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Abstract 36 

 37 

Six barley cultivars widely differing for cadmium (Cd) tolerance, partitioning and translocation were 38 

analyzed in relation to their thiol metabolism. Results indicated that Cd tolerance was not clearly 39 

related to the total amount of Cd absorbed by plants, resulting instead closely dependent on the 40 

capacity of the cultivars to trap the metal into the roots. Such behaviors suggested the existence of 41 

root mechanisms preserving shoots from Cd-induced oxidative damages, as indicated by the analysis 42 

of thiobarbituric acid-reactive-substances – diagnostic indicators of oxidative stress – whose increases 43 

in the shoots were negatively related to Cd root retention and tolerance. Cd exposure differentially 44 

affected glutathione (GSH) and phytochelatin (PC) levels in the tissues of each barley cultivar. The 45 

capacity to produce PCs appeared as a specific characteristic of each barley cultivar, since it did not 46 

depend on Cd concentration in the roots and resulted negatively related to the concentration of the 47 

metal in the shoots, indicating the existence of a cultivar-specific interference of Cd on GSH 48 

biosynthesis, as confirmed by the existence of close positive linear relationships between the effect of 49 

Cd on GSH levels and PC accumulation in both roots and shoots. The six barley cultivars also differed 50 

for their capacity to load Cd ions into the xylem, which was negatively related to PC content in the 51 

roots. Taken as a whole these data indicated that the different capacity of each cultivar to maintain 52 

GSH homeostasis under Cd stress may strongly affect PC accumulation and, thus, Cd tolerance and 53 

translocation. 54 
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Introduction 106 

 107 

Cadmium (Cd) is one of the most toxic heavy metals present in soils from natural and anthropogenic 108 

sources, including atmospheric depositions from mining activities, phosphate fertilizers and manures, 109 

municipal sewage wastes, urban composts and industrial sludges (Alloway and Steinnes 1999; 110 

McLaughlin et al. 1999).  111 

The presence of Cd in soils is an increasing concern with respect to human food chain 112 

accumulation, since it can be easily taken up by roots and accumulated in vegetative and reproductive 113 

plant organs: in this way, Cd-rich soils potentially result in Cd-rich foods. 114 

Despite several efforts aimed at both reducing Cd input into agricultural soils and developing 115 

agronomic practices having the potential to reduce Cd bioavailability, breeding of low Cd-accumulating 116 

crops seems to be the most promising approach to minimize the dietary intake of Cd (Grant et al. 117 

2008). Selection of novel cultivars with different Cd accumulation profiles should reduce not only the 118 

total amount of the heavy metal in the edible parts of the plants, but also the requirement for other 119 

management techniques. In such a context it appears evident the need to characterize and exploit the 120 

natural variation occurring in main crop species for their capacity to accumulate/exclude Cd from the 121 

edible parts, as well as to understand potential processes and molecular components that underlie 122 

these traits (Grant et al. 2008; Clemens et al. 2013). 123 

Considerable natural variation in plant Cd accumulation occurs both between and within 124 

species (Guo et al. 1995; Grant et al. 1998; Cakmak et al. 2000; Clarke et al. 2002; Dunbar et al. 2003; 125 

Grant et al. 2008; Uraguchi et al. 2009). Most plant species retain much of the Cd taken up within roots 126 

by a conserved ‘firewall system’ limiting the spread of Cd through the whole plant and preventing 127 

excessive Cd accumulation into seeds (Jarvis et al. 1976; Wagner 1993; Lozano-Rodríguez et al. 1997; 128 

Puig and Peñarrubia 2009; Verbruggen et al. 2009; Ueno et al. 2010; Nocito et al. 2011). The efficiency 129 

of this system is thought to be pivotal in determining the “Cd accumulation profiles” observed in crop 130 

species. 131 

Once inside root cells Cd ions are trapped into roots through selective binding sites with high 132 

affinity for the metal, or through transfer across a membrane into an intracellular compartment 133 

(Clemens 2006; Ueno et al. 2010; Nocito et al. 2011). Only Cd ions escaping these trapping pathways 134 

may be potentially available to be loaded, by specific transport systems, into the xylem and 135 

translocated in a root-to-shoot direction. Thus, the ability of the root system to retain Cd should result 136 

from a complex equilibrium between different biochemical and physiological processes involved in Cd 137 

chelation, compartmentalization, adsorption and translocation (Nocito et al. 2011). Several actors 138 

have been described as active members of this firewall system, including: i) the processes of Cd 139 

chelation and vacuolar compartmentalization based on the biosynthesis of phytochelatins (PCs) and 140 
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related peptides (Cobbet 2000; Clemens 2006); ii) the adsorption of Cd ions to cellular matrices or 141 

apoplast components (Weigel and Jäger 1980; Khan et al. 1984); iii) the transport-mediated 142 

sequestration of Cd ions into the vacuole (Ueno et al. 2010; Satoh-Nagasawa et al. 2013); iv) the P1B-143 

type ATPase-mediated Cd loading into the xylem (Nocito et al. 2011; Satoh-Nagasawa et al. 2012, 2013; 144 

Mills et al. 2012; Takahashi et al. 2012; Tan et al. 2013). 145 

 Recent progress in understanding the molecular mechanisms controlling Cd allocation in rice 146 

makes realistic the development of low Cd-accumulating cultivars in an immediate future (Uraguchi 147 

and Fujiwara 2012; Clemens et al. 2013). Unfortunately, not nearly as much information is available 148 

for other major cereals, including barley, for which a significant increase in grain and flour consumption 149 

is expected in some critical arid and semiarid regions of North Africa (Bei et al. 2012). Although some 150 

report about genotypic diversity in barley grain Cd accumulation exists (Wu et al. 2003, 2007; Chen et 151 

al. 2008), scarce information about the physiological basis governing Cd distribution in the plant is 152 

available. Recently, it has been shown that the preferential retention of Cd in root of barley is mainly 153 

due to immobilization processes mediated by S-ligands and reflects the accumulation of Cd-PC and Cd-154 

S molecules in the vacuoles (Akhter et al. 2013). 155 

In this paper we describe and compare six barley cultivars differing for their capacity to 156 

accumulate Cd in the shoot, with the specific aim to describe the role of thiol biosynthesis and 157 

metabolism in determining Cd partitioning and tolerance. 158 

  159 

 160 
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Material and Methods 176 

 177 

Plant material, growth conditions and sampling 178 

All the experiments were carried out on 6 varieties of barley (Hordeum vulgare L.) with six (Manel, 179 

Rihane, Martin, Souihli, Lemsi) or two rows (Roho) – selected among the most cultivated in Tunisia for 180 

their capacity to accumulate Cd in the shoot – provided by the National Research Agronomic Institute 181 

of Tunisia. 182 

Surface sterilized caryopses were placed on a filter paper saturated with distilled water and 183 

incubated in the dark at 26 °C.  Seven days later, seedlings were transplanted into 5 L plastic tanks (8 184 

seedlings per tank) containing the following complete aerated nutrient solution: 1.5 mM MgSO4, 1.6 185 

mM KH2PO4, 0.4 mM K2HPO4, 3.0 mM KNO3, 2.0 mM NH4NO3, 3.5 mM Ca(NO3)2, 62 µM Fe-tartrate, 9 186 

µM MnCl2, 0.3 µM CuSO4, 0.8 µM ZnSO4, 46 µM H3BO3, 0.1 µM (NH4)6Mo7O24 (pH 6.5). Seedlings were 187 

kept for 10 d in a growth chamber at 26°C and 80% relative humidity during the 16-h light period and 188 

at 22°C and 70% relative humidity during the 8-h dark period. Photosynthetic photon flux density was 189 

400 µmol m-2 s-1. At the end of this period, plants were treated or not (control) with Cd by 190 

supplementing the nutrient solution with CdCl2 to reach the final concentration of 25 µM. The 191 

treatment period was 30 d long. All hydroponic solutions were renewed 3 times per week to minimize 192 

nutrient depletion. 193 

Plants were harvested and roots were washed for 10 min in ice-cold 5 mM CaCl2 solution to 194 

displace extracellular Cd (Rauser 1987), rinsed in distilled water and gently blotted with paper towels. 195 

Shoots were separated from roots and the tissues were frozen in liquid N2 and stored at -80 °C, or 196 

analyzed immediately. 197 

 198 

Determination of Cd  199 

Dried samples of about 150 mg were digested in 10 mL of 65% (v:v) HNO3 using a microwave digestion 200 

system (Anton Paar MULTIVAWE 3000). The mineralized material was diluted 1:40 (v:v) in Milli-Q water 201 

(to a final volume of 10 mL) and filtered on a 0.45 µm PVDF membrane. Cd content was measured by 202 

inductively coupled plasma mass spectrometry (ICP-MS; Bruker Aurora M90 ICP-MS). 203 

 204 

Determination of thiols and thiobarbituric acid-reactive-substances 205 

Samples (roots and shoots) were pulverized using mortar and pestle in liquid N2 and stored frozen in a 206 

cryogenic tank. For total non-protein thiol (NPT) content, 400 mg of powders were extracted in 600 µL 207 

of 1M NaOH and 1 mg mL-1 NaBH4, and the homogenate was centrifuged for 15 min at 13 000 g and 4 208 

°C. Four hundred microliters of supernatant were collected, 66 µL of 37% HCl were added and then 209 

centrifuged again for 10 min at 13000 g and 4 °C. For the quantification, volumes of 200 µl of the 210 
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supernatant were collected and mixed with 800 µl of 1 M K-Pi buffer (pH 7.5) containing or not 0.6 mM 211 

Ellman’s reagent {[5,5ʹ-dithiobis(2-nitrobenzoic acid); DTNB]}. The samples’ absorbances at 412 nm 212 

were then spectrophotometrically measured. The level of total GSH was determined according to 213 

Griffith (1980). Phytochelatins and related peptides were evaluated as difference between NPT and 214 

GSH levels in both root and shoot of Cd exposed plants (Schäfer et al. 1997). All results were expressed 215 

as micromoles of GSH equivalents. 216 

The thiobarbituric acid-reactive-substances (TBARS) assay was performed according to Hodges 217 

et al. (1999). 218 

 219 

Analysis of root-to-shoot Cd translocation  220 

At the end of the exposure period, shoots were cut at 2 cm above the roots with a microtome blade. 221 

Xylem sap exuded from the lower cut surface was collected by trapping into a 1.5 mL plastic vial filled 222 

with a small piece of cotton for 2 h. The amount of collected sap was determined by weighing and the 223 

Cd concentration was measured by ICP-MS. 224 

 225 

 226 

 227 

 228 
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Results and discussion 246 

 247 

Cd tolerance and partitioning in six barley cultivars 248 

Six Tunisian improved barley cultivars – Lemsi, Manel, Martin, Rihane, Roho and Souihli – derived from 249 

local (Tunisia, Algeria) landraces (Chaabane et al. 2009), were exposed to 25 µM Cd2+ for 30 days and 250 

then analyzed for Cd partitioning and tolerance. 251 

At the end of the incubation period no visible symptoms of toxicity (necrosis or chlorosis) were 252 

detectable in the shoots of any of the six barley cultivars. Such observations were confirmed by 253 

chlorophyll analysis showing that the concentration of chlorophyll a/b in the shoots was unaffected by 254 

Cd exposure (data not shown). Conversely, the growth of the six cultivars was significantly (p < 0.001) 255 

influenced by Cd (Fig. 1). Considering the shoots: i) Lemsi appeared to be the most sensitive cultivar, 256 

with a Tolerance Index (TI) – defined as the average weight of shoots in treated group × 100 / the 257 

average weight of shoots in control group – of 37%; ii) Roho, Martin and Souihli showed an 258 

intermediate sensitivity, with TIs of 63, 67 and 73%, respectively; iii) Manel and Rihane were the most 259 

tolerant cultivars, with TIs of 86 and 85%, respectively (Fig. 1a). Root growth was generally less affected 260 

by Cd exposure: the percentage of growth inhibition ranged from 0 in Souihli to 37% in Lemsi (Fig. 1b). 261 

Similar behaviors were evinced by referring to plant fresh weight, since Cd exposure did not affect 262 

tissue water contents (data not shown). 263 

Wide differences were observed considering the concentration of Cd in the shoot: i) Lemsi and 264 

Manel showed the highest and the lowest values, respectively; ii) in Rihane the concentration was 265 

significantly (p < 0.05) higher than in Manel; iii) in Martin, Souihli and Roho the values of Cd 266 

concentration were intermediate with respect to Manel and Lemsi and significantly (p < 0.05) higher 267 

than in Rihane (Fig. 2a). By contrast a moderate variability was observed with regard to root Cd 268 

concentration (Fig. 2b). From these data set we calculated that: i) the total amount of Cd accumulated 269 

in the whole plant was significantly (p < 0.05) higher in Lemsi, Rihane, Manel, and Martin than in Roho 270 

and Souihli (Electronic Supplementary Material Tab. S1); ii) the Cd root retention (i.e. the percentage 271 

of the total Cd retained in the root) widely differed among the six cultivars (Electronic Supplementary 272 

Material Tab. S1). The lowest value of retention was observed in Lemsi (70.8%), whilst the highest one 273 

in Manel (85.9%); all the other cultivars had intermediate values. 274 

It has been largely reported that plant responses to Cd exposure involve a plethora of 275 

constitutive and adaptive processes, which interactions at molecular, physiological and morphological 276 

level result in complex phenomena allowing the cells to protect themselves against the injury due to 277 

Cd accumulation, or allowing the plants to exclude Cd stress (Turner 1994; Gwozdz et al. 1997; Sanità 278 

di Toppi and Gabbrielli 1999; Nocito et al. 2007). Cd tolerance and Cd root-to-shoot translocation are 279 

often negatively related (Verkleij et al. 1990; Wong and Cobbett 2009). However, although tolerance 280 
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is often associated with a high capability to retain the metal into roots, it does not necessarily mean 281 

that increased root retention itself is the cause of tolerance, since intraspecific differences in Cd uptake 282 

might occur (Lombi et al. 2000; Assunção et al. 2003). 283 

Considering our data, it is important to note that the fraction of the absorbed metal 284 

translocated to the shoot was 2.2-fold higher in Lemsi than in Manel, although they did not significantly 285 

(p < 0.05) differed for the total amount of Cd accumulated in the whole plant. Data analysis also 286 

revealed the lack of any clear relationship between the total amount of Cd absorbed by plant and the 287 

calculated TIs (Fig. 3a), which instead increased as Cd root retention did (Fig. 3b). Thus, at least in our 288 

conditions, the reduced capacity to absorb Cd showed by some barley cultivars - even if conceivable 289 

as a possible mechanism of stress avoidance – was not involved in Cd tolerance.  290 

Taken as a whole this group of data suggest the existence of root mechanisms limiting Cd 291 

translocation from root to shoot and thus preserving the photosynthetic tissues from the detrimental 292 

effects that Cd may induce. In fact, although Cd is not a redox-reactive metal, its accumulation in plant 293 

tissues generally results in oxidative stress (Nocito et al. 2008; Sharma and Dietz 2009; Del Buono et 294 

al. 2014).  295 

For this reason, to better understand the relationship between Cd root retention and Cd 296 

tolerance, we measured, at the end of the Cd exposure period, the levels of thiobarbituric acid-297 

reactive-substances (TBARS) in the shoots, assuming these values as diagnostic indicators of the 298 

occurrence/severity of Cd-induced oxidative stress (Hodges et al. 1999). As reported in Figure 4a, Cd 299 

exposure increased the levels of TBARS in the shoots. However, such an increase strongly differed 300 

among the six barley cultivars – ranging from 171% (Manel) to 544% (Lemsi) – and resulted negatively 301 

related to Cd tolerance (Fig 4b), suggesting Cd root retention as a possible mechanism of stress 302 

avoidance which preserves shoot tissues from Cd-induced oxidative damages. Finally, the importance 303 

of such a mechanism in determining Cd tolerance is further supported by the following observations: 304 

i) TI values increased as Cd concentration in the shoot decreased (Fig 2a and Fig. 3); ii) Cd-induced 305 

oxidative damages increased as Cd concentration in the shoot did (Fig 2a and Fig. 4). In this way, the 306 

selection of novel genotypes with enhanced Cd root retention or/and lower Cd concentration in the 307 

shoot may represent a valuable strategy, not only to reduce Cd exposure through plant-derived food, 308 

but also to increase Cd tolerance. 309 

 310 

Analyses of Cd partitioning and tolerance as a function of thiol metabolism 311 

Plant sulfur metabolism and thiol biosynthesis are deeply affected by Cd stress, mainly because of the 312 

activation of a wide range of adaptive responses involving glutathione (GSH) consuming activities 313 

(Nocito et al. 2006, 2007; Lancilli et al. 2014). In fact, GSH not only acts as a direct or indirect 314 

antioxidant in mitigating Cd-induced oxidative stress, but also represents a key intermediate for the 315 
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synthesis of phytochelatins, a class of cysteine-rich peptides able to form thiolate bonds with Cd ions 316 

in complexes that accumulate in the vacuoles (Cobbet 2000; Clemens 2006). Studies on maize, rice and 317 

barley showed that most of the total Cd retained by roots is bound in complexes containing PCs and 318 

related thiol compounds, revealing these peptides as crucial for Cd root retention in cereals (Rauser 319 

and Meuwly 1995; Rauser 2003; Nocito et al. 2011; Akhter et al. 2013). Since the activity of 320 

homeostatic mechanisms based on thiol biosynthesis has been shown to be involved in Cd tolerance 321 

and may potentially allow a different proportion of Cd to be retained in roots, we analyzed the effects 322 

of Cd exposure on GSH and non-protein thiol (NPT) levels in both roots and shoots of the six barley 323 

cultivars. 324 

Cadmium exposure significantly (p < 0.001) reduced the levels of total GSH in both roots and 325 

shoots of all the cultivars (Fig. 5a,d). Such an effect was likely due to a general alteration of thiol 326 

homeostasis as indicated by the analysis of the NPTs, which levels in both roots and shoots significantly 327 

(p < 0.001) increased following Cd stress and overcame those of GSH – the main non-protein thiol in 328 

non-stressed plant tissues – measured in the same conditions (Fig. 5b,e).  329 

Data analysis revealed that the entity of the GSH decrement induced by Cd was negatively 330 

related to the general tolerance of the six barley cultivars to Cd stress. In fact, the effect of Cd on GSH 331 

content was minimum (or absent) in Manel and maximum in Lemsi, considering both roots and shoots 332 

(Electronic Supplementary Material Fig. S1 a,b). Conversely, the increments in the NPT content induced 333 

by Cd were directly related to the Cd tolerance: the highest increase was observed in Manel (+359%), 334 

whilst the lowest one was measured in Lemsi (+10%; Electronic Supplementary Material Fig. S1 c,d). 335 

PC and related peptide contents (Fig. 5c,f) were evaluated as difference between NPT and GSH levels 336 

in both roots and shoots of Cd-exposed plants (Schäfer et al. 1997). Results indicated that the six barley 337 

cultivars widely differed for their capacity to synthetize PCs and related peptides (Fig. 5c,f). Also in this 338 

case the level of these compounds in both roots and shoots was closely related to the Cd tolerance of 339 

each cultivar (Electronic Supplementary Material Fig. S1 e,f). 340 

Cd exposure rapidly induces PC biosynthesis in plant tissues as result of GSH polymerization 341 

through the constitutive enzyme phytochelatin synthase (Rea et al. 2004). Short-term exposures to Cd 342 

generally result in both PC accumulations and GSH depletions closely related to the total amount of 343 

the metal accumulated in the tissues. In such a context the decreases in GSH levels due to the induction 344 

of PC biosynthesis should be directly related to the amount of PCs accumulated in the tissues or, in 345 

other words, to the strength of the additional sinks for reduced sulfur induced by Cd (Grill et al. 1987; 346 

Tukendorf and Rauser 1990; Mendoza-Cózatl and Moreno-Sánchez 2006). However, under long-term 347 

Cd exposures PCs rapidly become the most abundant class of non-protein thiols and the relative 348 

increase in the metabolic demand for both cysteine and GSH generates a typical demand driven 349 

coordinated transcriptional regulation of genes involved in sulfate uptake, sulfate assimilation and GSH 350 



11 
 

biosynthesis (Nocito et al. 2007). Such a response is thought to be pivotal in a metabolic scenario in 351 

which the rate of GSH biosynthesis has to maintain not only GSH homeostasis but also PC-based Cd 352 

detoxification processes (Nocito et al. 2007). 353 

The analysis of thiols revealed the existence of a general relationship between the capacity of 354 

the barley cultivars to synthetize PCs and their Cd tolerance (Electronic Supplementary Material Fig. 355 

S1 e,f), which however did not seem related to the total amount of Cd accumulated (Fig. 3a), as 356 

previously reported by Persson et al. (2006). The capacity to produce and accumulate PCs appeared as 357 

a specific characteristic of each barley cultivar since it was not significantly related to Cd concentration 358 

in the roots and resulted negatively related to the quantity of Cd accumulated in the shoot (Electronic 359 

Supplementary Material Fig. S1 g,h). Moreover, considering GSH concentrations in both root and shoot 360 

of untreated plants (control) it appears evident the lack of any clear relationship between the total 361 

amount of reduced sulfur assimilated into GSH and the tolerance of each cultivar to Cd stress. These 362 

behaviors may reflect any difficulties in maintaining GSH homeostasis during Cd stress and could be 363 

ascribed to a direct and cultivar-specific interference of Cd on some activity along the pathways 364 

involved in sulfate uptake, sulfate assimilation and GSH biosynthesis.  365 

Such a hypothesis seemed to be confirmed by the analyses of the changes in the GSH levels 366 

induced by Cd accumulation which showed the existence of close positive linear relationships between 367 

the effect of Cd on GSH levels and PC accumulation in both root and shoot (Fig. 6a,b). In other words 368 

the ability of each barley cultivars to maintain GSH homeostasis during PC biosynthesis was crucial for 369 

Cd tolerance, as previously demonstrated by the analysis of transgenic Brassica juncea plants in which 370 

the over-expression of  γ-glutamylcysteine synthetase or GSH synthetase – the two enzymes along the 371 

GSH biosynthetic pathway – enhanced Cd tolerance as a consequence of a greater production of GSH 372 

during Cd stress (Zhu et al. 1999a, 1999b). On the other hand, transgenic Arabidopsis plants expressing 373 

the cDNA for γ-glutamylcysteine synthetase in antisense orientation resulted hypersensitive to Cd as 374 

a consequence of a reduced capacity to synthetize both GSH and PCs under the exposure to the metal 375 

(Xiang et al. 2001). 376 

 377 

Analysis of root-to-shoot Cd translocation as a function of thiol metabolism 378 

To better understand the relationship existing between Cd root retention, thiol biosynthesis and root-379 

to-shoot Cd translocation we measured the concentration of Cd in the xylem sap of the six barley 380 

cultivars at the end of the exposure period. In these experiments Cd translocation was estimated as 381 

the amount of Cd ions loaded and transported in the xylem sap for 2 h, according to Nocito et al. 382 

(2011). 383 

Results indicated that the six barley cultivars strongly differed for their capacity to load Cd ions 384 

into the xylem (Fig. 7a). The amount of Cd transported in the xylem sap of the six barley cultivars during 385 
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the observation period ranged from 55.3 (Manel) to 187.5 ng 2 h-1 (Lemsi), and was linearly related (r2 386 

= 0.817) to the total amount of Cd accumulated in the shoots over a 30 d period (Fig. 7b). 387 

Since the capacity of barley roots to retain Cd ions has been recently associated to 388 

immobilization processes mediated by S-ligands (Akhter et al. 2013), we analyzed Cd translocation as 389 

a function of GSH homeostasis and PC accumulation in the roots, with the aim to evince a general 390 

relationship describing how the “Cd translocation” trait depends on root thiol metabolism in different 391 

barley genotypes. Results revealed that Cd translocation was closely related to thiols since the amount 392 

of Cd ions loaded in the xylem sap linearly decreased as PC content in the roots increased (Fig. 7c). 393 

Moreover, since the capacity of the roots to synthetize PCs was related to the capacity of each cultivar 394 

to maintain GSH homeostasis, it was also possible to evince a negative relation between Cd 395 

translocation and the negative effect exerted by Cd on GSH biosynthesis (Fig. 7d). Such an analysis 396 

allows us to speculate that the genotypic differences observed in Cd translocation in the six barley 397 

cultivars could be partially due to a different sensitivity of GSH metabolism to Cd accumulation. In this 398 

view the different capacity of each barley cultivar to maintain GSH homeostasis during Cd stress should 399 

affect PC production and, thus, Cd translocation capacity, since, in the absence of any other significant 400 

differences in the main components of the firewall trapping Cd into the roots, the amount of Cd ions 401 

escaping thiol chelation may be considered as potentially available to be loaded into the xylem and 402 

translocated in a root-to-shoot direction. 403 

 404 

Conclusions 405 

Taken as a whole our analysis confirms the central role of both GSH and PCs in determining Cd 406 

tolerance and partitioning, and suggests that the effect of Cd on GSH biosynthesis may be potentially 407 

taken into account to develop indexes useful for the selection of low Cd-accumulating cultivars in 408 

barley. However, the molecular bases of such an effect need to be further investigated in order to 409 

individuate the main factor(s) – along the sulfur metabolic pathways – influencing the capacity of 410 

barley to maintain GSH homeostasis during Cd-induced PC biosynthesis. Interestingly, Schneider and 411 

Bergmann (1995) indicated the activity GSH synthetase as a possible limiting factor. Finally, our 412 

conclusions need to be validated in open field or glasshouse experiments, in where the activity of root 413 

exudation (Cesco et al. 2012) and the presence of rhizobacteria (Palacios et al. 2014) may also influence 414 

plant Cd uptake and tolerance. 415 

 416 

 417 

 418 

 419 

 420 
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Figure legends 596 

 597 

Fig. 1 Effect of Cd exposure on growth of shoots (a) and roots (b) of six barley cultivars. Plants were 598 

grown for 30 days in a complete nutrient solution supplemented (black bars) or not (white bars) with 599 

25 µM CdCl2. Bars and error bars are means and SD of three experiments each performed with 4 plants 600 

(n = 3). Asterisks indicate significant differences between control and Cd-exposed plants (p < 0.001). 601 

Different letters indicate significant differences between the cultivars (p < 0.05). 602 

 603 

Fig. 2 Cadmium accumulation in shoots (a) and roots (b) of six barley cultivars. Plants were grown for 604 

30 days in a complete nutrient solution supplemented with 25 µM CdCl2. Bars and error bars are means 605 

and SD of three experiments each performed with 4 plants (n = 3). Different letters indicate significant 606 

differences between the cultivars (p < 0.05). 607 

 608 

Fig. 3 Analysis of Cd tolerance as a function of the total amount of Cd absorbed by plants (a) or Cd root 609 

retention (b) in six barley cultivars. Plants were grown for 30 days in a complete nutrient solution 610 

supplemented or not with 25 µM CdCl2. Data are means and SD of three experiments each performed 611 

with 4 plants (n = 3). TI, tolerance index. 612 

 613 

Fig. 4 Effect of Cd exposure on the levels of TBARS in the shoots of six barley cultivars (a) and analysis 614 

of Cd tolerance as a function of changes in TBARS content (b). Plants were grown for 30 days in a 615 

complete nutrient solution supplemented (black bars) or not (white bars) with 25 µM CdCl2. Data are 616 

means and SD of three experiments each performed with 4 plants (n = 3). TI, tolerance index. Asterisks 617 

indicate significant differences between control and Cd-exposed plants (p < 0.001). Different letters 618 

indicate significant differences between the cultivars (p < 0.05). 619 

 620 

Fig. 5 Effect of Cd exposure on the level of thiols in roots (a, b, c) and shoot (d, e, f) of six barley cultivars. 621 

Plants were grown for 30 days in a complete nutrient solution supplemented (black bars) or not (white 622 

bars) with 25 µM CdCl2. NPT contents are expressed as GSH equivalents. PCs were evaluated as 623 

difference between NPT and GSH levels in both roots and shoots of Cd-exposed plants. Bars and error 624 

bars are means and SD of three experiments each performed with 4 plants (n = 3). Asterisks indicate 625 

significant differences between control and Cd-exposed plants (p < 0.001). Different letters indicate 626 

significant differences between the cultivars (p < 0.05). 627 

 628 

Fig. 6 Analysis of PC content as a function of the effect of Cd on GSH levels in roots (a) and shoots (b) 629 

of six barley cultivars. Plants were grown for 30 days in a complete nutrient solution supplemented or 630 
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not with 25 µM CdCl2. Changes in GSH content were calculated comparing the GSH contents both roots 631 

and shoots of control and Cd-exposed plants. PCs were evaluated as difference between NPT and GSH 632 

levels in both roots and shoots of Cd-exposed plants. Data are means and SD of three experiments 633 

each performed with 4 plants (n = 3). 634 

 635 

Fig. 7 Analysis of Cd translocation in six barley cultivars.  Plants were grown for 30 days in a complete 636 

nutrient solution supplemented or not with 25 µM CdCl2. At the end of the exposure period, shoots 637 

were separated from roots and the xylem sap exuded from the cut (root side) surface was collected. 638 

(a) Cd ions loaded and transported in the xylem sap during 2 h. Data are means and SD of three 639 

experiments each performed with 4 plants (n = 3). Different letters indicate significant differences 640 

between the cultivars (p < 0.05). (b, c, d) Relationships between Cd ions loaded in the xylem sap, Cd 641 

concentration in shoots, and changes in root thiol content after a 30 d period of Cd exposure. Data are 642 

means and SD three experiments each performed with 4 plants (n = 3). 643 
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Figure 5 750 
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Figure 6 767 
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