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Five fulleropyrrolidines and methanofullerenes, bearing one or two terthiophene moieties, have been prepared in a convenient way
and well characterized. These novel fullerene derivatives are characterized by good solubility and by better harvesting of the solar
radiation with respect to traditional PCBM. In addition, they have a relatively high LUMO level and a low band gap that can be
easily tuned by an adequate design of the link between the fullerene and the terthiophene. Preliminary results show that they are
potential acceptors for the creation of efficient bulk-heterojunction solar cells based on donor polymers containing thiophene units.

1. Introduction

The use of renewable energy sources instead of fossil fuel is a
necessity for humanity. The Sun is a green and cheap source of
energy: 10 minutes of solar irradiation onto the Earth’s surface
is equal to the total yearly human energy consumption [1, 2].
The world energy challenge can be won harnessing the Sun
power with photovoltaic technologies. Organic photovoltaic
devices (OPVs) based on conjugated polymers and oligomers
have received a lot of attention because of their potential
for lightweight, flexible, and low cost photovoltaic energy
conversion [3-7]. Among them, the most common devices
are bulk-heterojunction (BHJ) polymer solar cells made upon
blending an electron donor conjugated polymer with an
electron acceptor material such as fullerene derivatives [3-7].
Fullerene-based OPV can be fabricated via vapor deposition;
however, considering the expected demand for enhancing
cost performance by mass production in the near future,
application of roll-to-roll processing (i.e., the solvent casting
method) appears highly desirable [8]. Therefore, develop-
ment of stable fullerene derivatives that show both high

power conversion efficiency and sufficient solubility in
organic solvents is strongly desired [3-7]. Various types of
fullerene derivatives for use as OPV acceptor materials have
thus been developed. [6, 6]-Phenyl-C61-butyric acid methyl
ester (PCBM) [9,10] is known to be the best blending material
among these derivatives as an acceptor with polythiophenes
such as regioregular poly(3-hexylthiophene) (P3HT), which
is a typical donor partner in polymer solar cells [3-7].
Although PCBM is the most popular acceptor material
so far for BH]J polymer solar cells, it is important to explore
new easily accessible C60 derivatives as acceptor partners for
polymer donor materials with a huge diversity of chemical
structures. Many efforts have been devoted to the modifica-
tion of the PCBM skeleton by introducing substituents on
the phenyl ring, exchanging methyl groups with long alkyl
chains, an ethyleneoxy moiety, or a perfluoroalkyl chain to
tune the miscibility, thermal properties, and energy levels,
and the resulting methanofullerene derivatives have been
used to control the film morphology, raise the open circuit
voltage (V,.), and improve the device stability [11-17]. A few
years ago, a PCBM analogue containing a thiophene moiety,
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[6, 6]-thienyl-C61-butyric acid methyl ester (TCBM), has
been reported to exhibit device performance close to PCBM
with P3HT as the donor [11-17]. A series of TCBM ana-
logues with different alkyl chains (methyl, hexyl, and ethyl-
hexyl) at the 5 positions of the thiophene ring was then
prepared [18]. Like methanofullerenes, fulleropyrrolidines
are efficient acceptors for OPV devices and, recently, it
was established that the introduction of a thiophene moi-
ety on the pyrrolidine ring has a favorable effect on the
power conversion energy (PCE) of a solar cell [19]. It was
reported that 1-(2-(2-methoxyethoxy)ethyl)-2-(2-thiophen-
2-yDfulleropyrrolidine and related derivatives with bithio-
phene or terthiophene are eflicient acceptor partners with
P3HT, the compound bearing terthiophene being character-
ized by the highest V,_ but lower fill factor (FF) and short cir-
cuit current (J,.) due to reduced solubility when compared to
the mono- and bithiophene derivatives [19]. In fact the solu-
bility of a fullerene derivative strongly affects the morphology
of its composite with P3HT and therefore the efficiency of the
cell [20, 21]. These interesting results prompted us to design
novel soluble terthiophene-substituted fullerene derivatives
as easily accessible acceptor molecules for BHJ polymer solar
cells (Scheme 1). We prepared both terthiophene-substituted
fulleropyrrolidines (F1-F3) and methanofullerenes (F4-F5),
with the aim of obtaining soluble acceptor materials with a
good affinity for donor polymers based on thiophene units
(Figure 1). As our work was in progress, as expected, it was
reported by Saravanan et al. that F2 is a better electron

FIGURE I: Terthiophene-substituted fullerene derivatives studied in
the present work.

acceptor than PCBM for the fabrication of P3HT based bulk-
heterojunction solar cells [22].

2. Materials and Methods

General Comments. Solvents were dried by standard pro-
cedures: tetrahydrofuran (THF) and toluene were freshly
distilled from Na/benzophenone under nitrogen atmosphere;
N,N-dimethylformamide (DMF) was dried over activated
molecular sieves; triethylamine (Et;N) was freshly distilled
over KOH. All reagents were purchased from Sigma-Aldrich
and were used without further purification (2,2":5',2"-
terthiophene 99% purity, fullerene-Cy, 99.5% purity, and
4-[(trimethylsilyl)ethynyl] benzaldehyde 97% purity). Reac-
tions requiring anhydrous conditions were performed under
nitrogen. 'H and ">C NMR spectra were recorded at 400 MHz
on a Bruker AVANCE-400 instrument. Chemical shifts (§)
for 'H and C spectra are expressed in ppm relative to
internal Me,Si as standard. Signals were abbreviated as
follows: s: singlet; bs: broad singlet; d: doublet; ¢: triplet;
q: quartet; m: multiplet. Mass spectra were obtained by
FT-ICR Mass Spectrometer APEX II & Xmass software
(Bruker Daltonics) and 4.7 Magnet and Autospec Fission
Spectrometer (FAB ionization). MALDI-TOF mass spectra
were obtained using a MICROFLEX LT (Bruker) with dithra-
nol (DHB) or trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-
propenylidene]malononitrile (DCTB) as matrix. Absorp-
tion spectra were recorded at room temperature with a
Perkin-Elmer Lambda 950 spectrophotometer. Samples were
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prepared by dissolving the compounds in chlorobenzene
solutions in cell with 10 mm optical path length. Thin layer
chromatography (TLC) was carried out with precoated Merck
F,s, silica gel plates whereas flash chromatography (FC)
was carried out with Macherey-Nagel silica gel 60 (230-400
mesh).

2.1. Preparation of Fullerene Derivatives FI-F3. Fullerenes
F1 and F2 were prepared according to Scheme 1, by using
compounds 1-5 as intermediates, whereas F3 was prepared
according to Scheme 2 with compounds 6 and 7 as interme-
diates.

2.2. Synthesis of Compound 2. Compound 2 was prepared as
reported in the literature [23]. Under a nitrogen atmosphere,
N-bromosuccinimide (NBS) (176.3 mg, 0.99 mmol, 1 equiv.)
was added in small portions to a solution of commercial
2,2':5',2”-terthiophene (1) (245.7 mg, 0.99 mmol, 1 equiv.)
in N,N-dimethylformamide (14.1 mL) and stirred for 24 h at
room temperature. The reaction mixture was diluted with
CH,Cl, (15mL) and washed with water (2 x 50 mL): the
organic layer was dried over Na,SO, and evaporated to dry-
ness. The product, isolated in quantitative yield (324 mg),
was used without further purification. '"H-NMR (400 MHz,
CDCl;): 6725 (td, 1H, ] = 1.2Hz, ] = 3.6 Hz), 7.20-719 (m,
1H), 710-7.08 (m, 1H), 706-7.02 (m, 2H), 6.99 (d, 1H, ] =
4Hz),6.93 (d,1H, ] = 3.6 Hz).

2.3. Synthesis of Compound 4. The novel terthiophene
derivative 4 was prepared following a procedure reported
for related compounds [24]. To a solution of 4-ethynylben-
zaldehyde (3) (42.2 mg, 0.32 mmol, 1.2 equiv.), obtained start-
ing from 4-[(trimethylsilyl)ethynyl]benzaldehyde [25], and
terthiophene derivative (2) (88.5mg, 0.27 mmol, 1 equiv.) in
degassed tetrahydrofuran (6 mL), [PdCL,(PPh;),] (7.6 mg,
4mol%), Cul (3.1mg, 6 mol%), and triethylamine (1.5mL)
were added, under a flow of nitrogen. The reaction mixture
was left under stirring at 70°C overnight. The solvent was
removed under reduced pressure and the residue was purified
by flash chromatography, using dichloromethane/hexane 6/4
as eluant, to give 4 as a dark yellow solid (66.1 mg; yield 65%).

"H-NMR (400 MHz, CDCl,): & 10 (s, 1H), 7.89 (d, 2H,
J = 8.4Hz), 7.67 (d, 2H, ] = 8.4Hz), 727 (d, 2H, ] = 3.6 Hz),
722 (d, 1H, J = 3.2Hz), 714 (d, 1H, J = 3.6 Hz), 711 (t, 2H,
J = 3.6Hz), 706 (dd, 1H, J = 3.6 Hz, ] = 5.2 Hz).

2.4. Synthesis of Compound 5. The known terthiophene
derivative 5 [19] was prepared following a procedure reported
for related compounds [26]. To a solution of 2,2":5" 2"
terthiophene (1) (100.7 mg, 0.40 mmol, 1 equiv.) in N,N-
dimethylformamide (3 mL), under nitrogen and cooled to
0°C, was added, in small portions, phosphoryl trichloride
(751 mg, 0.49 mmol, 1.2 equiv.). The cool bath was then
removed and the mixture was stirred for 24h at 80°C.
After cooling to room temperature, the reaction mixture was
neutralized with NaOH (2 mL, 1.25 M) and then diluted with
CH,CIl, and washed with water: the organic layer was dried
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ScHEME 2: Synthesis of F3.

over Na,SO, and concentrated. The crude product was puri-
fied by flash chromatography, using dichloromethane as
eluant, to give 5 as a dark solid (77.4 mg; yield 70%). "H-NMR
(400 MHz, CDCl,): 6 9.88 (s, 1H), 7.69 (d, 1H, J = 3.6 Hz), 730
(t,2H,J = 4Hz, ] =2Hz),725 (t,2H, ] = 4Hz, ] = 3.2Hz),
715 (d, 1H, ] = 4Hz), 707 (dd, 1H, ] = 3.6 Hz, ] = 5.2 Hz).

2.5. Synthesis of Compound 6. The terthiophene derivative 6
was prepared according to the literature [27]. To a solution of
2,5-dibromo-3,4-dihexylthiophene (523.4 mg, 1.27 mmol, 1
equiv.) and 2-tributylstannylthiophene (1.18 g, 3.17 mmol, 2.5
equiv.) in degassed tetrahydrofuran (8.5 mL), under a flow of
nitrogen, [PdCL,(PPh;),] (71 mg, 8 mol %) and KF (581 mg,
10 mmol, 79 equiv.) were added. The reaction mixture
was left under stirring at 70°C overnight. The solvent was
removed under reduced pressure and the residue was diluted
with CH,Cl, and washed with water: the organic layer was
dried over Na,SO, and concentrated. The crude product was
purified by flash chromatography, using hexane as eluant, to
give 6 as a dark green oil (370 mg; yield 70%). 'H-NMR data
are fully consistent with data reported in the literature [27].

2.6. Synthesis of Compound 7. 'The terthiophene derivative 7
was prepared following a procedure reported for related
compounds [26]. To a solution of 3',4'-dihexyl-2,2":5",2" -
terthiophene (6) (257 mg, 0.62mmol, 1 equiv.) and N,N-
dimethylformamide (49.7mg, 0.68 mmol, 1.1 equiv.) in
dichloroethane (6.2mL), under nitrogen and cooled to
0°C, was added, in small portions, phosphoryl trichloride
(104.3 mg, 0.68 mmol, 1.1 equiv.). The cool bath was then
removed and the mixture was stirred overnight at 80°C.
After cooling to room temperature, the organic solvent was
removed and the residue was dissolved in chloroform. A
solution of NaOH 1.25 M was added and stirred for 2h. The
organic layer was washed with water, dried over Na,SO,,
and concentrated. The crude product was purified by flash
chromatography, using chloroform as eluant, to give pure 7
(207 mg; yield 75%). '"H-NMR (400 MHz, CDCl;): & 9.91



(s, 1H), 772 (d, 1H, ] = 4Hz), 738 (dd, 1H, ] = 1.2Hz,
J = 5.2Hz), 724 (d, 1H, J = 4Hz), 719 (dd, 1H, ] = 0.8 Hz,
J = 3.6Hz), 710 (dd, 1H, J = 3.6Hz, ] = 1.6 Hz), 2.82 (bt,
2H,J = 8Hz, ] = 8.4Hz),2.74 (bt, 2H, J = 8 Hz, ] = 8.4Hz),
1.63-1.53 (m, 4H), 1.48-1.39 (m, 4H), 1.36-1.33 (m, 8H), 0.91
(bd, 6H). MS (FAB*): m/z 376.

2.7. Synthesis of the New Fulleropyrrolidines FI-F3. Fullero-
pyrrolidines F1-F3 were prepared by using the Prato cycload-
dition procedure [28, 29]. A mixture of the suitable aldehyde
(1 equiv.), fullerene C-60 (1 equiv.), and sarcosine (8 equiv.)
was refluxed for 24 h in anhydrous toluene under a nitrogen
atmosphere. After cooling to room temperature, the solvent
was evaporated under vacuum and the residue was purified
by flash chromatography, as indicated in each case.

2.8. Synthesis of F1. The crude product was purified by flash
chromatography, using hexane/toluene from 4/6 to 3/7 as
eluant. Yield is 56%. 'H-NMR (400 MHz, CDCly): 8798 (bs,
2H),7.63(d,2H, ] =8 Hz), 7.25 (bd, 1H, ] = 4 Hz), 7.20-717 (m,
2H), 710 (q, 2H, ] = 4Hz, ] = 7.2 Hz), 7.06 (d, 1H, ] = 4Hz),
704 (dd, 1H, J = 4.8Hz, J = 3.6 Hz), 5.31 (s, 1H), 5.26 (bs,
1H), 4.46 (d, 1H, J = 10 Hz), 3.02 (s, 3H). MALDI-TOF MS:
m/z 1122.9 (Cg3H,,NS; requires 1123.1, matrix DCTB).

2.9. Synthesis of F2. The crude product was purified by flash
chromatography, using hexane/toluene from 1/1 to 3/7 as
eluant. Yield is 42%. 'H-NMR (400 MHz, CDCl; + CS,): §
7.38 (bs, 1H), 723 (d, 1H, ] = 5.2Hz), 717 (d, 1H, ] = 3.6 Hz),
713 (d, 1H, J = 3.6 Hz), 711 (d, 1H, J = 4Hz), 708 (d, 1H,
J =3.6Hz),7.03 (dd, 1H, ] = 3.6 Hz, ] = 4.8 Hz), 5.29 (s, 1H),
5.05 (d, 1H, ] = 9.6Hz), 4.31 (d, 1H, ] = 9.6 Hz), 2.99 (s,
3H). MALDI-TOF MS: m/z1022.8 (C,sH,;NS; requires 1023,
without matrix).

2.10. Synthesis of F3. 'The crude product was purified by flash
chromatography, using hexane/toluene 1/1 as eluant. Yield is
60%. "H-NMR (400 MHz, CDCL,): 8737 (d,1H, J = 3.6 Hz),
7.32 (bd, 1H, ] = 5.2 Hz), 720-718 (m, 1H), 714-7.13 (m, 1H),
7.08-7.06 (m, 1H), 5.28 (s, 1H), 5.02 (d, 1H, J = 9.6 Hz), 4.28
(d, 1H, ] = 9.6Hz), 2.97 (s, 3H), 2.72-2.64 (m, 4H), 1.48-
1.44 (m, 2H), 1.40-1.37 (m, 2H), 1.32-1.27 (m, 12H), 0.91-0.85
(m, 6H). MALDI-TOF MS: m/z 1192.6 (Cg4;H,,NS; requires
1191.2, matrix DHB).

2.11. Preparation of Fullerene F4. Fullerene F4 was prepared
from compounds 8-10 as shown in Scheme 3.

2.12. Synthesis of Compound 9. The novel compound 9 was
prepared as follows. To a solution of 3',4'-dihexyl-2,2":5',2" -
terthiophene (6) (409.6 mg, 0.98 mmol, 1 equiv.) and methyl
5-chloro-5-oxopentanoate (8) (161.7 mg, 0.98 mmol, 1 equiv.)
in toluene (L.6mL), under nitrogen and cooled to 0°C,
was added, in small portions, tin tetrachloride (255.3 mg,
0.98 mmol, 1 equiv.) and stirred for 2 h. The reaction mixture
was diluted with CH,Cl, and washed with water: the organic
layer was dried over Na,SO, and concentrated. The crude
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product obtained was purified by flash chromatography,
using dichloromethane as eluant, to give 9 as a pure product
(347 mg; yield 65%). "H-NMR (400 MHz, CDCl,): 8767 (d,
1H, ] = 4Hz), 736 (dd, 1H, ] = 0.8 Hz, ] = 5.2 Hz), 7.18-7.15
(m, 2H), 709 (dd, 1H, ] = 3.6 Hz, ] = 5.2Hz), 3.71 (s, 3H),
2.99 (t, 2H, J = 7.2Hz), 2.81 (bt, 2H), 2.71 (bt, 2H), 2.48 (t,
2H, ] = 7.2Hz), 2.15-2.08 (m, 2H), 1.58-1.53 (m, 2H), 1.47-
1.39 (m, 4H), 1.36-1.29 (m, 8H), 0.92 (bd, 6H, ] = 6.8 Hz).

2.13. Synthesis of Compound 10. The novel compound 10 was
prepared as follows. A mixture of 9 (165mg, 0.3 mmol, 1
equiv.) and p-toluenesulfonyl hydrazide (68 mg, 0.36 mmol,
1.2 equiv.) was refluxed in MeOH (0.5 mL) for 18 h. After cool-
ing to room temperature, the organic solvent was removed
under reduced pressure and the residue was dissolved in
dichloromethane and washed with water. The organic layer
was dried over Na,SO, and concentrated. The residue was
purified by flash chromatography, using hexane/ethyl acetate
7:3 as eluant, to give 10 as a pure product (148 mg; yield 75%).
'"H-NMR (400 MHz, CDCly): 6 8.97 (s, 1H), 7.94 (d, 2H,
J = 8Hz), 735-7.30 (m, 2H), 716 (d, 1H, ] = 1.2 Hz), 714 (d,
1H, ] = 4Hz), 7.09 (dd, 1H, ] = 3.6 Hz, ] = 4.8 Hz), 7.01 (d,
1H, J = 3.6 Hz), 3.82 (s, 3H), 2.77-2.69 (m, 4H), 2.62 (t, 2H,
J = 7.6Hz, ] = 8Hz), 2.45 (s, 3H), 2.35 (t, 2H, ] = 5.2Hz,
J = 6.4Hz),1.58-1.54 (m, 4H), 1.45-1.42 (m, 4H), 1.37-1.29 (m,
8H), 0.92 (bd, J = 6.4 Hz). MS (FAB™): m/z 712.

2.14. Synthesis of F4. The new methanofullerene F4 was pre-
pared following procedures reported for related compounds
(18, 30, 31]. A mixture of 10 (55.3mg, 0.084 mmol, 1.2
equiv.), sodium methoxide (4.5 mg, 0.084 mmol, 1.2 equiv.),
and dry pyridine (0.84 mL) was stirred at room temperature
for 30 min. Then a solution of fullerene C-60 (50.3 mg,
0.07mmol, 1 equiv.) in o-dichlorobenzene (4.1mL) was
added, and the homogeneous reaction mixture was stirred
at 75°C under nitrogen overnight. Then the mixture was
refluxed for 24 h (180°C); after cooling to room temperature
the solvent was evaporated at reduced pressure, and the
residue was purified by column chromatography on silica
gel with toluene/hexane 6:4 as eluent to give F4 as a pure
product (yield 55%). '"H-NMR (400 MHz, CDCl,): & 7.46 (d,
1H, ] = 4Hz), 733 (dd, 1H, ] = 44 Hz, ] = 0.8 Hz), 7.18 (dd,
1H,] = 44Hz, J = 0.8Hz), 715 (d, 1H, ] = 4.4Hz), 710
(dd, 1H, ] = 3.6Hz, ] = 5.2Hz), 3.72 (s, 3H), 3.01 (bt, 2H,
J = 8Hz),2.79 (bt, 2H, J = 8.4Hz, J = 8 Hz), 2.73 (bt, 2H,
J = 84Hz, ] = 8Hz), 2.63 (t, 2H, ] = 7.2Hz), 1.63-1.56 (m,
4H), 1.45-1.40 (m, 4H), 1.35-1.28 (m, 8H), 0.91 (bd, 6H, J =
6.8 Hz). MALDI-TOF MS: m/z 1248.9 (CyyH,,0,S; requires
1248.2, matrix DCTB).

2.15. Preparation of Fullerene F5. Fullerene F5 was prepared
from compounds 11-13 as shown in Scheme 4.

2.16. Synthesis of Compound 11. Under a nitrogen atmo-
sphere, N-bromosuccinimide (NBS) (408.6 mg, 0.98 mmol,
1 equiv.) was added in small portions to a solution of 3',4'-
dihexyl-2,2":5',2" -terthiophene (6) (147.7 mg, 0.98 mmol, 1
equiv.) in N,N-dimethylformamide (14mL, 0.07M) and
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stirred for 24 h at room temperature. The reaction mixture
was diluted with CH, Cl, (15 mL) and washed with water (2 x
50 mL): the organic layer was dried over Na,SO, and concen-
trated. The product, isolated in quantitative yield (485 mg),
was used without further purification. 'H-NMR (400 MHz,
CDCly): 6 740-732 (m, 1H), 714 (d, 1H, ] = 2.4Hz), 7.08
(dd, 1H, J = 3.6 Hz, ] = 5.2Hz), 7.04-7.01 (m, 1H), 6.89-6.87
(m, 1H), 2.75-2.64 (m, 4H), 1.63-1.56 (m, 4H), 1.44-1.40 (m,
4H), 1.34-1.28 (m, 8H), 0.90 (bd, 6H, ] = 6.8 Hz).

2.17. Synthesis of Compound 12. 'The new terthiophene deriva-
tive 12 was prepared according to the following procedure. To
a solution of propargyl alchol (36.5 mg, 0.65 mmol, 1.1 equiv.)

and 11 (247.8 mg, 0.59 mmol, 1 equiv.) in degassed tetrahy-
drofuran (14.7 mL), under a flow of nitrogen, were added
[PACL,(PPh;),] (16.6 mg, 4 mol %), Cul (6.7 mg, 6 mol%),
and triethylamine (3.7mL). The reaction mixture was left
under stirring at 70°C overnight. The solvent was removed
under reduced pressure and the residue was purified by
flash chromatography, using chloroform as eluant, to give 12
(152 mg; yield 55%). "H-NMR (400 MHz, CDCl,): &7.34 (dd,
1H, ] = 48Hz, ] = 0.8Hz), 718 (d, 1H, ] = 4.8Hz), 715
(dd, 1H, J = 3.6Hz, J = 0.8Hz), 709 (dd, 1H, ] = 3.6 Hz,
J = 5.2Hz), 701 (d, 1H, ] = 3.6 Hz), 4.55 (s, 2H), 2.74-2.68
(m, 4H), 1.59-1.55 (m, 4H), 1.44-1.41 (m, 4H), 1.36-1.29 (m,
8H), 0.92 (bd, 6H, J = 6.8 Hz).



2.18. Synthesis of Compound 13. The new terthiophene deriv-
ative 13 was prepared as follows. Malonyl dichloride (1.75 mL,
18 mmol, 1 equiv.) was added to a solution of terthiophene 12
(142 mg, 0.3 mmol, 2 equiv.) and pyridine (23.7 mg, 0.3 mmol,
2 equiv.) in dichloromethane (2.1 mL) at 0°C under nitrogen.
After 1h, the mixture was allowed to warm up to room
temperature and then stirred for 18 h, filtered, and evaporated.
The residue was purified by flash chromatography, using
dichloromethane/hexane 8/2 as eluant, to give 13 (106 mg;
yield 70%). "H-NMR (400 MHz, CDCL,): & 7.34 (d, 2H, J =
5.2Hz), 721 (d, 2H, ] = 4Hz), 714 (dd, 2H, ] = 3.6Hz,
J = 1.2Hz),7.08 (dd, 2H, ] = 3.6 Hz, ] = 5.2 Hz), 701 (d, 2H,
J = 3.6 Hz),5.05 (s, 4H), 3.57 (s, 2H), 2.73-2.67 (m, 8H), 1.58-
1.54 (m, 8H), 1.46-1.41 (m, 8H), 1.35-1.29 (m, 16H), 0.93 (m,
12H). MS (FAB*): m/z 1008.

2.19. Synthesis of F5. The new methanofullerene F5 was
prepared following procedures reported for similar com-
pounds [32, 33]. 1,8-diazabicyclo[5.4.0]undec-7-ene (19.3 mg,
0.125 mmol, 2.5 equiv.) was added under nitrogen at room
temperature to a stirred solution of fullerene C-60 (39 mg,
0.05mmol, 1 equiv.), I, (19 mg, 0.075 mmol, 1.5 equiv.), and
13 (55mg, 0.05mmol, 1 equiv.) in toluene (39 mL) at room
temperature. The resulting solution was stirred for 12h and
then filtered through a short plug of silica (CH,Cl,) and evap-
orated. The residue was purified by flash chromatography,
using hexane/toluene 6/4 as eluant, to give F5 (yield 52%).
'"H-NMR (400 MHz, CDCl,): & 733 (dd, 2H, ] = 5.2Hz,
J = 1.2Hz), 720 (d, 2H, ] = 4Hz), 713 (dd, 2H, ] = 3.6 Hz,
J = 1.2 Hz),707 (dd, 2H, J = 3.6 Hz, ] = 4.8 Hz), 6.98 (d, 2H,
J = 4Hz), 5.38 (s, 4H), 2.73-2.68 (m, 8H), 1.56-1.54 (m, 8H),
1.43-1.38 (m, 8H), 1.34-1.28 (m, 16H), 0.92 (m, 12H). MALDI-
TOF MS: m/z 1729.3 (C,;;H¢0,S¢ requires 1727.3, matrix
DCTB).

2.20. Electrochemical Characterization. The cyclovoltammet-
ric (CV) characterization was carried out with an Auto-
lab PGSTAT 128N potentiostat, run by a PC with GPES
software. The working cell included a Glassy Carbon (GC)
disk embedded in Teflon (Amel, surface 0.071cm?) as the
working electrode, a Platinum counter electrode (Metrohm),
and an aqueous saturated calomel electrode (SCE, Amel)
as the reference electrode. The sample was dissolved in
o-dichlorobenzene (=0.5mg/mL) and drop coated from a
capillary on the GC electrode. The electrolytic solution was
acetonitrile (Carlo Erba, HPLC grade) with 0.I1M tetra-
butylammonium tetrafluoroborate TBATFB (Fluka, electro-
chemical grade). The solution was degassed with argon
purging. The scan rate was 200 mV s™'. According to [IUPAC
recommendations the data have been referred to the Fc'/Fc
redox couple (ferrocenium/ferrocene).

Epyomo and Ejyyvo values were extrapolated from the
onset peaks potential.

2.21. Preparation and Characterization of Solar Cells. Solar
cells were fabricated on patterned ITO-coated glass substrates
previously cleaned with detergent and water and then ultra-
sonicated in acetone and isopropyl alcohol for 15 min each.
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A PEDOT : PSS (Clevios P VP AI 4083) layer was spin-coated
at 3000 rpm onto air plasma cleaner ITO-coated substrates
to a thickness of around 40 nm and then baked in an oven
at 120°C for 10 min. Fullerenes and P3HT were dissolved
separately in chlorobenzene (20 mg/mL) (Carlo Erba, HPLC
grade), mixed 1:1 w/w obtaining a total concentration of
10 mg/mL, and then stirred overnight at 70°C. The blend
solutions were spin-coated at 600 and 1200 rpm in glove box
onto the ITO/PEDOT : PSS substrates. The thickness of the
active layers, measured with a Veeco Dektak 150 profilometer,
ranged between 50 nm and 130 nm. Then the samples were
completed with the thermal evaporation of the Al (80 nm)
cathode at a base pressure of 107 mbar. The active device
area was 25 mm®. The devices were postproduction thermal
annealed in glove box (nitrogen filled) at 150°C for 10 min.
The device electrical characterization was carried out at room
temperature in glove box. Solar cells were illuminated using
a solar simulator (Sun 2000, Abet Technologies) and the
light power intensity was calibrated at AML.5 illumination
conditions (100 mW cm™2) using a certified silicon solar cell.
The current-voltage curves were taken with a Keithley 2602
source measure.

3. Results and Discussion

Terthiophene is an interesting sm-conjugated electron-
releasing substituent group that can influence both the light
absorbing behavior and charge separation process of
fullerenes. Interestingly, it was reported that 1-(2-(2-meth-
oxyethoxy)ethyl)-2-(terthiophene)fulleropyrrolidine is an
efficient acceptor partner with P3HT, being characterized by
a higher V__ but lower fill factor and shorter circuit current
with respect to related compounds bearing thiophene or
bithiophene instead of the terthiophene moiety, attributed to
its lower solubility [19]. These interesting results prompted
us to design novel soluble terthiophene-substituted fullerene
derivatives as easily accessible acceptor molecules for
BHJ polymer solar cells (Scheme 1). We prepared both
terthiophene-substituted fulleropyrrolidines (F1-F3) and
methanofullerenes (F4-F5), with the aim of obtaining soluble
acceptor materials with a good affinity for donor polymers
based on thiophene units.

The novel terthiophene-substituted fulleropyrrolidines
(F1, F3) and the known F2 [22] were prepared following
a method similar to that originally developed by Prato
and Maggini and coworkers (Schemes 1 and 2) [28, 29].
Sarcosine was treated with [C60]-fullerene in the presence of
a suitable terthiophene-substituted aldehyde, in toluene, and
the mixture was heated under reflux for 24 h under a nitrogen
atmosphere.

The novel terthiophene-substituted methanofullerene
F4 was prepared following the procedure reported for
other methanofullerenes [18, 30, 31], by reaction of the p-
tosylhydrazone 10 with sodium methoxide and fullerene C-
60 (Scheme 3), whereas F5 was synthesized by the Bingel
reaction [32, 33] treating the novel bisterthiophenylmalonate
13 with iodine, fullerene, and 1,8-diazabicyclo[5.4.0]undec-7-
ene (Scheme 4).
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FIGURE 2: UV-visible absorption spectra of F1-F3 and PCBM in
chlorobenzene.

All fulleropyrrolidines and methanofullerenes were puri-
fied by silica gel flash chromatography and characterized by
elemental analyses, 'H NMR and UV-visible spectroscopies,
mass spectrometry, and cyclovoltammetry (see Section 2).

Figures 2 and 3 show the UV-visible absorption spectra of
fullerenes F1-F5 along with that of PCBM in chlorobenzene
solution.

The fulleropyrrolidine F2 shows a broad absorption band
between 350 and 400nm, as expected for a terthiophene
moiety [22]. This band is red shifted in compound Fl, in
agreement with the presence of a m-delocalized bridge
between the pyrrolidine and the terthiophene moiety, and
blue shifted in compound F3, due to the presence of the hexyl
chains, responsible of the tilting of the structure and the final
reduced conjugation.

Red shifting is observed in the compounds F4 and
F5 in comparison with PCBM. Interestingly also a large
enhancement in the ¢ of the peak at 330 nm (assigned to the
fullerene) is obtained. Theoretically this enhancement can
benefit the performance of the solar cells being the absorption
in this region complementary to P3HT. In fact, it was reported
that fullerenes’ derivatives with a better light absorption
can lead to a better power conversion efficiency since more
photons are available to be converted into electricity [34].

The electrochemical properties of the various fullerenes
were examined by cyclic voltammetry (CV). Current poten-
tial profiles are shown in Figures 4 and 5.

We use the first oxidation and reduction potentials to esti-
mate the HOMO and LUMO energy levels by means of equa-
tions Egomo(eV) = —(Epx +4.8) and E; jyo(eV) = —(Eggp +
4.8), which involve the use of the internal ferrocene standard
value of —4.8 eV with respect to the vacuum level [35, 36].
The results are summarized in Table 1. Interestingly, all the
novel fullerene derivatives have an enhanced LUMO level
with respect to PCBM, possibly improving the V.. In fact,

cm!
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FIGURE 3: UV-visible absorption spectra of F4, F5, and PCBM in
chlorobenzene.
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FIGURE 4: Synopsis of cathodic part of cyclovoltammograms for
fullerenes F1-F5 and PCBM.

Kim and coworkers reported that the V. of an OPV device
is determined by the difference between the HOMO level of
the p-type semiconductor and the LUMO level of the n-type
conductor [37]. Fullerenes F1-F3 and F5 are characterized by
a remarkably low band gap due to a relatively high HOMO
level.
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FIGURE 5: Synopsis of anodic part of cyclovoltammograms for
fullerenes F1-F5 and PCBM.

TABLE 1
Fullerene derivative Ejopo (€V)  Ejumo (6V)  Band gap (eV)
F1 -5.15 -3.78 1.37
F2 =527 -3.78 1.49
EF3 -5.29 -3.74 1.55
F4 -5.67 -3.75 1.92
F5 -5.26 -3.79 1.47
PCBM —6.01 -3.83 2.18

The use of fullerenes F1, F3, and F4 as acceptor molecules
for bulk-heterojunction polymer solar cells was investigated
in a preliminary way using P3HT as donor polymer. However,
up to now the highest power conversion efficiency, reached
with F4, was 0.46% only, although acceptable FF (0.30)
and V. (0.48 Volt) were obtained. A wider screening of
solvents and thickness in order to optimize morphology and
performance is in progress in our laboratories.

4. Conclusions

In summary, we have prepared five interesting soluble
tulleropyrrolidines and methanofullerenes, bearing one or
two terthiophene moieties, as potential acceptors for the
creation of efficient bulk-heterojunction solar cells based
on donor polymers containing thiophene units. These novel
fullerene derivatives are characterized by a better harvesting
of the solar radiation with respect to traditional PCBM. In
addition, they have a relatively high LUMO level and a low
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band gap that can be easily tuned by an adequate design of
the link between the fullerene and the terthiophene.

Besides, it is worth pointing out that the new fullerene
derivatives prepared in the present work are also of interest as
new molecular building blocks for materials with nonlinear
optical (NLO) properties [38-43]. In particular, because the
methanofullerene F4 is an excellent candidate as second-
order NLO chromophore due to the presence of the highly
polarizable electron acceptor C60-fullerene system linked to
the donor terthiophene through a cyclopropane group, its
quadratic hyperpolarizability is under study in our laborato-
ries.
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