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Abstract 
 

Stomata consist of two specialised epidermal cells termed guard cells (GCs) surrounding a pore, 

through which gas exchange can occur. In Arabidopsis thaliana, a dedicated cell lineage is initiated 

and undergoes a series of cell divisions to produce a stoma. A set of basic helix-loop-helix (bHLH) 

transcription factors regulates the differentiation events through the lineage. The initiation and 

proliferation of stomatal lineage cells is controlled by the transcription factor SPEECHLESS 

(SPCH), which drive the asymmetric division of meristemoid mother cell to originate a small 

triangular cell termed meristemoid. Which transcriptional events precede stomata lineage 

specification and are required for correct GC patterning, however, remain unclear. The DOF 

transcription factor STOMATAL CARPENTER 1 (SCAP1) has previously shown to be expressed in 

GC and involved in stomata function, by activating a set of GC–specific genes required for GC 

maturation and activity. We show that SCAP1 expression can also be observed in young leaf 

primordia, before any GC differentiation occurs. The study of transgenic plants carrying a 

proSCAP1:GUS-GFP transcriptional fusion coupled with quantitative PCR analyses indicate that 

SCAP1 expression is maximal in a stomatal lineage competence domain, coincident with SPCH 

expression. We found that SCAP1 modulates stomata development; independent scap1 loss-of-

function mutants show a reduced number of GCs whilst SCAP1 over expression lines have an 

increased number of GCs in addition to altered GC distribution and spacing patterns. Confocal 

imaging of SPCH-GFP protein in a background carrying inducible SCAP1 shows that SCAP1 

activation results in an increased number of nuclei expressing SPCH-GFP. Our results suggest an 

early role for SCAP1 in GC differentiation through SPCH protein stabilization. SCAP1 may thus 

link different aspects of GC biology including specification, maturation and function. 
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Stomata are microscopic pores on the epidermal surface of land plants, with a crucial role in 

regulating transpiration and gas exchange between the plant and atmosphere. Stomata consist of 

two specialised epidermal cells termed guard cells (GCs) surrounding a pore. Changes in turgor 

pressure in GCs cause the opening or closure and determine the amount of gas exchanges. In the 

model plant Arabidopsis thaliana, stomata are present on the epidermis of all above-ground organs 

except for petals and stamen filaments (Geisler, Yang, & Sack, 1998; Pillitteri, Bogenschutz, & 

Torii, 2008; Robinson et al., 2011; Sessions et al., 1997). Stomata are produced post-embryonically 

and are distributed across the epidermis in an organ–specific manner. The number and placement of 

stomata are genetically regulated and also affected by the environment (Hetherington & Woodward, 

2003; Nadeau & Sack, 2002). Alterations in stomatal distribution affects CO2 uptake, evaporation, 

and internal leaf temperature in much the same way as pore opening and closing (Yoo, Hasegawa, 

& Mickelbart, 2011). Therefore, control of stomata placement is a key trait for plant survival and 

fitness.  

 

Stomata development in Arabidopsis 

 

Stomata development and placement are regulated by complex regulatory networks that incorporate 

several events, including hormonal and environmental cues. The pathways controlling stomata 

formation are best understood in Arabidopsis. Stomata are produced by a dedicated and specialized 

cell lineage (Nadeau & Sack, 2003; Zhao & Sack, 1999). This lineage is prevalent in the developing 

organs and is inactive after epidermal maturation. During the early stages of leaf development, 

undifferentiated epidermal cells of leaf primordia (termed protodermal cells, PDCs) either 

differentiate into pavement cells (PC) or acquire the competence to initiate the stomatal cell lineage 

and become meristemoid mother cells (MMCs). The meristemoid mother cell undergoes a series of 

cell divisions and successive identity changes (Figure 1). These transitions are characterized by 

changes in cell morphology, and associated with alterations in their transcriptomic signature (Dong, 

MacAlister, & Bergmann, 2009; Geisler et al., 2000; Pillitteri & Dong, 2013). Each MMC divides 

asymmetrically to produce the first specialized cells of the stomatal cell lineage, a small triangular 

cell termed meristemoid. These divisions produce a larger cell called a stomatal-lineage ground cell 

(SLGC) that can differentiate into a lobed pavement cell or has the potential to divide 

asymmetrically to produce satellite meristemoids and their sister cell (Bergmann & Sack, 2007; 

Geisler et al., 2000; Nadeau, 2009). Each meristemoid can undergo one or two round of asymmetric 

cell divisions, which result in another meristemoid and a sister cell. The meristemoid eventually 



 

differentiates into a round guard mother cell (GMC), which divides symmetrically to generate two 

paired guard cells surrounding the stomata pore (Figure1). 

 

 
 
 
 
Figure 1 - Diagram of key stages and divisions in Arabidopsis thaliana stomatal development. 
Protodermal cells in the epidermis are converted into meristemoid mother cells (MMCs) through an unknown process. 
MMCs undergo an asymmetric entry division to create a meristemoid. Meristemoids may undergo additional 
asymmetric amplifying divisions, or convert into a guard mother cell (GMC). The GMC will divide a single time, 
symmetrically, to form the two guard cells. Cells next to meristemoids, GMCs, and guard cells can become MMCs and 
undergo spacing divisions to create new meristemoids. The plane of this division is oriented so that the new 
meristemoid is placed away from the pre-existing stoma or precursor cell (image modified from Bergmann & Sack, 
2007). 
 

Specification of the stomatal cell lineage 

 

The genes responsible for GCs specification and development have been characterised. 

Specification of the MMC, GMC and GC identities is governed by three closely related basic helix-

loop-helix (bHLH) transcription factors (TFs) SPEECHLESS (SPCH), MUTE, and FAMA, 

respectively (Figure 2) (MacAlister, Ohashi-Ito, & Bergmann, 2007; Ohashi-Ito & Bergmann, 

2006; Pillitteri, Sloan, Bogenschutz, & Torii, 2007). Two other bHLH protein, SCREAM/ICE1 and 

SCREAM2, act redundantly together with SPCH, MUTE, and FAMA via the formation of 

heterodimers (Figure 2) (Kanaoka et al., 2008). The bHLH family contains at least 158 members in 

Arabidopsis (Pires & Dolan, 2010). It can be subdivided into 26 sub-groups on the base of other 

distinctive functional and conserved domains. SPCH, MUTE, and FAMA form a single clade, that 

comprises bHLH subgroup Ia whereas ICE1/SCRM, and SCRM2, are members of group IIIb clade 

(Heim et al., 2003; MacAlister & Bergmann, 2011; Ohashi-Ito & Bergmann, 2006; Pires & Dolan, 

2010). These five genes drive the progression of the stomatal lineage (Figure 2). SPCH promotes an 

asymmetric division of MMC to initiate the stomatal lineage (MacAlister et al., 2007). MUTE is 

required to terminate asymmetric divisions and for the transition to GMC (Pillitteri et al., 2007). 

FAMA controls the final transition from GMC to GC (Ohashi-Ito & Bergmann, 2006). Loss of 
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function in any of these genes results in no functional GCs (Figure 3). Contrariwise, their over 

expression results in an ectopic formation of GCs  (Figure 3) (Pillitteri & Torii, 2012).  

 

 
Figure 2 - Diagram of the actions of the stomatal bHLH proteins.  
SPCH and SCRM/2 direct MMC transition, MUTE and SCRM/2 direct the GMC transition and FAMA and SCRM/2 
promote the GC transition (image modified from Pillitteri & Dong, 2013). 
 

 
Figure 3 - Epidermal phenotypes due to altered activities of transcription factor genes regulating stomatal cell-state 
transitions. (a) spch and scrm scrm2 double mutants produce identical phenotypes consisting of pavement cells only. 
(b) Ectopic SPEECHLESS (SPCH) induces stomatal entry divisions producing a highly divided epidermis. (c) mute and 
scrm scrm2/+ plants produce similar phenotypes resulting in meristemoid (dark blue) arrest. (d) MUTE overexpression 
causes all epidermal cells to become guard mother cells (GMCs) (red) and differentiate into stomata. (e) fama and scrm 
both display additional GMC divisions, although only fama produces an absolute block in guard-cell (GC) (green) 
transition. (f) FAMA overexpression results in the production of single GCs, consistent with its role in inhibiting GMC 
division (image modified from Pillitteri & Torii, 2012).  
 

SPCH is key switch of stomatal lineage initiation 

 

SPCH protein promotes MMCs identity (MacAlister et al., 2007; Pillitteri et al., 2007). SPCH 

activity regulates the number of MMC-to-meristemoid transitions during stomatal cell lineage 

specification. As a result of a complete lack of stomatal-lineage initiation, spch loss-of-function 

mutants produce an epidermis composed solely of interlocking pavement cells (Figure 3a) 

(MacAlister et al., 2007). The mutation spch significantly reduces the number of SLGC associated 



 

with mature stomata, indicating that SPCH promotes meristemoid asymmetric amplifying divisions 

to increase the number of SLGCs (Lampard, MacAlister, & Bergmann, 2008; MacAlister et al., 

2007; Robinson et al., 2011). As the frequency of asymmetric cell divisions is the major 

determinant of the number of both stomatal and non-stomatal epidermal cell, cell density can be 

regulated by modulation of SPCH activity (Figure 5) (Lampard et al., 2008; MacAlister et al., 

2007).  

Experiments utilising SPCH promoter-reporter transcriptional fusions revealed that SPCH is 

expressed in the developing leaf epidermis and then persists in the stomatal lineage cells (GMC and 

GCs). However, SPCH protein can only been detected in undifferentiated PDCs and MMCs, 

suggesting that SPCH is regulated at the post-transcriptional level (MacAlister et al., 2007). SPCH 

expression is often found in two neighbouring cells, a pattern consistent with its role in the dividing 

cell population (Figure 4). In older organs, proSPCH:SPCH–GFP expression is restricted to small 

cells in the epidermis, including cells that have recently divided next to stomatal lineage cells 

(Figure 4) (MacAlister et al., 2007).  

 

 
Figure 4 - SPCH protein expression pattern. 
SPCHpro::SPCH–GFP in the epidermis of developing cotyledons and leaves before (c) and during (d) development of 
the stomatal lineage, and during spacing divisions. Cell outlines were counterstained with propidium iodide (red); M 
indicates meristemoid, GC marks guard cells (image from MacAlister et al., 2007).  
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Figure 5 - Diagram of stomatal lineage progression in Arabidopsis. 
A subset of protodermal cells (grey) becomes meristemoid mother cells (MMC, orange). MMCs enter the stomatal 
lineage through an asymmetric division to create two daughter cells, a meristemoid (M, red) and a stomatal-lineage 
ground cell (SLGC). Meristemoids can undergo a limited number of amplifying divisions, but eventually transition into 
a guard mother cell (GMC, yellow). An SLGC can differentiate into a pavement cell (PC) or attain MMC identity to 
produce a satellite meristemoid positioned away from an existing stomatal precursor. A GMC divides once 
symmetrically to produce two equally-sized guard cells (GCs, green)(image modified from Pillitteri et al., 2013). 
 

One-Cell Spacing Rule  

 

Several lines of evidence indicate that cell-cell communication is crucial in stomatal patterning and 

several signalling components have been identified, which include the ERECTA leucine-rich repeat 

receptor like kinases (LRR- RLKs) (ER and ERL), an LRR receptor-like protein (TMM), MAP 

kinase components (YODA, MKK and MPK) and a family of small cysteine-rich secreted peptides 

(EPFs and EPFL). The one-cell-spacing rule dictates that new meristemoids will be oriented at least 

one cell away from existing stomatal precursors (Geisler et al., 2000; Hara, Kajita, Torii, 

Bergmann, & Kakimoto, 2007; Hara et al., 2009; Hunt & Gray, 2009; Shpak, McAbee, Pillitteri, & 

Torii, 2005). Correct spacing is required to ensure efficient stomatal opening and closure and gas 

exchange regulation.  

 

Cell-Cell Signalling Components 

 

Stomata are produced throughout leaf development, and many form by division of cells next to pre-

existing stomata but the division is oriented so that the satellite meristemoid does not contact the 

previous one (spacing division) (Figure5) (Berger & Altmann, 2000; Geisler et al., 2000). The 

orientation of cell divisions is controlled by different types of intercellular signalling mechanisms. 

Both positive and negative regulators of stomatal density have been characterized. The ERECTA 



 

(ER) family of leucine-rich repeat (LRR) receptor–like kinases and the LRR receptor–like protein 

TOO MANY MOUTHS (TMM) are positive regulators of stomata spacing (Geisler et al., 2000; 

Hara et al., 2007; Hunt & Gray, 2009; Hunt, Bailey, & Gray, 2010; J. S. Lee et al., 2012; Masle, 

Gilmore, & Farquhar, 2005; Nadeau & Sack, 2002; Shpak et al., 2005). The MITOGEN 

ACTIVATED KINASE (MAPK) genes act downstream of the LRR receptors and include YODA, 

MKK4/MKK5 and MPK3/MPK6 (Bergmann, Lukowitz, & Somerville, 2004; Lampard et al., 2008; 

Lampard, Lukowitz, Ellis, & Bergmann, 2009). The ER and ERL receptors perceive small secreted 

cysteine-rich peptides, acting as intercellular signals, which comprise EPIDERMAL PATTERNING 

FACTOR  (EPF) and EPIDERMAL PATTERNING FACTOR-LIKE (EPFL). The EPF protein 

family (EPFf) participate in diverse developmental processes but has been demonstrated that, four 

members affect stomatal development, EPF1, EPF2, CHALLAH (CHAL/EPFL6), and 

STOMAGEN/EPFL9. Only EPF1 and EPF2 are specifically expressed in the stomatal lineage. 

EPF2 is express in SPCH-expressing protodermal cells (MMCs) early in the lineage, whereas EPF1 

expression occurs at later-stages of meristemoid development, GMCs and young guard cells; these 

two peptides inhibit SPCH activity and prevent the development of stomata close to one another, 

thus effectively promoting and enforcing the one-cell spacing rule (Hara et al., 2007; 2009; Hunt & 

Gray, 2009). In contrast to EPF1 and EPF2, STOMAGEN and CHAL influence stomatal 

development through inter-tissue signalling. CHAL is expressed in the hypocotyl while 

STOMAGEN expression occurs in the mesophyll. Both CHAL and STOMAGEN promote the 

production of stomata (Kondo et al., 2010; Sugano et al., 2010). The competition between the 

different EPFf peptides for the binding to the same receptors is thought to provide robustness to the 

patterning of stomata (Ohki, Takeuchi, & Mori, 2011). The effect of EPF1 and EPF2 perception 

lead to the activation of MAPK cascade that eventually modulates SPCH activity. SPCH protein 

contains a unique MAPK phosphorylation target domain that regulates its activity in vivo. SPCH 

phosphorylation cause its inactivation by degradation (Jewaria et al., 2013; Lampard et al., 2008). 

 

Hormones and Environmental signals 

 

Besides the EPFs, the LRR receptors and the MAPKs cascade, other signalling pathways play a role 

in stomata development. These pathways translate environmental cues and hormone signalling into 

affecting stomatal density in developing leaves.  

 

• Light  - Plants grown under high light intensity produce more stomata than those grown 

under normal light condition. Further, different wavelengths of light have contrasting effects 
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on stomatal density. High intensity red light increases stomatal density, whereas far-red 

treatment (shadow mimic) decreases it (Boccalandro et al., 2009; Casson et al., 2009; C.-Y. 

Kang, Lian, Wang, Huang, & Yang, 2009). Variations of light quality and intensity are 

perceived by photoreceptors CRY1, CRY2, PHYB, and PHYA and influence stomatal 

development through negative regulation of COP1 (CONSTITUTIVE 

PHOTOMORPHOGENIC 1) which acts upstream of YODA (Casson et al., 2009; C.-Y. 

Kang et al., 2009; H. Q. Yang, Tang, & Cashmore, 2001). 

 

• CO2 - CO2 regulates both stomata opening and development (Gray et al., 2000; Hashimoto 

et al., 2006). Several plant species produce fewer stomata in response to increased levels in 

atmospheric CO2 (Woodward, 1987). Genes involved in CO2 sensing and stomata 

development regulation have been characterised. Mutation in the HIGH CARBON DIOXIDE 

(HIC), encoding an enzyme involved in the production of cuticular wax polymers, result in 

more stomata than wild type under elevated CO2 concentrations (Gray et al., 2000). Also, 

two β-carbonic anhydrase CA1 and CA4 (βCA), CO2-binding proteins, have a role in CO2-

induced stomatal closure and in early CO2 signalling. The double mutant ca1 ca4 displays 

increased stomatal density when grown under high CO2 levels (Hu et al., 2010). Despite 

βCA1 and βCA4 are expressed in mesophyll and GCs, expression of either βCA1 or βCA4 

in GCs is sufficient to complement the stomatal-density phenotype (Engineer et al., 2014). 

This observation suggests that GC-specific expression of βCA1 and βCA4 is important for 

the production of long-distance signals involved in stomata density regulation in response to 

CO2 (Engineer et al., 2014; Hu et al., 2010). Long-range signals have been hypothesised to 

regulate stomatal development. When mature leaves are exposed to high CO2 levels the 

emerging young leaves show reduced stomatal density (Lake et al., 2001; Lake, Woodward, 

& Quick, 2002). Therefore, a long-range signal must transduce the information from mature 

leaves to emerging leaves. EPF2 is essential for CO2 control of stomatal development. 

Increased levels of EPF2 transcript were found in wild type plants exposed to high CO2 

(Engineer et al., 2014). A protease called CRSP (CO2 RESPONSE SECRETED 

PROTEASE) cleaves and activates EPF2. Expression of CRSP depends on βCA1 and βCA4 

and positively responds to elevated CO2 concentration. Thus, stomatal density is controlled 

by CO2-dependent modulation of CRSP expression that positive regulates EPF2 activity by 

cleaving it (Engineer et al., 2014). 

 



 

• Brassinosteroids - Brassinosteroids (BRs) are phytohormones involved in many 

developmental and physiological processes including stomatal development (T.-W. Kim, 

Michniewicz, Bergmann, & Wang, 2012). Under high BR levels, BIN2 is inactivated by 

phosphorylation (Mora-García et al., 2004). BRs negatively regulate stomatal development 

by inhibiting BIN2 kinase-mediated inhibition of YODA (T.-W. Kim et al., 2012) but also 

BIN2-dependent SPCH phosphorylation independent of the MAPKs (Gudesblat et al., 

2012). MKK4/5, the downstream effector of YDA, are also targeted and inhibited by BIN2 

phosphorylation (Khan et al., 2013).  

 

• Abscisic acid (ABA) - Drought is detrimental for plant growth and survival. Low water 

conditions compromise gas exchanges as plants reduce stomata opening to minimize the 

water loss. An adaptive plant response to drought condition is to reduce the production of 

stomata during leaf development. The phytohormone ABA is produced in response to 

drought and regulates both stomata closure and stomata development. ABA-deficient 

mutants have an increased number of stomata as a result of increased SPCH and MUTE 

expression levels. Thus ABA acts upstream of these genes (Tanaka et al., 2013). An 

interesting aspect of the role of ABA in stomatal development is that ABA regulates both 

stomatal development and physiology.  

 

DOF transcription factors can act as activators and repressors of transcription 

 

Besides the bHLHs, other transcription factors may play an important role in GCs specification. 

The DOF (DNA-binding One Zinc Finger) family is an important class of transcriptional regulators 

restricted in their distribution to plants, and in Arabidopsis thaliana comprises 36 members 

(Riechmann et al., 2000) (Figure 6). DOF factors are expressed in most if not all tissues and act 

frequently in a functionally redundant manner. These transcription factors are involved in several 

fundamental aspects of plant development including, cell cycle regulation, seed development and 

germination, and flower induction (Noguero, Atif, Ochatt, & Thompson, 2013; Yanagisawa, 2002) 

(Figure 7). These transcription factors share a highly conserved DOF domain that consists of a 

region containing the amino acid string CX2CX21CX2C, which binds zinc. This motif is essential for 

DNA binding and mutation of any of the four cysteines abolishes DNA binding. DOFs bind to their 

promoter targets to the consensus sequence AAAG (Kisu, Ono, Shimofurutani, Suzuki, & Esaka, 

1998) although DNA binding specificity is also influenced by sequences flanking the AAAG core 

binding site (Yanagisawa & Schmidt, 1999). DOFs are nuclear localised and present a 
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transcriptional activation domain at their C-terminus (Yanagisawa, 2001). However, the regions N- 

and C-terminal to the DOF domain are variable among different DOF proteins. These regions may 

interact with different regulatory proteins or intercept signals that mediate activation or repression 

of gene expression. These interactions are likely to contribute to the diverse functions of DOF 

domain proteins (Yanagisawa, 2001) (Figure 6, 7).  

DOF factors can either activate or repress transcription, depending on the type of DOF factor and 

the genomic context where they act. For example, AtDOF5.1 activates expression of REVOLUTA 

(REV), a class III HD- ZIP transcription factor required for establishment of leaf adaxial-abaxial 

polarity (H.-S. Kim et al., 2010). In contrast CYCLIN DOF FACTOR1 (CDF1) acts as a 

transcriptional repressors of CONSTANS (CO), a master regulator of photoperiodic flowering 

(Fornara et al., 2009). DOF genes belonging to the same clade can also have contrasting effects on 

transcription (Gualberti et al., 2002). The DAG1 gene (DOF AFFECTING GERMINATION) 

reduces seed dormancy (Papi et al., 2000). A related DOF gene, DAG2, has an opposite effect, 

promoting dormancy (Gualberti et al., 2002). It was shown that DAG1 and 2 act antagonistically on 

the same set of target promoters, with DAG1 repressing transcription and DAG2 activating.  

DOF proteins regulate transcription by forming multimeric complexes with other transcription 

factors (Yanagisawa, 1997; Yanagisawa & Schmidt, 1999). AtDOF4.7, expressed in the floral organ 

abscission zone, physically interacts with a member of another Zn-finger TF family, AtZFP2, also 

implicated in repression of floral organ abscission (Wei et al., 2010). Another DOF, a negative 

regulator of seed germination, AtDOF6, putatively exerts its effect by interacting with TCP14, a 

positive regulator of seed germination (Rueda-Romero, Barrero-Sicilia, Gómez-Cadenas, 

Carbonero, & Oñate-Sánchez, 2012). 

 

Possible role of DOF transcription factor in stomata development 

 

Numerous publications indicate an involvement of DOF transcription factors in the regulation of 

guard cell development and function. StDOF1 was identified as a candidate for activation of guard 

cell-specific expression. It interacts with and activates expression of the guard cell-specific gene 

KST1 (Plesch, Ehrhardt, & Mueller-Roeber, 2001). DOF factors were proposed as prime candidates 

in regulating AtMYB60 expression a guard cell-specific expressed transcription factor since 

deletions of putative DOF binding sites in its promoter decrease AtMYB60 transcription (Cominelli 

et al., 2011). Recently the DOF transcription factor SCAP1 has been shown to directly bind 

AtMYB60 promoter and to positive regulate its transcription. SCAP1 also regulates essential 

processes related to guard cell maturation and function. Mutants of scap1 show transcript 



 

alterations in multiple genes directly involved in stomatal movement and furthermore are defective 

in some cell wall mechanical properties of GCs (Negi et al., 2013). However, the potential role of 

SCAP1 in stomata patterning has not previously been investigated.  
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Figure 6 - The phylogenetic tree shows the Dof protein relationships. 
The first one or two letters of the names indicate the initials of the species (except that of pumpkin, which is AOBP): 
At, Arabidopsis thaliana; B, barley; Nt, Nicotiana tabacum; Os, Oryza sativa; St, Solanum tuberosum; W, wheat, Zm, 
Zea mays. The signature motifs conserved among members of the same group are shown in blue. Examples of motifs 
conserved in only some members are shown in green. Non-homologous sequences between motifs are indicated by bars 
(image from Yanagisawa, 2002). 
 

 

 
Figure 7 - Examples of some processes which are known to involve regulation by DOF transcription factors (images 
from Noguero et al., 2013). 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 

Aims of the project 

A Gene-Trap based Screen identifies a novel guard cell lineage regulator in Arabidopsis 

thaliana 

The aim of my PhD is to isolate novel genes mediating plant growth. Growth is a key process in 

plant development and the result of a coordinated process of cell division and elongation. 

Progresses are being made in defining several signalling components underpinning the process of 

growth. Nonetheless, many aspects of growth control remain poorly understood. To identify novel 

gene involved in growth processes I screened a “Gene-Trap” (GT) collection of Arabidopsis. GUS 

staining reflects the expression profile of those genes where the GUS reporter gene is inserted. 

During the screen we have isolated a GUS reporter line with an insertion in a DOF–type 

transcription factor (TF, AtDOF5.7). These plants display GUS expression in guard cells, and 

young leaf primordia, which could suggest a role for AtDOF5.7 in leaf growth and/or stomatal 

lineage specification or function. An independent loss-of-function, T-DNA–insertion allele of 

AtDOF5.7 (dubbed dof5.7-3, No-0 ecotype) unexpectedly showed a shoot branching phenotype, 

characterised by reduced apical dominance and lack of axillary shoots outgrowth inhibition. The 

functional characterization of the role of AtDOF5.7 in stomata development and shoot branching 

regulation led us to develop two parallel projects. 

 

Part I - Role of AtDOF5.7 in Guard Cell Development. 

The differentiation of leaf epidermal cells into stomata is controlled by several well-characterized 

transcription factors that act sequentially to specify guard cell lineage initiation, progression and 

maturation (i.e. SPCH, MUTE, FAMA), however, how stomatal lineage is first specified and 

whether other factors play a role in its progression is poorly understood.  In a recent publication, 

AtDOF5.7 (in the paper and hereafter dubbed STOMATAL CARPENTER 1, SCAP1) has been 

shown to regulate the later stages of guard cell maturation and function. My initial results have 

suggested an early expression of SCAP1 in leaf primordia before the appearance of GCs. The aim of 

this study is thus to define the role of SCAP1 in the specification of guard cell lineage. To achieve 

this goal I generated independent scap1 knock–down and gain of function alleles. Since the 

expression pattern of SCAP1 overlaps with SPCH, a key regulator of GC lineage specification, 

transcript and confocal microscopy analyses have been performed to investigate variations in SPCH 

levels or activities in response to SCAP1 perturbations. 

 



 

Part III - Role of AtDOF5.7 in shoot branching regulation 

An independent scap1 loss of function alleles, scap1-3 (No-0 ecotype) produced visible branching 

alterations, which were not present in other backgrounds. Branching in Arabidopsis is regulated by 

several hormonal pathways including Strigolactones (SL), a new class of plant hormones, that 

inhibit growth of lateral buds. Mutants impaired in SL synthesis or signalling show a bushy 

phenotype, reminiscent of that of scap1-3. To elucidate if the shoot branching phenotype was 

caused by loss in SCAP1 activity independent scap1 knock–down alleles in the No-0 background 

have been analysed. My results demonstrate the presence of a spontaneous mutation in the scap1-3 

genetic background causing the bushy phenotype (dubbed more axillary meristems7, max7). 

Independent experiments have been performed to test this hypothesis and to investigate the 

involvement of MAX7 in regulating SL accumulation and/or signalling. 
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DOF-type factors have been proposed to play an important role in GCs maturation and function 

based on an enrichment of DOF binding motifs in GC-specific genes (Cominelli et al., 2011; 

Galbiati et al., 2008; Plesch et al., 2001). Previously SCAP1 was shown to be preferentially 

expressed in maturing GCs and to control GC morphology and movements (Negi et al., 2013). Here 

we report a new role for SCAP1 in GC patterning. A detailed expression analysis throughout leaf 

development in scap1-2 gene trap and proSCAP1:GUS-GFP transgenic plants have revealed two 

distinct SCAP1 expression profiles (Figure 1, a-h - Part II). SCAP1 expression was strong in 

maturing GCs, confirming previously observations (Figure 1, d,g,h and l - Part II) (Negi et al., 

2013). However, SCAP1 expression was also observed throughout emerging leaf primordia (Figure 

1, a,b,e,f,i and j - Part II), when a leaf consists of few undifferentiated cells and no GCs are present 

(Figure 4, a – Part II). During leaf primordia development the SCAP1 promoter is transcriptionally 

active in a region where stomata begin their differentiation (proximal to the stem) and much less 

active in the midvein region (Figure 1, b,c,f and g – Part II). This early SCAP1 expression does not 

depend on SPCH since it persists in spch mutant plants (Figure 4, b – Part II). That SCAP1 is not a 

direct target of SPCH is in agreement with a recently generated SPCH ChiP-seq dataset (Lau et al., 

2014).  

Functional studies implicate SCAP1 in controlling cell divisions. SCAP1 mutants display a 

significant decrease in GCs production and cell density compared with wild type (Figure 2, a,b and 

f; Figure S2, a – Part II). Conversely, SCAP1 overexpression results in increased GCs production 

and cell density (Figure 2, d and f – Part II).  

The analysis of plants carrying a proSCAP1:GUS-GFP fusion allowed me to conclude that the 

SCAP1 promoter was active in both the epidermis and the mesophyll cells of leaves. However, this 

pattern does not clarify where SCAP1 protein acts to affect stomata development. To gain more 

insights in SCAP1 protein regulation I have generated transgenic plants carrying SCAP1 fused to 

YFP under a constitutive promoter. Interestingly, despite the constitutive expression, SCAP1-YFP 

protein did not accumulate in all plant tissues. SCAP1-YFP was present in the mesophyll cells but 

was not detected in the epidermis although it was occasionally found in two neighbouring 

epidermal cells undergoing divisions (Figure 3 – Part II).  

The above mentioned pattern of SCAP1 protein expression resembles the localization of SPCH. 

Also, the phenotype of SCAP1 overexpressing plants is reminiscent of the phenotype of transgenic 

plants over expressing SPCH (Lampard et al., 2008; MacAlister et al., 2007). One hypothesis could 

be that SCAP1 and SPCH may act together in protodermal cells to promote cell divisions and 

consequently stomatal cell linage initiation. To address this, we are designing co-localization 

experiments to confirm that SCAP1 and SPCH are expressed in the same cell type. Expression 



 

studies in SCAP1 overexpressing lines revealed that SPCH transcript is downregulated, which is in 

contrast with phenotypic result (Figure S3, a and b – Part II). In addition to transcriptional 

regulation, SPCH is regulated at the protein level. SCAP1 may thus promote stomata production by 

enhancing SPCH protein activity. Indeed, evidence that SCAP1 rapidly promoted SPCH protein 

accumulation is provided in Figure 4 (Part II). Interestingly, we also detect a downregulation of 

EPF2 transcript upon SCAP1 overexpression, which could account for the observed increased 

SPCH accumulation (Figure S3, c and d – Part II). 

My results highlight a previously unknown role for SCAP1 in stomata development. SCAP1 

activation promotes accumulation of SPCH and downregulation of EPF2, a well-established 

negative regulator of SPCH protein stability. SPCH-expressing cells secrete EPF2 to inhibit 

stomatal lineage specification in neighbouring cells (Pillitteri & Dong, 2013). Moreover, EPF2 

promoter is directly targeted by SPCH (Lau et al., 2014) and EPF2 expression in abolished in spch 

mutant plants (Hara et al., 2009). If present in the same cell type, SCAP1 and SPCH may form a 

genetic loop to fine tune cell division potential of protodermal cells. A key control of this loop 

could involve a SCAP1-mediated downregulation of EPF2 counteracting the previously proposed 

SPCH–mediated activation of EPF2 (Lau et al., 2014). In a simple model, both SCAP1 and SPCH 

compete for the binding to the EPF2 promoter (Figure 8 a). A Chromatin ImmunoPrecipitation 

(ChIP) assay could inform whether SCAP1 is able to bind to the EPF2 promoter. DOF transcription 

factors are able to interact with other transcription factors on several promoter regions (Rueda-

Romero et al., 2012; Wei et al., 2010; Yanagisawa, 1997; Yanagisawa & Schmidt, 1999). DOFs 

were shown to play an adjuvant role, enhancing the activation of transcription and facilitating the 

action of other transcription factors (Zhang et al., 1995). Examples of interactions between DOFs 

and bHLH transcription factors have been reported (H.-G. Kang, Foley, Oñate-Sánchez, Lin, & 

Singh, 2003). Because SPCH encodes a bHLH factor, SCAP1 might interact directly with SPCH 

sequestering it and preventing the activation of SPCH-specific target genes (Figure 8, b). For this 

purpose, it would be interesting to test whether SCAP1 can directly interact with SPCH in vivo and 

to answer this question we are designing a Biomolecular Fluorescence Complementation (BiFC) 

experiment. 
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Figure 8 – Two different models for SCAP1 action. 
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