
UNIVERSITÀ DEGLI STUDI DI MILANO
Doctoral School of Computer Science

Department of Computer Science

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science

(XXVII Cycle)

FEATURE EXTRACTION AND CLASSIFICATION

THROUGH ENTROPY MEASURES

INF/01

DOCTORAL DISSERTATION OF:
Md AKTARUZZAMAN

ADVISOR:
Prof. Roberto Sassi

DIRECTOR OF DOCTORAL SCHOOL:
Prof. Ernesto Damiani

Academic Year 2013/’14





Dedicated to
—My beloved wife

III





“Research is to see what everybody else has seen,
and to think what nobody else has thought.”

— Albert Szent-Gyorgyi

A C K N O W L E D G M E N T S

All praise to the Omnipotent, who has created me as a human, and then provided me
the ability to pursue higher study. First and foremost, I wish to thank my honorable
adviser, Professor Roberto Sassi, head of the Biomedical image and Signal Processing
(BiSP) Laboratory, Crema, University of Milan, Italy. I feel proud to be the first interna-
tional PhD student of him. I appreciate all contributions of his valuable time, ideas and
advices those make productive and stimulating my PhD experiences. Professor Sassi
has been supportive to me since the day I started working with him both academically
and mentally through the rough road to finish the thesis. He helped me to come up
with the thesis title and guided me over the years of completion. During the most diffi-
cult times of my research, he not only gave me the moral support but also provided me
the full freedom to move on. Besides group working, Professor Sassi encouraged me
to think and implement independently to be a leading researcher in future. Professor
Sassi always inspired me to make things perfect, be honest in representing reports, be
self confident, and high ambitious.

Then, I would like to give thanks to the director of the Doctorate School Professor
Ernesto Damiani, who has provided all types of academic and administrative supports
for participating in different summer schools, seminars, and presentations. Dozens
of internal and external professors have taught me and cooperated me directly or
indirectly during my PhD thesis. I would like to mention with full respects the names
of Prof. Vincenzo Piuri, Prof. Sergio Cerutti, Prof. Anna Maria Bianchi, Prof. Luca
T. Mainardi, Prof. Valentina Corino, Prof. Mattia Monga, Prof Walter Cazzola, Prof.
Annamaria R. Varkonyi-Koczy, Prof. Simona Ferrante, and Prof. Rafael Accorsi.

I also want to thank the referees Prof. Sergio Cerutti, Prof. Olivier Meste, and Prof.
Luca Citi for their time spent in reading my thesis and for giving me the valuable
suggestions to improve the quality of my work.

Massimo Walter Rivolta, who is my best and bosom colleague accompanied me at
the first day of my PhD school. He cooperated me in managing all official procedures.
Besides this, he also helped me in times and out of times to understand some top-
ics those I feel difficult to understand. His contribution during my PhD thesis is not
comparable anyway. I am also grateful to Mr. Matteo Migliorini, who has shared his
knowledge in working together. I found him cooperative and very friendly in group
works. Besides these, special thanks go to the people that volunteered for acceleration
signals acquisitions that I needed to evaluate my work on physical activity recognition.
Among them I want to mention my new colleague Mr. Ebadollah Kheirati Roonizi,
Gerson Antunes Soares, and Mrs. Teresa Rutigliano.

V



I thank all my senior and junior colleagues, who helped me by their valuable sugges-
tions. Among them I want to mention, with no particular order, Dr. Angelo Genovese,
Dr. Paolo Arcaini, Dr. Ruggero Donida Labati, and Dr. Ravi Jhawar, Mrs. Giovanna
Janet Lavado, and Mr. Bruno Guillon.

A special thank goes to Mrs. Claudia Piana, an officer of the department of Computer
Science, Crema, Milan University. She cordially helped me in some issues like finding
residence, opening bank accounts, translating documents,etc. She did never say “no"
in any assistance.

Lastly, I wish to give thanks to my family members, especially my wife Mrs Mah-
buba Sharmin, who has shared all good and bad experiences with me during our
stay in abroad. She has sacrificed a lot for the sake of my PhD. I will never forget
the contributions of parents in law Mr. Alhaj Md Mahbubur Rahman and Mrs. Alhaj
Firoza Begum Fatema, my parents Mr. Alhaj Md Abdul Mozid Sheikh and Mrs. Su-
fia Khatun, my elder brothers Mr. Harun-Or-Rashid, Mr. Rezaul Haque, my younger
brothers Hamidul Haque, and Nuruzzaman Khokon.

Finally, I am grateful to my younger uncle Mr. Abdul Bari, my respectful teachers,
my friends here and abroad, my relatives and well wishers who have inspired me in
time and out of time for doing higher study.

VI



A B S T R A C T

Entropy is a universal concept that represents the uncertainty of a series of random
events. The notion “entropy" is differently understood in different disciplines. In physics,
it represents the thermodynamical state variable; in statistics it measures the degree of
disorder. On the other hand, in computer science, it is used as a powerful tool for mea-
suring the regularity (or complexity) in signals or time series. In this work, we have
studied entropy based features in the context of signal processing.

The purpose of feature extraction is to select the relevant features from an entity. The
type of features depends on the signal characteristics and classification purpose. Many
real world signals are nonlinear and nonstationary and they contain information that
cannot be described by time and frequency domain parameters, instead they might be
described well by entropy.

However, in practice, estimation of entropy suffers from some limitations and is
highly dependent on series length. To reduce this dependence, we have proposed para-
metric estimation of various entropy indices and have derived analytical expressions
(when possible) as well. Then we have studied the feasibility of parametric estimations
of entropy measures on both synthetic and real signals. The entropy based features
have been finally employed for classification problems related to clinical applications,
activity recognition, and handwritten character recognition. Thus, from a methodolog-
ical point of view our study deals with feature extraction, machine learning, and clas-
sification methods.

The different versions of entropy measures are found in the literature for signals anal-
ysis. Among them, approximate entropy (ApEn), sample entropy (SampEn) followed
by corrected conditional entropy (CcEn) are mostly used for physiological signals anal-
ysis. Recently, entropy features are used also for image segmentation. A related mea-
sure of entropy is Lempel-Ziv complexity (LZC), which measures the complexity of a
time-series, signal, or sequences. The estimation of LZC also relies on the series length.

In particular, in this study, analytical expressions have been derived for ApEn, Sam-
pEn, and CcEn of an auto-regressive (AR) models. It should be mentioned that AR
models have been employed for maximum entropy spectral estimation since many
years. The feasibility of parametric estimates of these entropy measures have been
studied on both synthetic series and real data. In feasibility study, the agreement be-
tween numeral estimates of entropy and estimates obtained through a certain number
of realizations of the AR model using Montecarlo simulations has been observed. This
agreement or disagreement provides information about nonlinearity, nonstationarity,
or nonGaussinaity presents in the series. In some classification problems, the prob-
ability of agreement or disagreement have been proved as one of the most relevant
features.
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After feasibility study of the parametric entropy estimates, the entropy and related
measures have been applied in heart rate and arterial blood pressure variability anal-
ysis. The use of entropy and related features have been proved more relevant in de-
veloping sleep classification, handwritten character recognition, and physical activity
recognition systems.

The novel methods for feature extraction researched in this thesis give a good classi-
fication or recognition accuracy, in many cases superior to the features reported in the
literature of concerned application domains, even with less computational costs.
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1
I N T R O D U C T I O N

The focus of this thesis is on the research of innovative methods for features extrac-
tion and their application in classification purposes. In particular, the emphasis has
been given on the study and implementation of original methods for entropy related
features extraction for classifications of signals acquired from the human body (i.e.
physiological signals) and to recognize handwritten digits. This study is composed
of theoretical derivations of entropy and related metrics, the feasibility study on both
synthetic and real data, and finally the applications of entropy and entropy related
features in various possible application domains.

In order to have a better understanding of this research, first an introduction to
entropy and related measures are presented, followed by objectives and contributions
of this thesis.

1.1 general concept of entropy

The term “entropy" is used in information theory to quantify the amount of informa-
tion or uncertainty inherent in a system. e.g. “Desk entropy", as shown in figure 1.1,
represents the degree of disorder of a PhD student’s desk space and the inability to
find something, when she/he really needs it. The concept of entropy was coined first
by Rudolf Clausius in thermodynamics in order to explain the energy loss in any ir-
reversible process of a thermodynamics system. An increase in entropy of a system
refers to the decrease in order of that system. Disorder in statistical mechanics means
unpredictability due to the lack of knowledge.

The concept of entropy has been found applicable in the field of information theory
since the mid of 20th century, describing an analogous loss of data in information
transmission system. In 1948, Claude Shannon set out to mathematically quantify the
statistical nature of “lost information” in phone-line signals. To this aim, he applied
the general concept of entropy in information theory, and developed a function for

1
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Figure 1.1: Entropy of a PhD students desk at different years.
Source:www.phdcomics.com

estimating the entropy. In Physics, entropy is used to measure system disorder. In
Computer Science, it is used to measure the regularity (or complexity) of time-series
or signals. The growing rate of entropy of a sequence with increasing the length N of
the series is defined as the entropy rate.

Entropy has been represented with many names in many application domains since
introduced. The major application areas of entropy are cryptography [1], data compres-
sion [2, 3], uncertainty or predictability [4, 5, 6] in information theory [3]. Besides this,
some applications of entropy and entropy rate are found in signal processing [7, 8, 9],
text classification [10], pattern recognition [11, 12, 13], image and speech signals pro-
cessing [14, 15].

1.1.1 lempel-ziv complexity : a related metric

Lempel-Ziv complexity (LZC), first introduced by Lempel and Ziv [16], measures the
rate of generation of new patterns of a sequence. It is closely related to the entropy
rate of the sequence. It has become an standard algorithm for file compression on
computers [3]. To compute LZC of a time-series, the sequence is first converted to a
symbolic sequence, and then the sequence is parsed to get distinct words. Finally, the
LZC is estimated from the parsing words. There are different methods of parsing. The
one popular method is proposed by the inventor [16], and another attractive one is
illustrated by Cover and Thomas [3]. The only difference between them is in parsing
technique.

1.2 background concepts

Some fundamental concepts about the signals and the methods discussed in this thesis
are provided in this section.

1.2.1 signal fundamentals

A signal is a single-valued representation of information as a function of an indepen-
dent variable (e. g. time) [17]. The type of information may have real or complex values.
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A signal may be a function of another type of variables instead of time, and even two or
more independent variables. If the signal is a function of a single independent variable,
then it is called one-dimensional signal. On the other hand, if it is a function of two
or more independent variables, it is called multidimensional signal (for D-independent
variables, it is called D-dimensional signal). An example of a signal of two independent
variables is an image. These independent variables represent the spatial coordinates.

Signals can be classified further as continuous-time and discrete-time, depending on
the characteristics of the independent variable (time). If they are defined on continu-
ous interval of time, then they are called continuous time signals. On the other hand,
signals defined at only certain specific values of time are called discrete-time signals.

The mathematical analysis and processing of signals require the availability of a
mathematical representation for the signal itself. This mathematical description, often
referred to as the signal model, leads to another important classification of signals [18].
Any signal that can be uniquely expressed by an explicit mathematical expression, or
a well-defined rule is called deterministic. This term is used to emphasize the fact that
without any uncertainty, all future values can be predicted exactly if past values of the
signal are known. The signals for which it is impossible to predict an exact future value,
even if its entire past information is available, are referred to as stochastic signals. There
is some aspect of the signal that is random, and hence it is often referred to as random
signal. Random signals cannot be expressed by any mathematical expression. In fact,
there are cases where such a functional relationship is unknown or too complicated
for any practical use. e. g. speech signals cannot be described by any mathematical ex-
pression. Some other physiological signals of this category include electrocardiogram
(ECG) , which provides information about the electrical activity of the cardiovascular
system, and accelerometry signal [19], which is captured by an accelerometer sensor.

1.2.2 feature extraction and classification

Classification deals with mathematical and technical aspects of grouping different
signals through their descriptive information. The objective of signal classification is
achieved in a three step procedure as shown in figure 1.2. The input signal may contain
noise or artifacts 1. So, it is preprocessed first. Then features/parameters suitable for
classification are extracted. The preprocessed signal is then classified in the final step
based on the extracted features.

Feature extraction addresses the problem of finding the most informative and com-
pact set of features for improving the efficiency of classification or recognition. Re-
searchers in machine learning, soft-computing, and statistics who are interested in pre-
dictive modeling, are exploiting their efforts together to advance the feature extraction
problems.

Machine learning problems arise when a classification or recognition task is defined
by a series of cases instead of some specific predefined rules. Such problems are found
in a wide variety of application domains, ranging from medical applications in di-
agnosis, prognosis, drug discovery, engineering applications in robotics and pattern

1 Something observed during scientific investigation, but naturally is not present
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Figure 1.2: A typical classification procedure

recognition (optical character, speech and face recognition), and internet application
(text classification) [20]. Given a number of training samples associated with the target
outcome, the machine learning process consists of finding the relationship between the
training samples and the target outcomes from the training samples. There is a lot of
advancements in machine learning since mid 1950s, when it was introduced first by
Samuel [21]. Feature extraction lies at the core of theses advances. The type of features
depends on the signal characteristics and its application.

Feature extraction may lead to another additional step of feature selection. In the fea-
ture extraction step, information relevant to the signal classification is extracted from
the input data first, and a feature vector v of m-dimension is formed. The feature vector
may contain irrelevant or less relevant information, which just increases the complex-
ity of classification without any significant contribution to the classification task. In
the feature selection step, the vector v is transformed into another vector, which has
the dimensionality n (n<m). If the feature extractor is properly designed, the feature
vector is matched to the pattern classifier with low dimension. Then, there is no need
of feature selection. However, machine learning algorithms are highly computation-
ally intensive to the number of features; with increasing the number of features the
system requirements increase, as well as the training and classification times of the
system grow exponentially with the number of features. The correlated features do not
contribute anymore in accuracy of the system than comes from their single one. So,
the features should be decorrelated before feeding them into the classifier to reduce
requirements ans hence computational cost of the system [22].
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1.3 objectives of this thesis

The estimates of entropy and entropy rate have become very popular for signal analysis.
However, the use of these tools are limited by the series (signal) length. Some of them
are not defined for short series. On the other hand, some are defined by accepting
their bias estimates and there is a large difference between the estimates for short and
longer series. In fact, real applications often require processing of very short series with
sufficient reliability. Thus, the issues of convergence may arise when estimating entropy
of short series. Research for developing methods to analyze very short series with
enough reliability is still unveiled. A related problem of convergence arises in spectral
analysis, where long time stationary series are required to achieve lower variance of the
estimates, and parametric spectral analysis of time series is commonly performed since
the works of Ulrich et al., [23] and Kay & Marple [24]. The simple stationary stochastic
processes i.e autoregressive (AR) models have been used as maximum entropy spectral
analysis.

The robustness of any estimation depends on the availability of the amount data
used for the estimation. The amount of data in any estimation can be used to com-
pensate missing knowledge and vice-versa. That means uninformative priors can be
assumed from plenty of data. On the other hand, stronger assumptions (e.g. Gaussian
distribution, models that characterize the data, etc) about the data should be made for
any estimation on a limited amount of data. However, complex models (i.e. weaker
assumptions) may lead to high variance (poor estimation). On the other hand, stronger
assumptions may lead to high bias. So, depending on the amount of data available, it
is wise to devise the optimal model complexity in order to limit the overall estimation
error which is the sum of these two components.

The direct estimation of entropy, differential entropy or entropy rate from their ex-
pressions are not used in practical, even if they are major tools in signal processing.
The estimated values are used because entropy depends on the probability density
(or probability distribution) of the data, which is unknown; and users do not know
the robustness of these estimates. Even if the probability density is known, another
major difficulty arises due to the numerical integration in the definition of differen-
tial entropy, and hence entropy rate [25]. So, deriving values theoretically from their
expressions and, then comparing numerically estimated values might be helpful to
assess the measures. In addition some more information may also be obtained.

The objectives of this thesis are:

1. To develop an alternative parametric method for entropy estimation on very short
series

2. To derive analytical expressions for different entropy measures (when possible)

3. To study the feasibility of the developed method on synthetic and real data

4. To introduce new entropy related features

5. To use these new features in some real applications
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1.4 thesis novelty and contribution

The performed research started with the preliminary study on entropy and entropy
rates. The entropy metrics were chosen because the literature is rich with various ver-
sions of entropy and entropy rate in real applications. However, some dependence of
the estimates of this popular metrics generates a headache for its real applications in
very short series. So, the reduction of dependency may make the metric more popular
for practical applications. To this aim, we studied alternative methods for estimating
entropy from very short series and then extracted features based on this new method.
New features have been derived based on this new metrics of entropy. Finally, the
usage of these features have been found effective in some real world applications.

In this study, we developed a linear parametric approach of entropy estimation for
finite short series. This estimation truly comes from a linear AR model, which cannot
capture any nonlinear behavior of the series. Our hypothesis is based on the assump-
tion that signals for very short series seems to be stationary. The entropy itself is a
nonlinear statistic. But, the estimates come from the model is a linear statistic. The
readers may be confused with linear estimates of entropy. To aid the readers, we stud-
ied the feasibility of the new parametric approach. If numerical estimation of entropy is
truly reflected by the non-linearity of the series, then the numerical estimations should
be different from the estimations obtained for the models. On the other hand, if the two
estimates agree i.e., numerical estimations are within 95% standard range of the estima-
tions obtained through the model, then it implies entropy does not capture any more
information than the models can. Inspired by this, we have introduced new features
related to the entropy and parametric estimates of entropy.

We derived analytical expressions for parametric approach of entropy estimations
(when possible), so that we can compare how far the real estimates are from the true
theoretical one, which is impossible in case of the traditional entropy estimates. The
feasibility of the method has been studied on both synthetic and publicly available real
data, which comprise a large set of subjects. After feasibility study, the entropy based
features have been applied in real applications such as heart rate and arterial blood
pressure variability analysis, sleep classification, physical activity recognition. Besides
physiological time-series analysis, we have extended the study for extracting features
from patterns. Applications of entropy features reported effective for segmentation
and image processing applications [26, 27]. We have used entropy features directly in
pattern recognition. In particular, we have studied features for recognition of Bengali
handwritten numerals.

In addition, the Lempel-Ziv complexity and its estimates have been studied. The
parsing methods of LZC estimation and their pros and cons have been explained in de-
tail. The parametric estimates of entropy and LZC for finite series have been compared
during sleep classification.

Thus the total efforts payed on this thesis include studying entropy, entropy rates,
Lempel-Ziv complexity, parametric entropy estimations, their theoretical expressions
derivation, feasibility study of parametric entropy estimation, feature extraction, fea-
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Figure 1.3: General overview of the thesis.

ture dimensionality reduction, and usage of the extracted features in real applications
especially in physiological signals processing and handwritten character recognition.

1.5 thesis structure

The general overview of this thesis is illustrated by figure 1.3. The structure of the
thesis is divided into 3 major parts: (i) theoretical analysis, (ii) simulations, and (iii)
real applications. The derivation of expressions for parametric entropy estimations
have been explained in theoretical part. Then, the feasibility of parametric entropy
estimations have been justified using simulations on both synthetic and real data. After
feasibility study, the proposed method has been used for analysis of physiological
signals such as HRV and arterial blood pressure (ABP) variability. Finally, the use
of entropy and related measures have been applied for classification of sleep stages,
physical activities, as well as handwritten numerals recognition.
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This thesis is organized as follows:

• Chapter 2 contains background details about the entropy and entropy related
metrics. The numerical estimations of some entropy measures of a time series
have been given, including the Lempel-Ziv complexity of a time series. The en-
tropy of continuous and discrete time variables, and their difference has been
explained. It also includes mathematical definitions of some common measures
of entropy and entropy rates in the literature.

• Chapter 3 contains discussions about the parametric approaches. The parametric
estimations of different entropy measures. The theoretical derivations of approx-
imate entropy, sample entropy, and conditional entropy of a stochastic process
have been explained. This chapter also includes the simulations on synthetic
series, and the convergence of the expected values of entropy of the synthetic
signals generated through the models to their corresponding theoretical values.
The relationship between entropy rate and Lempel-Ziv complexity of a Gaussian
stochastic process has also been discussed in this chapter.

• Chapter 4 is dedicated to the validation checking of the proposed parametric
estimations of entropy. The feasibility study of the parametric entropy estimations
has been studied on synthetic series and real data. The feasibility of Lempel-Ziv
complexity on short series has also been studied in this chapter. Besides this, a
comparison on the robustness of Lempel-Ziv complexity and entropy for short
series has been also provided in this chapter.

• Chapter 5 presents the background of different physiological signals acquired
from the human body, especially the electrocardiogram (ECG), the physiology of
sleep and arterial blood pressures to provide the basic knowledge to the com-
puter scientists about the physiological signals and their processing. Methods for
extracting entropy features from some physiological signals have been explained
in this chapter. Finally, the effective use of these entropy features in some real ap-
plications such as sleep and physical activity classifications have been included.
A brief discussion about the obtained results have also been added for every
method.

• Chapter 6 describes the method for extracting features from Bengali handwritten
digits. The basic concept about the Bengali numerals has been provided at the
starting of the chapter, followed by a review on existing features for their recog-
nition. Then a set of features including the entropy one (corrected conditional
entropy), and their extraction from the Bengali numerals have been illustrated.
The complete handwritten numeral recognition method has been explained, in-
cluding feature dimension reduction (i.e.) best feature selection strategy.

• Chapter 7 summarizes the work and obtained results, then dictates a series of
possible future works.
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• Appendix A contains the list of publications in which some of the ideas and/or
significant results from this thesis have been published (or accepted) in refereed
journals and international conferences.





2
E N T R O P Y A N D R E L AT E D M E T R I C S

2.1 introduction

Entropy refers to the uncertainty of a random variable, and it depends on the probabil-
ity distribution of the variable. Entropy is usually used to refer to the discrete random
variable and the entropy of a continuous random variable is called differential entropy.
The entropy of continuous and discrete variables are different, as their probability
distribution is different. The rate of generation of information or the average rate of
uncertainty added for each variable is called entropy rate.

A. Lempel and J. Ziv [16] in 1976 first introduced a related measure of entropy
rate called Lempel-Ziv complexity, which is also a metric of complexity to evaluate
the randomness of a finite sequence. Since then it has been widely employed besides
entropy to solve information-theoretic problems [28, 29, 30] and applications such as
data compression [31, 32] and coding [33]. For a stationary ergodic process, the entropy
rate and Lempel-Ziv complexity (LZC) converge to a common value [3]. Despite the
popularity of these measures, the interpretation of LZC and the comparison of theses
two measures has not been well addressed in the literature.

In this chapter, we will give basic concepts about entropy and entropy rates used for
measuring the regularity or complexity of time series. Besides this, a short discussion
on LZC and its estimation will be given. Moreover, we will provide a comparison
between the estimates of LZC and entropy rate.

2.2 entropy definition

Entropy, usually called the Shannon entropy (ShEn) of a discrete random variable X
with probability mass function F(x), is defined by

ShEn(X) = −
∑
x∈X

F(x)logbF(x) = −E[logbF(x)] (2.1)

11
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From the probabilistic point of view, entropy of X is the measure of information
carried by F(x), with less entropy corresponding to more information. The entropy of
a random variable depends on its probability distribution instead of the actual val-
ues taken by the variable. If variable X takes discrete values {x[1], x[2],· · · ,x[N]}, then
ShEn(X) 6 logN for any probability mass function of X, and the maximum value, logN
is achieved only when the variable has uniform distribution [34].

The unit of the measure of entropy depends on the base (b) of the logarithm (log).
If b is 2, entropy is expressed in bits. Entropy is measured in nats, if log of base e is
used. In the following discussion, we will use log of base e.

2.2.1 joint entropy

The definition of entropy can be extended to a process of multiple variables. The joint
entropy of a process of n discrete random variables (X1,X2, · · · ,Xn) with joint distri-
bution F(x1, x2, · · · , xn) can be defined as

JEn(X1,X2, · · · ,Xn) = −
∑
x1∈X1

· · ·
∑
xn∈Xn

F(x1, x2, · · · , xn)log {F(x1, · · · , xn)} (2.2)

2.2.2 conditional entropy

The conditional entropy of a random variable given another random variable is the
expected value of the entropies of their conditional distributions. In information theory,
given two random variables X1 and X2, the conditional entropy CEn(X2|X1) quantifies
the amount of information needed to predict the outcome of X2 for some known value
of X1. Conditional entropy, CEn(X2|X1) is the result of averaging ShEn(X2|X1 = x) for
all possible values of X1. Mathematically, if X1 and X2 are discrete random variables,
then CEn(X2|X1) can be computed as [3]

CEn(X2|X1) =
∑
x1∈X1

F(x1)ShEn(X2|X1 = x1)

= −
∑
x1∈X1

F(x1)
∑
x2∈X2

F(x2|x1)logF(x2|x1)

= −
∑
x1∈X1

∑
x2∈X2

F(x1, x2)logF(x2|x1)

= −
∑
x1∈X1

∑
x2∈X2

F(x1, x2)log {F(x1, x2)/F(x1)}

= −
∑
x1∈X1

∑
x2∈X2

F(x1, x2)logF(x,y) −
∑
x∈X1

∑
x2∈X2

F(x1, x2)logF(x1)

= −
∑
x1∈X1

∑
x2∈X2

F(x1, x2)logF(x1, x2) −
∑
x1∈X1

F(x1)logF(x1)

= JEn(X1,X2) − ShEn(X1),
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where F(x1, x2) is the joint probability distribution of X1 and X2. Thus the relationship
between the joint entropy, JEn(X1,X2) of a pair of random variables and the conditional
entropy of one of them can be explained by the fact that the joint entropy of the pair of
random variables is the sum of the conditional entropy (CEn(X2|X1)) of X2 given X1
plus the entropy of X1 (i.e, simply ShEn(X1). This is called the chain rule of entropy for
two discrete random variables. Thus the chain rule of entropy for n discrete random
variables, X1, X2, · · · , Xn can be expressed as

JEn(X1,X2, · · · ,Xn) =
n∑
j=1

CEn(Xj|Xj−1,Xj−2, · · · ,X1) (2.3)

2.2.3 differential entropy

So far, we discussed about the entropy of discrete random variable(s). The random
variables can also take continuous values, called continuous random variables. The
entropy of a continuous random variable is called differential entropy. The differential
entropy of a continuous random variable X with probability density f(x) is given by

DEn(X) = −

∫
S

f(x)logf(x)dx, (2.4)

where S is the set of all possible values of the random variable. An important property
of differential entropy is that among all random variables with the same variance, it
acquires the maximum value with a normal (Gaussian) distribution [35]. Thus the
differential entropy of Gaussian distribution defines the upper bound of entropy.

2.2.4 differential entropy with gaussian probability distribution

The differential entropy (DEn) of a continuous random variable, X with Gaussian prob-
ability density function, f(x) = 1√

2πσ2
e−(x−µ)2/2πσ2 can be written [using 2.4] as

DEn(X) = −

∫∞
−∞

e−(x−µ)2/2πσ2

√
2πσ2

log

{
e−(x−µ)2/2πσ2

√
2πσ2

}
dx

=
1

2
log(2πσ2)

∫∞
−∞

1√
2πσ2

e−(x−µ)2/2πσ2dx+

1

2σ2

∫∞
−∞(x− µ)2

1√
2πσ2

e−(x−µ)2/2πσ2dx

=
1

2
log(2πσ2) +

1

2σ2
σ2

=
1

2
log(2πσ2e),

where µ and σ2 are the mean and variance of f(x). Thus, differential entropy depends
only on the variance of the distribution.
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Let X1, X2, · · · , Xn have a multivariate Gaussian distribution, N(µn,Σn) with mean
vector µn and covariance matrix Σn. Then their joint differential entropy

DEn(X1,X2, · · · ,Xn) =
1

2
log {(2πe)n|Σn|} , (2.5)

2.2.5 conditional differential entropy

Given a continuous random varibale X1, the conditional differential entropy of another
continuous random variable X2 can be defined as

DEn(X2|X1) = −

∫
f(x1, x2)logf(x2|x1)dx2dx1,

where f(x1, x2) is the joint probability density of X1 and X2. Using the relationship
f(x1, x2) = f(x1) ∗ f(x2|x1), the conditional entropy can be alternatively expressed as

DEn(X2|X1) = DEn(X1,X2) −DEn(X1) (2.6)

2.3 differences between entropy and differential entropy

The definition of differential entropy is simply an extension to continuous variables of
the Shannon entropy for discrete variables. Due to this transformation, there are cer-
tainly some differences observed in entropy and differential entropy. A fundamental
difference arises from the fact that F(x) used in equation 2.1 is a probability, whereas
f(x) appearing in equation 2.4 is the probability density and attains the meaning of
probability only when it is integrated over a finite interval. Thus, the use of entropy to
mean average uncertainty measure is meaningful, but this claim does not hold for dif-
ferential entropy [36]. Another important difference between differential entropy and
the entropy is that entropy is always positive but differential entropy might have nega-
tive values. In spite of some conceptual difficulties, the concept of differential entropy
has many potential applications in fields beyond statistical mechanics and commu-
nication theory [36] including time series analysis, biomedical signal processing, im-
age processing, econometrics, biostatistics, and population research. If any continuous
random variable X is discretized with a quantization step of size ∆, then differential
entropy (for continuous variable) and the entroy of discretized form (Xd) holds the
following relation

DEn(X) + log∆ = ShEn(Xd), (2.7)

as ∆→ 0

2.4 entropy rate of a stationary stochastic process

A stochastic process Xi, a time indexed sequence of random variables, is said to be
stationary if the joint distribution of any subset of the sequence of random variables
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is time invariant. A Gaussian stationary process is defined as a family of random
variables X(n) such that

• (i). X(n) is normally distributed with mean and variance being independent on
the time parameter

• (ii). the joint probability distribution of X(n1,n2, · · · ,nk) is multivariate normal
whose parameters depend only on the differences between two time indices ni
and nj.

The autocorrelation function of the process may decay slowly or exponentially. The
processes with slowly decaying autocorrelation functions are called “long-memory",
“long-range correlations", or “strongly dependence memory". An example of this type
of stationary process is a fractional Gaussian noise (fGn). On the other hand, the
processes with quickly decaying autocorrelation functions are called “short memory",
“short-range correlations", or “weakly dependence memory". An example of this is AR
process, where the autocorrelation function decays exponentially. AR processes are sim-
ple Gaussian stationary processes and have been used for maximum entropy spectral
estimation. The more details about the AR processes are given in section 3.2.1.

The entropy of a stationary stochastic process increases (asymptotically) with increas-
ing the number of random variables in the process. The entropy rate of a stationary
stochastic process is the increment in entropy for adding a new variable in the process.
Mathematically, the entropy rate (i.e., the entropy per symbol) of a stationary stochastic
process {Xi} is defined in [3] by

ShEn(X) = lim
n→∞ ShEn(X1,X2, · · · ,Xn)

n
(2.8)

If X1, X2,· · · , Xn are independent and identically distributed (i.i.d.), then

ShEn(X) = lim
n→∞ ShEn(X1,X2, · · · ,Xn)

n

= lim
n→∞ 1nnShEn(Xi)

= ShEn(Xi),

(2.9)

for any 1 6 i 6 n. Thus for a stationary stochastic process of i.i.d. random variables,
the entropy rate i.e. the entropy per symbol is constant and is equal to the entropy of
any random variable in the process.

Another notion of entropy rate is the conditional entropy of the last random variable
given the past ones, which can be expressed as

CEn(X) = lim
n→∞ CEn(Xn|Xn−1,Xn−2, · · · ,X1)

n
(2.10)

For stationary and stochastic processes the limits exist and two quantities in 2.9 and
2.10 are equal [3].
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The differential entropy rate of a stochastic process {Xi}, where Xi (1 6 i 6 n) are
continuous variables,

dEn(X) = lim
n→∞ 1nShEn(X1,X2, · · · ,Xn) = lim

n→∞ShEn(Xn|Xn−1,Xn−2, · · · ,X1),

when the limit exists. This expression can be simplified exploiting the chain rule of
entropy by

dEn(X) = lim
n→∞ShEn(Xn,Xn−1, · · · ,X1) − lim

n→∞ShEn(Xn−1,Xn−2, · · · ,X1) (2.11)

In practice, often the entropy rate is estimated by dropping the limit in equation 2.11

2.4.1 entropy rates for time series analysis

In 1957 Kolmogorov led a seminar on dynamical systems, where Yakub Sinai, Alexeev,
Arnold, and some other people attended [37]. From the ideas discussed in that semi-
nar, Kolmogorov proposed the entropy notion to distinguish probabilistic dynamical
system and deterministic dynamical system. Kolmogorov defined the entropy only
for quasi-regular dynamical system and is called Kolomogorov entropy. Later, Sinai
thought about generalization of the Kolmogorov entropy which can be applied to all
dynamical system, and is known as measure-theoretic entropy or Kolomogorov-Sinai
entropy (KSEn).

Consider a discrete time dynamical system (X,Ω, T ,µ) with the state space Ω. Sup-
pose the system is equipped with a σ-algebra (the collection of events to which prob-
abilities can be assigned [38]) and a probability measure µ is defined on it. In general
ergodic theory, dynamics is given by a measurable transformation T of Ω onto itself
preserving the measure µ. If the state spaceΩ is partitioned into A = (Φ1,Φ2, · · · ,Φp),
then it generates a stationary random process of probability theory [37] with values 1,
2,· · · ,p if Φk(x) = i,for x ∈ T−kΦi, -∞ < k < ∞. The entropy of the partition A is
simply the Shannon entropy defined as [39, 40]

ShEn(A) = −

k∑
i=1

µ(Φi)logµ(Φi),

where µ(Φi) is the probability that the system state resides in partition Φi. To compute
entropy of a dynamical system, it is required to consider its dynamics T : Ω→ Ω with
respect to the partition, A. Hence the entropy (i.e. actually the entropy rate) of the
dynamical system is given by:

h(T ,A) = lim
n→∞ 1nShEn(

n−1∨
i=0

T−iA) (2.12)

This is called measure-theoretic entropy or dynamical entropy [41].
In other words, it is the limit of the Shannon entropy of the product of partitions

with increasing dynamical refinement. The Kolomogorov-Sinai entropy (KSEn) or met-
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ric entropy [42] is the upper bound of the dynamical entropy and is defined as the
supremum of the dynamical entropy over all partitions. Thus the KSEn of a dynamical
system (X,Ω, T ,µ) is

KSEn(T) = sup
A

h(T ,A), (2.13)

where sup is taken over all finite partitions. The KSEn is generally inappropriate for any
statistical applications. Most obviously, it is usually infinite for correlated stochastic
processes, rendering it useless as a mean of discriminating general data sets [43].

2.4.1.1 K2 entropy

In 1983, Grassberger and Procaccia [8] proposed a new estimate, K2 that estimates
KSEn directly from the finite length real time series. Let us illustrate the computation
of K2 entropy now. Let x(1) , x(2) , · · · , x(N) constitute a time series of N points. Now
a sequence of vectors, um [i] = [x(i) , x(i+ 1) , · · · , x(i+m− 1) |1 6 i 6 N −m + 1]

with embedding dimension m in Rm is constructed from the time series. Let nmj (r)

denotes the number of vectors um [j] that are close to um [i]. Here closeness of two
vectors means that the Euclidean distance between the two vectors is within a tolerance
r of mismatch. Now, the probability of closeness of any vector um [i] to the vector

um [j] is given by Cmj (r) =
nmj

N−m+1 The probability, Cm(r) that any two vectors are
within maximum distance r of each other can be obtained by averaging Cmj (r) for
1 6 j 6 N −m + 1. Thus Cm(r) = 1

N−m+1

∑N−m+1
j=1 Cmj (r). Then K2 entropy is

defined as

K2 = lim
m→∞ lim

r→0
lim
N→∞ log

{
Cm(r) − Cm+1(r)

}
, (2.14)

2.4.1.2 eckmann-ruelle entropy

Following the same technique, Eckmann and Ruelle suggested calculating the KSEn
by considering the distance between two vectors as the maximum absolute difference
of their corresponding elements, i.e., if um [i] and um [j] are two vectors of length m,
then the distance between them is d(um [i] , um [j]) = max{|(x(i + k) − x(j + k) |}.
The estimation of Eckmann and Ruelle entropy (EREn) is illustrated by the following
steps:

1. Form templates um [j] = [x(j) , · · · , x(j + m − 1)] of size m, for 1 6 j 6 N −

m + 1;

2. Define the distance between um [j] and um [i]: d(um [j] , um [i]) = max06k6m−1 |um [j+

k] − um [i + k] |;

3. Let Amj be the number of templates um [i] such that d(um [j] , um [i]) 6 r,
where 1 6 i 6 N −m + 1, and Cmj (r) = Amj /(N −m + 1);

4. Define Φm(r) = (N −m + 1)−1
∑N−m+1
j=1 log Cmj (r);
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5. Increase m by 1 and repeat steps 1 to 4;

6. Finally, EREn = limm→∞ limr→0 limN→∞ [Φm(r) − Φm+1(r)]

It is noted that Φm+1(r)−Φm(r) represents the average of the natural logarithm of the
conditional probability that sequences that are close for m successive data points will
remain close also for the next incremental point. Although this measure has been found
useful in discriminating low dimensional chaotic systems, but it cannot be applied to
experimental data since the estimate is infinity for a process with superimposed noise
of any magnitude [44, 45].

2.4.1.3 approximate entropy

Pincus [46] introduced a similar way of estimating EREn called approximate entropy,
for getting finite estimates with real and noisy experimental data. ApEn measures the
likelihood that runs of patterns that are close remain close at the next incremental
comparison. Pincus proposed fixed values for parameters m and r in the definition of
EREn. So, the definition of ApEn becomes

ApEn(m, r) = lim
N→∞[Φm(r) −Φm+1(r)] (2.15)

Estimated values of approximate entropy, ApEn(m,r,N) is obtained by dropping the
limit in equation 2.15. ApEn(m,r,N) approximates EREn for very large values of N,
m and for very smaller values of r. The novelty of ApEn(m,r) is that they can distin-
guish a wide variety of system, and that the estimation of ApEn(m,r,N) is possible
even with small m and finite short series length N. It can potentially distinguish low
dimensional deterministic systems, high dimensional chaotic systems, periodic and
multiply periodic systems, stochastic and mixed systems [46]. It has small standard
deviation. However, it has some limitations also. The matching of a template with it-
self i.e. selfmatching has been considered to make it define even with very short series.
This consideration of selfmatching makes the measure biased [43] for finite short se-
ries. Besides this, ApEn for short series is uniformly lower than expected [47]. Another
important shortcoming of ApEn is more prone to practical inconsistency. Pincus [48]
considered the problem of assessing if any stochastic process A was more regular then
process B, by means of computing ApEn. He defined “consistent” those processes for
which ApEn of A was always larger (or smaller) than ApEn of B, for any value of the
parameters m and r. Here, we defined “practical consistency” by the fact that ApEn of
series SA is larger than ApEn of series SB for a broad range of m and r values.

2.4.1.4 sample entropy

To address some manifest limitations of ApEn (Pincus himself [43] reported ApEn to
be a biased statistic), Richman and Moorman [47] introduced sample entropy (Sam-
pEn), which is similar but improved version of ApEn. The estimation of SampEn is
performed by defining the following steps:

1. Let Amj be the number of templates um[i] such that d(um[j],um[j]) 6 r, where
1 6 i 6= j 6 N−m, and Cmj (r) = Amj /(N−m− 1);
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2. Let Am+1
j be the number of templates um+1[i] such that d(um+1[j],um+1[i]) 6 r,

where 1 6 i 6= j 6 N−m, and Cm+1
j (r) = Am+1

j /(N−m− 1);

3. Define Am(r) =
∑N−m
j=1 Cmj (r)/(N−m) and Am+1(r) =

∑N−m
j=1 Cm+1

j (r)/(N−

m), then

4. SampEn(m, r) = limN→∞[logAm(r) − logAm+1(r)] and,
for a finite series, SampEn(m, r,N) = logAm(r) − logAm+1(r).

SampEn does not consider self matches of templates like ApEn, which makes ApEn
a biased estimate. Besides this, SampEn is less prone to practical inconsistency, as it
requires less lengthy series to converge to the final value.

2.4.1.5 corrected conditional entropy

All estimations of entropy rate (ApEn, SampEn, and CEn) are dependent on the se-
lection of two parameters: m (the length of templates) and r of mismatch between
corresponding elements of the templates. In CEn estimation, it may happen that there
is only a unique pattern matching of lengthsm andm+1. i.e. the unique appearance of
the pattern of length m+ 1 can be completely predicted by the pattern of length m. As
a consequence, the conditional probability of 1 leads CEn estimation to zero. Even with
completely random series, the estimated CEn value decreases quickly with increasing
the pattern length. But, in some cases, it may necessary to select a large enough m, for
recognition of deterministic patterns [49]. This limitation has been overcome by adding
a corrective term with the CEn, and is referred to as corrected conditional entropy [49].
as:

CcEn(m+ 1) = CEn(m+ 1|m) + Perc(m+ 1) ∗ ShEn(1), (2.16)

where Perc(m+ 1) is the percentage of single (unique) points in the m+ 1 dimensional
phase space and ShEn(1) is the Shannon Entropy for templates of length 1. The CcEn
of a process decreased with increasing its regularity as other entropy rate. In addition,
when ApEn underestimates the entropy of finite short length series, the CcEn estimates
is still high.

2.4.1.6 transfer entropy

The transfer entropy (TEn), an another information theoretic quantity, provides a slightly
different definition of statistical dependency using conditional probability to define
what it means for one random process to provide information about another [36].
Transfer Entropy measures the amount of information transferred from one process
to another. This measure was initially proposed to quantify information transport in
dynamical systems [50] and was later extended to continuous random variables [51].
Mutual information (MI) [52] is often used to quantify the statistical dependence be-
tween signals. But, it cannot be applied to determine the predominant direction of
information flow. The TEn of two discrete processes {X}i and {Y}j has been defined
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in [51] as: suppose state xi+1 of {X}i depends on the m past states Xmi , but do not
depends on the l past states Ylj of {Y}j. Then it holds the generalized Markov property

F(xi+1|X
m
i , Ylj ) = F(xi+1|X

m
i ).

If there exists any such dependence, then the TEn can quantify this, which is obtained
[51] by

TEn(Xi+1|X
m
i , Ylj ) =

∑
F(Xi+1|X

m
i , Ylj )log

{
F(Xi+1|X

m
i , Ylj )

F(Xi+1|X
m
i )

}
, (2.17)

where F(Xi+1|Xmi , Ylj ) and F(Xi+1|Xmi ) are considered as the underlying transition prob-
ability (the probability associated with various state changes of of a process) and a
priori transition probability, respectively. The TEn can be expressed as the difference
of conditional Shannon entropies as

TEn(Xi+1|X
m
i , Ylj ) = ShEn(Xi+1|X

m
i ) − ShEn(Xi+1|X

m
i , Ylj )

Similary, the transfer entropy (tEn) of two continuous processes {Xi} and {Yi}, can be
written as

tEn(Xi+1|X
m
i , Ylj ) =

∫ ∫ ∫
f(Xi+1|X

m
i , Ylj )log

{
f(Xi+1|X

m
i , Ylj )

f(Xi+1|X
m
i )

}
dxi+1dX

m
i dY

l
j , (2.18)

where f is the joint probability density function of two continuous processes.

2.4.1.7 renyi entropy

Shannon’s original work [53] has been extended in many alternative measures of en-
tropy. For instance, Renyi [6] extended the Shannon entropy (ShEn) to a family of
measures that follows

ReEnq(X) = −
1

q− 1
log

n∑
i=1

F(x)q (2.19)

As order, q→ 1 in equation 2.19, the Renyi entropy (ReEn) tends to ShEn.
The ReEn of order q for a continuous random varible X is

reEnq(X) = −
1

q− 1
log
{∫∞

−∞ f(x)q
}

(2.20)

Letting q → 1 and applying L’Hospitals rule, 2.20 results in differential entropy, i.e.,
deEn(X)= reEn1(X). ApEn and SampEn are respectively the differential Renyi entropy
rates of order 1 and 2 [35].
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2.5 lempel-ziv complexity

Lempel-Ziv complexity measures the rate of generation of new patterns along a se-
quence of symbols. There are some variations of this metric. We will discuss here the
original version (LZ76) and the modified version of it (LZ78) introduced in [3]. The
concept of both techniques are same. The only difference is in parsing. For a symbolic
sequence, S = {s1, s2, · · · , sN} of length N, such that si ∈ A (the alphabet of α symbols),
parsing refers to the procedure of partitioning S into a set of nonoverlapping substring.
The yields of the parsing procedure are called phrases (PhrS). In both techniques of
Lempel-Ziv complexity estimation, the symbolic sequence is partitioned into a possible
set of distinct phrases, which define the LZC of the symbolic sequence.

2.5.1 symbolic representation

The complexity analysis of a time series is based on coarse-graining of the measure-
ments, i.e. the time series is transformed into a sequence of symbols, called symbolic
sequence. In doing so, some amount of detailed information is lost, but some of the
invariant, robust properties of the dynamics may be kept [54]. Using a larger num-
ber of symbols may be better, since it can keep more information than two symbols
[55]. There are dozens of techniques for producing different variants of the symbolic
representation [56, 57] of the time series. Some symbolic representations reduce the di-
mensionality, and is the major concerning issue of data storage, while using some other
representations, the intrinsic dimensionality of the symbolic sequence is the same as
that of the original. However, this is not a concerning issue for complexity analysis. In-
stead, we are interested about probability distribution. the symbolic sequence should
closely resembles the time series. Here, we will explain two methods for symbolic
transformation (quantization) :(i) quantization with source distribution, (ii) quantiza-
tion with equiprobable distribution.

• “Quantization with source distribution" In this quantization method, the range
of the distribution (i.e. the difference between maximum and minimum of the
series) is partitioned into a fixed number of bins. Each bin is labeled by a distinct
symbol (or letter of the alphabet). All values of the series fall within a specific
bin, is represented by the symbol assigning to the bin. In this way, a symbolic
sequence of same length of the series is obtained. Thus, if we use 2 levels of
quantization, then values less than a threshold (mean or median) is represented
by the symbol ’0’ and values greater than the threshold is represented by ’1’. A
time series and its symbolic representation is depicted in figure 2.1. This method
of quantization is affected by the presence of artifacts (being the maximum and
minimum value of the series are dependent on the artifacts in the series).

• “Quantization with equiprobability" This quantization technique will produce a
symbolic sequence with equiprobability from the given time series. Given a nor-
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Figure 2.1: A discrete time series and its symbolic representation. The vertical dashed lines
denote the value of the signal at time and the discrete series has been represented
by 3 symbols.

Figure 2.2: A time series and its discrete values denoted by the vertical dashed lines. The dis-
crete time series is then mapped to the symbolic dynamics using equiprobablie
quantization technique. The two breakpoints β1 and β2 define the 33th and 66th
percentile values.

malized time series, we can simply define the breakpoints1 that will produce a
equal sized areas under the curve [58]. Once the breakpoints have been deter-
mined, we can symbolize the time series as follows: all values below the smallest
breakpoints are mapped to a symbol (suppose ’a’). Then, the values smaller than
the second smallest breakpoints but greater than or at least equal the smallest
breakpoint are mapped to another symbol (suppose ’b’), and continues. This me-
thod is illustrated in figure 2.2.

2.5.2 lz76 parsing method

Suppose S denotes a finite length sequence of N symbols. The procedure of partition-
ing S into a set of non-overlapping distinct substrings are referred to as ’parsing’. A

1 Breakpoints [57] are a sorted list of numbers B = β1,β2, · · · ,βb−1 such that the area under a curve
N(0, 1) from βj to βj+1 = 1/b, where β0 and βb are defined as -∞ and∞, respectively.
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phrase PS(i, j) staring at position i and ending at j is a substring S(i, j), for i 6 j of
S. The parsing of the phrases involves a left to right scan of the given sequence. A
substring S(i, j) is compared to all substrings of S(1,j-1). If S(i, j) is matched with any
substring of S constructed from the S(1,j-1), then S(i, j) is updated to S(i, j+ 1). The
matching check and updating are repeated until the no matching of S(i, j) is found.
When no match of S(i, j) with any substring of the sequence of S(1,j-1) is found, S(i, j)
is defined as a new phrase. Now S(i, j) is updated to S(j+ 1, j+ 1) to point to the next
(j+ 1)th symbol and the procedure is repeated for another new phrase. The procedure
begins with the first symbol S(1, 1) and continues until the end of the sequence. The
number of phrases is denoted by c(SN). It should be mentioned that c(SN) is updated
by 1, even if the last substring is not a new phrase. Consider a sequence of 3 symbols,
S=010120211020012010222100112201. The parsing of this sequence using LZ76 will gen-
erate the following phrases (the phrases are separated by a period):
{0.1.012.02.11.020.0120.1022.210.011.220.1}.
Thus, c(S30)=12.

2.5.3 lz78 parsing method

This parsing procedure is particularly simple and has become popular as an standard
algorithm because of its speed and efficiency [3]. In this scheme, the lesftmost symbol
S(1) of the sequence is cosidered as the first phrase, and is stored in a vocabulary,
VOCAB (PhrS). Then we look immediately for the next shortest substring S(2,j), where
j 6 N, that is not appeared in the vocabulary, and store it in the VOCAB. This searching
and storing process will be repeated until all symbols of the sequence are precessed.
Thus with the for the same symbolic sequence used to explain LZ76 parsing, LZ78

returns the following phrases:
Symbols:010120211020012010222100112201

Phrases:0.1.01.2.02.11.020.012.010.22.21.00.112.20.1
The total number of phrases generated using LZ78, c(S30)= 15.

2.5.4 lempel-ziv complexity estimate using lz78

In LZ78 parsing, all symbols except the last one of the current phrase, might have
appeared earlier. So, each phrase can be broken up into a reference to a previous
phrase and a letter of the alphabet. The procedure is explained in table 2.1. In the code
words, the symbol φ is used to refer to the empty prefix of the phrase. The location of
the prefix to the phrase can be referred by at most log2(cN) bits, and dlog2(Q)e bits to

Position: 1 2 3 4 5 6 7 8 9 10 11 12

Phrases: 0 1 01 2 02 11 020 012 010 22 21 00

Code Words: φ,0 φ,1 1,1 φ,2 1,2 2,1 5,0 3,2 3,0 4,2 4,1 1,0

Table 2.1: Coding of the sequence {010120211020012010222100112} using LZ78
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code the last symbol, where Q is the number of symbols. Therefore, the total length (in
number of bits) required to encode the sequence S is

LZC78(S) = cN
{

log2(cN) + dlog2Qe
}

(2.21)

Thus, the rate of new patterns appearing in the sequence is given by

LZC78norm(S) =
cN(log2(cN) + dlog2Qe)

Ndlog2Qe
(2.22)

On the other hand, if the complexity is represented in symbols, instead of bits, then
equation 2.21 can be written as

LZC78(S) = cN

{
logQ(cN) + 1

}
, (2.23)

and normalized LZC78 is:

LZC78norm(S) =
cN
N

{
logQ(cN) + 1

}
, (2.24)

where logQ(cN) symbols are used to encode the prefix of a phrase and 1 for last symbol
for the sequences of Q symbols.

2.6 summary

The main objective of this chapter was to provide a review on entropy, entropy rate,
and Lempel-ziv complexity. The estimates of entropy, entropy rate and LZC has been
explained in detail.

Entropy and entropy rate are very common measures in physics and information
theory. It gains its popularity since Shannon introduced it. The definition given by
Shannon has been developed with times in order to extend its applicability with reduc-
ing limitations. Due to its vast usefulness, the further improvement of the estimates is
still an on going research yet today.

The estimates of LZC using different parsing methods as well as different quantiza-
tion techniques have been explained. Different parsing techniques provides different
number of phrases, and hence also the LZC for a given sequence. The comparison of
different parsing methods and the effects of quantization methods in the estimation of
LZC are explained in detail in the next chapter.



3
E N T R O P Y PA R A M E T R I C E S T I M AT I O N

3.1 introduction

Entropy and entropy rates have been used as powerful tools in different applications of
signal processing [59, 60, 61, 62, 63, 64]. Some most common measures of entropy used
for measuring the regularity (or complexity) of time series, and also for analyzing phys-
iological signals include ApEn, SampEn, and CcEn which are measures of differential
entropy rate. Entropy rates are becoming more and more interesting due to the possi-
bility they offer to distinguish between a periodic repetition of the same patterns and
aperiodic dynamics [49]. However, their estimations are highly dependent on series
length. Hence the estimates of entropy may be far away from what expected on very
long series. On the other hand, some metrics such as sample entropy may be quietly
undefined or has large variance in their estimates for very short series. Unfortunately,
real applications require analysis of very short series. A related problem in spectral
analysis has been solved using parametric approach. Parametric estimation means that
any given signal y[n] is generated by a known mathematical model and the estimation
is made as a function of both model parameters and inputs. The research for parametric
estimates of entropy and related metrics have the purpose of designing and implement-
ing parametric methods for different entropy measures to overcome the limitations in
the usability of their traditional measures for very short series length. With short series,
stronger assumptions (using a Gaussian AR model) can be made which reduces the
risk of high variance in estimates. However, this may also introduce some bias in the
events when the assumptions are partially violated. This violation of assumption can
be predicted by testing the disagreement between the numerical estimates of entropy
and the acceptable range of values obtained through several realizations of the model.
The agreement (or disagreement) between numerical and the parametric estimates of
entropy might provide some more information about the signal behavior such as the
presence of nonlinearity, nonstationarity or non-Gaussianity in the series.

25
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x[n]

Sxx(ω)

y[n]

Syy(ω)
H(z, θ)

Figure 3.1: The general schematic diagram of parametric approach PSD estimation. The power
spectrum Syy(ω) of a signal y[n] is determined in terms of the power spectrum
Sxx(ω) of the input x[n] (i.e. fed into the model) and the function of model param-
eters. That is why, it is called parametric approach estimation.

A related measure of entropy rate i.e. Lempel-Ziv complexity also to be a powerful
complexity measure and its variants have been demonstrated. However, it is still not
clear how many samples are required for proper estimates of these measures. Although
LZC and entropy rate are used in same application domains. The relationship between
LZC and entropy rate with respect to the convergence issue is still not well addressed.

In this chapter, an overview of parametric approach will be presented first. Then,
we will explain derivation of analytical expressions for some most commonly used
measures of entropy rates. After that, the feasibility of parametric estimation of entropy
will be studied based on synthetic series. Then, we will demonstrate the number of
necessary samples for reliable estimations of LZC through the Gaussian stationary
processes. The convergence of LZC and entropy rate with respect to the series length
(N) will be compared. Besides this, a relative correlation will be verified on LZC and
SampEn using synthetic series generated through the autoregressive (AR) models. In
addition, the dependence of LZC estimation on probability distribution will be verified.

3.2 parametric estimations

Parametric approaches are based on the use of models, assuming that the data are
generated in a certain way and the estimation is made as a function of both model
parameters and inputs. e.g., the estimation of power spectral density (PSD) of a signal
through parametric approach is explained in figure 3.1.

The first step of a parametric approach is to select the most appropriate family
of models. There are many models for parametric approach, but the most common
choices are a family of linear time-invariant models, whose transfer function is defined
by a set of M parameters Θ = [Θ1,Θ2, · · · ,ΘM]. The set of parameters defines the
property of transfer function and characterizes the signal generated by the model.

The most commonly used models for a given signal are autoregressive moving av-
erage (ARMA), AR, and moving average (MA). Identification of AR models has been
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largely explored in the literature and it requires solving linear (simpler) equations than
those required for MA or ARMA models. Also AR models are maximum-entropy mod-
els (among all sharing the same autocorrelation function). Here for simplicity, we will
describe the parametric entropy measures through AR models.

We will first discuss the conditions under which a parametric estimation of entropy
is possible. We will limit our attention to the estimations of ApEn, SampEn, and CcEn
with linear AR models. Pincus [43] and then Lake [35] already tackled the problem of
deriving analytical formulas of ApEn and SampEn for an AR process. Following the
suggestion in [43], our objectives are to extend the analytical expression of ApEn to
any m value, and also to derive an analytical expression for SampEn. Then to compare
the numerical estimations, the estimations obtained through simulated series, and the
theoretical ones.

3.2.1 ar process

An AR process of order M can be expressed as

x[n] = −

M∑
i=1

aix[n− i] +w[n]

where ai are real coefficients and w(n) is a white Gaussian noise (WGN) with mean
zero and variance σ2w. An AR model of order M is a wide-sense stationary process, if
the roots of the polynomial zM −

∑M
i=1 aiz

M−i lie within the unit circle, i.e. each root
must satisfy |zi| < 1.

The parameters of the model and the autocovariance function values γk, are linked
by the Yule-Walker’s equations

1 a1 a2 · · · aM
a1 1+ a2 a3 · · · 0

a2 a1 + a3 1+ a4 · · · 0

· · · · · · · · · · · · · · ·
aM aM−1 aM−2 · · · 1





γ0

γ1

γ2

· · ·
γM


=



σ2w

0

0

· · ·
0


. (3.1)

The m consecutive values, Xm[n] = {x[n], · · · , x[n+m− 1]}, are multivariate normal
on Rm, with Normal joint probability density
f(Xm) = N(0,Σm) = e(−X

T
mΣ

−1
m Xm/2)/[(2π)

m det(Σm)]1/2 and Toeplitz covariance matrix

Σm =


γ0 γ1 · · · γm−1

γ1 γ0 · · · γm−2

· · · · · · · · · · · ·
γm−1 γm−2 · · · γ0

 .



28 entropy parametric estimation

10
1

10
2

10
3

10
4

−0.5

0

0.5

1

1.5

2

2.5

N

A
pE

n,
 S

am
pE

n

(a)

 

 

ApEn
L

SampEn
L

ApEn
µ

SampEn
µ

SampEn
TH

1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

14

ApEn, SampEn

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

(b)

 

 

S
am

pE
n L

S
am

pE
n T

H

A
pE

n L

Figure 3.2: ApEn and SampEn of the arbitrary AR model of coefficients [1,−0.87, 0.02], with
m=2 and r = 0.2 × STD. Panel (a): Entropies of the model as a function of N.
ApEnµ and SampEnµ were estimated by taking the average of K = 10000 and
K = 300 Monte Carlo’s runs for N 6 100 and N > 100, respectively. The dotted
lines define the boundary of SampEnµ± SampEnσ and ApEnµ± ApEnσ. Panel (b):
Probability density functions derived from K = 300 realizations of ApEn (left) and
SampEn (right) for N = 360. ApEnµ does not match ApEnL yet, as N is too small.
Instead, SampEnL=1.532, SampEnTH=1.553 and SampEnµ=1.584 approximately co-
incide. On the other hand, SampEnσ = 0.096 is larger than ApEnσ = 0.033. Lake
(2002) derived an expression for estimating SampEnσ, but in this case it underesti-
mates it (0.016).

The values γm, for m 6 M, are defined by equation (3.1). When m > M, further
elements in Σm are still dictated by the Yule-Walker’s equation γk = −

∑M
i=1 aiγk−i.

Denoting ρk = γk/γ0 the autocorrelation coefficient, the variance σ2y = γ0 of the
series generated by the AR process is

σ2y = σ2w(1+ a1ρ1 + · · ·+ aMρM)−1 = σ2wc, (3.2)

where c = (1+ a1ρ1 + · · ·+ aMρM)−1.

3.2.2 asymptotic theoretical values for entropy of a gaussian ar pro-
cess

The analytical expression of ApEn(m = 1, r) for a stochastic (thus also for an AR)
process is given by Pincus in [43]. Let

Qm =

∫x[m]+r

x[m]−r
· · ·
∫x[1]+r
x[1]−r

f(Ξm)dξ1 · · ·dξm

be the probability that the values Xm lie within the hypercube of side 2r, where f(Xm)

is the multivariate probability density of the ergodic stochastic process. Then

ApEnTH(1, r) =
∫∫

R2

f(X2) log
(
Q1
Q2

)
dx[1]dx[2].
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This equation can be extended to derive a general analytical expression of ApEn(m, r)
for any m as

ApEnTH(m, r) =
∫
· · ·
∫

Rm+1

f(Xm+1) log
(
Qm

Qm+1

)
dXm+1. (3.3)

where dXm = dx[1]dx[2] · · ·dx[m],
Following a similar approach, a theoretical value for SampEn of an AR process can

be derived from the definition. In fact, the probability of matching two templates of
size m within error tolerance r (i.e. the maximum absolute difference between the
corresponding elements of any two templates is r) is given by:

Pm =

∫x[m]+r

x[m]−r
· · ·
∫x[1]+r
x[1]−r

e−Ξ
T
mΣ

−1
m Ξm

(2π)m/2 det(2Σm)1/2
dξ1 · · ·dξm.

In fact, the difference Xm[i] − Xm[j] is distributed as N(0, 2Σm). Hence, the theoretical
value of SampEn of an AR model is

SampEnTH(m, r) = log(Pm) − log(Pm+1). (3.4)

It should be noted that the asymptotic theoretical values in equations (3.3) and (3.4)
depend on r and m and are valid in the limit N → ∞. However, when computing
Pm+1 form >M, the Yule-Walker’s equations allow the factorization of the covariance
matrix into

Σm+1 = T

(
Σm 0

0 σ2w

)
T ′, (3.5)

with the change of variable x̂[n+m] = x[n+m] +
∑M
i=1 aix[n+m− i], where T is a

transformation matrix. Hence, the value of SampEnTH(m, r) stabilizes for m >M.
Similarly, we can write an analytical expression for conditional entropy (i.e. the en-

tropy rate) of a Gaussian AR process. The conditional entropy (CEn) is the entropy of
a conditional distribution of the present mth observation, given the previous m − 1

observations. For a Gaussian stochastic process (thus for an AR process), the condi-
tional entropy and differential entropy rate should represent the same value. Thus
from equation 2.11, we can write the conditional entropy

CEn(X) = lim
m→∞ {dEn(Xm) − dEn(Xm−1)} , (3.6)

If X1, X2, · · · , Xm is a stationary random sequence, having mth order normal probabil-
ity density function, then their joint differential entropy from equation 2.5 is,

DEn(X1,X2, · · · ,Xm) =
1

2
log(2πe)m|Σm|, (3.7)
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where Σm is the Toeplitz covariance matrix of order m, and |.| denotes the determinant
of it. Thus, the expression for CEn of a Gaussian AR process of order M becomes

CEn(X) = lim
m→∞ {DEn(X1,X2, · · · ,Xm) −DEn(X1,X2, · · · ,Xm−1)}

= lim
m→∞

{
1

2
log(2πe)m|Σm|−

1

2
log(2πe)m−1|Σm−1|

}
=
1

2

{
log (2πe) + lim

m→∞ log
(

|Σm|

|Σm−1|

)}
,

(3.8)

for m > M, further elements are dictated by the Yule Walker’s equation 3.1. The esti-
mated value of the conditional entropy rate is obtained by discarding the limit in the
definition, and thus using factorization of the covariance matrix from equation 3.5, the
expression for CEn(X) reduces to

CEn(X) = logσw +
1

2
log(2πe) (3.9)

This is the theoretical value for continuous random variables. But, in practice, the
computation is based on discrete series. So, the expected value of conditional entropy
of a Gaussian AR process, from equations 3.9 and 2.7 is

CEn(X) = logσw +
1

2
log(2πe) − log∆, (3.10)

The quantization step size, ∆ depends on the expected range of the distribution of
AR model and number of quantization levels (ξ). Expressing ∆ as a function of the
expected range and ξ. Finally, the expected theoretical value of conditional entropy of
a Gaussian AR process is given by

CEn(X) = logσw +
1

2
log(2πe) − log

(
expectedRange

ξ

)
, (3.11)

Now let us consider the expression for differential entropy rate of a multivariate
Gaussian AR process. By definition, the differential entropy rate, dEn(X) of a Gaussian
AR process of m random variables is

dEn(X) = lim
m→∞ 1

m
dEn(Xm)

= lim
m→∞ 12 log(2πe)m|Σm|

=
1

2
log(2πe) + lim

m→∞ 1

m
log|Σm|

For a Gaussian AR process, Σm is generated by the power spectral density f, determi-
nant of Σm is the Toeplitz determinant [65]. If f(λ) denotes the Fourier transform of
the covariance function, then as stated in [65], the limiting term in the right hand side
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of differential entropy rate can be replaced by the 1
2π

∫2π
0 log (f(λ))dλ, and hence the

differential entropy rate for a Gaussian AR becomes

dEn(X) =
1

2

{
log(2πe) +

1

2π

∫2π
0

logf(λ)dλ

}
(3.12)

As the number of variablesm in the AR process approaches∞, the ratio of the determi-
nants of Toeplitz covariance matrices [65] in equation 3.8 approaches to e

1
2π

∫2π
0 logf(λ)dλ

i.e

|Σm|

|Σm−1|
→ e

1
2π

∫2π
0 logf(λ)dλ,

Putting the values of the ratio in equation 3.8, we see that the CEn of a Gaussian AR
process becomes

CEn(X) =
1

2

{
log(2πe) +

1

2π

∫2π
0

logf(λ)dλ

}
(3.13)

Thus the differential entropy rate and conditional entropy of a multivariate Gaussian
AR process is the same. In estimation of CEn with finite series, the relative patterns in
m dimensional space becomes single and hence the estimation is negatively biased. To
overcome this problem with short series, Porta et al., [49] added a correction factor with
the CEn estimation. This correction factor is solely determined by the percentage of
the number of unique patterns of dimension m and the Shannon entropy for m=1. The
additional term is not a required for determining the theoretical value of the estimation.
Thus, the theoretical value of CEn is also the theoretical value for CcEn.

3.2.3 theoretical values of entropy for m → ∞ and N → ∞
Pincus [48] showed that ApEn is related to differential entropy rate, a central concept
of information theory, and later Lake [35] proved that ApEn and SampEn are the dif-
ferential Renyi entropy rates of order 1 and 2, respectively.

In practice, Lake [35] derived the theoretical expressions of both ApEn and SampEn,
from the definition of differential entropy rate, in the limit m → ∞. If r is chosen in-
dependently of the the standard deviation (STD) of the sequence (σy), the expressions
for ApEn and SampEn (according to Lake’s derivation) become

ApEnL(r) = log(σw) +
1

2
[log(2π) + 1] − log(2r),

SampEnL(r) = log(σw) +
1

2
log(4π) − log(2r).
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Figure 3.3: SampEn of the arbitrary AR model of coefficients
[1,−0.80, 0.46, 0.02,−0.33] for N = 6000, r=0.2 × STD and different values of m.
Panel (a): boxplots represent the probability density of SampEn derived for 300
realizations of the model. SampEnTH lies inside the standard range of numerical
estimations for every m. On the other hand, SampEnL is constant due to it’s inde-
pendence on m. Although, both SampEnTH and SampEnµ differ from SampEnL for
any m < M = 4 (the model order), they meet at a common value for any m > 4.
Panel (b): SampEnTH approximately overlaps with SampEnµ for any m, r. They
progressively converge to SampEnL for m > 4.

On the other hand, if r is chosen as a percentage r̂ of the STD such that r = r̂× STD,
then the expressions for ApEnL and SampEnL become

ApEnL(r̂) = log(σw) +
1

2
[log(2π) + 1] − log(2r̂σy) (3.14)

= log
(
σw

σy

)
+
1

2
[log(2π) + 1] − log(2r̂), (3.15)

SampEnL(r̂) = log
(
σw

σy

)
+
1

2
log(4π) − log(2r̂). (3.16)

To keep consistency of the notation used in the literature, the letter r will be used in
place of r̂ in rest of this thesis. Now, if σy in equations (3.15) and (3.16) is replaced by
σw
√
c using equation (3.2), we get

ApEnL(r) =
1

2
[log(2π) + 1] − log(2r

√
c), (3.17)

SampEnL(r) =
1

2
log(4π) − log(2r

√
c). (3.18)

Hence, if r is fixed, Lake’s estimates depend on the variance of the prediction error
(σ2w). On the other hand, if r varies with σy (as common in practice), they depend on
the coefficients of the model (thus also on the model order M) but not anymore on σ2w.

Obviously, for a white Gaussian noise, which is an AR process of order zero with
c = 1 and σw = σy, the theoretical values in equations (3.17) and (3.18) still apply.
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Figure 3.4: The convergence of SampEn for models, M1: [1,−0.77], M2: [1,−0.04, 0.87], and
M3: [1,−0.56, 0.03, 0.4] with N = 10000, m = 1, and values r over the range
(0.05,· · · ,1)×STD. SampEnTH and SampEnµ approximately coincides for every
model. SampEnTH and SampEnµ closely converges with SampEnL only for M1.
This does not happen in the other two cases, since the value of m is less than the
order of the other two models

3.2.4 comparatively reliable entropy estimations for finite N

The expressions provided in the previous two sections are asymptotic in the limit
N → ∞. Numerical estimates for short series obtained using the classical numerical
algorithms ([44] for ApEn and [66] for SampEn) might be still far from the expected
values. This is illustrated in figure 3.2(a).

A possible operative approach to obtain expected values of these estimates for finite
and small values ofN is to perform a specific number of Monte Carlo simulations1, and
then measure ensemble statistics. While this is seldom possible with real series, given
the lack of stationarity over time, it is fairly easy with synthetic series obtained from
AR models, which can be generated at will. Hence, in each realization, a synthetic se-
ries of length N is generated. The values of entropies are estimated, using the classical
algorithms [44, 66], for specific values of m and r. Finally, an estimate of the proba-
bility density function (PDF) of the statistics is obtained (i.e. with an histogram), from
which mean and STD can be estimated. In the following, the mean values of ApEn and
SampEn computed from K realizations of the process will be referred to as ApEnµ and
SampEnµ. Correspondingly, ApEnσ and SampEnσ will label their standard deviations.

1 A problem solving technique used to approximate the probability of certain outcomes by running multi-
ple trial runs, called simulations, using random variables [67].
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Figure 3.5: Convergence to theoretical values for an AR model with coefficients [1 -0.2 0.1]
with σw=0.1, number of symbols ξ = 6. The boxplots represent the estimated val-
ues of ApEn, SampEn, and CcEn obtained through K=300 realizations of the Monte-
carlo’s approach and the lines denote their corresponding theoretical values: ApEnL,
SampEnL, and CEnTH. The difference in CcEn and CETH with large series (N>3162)
is due to the fact that the CETH is obtained using the equation 3.11, which requires
ξ→∞ to get convergence with very large series.

Figure 3.2(b) illustrates the procedure and, together with figures 3.3 and 3.4, shows
how the asymptotic values of the previous two sections match the numerical estimates,
for various values of m, r and AR model order M.

As a rule of thumb, for an AR model, we can expect SampEnµ to converge much
earlier (N ≈ 100) to SampEnTH. However SampEnσ is always larger than ApEnσ, sug-
gesting that SampEn trades a much smaller bias at the expenses of a larger variance of
the estimates. Also SampEnσ grows significantly with m, if N is fixed. Regarding the
asymptotic values, SampEnµ converges to SampEnTH when N is large enough, and the
two values start matching SampEnL only when m is larger than the AR model order.
The convergence of theoretical values for ApEn, SampEn and CcEn is illustrated in
figure 3.5.

3.3 entropy rate versus lempel-ziv complexity

We have explained entropy rate and Lempel-Ziv complexity in the previous chap-
ter. Here, we will discuss some relative properties of them for a stochastic station-
ary process. Let {Xi}

n
i=1 be a stationary stochastic process (e.g. an AR process) and
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l(X1,X2, · · · ,Xn) be the Lempel-Ziv codeword length (using LZ78) associated with
X1,X2, · · · ,XN. Then it is shown in [3] that

lim
N→∞ 1

N
l(X1,X2, · · · ,Xn) 6 ShEn(X)

lim
N→∞ 1

N
(LZC78(X)) 6 ShEn(X)

LZC78norm(X) 6 ShEn(X),

(3.19)

where, ShEn(X) and LZCnorm(X) denote respectively, the entropy rate and normal-
ized LZC78 of the process.

Thus the LZC of the encoding process using LZ78 algorithm of a stochastic pro-
cess asymptotically should not exceed the entropy rate of the source. To verify this,
we consider an arbitrary Gaussian AR process of order 2, and we generate synthetic
series of some lengths ranging from 100 to 100000. The discrete time series generated
through the process is converted to some symbolic sequences using 2, 3, and 4 different
symbols. The expected entropy rate and Lempel-Ziv complexity are estimated by the
average of K=100 realizations of the synthetic series generated through the process. The
expected entropy rate and Lempel-Ziv complexity with different numbers of symbolic
representation is shown in figure 3.6.

We see that LZC is less dependent than entropy rate on the number of symbols.
The LZC78norm tends to converge to the entropy rate at very long series, when only
sequence of two symbols are used. With increasing the number of symbols the entropy
rate increased, and it upper bounds the LZC78norm for any series length.

If we keenly observe figure 3.6, it is seen that there is a drift in LZC78norm value
in panel (b) than other two panels. This drift is due to the fact that the value of the
term dlog2(Q)e is equal for Q=3 and 4. Similarly, the value of this term for Q=5, 6, 7

are same and is equal to the value for Q=8. Thus Lempel-Ziv complexity estimation
for any number of symbols q, such that log2(q) < log2(Q) differs only in the number
of distinct phrases.

So far we discussed the behavior of LZC78 and entropy rate of a Gaussian AR pro-
cess. Let us see, what happens with LZC76. The estimates of LZC76 and the entropy
rate for a sequence of 2 symbols, which are mainly shown in the literature are depicted
in figure 3.7.

If we compare, figures 3.7 and panel (a) of 3.6, we see that the LZC78norm is al-
ways larger than 1, even at very long 100000 series lengths. On the other hand, the
LZC76norm using LZ76 parsing always remains below 1 for any series length and
entropy rate upper bounds the LZC76norm, as expected theoretically. So, we can con-
clude that LZC estimate using LZ76 is more reliable than LZ78, even at very short
series. The one major disadvantage of LZ76 parsing is that it requires large parsing
time.
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Figure 3.6: LZC78norm and the entropy rate of an AR process with coefficients { 1 -0.2 0.1} and
variance of prediction error σw=0.1. The solid black line and boxplots denote en-
tropy rate and LZC78norm, respectively. Panel (a), (b), and (c) show the LZC78norm

and entropy rate for sequences of 2, 3, and 4 symbols, respectively.
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Figure 3.7: LZC76norm and the entropy rate of an AR process with coefficients { 1 -0-2 0.1} and
variance of prediction error σw=0.1.

3.4 summary

In this chapter, we have set up a theoretical basis for the parametric estimation of en-
tropy through autoregressive models, which are popularly used for power spectrum
analysis of time-series. We started from the results available and developed new the-
oretical ones. The theoretical results matched the outcomes of the simulations per-
formed.

SampEn and CcEn converges to their theoretical values earlier than ApEn. The stan-
dard deviation of ApEn is less than that of other estimates, even at short series. The dif-
ference in the expected value and the theoretical one of CcEn for long series (N > 3000)
is due to its dependence on the number of quantization levels, ξ. It should converge
with ξ→∞. The value of ξ should be increased with increasing N.

The LZC78norm converges very slowly, even with stationary stochastic (thus for AR)
process at very long series. The quick convergence of Lempel-Ziv complexity is found
for LZC76norm, and its upper bound is defined by the entropy rate of the Gaussian
stochastic process. The estimation of LZC expressed in symbols instead of bits is more
appropriate, when estimating the complexity of a time series.
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VA L I D AT I O N O F PA R A M E T R I C E S T I M AT I O N S O N R E A L

S E R I E S

4.1 introduction

The common and major problem of entropy estimation is their dependence on series
length. In the previous chapter, we have introduced parametric estimation of entropy,
for very short series, when the traditional nonlinear measures of entropy may be impos-
sible or suffers from the question of convergence. We have shown better convergence of
parametric entropy with the theoretical ones for arbitrary AR models. We have also dis-
cussed the estimation of a very similar measure of entropy, the Lempel-Ziv complexity
and its convergence with the entropy rate for a Gaussian AR process.

The validity of these parametric estimations should be justified on real series. To
this aim, here we have considered RR series i.e. the series of intervals between the
successive R peaks of an electrocardiogram (ECG), because they seem to be stationary
on short period and they are available on some public database. The variation in RR
intervals is called heart rate variability (HRV). The more details about RR series and
HRV are provided in the next chapter.

In this chapter, at first we will explain the feasibility of parametric entropy estima-
tions on HRV signals, which are available on the Physionet1. After studying the fea-
sibility of the parametric estimations of entropy, the effects of the number of samples
for reliable estimate of LZC from RR series extracted during sleep will be justified, as
well as the LZC will also be compared with another related measure of entropy rate
(i.e. SampEn). The study is focused on RR series extracted during the sleep, due to
its small signal to noise ratio. The HRV of a subject can be significant during her/his
different sleep stages. Only three sleep stages: light sleep (LS), i.e. stages 1 and 2 of
NREM; deep sleep (DS), i.e. stages 3 and 4 of NREM; and rapid-eye-movement (REM).
During sleep a person goes normally into different sleep stages:rapid-eye movement

1 Physionet offers free access to the large collections of recorded physiologic signals on the web
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(REM), light sleep (LS), and deep sleep (DS), which are associated with different brain
activity, and hence cardiovascular activity as well. The more details about the sleep
physiology have been included in the next chapter.

4.2 data and methods

In order to investigate if a parametric approach is feasible in practical sense, Phys-
ionet’s normal sinus rhythm (nsrdb & nsr2db), and congestive heart failure (chf2db)
databases are considered for this study. The “nsrdb” database consists of 18 (5 men,
age: 26 to 45, and 13 women, age: 20 to 50) long-term ECG recordings of subjects with-
out any significant arrhythmias. “nsr2db” includes beat annotation files for 54 Holter
recordings of subjects in normal sinus rhythm (30 men, age range 28.5 to 76, and 24

women, age range 58 to 73). The third database, “chf2db” includes 29 long-term ECG
recordings of subjects (age 34 to 79) suffering from congestive heart failure (CHF). The
beat annotations were obtained by automated analysis followed by manual review and
correction. The ECG sampling rate was 128 samples/second in all cases.

To study the effects of series length on LZC and entropy (here we consider SampEn),
a sub-population (13 out of 16 subjects) of the “Cyclic Alternating Pattern (CAP) of
the EEG activity during sleep" of [68, 69] database has been considered. Among 16,
three subjects were removed due to the low quality or absence of the ECGRR series
are extracted from the ECG signals, collected during sleep period. The sleep stage
annotation series provided with the database are used for segmenting sleep stages.

4.3 feasibility of parametric entropy estimations

The feasibility study verifies if parametric approach of entropy estimation is feasible
on real series. Feasibility is justified by the agreement between numerical estimate and
the expected average value of entropy for the series generated from the AR model.
The coefficients define the model, which has generated the series, and hence the coeffi-
cients themselves contain all information of the signal dynamics including its entropy.
Therefore, estimating entropy of the synthetic signals generated through the AR mod-
els gives an idea of entropy values for a purely linear process. On the other hand,
ApEn and SampEn are nonlinear tools for measuring the regularity (or complexity of
a time series). The numerical esitmates of the entropy may fall inside or outside the
95% standard range of the values obtained through K realizations of the model. If the
numerical estimate lies within 95% of standard range of the values obtained through
K realizations of the model, then they are considered in agreement, otherwise disagree.
The agreement of numerical estimates with the expected average value of the model
implies that the entropy is only due to an aggregated index of linear properties of the
series, which is also shown with other traditional temporal or spectral parameters [70].

The disagreement between numerical estimate and the expected average value of
the model implies that the series contains nonlinear, nonstationary or nonGaussian
components, and its dynamics cannot be described by the purely linear AR process.
The agreement between numerically estimated value and the value obtained through
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Figure 4.1: Block-diagram of the parametric SampEn estimation on real data. SampEnRR is the
SampEn numerical estimations of the RR series after pre-processing

the models may decrease with increasing the series length due to increasing the non-
stationarity. To investigate the source of this disagreement, in particular if it might be
ascribed to non-Gaussianity, surrogated data can be used.

The methodology for parametric estimation of entropy (e.g. SampEn) are listed in
the block-diagram (Fig. 4.1). It consists of the following steps:

• “Pre-processing”. The RR series may contain ectopic beats and artifacts. To re-
move them, two levels of pre-processing are performed. In the first stage, only
those extreme artifacts which lie outside the range [Q1 Q3]±3× IR are removed.
Here IR=Q3-Q1 is the interquartile range, between the third (Q3) and first (Q1)
quartiles. Ectopic beats are instead excluded in the second step, when only those
RR which lie within 20% of the previously accepted RR interval were retained.
The first accepted RR value of each series must lie within the IR.

• “AR(M)”. For each subject, RR series of some specific lengths (N=75, 150, 225,
375, 750, and 1500) are chosen in overlapping fashion (overlapped by 50%) and
fitted to an AR model. The model order,M is determined by satisfying the Akaike
information criterion (AIC) [71] and the Anderson’s whiteness test [72].

• “SampEn estimation”. All three measures of SampEn: SampEnRR, SampEnTH,
and SampEnµ have been considered. The value of SampEnRR is estimated numer-
ically using the procedure described in section 2.4.1.4. The value of SampEnTH is
determined using equation 3.4. Besides these, SampEnµ is obtained by averaging
estimations of K = 300 Monte Carlo simulations of the AR models as described
in section 3.2.4.
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The agreement between numerically estimated value of entropy (SampEnRR) and
the value obtained for the series generated through K = 200 realizations of the AR
models for different series lengths N={75,150,225,300,375,750,1500} are observed for
the considered datasets.

4.4 analysis of series length for robust estimation of lzc

The variation in complexity or regularity of physiological signals is sensitive to dif-
ferent pathological conditions. Lempel-Ziv complexity (LZC) has been used to dis-
criminate between WAKE and SLEEP in patients under anesthesia [73] from electroen-
cephalogram (EEG) and to compute the EEG background activity in patients with or
without Alzheimer’s disease [74], and the complexity computation of autonomic ner-
vous system (ANS) from HRV analysis. There are many common applications of LZC
and entropy reported in the literature [75, 76, 77, 78]. In fact, there are some researches
those show how changes in complexity can distinguish between ventricular tachycar-
dia [79] and atrial fibrillation [80], or how ANS control is modified by pathological
conditions, such as sleep apnea or heart failure.

Despite to their proven capability, what LZC can really measure from biomedical
signals is not clear enough. We want to re-mention that the estimation of this metric of
a time series depends on the transformation of the time-series into symbolic sequence.
Aboy et al. [76] has reported that LZC is dependent on the frequency related quanti-
ties (using binary symbolic sequence) on running window of 10 sec. The effect of the
number of samples and long-term nonstationarity have been totally neglected in their
study.

In this study, to move a step forward, we planned a few synthetic simulations and
real data analysis to verify which minimum number of samples should be employed
for obtaining a robust estimate on HRV signals expressed as RR series. Moreover, we
compared LZC with another complexity measure, i.e. SampEn, in order to assess at
which extend they are related. We focused our efforts on RR series extracted during
sleep because of its optimal signal-to-noise ratio. However, the RR series during sleep
can vary significantly with the different sleep stages [81]. For this reason, here we have
considered three sleep stages (according to standard sleep labeling [82, 83]): Light Sleep
(LS), represented by NREM stage 1 and 2; Deep Sleep (DS), represented by NREM stage
3 and 4; and Rapid-Eye Movements (REM).

The proposed system consists of the following methodological steps:

• “Preprocessing and data modeling". The RR series is first high pass filtered using
median filter of 200 samples, and then extreme artifacts are removed. Each RR
segment of 400 samples from successive windows (with no overlapping) is fitted
to the AR models of fixed order 9. Model fitting is performed for individual
sleep stages of each subject using the Yule-Walker equations. The model, whose
prediction error is more than 0.05 sec2 is excluded from the analysis. Thus a
variable number of models are obtained depending on the subject and the sleep
stage (e.g. 219 DS, 272 LS, and 169 REM).
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Figure 4.2: Squared magnitude of the frequency response of the two AR models mREM (light)
and mNREM (bold line).

• “Symbolic representation". The RR segments have been converted to the symbolic
sequence using “quantization with equiprobable distribution", as described in
section 2.5.1 of chapter 2. The break points are defined by the percentile values
(i.e., each interval has the same probability).

• “Expected value estimation of LZC". The control of the ANS is reflected on a
predominant power in the high frequency during NREM, and in the low fre-
quency band during REM sleep. At first, two general AR models: mNREM (dur-
ing NREM) and mREM (during REM) are estimated from the real data such that
they contain the dominant power in the corresponding (NREM: [0.15 to 0.4]Hz
and REM: [0.04 to 0.15] Hz) frequency bands. The squared magnitude of the
frequency response of both models are shown in figure 4.2. Synthetic series of
different lengths N : {10, 102, · · · , 105} are generated for the AR models through
K=30 realizations following Montecarlo’s approach. The series is then converted
to a symbolic sequence of 2, 3, and 4 symbols using the technique described in
section 2.5.1 of chapter 2. The expected value LZC (LZC76µ) for each series is
estimated using LZ76 parsing technique by taking the average estimates of 30

realizations.

• “Evaluation of the series length". The evaluation of the number of samples is
carried out by two different approaches. In the first approach, the percentage
of variation for each series length (N) is compared with respect to the average
value obtained at N maximum (105), and the number of samples for having
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variation (less than 5%) is determined by the linear interpolation. In the second
approach, a statistical (double tail t-test is applied to compare the average values
LZC76µ between successive values of N (e.g. LZC76µ for N=10 vs N=100; N=100

vsN=1000. In addition, the double tail t-test is also applied on the mean estimates
of two models to observe if it can distinguish the two population with significant
(p<0.05) values.

• “Relationship between Lempel-Ziv complexity and sample entropy". To evaluate
the relationship between LZC and SampEn, LZC76µ is estimated for a set of K=30

synthetic series of length N=23000, generated by the same AR models identified
in “Inter-subject variability". The value of SampEnTH) is determined with m=1

and r=0.2×STD. The linear correlation between SampEnTH and LZC76µ is com-
puted, considering: (i) no groups at all, and (ii) groups LS, DS, REM separately.
Here, we are interested in the average correlation, not on the specific realization.

• “Effects of source distribution on Lempel-Ziv complexity". The effect of source
distribution on the estimation of Lempel-Ziv complexity is evaluated by com-
paring LZC76µ using both symbolic representations in section 2.5.1. It is clear
that the symbolic transformation using equiprobable representation gives uni-
formity to the source distribution. However, the other representation technique
transforms the series into symbolic sequence without any transformation of the
distribution of the series. The estimated LZC76µ is compared for both mREM
and mNREM models using both symbolic representation techniques with differ-
ent series lengths of the synthetic series.

4.5 results

The results obtained from the studies are presented separately. The results on feasibility
of parametric entropy estimations are given first. Then the results on the effects of
series length during different sleep stages are provided in this section.

4.5.1 results about feasibility of parametric entropy estimation

In this section, the experimental results based on the feasibility study of applying
parametric approach for entropy estimations from real data are presented. The possible
reasons of infeasibility have also been explained from experimental point of view.

• “Agreement between numerical and parametric estimations". The agreement be-
tween SampEnRR and SampEnµ is investigated for RR series of lengthsN={75,150,
225,375,750,1500} from all considered databases. The total number of RR series an-
alyzed is large (i.e. 2.7×105 and 1.4×104, respectively for N = 75 and N = 1500).
The average number of times that SampEnRR falls within the standard range of
the distributions of SampEnµ, for m=1 and r=0.2×STD, is reported in table 4.1(a).
For N = 75, SampEnRR is in agreement with SampEnµ for more than 83% cases
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Table 4.1: Average agreement (%) of SampEnRR with SampEnµ
(a) Three database

Series length N

Database 75 150 225 375 750 1500

nsrdb 83.63 72.15 69.19 58.93 46.13 37.61

nsr2db 83.20 73.89 66.60 44.64 46.13 35.86

chf2db 83.52 73.90 67.31 56.95 41.64 28.15

(b) “nsr2db” database with N=300

r

m 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1 58.26 60.58 60.56 63.16 65.55 67.44 69.28

2 66.84 62.20 57.27 56.97 57.83 58.80 60.64

3 83.02 73.21 62.66 57.88 55.65 55.10 56.14

4 92.67 83.91 72.05 63.85 58.54 55.28 54.51

Table 4.2: Average agreement (%) of ApEnRR with ApEnµ
(a) Three database

Series length N

Database 75 150 225 375 750 1500

nsrdb 84.12 74.17 66.96 45.93 46.32 36.16

nsr2db 83.88 74.36 67.76 57.85 44.67 34.65

chf2db 84.39 75.04 68.10 56.61 42.10 30.51

(b) “nsr2db” database with N=300

r

m 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1 58.26 60.58 60.56 63.16 65.55 67.44 69.28

2 66.84 62.20 57.27 56.97 57.83 58.80 60.64

3 83.02 73.21 62.66 57.88 55.65 55.10 56.14

4 92.67 83.91 72.05 63.85 58.54 55.28 54.51

in each database. This figure reduces to about 28% for N = 1500. The average
agreement is shown in table 4.1.

Similar results have been obtained for ApEn and CcEn(as long as the parame-
ters employed were suitable to the situation at hand). The average agreement
of ApEnRR with ApEnµ on “nsr2db" database, for m = 1, r = 0.2× STD and
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Figure 4.3: Effect of spikes. Panel (a): RR series of N = 300 points with SampEnRR = 1.0102 and
SampEnµ = 1.1182. Panel (b): a spike of amplitude 20×STD of the series has been
artificially added and now SampEnRR = 0.5983 and SampEnµ = 2.1376 respectively.
Please notice that in both cases, AR model identification satisfied AIC and whiteness
test. Also, the STD of the series increased significantly with the addition of the
artifact.

N = 300 is presented in table 4.2, which is very similar to the obtained results for
SampEn under the same conditions.

• “Possible reasons for disagreements". To investigate the source of this disagree-
ment, in particular if it might be due to non-Gaussianity, surrogated data of the
original RR segments from the “chf2db” database are constructed in such a way
that the original distribution is replaced by a Gaussian one having the same STD
while preserving the order of ranks. In practice, WGN of the same length, mean
and variance of the RR series is generated first. Then the samples in the RR se-
ries are replaced by the ones in the WGN, such that the ordering of the samples
is preserved, i.e. a sample that is at position i, once sorted the original series,
is in the same position in the sorted surrogate one. Once repeated the proce-
dure described in the “Preprocessing" part of section 4.3 on the surrogate series,
the figure of agreement of SampEnRR with SampEnµ increased for every consid-
ered lengths. In specific, it rose to 88.12% (N = 75), 80.54% (N = 150), 75.26%
(N = 225), 66.56% (N = 375), 52.93% (N = 750), and 39.88% (N = 1500), respec-
tively. The percentage of agreement decreases (as expected) with increasing the
series length which suggests an additional effect due to non-stationarity.

• “Effects of the editing methods". The estimation of SampEn is influenced by the
editing method. In fact, if the series contains artifacts due to missing or wrongly
detected beats (or ectopic beats, spikes, . . . ) then a large disagreement is found
between SampEnRR and SampEnµ. In [84], the authors have explained the effect
of spikes for numerical estimation of SampEn. Here, the effect of spikes is fur-
ther investigated by considering a RR series of N = 300 points from a subject
of the “nsr2db” database (record# nsr001), as shown in figure 4.3. A spike, of
amplitude 20×STD of the series, is added at the time-index of maximum ampli-
tude. SampEnRR and SampEnµ are estimated before and after the spike is added.
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Figure 4.4: Values of ApEnµ, for m = 2, as a function of r. The series were generated from
the same AR model of figure 4.5 with ρ1 = 0.4 and ρ2 = 0.2 (case 1, thick lines)
or ρ1 = 0.9 and ρ2 = 0.8 (case 2, thin lines). The two continuous lines are for
N = 300 (K = 200) and the two sketched ones for N = 10000 (K = 10). Dots mark
the largest values of approximate entropy obtained varying r. They should be used
to characterize the complexity of the series, as suggested by Lu et al. [85] as shown
in figure 4.4. However, case 1 would appear less regular than case 2 for N = 300,
but not for N = 10000.

Although the model identification satisfied AIC and whiteness test in both cases,
with adding the spike the value of SampEnRR decreased, followed by a large in-
crease in SampEnµ. Also, the SampEn of the original series matched with that of
the model, but not after including the spike. In fact, spikes increase the STD of
the RR series, as well as the effective value of r (which is proportional to STD),
leading to a smaller SampEnRR (analogously to figure. 3.3).

• “Effects of the parametersm and r". The choice of the parametersm and r gained
large attention due to the inherent sensitivity of both ApEn and SampEn. For
smaller value of r poor estimates of conditional probability are achieved, while
for larger value too much information about the system is lost. Also, to avoid
remarkable contribution of noise in entropy calculation, the value of r must be
larger than most of the noise. Values of r in the range of [0.1, 0.25]× STD have
been shown to be applicable to measure the regularity (or complexity) of a variety
of signals [44, 66, 43]. Traditionally, r = 0.2 × STD is used for measuring the
regularity of HRV. The selection of the valuemmight depend on the series length.

The effect of modifying the values of parameters m and r, on the average agree-
ment of SampEnRR with SampEnµ, has been investigated for the subjects of the
“nsr2db” database. The results are mentioned in table 4.1(b).
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Figure 4.5: Values of SampEnµ, with m = 2, r = 0.2 and N = 300, for series generated by
a fifth order AR model. Panel (a): the poles of the model were located along the
real axis (ρ0 = 0.9) and at middle of the LF and HF bands: θ1 = 2π(0.04+ 0.15)/2
and θ2 = 2π(0.15+ 0.40)/2. The magnitudes of the four complex poles, ρ1 and ρ2,
were varied in the range 0.05–0.95 (with step: 0.005). For each case, SampEnµ was
obtained from K = 200 Monte Carlo realizations. The power’s contents in the LF
and HF bands were computed by integrating analytically the power spectral density
of the AR process. The individual values of SampEnµ are plotted in panel (b) as a
function of the LF/HF ratio.

In our study, the highest agreement of SampEnRR with SampEnµ was found for
larger m and smaller r. This was due to the fact that in this range the number of
matches in the SampEn computation was very limited, and making any distinc-
tion very hard. However, as table 4.1 shows, when m=1, the average agreement
slightly increased with r, as expected for short series of N = 300 points. So, this
study tentatively favors the selection of m=1, r=0.2 for short series.

As a rule of thumb, the analysis performed here confirms that the bias of ApEn
and the variance of SampEn decrease with N. However, to the best of our knowl-
edge, there is no recognized consensus in the literature on how to select the
values of the parameters r and m, especially when using approximate entropy.
Even very popular rules, like the one by Lu et al. [85], might fail, as figure 4.4
shows.

On the other hand, AR models are stationary and can provide series of uniform
characteristics of any lengths. These, along with the theoretical results available,
can offer an insight of the variability of the estimates for the values of the parame-
ters (and the number of points) selected. Given the problem at hand, an AR model
which is close enough (discarding possible nonlinearity and non-Gaussianity) to
the series under study is a good test-bench for selecting m and r.

4.5.2 results about reliable estimates of lzc

In this section, the results obtained from the analysis of LZC during sleep will be
explained. First, the assessment on the minimum number of samples required by LZC
to have no changes in its mean values will be presented. Then, we will discuss the
relationship between SampEn and LZC. The study results are summarized as:

• “Evaluation of series length".
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The number of necessary samples required by the LZC76, i.e. for having no sta-
tistical significant changes in its average value (LZC76µ), is evaluated for two
AR models: mNREM and mREM. In particular, considering mNREM, the 1% of
variation is reached at N=9300 with number of symbols Q=2 (1000 at 5%), 52000

with Q=3 (5500 at 5%) and 66100 with Q=4 (6800 at 5%). Similar results are ob-
tained considering mREM (1%: at N=53500 with Q=2, 45300 with Q=3 and 64900

with Q=4; at 5%: 3900 with Q=2, 3500 with Q=3 and 6300 with Q=4). However,
LZC76µ at N=10

4 is not different to that at N=105 only when considering Q=2

for both models (figure 4.6; p<0.01).

• “Relationship between LZC and SampEn". The relationship between LZC and
SampEn is evaluated by considering (i) LS, DS, and REM groups separately (fig-
ure 4.7) and (ii) with no grouping. In the first case, the linear correlation between
LZC and SampEn is always more than 0.75 (p<0.01). In particular, when consid-
ering LS and REM with Q=2, the correlation is more than 0.90. In the second
case, the linear correlation is more than 0.90 (p<0.01) for both Q=2 and Q=3 (the
sample is not balanced). Table 4.3 summarizes the relations and the correlations
found.

Table 4.3: The linear relationship between LZC and SampEn (ALL) is shown. Also, relations
are reported as function of the sleep stage and the level of quantization Q. Linear
correlation is shown in brackets (∗ refers to p <0.01).

Sleep stage Q=2 Q=3

LS 2.20×LZC + 0.52 (0.92 *) 2.17×LZC + 0.38 (0.93 *)

DS 1.52×LZC + 1.02 (0.75 *) 1.65×LZC + 0.81 (0.81 *)

REM 2.25×LZC + 0.44 (0.97 *) 2.26×LZC + 0.28 (0.98 *)

ALL 2.20×LZC + 0.52 (0.90 *) 2.21×LZC + 0.35 (0.93 *)

• “Effects of quantization methods". The effects of the method applied to trans-
form the RR series into symbolic sequence has been investigated. The values of
LZC76µ) are estimated for both mNREM and mREM models, and using both
quantization techniques (described in section 2.5.1) as a function of N with Q=4 .
Although, a small difference is shown for finite short series, but the estimates are
same for very long (N>10000) series. Thus it is verified that the LZC complexity
is independent on the distribution of the source.

4.6 overall evaluation of parametric entropy estimation

The theoretical computations of SampEn (also ApEn and CcEn) matched with the
outcomes of the simulations performed. Regarding simulations on real series, the ob-
tained results show that when non-stationarity, nonlinearity or non-Guassianity are
minimal, SampEnRR does match with SampEnµ. However, inherent nonlinearitiy, non-
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Gaussianity, non-stationarity or the presence of ectopic beats or artifacts induce the
two estimates to differ. This is supported by the experiments done with surrogated
data and adding spikes to the original RR series. Given the fact that the chance of non-
stationarity in biomedical signals (and RR intervals series in particular) increases with
the series length, the percentage of agreement of SampEnRR with SampEnµ decreases
accordingly. Hence, the shorter the series the more likely the effectiveness of the para-
metric approach on real RR series. Also, parametric estimates might be helpful for very
short series (less than 90-100 points), where traditional values of SampEn are often un-
defined [66]. This is not the case for ApEn, which is defined at any length N due to the
inclusion of self-matches. However, they produce a large bias in the estimates, which
are far away from the asymptotic value (figure 3.2) for short series.

When SampEn values, obtained from an RR sequence and from the AR model fitted
onto it, do coincide, the regularity/complexity measured by both depends only from
the autocorrelation function of the series, as equations (3.18) and (3.4) prove. In this
circumstances, SampEn is only an aggregated index of linear properties of the series,
which were likely available using other traditional temporal or spectral parameters
[70]. For instance, the relation between a common standard spectral parameters, as
the LF/HF ratio, and SampEn, is illustrated in figure 4.5 for series obtained from an
AR process (while varying the position of the poles and, thus, of the spectral content).
SampEn varies with the LF/HF ratio, being maximal when the latter is minimal. This
is a consequence of the fact that SampEn is larger when the power is spread along the
entire frequency axis (the signal is “more similar” to a WGN).

4.7 overall evaluation on the effects of series length for lzc

In this experimental study, the number of samples required for getting a reliable estima-
tion of LZC during sleep has been verified. The minimum number of samples required
by LZC for having no change in its average value, during a specific sleep stage is 10

4

(which is practically impossible to collect for a single sleep stage), when employing
binary quantization (figure 4.6; p<0.01). However, a variation (<5%) is found, when
employing N > 1000 for both Q=2 and Q=3.

A number of quantization levels Q>2 is not recommended because more than 10
5

samples are required (figure 4.6). It remains to accurately evaluate if LZC can distin-
guish NREM and REM, even before convergence (partially demonstrated; figure 4.6;
p<0.01) and, if its value reflects physiological information. Furthermore, the study of
which quantization technique should be used, results that there is no effect of the
quantization method applied for converting the series into symbolic sequence.

The proper evaluation of the number of samples required by LZC during sleep on
real data is not feasible due to the presence of non-stationarity. However, the cyclic
behavior of sleep stages during the night leads to a reduction of the variability of the
LZC, when increasing the number of samples making possible an empirical evaluation.

Finally, the linear correlation between LZC and SampEn is assessed on a synthetic
dataset (table 4.3 and figure 4.7, >0.90; p<0.01). Such comparison is meant to evaluate
if the two metrics carry different information, even though the quantization proce-
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dure employed for LZC (standard parameter were considered for SampEn) is not the
same. From our experiments, it seems to be excluded. Therefore, the methodology we
proposed [86] can be applied for estimating LZC from very short series for better esti-
mation. This result infers to verify which of these two metric converges more quickly,
when long series are available.

In conclusion, the metric LZC is suggested to apply for N > 1000 using binary
quantization if a variation smaller than 5% is considered, or at least 10

4 for maximal
accuracy. The quantization levels Q more than 2 is not recommended.

4.8 summary

In this chapter, a detailed study on the possibility and significance of performing a
parametric estimation of entropy on real series (available on Physionet) has been pro-
vided. The feasibility has been justified by the agreement between numerical estima-
tion and the estimation of entropy obtained through K realizations of the model. The
feasibility of parametric estimations has been positively justified on short series, even
in case of long series, it gives additional information if there are some nonlinearity,
nonstationarity, or nonGaussianity.

The work supports the finding that when numerical and parametric estimates of en-
tropy agree, it is mainly influenced by linear properties of the series. A disagreement,
on the contrary, might point those cases where numerical estimation truly offers some
new information that is not readily available with traditional temporal and spectral
parameters. This disagreement also infers that there are some nonlinearity, nonstation-
arity, or nonGaussianity in the series. Thus, parametric estimation can be used also for
statistical analysis of the series.

The linear correlation between LZC and SampEn was computed on a synthetic
dataset. When estimation of LZC from short series is required, our proposed method-
ology of parametric estimation could be applied.
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Figure 4.6: Mean and standard deviation of LZC as function of the series length N when con-
sidering mNREM (light line) and mREM (bold line) and with levels of quantization
Q = 2 (a), Q = 3 (b) and Q = 4 (c). ∗ on the horizontal bars refer to the statistical
difference in the average estimation between successive series lengths N, and ∗ on
the top are used to denote the statistical difference between mNREM and mREM. ∗
refers to p<0.01 of double-tail t-test.
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Figure 4.7: Scatter plot and linear regression between LZC and SampEn when considering LS
(a), DS (b) and REM (c) with Q=2 (gray) and Q=3 (black).



54 validation of parametric estimations on real series

Figure 4.8: Mean and standard deviation of LZC76 as a function of the series length for mN-
REM (light line) and mREM (bold line), when considering uniform (black lines) and
equiprobable (shaded) lines quantization techniques with Q=4.



5
E N T R O P Y B A S E D F E AT U R E E X T R A C T I O N F O R

P H Y S I O L O G I C A L S I G N A L S

5.1 introduction

Biological Signals such as beat to beat fluctuations in cardiovascular signals contain
useful information to detect and characterize the patients with heart diseases, sleep
disorders, etc. It is very important to early identify patients with heart dysfunction,
because it may cause acute chest pain, breathing problems up to sudden cardiac death
(SCD).

In the previous chapter, the feasibility of parametric entropy estimations have been
studied. Now, it is supported that parametric estimations of SampEn are feasible for
very short series. Moreover, the disagreement of numerical and parametric estimations
of entropy might provide more information about the nonlinearity or nonstationarity
presents in the series. So, proposed method of parametric estimations can be used for
some statistical analysis of a signal.

In this chapter, the usage of entropy features has been shown in some real appli-
cations based on physiological signals analysis. To help readers to understand the
methods and their applications, a short description of physiological signals (only those
considered in this work) has been included at the beginning of the chapter. Moreover,
a short state of the art has been given the beginning of each method, so that the readers
can understand the importance and objectives of the method.

5.2 physiological background

The human body is a very complex biological system. The heart is one of the most
complex and indispensable part of human body. Although, it is usual that older people
suffers from heart diseases, but sometimes it may happen to younger, even to the
children. Suddenly an unexpected death may happen due to loss of heart functioning.

55
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Figure 5.1: Physiology of human heart.Source: http://anatomyandphysiologyi
.com/wp-content/uploads/2013/09/gross-anatomy-of-the-heart-anterior-view.jpg

In every year, about 300,000 to 400,000 adult deaths in the USA also due to SCD [87].
Proper treatment applied immediately may save the subject from such a SCD. Besides
this, people suffer from many other heart diseases like atrial fibrillation (AF), coronary
artery disease, congestive heart failure, heart attack, etc. The heart rate varies with the
age, mood, disease, etc. Many heart diseases can be predicted by analyzing the heart
rate variability.

In the rest of this section, we will briefly discuss about the physiology of human
heart, the common diseases, the methodology used for recording the electrical activity,
the ECG signal processing, and sleep physiology .

5.2.1 heart physiology

The heart is a muscular organ located just behind and to the left of breastbone. It
consists of four chambers (i) the left atrium (LA), (ii) the right atrium (RA), (iii) the left
ventricle (LV) and (iv) the right ventricle (RV). This is shown in figure 5.1.

The RA collects blood from the veins and passes it to the RV. The RV pumps the
blood into the lungs, where blood is loaded with oxygen. This oxygen enriched blood
is collected by the LA which pumps it into the LV. Then the LV supplies the oxygen-
rich blood to the rest of the body. The coronary arteries run over the surface of the
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heart and provide oxygen-riched blood to the heart muscle. Thus in normal condition,
blood is circulated through the body by an ordered contraction and expansion of the
chambers.

5.2.2 heart electrical conduction system

Cardiac muscle is composed cardiomyocytes which generate action potentials during
heart contraction. Cardiomyocytes are polarized with an electrical membrane potential
of about -90 mv, at rest. A sudden increase in electrical potential of myocardial cells
due to some external stimulus is called depolarization. This depolariztion is caused
due to positively charged sodium ions entering into the cell. After depolarization, the
muscle returns to its original electrical state, and the downward swing of the action
potential is called repolarization. The repolarization is mainly caused by the movement
of potassium ions out of the cell. The electrical activity during depolarization and
repolarization produces a heart beat.

The conduction system of the heart described by [88] is shown in figure 5.2. The
heart itself has a natural pacemaker that regulates the heart rate. It resides in the
upper portion of the RA. It is a collection of electrical cells, commonly known as SI-
NUS or SINO-ATRIAL node (SA). At normal condition, the SA generates a number of
impulses which passes through the specialized electrical pathway and stimulates the
muscle walls of the chambers to contract in a certain pattern. The rate of generation
of impulses depends on the amount of adrenaline released, which is controlled by the
autonomic nervous system (ANS). The atria are stimulated first, followed by a slight
delay to empty them and then the ventricles are stimulated. The other members of the
conduction system are atrioventricular node (AV), bundle of His, anterior and poste-
rior bundles. The final components of conduction system are the Purkinje fibers, whose
task is to conduct the wavefronts directly to the two ventricles so that they can contract
simultaneously. The AV node acts as the electrical bridge that allows the impulse to go
from the atria to the ventricles. The His-Purkinje network carries the impulses through-
out the ventricles. The impulse then travels through the walls of the ventricles, causing
them to contract. This forces blood out of the heart to the lungs and the body. The
pulmonary veins empty oxygenated blood from the lungs to the left atrium.

The complete cycle of depolarization and repolarization of atria and ventricles con-
stitute a heart beat. A normal heart beats in a constant rhythm of about 60 to 100 times
per minute at rest. The atrial depolarization results P wave. Atrial repolarization and
ventricular depolarization occurs simultaneously, which corresponds to the QRS com-
plex. The ventricular repolarization phase is represented by the T wave. Although rare,
but it is possible that a U-wave can be seen after the T-wave, which is may be generated
by the mechanical electric feedback. The waveforms of two successive beats and some
segments are shown in figure 5.3.

A properly functioning of conduction system guarantees an appropriate heart beat
and sequential contractions and expansions of the atrial and ventricles keeps heart rate
normal. Cardiac electrical dysfunction can be happened by any damage or improper
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Figure 5.2: The electrical conduction system of heart

Figure 5.3: Two successive heart beats

functioning of any or combination of components. Other causes of cardiac arrhythmias
can be a pathological stimulus generation or pathological conductive loop [88].

The interval between two successive R peaks is called the RR interval. The RR inter-
val represents one cardiac cycle and is used to measure the heart rate (HR).

5.2.3 common heart diseases

The dysfunction of any or more of the components of the heart conduction system
might cause different types of heart diseases. The most common heart diseases are:

o Coronary artery disease: Over the times, cholesterol plaques can narrow the
arteries, supplying blood to the heart. The narrowed arteries are at higher risk
for complete blockage from a sudden blood clot (this blockage is known as heart
attack). It is the most common cause of death in United States of America (USA)
and Europe [89]

o Congestive heart failure: The heart is either too stiff or too weak to effectively
pump blood through the body. As a result, the heart cannot pump enough oxy-
gen and nutrients to meet the body’s needs. The CHF may be subdivided into
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systolic and diastolic heart failures. There is a reduced cardiac contractility and
an impaired cardiac relaxation during systolic and diastolic heart failures, respec-
tively. The most common cause of heart failure is LV systolic dysfunction, which
is symptomized by incresed heart rate, increased aldosterone level, endothelial
dysfunction, and organ fibrosis. In diastolic dysfunction, the primary abnormal-
ity is impaired LV relaxation, causing high diastolic pressures and poor filling of
the ventricle. Patients are often symptomatic with exertion when increased heart
rate reduces LV filling time and circulating catecholamines worsen diastolic dys-
function [90].

o Atrial fibrillation: During AF, irregular heart beats are generated by abnormal
electrical impulses in the atria. It is one of the most common arrhythmia. If some-
one suffers from AF, the electrical impulse does not travel in an orderly fash-
ion through the atria. Instead, many impulses start simultaneously and spread
through the atria and compete for a chance to travel through the AV node. The
firing of these impulses causes a very rapid and disorganized heart beat. Atrial
fibrillations are classified into (i) paroxysmal atrial fibrillation,(ii) persistent atrial
fibrillation, and (iii) permanent atrial fibrillation.

o Paroxysmal atrial fibrillation (PAF): During paroxysmal atrial fibrillation,
the faulty electrical signals and rapid heart rate begin suddenly and then
stop on their own. They stop within about a week.

o Persistent atrial fibrillation (PeAF): In persistent atrial fibrillation, the ab-
normal heart rhythm lasts more than a week. It may stop on its own or can
be stopped with treatment.

o Permanent atrial fibrillation: It refers to the condition in which patient’s
normal heart rhythm cannot be restored with the usual treatments. Paroxys-
mal and Persistent Atrial fibrillations can occur more frequently and even-
tually become Permanent (or long standing persistent) AF.

o Cardiac arrest: The sudden loss of heart function is called cardiac arrest and it
causes SCD. Certain ECG (we will discus more detail about ECG later) abnormal-
ities can help identify patients at increased risk for sudden cardiac death. These
include the presence of AV block or intraventricular conduction defects and QT
prolongation, an increase in resting heart rate to >90 bpm, and increased QT
dispersion in survivors of out-of-hospital cardiac arrest [87].

5.2.4 heart rhythm disorders

The SA also called natural pacemaker, located in the RA initiates an electrical discharge
through AV node, which latter results a heart beat. The repetition of heart beats gener-
ates a rhythm. If the SA acts as a pacemaker, which produces heart rate in the normal
range of 60-100 beats per minute, then the rhythm is called normal sinus rhythm. On
the other hand, if the electrical discharge is made by some other sources instead of SA
node, then it causes an extra (or missing) of a beat. This beat is referred to an ectopic
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Figure 5.4: An example of sample ECG signal (a) and RR interval of two successive beats (b).

beat. The ectopic beats are irregular and they cause variations in the normally regular
pulse.The normal rhythm of heart beats can be interrupted due to abnormalities of
action of the stimuli generation system of the heart or with abnormal conduction of
these stimuli [91, 88].

5.2.5 ecg signal processing

ECG is a method of recording electrical activity generated during depolarization and
repolarization from the cells of the heart muscle against time. The ECG waveform is
shown either on the computer screen or is printed on a graph paper. The ECG signal
is concerned not only about the electro-physiological properties, but also concerned
about the anatomical and mechanical properties of the heart. A continuous ECG signal
is represented in terms of sequences of symbols. An ECG and RR interval i.e. the time
gap between two successive R peaks are shown in figure 5.4. The series of RR intervals
is commonly referred to as heart rate variability (HRV) series or RR series. To record
the ECG, some small metal electrodes are placed on some specific parts of the body.
The electrodes detect electrical impulses coming from different directions within the
heart. There are normal patterns for each electrode. Abnormal patterns may produce
due to some heart disorders. Careful assessment of the ECG provides lots of useful
diagnostic information about heart functioning.

One characteristic feature of ECG signal is the cyclic occurrence of its components
consisting of P-QRS-T complex. During ECG signal processing and analysis, an impor-
tant task is to detect each wave form from the P-QRS-T complex and finding of the
so called fiducial points [88, 92]. The most important task in ECG signal processing is
the detection of R peaks. In 1985, Pan and Tompkins [93] proposed a real time QRS
detection algorithm, which detects correctly about 99.3% of the QRS complexes.

5.2.6 ecg beat annotation

Annotation indicates the time of occurrence and the type of each individual heart beat.
For example, many of the recordings that contain ECG signals have annotations that
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Table 5.1: Some beat annotations used by Physio bank databases

Code Description

N Normal Beat
L Left bundle branch block beat
R Right bundle branch block beat
A Atrial premature beat
J Nodal (junctional) premature beat
S Supraventricular premature or ectopic beat (atrial or nodal)

indicate the times of occurrence and types of each individual heart beat. The examples
of some beat annotations used by Physio bank databases are shown in table 5.1.

5.2.7 heart rate variability

The heart behavior is not stable with time, instead, there exists a variation in the time
interval between consecutive heart beats. The normal heart rhythm is controlled by the
SA node, which is modulated by innervation from both the sympathetic and the vagal
balances of the ANS. The SA node is the final responsible, for generating heart beats.
The ANS controlling functions of the heart is divided into vagal (parasympathetic) and
sympathetic systems, and they work in opposite directions. The activity from the sym-
pathetic system increases the heart rate, whereas the vagal activity causes the heart
rate to slow down. In rest condition, there is a balance state between these systems,
that is responsible for the variability in the consecutive heart beats intervals. At the
same time, the ANS is influenced by many other systems (i.e. central nervous system,
respiratory system, renin-angiotensin system, vasomotor system), which is also respon-
sible to modulate the heart rate. HRV is simply the variation in the consecutive heart
beats intervals, or in other words, the variations between consecutive instantaneous
heart rates. Under certain conditions like people taking medications, drug, alcohol,
or suffering from some diseases such as AF, infarct of myocardium, and kidney fail-
ures, adjustment of heart rhythm is very difficult and HRV is significantly reduced
[70, 94, 88]. Heart rate variability analysis [70, 94] plays an important role in cardiac
(heart) rhythm disturbance analysis.

5.2.8 sleep physiology and physiological changes during sleep

Human spends about one-third of their lives asleep, yet most individuals know lit-
tle about sleep. In the last years, it became evident, in the scientific community, that
sleep has a large effect on many physiological functions and may play a fundamental
role in the genesis and insurgence of different pathologies: cardiologic, neurological,
metabolic, etc.

During the night, human passes through different sleep stages. Rules and guidelines
provided by the American Academy of Sleep Medicine (AASM) allow the evaluation
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Figure 5.5: Different sleep states that a young adult experienced from 12.00 to 7.00 am

of the macrostructure (alternation of different sleep stages: REM, NREM (LS; DS or
slow wave sleep (SWS): stage 3), wakefulness [95, 82, 68]. The different sleep states
across a single night in young adult is shown in figure 5.5 (This is a modified version
of figure 2-1 in [96]).

Previously NREM sleep was divided into four different stages by [97]. As no physio-
logical or clinical difference exists between NREM stages 3 and 4, they were combined
by the American Academy of Sleep Medicine (AASM) commission in 2007 [98] into a
single stage (stage 3).

A sleep episode starts with a short period of NREM stage 1, and progresses through
stage 2, 3, 4 and finally to REM. The switching of sleep states bteween NREM and REM
happens cyclically throughout the night. NREM constitutes about 75 to 80 percent, and
REM constitutes the remaining 20 to 25 percent of the total period of sleep [96].

The state of sleep is characterized by some changes in the brain wave activity, heart
rate, body temperature, breathing, and other physiological functions. Different phys-
iological functions may be more active and variable (or less active and more stable),
depending on the stage of sleep. Many physiological variables are controlled during
wakefulness at levels optimal for the bodys functioning. During wakefulness, our blood
pressure, body temperature, levels of oxygen, carbon dioxide, and glucose in the blood
remain quite constant. However, during sleep, physiological demands are reduced and
causes a drop in temperature and blood pressure. In general, many of our physiolog-
ical functions such as brain wave activity, heart rate, and breathing, are quite variable
when we are awake or during REM sleep, but are highly regular when we are in NREM
sleep.

5.2.9 blood pressure

Blood pressure also referred to as arterial pressure is the force exerted by circulating
blood against the walls of arteries. The blood pressure in the circulation is principally
due to the pumping action of the heart [99]. During each heartbeat, blood pressure
varies between a maximum (systolic) and a minimum (diastolic) pressure during each
heart beat. Systolic is the highest level of pressure, and it happens only when the heart
beats. Diastolic is the minimum value of blood pressure observed, when the heart
relaxes between the beats. The unit of blood pressure is millimeters of mercury (mm
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Hg). Ideally, the normal range of blood pressure for adults is 120 (systolic) and 80

(diastolic) (mm Hg). It is stated as 120 over 80. The beat-to-beat systolic pressure series
is termed as blood pressure series, and is commonly obtained by searching for a local
maximum in the blood pressure signal following each R-wave.

5.3 hrv regularity analysis during persistent af

A number of standard parameters have been recommended in [70] for HRV analy-
sis. They are commonly subdivided into (i) time domain, (ii) frequency domain. Time
domain measures consist of mean (MeanRR) and standard deviation (STD) of the RR
series, RMSSD (the square root of the mean of sum of square of differences between
adjacent normal RR intervals), etc. On the other hand, frequency domain parameters
include spectral metrics i.e VLF (power in very low frequency : 0.003 to 0.04 Hz), LF
(power in low frequency:0.04 to 0.15 Hz), and HF (power in high frequency: 0.15 to
0.4 Hz). Time domain parameters are computationally simple, but are less effective in
discriminating between parasympathetic and sympathetic contributions to HRV. On
the other hand, spectral parameters can be benefited from robust estimates based on
parametric approach. In fact AR models have been employed for maximum entropy
spectral estimation since 1975.

The development of nonlinear techniques has paved the way of characterizing bi-
ological signals. ApEn and SampEn have been proved effective in discriminating the
terminating and nonterminating of PAF. With respect to the PeAF, Ulimoen et al. [100]
investigated the effect of four rate control drugs 1 on heart rate (HR) and arrhyth-
mia related symptoms with permanent AF. Controlling the ventricular rate during
both paroxysmal and persistent atrial fibrillation (AF), initially with digitalis prepara-
tions and subsequently with β-blockers and calcium channel blockers [101], has been a
mainstay for the management of this arrhythmia for many years. In the absence of pre-
excitation, the AV node is the only electric pathway existing for transmission of rapid
fibrillatory activity from the atrium to the ventricles. Drugs that prolong AV nodal re-
fractoriness include β-adrenergic receptor blockers (Carvedilol), nondihydropyridine
calcium channel blockers, and digitalis glycosides. Ulimoen et al. [100] reported that
all four drugs reduced the mean HR. Here, we will investigate if a rate control drug
(Carvedilol) can also alter the value of SampEnTH, and hence if SampEnTH can distin-
guish two groups: the baseline group, B (without drug administered) and the group C
(with Carvedilol administered).

5.3.1 data

The analysis was performed on a sub-population (a subset of 20 randomly selected
subjects) of the rate control in atrial fibrillation (RATAF) database [100]. No subject was
suffering in from ischemic heart disease, systolic heart failure, paroxysmal or persistent

1 Drugs used for controlling the ventricular rate during both paroxysmal and persistent atrial fibrillation



64 entropy based feature extraction for physiological signals

atrial fibrillations for less than 3 months. The considered RR series are extracted from
20-min Holter ECG segments starting at 2 PM.

5.3.2 parameters estimation

Only the normal RR intervals of each subject are considered. The RR series is prepro-
cessed as described in the “Preprocessing" part of section 4.3. After preprocessing, a
set of linear and nonlinear parameters are extracted from each RR series. The set of
linear parameters consists of spectral parameters: total power (TP), normalized power
in low frequency band LF) (i.e normalized by the total power), normalized power in
high frequency band HFNorm, time domain parameters: mean of RR series (MeanRR),
and SampEnTH. The only nonlinear parameter SampEnRR is derived also along with
the linear parameters. The SampEnTH and spectral parameters are obtained from the
same model fitted on the RR series. In case of fitting the AR model, the model order
is determined by satisfying the Akaike information criterion (AIC) and Anderson’s
whiteness test. The estimated value of each parameter is compared without and with
the drug administered.

The estimation of SampEnRR is affected by different choices of the embedding dimen-
sion, m and tolerance of mismatch r (the maximum difference between the correspond-
ing elements of the templates of length m constructed from the given series of length
N). There is no universal indication about the choice of values for m and r. The values
of m = {1,2} and r ={0.1,0.15,0.2,025}×STD are mostly used in the literature for Sam-
pEn estimation. In this experimental study, both m = {1,2} and r ={0.15,0.2,025}×STD
have been used. The RR series of different lengths N =={75,150,300,600,1000} besides
the entire series are considered here.

5.3.3 statistical analysis

A nonparametric Wilcoxon signed rank [102] has been used to evaluate the differences
between the two group “B" and “C". The value of p < 0.05 is considered significant.

5.3.4 results on hrv regularity analysis

In this section, the experimental results on parametric assessment of SampEn to char-
acterize the effects of β-blocker (“Carvedilol") on HRV regularity for patients suf-
fering from persistent atrial fibrillation are presented. RR series of different lengths
N={75,150,300,600,1000} besides the entire series are considered from both (baseline
group:B, and with Carvedilol group: C). SampEn values of each series are estimated
with m={1,2} and r={0.15,0.2,0.25}×STD. Each of the time and frequency domain lin-
ear parameters (MeanRR, TP, LF, HF) is significantly different between the two groups
(p < 0.05), at any series length. Both SampEnRR and SampEnTH are also different for
N > 300, and for nearly any considered values of m and r. A few results (median
±IQR) are summarized for entire series in table 5.2. Box plots for N = 300 are reported
in Fig. 5.6.
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The significant (p<0.05) differences in both numerical and theoretical values of Sam-
pEn between the two groups infer that nonlinearities or non-Gaussianities might be
altered due to drug administration. Changes in stationarity are less likely given that
differences hold even with small N. However, even if it corresponds to the expected
value of an entropy rate, SampEnTH is nevertheless based on the same information on
which linear spectral parameters are (i.e. a few sample autocorrelation coefficients de-
rived from the original series). This is in line with the fact that also spectral parameters
are modified by the drug.

The differences between the numerical estimation (SampEnRR) and theoretical com-
putation (SampEnTH) are further investigated by two steps sub-analysis using surro-
gate data. At first, 2000 synthetic series are generated for each RR sequence of length
N=300, fitted on the AR models. The SampEn of the sequence is computed numeri-
cally as well as the Monte Carlo probability distribution is considered for the synthetic
series. The number of cases numerical estimation is within the 95% standard range of
these distributions for both groups are reported in table 5.3.a.

The number of agreements after Carvedilol is always more than that at baseline
group. Moreover, the SampEn values of 8-subjects (out of 20) lie outside the standard
range in both groups with m=1 and r=0.2. The group of these 8-subjects is referred
as SUB-8 in the following. The SampEn values for SUB-8 population are significantly

Table 5.2: Different parameters for entire series (single-tail Wilcoxon test: * p < 0.05; ** p < 0.01; ***
p < 0.001)

Parameters
Groups

B C

MeanRR*** (ms) 538± 104 742± 181
TP*** (s2) 0.014± 0.011 0.024± 0.025
LF** (%) 11.43± 5.32 15.12± 5.08
HF*** (%) 23.944± 6.92 36.14± 8.7
SampEnRR(1, 0.15)** 2.201± 0.24 2.353± 0.15
SampEnRR(1, 0.2)* 1.952± 0.22 2.058± 0.16
SampEnRR(1, 0.25)** 1.725± 0.19 1.846± 0.17
SampEnRR(2, 0.15)** 2.183± 0.31 2.328± 0.15
SampEnRR(2, 0.2)** 1.927± 0.21 2.061± 0.16
SampEnRR(2, 0.25)** 1.694± 0.19 1.851± 0.17
SampEnTH(1, 0.15)** 2.461± 0.05 2.469± 0.01
SampEnTH(1, 0.2)** 2.175± 0.05 2.182± 0.01
SampEnTH(1, 0.25)** 1.954± 0.04 1.961± 0.01
SampEnTH(2, 0.15)** 2.456± 0.07 2.466± 0.01
SampEnTH(2, 0.2)** 2.170± 0.07 2.180± 0.01
SampEnTH(2, 0.25)** 1.949± 0.07 1.958± 0.01
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Figure 5.6: Boxplots of the parameters for N = 300. SampEn values are computed with m = 1
and r = 0.2× STD.

Table 5.3: # of cases inside the 95% standard ranges

a) AR series r

m 0.15 0.2 0.25
1 B:7; C:13 B:5; C:10 B:6; C:11

2 B:11; C:17 B8; C18 B:6; C:18

b) IAAFT r

m 0.15 0.2 0.25
1 B:16; C:19 B:13; C:18 B:19; C:20

2 B:18; C:19 B:16; C:20 B:17; C:20

different (p=0.0391) between the two groups. This procedure is repeated for IAAFT2

surrogates, instead of the synthetic series generated through the AR process, and the
number of agreements is mentioned in table 5.3.b.

2 An amplitude adjusted Fourier transform (AAFT) based surrogate method, where the power spectrum
obtained from AAFT is adjusted back to that of the original series by performing a number of iterations.
With each iteration the alteration of the power spectrum when rescaling is performed will therefore be
smaller than in the previous iteration [103]
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5.3.5 evaluation on hrv regularity analysis

The number of agreements between SERR and what expected from an AR process
(table 5.3.a) is increased after drugs. The same is found when considering IAAFT sur-
rogates (table 5.3.b), which share with the original series the power spectrum and a
possible nonlinear static transformation of the samples. This analysis suggests that the
drug might reduce, in particular, non-Gaussianity of the RR series. A relatively smaller
increase in nonlinear regularity is also supported by the finding that SERR is different
in the SUB-8 population after Carvedilol.

5.4 nonlinear regularity analysis of abp variability in patients

with af

It is almost unknown if the irregularity of ventricular response might directly affect
arterial blood pressure (ABP) variability during atrial fibrillation. Pitzalis et al. [104]
observed a respiratory related high-frequency component of systolic arterial pressure
(SAP) variability during AF in absence of a respiratory sinus arrhythmia. More recently,
Mainardi et al. [105] have observed a low frequency component of arterial pressure
variability during AF, independently from the presence of a corresponding component
in RR variability and, very recently, Corino et al. [106] have reported that the low
frequency component of SAP variability in patients with AF is increased after tilt test.
All of these results are interpreted as indirect evidences for a possible instrumental role
of oscillatory components of sympathetic discharge in determining the low frequency
oscillations of SAP and diastolic arterial pressure (DAP).

The above-mentioned results are obtained by analyzing ABP variability with tradi-
tional linear methods, thus with a limited capability of collecting information on the
dynamic patterns used by the cardiovascular regulation systems to adjust heart rate
with blood pressure. Nonlinear methods of signal analysis can be useful for character-
izing complex dynamics. Nonlinear analysis of heart rate has been widely employed
during sinus rhythm [107, 108, 109], and during AF [110, 111] to some extent, provid-
ing information related to the irregularity of the series in terms of pattern repetition
and their dynamics. On the contrary, a few studies have analyzed irregularity of blood
pressure variability in patients during AF [112] or normal sinus rhythm [113, 114].

The purpose of this experimental study is to assess the effects of sympathetic acti-
vation induced by tilt on the patterns of blood pressure irregularity in patients with
AF: i.e. in a physiological model in which the coupling between cardiac cycle duration
and pulse pressure is regulated independently of functioning baroreflex control mech-
anisms for the lack of regularity in RR intervals dynamics. In other words, it is verified
that if the effects of sympathetic stimulation acting on blood pressure control can also
be observed in patients with AF.



68 entropy based feature extraction for physiological signals

Table 5.4: Demographic characteristics and cardiovascular history in the entire study popula-
tion and in the two subgroups (group A: patients whose systolic arterial pressure
increased during tilt, group B: patients whose systolic arterial pressure did not in-
crease during tilt)

Variable All patients GroupA Group B

Number 20 11 9

Gender (male/female) 15/5 8/3 (7/2)
Age (years) 62± 14 59± 14 65± 14

AF duration (months) 3±4 (2-9) 3±4 (2-9) 3±4 (2-9)
Previous AF 11 5 6

Left atrium diameter (mm) 46±7 47±5 45±8

Ejectin fraction (%) 57±8 54±10 60±5

Diabetes 2 0 2

Hypertension 12 5 7

β-blockers 11 7 4

Flecainide 3 1 2

Cordarone 5 3 2

ACE-inibitori 13 6 7

Ca-antagonist 3 2 1

5.4.1 data

In this experimental method, we have considered 20 patients (age: 62±14 years with
75% male) admitted to the hospital for programmed electrical cardioversion of persis-
tent AF according to the international guideline [115] (i.e. an AF episode lasting longer
than 7 days and requiring termination by electrical cardioversion). The mean duration
of arrhythmia was 3±4 months (2-9 range). Detail characteristics of the patients are
mentioned in table 5.4.

Three orthogonal leads, a periodic reference arterial pressure measurement, continu-
ous beat-to-beat non-invasive recordings of arterial pressure, and the respiratory signal
were obtained with a Task Force Monitor (CNSystem; Austria) recording system. Sur-
face ECG and blood pressure signals were acquired at rest, and during a passive ortho-
static stimulus (head-up tilt test, 75

◦ tilting). Both phases lasted about ten minutes. The
sampling frequency was 1 kHz for the ECG signal and 100 Hz for continuous arterial
pressure recording. Raw data were exported as ASCII text files for off-line analysis.

5.4.2 blood pressure series extraction

The beat-to-beat systolic pressure series is usually obtained by searching for a local
maximum in the blood pressure signal following each R-wave during normal sinus
rhythm. This approach does not work appropriately during AF [105]. In fact, to gener-
ate regular pulses in arterial pressure, R waves may not be coupled with an adequate
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Figure 5.7: Panel (a) ECG signal and (b) blood pressure signal of a patient during AF. The
circles in (a) correspond to the detected QRS, being the filled circle a beat which is
not followed by a pressure pulse. (c) The systolic arterial pressure series obtained
without preprocessing: the filled circle identifies a drop in systolic value due to an
insufficient pressure pulse.

left ventricular output (i.e. the left ventricle can be only partially filled when an atrial
impulse propagates through the AV node triggering the contraction). Thus the QRS
complexes are not necessarily followed by an arterial pressure pulse of regular am-
plitude as shown in figure 5.7. For this reason, to measure the beat-to-beat systolic
pressure values, a method that coarsely localizes arterial pressure systolic peaks has
been applied, and then refines their positions, thus obtaining the systolic values not re-
lying on the information about QRS location. An interactive graphic interface allowed
the operator to visually identify and correct misdetected arterial pressure pulse events.
We have also extracted and analyzed DAP series, whose values are defined as the local
minimum preceding all systolic values.

As series length influences the following analysis, we have considered series of 300-
samples for all patients and all phases, being 300 the length of the shortest available
series of sufficient quality during tilt (which is slightly more than 3 minutes). In partic-
ular, the last 300 points of rest are selected, while discarding the first 25 points on tilt,
to avoid the initial drift, and then 300 points are selected thereafter.
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5.4.3 parameters estimation

• “ApEn and SampEn numerical estimations”. ApEnRR and SampEnRR have been
numerically estimated for each series as described in sections 2.4.1.3 and 2.4.1.4.
Since ApEn requires longer series to converge than SampEn, we have used the val-
ues of classical parameters r=0.2×STD andm=1 for ApEnRR and 2 for SampEnRR
estimations.

• “ApEn and SampEn parametric estimations”. Besides numerical estimations, the
values of ApEnµ and SampEnµ have been estimated for the synthetic signals
generated through K = 1000 realizations of the AR models, fitted to the series
with the same values of parameters m and r, used for numerical estimation.

5.4.4 statistical analysis

The data have been presented as mean values±STD. A paired t-test or the Wilcoxon
signed rank test [102] has been used to evaluate the differences between parameters
obtained during rest and tilt. An unpaired t-test or Wilcoxon-Mann-Whitney [102] test
has been used to evaluate the differences between groups A and B. The value of p <
0.05 is considered significant.

5.4.5 results on nonlinear regularity analysis of abp variability

In this section, the results obtained from the analysis of nonlinear regularity of arterial
blood pressure in patients with AF during tilt-test procedure are explained.

5.4.5.1 entire population

Both ApEnRR and SampEnRR are significantly higher during tilt for SAP (ApEnRR:
1.73±0.22 vs. 1.81±0.20, p < 0.05, rest vs. tilt; SampEnRR: 1.68±0.31 vs. 1.84±0.30, p <
0.05, rest vs. tilt). On the contrary, no differences are observed in entropy values when
comparing rest vs. tilt for DAP series. No significant changes are observed when com-
paring ApEnµ and SampEnµ during rest and tilt phases (ApEnµ: SAP: 1.85±0.21 vs.
1.89±0.18, ns; DAP: 1.99±0.06 vs. 1.98±0.13, ns; rest vs. tilt. SampEnµ: SAP: 1.91±0.26

vs. 1.97±0.24, p-value ns; DAP: 2.07±0.10 vs. 2.04±0.17, p-value ns; rest vs. tilt.). The
percentages of agreement between ApEnRR and SampEnRR computed on surrogate
data using IAAFT surrogate showed almost no changes when moving from rest to tilt.

5.4.5.2 arterial pressure response to tilt

Two different patterns of SAP alteration are observed due to tilt. The first group (group
A, 11 patients) is composed of patients, whose systolic pressure increased more than 5

mmHg during tilt. In these patients the systolic pressure is increased on average 12±7

mmHg (range 5-26 mmHg). In the remaining 9 patients (group B) the average value of
SAP is remained almost unchanged or it even decreased (110±18 vs. 107±19 mmHg,
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Figure 5.8: Errorbar of ApEnRR (top panel) and SampEnRR (bottom panel) during rest and
tilt phases for the two subgroups of patients. Mean (solid line)± standard deviation
(dashed lines) of ApEnµ and SampEnµ are superimposed. Group A: patients whose
systolic arterial pressure increased during tilt, group B: patients whose systolic ar-
terial pressure did not increase during tilt. * p < 0.05 .

p-value ns). Therefore, the two groups (A and B) are further analyzed, separately. The
patients of group A has an increased standard deviation of SAP and DAP series during
tilt, whereas no differences are seen in patients of group B.

Figure 5.8 shows the results of entropy values for SAP series in the two subgroups
(no differences are found in DAP series, thus data are not shown). In group A, we
observed a significant increase in SampEnRR and ApEnRR of SAP series during tilt,
together with an augmented ApEnµ and SampEnµ. On the contrary, no significant
differences were found in group B, neither for ApEnRR and SampEnRR, nor for ApEnµ
or SampEnµ.

The percentages of agreement between real and synthetic values for ApEn and Sam-
pEn are shown in table 5.5. Group A did not display an evident change during tilt and
in half of the cases the observed dynamics were consistent with a purely linear process.
On the contrary, group B showed a definite increase in agreement, thus suggesting that
the series dynamics were well described by a linear process.
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Table 5.5: Percentages of agreement between real and synthetic values of ApEn and SampEn
for the two subgroups (group A: patients whose systolic arterial pressure increased
during tilt, group B: patients whose systolic arterial pressure did not increase during
tilt).

Group A Group B

REST TILT REST TILT

ApEn 55% 64% 56% 100%
SampEn 64% 55% 78% 89%

5.4.6 evaluation on nonlinear regularity analysis of abp variability

The first important finding of this experimental study is that not all patients with AF
experienced a similar increase of systolic pressure during tilt: 9 out of 20 patients have
blood pressure values that remained almost unchanged or even it sharply decreased.
Therefore, the study population has been divided into two groups, depending on the
increase (group A)/invariance (group B) of the systolic pressure during tilt. No sub-
stantial clinical difference are found between the two groups. However, some consistent
tendencies are observed: patients of group A are on average younger (59±14 vs. 65±14,
p-value ns; group A vs. group B) than those of group B, they have a slightly lower ejec-
tion fraction (54±10 vs. 60±5, p-value ns; group A vs. group B) and smaller mean RR
at rest and tilt (rest: 749±140 vs. 800±176 ms, p-value ns; tilt 683±126 vs. 726±149 ms,
p-value ns; group A vs. group B).

Frequency domain analysis is the most commonly used technique for assessing the
autonomic response of heart rate and blood pressure to head-up tilt test. However, non-
linear dynamics of cardiovascular response can also be assessed in order to evaluate
regularity and synchronization among cardiovascular beat-to-beat variability signals
during the sympathetic activation induced by head-up tilt.

The second finding of our experimental study is that both measures of irregularity
(ApEnRR and SampEnRR) are significantly higher during tilt for SAP series, especially
when the two subgroups are separately considered. It can be hypothesized that in
patients of Group A, the vascular regulatory mechanisms is still efficient (i.e. the re-
sponse to the autonomic stimulus is similar to what observed in subjects in normal
sinus rhythm), in spite of the presence of persistent AF. On the contrary, patients of
group B are seemed to have lost their vascular capability of a physiological response
to sympathetic stimulation.

5.5 feature extraction from hrv for classification of sleep stages

Sleep has a large effect on many physiological functions, and quality of sleep is one of
the aspects that mostly influence our everyday life. In fact, it has a strong impact
on some important human functioning like memorization, learning and concentra-
tion [116]. Poor sleep quality or too short sleep time have been identified among the



5.5 feature extraction from hrv for classification of sleep stages 73

main causes of car accidents [117]. Furthermore, disturbances in sound sleep have a
strong association with cardiovascular pathologies. Also, a bad quality of sleep has
an impact on blood pressure, decreases the immunity defenses and may increase
the insurgence probability of metabolic disturbances such as obesity and diabetes
[118, 119, 120, 121, 122]. Sleep quality is generally evaluated through polysomnogra-
phy (PSG), which consists of many physiological signals recorded during one or more
nights of sleep: electroencephalogram (EEG), electro-myogram (EMG), and electro-
oculogram (EOG), besides respiration activity and ECG.

The different stages of sleep (described in section 5.2.8) are associated with different
brain activity and hence cardiovascular activity as well. During stage 1 sleep, people
suffer from drowsiness. They drips in and out of the sleep. Stage 1 is considered as a
transition between wakefulness (WAKE) and sleep (SLEEP). During this stage, people
are still relatively awake and alert. This stage of sleep lasts only for a very few (1 to
5 minutes) of sleep. Stage 2 is the longest lasting period (about 20 minutes) of NREM.
During the 2

nd stage (stage 2) of sleep, body temperature starts to decrease and heart
rate begins to slow. Stage 3 is also referred to as the slow wave sweep because the slow
brain waves are seen during this stage.

The standard practice for sleep evaluation is the visual or semi-automatic scoring of
polysomnographic traces [123]. This technique requires special instrumentation, and
signals which are recorded and scored by trained personnel. In addition, their acquisi-
tion may be disturbing to affect the sleep quality itself.

Sleep can strongly affect the peripheral system, particularly the autonomic nervous
system, so that the HRV signal presents different patterns during different sleep stages
[124, 125, 126] and during sleep phasic events [127, 128]. One of the advantages of
using HRV for sleep evaluation is the possibility of employing less intrusive devices,
such as a sensorized T-shirt3 or mattress [129, 130, 131]. For these reasons, many recent
studies have focused on the effects of sleep stage transitions on peripheral systems.
Most of the works found in the literature have given emphasis on the correspondence
of different patterns of heart rate with different sleep stages [132] and more recently a
few works described methods to perform sleep staging through HRV analysis.

The quantitative spectral analysis of HRV to evaluate the changes in autonomic in-
fluences with sleep stages in adults reveals that the stage differences are most evident
using spectral parameters than time domain parameters [133]. In the low frequency
band, the REM and WAKE are not significantly different. However, REM and NREM
are significantly distinguishable in both low and mid frequency bands. On the other
hand, power content in the very high frequency band is insignificant to distinguish any
stages of sleep. The modulus and phase of the pole in high frequency band are one of
the significant features for distinguishing NREM from REM sleep [134]. To the best of
our knowledge, some existing methods [135, 136, 137] with high accuracy reported in

3 An intelligent T-shirt, integrated with sensors and electrodes able to record different physiological signals.
The T-shirt is comfortable and made completely in clothes. The patient is asked to wear the T-shirt before
going to the bed. The sensorized T-shirt allows for acquisition of both physiological parameters, such as
those given by the ECG and breathing frequency, and bio-mechanic parameters such as movement and
posture.
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the literature used a large set of features. The use of these features make the system
computationally expensive .

A set of new features, those reflect the changes in regularity of the RR series among
the different sleep stages along with the existing ones are used in this study for auto-
matic classification of sleep stages. During stage 1 of NREM, people drips in and out
of sleep. Sleep stage 1 is excluded from the NREM sleep. This exclusion is useful for
reducing the ambiguity between WAKE and NREM [130]. The features and selection of
relevant features for classifications between and SLEEP, and between REM and NREM
stages will be explained in this experimental study. The classification performances
are evaluated on the basis of the capability to discriminate between WAKE and SLEEP,
and between NREM and REM.

5.5.1 data

Full PSG of 20 patients with suspected sleep-disordered breathing, recorded for one
night each at the Sleep Center of Tampere University Hospital, Finland. The Ethical
Committee of the Pirkanmaa Hospital District has approved the study and all the
subjects have given their consent to be included into the study. The age of the subjects
are between 49 and 68 years; the BMI varied between 21.8 and 40.6; 13 patients are
females. The patients were suffering from a variety of sleep disorders, including either
different degrees of nocturnal apnea/hypopnea and/or insomnia.

The inter-beats (RR) series used in this experimental setup, are obtained from the
ECG recordings as well as the sleep scoring automatically derived from the complete
PSG recordings (mainly using the EEG traces) through the Somnologica software; the
scoring is based on 30-second epochs.

The automatic sleep stages classification consists of the following methodological
steps:

5.5.2 preprocessing

The artifacts from the RR series are removed by the procedure, explained in the prepro-
cessing part of section 4.3. After removing artifacts, only those RR segments of different
lengths (2, 6, and 10 epochs pertaining to a common sleep stage, where each epoch cor-
responds to 30 seconds of recordings) are considered as long as at least 20% of the
selected beats were previously marked as normal.

5.5.3 feature extraction from rr series

Feature extraction is a crucial and sensitive step for any classification problem. Non-
linear regularity features, besides those proven effective are considered here. A set of
time-domain, frequency-domain, detrended fluctuation analysis, as well as regularity
features are extracted from the RR segments. The features are briefly explained by the
following steps:
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Figure 5.9: Power spectra of the RR series panels (a), (b), (c) and the positions of the poles of
an AR model fitted to the series panels (d), (e) and (f), respectively during the three
stages of sleep. The parameter PoleHF has been marked with a circle).

• “Time-domain". The normalized mean (MeanRR) and standard deviation (STD)
of each RR series are extracted. The mean and standard deviation of each RR
segment are normalized, respectively by the mean and standard deviation of the
entire series.

• “Frequency-domain". RR segment is fitted to an AR model of fixed order (9). The
Andersons test [72], that checks the whiteness of the prediction error is satisfied
by more than 95% cases using this fixed order. Then normalized powers (normal-
ized by the total power) in three frequency bands: VLF from 0.003 to 0.04 Hz, LF
from 0.04 to 0.15 Hz, and HF from 0.15 to 0.4 Hz are extracted using a spectral
decomposition technique described in [138]. Besides these, the ratio of LF to HF
and the modulus of pole (PoleHF) in the high frequency band with the largest
residual are also considered. The modulus of pole is strongly related to the res-
piratory frequency [134]. The spectral components of heart rate during different
sleep stages are shown in figure 5.9.

• “Regularity features". In the proposed system, we have considered three mea-
sures of SampEn i.e. SampEnRR, SampEnTH, SampEnµ for each RR series. The
value of SampEnRR has been estimated numerically using the procedure de-
scribed in section 2.4.1.4. The value of SampEnTH has been determined using
equation 3.4. Besides these, SampEnµ has been obtained by averaging estima-
tions of K = 200 Monte Carlo simulations of the AR models as described in
section 3.2.4.

• “Probability of agreement". We have already mentioned in chapter 4 that the
parametric estimates SampEnTH and SampEnµ are truly affected by the linear
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Figure 5.10: The probability density of the values of SampEn computed on 200 synthetic series
(thick black line), and the probability of agreement (ProbAgree) for three distinct
values of SampEnRR (vertical bars). The probability of agreement is indicated for
each SampEnRR

behavior of the AR model. So, the capability of the AR model to well approx-
imate the series can be tested in terms of SampEnRR. To this aim, the distribu-
tion of SampEn values estimated from the synthetic series, has been compared
with SampEnRR. The value of SampEnRR may fall within or outside this distribu-
tion (shown in figure 5.10). The probability of agreement (ProbAgree), between
SampEnRR and the distribution increases from 0 (i.e SampEnRR lies outside the
distribution) to 0.5 (SampEnRR corresponds to the median of the distribution).
The value of ProbAgree has been calculated non-parametrically using the ranks
of the distribution of SampEn.

• “Detrended fluctuation analysis feature". Detrended fluctuation analysis (DFA)
is a scaling analysis method that provides a simple quantitative parameter to
estimate the autocorrelation properties of a non-stationary signal. It has proven
useful in characterizing correlations in apparently irregular time series [139]. In
DFA, an integrated time series is constructed from the original time series. Then
this integrated time series is divided into non-overlapping “time-windows" of in-
creasing window size n and the local or (polynomial) trends are subtracted from
the integrated series. The fluctuation of the signal around the trend is determined
for increasing the window size. The slope of fluctuation variance versus the win-
dow size defines the scaling exponent. The two slopes are termed as “short-range
scaling exponent" (DFAα1) and “long-range scaling exponent" (DFAα2). In this
paper, only DFAα1 has been considered. The calculation of DFA is summarized
in figure 5.11.
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Figure 5.11: The signal is integrated and divided into boxes of equal length (n=100). The local
trend (bold line in the plot) is then removed and F[n] is computed.

The RR series of length N is first integrated as

y[k] =

k∑
i=1

(RR[i] −MeanRR), (5.1)

where MeanRR is the mean of the RR series. Then, this integrated series is divided
into boxes of equal length n. A least-squared line is fitted to the segment in each
box for estimating the local trend in that box, as shown in figure 5.11. Finally, the
integrated series y is detrended by subtracting the local trends in each box. The
root mean square fluctuation of this integrated-detrended series is calculated by

F[n] =

√√√√ 1

N

N∑
k=1

(y[k] − yn[k])2, (5.2)

where yn[k] is the local trend in each box.

The value of scaling exponent is defined by the slope of the straight line fitted
to the log-log graph of n against F[n] using least-squares method. The value of
parameter DFAα1 has been defined as the slope in the range 4 6 n 6 11.

5.5.4 classification

Classification is the task of categorizing objects into their meaningful groups/classes.
The classification performance depends on how robust are the features for describing
the objects with respect to the noise and similarities between inter-classes, as well as
the proper selection of a classifier. Artificial neural networks (ANN) have been used
as classifiers since they were introduced first by McCulloh and Pitts [140] in 1943. The
ANN proposed by by McCulloh and Pitts [140] was a basic perceptron, which was
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Figure 5.12: Basic structure of a 3 layer ANN. Source: http://www.dtreg.com
/mlfn.htm

used as a linear classifier only. They are widely used after the innovation of multilayer
perceptron by Hecht-Nielsen in 1990. The multilayer ANN is capable of solving nonlin-
ear classification problems. Although, they require the selection some free parameters:
the learning rate and the number of neurons in hidden layer. The learning is process is
affected by the values of these parameters settings. If an inadequate number of hidden
neurons are used, the network will be unable to model complex data, resulting a poor
fitting of the network. On the other hand, using too many hidden neurons, the network
may overfit the data and the training time will become too long. The basic structure of
a multilayer (3 layer) perceptron ANN is shown in figure 5.12

The number of neurons in the hidden layer has been justified by the average perfor-
mance of the ANN using different number of neurons. An ANN is first trained using
a set of features extracted from the training datset. Then the trained network is used
for classification based on the test dataset. In this experimental study, a feedforward
back-propagation ANN has been used as a classifier.

The term feedforward is used to mean that neurons are only connected forward, and
the term “backpropagation" refers to the mode of training procedure. In backpropaga-
tion learning, the neural network is fed with sample inputs and the actual outputs are
also provided together. The neural network compares the anticipated output with the
actual output for the given input pattern. The backpropagation training function cal-
culates the error based on the anticipated outputs and adjusts the weights at various
layers backword from output to the input. In the rest of this study, we will use only
ANN to refer to the feedforward backpropagation ANN.

The data collected from 20 recorded subjects are divided according to two different
cross validation techniques: Leave One Out (LOO) among recordings, and 10 fold on
the total amount of data. In addition, the distribution of the classes in the considered
dataset is unbalanced. This may negatively influence the training of the ANN [141].
For this reason, the entire study is repeated using both unbalanced and balanced pro-
portion of classes for training. To balance the populations, equal number of samples of
the class with lowest samples are selected randomly from the class with more number
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of samples. In addition, the different initializations of the randomly selected weights
might lead to (slightly) different classification results. The training and testing of the
ANN are repeated 5 times and the average performances are taken into account to
minimize this problem.

Finally, the classification performance of the ANN is evaluated by means of four
parameters: accuracy (ACC), sensitivity (SENS), specificity (SPEC) and the reliability
parameter (Cohens Kappa, k)[142]. The reliability of the classifier is determined by the
value of k. The value of k=0, implies that the classification is random, no intelligence is
used. On the other hand, the value of k=1, implies the perfect reliability of the classifier.

5.5.5 feature selection

The use of correlated features for training ANN adds noise in training, instead of
benefiting the classification accuracy. The full feature set consists of 12 features. The
possibility of reducing the features dimension is investigated. The feature selection
method is composed by two following approaches:

o Greedy backward elimination: The classification reliability, k is checked by leav-
ing one feature out at a time. The feature discarded at each round is the one
leading to the highest value of k for the remaining set. This approach is repeated
until only the most significant feature is retained.

o Greedy forward selection : This procedure starts with a set of features including
the single best feature estimated in procedure A such that k value is maximum
for the pair of these features. Here, another feature, that maximizes k value from
the remaining ones is added to the set at each round. This approach is repeated
until all the features are included into the considered feature set.

5.5.6 results on classification of sleep stages from hrv

In this section, the experiments related to the methods for an automatic classification of
sleep stages into WAKE, NREM and REM using RR series analysis are presented. The
performance of the system is evaluated by four parameters: accuracy (ACC), sensitiv-
ity (SENS), specificity (SPEC), and reliability (k). First, the classification performance
of the system is evaluated for full set of features: {MeanRR, STD, VLF, LF, HF, LF/HF,
PoleHF, DFAα1 , SampEnRR, SampEnTH, SampEnµ and ProbAgree} using ANN, and
then the results related to relevant feature selection are described. Finally, the classifi-
cation performance using relevant features are explained. The distribution of all (12)
features {MeanRR, STD, VLF, LF, HF, LF/HF, PoleHF, DFAα1, SampEnRR, SampEnTH,
SampEnµ and ProbAgree extracted for each sleep stage is shown in figure 5.13.

5.5.6.1 statistical analysis

To get better network training, a logarithmic transformation has been applied to STD,
HF and LF/HF in order to get their statistical distributions closer to Gaussian function.
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Figure 5.13: The probability distributions of the full set of features during different sleep stages
for RR series of 6 epochs long.

The significance of the features has been tested through the analysis of variance. After
verifying the non-normality of the features through the Kolmogorov-Smirnov test, a
Kruskal-Wallis analysis of variance has been applied. The analysis shows that all the
features can significantly (p< 0.01) discriminate SLEEP from WAKE and NREM from
REM.

5.5.6.2 number of hidden neurons

The capabilities of FFNN are affected by the number of neurons in its hidden layer. The
learning of FFNN can be underestimated using less number of neurons, on the other
hand, for more number of hidden neurons, the training of FFNN can be overfitted. To
determine the number of hidden neurons in this experimental study, the performances
of the classifier are preliminary observed using different number of neurons (8, 12, 15,
20, 25) in a smaller case study (only a subset of the subjects and epochs was used). The
results did not improve using more than 12 neurons, which is what we employed in
this study.
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5.5.6.3 classification results using full set of features

There are highly unbalanced proportion of samples of classes. The number of samples
of NREM is about 6 times the number of REM class. The training of FFNN can be
biased due to this unbalance proportion of samples. So, the performances of the classi-
fication system are evaluated for both unbalanced and balanced proportion of samples.

The results for discriminating different sleep stages using the full set of features
have been summarized in table 5.6, which reports ACC along with k, for balanced and
unbalanced number of samples and using both 10-fold and LOO validation techniques.
The accuracy of WAKE vs SLEEP classification was 77.16% and 71.65%, for 10-fold
and LOO techniques respectively, with unbalanced number of samples and 2 epochs.
ACC and k did not change considerably neither increasing the number of epochs nor
changing the proportion of samples (balanced or unbalanced). Please notice that SENS
and SPEC, respectively, represent here the true recognition of WAKE and SLEEP stages.
There was an incremental trend in SENS (from 40.40%, 2 epochs to 52.17%, 10 epochs)
and k (from 0.38 to 0.44) with increasing the window size, when 10 fold validation
was used. The same happened in NREM vs REM classification, where ACC increased
(from 83.17% to 88.21%), as well as SPEC (29.33% to 57.88%) and k (0.32 to 0.57). The
classifier showed a slightly smaller recognition accuracy (84.62% instead of 88.21%)
when LOO was used.

5.5.6.4 feature selection/feature dimension reduction results

In this subsection, the results of the procedures for selecting the best relevant features
in each classification task is illustrated. The results of the feature selection procedure
for WAKE vs SLEEP classification is shown in table 5.7. The first row in table 5.7(a) cor-
responds to the results for the full set of features, as well as the last row of table 5.7(b).
The value of reliability parameter, k is increased from 0.34 (when only MeanRR is
considered) to 0.45 (when VLF, DFAα1 , ProbAgree are also added). The addition of
the remaining features just increased the features set dimension without any major
significant contribution to the value of k. A similar behavior is observed when reduc-
ing the size of the features set. Thus, the subset of feature{MeanRR, VLF, DFAα1 , and
ProbAgree} is further considered for WAKE vs SLEEP classification.

In the same way, the results of the feature selection strategy for NREM vs REM
classification are illustrated in table 5.8. Also in this case, the value of k did not improve
considerably beyond the addition of 4 features. The four best relevant features for
NREM vs REM classification are: {MeanRR, LF, PoleHF, and SampEnµ}.

As a confirmation, if 4 features are sufficient for describing the variability of the
data, we further verified using singular value decomposition (SVD) [143] that four
transformed variables captured 99% of the variance of the data in both classification
problems.



82 entropy based feature extraction for physiological signals

5.5.6.5 classification with relevant features only

The classification results obtained using only the four most relevant features are re-
ported in table 5.9. When distinguishing WAKE vs SLEEP, there is no significant re-
duction in ACC, with respect to the full features set (table 5.6), except for unbalanced
distributions with 2 epochs, where also SENS as well as k values are highly reduced
from 40.0% to 1.98% and from 0.38 to 0.02, respectively. A similar behavior is observed
for NREM vs REM classification with no negative effect on the performance parame-
ters (ACC, k) with balanced distributions. Overall, there is no considerable difference
between ACC (88.22%) and k (0.56), obtained using only 4 relevant features, and ACC
(88.21%) and k (0.57) obtained with the full set of features.

The mean results using 10 fold and the LOO cross validation are comparable for ev-
ery cases, while the standard deviation is higher using the LOO technique, suggesting
that the inter-subject variability is large. As expected, in comparing the results with
balanced vs unbalanced number of samples for training and testing, the performances
gave privilege to the most represented class (SLEEP for WAKE vs SLEEP and NREM
for NREM vs REM classification) when unbalanced samples are used for training. This
is typical when the sets are skewed towards one of the classes. This issue supports
the statement that the classification is more reliable when training is performed with
balanced number of samples.

5.5.7 evaluation on sleep stages classification from hrv

The features selection strategy has reduced the features set dimension from 12 to 4, by
removing redundant ones which did not carry extra information. The overall classifi-
cation performances (as measured by ACC, k) are not changed significantly when a
subset of four features instead of the full set was considered. In addition to time and
frequency-domain parameters (already reported in the literature), 3 additional features
are included in these sets.

MeanRR and PoleHF, were reported [134] as significant features for sleep staging into
NREM vs REM and here also proved so. It is possible that the vagal control reflects its
activity in different ways during the three stages considered, being its influence higher
during NREM. Similarly, VLF and LF proved here valuable features in discriminating
between WAKE vs SLEEP and NREM vs REM, confirming previous studies [134, 135].
VLF has been normalized as a percentage of the total power: its increase during WAKE
indicates that the total variance is less influenced by the sympatho-vagal system during
WAKE than during sleep. Moreover, while sympathetic activity should increase during
REM, in this study, LF is increased during NREM. This result can be explained with
the fact that LF is also normalized with respect to the total power. Thus the higher
values of LF during NREM are influenced by the lower values of VLF during REM.
Finally, the modulus of the strongest pole in the HF band (PoleHF) are proved highly
informative in this study for discriminating between NREM and REM, also reported
previously as significant [134]. This feature captures the regularity of the respiration
rhythm which decreases significantly during REM.
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The three methods used to compute entropy showed really similar behavior (figure
5.13). SampEnRR, SampEnµ, and SampEnTH in practice carried the same information,
even if the latter two are linear indexes while the former is a nonlinear metric. The
entropy increases significantly during NREM suggesting a higher regularity during
REM sleep.

The relevance of DFAα1 and ProbAgree in the classification process suggests that
there are evident changes in short-term correlations and nonlinear regularity of HR
during different sleep stages. Apart from increasing the overall classification perfor-
mances, it also provides information about the physiology of sleep. In fact, during
WAKE, the augmented DFAα1 might reflect the increased variability, while a smaller
ProbAgree suggests a possible rise of nonlinearity or non-stationarity during such pe-
riods.

In both classification problems, the performance parameters ACC and k increase
with increasing number of epochs. This may be due to the fact that short RR series
cannot be properly characterized by the selected features.

The accuracy of NREM and REM classification obtained in this study is always larger
than 82%, which is an improvement over the results reported in Mendez et al. [134].
Although, Redmond et al. [135] reported a classification accuracy for WAKE vs SLEEP
of 89%, which is more than what we achieved, instead they used a set of 30 features,
collected not only from ECG but also from respiratory signals.

5.6 physical activity classification through entropy features

Physical activity refers to any bodily movement produced by skeletal muscles that
causes energy expenditure above an underlying level. Human activity recognition
(HAR) refers to identify the actions carried out by a person. HAR is an emerging
field of research, originating from the major fields of ubiquitous computing, multi-
media, and context-aware computing. Recognizing the daily activities is becoming an
important application in pervasive computing, with a lot of interesting developments
in the healthcare and eldercare. Automatic activity recognition reduces the necessity
for humans to oversee difficulties individuals (especially for older adults) might have
performing activities, such as falling, when they try to get out of bed [144].

The automation of working process and comfortable travel options in modern so-
ciety have lead to various mental and physical diseases, such as depression, obesity,
cardiovascular diseases, and diabetes, which requires enormous medical costs. Accord-
ing to the World Health Organization (WHO), at least 1.9 million people die every year
due to physical inactivity [145]. The Physical activity guidelines advisory committee
[146], reports that there is a clear inverse relationship between physical activity and all-
cause mortality. So, people should perform at least a certain level of regular physical
activities in their everyday life. Activity recognition system can be used to monitor in-
dividuals daily physical activities and so as to estimate the consumed calories in every
day. Recognition can be performed by exploiting the data collected either from various
sources such as environmental [147, 148] or body-worn sensors [149, 150, 151, 152].
The first method works activity recognition using high dimensional and densely sam-
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pled video streams. The major drawback of this solution is that to monitor a person,
large number of cameras are required to deploy with high costs. Another disadvan-
tage is the privacy is violated. So, activity recognition based on sensory data acquired
through one or more accelerometers4 are reported in many recent works [64, 153, 154].
Accelerometers have been widely used due to their low cost, compact size, low power
requirement, no privacy violation, non-intrusiveness and direct acquisition of data re-
lated to the motion of a person.

Activity recognition using accelerometer sensors has become popular in the last
decade. Extensive research works [150, 155, 156, 157, 154] have been done for classi-
fying postures and activities including sitting, standing, walking, running and so on
with a high degree of accuracy . Most of the activity recognition works have focused
on the use of multiple accelerometers attached to different sites on a human body
and under a controlled environment [155, 158, 159, 160]. However, the use of multiple
accelerometers at predefined positions is cumbersome, and not suitable also for long
term activity monitoring because of two or more sensors attachments and cable con-
nections [157]. Recently, a small number of works have been focused on the use of a
single accelerometer mounted at wrist, waist or chest, with still good recognition accu-
racies of some basic activities. The level of accuracy using the methods based on single
accelerometer is reduced in case of some static activities such as sitting, standing, etc.

Nishkam and Nikhil in [161] have reported recognition of accuracy of 8 daily ac-
tivities including walking, running, vacuuming, brushing teeth, stairs-Up and stairs-
Down using single accelerometer, worn near the pelvic region. The data were collected
from two subjects, and have considered four different settings of the dataset: (1) data
collected from a single subject over different days, (ii) data collected from multiple sub-
jects over different days, (iii) data collected from a single subject on one day as training
and another day for testing from the same subject, and (iv) training data collected from
a subject on day and more data from another subject on another day as testing. They
have evaluated the accuracies of a number of classifiers for each settings. They reported
the maximum recognition with accuracies of 99.57%, 99.81%, and 90.61%, and 65.33%,
respectively for settings 1, 2, and 3 using plurality voting5 classifier. However, the clas-
sification accuracy for the 4th setting was 65.33%. The highest recognition accuracy
73.33% for the 4th data setting has been achieved using boosted SVM classifier. Khan
et al. [157] have reported a physical activity recognition using a single three dimension
(3D) accelerometer, the three dimensions reflect the direction of physical movement
in each axis, i.e., forward/backward, left/right and up/down. They have considered
static (such as standing, sitting, lying), dynamic (such as running, walking upstairs
and downstairs), and transitions such as lie to stand, stand to lie, walk to stand, etc
in their methods. They have reported the recognition of 15 activities with an average
accuracy of 97.9% using a single triaxial accelerometer attached to the subject’s chest.

4 An accelerometer is a sensor that measures the physical acceleration, experienced by an object due to
some inertial forces or mechanical excitations. These forces may be static, like the constant force of gravity
pulling at our feet, or they could be dynamic- caused by moving or vibrating the accelerometer. They can
be used to measure a variety of things such as rotation, vibration, collision, etc. They are measured in
terms of acceleration gravity, g=9.81 m/sec2.

5 Plurality voting selects the class that has been selected by the majority of the base level classifiers such as
decision table, decision trees, naive Bayes, SVM as the final predicted class
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The dataset used in their experimental study was collected from 6 subjects under a
controlled condition. The data collected under this protocol was structured and a fixed
time was assigned to perform an activity by the subject. The recognition of physical
activities have been reported in the literature with a fairly high accuracy, even with
single triaxial accelerometer. The major problem with single accelerometer is that the
obtained accuracies are reduced when there is no movement like standing straight or
the movement is limited to a certain part of body like hand, mouth.

Many pieces of work have shown that the position of an accelerometer on the hu-
man body has a significant impact on the results obtained while measuring physical
activity [158, 162]. There is still no dedicated position where the measurements of an
accelerometer are able to provide globally best results that are independent of the set
of activities; The most frequently referred positions found in the literature are wrist,
chest, waist, and ankle. There are also some recent studies that use commercially avail-
able mobile devices to collect data for activity recognition [144, 163, 164]. The use of
accelerometers embedded into the Samrtphone emphasizes the use of single instead of
multiples accelerometer sensors.

Regarding the features, various kinds of time and / or frequency domain features of
the accelerometry data have been mentioned in the literature including mean, standard
deviation (STD), energy, spectral entropy, cross correlations, autoregressive (AR) coeffi-
cients, minimum, maximum, median, percentiles, signal magnitude area (SMA), angle
between the vectors, etc [157, 63, 165]. The contribution of a feature may change with
changing the application scenario. Among these, the most commonly recommended
with acceptable high accuracy features are: AR coefficients, SMA, tilt angle (TA), and
cross correlations. The use of more features may increase the recognition accuracy
[63]. However, it is expected to avoid the features that need complex computing over-
load, as they consume much of computing resources and energy, when methods are
implemented inside power limited devices such as Smartphones. To the best of our
knowledge, though spectral entropy has been used as a member of the features vector
for activity recognition, but there is no use of sample entropy for this purpose. On the
other hand, we have derived an analytical formula for sample entropy (SampEn) [86]
of an AR model, and the parametric estimation of SampEn of an AR model has been
proposed for HRV analysis. The feasibility of the parametric estimation of SampEn has
been justified for short series, when there is nonstationarity and / or nonGaussianity. It
is again remembered that the theoretical value of SampEn (SampEnTH), is defined only
by the coefficients of the AR model. Thus, instead of using a number of AR coefficients,
a single value of SampEn can be used to keep smaller the feature set dimension.

As for the classifiers, a number of classification methods including k-nearest neigh-
bor (kNN), decision trees, support vector machines (SVM), and artificial neural net-
work (ANN) have been investigated in the literature. Among them, ANN and SVM
have been proved to provide higher accuracy compare to others [144, 157, 161]. Khan
and coauthors [157] reported that the use of hierarchical classifiers6.

6 In the first stage, the activities are first divided into static and dynamic classes using a classifier. Then in
the second stage one classifier is used for classifying static activities and another for classifying dynamic
activities.
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The researchers of each group have developed their own methods for a specific set
of movements, employing their own devices. This highly specific set of movements
and methodologies make it difficult or even impossible to make explicit comparisons
between the approaches of different researchers. The majority of the common people
are not habituated in regular exercise like jogging, swimming, running, etc. We have
considered only those activities that people do in common during their daily life. So,
we have considered walking, bicycling, sitting, standing, and lying.

Actigraph GT3X+ [166] and GENEActiv [167, 168] are two famous accelerometer
tools that provide triaxial measured acceleration data. The acceleration measured by
the two brands was correlated by (r=0.93, p<0.001) [169] in case of both laboratory and
free-living environments. In our study, We have considered GENEActiv for recording
acceleration data.

We have extracted a set of features, mentioned in the literature including the SampEn
from the accelerometers worn on the wrist and waist, separately from the same subjects.
The most relevant features have been selected from the extracted features. Then, the
relevant features are used for training ANN and SVM, as they are mostly used with
higher accuracy. The accuracy of them was also compared on the testing dataset.

The main objectives of this study are to determine, (i) if use of SampEn instead of
AR coefficients provides the comparable accuracy of physical activity recognition, (ii)
which of the two classifiers (ANN or SVM) gives maximum accuracy.

5.6.1 sensor data acquisition

We have used a triaxial accelerometer called GENEActiv, which has been proven effec-
tive in both small scale studies and large international cohorts of over 10,000 subjects
[167]. It is a micro-electromechanical system (MEMS) sensor with dynamic range (i.e.
the maximum amplitude vibration that can be detected by the sensor) ±8G and resolu-
tion 12 bit. The sampling frequency can be varied from 10 to 100 Hz. The output of an
accelerometer actually depends on its position of the human body. In this experimental
setup, we have placed the accelerometer on the subject’s chest as we are interested on
the whole body movement [157]. The polarity of the GENEActiv accelerometer and it’s
position on the chest are shown in figure 5.14.

The accelerometer data have been collected from four adults (1 woman and 3 men;
age range 35±5) for five physical activities: (i) Bicycling, (ii) Walking, (iii) Sitting, (iv)
Lying, and (v) Standing with around 30±5 minutes for each activity. Thus, a total of
around 10 hours of recording with 50 Hz sampling frequency. During sitting, the sub-
jects were working on their desktop and during standing they were talking to their
colleagues. The subjects have been well informed about the purpose of recording. Dur-
ing lying, all subjects remain supine in supine position. They have been walking and
cycling on free streets without facing any traffic or unwanted halting. The data for
each activity from each subject have been collected continuously without any pause. A
sample of the activity signals for each axis of the accelerometer is shown in figure 5.15.
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Figure 5.14: The polarity of GENEActiv accelerometer and it’s position on the chest. Panel
(a) shows the general polarity of 3 axes of the accelerometer, panel(b) shows the
position of the accelerometer marked by the blue dot on the chest of human body
and the respective orientation during data acquisition.
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Figure 5.15: Set of sample aceleration signals of five types of human activities for 3 axes of the
traxial accelerometer.

5.6.2 methods

The general structure of the proposed physical activity recognition method is repre-
sented in figure 5.16. The physical activity recognition method consists of the following
steps:
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Figure 5.16: The general block diagram of the physical activity recognition system.

5.6.3 preprocessing

The accelerometer’s real time output may contain random noise that should be filtered
out before it is used for activity recognition. A 5 point moving average filter (used
previously by other researchers [157]) has been applied for filtering out the noise from
the accelerometery data. The noise eliminated data are then divided in fixed-width
sliding windows of N=75 samples (1.5 sec) with no overlapping.

5.6.4 feature extraction

The signal of each axis is processed simultaneously, and an augmented feature vector
of 61 features (i.e. the set of almost all features reported in the literature for activ-
ity recognition including some new features) have been extracted from the series of
each axis. These features include time domain features such as mean, STD, minimum,
maximum values, correlation between the axes, energy, signal magnitude area (SMA),
tilt angle (TA), and vector magnitude (VM); frequency domain such as dominant fre-
quency and it’s magnitude, the first 3 AR coefficients, the powers in very low frequency
(VLF : [0.003 0.04] Hz) band, low frequency band (LF: [0.04 0.15] Hz), high frequency
band (HF: [0.15 0.4] Hz), and the ratio between LF and HF (LF/HF). Besides time and
frequency domain parameters, the entropy features such as SampEnRR (i.e. the numer-
ical estimation of SampEn from the actual series), SampEnTH of an AR model fitted
to the series, and the expected value of SampEn (SampEnµ) of the model have been
obtained through K=200 realizations of Monte Carlo simulations, the probability of
agreement between SampEnRR and distribution of estimations obtained through Mon-
teCarlo simulations for each axis. The extraction of all features except energy, dominant
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frequency and it’s magnitude, correlation, SMA, and TA have been explained before.
So, the description of only these features is given here.

• “Energy (ENT )". The energy of a triaxial accelerometer signal of length N:

ENT =

N∑
n=1

|x[n]|2 + |y[n]|2 + |z[n]|2

where, x, y, and z represents respectively, the acceleration signal for X, Y, and Z
axes of the accelerometer.

• “Dominant frequency (domFreq) and it’s magnitude". There are situations when
an observed signal show a periodic behavior due to the presence of dominant
frequency, (i.e. the frequency at which the signal carries the highest energy among
all frequencies). The notion of dominant frequency is similar to fundamental
frequency that is the smallest frequency having a peak among all frequencies in
the spectrum. Thus, the domFreq and the highest magnitude at this frequency
are determined for each axis of the accelerometer series.

• “Inter-axis correlation". The Inter-axis correlation defines the correlation between
each pair of accelerometer series, e.g. the correlation, between accelerometer sig-
nals of X and Y axes is defined as

ρxy =

∑N
i=1(x[i] − µx) ? (y[i] − µy)√∑N

i=1(x[i] − µx)
2 ?

√∑N
i=1(y[i] − µy)

2

,

where µx and µy are the mean values of X and Y axes, respectively. Similarly, the
correlations ρyz and ρzx are determined.

• “AR coefficients". The data from each axis has been fitted to an AR model. The
model order is determined by satisfying the Akaike information criterion (AIC)
and the Anderson’s whiteness test. Then the first 3 coefficients are considered for
each axis.

• “SampEn". The three measures of SampEn: SampEnRR, SampEnTH, and SampEnµ
are estimated for acceleration signals of each axis. The values of parameters m=1

and r=0.2×STD are used in their estimations. The value of SampEnTH is obtained
using equation 3.4. The values of SampEnRR and SampEnµ are obtained using the
procedures described in sections 2.4.1.4 and 3.2.4, respectively. The value K=200

is used in estimating SampEnµ.

• “Normalized Signal magnitude area (SMAnorm)". The SMA, which has been
reported as a significant feature in many works [150, 157, 170, 171] is defined by
the sum of the absolute values for all axes of the series. The normalized (with
respect to the length of the window) SMA is computed by

SMAnorm =
1

N
ΣNi=1(| x[i] | + | y[i] | + | z[i] |)
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• “Tilt angle (TA)". The tilt angle (TA) refers to the relative tilt of the body in
space [157], which is determined by the average angle (θ) between the vector of
gravitation (G and the positive Y axis towards the ground). The angle θ(i) (in
degree) is computed for each sample. Then TA is computed by the average of θ.
Thus, tilt angle

TA =
1

N

N∑
i=1

| arccos(y(i)) | (5.3)

• “Vector magnitude (VM)". The vector magnitude of the triaxial accelerometer is
determined by the square root of the sum of squares of magnitudes of each axis.
Thus,

VM =
1

N
.
√
ΣNi=1(x[i]

2 + y[i]2 + z[i]2)

5.6.5 best relevant features selection

Thus, we have extracted a set of 61 features from the triaxial acceleration data. All of
these features might not equally important for classifying the physical activity. Some
of them describe the same properties, i.e. they are highly correlated. On the other hand,
some features may be insignificant in classifying the activities. The best relevant among
61 features have been selected using the strategy, which has been described in section
5.5.5 based on the performance of FFNN. The same features have been used for SVM
training and testing.

5.6.6 classification

After computing the features from each level of physical activity, the relevant features
have been fed into FFNN and SVM. FFNN has been described in section 5.5.4. Vapnik
et al. [172] generalized a new class of learning machine called support vector machine
(SVM), even though the concept was originally initiated in 1982 for case of linearly
separable classes with no errors. SVM maps the input vectors into some dimensional
feature space through some apriori chosen nonlinear mappings. It is a binary classifier,
whose job is to find an optimal hyperplane to separate the training data into the given
classes. An optimal hyperplane is defined as the linear decision function with maximal
margin between the vectors of the two classes, as depicted in figure 5.17. It is observed
from figure 5.17 that the small set of training data, called support vectors are used to
determine such optimal hyperplane.

In this study, we have used both FFNN and SVM as classifiers. Due to the study
data collected from a few number of subjects, the train and test sets have been pre-
pared using 10 fold cross validation technique, i.e. the total features have been divided
equally into 10 random folds; among which 9 folds have been used for training and the
remaining 1 fold for testing. The training and testing cycles are repeated for 10 times.
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Figure 5.17: Support vectors for two linearly separable classes of objects A and B. It
is called a linear SVM. This is a little modified version of SVM given in
http://www.iro.umontreal.ca/ pift6080/H09

/documents/papers/svmtutorial.ppt

The classifiers are initialized in each iteration. Finally, the accuracy is determined by
the average of the accuracies obtained in 10 repetitions.

5.6.7 results on physical activity classification

A set of nine different features: the mean (MeanZ), minimum (MinZ) and maximum
(MaxZ) values of Z-axis, the standard deviation (STDX) of X-axis, the theoretically de-
rive value of SampEn of the AR model (SampEnTH(Y)), the ratio of low frequency
power to high frequency power (LF/HFY), the magnitude of dominant frequency
(|dominantFreqY |) of the Y-axis acceleration signals, and the tilt angle (TA), have been
found as the best relevant ones. The inclusion of other features do not increase the ac-
curacy. The number of hidden neurons, which gives maximum accuracy by the FFNN
was 9.

The distributions of the best relevant features are shown in figure 5.18. It is obvious
from visual observation of the features distribution that some features should be more
useful for distinguishing the static activities from the dynamic activities. On the other
hand, some features are useful for classifying the inter-static activities, other subset of
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Figure 5.18: The distribution of some selected features for five physical activities recognition.

features seem to be effective for classifying dynamic activities themselves. So, in case of
hierarchical classifiers, only the set of MeanZ, STDX, STDY , and TA have been chosen
in the first stage for classifying the activities into STATIC (SITTIN, STANDING, and
LYING) and DYNAMIC (WALKING and CYCLING) states. Then in the second stage,
the set of three features consist of STDY , SampEnTH(Y), and LF/HFY for classifying
dynamic, and the set of MeanZ, STDY , TA, |dominantFreqY |, and MaxZ for classifying
the static activities have been chosen. In hierarchical FFNN classifier, the number of
hidden neurons was set equal to the number of input features.

The accuracy of the system for physical activity recognition has been evaluated for
the following cases:

5.6.7.1 classification of five physical activities

We get average accuracies of 88.16% and 87.73%, respectively using ANN and SVM
for five physical activities. The classification accuracy of CYCLING, WALAKING, and
LYING are very high (average is more than 98%)in using both classifiers. However, the
accuracies of SITTING and STANDING are low (average is less than 65%), because
they confused each other. The acceleration signals during these two activities are very
similar as shown in figure 5.15. So, we have discarded STANDING activity from the
dataset, and hence the the following results are reported on the classification of 4

instead of 5 activities.
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5.6.7.2 classification of four physical activities

The accuracy, we obtained for the classification of four activities using the vector of fea-
tures STDY , TA, LF/HFY , and SampEnTH of 3-axes (using SVM: 99.36%, ANN:98.67%),
even with only one value of SampEn (i.e. SampEnTH of Y-axis), the accuracy is still
very high (SVM:99.25%, ANN:94.11% ) which is better than any results reported in the
literature. The details of the classification of 4 activities are illustrated by table 5.10.

The classification accuracy of four activities using single stage SVM is very high for
any activity, even though the recognition accuracy of dynamic activities (CYCLING
and WALKING) using ANN is comparatively small (Please see column # 4 of Table 5.10.
So, our next target is to investigate if hierarchical classifier using ANN can improve the
recognition accuracy than single (linear) classifier. The use of hierarchical structure of
SVM does not change the results anymore. However, the use of hierarchical classifier
based on ANN improves the classification accuracy. The details classification results
of 4 activities using hierarchical ANN classifier is shown in table 5.11. The obtained
results have been explained for three classifiers: the classification of STATIC states and
DYNAMIC states by the first classifier, the results for classifying static activities, and
finally the results for classifying the dynamic activities. Thus, the use of hierarchical
classifier increases the classification accuracy of CYCLING from 87.89% to 89.41% and
WALKING from 89.13% to 98.32%.

5.6.7.3 comparison of classification accuracy using ar coefficients

and sampen

The classification accuracy of four classes: SITTING, LYING; WALKING, and CYCLING
using only the set of 9 AR coefficients (3 for each axis) is (ANN:62.68%, SVM:52.04%).
On the other hand, using only the theoretical values of SampEn of each axis (SampEnTH(X),
SampEnTH(Y),SampEnTH(Z)), we get the recognition accuracy of (ANN: 63.21%, SVM:64.49%).
Thus, we obtain about the same classification accuracy using only 3 values of SampEn,
instead of 9 values of AR coefficients. However, neither SampEn nor AR coefficients
can alone classify the activities for more than 64%. To achieve higher accuracy, other
relevant features should be augmented with either AR coefficients or SampEn. In our
following investigation, we will consider other relevant features with SampEnTH.

5.6.8 evaluation on physical activity classification system

The development of the system has been started with five physical activities and the
accuracy of each activity has been computed using both ANN and SVM classifiers.
Neither SVM nor ANN is able to distinguish STANDING and SITTING with consid-
erable accuracy. However, the recognition of other activities are comparable with the
existing methods, even with less number of features. A subject spends a very small
portion of her/his daily activities by standing situation. So, the standing activity has
been discarded finally. The similar accuracy is obtained using either AR coefficients (9
features, each for each axis of acceleration signals) or SampEnTH (3 features, one for
each axis of acceleration signals).
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The developed system incorporates the use of a single triaxial accelerometer on the
center position of human chest. It is feasible to wear by the free living subjects as it
relies on the single point of sensors attachment to their body. It is significantly effective
in a sense that it is able to recognize the main common daily physical activities with
average accuracy more than 99%.

Although many systems have been reported in the literature for monitoring daily
physical activities from signals acquired through a triaxial accelerometer, this system
appears promising in some regards. At first, the performance obtained from this sys-
tem compares better for same activities [157] reported in the literature, even with less
number of features. The use of theoretically derived SampEn of the AR model that are
actually based on the model coefficients capture more or less the same information rep-
resented by the model coefficients. It is mentioned that the AR coefficients have been
proved effective features for physical activity recognition. The use of single value just,
SampEnTH, instead of a set of AR coefficients really reduced the feature dimension.

The use of SVM always provides better accuracy than ANN. The hierarchical struc-
ture of the classifier based on ANN improves the accuracy, even though no changes are
achieved in case of SVM. Although, the sensors and the subjects used for collecting ac-
celeration signals in [157] are different than those used in this system, the results may
be compare in some sense for similar activities, same position of the sensor, and same
classifier. The developed system gives better results than those provided in [157] for
single (linear) classifier. A comparison of the results for similar activities are provided
in table 5.12.

The increased accuracy might be due to the use of new features or accelerometer
sensor (higher sensitivity), and/ or both. In the developed system, data have been
collected from 4 subjects (1 woman and 3 men), a total of about 10 hours of recording.

5.7 summary

Innovative methods for extracting features from physiological signals have been de-
scribed. The methods are based on the analysis of HRV, ABP variability, sleep stages
classification from HRV and physical activity recognition. A set of new features in ad-
dition to the existing ones for each of the considered classification purposes have been
described. With respect to the features in the literature, the proposed entropy based
features are more relevant for the considered classification purposes. The parametric
estimations of entropy has been applied for HRV regularity analysis during persistent
atrial fibrillation, and also for nonlinear regularity analysis of arterial blood pressure
variability.

A set new features with the existing time and frequency domain parameters have
been explained. Feature selection strategy has been described for selecting the best
relevant features, and hence reducing the feature’s set dimension. Entropy features
have been selected as one of the best relevant features for classification or recognition
purposes.

An automatic sleep stage classification, based on heart rate variability analysis, with
a focus on the distinction of WAKE from sleep, and REM from NREM sleep has been
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studied. SampEn measures have been found significant for NREM vs REM classifi-
cation, while the probability of agreement (or disagreement) between numerical and
parametric estimates of SampEn has been found as one of the relevant features for
WAKE vs SLEEP classification. The best relevant features have been used for develop-
ment of the an automatic sleep classification system.

The same procedure has been followed for the development of an automatic clas-
sification of physical activities from acceleration data. In physical activity recognition,
support vector machines, and also the hierarchical structure of the classifiers have been
considered.
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Table 5.7: Results of the features selection procedure for WAKE vs SLEEP classification, using
windows of 6 epochs with balanced datasets. Table (a): classification performances
after removing one feature at a time (the feature removed is indicated in each row).
Table (b): classification performances after adding one feature at a time.

a) Removing a feature

ACC (%) SENS (%) SPEC (%) k

All 74.40 73.80 74.90 0.49

VLF 76.10 76.60 75.60 0.52

DFAα1 74.90 75.90 74.00 0.50

SampEnTH 75.00 75.30 74.70 0.50

SampEnµ 74.70 74.80 74.50 0.49

LF/HF 74.80 74.40 75.20 0.50

PoleHF 75.80 77.40 74.20 0.52

SampEnRR 74.90 74.40 75.50 0.50

STD 73.30 74.20 72.30 0.47

ProbAgree 71.60 71.20 72.10 0.43

HF 68.90 62.50 75.30 0.38

LF 67.10 58.90 75.30 0.34

b) Adding a features

ACC (%) SENS (%) SPEC (%) k

MeanRR 67.10 58.90 75.30 0.34

VLF 70.10 69.90 70.30 0.40

DFAα1 72.10 71.20 72.90 0.44

ProbAgree 72.50 73.20 71.80 0.50

STD 72.90 74.20 71.50 0.46

LF/HF 73.30 72.90 73.70 0.47

SampEnµ 74.80 75.90 73.70 0.50

SampEnTH 74.30 74.50 74.10 0.49

HF 75.00 74.50 75.50 0.50

SampEnRR 74.60 75.30 73.80 0.49

LF 74.20 74.00 74.40 0.48

PoleHF 74.40 73.80 74.90 0.49
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Table 5.8: Results of the features selection procedure for NREM vs REM classification, using
windows of 6 epochs with balanced datasets. Table (a): classification performances
after removing one feature at a time (the feature removed is indicated in each row).
Table (b): classification performances after adding one feature at a time.

a) Removing a feature

ACC (%) SENS (%) SPEC (%) k

All 84.10 83.70 67.70 0.68

VLF 84.40 85.40 83.40 0.69

HF 84.20 84.60 83.90 0.69

SampEnTH 84.50 85.50 83.40 0.70

DFAα1 84.90 85.70 84.20 0.70

LF/HF 84.50 84.80 84.10 0.69

STD 84.80 85.60 84.10 0.67

SampEnµ 84.40 83.90 84.80 0.69

ProbAgree 84.70 84.80 84.50 0.69

SampEnRR 83.60 82.60 84.60 0.67

MeanRR 80.90 79.10 82.70 0.62

LF 75.90 74.20 77.60 0.52

b) Adding a features

ACC (%) SENS (%) SPEC (%) k

PoleHF 75.90 74.20 77.60 0.52

LF 80.50 79.50 81.60 0.61

MeanRR 83.30 81.80 84.80 0.67

SampEnµ 84.60 84.60 84.50 0.70

SampEnRR 85.10 85.10 85.20 0.70

STD 84.70 85.20 84.30 0.70

DFAα1 85.00 85.60 84.40 0.70

VLF 85.00 85.50 84.50 0.70

LF/HF 84.60 84.80 84.30 0.69

HF 84.60 84.70 84.50 0.69

ProbAgree 83.50 83.80 83.30 0.67

SampEnTH 84.16 83.72 67.71 0.68
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Table 5.10: The classification accuracy (%) of 4 physical activities using linear classifiers

ANN

Activity [AR Coeffs] [SampEnTH] [STDY ,SampEnTH(Y),TA,LF/HFY]
CYCLING 57.06 56.22 87.89

SITTING 56.41 57.41 99.42

WALKING 96.38 98.38 89.13

LYING 40.87 40.83 100

Average 62.68 63.21 94.11

SVM

Activity [AR Coeffs] [SampEnTH] [STDY ,SampEnTH(Y),TA,LF/HFY]
CYCLING 72.15 86.48 99.47

SITTING 58.09 68.76 99.61

WALKING 72.23 96.75 97.90

LYING 5.70 5.98 100

Average 52.04 64.49 99.25

Table 5.11: The classification accuracy (%) of four physical activities using hierarchical ANN

(a) Classification accuracy in the first classifier

Activity Accuracy
STATIC 99.74

DYNAMIC 99.81

Average 99.77

(b) Classification accuracy in the 2nd classifier

Activity Accuracy
SITTING 99.96

LYING 99.95

Average 99.95

(c) Classification accuracy in the 3rd classifier

Activity Accuracy
CYCLING 89.41

WALKING 98.32

Average 93.87
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Table 5.12: The comparison of accuracy (%) for similar activities reported by Khan et al. [157]
and the developed system using ANN

Activity Linear classifier Hierachical classifier)
[157] Our method [157] Our method

Sitting 74 99.42 95 99.96

Walking 74 89.13 99.00 98.32

Lying 95 100 99 99.95





6
E N T R O P Y F E AT U R E F O R B E N G A L I N U M E R A L S

R E C O G N I T I O N

6.1 introduction

Handwritten digit (numeral) recognition (or classification) is an active topic of optical
character recognition (OCR). OCR is an active field of research in pattern recognition,
artificial intelligence, and computer vision, and it is a common method of digitizing
texts of hard copy into soft copy so that they can be electronically edited, searched,
stored more compactly, displayed on-line, used in machine processes such as text-to-
speech translation, text data extraction, text mining [173]. The text may be composed
of only alphabet and/or numerals.

In OCR applications, the recognition of numerals deals with postal code reading for
automatic mail sorting, reading amounts from bank check, number plate identification,
extracting numeric data from filled in forms, etc [174]. The typical requirements [175]
of an acceptable recognition system are summarized as follows:

• “Writer independent". The system should be able to recognize the writing of any
person independently on age, sex, style of writings.

• “Size and shape independent": The system should recognize numerals of any
size and shape.

• “Less noise sensitive": The system should be highly robust to the presence of
noise or varying background.

• “Low error rate": The system should have very low rate of errors.

• “High speed": The system should have very small response time for commercial
applications.

Bengali [176] (or Bangla) is the native language of the people of Bengal, which is com-
prised of Bangladesh, the Indian states of Westbengal, Tripura, and Southern Assam,

103
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Figure 6.1: The ranking of worlds top languages based on native speakers. Source:
https://www.facebook.com/bangladesh.usembassy
/photos

and is also the official language of these states. UNESCO has declared 21
st February

as the “international mother language day" [176] in recognition of the deaths of people
scarifying their lives for the sake of their Bengali language in 1952. It is 7th (i.e how
many people speaks) most popular language in the World [177] with nearly 200 mil-
lion people speaking in Bengali. The ranking of Worlds top ten languages based on
their native speakers is given in figure 6.1.

Like Arabic, Bangla has its own own number system, consisting of 10 basic symbols.
Some samples of Bengali handwritten numerals are given in figure 6.2.

In spite of its polarity, unfortunately, researches in Bengali character recognition did
not achieve 100% accuracy with reliability so far, in particular on handwritten recog-
nition issue. Some research works on handwritten Bengali numerals recognition have
been reported in the literature [178, 179, 180, 181, 182]. To care for the special properties
of the numerals and writing styles in Bengali, some researchers have designed specific
methods, while others have used the existing generic character recognition methods
[183].

Due to the high variability in handwritten styles, extracting robust features with
respect to the variation of character shapes and sizes are the most important task for
getting higher accuracy. Using large set of features provides higher accuracy, but makes
the system computationally expensive. In practice, we cannot reject the variability of
handwriting style. The challenge is to extract features such that they overlook the
intra-variability (i.e. the difference among the samples of same class) and are neverthe-
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Figure 6.2: Samples of printed and handwritten Bengali numerals. The symbols of Arabic digits
(or numerals) are shown in the left most column. The Bengali numerals correspond-
ing to each Arabic numeral are shown in word and symbols in columns second and
third , respectively from the left. The right most column contains 10 samples of each
handwritten Bengali numerals.

less sensitive to the inter-variability (i.e. the difference among the samples of different
classes) with respect to the writing styles, thickness and size of the handwritten Bengali
numerals.

However, in order for a recognition system to be acceptable in practice, the response
time besides the accuracy of the developed system needs to be considered. The existing
methods in the literature have given emphasis on recognition accuracy, without consid-
ering computation cost. In this paper, we have focused on the methods for extracting
shape outline [184] based features, giving emphasis on reducing the feature space di-
mension and computational cost, as well as increasing the recognition accuracy so that
the system can be implemented in the low power computers and smart-phones.

The emphasis has been given on reducing feature space dimension and computa-
tional costs besides the recognition accuracy. Instead of looking for which classifier
may give maximum accuracy, artificial neural network (ANN), which has been used
mostly in the literature has also been used here for classification. Most of the published
works in this research area have considered discrete individual databases of different
sizes. The authors of [180] have considered computational cost besides accuracy, but
without evaluating their method on any common database.

Human recognizes characters as images of certain shapes. The learning of human
do not depend on any mathematical feature derivation. In this study, our goal is to
derive features that mostly represent the shape outline of numerals. The more difficulty
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Figure 6.3: The graph representing the topology of numeral 2 and its relevant parts. A junction
is a vertex with 3 or more neighbors. A terminal is the vertex with only one neighbor.
An open arm is a link between terminal vertex and its neighbor.

with handwriting recognition is the variability of shape, size, as well as inclusion or
deletion of extra strokes, implies confusion in their recognition. Our objective is to
extract simple and small set of features with less computational costs considering all
constraints, and evaluating their performance on a common database, on which some
works with higher accuracy have already been reported recently.

6.2 existing features

The techniques for extracting features from the numerals can be broadly classified into
structural and global analysis [185]. In structural analysis, topological and geometrical
features are mostly investigated by the researchers. These features include loops, junc-
tions, directions, strokes, shadow, longest runs. On the other hand, the global analysis
directly takes into account the shape matrix to find the features of the numeral. An
example of this method is template matching. This type of technique suffers from the
sensitivity to noise, and is not adaptive to differences in writing style [185].

• “Structural features". Structural features are obtained from a graph representing
the topology of the numeral. Some structural features of numeral 2 (Dui), de-
scribed by [178] is shown in figure 6.3.

From this graph, structural features like the horizontal and vertical distances
between junction and terminal (top, bottom, left, or right) nodes,the presence or
volume of cycles (or loops), the slope of open arms are computed.

• “Morphological features". The features obtained by applying different morpho-
logical operations [186] (e.g. opening and closing on the image [186]). The effect
of opening is to preserve that parts of the foreground that matches with the shape
of structure element and removing the other parts of the foreground pixels. Sim-
ilarly, the function of closing operator is to preserve the background pixels that
have the same shape of the structuring element and removing the other back-
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Figure 6.4: The effects of applying directional morphological opening and closing on handwrit-
ten numerals. Panel (a): handwritten numerals, panel (b) after opening, and panel
(c) after closing operations in four directions: horizontal, left diagonal, vertical, and
right diagonal.

ground pixels. Purkait et al., [187] has described the effect opening and closing
operations (figure 6.4) on 10 samples of Bengali numerals.

• “Topological features". Topological features represent the information character-
izing the topology of an object [188]. The usual topological features for Bangla
numeral are the number of close loops, the length of connected components, the
position of loops, etc.

• “Contour features". A contour of an image is defined as the foreground pixel, p,
such that any of its n× n neighbor is a background pixel. Each neighbor (to the
right (horizontal), slanted by 45 degree, vertical, and slanted by 135 degree) of
the contour is assigned a code, called chain code. The frequency of chain code is
considered as contour features.

• “Gradient strength features". To obtain gradient strength features, gradient image
is generated from a gray scale image by applying a Roberts filter [189]. Then the
arc tangent of the gradient is quantized into a number of directions, and the
strength of the gradient is accumulated with each of the quantized directions
[190]. For any gray scale image g(x,y), the strength of gradient, i.e.

E∆ =
√
{g(x+ 1,y+ 1) − g(x,y)}2 + {g(x+ 1,y) − g(x,y+ 1)}2 (6.1)
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6.3 existing methods

Several algorithms with many features, which make the system complex, have been re-
ported in the literature, even though 100% accuracy is not achieved yet. A few research
works with high accuracy on handwritten Bengali (Bangla) numeral recognition sys-
tem is briefly explained here.

Bhattacharya et al., [178] proposed recognition of handwritten Bangla numerals us-
ing neural network models. A skeletal shape, (represented as a graph) was first ex-
tracted from the numeral pattern using topology adaptive self organizing neural net-
work. Features like loops, junctions,· · · , etc were extracted and multilayer perceptron
(MLP) neural networks was then used to classify the numerals. They obtained about
90% recognition accuracy on a test set of 3440 samples.

Pal et al.,, [179] proposed a system for Bangla handwritten numeral recognition.
They considered features (like direction of overflow, height, position of the reservoir
with respect to bounding box of the numeral) based on the concept of water overflow
from the reservoir along with structural and topological features (such as the number
of close loops, their position, the ratio of close loop height to component height, · · · ,
etc) of the numerals. The overall recognition accuracy of the system achieved was about
92.8% on a test dataset of 12000 samples.

In 2007, Pal and co-authors [190] further published results of handwritten numeral
recognition of Bangla with five other Indian scripts. They used quadratic classifiers on
16-direction gradient histogram features using Robert masks. The highest recognition
accuracy was 98.99% on a test set of 14650 samples.

Recognition of handwritten Bangla numerals using hierarchical Bayesian network
was proposed by [181]. They used the original images of the numerals, instead of ex-
tracted features, directly at the input of the network. They reported an average recog-
nition accuracy of about 87.50% on 2000 untrained images.

The research works on Bangla handwritten numerals found in the literature, seldom
used common sample database, due to its unavailability. Even after a database (ISI
Bangla handwritten numerals database) [184] was publicly available, a few researchers
[183, 191, 187] have evaluated their methods using it.

Bhattacharya and his colleague [191] have developed a pioneer system for handwrit-
ten numeral recognition evaluated on the ISI Bangla handwritten numeral database.
They used multiresolution wavelet analysis for feature extraction.

Daubechies [192] wavelet filter is applied to a binary image of size L× L, where L
must be a power of 2. The first application of Daubechies wavelet-4 filter, produces
four image components L|L, L|H, H|L, and H|H each of size L

2 ×
L
2 , correspond to low

frequencies in both horizontal and vertical directions, low frequencies in horizontal
and high frequencies in vertical, high frequencies in horizontal and low frequencies in
vertical, and high frequencies in both horizontal and vertical directions, respectively.
The Daubechies filter is successively (k times) applied on the L|L components. Thus
k sets of four image components corresponding to k fine to coarse resolution levels
are obtained. Now, chain code histogram features [193] are extracted from each of the
detail (L|L) image components for each level of resolution.
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To compute features from the three other components (Lk|Hk, Hk|Lk, and Hk|Hk) at
each resolution level k, the bounding box of each of them is divided into (l× l|l is
a power of 2) equal size blocks. Then the ratio of number of black pixels to the total
number of pixels for each block is quantified. Finally, a feature vector is constructed by
concatenating the features for all components of the wavelet filtered image. For L=128,
k=3, l=3, a feature vector of 256 values is obtained. They used a distinct multilayer per-
ception classifier (MLP) for each resolution level. They reported recognition accuracies
of 99.14% and 98.20% for training and test samples, respectively on ISI database.

Liu et al., [183] have provided the new benchmark for comparison of Bangla hand-
written recognition methods on ISI standard database. They have used three normal-
ization techniques on both binary and gray-scale images. Hence after normalization,
they considered gray-scale, normalized binary, and a binary image normalized to gray-
scale (i.e. pseudo-gray). They formed a feature vector of size 200 from the normalized
numeral using 8-direction gradient feature. A MLP with one hidden layer of 100 nodes
was then used for training. In this method, they reported an average accuracy 98.69%.
The highest average recognition accuracy of 99.16% was obtained using both class-
specific feature polynomial classifier (CFPC) [194] and support vector machine (SVM)
[195]. However, they got an average accuracy for normalized binary image of about
98.46%.

Purkait et al., [187] performed another recognizable work on the same ISI database.
They used some morphological (i.e., directional opening, directional closing, direc-
tional erosion obtained by applying morphological operations) as well as K-curvature
features for handwritten numeral recognition using MLP classifier. “The left and right
K-slopes at any point P on a curve are defined as the slopes of the line joining P to
the points K steps away along the curve on each side of P, and K-curvature of P is the
difference between its left and right K-slopes" [196]. The best recognition performance
(96.25%) was obtained for morphological opening feature set. However, this figure of
recognition was increased to 97.75%, when the classifiers were fused using a modified
naive -Bayes combination.

A list of features with higher accuracy (ACC) reported for Bengali digit recognition
is summarized in table 6.1.

There are tremendous progress accuracy in the recognition of handwritten Bengali
numerals, but with large set of features. The methods with high accuracy, in the liter-
ature have used a relatively high dimension (more than 200) features that might take
more computing time. A system required less computing power is really helpful for its
implementation on Smartphones or low-cost computers in real time environment.

This study is focusing on methods for extracting features, which are able to capture
the more representative information of the same class, regarding the variability of the
numerals, with less computational cost. The accuracy of a recognition system depends
on the test dataset and it is difficult to compare the performance of two systems on
two different test database. In this study, the accuracy of the developed system will
be evaluated by the Bengali handwritten numerals on ISI database [184], which is the
largest publicly available database (to the best of our knowledge) and have already
been used by some other researchers. So, objective of this study is to extract robust
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Methods Features Feature
size

Database Size ACC(%)

Bhattacharya
[178]

Structural features: cycles,
junctions, and number of
terminal nodes

- Personally
collected

5320 90.56

Pal et al.
[179]

Topological features: num-
ber of close loops, center
of gravity, and the ratio
of close loop height to the
height of the component

- Personal
collection

12000 92.8

Liu et al.
[183]

Direction gradient feature 200 ISI 23392 98.46

Pal et al.
[190]

Contour and gradient-
strength

400 Personal
collection

14650 98.69

Bhattacharya
& Chaud-
hury [191]

Wavelet based chain-code
features

256 ISI 23392 98.20

Purkait and
Chanda
[187]

morphological and struc-
tural features

500 ISI 23392 97.75

Table 6.1: Common features for Bengali digit recognition, where (’-’ means that the size is not
mentioned.)

features and evaluate its performance on the publicly available large database. The
features are based on the shape outline of the numerals [184], giving emphasis on the
recognition accuracy, reliability, as well as computational cost.

6.4 data and methods

The ISI handwritten Bangla numeral database [184], consists of 23392 samples for train-
ing and 4000 samples for testing has been used in this study. The number of training
samples of each class varies slightly, but the number test samples for each class is
fixed to 400. The testing samples were randomly selected. The sample images are gray
scaled, with noisy background and considerable variation in foreground (stroke re-
gions). Some samples are shown in figure 6.2.

The proposed classification system is summarized by the block-diagram in figure 6.5

6.4.1 thresholding & pre-processing

The raw images in the database are gray scaled with 256 levels, and they are contami-
nated mostly by peeper noise during scanning. The raw digit image is first converted
to a binary image using Otsu’s [197] thresholding method. Then median filter has been
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Figure 6.5: Block diagram of the classification system. Panel (a): the training of ANN using
train dataset. After training, the recognition accuracy is tested using the samples
from test dataset in panel (b).

applied in both horizontal and vertical directions to remove peeper noise present in the
binary image.

6.4.2 segmentation

After pre-processing, the boundary of the binary image is extracted using the hori-
zontal and vertical pixel scanning method [198]. In horizontal scanning, the first row
containing any black pixel is considered as the top boundary and hence indicating the
starting of the region of interest (i.e. the foreground image of the numeral). This hori-
zontal scanning is continued until a row of all white pixels are found. The immediate
previous one of the row of all white pixels is the bottom boundary of the region of
interest. Now the region between top and bottom boundary is scanned vertically for
any column contains at least one black pixel and the left boundary is detected. This
scanning is continued until a column of all white pixels is detected. The immediate pre-
vious column of the column of all white pixels is defined as the right boundary of the
region of interest. In this way, the foreground image is separated from the unwanted
region.

6.4.3 resampling

Resampling is an important step of any pattern recognition algorithm. Handwriting
numerals have no specific size. To extract features, every pattern should have same
dimension, and hence the binary image of black (0) and white (1) pixels has been
resampled to a fixed resolution of size R× R. The raw digit and its resampled (32×32
form of a sample of Bengali digit five (Panch) is shown in figure 6.6.
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(a) (b)
(c)

Figure 6.6: Sample of digit five (Panch) in different steps of processing. Panel (a): the original
digit. Panel (b): the digit after pre-processing panel (c): the digit after resampled to
32× 32. The pepper error in panel (a) has been completely removed after filtering
without any major shape distortion of the digit.

Figure 6.7: The binary form of the resampled digit of figure 6.6. The 0’s and 1’s represent the
black and white pixels, respectively. The distance of the surface edge (black) black
pixels (’0’) from the bottom boundary are [15 ,14, 13, 12, 10, 9, 6, 5, 5, 5, 4, 2, 2,1, 1,
1,0,0,0,0,0, 1,1,2,3, 4, 5, 9, 23, 24, 24, 24] (from left to right).

6.4.4 feature extraction

We have introduced a set of new features in this study. The features are extracted from
the binary image. A binary image of a sample of digit five (Panch) is shown in figure
6.7 in order to ease the way of explaining the features. The features and their extraction
methods are described below:

6.4.4.1 black runs

A black run [199] in any binary pattern is defined as the consecutive sequence of
black pixels. When a binary pattern is traversed from one side to opposite side, a
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Figure 6.8: The negative of digit five (Panch)

series of 1’s and 0’s are faced. The sequence of such continuous 0 (zero) forms a black
run. The number of black runs were computed for each row and each column of the
normalized binary digit. In other words, if a horizontal straight line is passing from
top to the bottom of a numeral, the number of intersections of the line with the black
pixel for each row, represents the black runs of that row. Similarly, the number of
intersections of a vertical line with the numeral at each column represents the black
runs for that column. The row-wise black runs (RowBR) of figure 6.7 is RowBR =

[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1]. Similarly, a vector
of column-wise black runs (ColBR) is obtained. Thus a feature vector of 64 black runs
is formed by combining RowBR and ColBR.

6.4.4.2 edge distance

Each numeral has it’s individual basic structure, which may be deformed by adding (or
removing) stroke, hole, curves, etc due to writing styles, shown in Fig. 6.2. Our target
was to extract features which trace the basic shape irrespective of this deformation. If
a resampled binary numeral is bounded by a virtual square, such that the most outer
rows and columns fall over the boundary of the square, shown in Fig. 6.6, then the dis-
tance (i.e. the number of white pixels in a row (or column) from the adjacent boundary
to the surface black pixel (i.e. the edge pixel) is defined as the edge distance of that blak
pixel. The edge distance of a black pixel from the adjacent vertical boundary (leftmost
and rightmost columns) and horizontal boundary (topmost and bottommost rows) are
referred to as vertical and horizontal edge distances, respectively. Thus, for a numeral
of size R×R there are 4×R edge distance. The negative image of digit five (Panch) and
its edge distances are shown in figure 6.8. The edge distances are shown by the black
strips from the adjacent boundary. The edge distance for adjacent surface pixels do not
differ so much. That is why, to keep smaller feature dimension only pixels on the odd
numbered rows and columns were considered for measuring the boundary distance.
Thus, we have counted a set of 4×R/2, instead of 4×R edge distances for a numeral of
size R× R. This edge distance might have less intraclass and more interclass variations
for Bengali numerals.
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6.4.4.3 slash(/)-bakslash(\) strokes

This feature extraction technique is based on approximating a side of the numeral by
a set of straight line segments. In this study, the straight line segment whose slope is
more than 90 degree is defined as backslash (\) and whose slope is less than 90 degree
is defined as slash (/). Each side of the Bengali numeral is represented by a collection
of slash (/) and backslash (\) straight line segments, which is extracted from the edge
distance (EDside, where side can be either bottom, left, top or right) of the numeral.

To extract slash-backslash feature for any side of the Bengali numeral from the binary
image, the derivative (ED′side) of the EDside is computed by taking the subtraction of
the successive edge distance at each row (or column) first, i.e. ED′side(i)=EDside(i+1)-
EDside(i), for 1 6 i 6 R− 1. The values of ED′side are either positive (’+VE’, i.e., any
integer greater than 0), negative (’-VE’, i.e., any integer less 0), or constant (0). The
vector ED′side is traversed from one end to another to detect the positions of changing
(POSchange) their values from either (0 or -VE to +VE) or (0 or +VE to -VE. When a
POSchange is detected at a row (or column), the immediate previous rows (or columns)
having ED′side values with same sign (+VE and 0 or -VE and 0) upto this POSchange
defines a line segment (slash or backslash). The continuous part of EDside for which
ED′side 6 0 is approximated by backslash (\) and ED′side > 0 is approximated by slash.
Thus, the backslash and slash can be approximated from ED′side by the regular expres-
sions -VE(-VE|0)? and +VE(+VE|0)?, respectively. The extraction of slash-backslash is
explained in figure 6.9.

6.4.5 corrected conditional entropy

CcEn is a measure of entropy of a time series, which is of dimension 1. On the other
hand, an image is a 2D signal. To compute entropy of a numeral a trick has been
adopted here. We know, the estimation of corrected conditional entropy (CcEn) re-
quires converting the time series into a symbolic sequence of two or more symbols.
The binary numeral is already a pattern of 0’s and 1’s. Now the trick is to convert a 2D
binary pattern into a 1D symbolic sequence. To do this, the symbols of each row (from
top to bottom) are concatenated into a vector. Thus we get a symbolic sequence of 0’s
and 1’s. Then the CcEn of this binary sequence is estimated, as described in section
2.4.1.5 of chapter 2 with the value of free parameter m=2.

Thus for a resampled image of size R× R, we get an augmented feature vector of
2× R blackruns, 2× R edge distance, 8 slash (/)- backslash (\), one CcEn features.

6.4.6 feature dimension reduction

Feature extraction may consist another additional step of feature selection. In the fea-
ture extraction step, information relevant to the signal classification is extracted from
the input data first and form a D-dimensional feature vector V. In the feature selection
step, the vector V is transformed into a vector, which has the dimensionality DT (DT<D).
If the feature extractor is properly designed so that the feature vector is matched to the
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Figure 6.9: The slash and backslash for the bottom side of Bengali numeral Panch. The dashed
line shows the values of EDbottom and dot-dashed line represents the values of
ED′bottom. POSchange is the column (column# 21), at which ED′bottom is +VE.
The values of ED′bottom upto column 20 is either 0 or -VE. This segment of the
edge as shown by the black dashed line is approximated by the backslash (\). The
values of ED′bottom at and after 21st column is either 0 or +VE. This segment of the
edge as shown by the light dashed line is approximated by the slash (/).

pattern classifier with low dimension. Then, there is no need of feature selection. How-
ever, the feature vectors have to be decorrelated before feeding them into the classifier.
Principal component analysis [200] is a popular algorithm for feature dimension re-
duction. It extracts relevant features by projecting the feature vector into a new feature
space through a linear transformation matrix. Principal component analysis (PCA) op-
timizes the transformation matrix T , by finding the largest variations in the original
feature space. In this study, we have applied PCA to reduce the feature space.

6.4.7 classification

A FFNN has been trained by the aggregate set of features to classify the input numerals.
The extracted features have been used for training the FFNN with 4 nodes in the out-
put layer. The number of hidden nodes, which maximized the accuracy was selected.
The recognition accuracies on both training and testing sets of ISI database have been
observed. The FFNN has been trained using 10 fold cross validation (i.e. the whole
data set is divided into 10 equal partitions, where the samples in each partition are
selected randomly. Then, the samples of one partition is used for testing and the sam-
ples from 9 other partitions are used for training the neural network. This procedure
is repeated for training and testing the neural network with 10 possible combinations.
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In every repetition, the neural network is reinitialized during training. In addition, the
recognition accuracy is also tested using the test dataset of ISI database, when training
is performed using the training dataset of ISI database.

6.4.8 results for bengali handwritten numerals classification

This section is dedicated to the results obtained for feature extraction and classifica-
tion of Bengali handwritten numerals. The results regarding the number of neurons is
presented first, then the accuracy of the system is illustrated.

6.4.8.1 number of hidden neurons

The choice of an optimal number of neurons in the hidden layer has been made through
an extensive simulations. The accuracy is observed for a range of neurons in the hidden
layer, which gives the maximum value of accuracy. The number of nodes used in the
hidden layer is varied from 10 to 40 (at an interval of 5). The optimal number of nodes
found for the hidden layer is 30 with maximum accuracy.

6.4.8.2 classification accuracy

The database is divided into two parts: training set and test set. The recognition ac-
curacy is observed for both training and testing. The performance of the system is
evaluated by two parameters: accuracy (ACC) and reliability (k). The performance of
the recognition system on training dataset is evaluated using 10-fold cross validation
technique. On the other hand, the FFNN is trained using the entire training data, and
then its performance is evaluated on the test dataset. The effects of resolution of the
numerals obtained after re-sampling has also been investigated.

• “Using the full features set". The recognition accuracies obtained on training
database are 95.64%, 97.43%, and 97.10%, respectively for resolutions 16×16,
32×32, and 64×64, giving the recognition accuracies for test database 95.48%,
97.69%, and 97.06% using full set of features. A confusion matrix of the recog-
nition accuracy on test database with R=32 is given in table 6.2 to show mis-
classification besides the true recognition of numerals.

• “Using PCA features". The application of principal component analysis (PCA)
reduces the feature dimension from 73, 137, 265 to 31, 47, and 168, respectively
for numerals of size 16×16, 32×32, and 64×64. Thus the use of PCA reduces the
feature dimension by more than 50%. The accuracy obtained with these reduced
set of features are 93.21%, 95.97%, and 97.06%.

• “Reliability of the classification". The reliability of the classification is evaluated
by the value of k. The reliabilities obtained with 31, 73, and 168 features are
92.76%, 97.30%, and 97.20%, respectively. Thus, the best reliability (also the high-
est accuracy: 97.69%) is achieved with resolution 32×32.
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Table 6.2: Confusion matrix of the classifier. Columns correspond to target class and row cor-
responds to the target class.

(Recognized class)
- 0 1 2 3 4 5 6 7 8 9

0 395 0 0 0 1 2 1 0 0 0

1 0 381 0 0 2 1 1 0 0 15

2 0 0 396 0 0 0 4 0 0 0

3 1 0 0 388 2 5 3 0 0

4 8 0 1 0 389 2 0 0 0 0

5 1 0 1 0 5 388 3 0 0 0

6 0 1 2 3 1 6 387 0 0 0

7 1 1 1 1 0 0 0 395 0 1

8 2 0 1 1 0 0 0 0 396 0

9 0 13 0 0 0 0 0 3 0 384

To observe the influence of the entropy feature (CcEn) in the recognition accuracy,
the FFNN was trained and tested using all but CcEn features. In this case, the accuracy
obtained was 95.64% (using features except CcEn) instead of 97.69% (including CcEn
in the feature set).

6.4.9 evaluation on bengali handwritten numerals classification

A set of new features has been introduced in Bengali numeral recognition. To the
best of our knowledge, the entropy concept and balck runs have been used for image
segmentation. The slash (/)- backslash\ and CcEn in optical character recognition are
completely new concept.

The classification method based on this new set of features correctly classifies 97.69%
of test samples of Bengali handwritten numeral database. Out of 4000 test samples, the
number of correctly classified, mis-classified, and unrecognized is 3899, 97, and 4, re-
spectively. It is observed from Table ?? that the maximum number of mis-classifications
is happened between digits 1 (Ek) and 9 (Noy).

The use of CcEn increased the overall classification accuracy with reducing the fre-
quency of mis-classifications between one ad nine, followed by a little increase in the
mis-classification between 0 (Shunnya) and 4 (Chaar). The highest accuracy of 99% is
obtained for digits 2 (Dui) and 8 (aat). The worse recognition rates of 95.25% and (96%)
are found for digits 1, and 9, respectively.

The accuracy increases with increasing the resolution upto 32× 32. The less accuracy
at smaller resolution is reported, this is due to the fact that the features are dependent
on the numeral’s shape outline, which is affected by down sampling the numeral (fig-
ure 6.10).
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Figure 6.10: The digit eight (aat) with 3 different resolutions. The original digit is dispalyed in
panel (a). Panels (b), (c), and (d) represents the resampling of digit eight. The red
circle in panel (b) marks the missing of a pixel due to under sampling.

6.5 summary

Handwritten numerals recognition is an important topic in pattern recognition and
optical character recognition research areas. Bengali is one of the mostly spoken (by
the native speakers) languages in the world. Research in Bengali numeral recognition
has been progressed, but still away from 100% accuracy. Those methods with high
accuracy are using high dimension of features, with more computation power. Some
methods with high accuracy are reported on discrete (personally collected) database.

In this chapter, the literature on handwritten Bengali numerals recognition has been
reviewed briefly. A set of new features including the CcEn, have been proposed in this
study. After feature extraction and feature selection, FFNN has been trained and tested
on a large publicly available database. The performance of the proposed system has
been compared with the existing methods on the same database with high accuracy
reported in the literature.



7
C O N C L U S I O N A N D F U T U R E W O R K S

In this chapter, a short summary and conclusion of the described works are presented,
along with a dictation of possible future works.

7.1 conclusion

The work described through this study has the objective of researching innovative
methods for extracting entropy and related features, and then using them in real clas-
sification problems.

Since many measures of entropy are available in the literature, a preliminary study
on entropy has been performed. A set of most commonly used measures of entropy
has been selected for this research. Even though they are popular metrics, their es-
timations are extremely sensitive to the series length. Unfortunately short series are
generally used in real applications. A related problem arises in spectral analysis, and
parametric spectrum analysis using AR models is commonly performed in this regard
with reasonable stationary. In this research, parametric estimations of entropy through
AR models have been proposed. Analytical expressions for ApEn, SampEn, and CEn
of an AR model have been derived as well. Since the numerical estimates of these
measures are sensitive to the series length, we can get the deviation of numerical esti-
mation from the theoretical one. Besides series length, the estimations of these metrics
also require the selection of embedding dimension ’m’ and tolerance of mismatch ’r’
between the templates constructed from the series. Although, Lake et al., already have
tackled the problem of deriving analytical formulas of ApEn and SampEn of an AR
process in the limit m → ∞. We have derived analytical expressions for entropy of
an AR process for finite m in our method. The theoretical values of entropy for any
m larger than the model order can also be derived. The theoretical values of SampEn
(derived by our method) converges with the Lake’s estimation for any m greater than
the model order (M).
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The numerical estimation of SampEn is undefined for very short series. On the other
hand, ApEn is defined at any series length with accepting the biasing of it’s estimate.
The estimates of ApEn and SampEn for short series may be far away from what ex-
pected for long series. The feasibility of parametric estimations of entropy on both
synthetic series and real data suggests that the parametric estimation of entropy is
possible for very short and artifacts free series, for which numerical estimates are un-
reliable or even undefined. The entropy of an AR process is directly related to its
autocorrelation function. The comparison of parametric estimates of entropy with nu-
merical ones provides some more information about the signal characteristics. When
numerical and parametric estimates of the entropy do agree, it means that entropy
is mainly influenced by the linear properties of series. On other hand, when the AR
model is fitted well, any disagreement between numerical and parametric estimates
of the metric implies that the entropy is truly offering some information that cannot
be captured by the traditional temporal or spectral parameters. Thus, the method also
offers a tool for statistical analysis in addition.

Preliminary methods for extracting features, in particular for sleep classification and
handwritten numerals recognition have been studied, since prospective research in
these fields are advanced robust feature extraction, and classification. A set of entropy
features in addition to some related existing features have been studied in this research
to solve a number of classification problems, and the relevance of entropy features has
been verified for these cases, especially in sleep state classification from HRV analysis,
physical activity recognition, where the states are changed in very short period.

In particular, the researched methods for the automatic sleep stage classification
from only HRV signal analysis appears prospective with a focus on the distinction
of wakefulness from sleep, and NREM from REM. The regularity based (SampEn)
features are found as one of the most significant among the features extracted from
the HRV series for sleep classification. Apart from increasing the overall classification
performances, they give also information about the physiology of sleep, in particular
as regards NREM stages. These findings pave the way to further investigations of the
behavior of the autonomic nervous system during sleep. Besides this, the parametric
estimates of SampEn have been selected as one of the best relevant features for physical
activity classification.

With regard to the Bengali handwritten numeral recognition, a set of completely new
features have been derived for Bengali handwritten numerals. The use of entropy (in
particular CcEn) feature has been shown effective in this classification problem, which
is completely a new application of CcEn. The developed system has obtained more
or less same recognition accuracy using very small and computationally inexpensive
systems.

The novelty of this research are developing methods for parametric estimations of
entropy, extracting entropy based features, which are proved effective in some classifi-
cation problems, such that the use of these features with some existing ones give more
accuracy with very small number of features, and hence reduced cost of the systems.
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7.2 future works

Many different aspects of the researched methods could be considered in order to
increase further the accuracy and usability.

First, only three measures of entropy has been considered, the parametric estimation
of other entropy measures like spectral entropy and transfer entropy can be considered.
The use of entropy related features have been shown only in HRV, acceleration signals,
and Bengali handwritten numeral recognitions. The usability of these features can be
verified in other physiological signals such as electroencephalogram (EEG) and speech
signals processing.

A few experiments about the complexity behavior on real data (e.g. HRV) have been
performed in this study. In future, the impact of the proposed complexity analysis
method on more experimental data should be considered to establish a procedure
which might be able to properly synthesize their complexity behavior of real data
(both short and long series) by distinguishing linear versus nonlinear mechanisms with
a reasonable accuracy.

In many cases of the dynamic analysis in chaotic systems, entropy contains much rel-
evant information which can be mostly obtained using other relevant measures such as
detrended fluctuation analysis, empirical mode decomposition, Lempel Ziv complex-
ity analysis, etc. In fact, we have compared sample entropy measure with Lempel-Ziv
complexity on a small experimental setup in this work. A deep comparison between
entropy and the related metrics such as can be studied on a large scale of experiments
in future.

Segmentation has become one of the most important problems that must be solved
before classification or recognition of objects or signals (e.g. voice recognition from the
continuous array of recordings, digit or character recognition from continuous scripts,
etc). Although entropy based segmentation methods have been proved robust in tex-
ture segmentation, text classification, and image segmentation. In future, the use of
entropy metrics can be extended in the segmentation of patterns of short segments of
data form long recordings such as HRV tracings in Holter-tape recordings.

Only a few states from few subjects have been considered for physical activity recog-
nition. To justify the true effectiveness of entropy features in physical activity classifica-
tion large data should be considered. The system can be enlarged for all daily activities.
The selected features can be applied for developing systems for e-healthcare of elderly
or physically impaired persons.

With respect to the character recognition, only handwritten Bengali numerals have
been considered. The research can be extended to handwritten Bengali script recogni-
tion, along with other related Indian languages like Hindi or Devanagari. The concept
of entropy feature can be extended to apply other related pattern recognition problems.
Due to less computational powers required by the developed systems, applications us-
ing these features can be developed for implementing on Smartphones.
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A
P U B L I C AT I O N S

Some ideas and significant results those have been published (or accepted) from this
thesis:

a.1 list of refereed journal papers

1. “Parametric estimation of sample entropy in heart rate variability analysis". M. Ak-
taruzzaman and R. Sassi, Biomedical Signal Processing and Control, vol. 14, pp.
141-147, 2014, ISSN:1746-8094, DOI: 10.1016/j.bspc.2014.07.011.

Abstract:

In this paper, a detailed study on the possibility and significance of performing
a parametric estimation of sample entropy (SampEn) was proposed. SampEn is
a non-linear metric, meant to quantify regularity of a time series. It is widely
employed on biomedical signal (i.e. heart rate variability). Results relevant to
approximate entropy, a related index, were also reported.

An analytical expression for SampEn of an autoregressive (AR) model was de-
rived first. Then we studied the feasibility of a parametric estimation of SampEn
through AR models, both on synthetic and real series. RR series of different
lengths were fitted to an AR model and expected values (SEµ) estimated.

Values of SampEn, computed from real beat-to-beat interval time series (obtained
from 72 normal subjects and 29 congestive heart failure patients), withm = 1 and
r = 0.2, were within the standard range of SEµ more than 83% (for series length
N=75) and 28% (forN=1500) of the cases. Surrogate data were employed to verify
if departures from Gaussianity were to account for the mismatch.

The work supported the finding that when numerical and parametric estimates
of SampEn agree, SampEn is mainly influenced by linear properties of the series.
A disagreement, on the contrary, might point those cases where SampEn is truly

141



142 publications

offering new information, not readily available with traditional temporal and
spectral parameters.

2. “Non-linear regularity of arterial blood pressure variability in patient with Atrial Fib-
rillation in tilt-test procedure." S. Cerutti, V. D. A. Corino, L. T. Mainardi, M. Ak-
taruzzaman, and R. Sassi, Europace, vol. 16 suppl issue: 4, pp. iv141-iv147, 2014,
ISSN:1099-5129, DOI: 10.1093/europace/euu262 .

Abstract:

Aims Dynamics of cardiovascular series may be explored with non-linear tech-
niques. It is unknown if the arterial pressure irregularity commonly observed in
patients with AF might be further increased by a sympathetic stimulus such as
orthostatic tilt.

Methods Twenty patients (62±14 years, 15 men) were recruited for the study.
Continuous beat-to-beat non-invasive arterial pressure was acquired at rest and
during a passive orthostatic stimulus (“tilt-test"). Systolic (SAP) and diastolic
(DAP) arterial pressure series of 300-samples were analyzed in both conditions.
Approximate (ApEnRR) and sample entropy (SampEnRR) were computed, as ir-
regularity measures. Equivalent metrics (ApEnµ and SampEnµ) derived from an
autoregressive model of the series were also obtained through numerical simula-
tions, to further elucidate the nonlinear mechanisms present in the series.

Results In 11 patients (group A), SAP significantly increased during tilt (from
103±13 to 114±17 mmHg, p<0.001 rest vs. tilt), whereas in 9 patients (group
B) SAP remained almost unchanged (SAP: 110±18 vs. 106±19 mmHg, ns, rest
vs. tilt). No clinical differences were found between group A and B. When ana-
lyzing group A, all irregularity measures significantly increased in SAP (ApEnRR:
1.75±0.20 vs. 1.88±0.16, p<0.05; SampEnRR: 1.71±0.30 vs. 1.88±0.27, p<0.05; ApEnµ:
1.87±0.20 vs. 1.96±0.18, p<0.05; SampEnµ: 1.94±0.27 vs. 2.06±0.18, p<0.05; rest
vs. tilt), whereas no differences were found in DAP series. No significant differ-
ences were found in group B for either SAP or DAP.

Conclusion The alterations of SAP during tilt in AF patients are not uniform
and seem associated with different regularity patterns. The pressor response to
sympathetic stimulation was also associated with an increase of SAP series irreg-
ularity.

3. “The addition of entropy based regularity parameters improves sleep stage classification
based on heart rate variability.". M. Aktaruzzaman, M. Migliorini, M. Tenhunen, S.
L. Himanen, R. Sassi, and A. M. Bianchi, Journal of Medical & Biologal Engi-
neering & Computing, vol.-, pp.-, 2015 (article in press), ISSN: 0140-0118, DOI:
10.1007/s11517-015-1249-z).

Abstract:

This work considers automatic sleep stage classification, based on heart rate vari-
ability analysis, with a focus on the distinction of wakefulness (WAKE) from
sleep, and rapid eye movement (REM) from non-REM (NREM) sleep. A set of
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automatically annotated 20 one-night polysomnographic recordings was consid-
ered and artificial neural networks (ANN) were selected for classification. For
each inter-heartbeat (RR) series, beside features previously presented, we intro-
duced a set of 4 parameters related to signalś regularity. RR series of 3 different
lengths were considered (corresponding to 2, 6, and 10 successive epochs in the
same sleep stage). A set of four features alone captured 99% of the data vari-
ance in each classification problem and both contained one of the new features
proposed. The accuracy of classification for REM vs NREM (68.4%, 2 epochs;
83.8%, 10 epochs) was higher than when distinguishing WAKE vs SLEEP (67.6%,
2 epochs; 71.3%, 10 epochs). Also, the reliability parameter (Cohenś Kappa) was
higher (0.68 and 0.45 respectively). Sleep staging classification based on HRV,
was still less precise than other staging methods, employing a larger variety of
signals collected during polysomnographic studies. However, cheap and unob-
trusive HRV-only sleep classification proved sufficiently precise for a wide range
of applications.

a.2 international conference papers

4. “Sample entropy parametric estimation for heart rate variability analysis". M. Aktaruz-
zaman and R. Sassi, Computing in Cardiology 2013, Zaragoza, 22-25th Sep,Spain,
2013.

Sample Entropy (SampEn) is a powerful approach for characterizing heart rate
variability regularity. On the other hand, autoregressive (AR) models have been
employed for maximum-entropy spectral estimation for more than 40 years. The
aim of this study is to explore the feasibility of a parametric approach for Sam-
pEn estimation through AR models. We re-analyze the Physionet paroxysmal
Atrial Fibrillation (AF) database, where RR series are provided before and after
an AF episode, for 25 patients. In particular, we selected short RR series, close
to AF episodes, to fit an AR model. Then, theoretical values of SampEn, based
on each AR model, were analytically derived (SEth) and also estimated numer-
ically (SEsyn). The value of SampEn (SErr), computed on the 50 RR series with
r=0.2×STD, m=1 and N=120, were within the standard range of SEsyn in 30

cases (39 for SEth). This figure increased to 82% of cases, if shorter series were se-
lected (N=75), and if RR series were replaced by surrogates with Gaussian ampli-
tude distribution. Interestingly, without removing ectopic beats, every estimate of
SampEn considered was significantly different between pre- and post- AF (SErr:
p=0.02; SEsyn: p=0.0024; SEth: p=0.023). When an AR model is appropriate and
theoretical estimates differ from numerical ones, a parametric approach might
enlighten additional information brought by SampEn.

5. “HRV Regularity during Persistent Atrial Fibrillation: a Parametric Assessment using
Sample Entropy.".
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M. Aktaruzzaman, V. Corino, L. T. Mainardi, S. R. Ulimoen, P. G. Platonov, A.
Tveit, S. Enger, and R. Sassi.

8th conference of the European study group on cardiovascular oscillations,ESGCO
2014, Trento, Italy.

Abstract:

In this study, we investigated the relation between sample entropy (SampEn) of
HRV series and the connected theoretical value (SampEnTH), obtained for the au-
toregressive (AR) models fitted to the same sequences. AR models are commonly
used for parametrical spectral analysis and classical HRV spectral parameters
were considered as well. The analysis was performed on a subpopulation of the
Rate Control in Atrial Fibrillation (RATAF) study, where RR series were collected
before and after a β-blocker, Carvedilol, was administered.

SampEn, SamEnTH and the spectral parameters were significantly different after
drug administration. However while SampEn is sensible to nonlinearities or non-
Gaussianity in the series, the other parameters are not. To investigate further
the changes in the series induced by the drug, both synthetic series generated by
the fitted AR models and IAAFT surrogates were employed. The results suggest a
reduction in non-Gaussianity as long as a relatively smaller increase in regularity.

6. “Analysis of the effects of series length on Lempel-Ziv complexity during sleep.".

M. W. Rivolta, M. Migliorini, M. Aktaruzzaman, R. Sassi. and A. M. Bianchi.

The 36th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC-14), Chicago, Illinois, USA:

Abstract:

Lempel-Ziv Complexity (LZC) has been demonstrated to be a powerful complex-
ity measure in several biomedical applications. During sleep, it is still not clear
how many samples are required to ensure robustness of its estimate when com-
puted on beat-to-beat interval series (RR). The aims of this study were: i) evalu-
ation of the number of necessary samples in different sleep stages for a reliable
estimation of LZC; ii) evaluation of the LZC when considering inter-subject vari-
ability; and iii) comparison between LZC and Sample Entropy (SampEn). Both
synthetic and real data were employed. In particular, synthetic RR signals were
generated by means of AR models fitted on real data.

The minimum number of samples required by LZC for having no changes in its
average value, for both NREM and REM sleep periods, was 10

4 (p<0.01) when
using a binary quantization. However, LZC can be computed withN >1000 when
a tolerance of 5% is considered satisfying.

The influence of the inter-subject variability on the LZC was first assessed on
model generated data confirming what found (>10

4; p<0.01) for both NREM and
REM stage. However, on real data, without differentiate between sleep stages, the
minimum number of samples required was 1.8×10

4.
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The linear correlation between LZC and SampEn was computed on a synthetic
dataset. We obtained a correlation higher than 0.75 (p<0.01) when considering
sleep stages separately, and higher than 0.90 (p<0.01) when stages were not dif-
ferentiated.

Summarizing, we suggest to use LZC with the binary quantization and at least
1000 samples when a variation smaller than 5% is considered satisfying, or at
least 10

4 for maximal accuracy. The use of more than 2 levels of quantization is
not recommended.
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