𝑑

𝑑𝑡

𝑢, V⟩

− 𝜓 (V) − 𝑎𝜆 (𝑢, V) )
2

𝑑𝑡,

(28)

where 𝑢𝜆 is the solution of (27) s.t. 𝑢𝜆(0) = 𝑢(0) and 𝑢𝜆(𝑇) =
𝑢(𝑇).

Example 9. Let us consider the following equation:

𝑢𝑡 = (𝑘 (𝑥) 𝑢𝑥)𝑥
+ 𝑔 (𝑥, 𝑡) , 0 < 𝑥 < 1,

𝑢0 = 0,

𝑢1 = 0,

(29)

where 𝑔(𝑥, 𝑡) = 𝑡𝑥(1 − 𝑥), subject to 𝑢(𝑥, 0) = 10 sin(𝜋𝑥) and
𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0. We set 𝑘(𝑥) = 1 + 3𝑥 + 2𝑥2, solve the
problem for 𝑢(𝑥, 𝑡), and sample the solution at𝑁2 uniformly
positioned grid points for (𝑥, 𝑡) ∈ [0, 1]

2 to generate a
collection of targets. Given this data and 𝑔(𝑥, 𝑡), we then seek
an estimation of 𝑘(𝑥) in the form 𝑘(𝑥) = 𝑘0 + 𝑘1𝑥+ 𝑘2𝑥

2. The
results we obtain through the generalized collage method are
summarized inTable 3. As for the elliptic case, the table shows
that the method subject to noisy perturbations is stable.

Table 3: Collage coding results for the parabolic equation in
Example 9.

Noise 𝜀 𝑁 𝑘0 𝑘1 𝑘2

0 10 0.87168 2.90700 0.21353
0 20 0.93457 2.97239 1.49201
0 30 0.94479 2.98304 1.76421
0 40 0.94347 2.97346 1.85572
0.01 10 0.87573 2.82810 0.33923
0.01 20 0.92931 2.91536 1.32864
0.01 30 0.92895 2.84553 0.59199
0.10 10 0.90537 1.97162 0.59043
0.10 20 0.77752 0.92051 −0.77746
0.10 30 0.60504 −0.12677 −0.14565

3.3. Hyperbolic Equations. Let us now consider the following
weakly formulated hyperbolic equation:

⟨

𝑑
2

𝑑𝑡
2
𝑢, V⟩ = 𝜓 (V) + 𝑎 (𝑢, V) ,

𝑢 (0) = 𝑓,

𝑑

𝑑𝑡

𝑢 (0) = 𝑔,

(30)

where 𝜓 : 𝐻 → R is a linear functional, 𝑎 : 𝐻×𝐻 → R is a
bilinear form, and 𝑓, 𝑔 ∈ 𝐻 define the initial conditions. As
in the previous sections, the aim of the inverse problem for
the above system of equations consists of reconstructing the
coefficients starting from a sample of observations of a target
𝑢 ∈ 𝐻. We consider a family of bilinear functionals 𝑎𝜆 and let
𝑢𝜆 be the solution to

⟨

𝑑
2

𝑑𝑡
2
𝑢𝜆, V⟩ = 𝜓 (V) + 𝑎𝜆 (𝑢𝜆, V) ,

𝑢0 = 𝑓,

𝑑

𝑑𝑡

𝑢 (0) = 𝑔.

(31)

We would like to determine if there exists a value of the
parameter 𝜆 such that 𝑢𝜆 = 𝑢 or, more realistically, such that
‖𝑢𝜆 − 𝑢‖ is small enough. Theorem 10 states that the distance
between the target solution 𝑢 and the solution 𝑢𝜆 of (31) can
be reduced by minimizing a functional which depends on
parameters.

Theorem 10. Let 𝑢 : [0, 𝑇] → 𝐿
2
(𝐷) be the target solution

which satisfies the initial condition in (30) and suppose that
(𝑑

2
/𝑑𝑡

2
)𝑢 exists and belongs to 𝐻. Suppose that there exists a

family of 𝑚𝜆 > 0 such that 𝑎𝜆(V, V) ≥ 𝑚𝜆‖V‖
2 for all V ∈ 𝐻.

One has the following result:

∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢𝜆

󵄩
󵄩
󵄩
󵄩

2
𝑑𝑡

≤

1

𝑚
2

𝜆

∫

𝑇

0

( sup
‖V‖=1

⟨

𝑑
2

𝑑𝑡
2
𝑢, V⟩ − 𝜓 (V) − 𝑎 (𝑢, V))

2

𝑑𝑡,

(32)
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Table 4: Collage coding results for the hyperbolic equation in
Example 11.

Noise 𝜀 𝑁 𝑘0 𝑘1 𝑘2

0 10 0.87168 2.90700 0.21353
0 20 0.93457 2.97239 1.49201
0 30 0.94479 2.98304 1.76421
0 40 0.94347 2.97346 1.85572
0.01 10 0.87573 2.82810 0.33923
0.01 20 0.92931 2.91536 1.32864
0.01 30 0.92895 2.84553 0.59199
0.10 10 0.90537 1.97162 0.59043
0.10 20 0.77752 0.92051 −0.77746
0.10 30 0.60504 −0.12677 −0.14565

where 𝑢𝜆 is the solution of (31) s.t. 𝑢(0) = 𝑢𝜆(0) and 𝑢(𝑇) =
𝑢𝜆(𝑇).

Example 11. We adjust Example 9, considering

𝑢𝑡𝑡 − (𝑘 (𝑥) 𝑢𝑥)𝑥
= 𝑔 (𝑥, 𝑡) , (33)

where 𝑔(𝑥, 𝑡) = 𝑡𝑥(1 − 𝑥), subject to 𝑢(𝑥, 0) = sin(𝜋𝑥) and
𝑢𝑡(𝑥, 0) = 0 and 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0. We set 𝑘(𝑥) = 1 + 3𝑥 +
2𝑥

2 and construct target data as in Example 9 and then seek
to recover 𝑘(𝑥) = 𝑘0 + 𝑘1𝑥 + 𝑘2𝑥

2 given this data and 𝑔(𝑥, 𝑡).
The results we get from the generalized collage method are
summarized in Table 4, which again proves the stability of the
method under noise.

4. Application

4.1.TheVibrating StringDriven by a Stochastic Process. Before
stating and solving two inverse problems, we begin by giving
the details and motivations for the specific model we are
interested in studying. We consider the following system of
coupled differential equations. The first one is a stochastic
differential equation and the second one is a hyperbolic
partial differential equation. On a domain 𝐷 ⊂ R𝑑, we have
the equations

𝑑𝑋𝑡 = [∫

𝐷

𝑔 (𝑢 (𝑡, 𝑦)) 𝑑𝜇𝑡 (𝑦)]𝑋𝑡𝑑𝑡 + 𝑋𝑡𝑑𝐵𝑡,

𝑋𝑡=0 = 𝑋0,

(34)

𝑑
2

𝑑𝑡
2
𝑢 (𝑡, 𝑦) + ∇𝑦 (𝜅1 (𝑦) ∇𝑦𝑢 (𝑡, 𝑦)) = 𝜅2 (𝑦) 𝛿𝑋

𝑡

(𝑦) ,

(𝑡, 𝑦) ∈ [0, 𝑇] × 𝐷,

𝑢 (0, 𝑦) = 𝜙1 (𝑦) ,

𝜕𝑢

𝜕𝑛

(𝑡, 𝑦) = 𝜙2 (𝑡, 𝑦) , (𝑡, 𝑦) ∈ [0, 𝑇] × 𝜕𝐷,

(35)

where 𝜇𝑡 is the law of𝑋𝑡 and 𝛿𝑋
𝑡

is the Dirac delta “function”
at the point𝑋𝑡.

For instance, imagine we have a flexible string directed
along the 𝑥-axis, with the string kept stretched by a constant
horizontal tension, and forced to vibrate perpendicularly to
the 𝑥-axis under random force 𝐹(𝑥, 𝑡). If 𝑢 denotes the dis-
placement of a point𝑥 at time 𝑡, it is well known that𝑢 satisfies
the following equation:

𝜕
2

𝜕𝑡
2
𝑢 −

𝜕
2

𝜕𝑥
2
𝑢 = 𝐹 (𝑥, 𝑡) , (36)

where 𝑥 ∈ 𝐷 and 𝑡 > 0. In our model, we suppose that
𝐹(𝑦, 𝑡) = 𝜅2(𝑦)𝛿𝑋

𝑡

(𝑦), where𝑋𝑡 is a stochastic process which
is a solution of the stochastic differential equation (34). In
other words, the hyperbolic equation has a forcing term that
is driven by this stochastic process. The random vibration on
an infinite string has received recent attention (see [34, 35]).
Figure 4 presents some snapshots of the displacement for the
related finite string problem.

In the next sections, we present a solution method for
solving two different parameter identification problems for
this system of coupled differential equations: one for 𝜅1
and one for 𝑔. Both of these two methods are based on
the numerical schemes which have been presented in the
previous sections.

Before we begin the analysis, a few words about (35) are
in order, since this equation contains the generalized function
𝛿𝑋
𝑡

. That is, 𝛿𝑋
𝑡

(𝑦) has a meaning only when it is integrated
with respect to a test function 𝜃(𝑦).Thus, themeaning of (35)
is that for each 𝜃 ∈ 𝐻1

(𝐷) we have

∫

𝐷

𝜃 (𝑦)(

𝑑
2

𝑑𝑡
2
𝑢 (𝑡, 𝑦) + ∇𝑦 (𝜅1 (𝑦) ∇𝑦𝑢 (𝑡, 𝑦))) 𝑑𝑦

= ∫

𝐷

𝜃 (𝑦) 𝜅2 (𝑦) 𝛿𝑋
𝑡

(𝑦) 𝑑𝑦 = 𝜃 (𝑋𝑡) 𝜅2 (𝑋𝑡) .

(37)

4.1.1. A Parameter IdentificationModel for 𝜅1. For this param-
eter identification problem, we seek to estimate 𝜅1 given 𝜅2,
𝑔, and the observations of𝑋𝑡. From this data, we recover the
density 𝑓𝑋

𝑡

of the process𝑋𝑡. Averaging equation (35) allows
one to get a simpler model for the parameter identification
problem (see [36]). This replaces the quantity 𝛿𝑋

𝑡

with its
expectation E(𝛿𝑋

𝑡

(𝑦)). Since 𝑋𝑡 is absolutely continuous,
thenE(𝛿𝑋

𝑡

(𝑦)) = 𝑓𝑋
𝑡

(𝑦), the density of the distribution of𝑋𝑡.
The previousmodel can therefore be rewritten in an averaged
form as

𝑑𝑋𝑡 = [∫

𝐷

𝑔 (𝑢̃ (𝑡, 𝑦)) 𝑓𝑋
𝑡

(𝑦) 𝑑𝑦]𝑋𝑡𝑑𝑡 + 𝑋𝑡𝑑𝐵𝑡,

𝑋𝑡=0 = 𝑋0,

(38)

coupled with the deterministic PDE

𝑑
2

𝑑𝑡
2
𝑢̃ (𝑡, 𝑦) + ∇ (𝜅1 (𝑦) ∇𝑦𝑢̃ (𝑡, 𝑦)) = 𝜅2 (𝑦) 𝑓𝑋

𝑡

(𝑦) ,

(𝑡, 𝑦) ∈ [0, 𝑇] × 𝐷

𝑢̃ (0, 𝑦) = 𝜙1 (𝑦) ,

𝜕𝑢̃

𝜕𝑛

(𝑡, 𝑦) = 𝜙2 (𝑡, 𝑦) , (𝑡, 𝑦) ∈ [0, 𝑇] × 𝜕𝐷.

(39)
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Figure 4: Snapshots of a randomly forced vibrating string, with time increasing from left to right and top to bottom.

Note that the averaged equation, (39), has solutions in the
usual sense. For this particular case, we have E(𝑢(𝑡, 𝑦)) =

𝑢̃(𝑡, 𝑦). To see this, just notice that the operator 𝑑2/𝑑𝑡2 − Δ 𝑦

is linear, so

E(
𝑑
2

𝑑𝑡
2
𝑢 + ∇𝑦 (𝜅1 (𝑦) ∇𝑦𝑢))

=

𝑑
2

𝑑𝑡
2
E (𝑢) + ∇𝑦 (𝜅1 (𝑦) ∇𝑦E𝑢) .

(40)

Furthermore,

E(∫
𝐷

𝜃 (𝑦) 𝜅2 (𝑦) 𝛿𝑋
𝑡

(𝑦) 𝑑𝑦) = ∫

𝐷

𝜃 (𝑦) 𝜅2 (𝑦) 𝑓𝑋
𝑡

(𝑦) 𝑑𝑦,

(41)

since 𝜅1 and 𝜅2 are deterministic functions. Thus, E(𝑢) is the
solution to the deterministic PDE

𝑑
2

𝑑𝑡
2
E (𝑢 (𝑡, 𝑦)) − 𝜅1 (𝑦) Δ 𝑦E (𝑢 (𝑡, 𝑦)) = 𝜅2 (𝑦) 𝑓𝑋

𝑡

(𝑦) ,

(𝑡, 𝑦) ∈ [0, 𝑇] × 𝐷,

E (𝑢 (0, 𝑦)) = 𝜙1 (𝑦) ,

𝜕E (𝑢)

𝜕𝑛

(𝑡, 𝑦) = 𝜙2 (𝑡, 𝑦) , (𝑡, 𝑦) ∈ [0, 𝑇] × 𝜕𝐷.

(42)

However, this is clearly the same PDE for which 𝑢̃ is the
solution. Thus, we must have E(𝑢) = 𝑢̃. This inverse problem
can be solved using the techniques illustrated in a previous
section on hyperbolic differential equations.

4.1.2. A Parameter Identification Problem for 𝑔. For this
parameter identification problem, we assume that 𝜅1 and

𝜅2 are known. The aim of the inverse problem consists of
recovering the functional form of 𝑔 and the density 𝑓𝑋

𝑡

of
the process 𝑋𝑡 starting from a sample of observations of the
randomprocess𝑢(𝑡, 𝑦, 𝜔), say (𝑢(𝑡, 𝑦, 𝜔1), . . . , 𝑢(𝑡, 𝑦, 𝜔𝑛)).We
do this in several steps. Let us denote by 𝑢̃ = E(𝑢(𝑡, 𝑦, ⋅)). The
first step is to use 𝑢(𝑡, 𝑦) and (35) to obtain an estimate of the
distribution of𝑋𝑡. Let us consider the averaged equation

𝑑𝑋𝑡 = [∫

𝐷

𝑔 (𝑢̃ (𝑡, 𝑦)) 𝑓𝑋
𝑡

(𝑦) 𝑑𝑦]𝑋𝑡𝑑𝑡 + 𝑋𝑡𝑑𝐵𝑡,

𝑋𝑡=0 = 𝑋0,

(43)

coupled with the deterministic PDE

𝑑
2

𝑑𝑡
2
𝑢̃ (𝑡, 𝑦) − 𝜅1 (𝑦) Δ 𝑦𝑢̃ (𝑡, 𝑦) = 𝜅2 (𝑦) 𝑓𝑋

𝑡

(𝑦) ,

(𝑡, 𝑦) ∈ [0, 𝑇] × 𝐷,

𝑢̃ (0, 𝑦) = 𝜙1 (𝑦) ,

𝜕𝑢̃

𝜕𝑛

(𝑡, 𝑦) = 𝜙2 (𝑡, 𝑦) , (𝑡, 𝑦) ∈ [0, 𝑇] × 𝜕𝐷.

(44)

Dividing the left side of the PDF in (44) by 𝜅2, we get 𝑓𝑋
𝑡

. Let
us go back to the stochastic differential equation (43), and let
us take the expectation of both sides; we get

𝑑E (𝑋𝑡) = [∫

𝐷

𝑔 (𝑢̃ (𝑡, 𝑦)) 𝑓𝑋
𝑡

(𝑦) 𝑑𝑦]E (𝑋𝑡) 𝑑𝑡,

E (𝑋𝑡=0) = E (𝑋0) .

(45)

We remember that the following relationship holds between
the expectation of a random variable and its density:

E (𝑋𝑡) = ∫

R𝑑
𝑦𝑓𝑋
𝑡

(𝑦) 𝑑𝑦. (46)
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Figure 5: Level curves of solutions in the example, with 𝜀 = 0.1, 0.025, and 0.01.

Thus, we can obtainE(𝑋𝑡), which now can be used for solving
the inverse problem for (45) via the method illustrated in
Section 2. We recover the function

Φ𝑡 = ∫

𝐷

𝑔 (𝑢̃ (𝑡, 𝑦)) 𝑓𝑋
𝑡

(𝑦) 𝑑𝑦. (47)

The last step involves the analysis of (47). The only unknown
in this model is 𝑔. Taking the 𝐿2 expansions of Φ and 𝑔 with
respect to the same 𝐿2 orthonormal basis {𝜙𝑖}, we get

∑

𝑖≥0

𝑏𝑖𝜙𝑖 = ∑

𝑖≥0

𝑎𝑖 ∫

𝐷

𝜙𝑖 (𝑢̃ (𝑡, 𝑦)) 𝑓𝑋
𝑡

(𝑦) 𝑑𝑦, (48)

and then

𝑏𝑗 = ∑

𝑖≥0

𝑎𝑖 ∫

R

[∫

𝐷

𝜙 (𝑢̃ (𝑠, 𝑦)) 𝑓𝑋
𝑠

(𝑦) 𝑑𝑦] 𝜙𝑗 (𝑠) 𝑑𝑠, (49)

for 𝑗 ≥ 0, a linear system in 𝑎𝑖, the solution of which is our
final step.

4.2. Inverse Problems on Perforated Domains. A porous
medium (or perforated domain) is a material characterized
by a partitioning of the total volume into a solid portion often
called the “matrix” and a pore space usually referred to as
“holes.” Mathematically speaking, these holes can be either
materials different from those of the matrix or real physical
holes. When formulating differential equations over porous
media, the term “porous” implies that the state equation is
written in the matrix only while boundary conditions should
be imposed on the whole boundary of the matrix, including
the boundary of the holes. Examples of this are Stokes or
Navier-Stokes equations that are usually written only in the
fluid part while the rocks play the role of “mathematical”
holes. Porous media are encountered everywhere in real life
and the concept of porous media is essential in many areas of
applied sciences and engineering including petroleum engi-
neering, chemical engineering, civil engineering, aerospace
engineering, soil science, geology, and material science.

Since porosity in materials can take different forms and
appear in varying degrees, solving differential equations
over porous media is often a complicated task. Indeed, the
size of holes and their distribution within a material play
an important role in its characterization, and simulations

conducted over porous media that include a large number
of matrix-holes interfaces present real challenges. This is due
to the need for a very fine discretization mesh which often
requires a significant computational time and might even
sometimes be irrelevant.This major difficulty is usually over-
come by using themathematical theory of “homogenization,”
where the heterogeneous material is replaced by a fictitious
homogeneous one through a delicate approach that is not
simply an averaging procedure. Several techniques are cur-
rently in use in homogenization including the multiple scale
method, the method of oscillating test functions of Tartar,
the two-scale convergence method, and, most recently, the
periodic unfolding method.

In the case of porous media, or heterogeneous media
in general, characterizing the properties of the material is a
tricky process and can be done on different levels, mainly the
microscopic and macroscopic scales, where the microscopic
scale describes the heterogeneities and the macroscopic one
describes the global behavior of the composite. To provide
a numerical example of an inverse problem on a perforated
domain, we set Ω = [0, 1]

2 and for 0 < 𝜀 ≤ 0.1 define
𝑁𝜀 = 1/10𝜀 and

Ω𝜀 =

𝑁
𝜀

⋃

𝑖,𝑗=1

𝐵𝜀 ((𝑖 −

1

2

) 𝜀, (𝑗 −

1

2

) 𝜀) , (50)

a domain with 𝑁2

𝜀
uniformly distributed holes of radius 𝜀.

Choosing 𝐾(𝑥, 𝑦) = 𝐾true(𝑥, 𝑦) = 10 + 2𝑥 + 3𝑦, we consider
the steady-state diffusion problem

∇ ⋅ (𝐾 (𝑥, 𝑦) ∇𝑢 (𝑥, 𝑦)) = 𝑥
2
+ 𝑦

2
, (𝑥, 𝑦) ∈ Ω \ Ω𝜀,

𝑢 (𝑥, 𝑦) = 0, 𝜕Ω,

𝜕𝑢

𝜕𝑛

(𝑥, 𝑦) = 0, 𝜕Ω𝜀.

(51)

Suppose that, for a certain 𝜖, we sample the solution 𝑢𝜆
𝜖
of

the above model on the perforated domain Ω𝜀. We aim at
estimating 𝜆 starting from this data and by using the model
which is obtainedwhen 𝜖 = 0 instead. In fact, it ismuch easier
to solve an inverse problem on the initial domain Ω instead
of on the perforated domainΩ𝜖.

For a fixed value of 𝜀, we solve the diffusion problem
numerically and sample the solution at 𝑀 × 𝑀 uniformly
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Table 5: Results for the inverse problem. True values are (𝜆0, 𝜆1, 𝜆2) = (10, 2, 3).

𝜀 𝑁𝜀 𝑀

Recovered parameters
𝜆0 𝜆1 𝜆2

0.1 1

9 13.2068 −0.5921 0.6250

49 13.2428 −0.5837 0.6346

49 13.2419 −0.5798 0.6398

0.025 4

9 9.8434 1.8148 2.8119

49 9.9758 1.6894 2.6875

99 9.9787 1.6838 2.6820

0.01 10

9 9.9811 1.6221 2.6199

49 10.0069 1.6041 2.6014

99 10.0069 1.6039 2.6014

Figure 6: Meshes for each problem.

distributed points strictly insideΩ. If such a point lies inside a
hole, we obtain no information at the point. Using the𝑀2 (or
fewer) data points, we use the Generalized Collage Theorem
to solve the related inverse problem, seeking a diffusivity
function of the form𝐾(𝑥, 𝑦) = 𝜆0 + 𝜆1𝑥 + 𝜆2𝑦.

For this example, we use the particular values 𝜀 = 0.1,
0.025, and 0.01, corresponding to𝑁𝜀 = 1, 4, and 10. The level
curves are illustrated in Figure 5. The results for𝑀 = 9, 49,
and 99 are given in Table 5. In Figure 6, we illustrate the
meshes used for numerically solving each of the problems.
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