
UNIVERSITÀ DEGLI STUDI DI MILANO

PhD School in Computer Science

Computer Science Department

PhD in Computer Science,
XXVII◦ Cycle

Assistive technologies on mobile devices for people
with visual impairments

INF/01

PhD candidate:
Dragan AHMETOVIC

Advisor:
Dr. Sergio MASCETTI
Co-advisor:
Dr. Cristian BERNAREGGI

School Director:
Prof. Ernesto DAMIANI

Academic Year 2013/14

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem description . 2
1.3 Contributions . 3
1.4 Methodology . 4
1.5 Outline . 5

2 Related work 6
2.1 Spatial understanding in didactic assistive technologies 7
2.2 Cognitive mapping in smartphone-assisted mobility 10

3 Didactic assistive technologies 13
3.1 Interaction techniques . 13
3.2 Math learning for children with visual impairments 15

3.2.1 Design challenges . 18
3.2.2 Proposed solution . 20
3.2.3 Evaluation . 22

3.3 Analysis of functions through sonification 23
3.3.1 Function graph exploration techniques 24
3.3.2 AudioFunctions prototype . 26
3.3.3 Evaluation . 29

4 Urban navigation for visually impaired users 33
4.1 Problem definition . 34

4.1.1 The zebra crossing pattern . 34
4.1.2 Safe navigation in urban environments 35
4.1.3 Smartphone driven computer vision 36

4.2 System architecture . 37
4.3 Computer vision based zebra crossing detection 38

4.3.1 Feature extraction . 38
4.3.2 Line segment analysis . 39
4.3.3 Stripes analysis . 41
4.3.4 Relative position computation . 42
4.3.5 Evaluation . 43

4.4 Sensor fusion based zebra crossing detection 46
4.4.1 Image Pre-Processing . 47
4.4.2 Ground plane reconstruction . 48

i

Contents ii

4.4.3 Line segment detection . 51
4.4.4 Line segments grouping . 54
4.4.5 Stripes validation . 55
4.4.6 Evaluation . 57

4.5 The user interaction module . 65
4.5.1 Step-by-step navigation . 66
4.5.2 Output interaction modes . 68
4.5.3 Thumbs-only input . 71
4.5.4 Evaluation . 72

4.6 Zebra crossing detection from satellite and street view imagery 81
4.6.1 Satellite imagery acquisition . 81
4.6.2 Detection on satellite images . 82
4.6.3 Street view imagery selection . 82
4.6.4 Detection on street view images . 84
4.6.5 Evaluation . 85

5 Conclusions and future work 88
5.1 Didactic and educational tools . 88

5.1.1 Elementary grade math and geometry learning 89
5.1.2 Function graph exploration . 89

5.2 Unassisted urban navigation . 90
5.2.1 Zebra crossing detection . 90
5.2.2 Speech and sonification interaction 91

A Horizon computation from gravity acceleration data 93

B Comparison of line segment detection methods 95
B.1 Hough probabilistic line segment detector 95

B.1.1 Custom canny edge detection . 95
B.1.2 Hough line segment detection . 96

B.2 LSD . 97
B.2.1 Line support regions . 97
B.2.2 Segment identification . 98

B.3 EDLines . 98
B.3.1 Edge Drawing . 98
B.3.2 Line fitting . 101
B.3.3 Validation . 102

B.4 Comparison and evaluation . 103

Bibliography 107

Chapter 1

Introduction

1.1 Context

Technological capabilities of modern smartphones evolved well above their original use
as mobile telephony appliances both in terms of sheer computational power as well as in
terms of versatility. Indeed, modern smartphones, and the closely related tablet devices,
are equipped with many and various sensors, such as video cameras, accelerometers and
GPS. They also have ubiquitous and persistent connectivity and their interactive capa-
bilities are various, ranging from haptic to auditive and, of course, visual. Continuously,
new and revolutionary capabilities are researched and commercialized (e.g., Google tango
project that localizes the user and, at the same time, maps the surrounding 3D space).
These devices are gradually becoming multi purpose platforms, akin to and in some cases
much more than modern personal computers. Clearly, both problems and opportunities
arise from the continuous improvements of these devices.

On one hand new accessibility issues arise in the use of these devices [1]. The interaction
paradigms are often new and still not well established. Specifically for people with
sensor or motor disabilities, the accessibility features can take years to get published and
even more to consolidate. For example, the VoiceOver screen reader 3.2.2, a major touch
screen accessibility feature on iOS devices for users with visual impairments, was released
in 2009, two full years after the first iPhone model. The zoom functionality, available
from the start on iOS devices, was radically changed with the recent introduction of iOS
8 in September 2014. While the frequent updates do require an effort from the users to
get accustomed to, these devices are indeed accessible by visually impaired users.

On the other hand, the new functionalities of these devices can be used to tackle issues
specific for people with disabilities and lead towards a greater independence without
the need of specifically designed and often expensive devices. Indeed mobile devices
have three key advantages over personal computers. First, they boast new interaction

1

Chapter 1. Introduction 2

paradigms, such as the touch screen interface. Second, they can be used on the move and
support the user in situations when it is impractical to rely on bulky personal computers
or proprietary and expensive hardware platforms. Third, mobile devices are equipped
with various hardware sensors, generally not available on standard computers, that can
be used to acquire unprecedented amounts of information about the user’s context.

The goal of this work is to leverage these capabilities for assisting persons with visual
impairments in understanding spatial relations. The novel interaction paradigms offer
proprioceptive capabilities and thus can be used as an assistive educational tool for
learning spatial and geometrical concepts. At the same time, the hardware capabilities
and the use on the move make the mobile devices suitable for autonomous orientation
in space.

1.2 Problem description

Spatial understanding and cognitive mapping are challenging tasks for people with visual
impairments [2–5]. While the capabilities in learning and memorizing spatial information
in blind persons is comparable to those of sighted people [4, 6], the spatial information
conveyed at a time through haptic exploration is less than what can be inferred by sight
[4]. Additionally, there is also a lack of indirect sources of information, such as accessible
maps, for people with visual impairments [7, 8].

In particular, visually impaired children often lack experience to develop appropriate
strategies for spatial information comprehension and memorization [9, 10]. Abstract
spatial concepts (e.g., geometry) are also harder to grasp without their graphical repre-
sentations [2, 11, 12].

Didactic software generally leverage visual medium for conveying spatiality information.
In particular, educational tools for children immerse the teaching purpose within an
entertaining environment, often in the form of a graphical game. Thus, most of the
existing educational tools are unaccessible to visually impaired and, specifically, children.

Multi-modal stimuli on mobile devices can be used to interact with persons with visual
impairments [13]. Existing solutions are often based on auditory feedback or tactile
and haptic stimuli. Auditory interaction paradigms [14–16] require much attention,
memory skills and the ability to recognize even slightly different sounds. For this reason
acustic isolation from the surroundings (e.g., with isolating headphones) is required, thus
preventing the interaction with others. Haptic approach proves to be much more effective
but relies on expensive and cumbersome specialized hardware [17–22].

Spatial comprehension during independent urban way-finding is another major issue for
visually impaired users, even more so in unexplored surroundings. While a sighted user
can grasp in details the complexity of the environment and possible hazards with a single

Chapter 1. Introduction 3

look, a visually impaired user has to constantly monitor the audio and haptic feedback
from the environment, which is more stressful and slow [7, 23–26].

Some information critical during the navigation for people with visual impairments can-
not be accessed neither through gps-based navigation software nor detected by tactile,
kinesthetic or auditive means. For example, consider the issue of knowing whether it
is possible to cross a street at a pedestrian crossing based on the information given by
a traffic light. This task requires constant monitoring of a purely visual cue that also
changes its state continuously. The cue is also spatially limited and, thus, cannot be
approached by GPS navigation. This information can be accessed either by augmenting
the environment with RFID or bluetooth beacons [27, 28] or through computer vision
based detection on device’s video camera stream.

1.3 Contributions

The goal of this work is to leverage audio-haptic proprioceptive interaction paradigms
through touch screen interface and audio capabilities of mobile devices for assisting people
with visual impairments in spatial comprehension and memorization. The issue of spatial
comprehension for people with visual impairments is tackled in two main contributions,
the first contribution is to the field of assistive didactics and the second one in the field
of unassisted way finding. In both cases the capability of the user in constructing a map
of the explored space is investigated. A specifically defined user driven methodology
was adopted for the design of proprioceptive spatial exploration assistive technologies
for people with visual impairments.

In the field of assistive didactics, this research stemmed two key results, published in
[29, 30]. The first result is an instrument for helping elementary school children in
learning math [29]. Differently from existing edutainment solutions the software uses
proprioceptive touch screen interaction accessible by users with visual impairments. 13
exercises and corresponding interaction paradigms are defined and designed with help
from educators and visually impaired users. An entertaining story, backed by professional
graphics, vocal and audio effects is used for capturing the attention of both visually
impaired and sighted children. The advantages of the design methodology are not limited
to the elementary education. Visually impaired students of any age can benefit from new
interaction techniques proposed. Indeed, the second result is a tablet prototype that
allows visually impaired students in higher education environments to explore function
graphs [30]. The user inputs custom functions with a specifically engineered interface and
explores the resulting function graph with the sonification and touch screen interaction,
designed with three exploration modes in mind, two of which are based on proprioception
by taking benefit from the direct interaction with the tablet touchscreen.

Chapter 1. Introduction 4

An extensive experimental study of the effectiveness of the proposed solutions is per-
formed. The first solution is thoroughly evaluated in three sessions: an expert-based
evaluation, a test conducted with the first prototype of the app and a more qualitative
evaluation conducted on the commercial version of the application both with sighted and
visually impaired children. Additional feedback which has been received after the pub-
lication of the software, is also presented as an additional evaluation step. The second
solution is evaluated with 7 users and the results show that the solution allows the users
to have a much better understanding of the the function graph than existing software.
The results are better even when compared with classical tactile paper, with which the
test subjects were all well acquainted, while the proposed solution was tested for only
few minutes.

In the field of spatial comprehension during way-finding for people with visual impair-
ments, an important contribution is a zebra pedestrian crossing navigation framework
(discussed in the following publications: [31–34]). Two novel and accurate computer
vision algorithms were designed for the recognition of the pattern in different conditions
of illumination and visibility. One relies on data from video camera for the detection [32]
while the other also leverages data from accelerometers and gyroscopes for a more precise
detection and metric relative position computation [34]. The solutions were engineered
to be accurate and efficiently executed in real time on mobile platforms. The interaction
paradigm based on sonification and haptic input is engineered for being applicable for
both blind users and users with limited sight residual. The interface conveys the informa-
tion quickly and effectively yet without overwhelming the user with too much data [32].
The capability of integrating the detection with online data sources is engineered. In
particular, a result consists in the detection of zebra crossings from online map services
imagery (both satellite and streetview). This component helps to guide the user when
the crossing is still too far to be detected with the video camera of the mobile device.
The proposed solution is thoroughly evaluated both by visually impaired test subjects
and through automated computer based evaluation.

1.4 Methodology

The methodology adopted for the work described in the following chapters is first and
foremost user-centered. Both during the investigation stage and during the design of the
solutions and of the interaction paradigms, the interaction with visually impaired users
was of paramount importance. Indeed, the issues to be investigated are identified along-
side visually impaired collaborators and an effective way to tackle these issues and the
interaction paradigm to be adopted are defined jointly. After the definition of an initial
prototype, the proposed solution is evaluated through extensive user based tests. Iter-
atively, the solution is improved based on feedbacks until a stable version is engineered
and published. Differently from a purely academic approach, the publishing stage may

Chapter 1. Introduction 5

involve interaction with commercial entities such as university spin-offs, private research
and contributors. Involving subjects with an economical interest can help in financing
and thus accelerating the development of solutions ready for commercialization. The
contributions do not end with publishing, however, and the users’ feedback is constantly
gathered (manually and with automated methods) for enhancing the considered solu-
tion and as a starting point for new solutions. For what concerns navigation assistive
tools, given the inherent danger in the autonomous way-finding, both the accuracy and
the reaction time of the solutions have to be tightly constrained. For evaluating these
two parameters, appropriate data sources for the investigated solutions are identified
and testing data sets are collected. Then, through automated evaluation, the proposed
solutions are evaluated against the data sets and possibly compared to existing solutions.

1.5 Outline

Chapter 2 outlines the research on assistive technologies for visually impaired, with
particular focus on solutions for mobile devices. Two novel education tools are described
in Chapter 3. Chapter 4 focuses on independent navigation of zebra pedestrian crossings
for people with visual impairments. Finally, Chapter 5 draws the conclusions of the
work.

Chapter 2

Related work

Cognitive mapping is the process of creating a mental model of a space based on the
perception of it. Early theories [35] questioned the ability of visually impaired to con-
struct an effective cognitive map of a space. Following studies [36] confirmed that blind
people (both congenitally and late) are indeed capable of cognitive mapping but the
level of spatial understanding compared to sighted persons was unclear. Recent works
show comparable cognitive mapping capabilities between sighted and blind people, but
different levels of experience influence the expressed spatial understanding among the
visually impaired [4, 6].

A sighted person can scan the space visually and immediately grasp both the position
of the contained elements with respect to the personal coordinates and, at the same
time, the relative positions between these elements [6]. Conversely a person with visual
impairments can scan the space haptically with hands or white cane, easily localizing
the objects in the personal coordinates space, but having to infer the relative positions
between the elements through a sequence of explorations and position calculations [4].
If the target space is contained within the haptic area, that is the area at which the
exploration can be performed without changing location, a comprehension of the per-
sonal coordinate space is often sufficient for the orientation [4]. However, at locomotor
distances, movement is required for the haptic exploration. Consequently, while mov-
ing, the coordinates in personal space transform with each movement, thus leading to a
slower exploration with a higher mental workload required for the understanding of the
space [4, 7, 23]. The spatial understanding depends on the strategies adopted for the
exploration and codification of the relative positions between the elements of the space
and the orientation capability with respect to those elements [9, 37, 38]. Education and
experience in autonomous navigation strategies are shown to impact the way-finding
capability significantly [6, 9, 38].

6

Chapter 2. Related work 7

2.1 Spatial understanding in didactic assistive technologies

Indeed, assistive tools can be used to convey the spatiality information and help in
the cognitive mapping through sensory substitution mechanisms. The visual elements
are substituted with other stimuli capable of conveying the information [39]. Frequently
adopted interaction paradigms for spatial exploration include, in particular: auditory and
haptic interaction. For example tactile maps, embossed models of areas or buildings, can
help people with visual impairments to learn the layout of a site and the relative positions
between the elements of the area [4]. Analogous methods have been successfully employed
also for the study of abstract spaces. Techniques for embossing figures on paper by a
tactile embosser or produced with pen and sheets are used for the study of mathematics
and geometry. Sewell kit is a common “pen and sheets” tool for embossing graphs on
paper. It consists in a rubber board on which a resistant embossing paper is positioned.
By etching a drawing on the board with a pen, it is permanently embossed on the paper
while the rubber surface returns to the initial flat shape and can be reused. These
solutions have been improved over the years [12]. Indeed, at present, there are many
tools to create and emboss high quality drawings on paper [40].

Nonetheless, some drawbacks still exist. First, tactile drawings cannot be edited once
embossed, so the mistakes require to reprint the whole paper. Moreover, it is hard to
add elements to an already embossed tactile drawing (both on tactile embosser and on
swell paper) without damaging or overlapping the existing drawing. For example, given
the tactile graph of a function, it is difficult to draw the symmetric function on the same
drawing. In addition, also the Braille labels can easily overlap with lines or other labels,
and impair the understanding of the underlaying figure [41].

Computer software have also been used for assisting a visually impaired user in spatial
exploration and understanding. Auditory feedback in form of sonification has been suc-
cessfully employed to replace the sense of sight in software [42]. Sonification is the use
of non-speech audio to convey information. A large variety of sonification techniques
exist and are used in various applications [43]. One sonification technique, referred to as
“parameter mapping” [44], has been implemented for the Navigator component of the Ze-
braCrossing software, described in Chapter 4. Parameter mapping sonification is based
on creating a link between the data to be rendered and the parameters of a synthesizer
(or of any other device which generates or plays back sound). In the following, Sound
spatialization was also employed in order to allow the user to clearly perceive certain
sounds as coming from the left or from the right, therefore to convey information using
an additional cue. Considering that during the test the sound could be delivered using a
pair of headphones, for a determined set of messages a binaural spatialization approach
was chosen [45]. This was not implemented performing a full spatialization, but simply
modifying the differences in level and time of arrival of the sound at the two ears (i.e.
Interaural Level Differences - ILD and Interaural Time Differences - ITD).

Chapter 2. Related work 8

Mendels [46] notes that recently many interactive games, both desktop and mobile have
been developed. In particular, many auditory interfaces have been specifically designed
for games on mobile devices [46, 47]. Roden et al. [14] illustrate a framework to gen-
erate audio game in a 3D audio environment. Vallejo et al. [16] investigate sonification
techniques in point and click games. Miller et al. [15] propose audio cues in games
inherently based on audio feedback (e.g. where the player is required to reproduce a
rhythmic pattern), but that are inaccessible to sight impaired people because of visual
instructions. Ramos [48] and Ng [49] evidence the advantages of informative sounds in
interactive games.

Sonification has also been used to enable sight impaired people to access function graphs
[12, 50, 51]. Audio Graphing Calculator [12] provides a description of the shape of a
function in form of a sequence of sounds that convey the value of the function through
frequency variations. These solutions enable blind users to understand the trend of the
graph, but not the relevant points such as maxima, minima and intersections. To grasp
these quantitative attributes of the function, in addition to the function sonification, an
automatically generated value table is computed and can be requested by the user.

The issue of conveying map information is tackled with 3D sonification techniques by
Heuten et. al [52]. The user moves in a 3D virtual space that models a real world area.
Different objects are mapped with different sounds conveyed stereoscopically according
to their relative position with respect to the user in the 3D space.

Audio interaction, however, requires attention and good memory skills [53]. Hence, espe-
cially in education (e.g. geometry), auditory feedback alone should be used sporadically.
Also, no quantitative information is straightforwardly provided with a sonification ap-
proach and it is also difficult to convey information about complex attributes of a figure
(e.g. asymptotic behavior of a graph, straight angles in a geometrical figure). One more
drawback concerns the difficulty for a visually impaired user to understand mutual re-
lations between distant points or between distinct portions of a figure (e.g. it is very
hard to find out whether three points are on the same line or to find out symmetries).
Finally, sonification based solutions require a quiet environment or isolating headphones
that monopolize the auditory channel of the user and thus cannot be used on the move
or when the interaction with other users is required.

Auditory interfaces can be extended with haptic or tactile feedback to reduce the cog-
nitive load required to sight impaired people to construct a mental representation of
the scene. Audio-haptic educational games have been proposed both with general pur-
pose haptic devices [19] and with new hardware devices employing vibro-tactile feedback
[20, 21], or haptic gloves [22], specifically designed to generate tactile stimuli which rein-
force audio cues. Haptic and audio-haptic systems have also been proposed for non-visual
geometry and graph exploration and manipulation [18, 54, 55]. The main advantage of
these systems consists in the ability to touch and manipulate the graph. Moreover,

Chapter 2. Related work 9

guided exploration is also possible: the hand of the student is guided by the arm of
the haptic device along the curve. These solutions proved to be more usable by sight
impaired people. Nonetheless, haptic devices are often expensive, proprietary solutions,
frequently available as prototypes only and they are not designed to be used in mobility.
Moreover, the workspace is limited (about 15 by 15 cm), so graphs with many details
can be hardly understandable.

For example, the Stickgrip system, used by Evreinova et al. [55] for the study of curves,
is a proprietary add-on hardware for Wacom tablets. While the evaluation of the solution
shows promising results, the hardware is still not available off-the shelf, and the usage
of a cumbersome augmented stilus for mobile usage has not been investigated. The
Gravvitas system, proposed by Goncu et al. [54] for the study of geometrical shapes,
tables and graphs, suffers from a similar drawback. It requires add-on vibration motors
on fingers used for the exploration on a touchscreen of a tablet.

Gravvitas [54], however, also expands the haptic approach with the usage of stereo audio
feedback for the spatial exploration. This approach, while allowing to convey more
information at the same time, requires the use of headphones that isolate the user and
avoid inclusion among students. The solution proposed in Section 3, instead, conveys
the spatiality only through the position of the finger on the screen coupled with the
pitch quality of the sound, thus requiring only a mono sound system and no cumbersome
hardware add-ons.

Touch Tiles [17] is an interaction technique using a force feedback mouse for detecting
shapes of figures, designed for teaching geometry to children. While Touch Tiles does
not require custom hardware, it needs the use of a specific mouse hardware, which makes
it unfeasible to be used in mobility.

The use of tablet devices for map exploration is tackled by Poppinga et al. [56] showing
promising results in conveying the spatial information. The study, however, highlights
issues in exploration when the elements are too small with respect to the user’s precision
in exploration and, thus, sometimes overlooked (The “Fat-finger” problem [57]).

Giudice et al, [58] use the vibro-tactile output on tablet device to efficiently convey shapes
of simple figures or graphs. The method explored in the following extends this approach
by substituting the vibro-tactile feedback with three different audio-based interaction
techniques.

Tactison, by Burger et al. [59], is an audio-haptic computer interface designed for ed-
ucation of children with visual impairments. A grid of items is explored and accessed
through a programmable 16x16 overlay keyboard enhanced with tactile overlays that de-
fine exploration and function areas. Audio and text-to-speech output is used as feedback
for user’s actions. The interaction technique adopted in MathMelodies, the educational

Chapter 2. Related work 10

tool for 1st-3rd grade school children proposed in Section 3.1, expands the approach de-
scribed in [59] in two crucial ways. First, instead of an overlay keyboard, a touchscreen
on a tablet device is used. This hardware is widespread and has a higher resolution and
sensitivity, thus it is more suitable for presenting arbitrary sized and shaped objects to
the user. Second, by extending the interaction paradigm with a graphic interface pre-
sented through the touchscreen, it is possible to use the device in the education activities
for sighted children and children with different levels of visual impairment, thus improv-
ing integration and inclusion between students. Additionally, the solution proposed in
Section 3.1 comprehends 13 exercises integrated in the context of a story, specifically
tailored for capturing the attention and teaching spatial and mathematical concepts to
1st-3rd grade children.

2.2 Cognitive mapping in smartphone-assisted mobility

The research in the field of independent mobility for people with visual impairments
addresses the problem of providing the user with contextual information regarding the
surrounding environment, in order to make the cognitive mapping of the explored space
and the resulting autonomous way finding of the visually impaired effective, efficient and
safe. Indeed, the unassisted navigation is a major issue and a potential hazard for people
with visual impairments [24, 60]. In blind test subjects, Arditi et al. note a difficulty
in estimating the distances [26] while Beggs [23] relates a lower walking speed with
respect to the sighted subjects to a safety response to the stress associated with travel.
Passini and Proulx [7] show how people with visual impairments rely on a higher number
of data sources for the way-finding and often navigate based on substantially different
information than sighted people [61, 62]. Thus, navigation issues for the visually impaired
often involve retrieving specific information useful for guiding the user and conveying
those information to the user in an efficient manner.

The aspect of the way-finding that deals with the retrieval of information about the
remote locations and long range navigation, not in the immediately perceptible envi-
ronment, is called Macronavigation [63]. Instead, Micronavigation deals with the short
ranged orientation, navigation and obstacle avoidance [63]. The difference between these
two aspects lies in the fact that, while during Macronavigation it is possible to leverage
absolute positioning systems (E.g., GPS) for localizing and orienting the user, during
Micronavigation the inherent imprecision of the absolute positioning systems requires to
fall back to a relative orientation and navigation.

The data leveraged during Macronavigation can be easily related to a spatial position
consistent in time and between different users. Thus, Macronavigation issues are often
related either to gathering new information about the environment, or finding new and

Chapter 2. Related work 11

more suitable ways for conveying the already gathered information to the user. An ex-
ample of an outdoors Macronavigation solution, proposed by Hara et al. [64], gathers
data related to the surroundings of bus stops through crowd sourcing. The user is after-
wards notified when in GPS proximity of a stop and, by leveraging the knowledge of the
presence of objects such as dust bins, poles, traffic signs, and their spatial positioning
with respect to the bus stop, the visually impaired user is assisted during the identifica-
tion and the approaching to the stop. The iMove1 application, available for iOS devices,
reads to the user the current address as well as the list of nearby points of interest (e.g.,
shops, museums, bus stops, etc.). Sudol et al. [65] propose Looktel, an application suite
to assist visually impaired users with object recognition and navigation tasks. The GPS
navigation tool, Breadcrumbs, supports geotagging, path creation and social sharing.
However it does not deal with navigation planning or local navigation task (e.g., street
crossing). MoBIC [66] is a toolset aimed at helping visually impaired people during
route planning and navigation. Google Intersection Explorer2 is an application for the
mobility of visually impaired users. It does not have a function of specifying the routes,
but provides information about the location of the intersection. Indoors solutions, that
cannot use GPS localization due to the precision limits of the system and the attenuation
of the signal in covered spaces, instead can use RFID tags or bluetooth beacons [67, 68].

The Micronavigation issues deal with short range way-finding, typically within 20m,
characterized by the difficulty to reuse the gathered information due to the absence of an
absolute positioning (Given the GPS imprecision) or due to the high mutability of the
environment caused by the mobility of the elements involved (cars, pedestrians), periodi-
cal mutations of the environment (E.g., traffic lights change color), or unforeseen changes
(E.g., roadworks). This happens in the outdoors environments when the navigation is at
a scale too small to be positioned precisely with the GPS or, generally, when the abso-
lute positioning infrastructure is unavailable ore too expensive, given the cost and time
requirements for adding and maintaining hardware augmentations in the environment.

Instead, relative positioning can be obtained by exploring the environment through com-
puter vision techniques [69–71] or through position estimation techniques (dead reckon-
ing) using onboard motion sensors [72, 73]. The usefulness of the gathered data in this
case is related to the precision of the computed relative position with respect to the user
and it diminishes once the positioning precision decays [74].

The issue is exacerbated by the intrinsic visual nature of many landmarks, such as traffic
signs, that a visually impaired user cannot access through haptic interaction (touch or
white cane).

Early work using computer vision in the field of assistive technologies for persons with
visual impairments have been explored by Malek Adjouadi [75]. In particular, in the

1itunes.apple.com/en/app/imove/id593874954
2play.google.com/store/apps/details?id=com.google.android.marvin.intersectionexplorer

https://itunes.apple.com/en/app/imove/id593874954
https://play.google.com/store/apps/details?id=com.google.android.marvin.intersectionexplorer

Chapter 2. Related work 12

field of way-finding, Adjouadi proposes a stereoscopic Micronavigation system capable
of path computation and obstacle detection and avoidance [71].

For what concerns the detection of pedestrian crossings, the first solution proposed in
literature (Stephen Se [76]) adopts the following approach: first, line segments and their
vanishing points are detected through Hough transform. Another application of the
Hough transform finds groups of parallel segments. The outliers are filtered out by a
Random Sample Consensus algorithm. The result, expected to be a set of line segments
belonging to the same zebra crossing, is then validated using cross ratio constraint. The
problem of this solution is that it can recognize a zebra crossing only if the image contains
the whole pattern, not covered even partially by objects (e.g., a car). Additionally,
patterns that are not zebra crossings but have similar ly parallel lines, can be detected
as crossings. A more effective approach (Uddin et al. [77–79]) first applies a bipolarity
segmentation to detect areas of alternating black and white stripes and then validates
the result through cross ratio invariant verification. This solution yields good results in
terms of precision and recall, although the experimental evaluation has been conducted
on a small data set (about 100 images), all with similar illumination conditions.

In particular, for the navigation of pedestrian crossings, the Crosswatch system [80, 81]
has been proposed. Micronavigation tools proposed in it include, in particular, two tech-
niques for detecting pedestrian crossings. One solution detects zebra crossings but does
not compute their relative position with respect to the user that is a necessary step to
guide the user towards the crossing [82]. The second solution detects the “two stripes”
pedestrian crossings and adopts a rectification technique that, while not described in
detail, appears to be similar to the one proposed in this work [83]. Another new con-
tribution to the Crosswatch project, by Murali et al., presents an innovative approach
to the related issue of estimating the user’s position in an intersection [84]. The idea
is to acquire 360◦ image panoramas while turning in place on a sidewalk. The image
panorama is then converted to an aerial (overhead) view of the nearby intersection, cen-
tered in the user’s location. The goal is to match this aerial view with a template of
the intersection obtained from a satellite image and estimate the user’s location in the
intersection more precisely than with GPS.

An issue tightly related to the pedestrian crossing detection is the traffic lights detec-
tion. Angin et al. [85] developed a system which performs fast recognition of traffic
lights by exploiting the computational power of cloud computing. The response times
of this approach have been tested over a high speed wi-fi networks, yielding acceptable
results (660ms on average). However, the performance on different mobile network types
(GPRS, 3G, LTE...) has not been tested. Since the solutions proposed in the follow-
ing are executed on the mobile device, they provide the user with real-time information
about crosswalk position regardless of the current connectivity status.

Chapter 3

Didactic assistive technologies

Section 3.1 explores two different interaction techniques considered for the touch-screen
based learning on mobile devices: sonification and object-based interaction. The use of
object-based interaction for assisting visually impaired grade school children in learning
basic math has been previously published in [29] and it is described in Section 3.2.
Section 3.3, instead, presents a study regarding the accessibility of math function graphs
through sonification techniques (published in [30]).

3.1 Interaction techniques

Students with visual impairments face many difficulties while studying scientific subjects.
This is due to the fact that the teaching of concepts requiring spatial understanding fre-
quently leverages graphical representations for efficient learning. Touch screen interfaces
can assist persons with visual impairments to understand spatiality through propriocep-
tive exploration of the screen. Indeed, the touch screen can be considered not only an
input interface but also a source of information for the user.

y

x

(x1,y1)

Figure 3.1: The knowledge of the touched position is in itself a source of spatiality information

13

Chapter 3. Learning support tools for visually impaired 14

The fact that the user is aware of the position of the area explored on the touch screen
conveys spatial information that can then be used to form a cognitive map of the elements
on the screen and their relative positions (See Figure 3.1). Besides the coordinates of the
explored position, the information regarding the contents of the investigated area is also
required for the understanding of the examined space. This information can be conveyed
through different sensory substitution paradigms, two of which considered during this
work: sonification and object-based interaction.

The sonification interaction allows to re-code the visual information through audio-
feedback [86]. Indeed, a sound can carry information through its temporal, spatial,
amplitude, and frequency qualities and therefore it is possible to convey the spatiality
notion by manipulating these qualities. Coupled with tactile exploration, this approach
has been used in literature for the detection of edges in figures [86] and for the exploration
of pictures by transforming the color at the examined point into a sound conveying its
luminosity and tonality qualities [87]. As an example of this method consider the Fig-
ure 3.2a. The light intensity can be conveyed through the volume of the sound. Thus,
point B will be translated as a louder sound than point A.

B

A

(a) Sonification of different levels of light intensity

D

C

(b) Vibration for notification of edges

Figure 3.2: Sonification and Vibration based sensory substitution techniques

Note that vibro-tactile feedback, which will not be considered in the following, offers
similar sensory substitution capabilities as the sonification (Giudice et al [58]). For
example, for edge exploration, the presence of an edge at the explored point D can be
notified by a vibration, absent when exploring a point C not on an edge (see Figure 3.2b).
However, many existing devices have either simple on-off control or limited timing or
intensity level control of the vibration. Therefore, this approach is not suitable when
a higher expressiveness is needed (e.g., for conveying many levels of variation in light
intensity, as in Figure 3.2a).

The object based interaction is conceptually similar to the interaction adopted by screen
readers (e.g., VoiceOver on iOS). Screen readers are accessibility software for touch screen
interfaces. The user slides the finger on the touch screen and explores the content of the
interface while the screen reader vocally describes elements currently selected. In case of
object based interaction, however, instead of long vocal descriptions, short and easy to
remember sounds (ofter onomatopoeic) are adopted as descriptors. Each logical element

Chapter 3. Learning support tools for visually impaired 15

of the interface has a specific audio feedback that acts as its defining cue and the audio
feedback is independent with respect to the position of the touch within the object. For
example, as shown in Figure 3.3a, touching a point F that belongs to the figure of a dog,
the test application plays a sound of a dog barking.

WOOF

MEOW

F

E

(a) Object based interaction

H

G

(b) Sonification interaction

Figure 3.3: Object-based and Sonification interaction

3.2 Math learning for children with visual impairments

The two touch-screen based interaction paradigms defined in the previous section, soni-
fication and object-based interaction, were evaluated. The goal of the evaluation was
to define which approach to use in the context of a didactic tool for the teaching of
mathematical and geometrical concepts to 1st-3rd grade school students with visual im-
pairments. Teachers expert in education of blind students were involved for evaluating
the feasibility of the two approaches and the prototype test software implementing the
two techniques was tested by three blind children. The first test focused on the evalua-
tion of the sonification approach and involved the recognition of simple black and white
figures. The second test considered the object-based interaction and focused on three
exercises: “counting”, “position in a table” and “spelling”.

In the test involving the sonification interaction the goal was to recognize simple geomet-
rical figures depicted on binary black and white images. The user scans the touch screen
interface with a finger and the presence or absence of the image underneath the finger is
conveyed through sound pitch. As shown in Figure 3.3b, low pitch sound is constantly
played while the user is exploring the touch screen without being near or touching the
figure. The pitch of the sound gradually increases as the user’s finger nears the figure
and it is highest when the user is exploring inside the figure.

Specifically the pitch of the sound is computed as follows. Given a figure G and a touched
point p, a circle A with center in p and of radius r is computed. The intersection I

between the circle A and the explored figure F is computed and a sound with the pitch
P = Pmin+(Pmax−Pmin)· IA is played, where Pmin and Pmax are parameters defining the
minimum and maximum pitch respectively. This means that, when the user is exploring

Chapter 3. Learning support tools for visually impaired 16

far from the figure, the intersection I = 0 and the sound played has pitch P = Pmin,
and when the user is exploring completely inside the figure, the intersection I = A, and
therefore the sound played has pitch P = Pmax. For example, in Figure 3.4, the area I ′

is smaller than area I, thus, the sound yielded when exploring p′ will have a lower pitch
than the sound played when exploring the point p.

G

A
p
r

I

(a) Bigger area yields higher pitched
sounds

G

A
p
r

I'

(b) Smaller area corresponds to a
lower pitch

Figure 3.4: Sonification of geometrical figures

The “counting” exercise consists in exploring the interface in which different types of
objects are contained and, afterwards, recall the number of objects of a certain type.
Each object type corresponds to a specific sound which is played when the user explores
an element belonging to the typology. For example, Figure 3.5 contains cats, dogs and
horses. When, while exploring the interface, the user encounters one animal, the call of
the animal is played. At the end of the exercise the user is asked to specify the number
of one type of animals in the picture.

Figure 3.5: “Counting” exercise

The “position in a table” exercise consists in exploring a table containing different ele-
ments (e.g., animals, whose call is played when the user explores the corresponding cell)

Chapter 3. Learning support tools for visually impaired 17

and finding the position of the cell of a specific element in terms of its coordinates. The
coordinates are specified as tuples of column and row indexes where column indexes are
lexically ordered letters starting from A and row indexes are ordered numbers starting
from 1. Figure 3.6 shows an example of this type of exercise.

A B

1

2

Figure 3.6: “Position in a table” exercise

The “spelling” exercise, shown in Figure 3.7, consists in correcting a misspelled word.
The call of an animal is played and a sequence of letters shows the misspelled name of
the animal. The user explores the sequence and each letter is read when encountered. An
empty sequence is proposed underneath and the user can select the cells of the sequence
and insert the letters with an input keyboard at the bottom of the screen.

Figure 3.7: “Spelling” exercise

Chapter 3. Learning support tools for visually impaired 18

The experimental evaluation considered the mental load of the two proposed interaction
paradigms and has shown that the object-based interaction is less cognitively demanding,
hence resulting more enjoyable for the users and more suitable for didactic tools aimed
at children. For details of the evaluation and results see Chapter 3.2.3.

Afterwards, in accordance to the obtained results, a set of 13 different types of exercises
relying on the object-based interaction paradigm were designed. The developed solution,
named MathMelodies, is an iPad application that supports primary school children in
learning Mathematics. Thanks to a crowd-funding campaign, the software has been
engineered and distributed as a commercial application1.

3.2.1 Design challenges

During the design and development of MathMelodies there were three main challenges.
First, the application has to present exercises that are accessible to visually impaired
children. After the testing of different interaction techniques, the object-based interaction
was chosen for the design and development of the user interface. In order to further
simplify the interaction model, the objects were organized into a grid layout that, as
observed during the evaluation, helps reducing the time and mental workload required to
explore the entire screen. Another choice driven by the need of simplifying the interaction
consisted in the definition of two input techniques: a simplified on-screen keyboard to
insert the digits only (e.g., for the addition exercises, see Figure 3.8) and a multiple
choice dialog (e.g., to answer an exercise like the one shown in Figure 3.9).

Finally, it appeared that the interaction with the exercises without any preliminary
explanation is not intuitive for some children. Also, for some exercises, the eyes-free
exploration of the screen can be time consuming. To address these two problems, a
short explanation was added that is automatically read when a new type of exercise is
presented.

The second design challenge is to stimulate children to play the exercises several times
hence taking benefit from reinforcement learning. To address this challenge, the exercises
were designed to have up to 6 difficulty levels. For example, in the “easy” addition exercise
the child is asked to add two single-digit numbers, while at an harder level (designed for
3rd grade students) the aim is to add three numbers, each one with up to three digits
as in Figure 3.8. For the same reason, the exercises are defined in terms of their type
and difficulty level and not according to their actual content that is randomly generated
each time the exercise is presented to the student.

Another important aspect to stimulate children to play the same exercise several times
is to entertain them. This objective was pursued by presenting, in most of the exercises,

1 itunes.apple.com/us/app/math-melodies/id713705958

https://itunes.apple.com/us/app/math-melodies/id713705958

Chapter 3. Learning support tools for visually impaired 19

Figure 3.8: Addition exercise with simplified keyboard

“audio-icons”: amusing drawings, each one associated with an easy-to-recognize and funny
sound. Also, the application gives a reward to the child in the form of a short piece of
music when a correct answer is provided. As a future work a more sophisticated reward
mechanism will be explored, so that also the number of wrong answers the child provided
before giving the right one are taken into account. For example, zero mistakes can be
rewarded with 3 “golden stars”.

Figure 3.9: Counting exercise

The last design challenge is to immerse the educational activities in an accessible en-
tertaining environment that also links the exercises together and motivates children to
keep on playing and practicing. This challenge was addressed through a tale, divided
into 6 chapters, organized in increasing difficulty levels (two chapters for each grade).

Chapter 3. Learning support tools for visually impaired 20

Each chapter is further divided into “pages”, each one comprising a background image,
some text (read by a speech synthesizer) and some “audio-icons” i.e, colorful drawings
associated with a funny sound (see Figure 3.10). Pages are intertwined with the exercises
and there are about 30 exercises in each chapter. Overall, the tale and the audio-icons
have also the objective of triggering children’s interest. This is similar to the approach
adopted in most textbooks that heavily rely on colorful images. The difference is clearly
that in MathMelodies this solution works for visually impaired children too.

(a) A page with a piano audio-icon (b) A page with a frog audio-icon

Figure 3.10: Two pages of MathMelodies story

3.2.2 Proposed solution

The effort to develop MathMelodies can be divided into two main activities: the actual
app implementation (i.e., the code writing) and the creation of the content: the story
text, images (backgrounds and icons), and audio (sounds and music).

The story is composed by six chapters, each one including about 50 pages similar to
the ones depicted in Figure 3.10. Since the app has been localized into two languages
(Italian and English), 600 pages of content in total were produced. For what concerns
the images, there are 25 backgrounds (e.g., the theater curtains in Figure 3.10) and
about 100 audio-icons (like the dog in Figure 3.9 or the piano in Figure 3.10). Also,
each chapter has an associated music that is played at the end of the chapter and that
is also divided into small parts, each one played after each exercise for a total of about
200 (short) pieces of music.

During the app implementation two major technical issues were faced. The first issue
deals with the large amount of app content. Indeed, it is clearly impractical to define
the app by hard-coding the content into the program. Instead a format for the content
package, that describes, for example, the structure of each chapter, each page, etc, was
engineered. A “content engine" in MathMelodies reads this package and presents the
content to the user, in the form of exercises, pages, etc... Thanks to this approach, it
is possible to define the app content independently from the app implementation. Also,

Chapter 3. Learning support tools for visually impaired 21

through a user friendly tool, it is possible to edit the content packages. Thus, it is also
possible for non-technicians to define the app content.

The second issue relates to the implementation of the object based interaction paradigm
built on top of the system accessibility tools. On iOS devices, there are two sets of
system accessibility tools specifically aimed at visually impaired users. One set of tools is
designed for low-visioned users and includes the “zoom” screen magnifier, font adjustment
and color inversion. Ad-hoc gestures are defined to use the zoom functions but the overall
interaction paradigm is analogous to the one for sighted users. The second set of tools is
aimed at blind users and it is globally called “VoiceOver”. VoiceOver proposes a totally
different interaction paradigm, based on screen reader approach. The overall idea is
that, when the user touches a graphical object on the screen (e.g., a button), VoiceOver
gives it the focus and describes it both with a speech synthesizer and an external Braille
display (if connected). To activate a focused object (e.g., to press a button), the user
double taps anywhere on the screen. In addition to this basic behavior, VoiceOver has
several additional gestures to make the interaction more efficient.

In order to enhance the app usability for visually impaired users that rely on residual
sight, large fonts and high contrast between the foreground objects and the background
was used. Although this solution was not evaluated sufficiently, the app is expected to
be accessible to most low-visioned students by using the default accessibility tools.

For what concerns blind users or low-visioned users that cannot totally rely on residual
sight, some issues arose in the implementation of the object-based interaction paradigm.
Indeed, the simplest solution to implement this paradigm would be to fully rely on
VoiceOver (i.e., not implementing any custom behavior for app accessibility). This ap-
proach would make it possible to develop an app that is totally consistent with the
system-wide interaction paradigm. However, this solution suffers from a major draw-
back, as it is not suitable to address all design challenges. For example, without defining
any custom behavior it is not possible to develop the audio icons that, when VoiceOver
is active, play the associated sound upon getting the focus. Other features that call for
a custom behavior are multi-tap exploration and automatic reading when a new page is
shown.

Clearly, to achieve a deeper customization of the interaction paradigm a larger coding
effort is required and it is quite involved to mimic VoiceOver standard behavior as well as
to guarantee the consistency with the system-wide interaction paradigm. For example,
current version of MathMelodies (1.0) uses some custom objects in the story view: to
enable the automatic reading of a page, story text is “hidden” to VoiceOver and “played”
automatically with iOS 7’s integrated text-to-speech synthesizer. This approach was
chosen for the app to be of immediate use also to users that are still not acquainted to
standard VoiceOver gestures. Preliminary tests, presented in Section 3.2.3, validated this
approach. However, feedback from users highlighted two problems: first, the text is not

Chapter 3. Learning support tools for visually impaired 22

shown on external assistive devices such as Braille displays. Second, the text-to-speech
synthesizer does not use VoiceOver settings, hence the talking speed is not the one chosen
by the user through VoiceOver preferences. To address these issues, as a future work, a
new version of the software will minimize the use of objects with custom behavior.

3.2.3 Evaluation

The whole design and development process benefited from the feedback obtained from
one of the designers who is blind and experienced in education for blind persons. In
addition to this constant feedback, three main evaluation sessions were organized.

The first session was organized with four teachers expert in education for blind students2.
The evaluation was divided in two steps. The former consisted in a list of the exercises
derived from Italian educational directives and integrated with workbooks and online
resources. For each exercise the experts were asked to evaluate the importance of the
exercise in the education of a blind person and to rate how difficult it is to practice it
with existing solutions. In the second step of the evaluation the preliminary prototype of
MathMelodies, implementing sonification-based and object-based interaction paradigms,
was presented. All four experts independently agreed on the fact that the object-based
paradigm would be quicker to learn and also more adaptable to a larger variety of exer-
cises.

The second session was conducted as a test with three blind users. Table 3.1 lists the
information about the test subjects of this test. After a short training with the prototype,
each user was asked to solve three exercises with object-based interaction and one exercise
with sonification-based interaction.

User Age Sex Type of vision loss
1 7 female Total blindness (right), color and light perception (left)
2 8 male Total blindness
3 10 male Color perception, visual residue 1/100

Table 3.1: Information about the users of the second evaluation session

All students have been able to complete and correctly answer exercise 1 (counting) and
2 (position in a table). Vice versa, one student has not been able to complete (and
hence to provide an answer to) exercise 3, a spelling exercise, and exercise 4 consisting in
recognizing a triangle by a sonification-based interaction. Overall, all students reported
that the object-based interaction is easier to understand and two of them also highlighted
that it is funnier.

The third evaluation session was conducted with three primary school blind children and
with two primary school sighted children. The information about the testers is shown

2From the center for the blind people in Brescia, Italy.

Chapter 3. Learning support tools for visually impaired 23

in Table 3.2. All children were required to complete all the exercises in the first chapter
consisting in counting exercises, sums, etc.

User Age Sex Type of vision loss
1 6 female visual residue 1/100
2 8 male Total blindness
3 9 male Total blindness
4 9 female
5 8 male

Table 3.2: Information about the users of the third evaluation session

All blind children were enthusiast while using the application. Two out of three reported
that they were entertained and engaged especially by the sounds used (e.g. the call of
animals and the rewarding melodies). All of them experienced some difficulties in the
early exploration of the tables, and needed some help by a sighted supervisor. However,
after at most 2 minutes of supervised training, all children got familiar with the applica-
tion and were able to solve the exercises autonomously and, most of the times, providing
a correct answer at the first attempt. The two sighted children enjoyed the application
as well. One of the two children experienced some difficulties, at the beginning, in un-
derstanding how to answer. This was partially due to the fact that the child didn’t pay
much attention to the exercise explanation. After explaining how to answer, no more
help was needed. To solve this problem, a future work will be to create introductory
exercises in which the focus is not on the exercise itself rather to explain how to use the
application.

As a future work, MathMelodies will also be evaluated against other didactic solutions
for children such as Tactison [59] and Touch tiles [17] (See Section 2.1).

3.3 Analysis of functions through sonification

Differently from the didactic tools for children, proposed in Chapter 3.2, the issue of
function analysis requires an interaction method that allows fine resolution exploration
with a faster responsiveness than the object-based interface. The object-based interaction
is suitable for the purpose of conveying information related to a small number of objects
described by complex sounds or speech cues. For example, if an object represents a car,
it is possible to use the sound of a car for notifying the user when the object is touched
on the touch screen. However, for describing the shape of a function in an efficient
manner, during the exploration, every point of the function has to immediately yield
an output while no output has to be given as soon as the user stops exploring within
the boundaries of the function. While the responsiveness of the interaction method is a
priority, in this case, given the lower amount of information to be conveyed at a time, the
expressiveness of the interaction technique is not required to be high. Indeed, for each

Chapter 3. Learning support tools for visually impaired 24

point, it is sufficient to communicate the presence of the function and, in some cases, as
seen in the following, the value of the function. The sonification interaction, described
in Section 3.1, is suitable for this type of exploration.

Section 3.3.1 describes the three sonification based interaction paradigms designed for the
study of function graphs while Section 3.3.2 details the functionalities of the developed
prototype software. Section 3.3.3 discusses the experimental evaluation of the solution.

3.3.1 Function graph exploration techniques

Three interaction techniques were designed and developed for the purpose of spatially
describing function graphs. The first interaction technique, called “Non-interactive soni-
fication” is similar to techniques existing in literature [12, 50]. Purely sonification based,
this approach does not offer proprioceptive interaction. Instead, it describes the function
graph by dividing the function domain in a sequence of intuitively small intervals (e.g.
the rectangle r in Figure 3.11) which are then converted to sounds and played as follows.
For each interval, the app computes the value of y = f(x) where x is the minimum value
of the interval. The software then assigns to each interval the “value-sonification” for y,
i.e., a sound whose pitch is proportional to the value of y with respect to the range of y
values. The computed sounds are finally played in sequence, starting from the interval
having the lowest x coordinate and up to the highest x coordinate.

f(x)

x

r

Figure 3.11: Non interactive sonification

The second technique, which is called “mono-dimensional interactive sonification” (See
Figure 3.12), adopts a proprioceptive approach. The proposed interaction paradigm is
the following: the user explores an area of the touch screen with a finger and only the
horizontal movement is considered. While sliding the finger, the current value of the
function y = f(x) is computed, where x corresponds to the current finger position. The
computed value is then transformed to sound in a similar fashion as in the previous

Chapter 3. Learning support tools for visually impaired 25

technique. That is, lower values yield lower pitched sounds while to higher values cor-
responds a higher pitched sound. The clear advantage of this exploration mode is that,
thanks to proprioception, the user can perceive the current x position and thus grasp
the shape of the function graph. Also, the user can move forward and backward along
the x axis, at the desired speed, hence, for example, focusing more on some parts of the
functions that are more relevant for the user (e.g., a minimum point).

f(x)

x

Figure 3.12: Mono-dimensional sonification

The third exploration mode, shown in Figure 3.13, is called “bi-dimensional interactive
sonification”. The overall idea is to make it possible for the user to follow the shape of
the function graph with one finger on the touch screen. The proprioceptive approach
facilitates the user’s cognitive mapping of the graph’s form. This mode adopts a different
sonification, called “position-sonification”, for signaling the presence of the curve in the
investigated area, since the aim is not to encode the y value, but rather to guide the user
while following the plotted line. Conceptually, this approach is similar to the sonification
technique explored in Section 3.2. When the user touches the graph line, the position-
sonification plays a sound with the highest pitch. Instead, touching outside the line, the
pitch diminishes as the distance between the touched position and the line increases.

In an early stage a simpler technique, in which a sound was played only when the user
was on the line of the function, was adopted. This approach had two significant issues
for which the development of the “position-sonification” was needed. First, if the line
was too thin, it was very difficult for the user to find the line during the exploration,
and if the line was too thick, it was hard to understand the shape of the curve. Second,
without a way to understand when the user was about to exit the area of the line of
the graph, the exploration consisted in constant exiting and reentering the curve, which
penalized the user’s understanding of the function graph.

Chapter 3. Learning support tools for visually impaired 26

3.3.2 AudioFunctions prototype

AudioFunctions is an iPad prototype that helps people with visual impairments in study
and comprehension of the functions graphs by implementing the three navigation meth-
ods proposed in the previous section. It benefits from the non-mediated interaction,
typical of touchscreen devices, to implement the three techniques for the exploration
of function graphs described in the previous section. Differently from existing software
solutions, two of the interaction techniques proposed by AudioFunctions highly rely on
proprioception.

The use of AudioFunctions can be divided in two main activities: the specification of the
function expression as well as of its drawing properties (Section 3.3.2.1) and the function
graph exploration (Section 3.3.2.2).

3.3.2.1 Specification of function expression and drawing properties

The dialog for the specification of function expressions uses the VoiceOver screen reader
(Section 3.1) for interaction, thus allowing visually impaired users to access this inter-
face. However, given the complexity of the function formulas, an initial training by an
instructor is useful for introducing the function expression syntax to a student learning
about functions. As a future work, a tutorial module will be designed for this goal.

To specify a function expression, a user can choose a template and then edit it (see
Figure 3.14). The template can be chosen from the list of “default” expressions (i.e., a
pre-defined set of common functions, like y = x, y = x2 or y = sin(x)) or from the list
of recently used expressions, as they were edited by the user (in Figure 3.14 the list of
recently used expressions is hidden by the keyboard). To edit the function expression,
AudioFunctions presents an ad-hoc keyboard, that is similar to a calculator keyboard and

B

A

Figure 3.13: Bi-dimensional sonification

Chapter 3. Learning support tools for visually impaired 27

that contains keys for the digits and for the most common arithmetic and trigonometric
operators.

Figure 3.14: Specification of function expression

The function drawing properties (see Figure 3.15) include options to define the domain
and the scale on the two axes. With the first option, the user can set the function
domain in terms of the minimum and maximum values of x to be represented. The
second property is a boolean value indicating if the y axis should have the same scale as
the x axis. If this property is set to “true” (the default value) then the next two options
are disabled. In case this property is set to “false”, with the third option the user can
choose to automatically scale the y axis, which means that AudioFunctions chooses the
largest scale for the y axis such that the function graph fits in the screen. If “automatic
scale” is disabled, then the user can manually choose the scale for the y axis, by indicating
the minimum and maximum values to represent on the y axis.

Figure 3.15: Specification of drawing properties

Chapter 3. Learning support tools for visually impaired 28

3.3.2.2 Function graph exploration techniques

The exploration of the function graph supports the three “exploration modes” described
in Section 3.3.1. The three interaction techniques complement each other and all of them
can be accessed directly from the main exploration interface.

The implementation of the “non interactive sonification” is analogous to the solution
proposed in Audio Graph Calculator software3, discussed in Section 2.1: the software
accepts as input the equation of a function, shows its graphical representation and also
outputs the function as a sequence of pure sounds representing the curve shape. The
y axis scale chosen during the function input (See Section 3.3.2.1) defines the value-
sonification. That is, the minimum and maximum pitch are assigned respectfully to the
lowest and highest y coordinates represented. For example, as shown in Figure 3.11,
with the function y = sin(x), for x ∈ [−10, 10], when x = π/2 then y = 1 which is
also the maximum value for y and hence the value-sonification for x = π/2 has the
highest pitch. Vice versa, if y = x, for x ∈ [1, 10], the sonification for x = 1 has the
lowest pitch, because 1 is the smallest value represented for y. A “double two finger tap”
gesture4 anywhere on the exploration interface causes AudioFunctions to start playing
the function sonification.

The second exploration mode, “mono-dimensional interactive sonification” (Figure 3.12),
is accessed from the white bar at the bottom of the interface. The position of the bar
helps the user in finding the area swiftly. Afterwards, as explained in Section 3.3.1,
the user can investigate the function by sliding the finger laterally along the white bar
which represents the x axis of the function graph. The corresponding y = f(x) value is
computed given the current position of the user’s finger on the bar as the x coordinate
and it is interpreted as sound in the same manner as in the “non-interactive” technique.

The “bi-dimensional interactive sonification” is accessed from the main area of the touch-
screen interface which contains the visual representation of the function graph. This
area covers all the interface minus the white bar at the bottom of the screen used for
the “mono-dimensional interactive sonification”. The user can explore the whole area
while a sound notifies when the function graph figure is in proximity. As explained in
Section 3.3.1, the sound will have a low pitch at higher distances from the graph while
the highest pitched sound will be played when the user explores exactly on the function
graph. For example, in Figure 3.13, point A is more distant from f(x) than point B.
Therefore, when the user touches A a low pitch sound will be played while touching B
will yield a high pitch sound.

The two interactive modes have some additional features. First, while exploring, Au-
dioFunctions plays some additional sounds in case the function intersects some “points

3www.viewplus.eu/products/software/math
4This is the gesture that on iOS devices is associated, for example, to start and pause the music.

http://www.viewplus.eu/products/software/math

Chapter 3. Learning support tools for visually impaired 29

of interest”, like intersections with axes, local minima and maxima and changes in the
concavity. Second, interaction with two fingers is supported. This is very useful, for ex-
ample, when it is necessary to maintain a reference point in the exploration. To achieve
this, when a second finger touches the screen, AudioFunctions starts playing the sound
associated to that finger, ignoring the first one. Third, by double tapping, AudioFunc-
tions reads details on the current position, including: the values of x and f(x) and
the function concavity in that point. This is useful because function concavity is easily
understandable by sight, but hard to figure out with these sonification techniques.

Through extensive experimental evaluation, presented in Section 3.3.3, it is shown that
AudioFunctions is more effective and expressive with respect to existing paper-based and
software solutions.

3.3.3 Evaluation

AudioFunctions tremendously improves, with respect to the other software solutions, the
effectiveness of the application in terms of how clearly the user understands a function
graph. Actually, AudioFunctions is so accurate that the testing users better recognized
the function’s properties with it (after five minutes of training only) rather than with
tactile drawings (that every tester was well trained to use). Clearly AudioFunctions also
has the great advantage, with respect to tactile drawings, to allow the user to study
function graphs in total autonomy.

The main objective of AudioFunctions is to let the user perceive the shape of a function
graph. Therefore the focus of the experiments was to determine how precisely a user can
recognize the function properties from the exploration. The experiment was conduced
with 7 blind users, all with some education in Mathematics (at least high school) and
acquainted with tactile drawings. Table 3.3 lists the information about the test subjects
of this test.

User Age Sex knowledge of functions Type of vision loss
1 28 male high color and light perception
2 27 male low color and light perception
3 43 male medium total blindness
4 29 female high total blindness
5 35 female medium total blindness
6 18 female low color and light perception
7 33 female low light perception

Table 3.3: Information about the users of the second evaluation session

During each test session AudioFunctions was first described in about 2 minutes and then
the test subjects were left 3 minutes to get familiar with the app. To measure the level
of understanding of a function, each user was asked to explore (without time limitations)
three different graphs with the three tools: AudioFunctions (See Section 3.3), tactile

Chapter 3. Learning support tools for visually impaired 30

drawing on embossed paper (see Figure 3.16) and AGC software (Both described in
details in Section 2.1). The order of the three steps was random.

Figure 3.16: Example of tactile drawings used for the evaluation

During the usage of AudioFunctions, the user could freely access all three exploration
modes described in Section 3.3.1. The embossed paper drawings were etched on a Sewell
kit rubber clipboard and some supporting elements such as axes and numbered ticks on
the axes were drawn for enabling the user to answer to the questions about the function’s
properties. In case of AGC, the user could tweak the sonification speed and loudness
and access the value table that associates to different x values the corresponding y value
of the function. During each step a random function expression was chosen from a set
of pre-defined functions (See Table 3.4) presenting the corresponding graphs to the user.

N Function Domain
1 5 sin(x) 6.28
2 5 sin(x)− 1 6.28
3 5 sin(x) + 1.5 6.28
4 −4 sin(x) 6.28
5 −4 sin(x) + 2 6.28
6 −x2 + 3 6
7 −x2 + 5 6
8 −0.5x2 + 4 8
9

∣∣x2 − 3
∣∣ 6

10 |12 sin(x)| 6.28
11 |12 sin(x)|+ 2 6.28
12 |14 sin(x)| − 3 6.28
13 4 sin(x) + 4 cos(x) 7
14 4 sin(x) + 4 cos(x) + 1 7
15 −4 sin(x)− 2 cos(x) 7

Table 3.4: List of functions used for the test

The user was then asked to answer 8 questions about the explored functions. While
answering each question the user was free to interact with the exploration tool. The
questions asked were the following:

Chapter 3. Learning support tools for visually impaired 31

• What’s the value of the function in x = a, where a is a random integer value within
the function domain?

• What are the domain intervals in which the function is increasing/decreasing?

• In which points does the function intersect the x axis?

• Does the point p = (x, y) belong to the function, where x and y are random integer
values within the function domain/codomain respectively?

• What are the domain intervals in which the function is positive/negative?

• What are the coordinates of the minimum and maximum points?

• Is the function convex or concave in x = a, where a is a random integer value
within the function domain?

• Is the function a line, a parabola or a sinusoid function?

The answers and the time needed to provide them was recorded. Each answer was scored
with a mark of 0 (totally wrong answer), 1 (no answer), 2 (partially correct answer) or
3 (correct answer). For questions requiring a numerical value as answer, the correct
answer was considered rounded up to the closest integer. Figure 3.17a shows, for each
user and technique, the sum of the scores obtained in all the questions (maximum is 24).
Intuitively this metric represents the overall understanding of the function obtained by
each user with each technique. Note that every user obtained much better results by
using AudioFunctions (AV G = 22.00, SD = 2.58) with respect to AGC (AV G = 8.29,
SD = 2.98). AudioFunctions also proved to be more effective also compared with the
tactile drawings (AV G = 17.14, SD = 4.63) that all the users were acquainted with.
Indeed, every user, except user 7, obtained better results with AudioFunctions than
with tactile drawing and for most of the users the results with AudioFunctions are
much better than with tactile drawings. This result can be explained by the fact that
AudioFunctions not only offers a proprioceptive interaction mode that is very similar to
the tactile drawings (i.e., the Two-dimensional sonification) and therefore easily accessed
by users acquainted with the tactile paper, but it enhances the interaction with audio
and vocal cues about interesting attributes of the function such as maxima/minima and
intersections with axes. Additionally, the other interaction modes allow the user to grasp
the general shape of the function and its global properties (e.g., convexity, type). The
thorough exploration of the three different interaction modes is also the reason why
AudioFunctions was consistently explored more than the other two tools.

Figure 3.17b compares the total time required by each user to answer the 8 questions by
using each technique. Results show that, by using AGC, users provided answers more
quickly (about 2 minutes on average) than with tactile drawings (about 5 minutes on
average) and AudioFunctions (about 9 minutes on average).

Chapter 3. Learning support tools for visually impaired 32

0
2
4
6
8

10
12
14
16
18
20
22
24

1 2 3 4 5 6 7

To
ta

l
sc

o
re

Users

AudioFunctions
Tactile Paper

AGC

(a) Function comprehension

00

02

04

06

08

10

12

14

16

18

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

Users

AudioFunctions
Tactile Paper

AGC

(b) Total time to answer

Figure 3.17: Results of the experimental testing

Statistical significance of the obtained results was computed with one-way analysis of
variance (ANOVA). Based on the result of the test (F (2, 18) = 27.443, p < 0.001), we
conclude that the difference in score between the three considered tools that was detected
during the tests is statistically significant. The one-way ANOVA [88] results are shown
in Table 3.5.

Source SS df MS F p
Between: 676.448 2 338.224 27.443 < 0.001
Within: 221.842 18 12.325
Total: 898.290 20

Table 3.5: ANOVA results table

A follow up Tukey’s HSD test [89] (See Table 3.6) confirms the significance in case of all
pairs of considered tools.

Tactile Drawings AGC
AudioFunctions p < 0.05 p < 0.01
Tactile Drawings p < 0.01

Table 3.6: Tukey’s HSD post-hoc test results

Chapter 4

Urban navigation for visually
impaired users

The cognitive mapping of abstract spaces considered in the previous chapter revolves
around the accessibility issues that arise in exploring an already mapped multidimen-
tional space without a visual representation. In this aspect, the previously discussed
issues present similarities to the macronavigation [63] spatial exploration (See Section 2).

Instead, the zebra crossing detection solution presented in the following, involves both Mi-
cronavigation and Macronavigation aspects. It assists a person with visual impairments
in autonomous exploration and short range navigating of an unknown three dimensional
space in absence of a precise localization through micronavigation techniques. At the
same time the coarser satellite detection and gps-based macronavigation is used for long
distance routing.

As a future work, the interaction techniques presented in the previous chapter will be
integrated to the proposed solution to be used for the presentation of the spatial infor-
mation during the macronavigation aspects of the navigation.

Section 4.1 defines the zebra crossing recognition problem, while Section 4.2 outlines
the architecture of the proposed solution, called ZebraCrossing . Section 4.3 describes
the computer vision based zebra crossing detection algorithm. Section 4.4 focuses on
the sensor fusion approach to the zebra crossing detection problem. The interaction
paradigm is described in Section 4.5 and satellite imagery based zebra crossing detection
is explored in Section 4.6.

33

Chapter 4. Urban navigation for visually impaired users 34

4.1 Problem definition

Section 4.1.1 defines in detail the zebra crossing pattern that the solution will detect.
Section 4.1.2 deals with the issue of the safety for people with visual impairments in urban
environment and Section 4.1.3 defines the problem of the hardware platform choice for
the detection.

4.1.1 The zebra crossing pattern

Different horizontal traffic signs are used across the world to define pedestrian crossings.
One of the most widely adopted pedestrian crossing patterns is the “zebra crossing” pat-
tern. The definition of zebra crossings adopted in this work is extracted from the Italian
traffic regulations [90], however the solution can be easily adapted to most definitions
used worldwide.

According to Italian traffic laws, the zebra crossing is a horizontal traffic sign, positioned
on the ground plane, consisting in a set of white stripes painted on a darker background
(see Figure 4.1a). In the following, it is convenient to define as “stripes” also the dark
gaps between two consecutive white stripes. The dark stripes are therefore of the same
color of the underlying road while the light stripes may be white or, in case of road
works, yellow. Each stripe is a uniformly colored rectangle or less frequently, in case
of diagonal crossings, parallelogram, having a width of at least 250cm and a height of
exactly 50cm. Each crosswalk is itself a rectangle or a parallelogram composed by at
least four consecutive stripes with alternating color.

In United States1, different pedestrian crossing markings are available. The transverse
marking, also frequent in the United Kingdom (see Figure 4.1d), is commonly used to
mark the pedestrian crossings. It consists in two white lines, perpendicular to the road
direction and thick between 6in (15cm) and 24in (60cm). The distance between the
two lines is at least 6ft (180cm). The zebra crossing pattern (officially designated as
“continental crossing”) is used frequently when the visibility of the crossing is paramount
for the pedestrians’ safety, for example near schools and hospitals. Indeed, the distance at
which this type of marking is detected in different illumination conditions is consistently
higher than for the other types of markings common in the US [91]. Differently from the
Italian definition, the crossing has to be at least 6ft (180cm) wide and stripes’ thickness
can range from 15cm to 60cm. There is no enforcement on the thickness of the gaps
between the stripes and the lines can be either longitudinal (parallel to the road) or
diagonal.

Given the similarity between Italian zebra crossings (Figure 4.1b) and the US version (see
Figure 4.1c), it is possible to reconfigure the proposed solution to recognize the US zebra

1See the Manual on Uniform Traffic Control Devices mutcd.fhwa.dot.gov

http://mutcd.fhwa.dot.gov/

Chapter 4. Urban navigation for visually impaired users 35

crossings with very limited effort, by setting and re-tuning the detection parameters.
Clearly, while the solution proposed in this chapter does not directly apply to other
types of pedestrian crossings, like the transverse crossings (see Figure 4.1d). However,
the adopted methodology and the proposed technique can indeed be used to design
similar solutions for other pedestrian crossings or other kinds of geometrically well known
horizontal traffic signs.

White stripe

White stripe

Dark stripe

White stripe

Dark stripe

Long edge (>250cm)

Short edges (50cm
 each)

(a) Zebra crossing pattern specifications (b) Pedestrian crossing in Italy

(c) Pedestrian crossing in USA (d) Transverse crossing in UK

Figure 4.1: Zebra crossing definition and examples

4.1.2 Safe navigation in urban environments

Experimental evaluations show that some blind people do not even try to find a zebra
crossing, while, for those who try, 6% of attempts to cross are judged dangerous (in
contrast, no attempt by sighted person is dangerous). Indeed orientation in unfamiliar
environment is a dangerous task for an unassisted blind user [24, 25].

For designing efficient and safe assistive mobility tools for people with visual impairments
we consider the following:

• During mobility, a blind user often relies on auditive stimuli in order to avoid perils.

Chapter 4. Urban navigation for visually impaired users 36

• Often a visually impaired person uses a white cane or has a guide dog.

• The assistive tool must not endanger the user.

Five observations stem from the previous notions:

First, the effectiveness of audio-based interaction is limited in noisy environments, and
even more so since the visually impaired user’s hearing sense is crucial for danger avoid-
ance, obstacles detection and for understanding the surroundings during movement. Di-
verting the user’s attention from this task is potentially hazardous and in particular
overwhelming the user by too much information should be avoided. On the other hand,
purely haptic interaction techniques, such as touch input coupled with vibration output
have a limited output bandwidth. Thus, the amount of data that needs to be conveyed
to the user has to be kept low and the output should use available senses but be such to
avoid distracting the user from surroundings.

Second, two-handed interaction methods have to be avoided since, most likely, one of
the user’s hand is likely occupied either by holding the leash of a guide dog or by ma-
neuvering the white cane, thus only one hand of the user is available for interacting.
This consideration involves carefully planning the interaction technique used for input.
Specifically no complex hand gestures can be used and, most probably, the thumb is the
only finger that can be used for the input.

Third, no erroneous information can be given to the user. Particular attention is required
with the kind of information that can expose the user to hazards. For example, telling the
user to cross the street in a dangerous position can lead the user to perilous situations.
Therefore it is fundamental to be sure of what needs to be communicated to the user
and to be able to relay that information effectively

And fourth, at the same time the information about the surroundings must be delivered
to the user in a timely manner. That is, the assistive solution has to be able to notify
the user immediately of variations in the surroundings. For example, the fact that a
pedestrian traffic light is informing the user to stop has to be detected and conveyed
immediately. A difference of just a few second can prove to be hazardous.

4.1.3 Smartphone driven computer vision

It’s worth noting that, given that the considered issue is encountered on the move, the
target platforms for tackling them have to be mobile devices. More specifically, off-the-
shelf smartphones have been selected as the hardware of choice for the development of
ZebraCrossing . There are several advantages with this approach. First, the user can have
a single device running both mass market applications and assistive software. This is
clearly cheaper than having several hardware devices, it is more convenient while on the

Chapter 4. Urban navigation for visually impaired users 37

move, it simplifies software acquisition through online stores and reduces the user’s effort
required to get acquainted with each application, as all applications adopt the standard
system-wide interaction paradigm. The second advantage is that mass market devices
have powerful hardware including multicore CPUs and GPUs, large main memory and
several sensors, like accelerometer, gyroscope, camera, etc. Operating systems are re-
liable, highly optimized and regularly maintained. Also, developers can benefit from a
number of available libraries (either within the OS or from third parties). Finally, from
the business development point of view, it is much cheaper and less risky to develop and
distribute software for mobile devices rather than produce ad-hoc hardware, also consid-
ering that the relative small number of potential users does not activate the economies
of scales that drastically reduce production costs.

For the detection of zebra crossings, data sources available on off-the-shelf smartphones
are leveraged. Specifically, the considered sources are video camera, accelerometer and
gyroscope. The former captures image frames that can then be analyzed with computer
vision techniques in order to detect zebra crossings, if present. Accelerometer and gyro-
scope, instead, can be used to extract the orientation of the device with respect to the
ground plane and the detected crossings.

It is worth noting that, since it’s difficult for a person with visual impairments to focus
the video camera of the device and take a picture, it’s preferrable to capture the images
through camera’s video stream. This approach will be used in the following.

4.2 System architecture

ZebraCrossing navigation system deals with the issue of crossing a pedestrian crossing in
a safe and efficient way. It contains both Macronavigation and Micronavigation aspects
and it is divided into three main modules, as depicted in Figure 4.2.

The Recognizer module, deals with the computer vision-based detection of the zebra
crossing on the mobile device. This Micronavigation solution has been tackled with
two different approaches. Section 4.3 shows the VideoRecognizer version that relies on
computer vision based detection on images captured by the camera of the mobile device.
Instead, Section 4.4 explores the FusionRecognizer version of the module that bases the
detection on sensor fusion-based approach that results in ground plane reconstruction
through the usage of accelerometer and gyroscope of the device.

The Navigator module, described in Section 4.5 is in charge of interacting with the user
by acquiring inputs through the touchscreen and giving audio feedback.

The Satellite module considers an orthogonal Macronavigation issue. That is capability
to guide a user towards a crossing that is too distant to be detected with the proposed
Micronavigation techniques. This module is defined in Section 4.6.

Chapter 4. Urban navigation for visually impaired users 38

Recognizer

Satellite

Navigator

ZebraCrossing

Figure 4.2: System architecture

4.3 Computer vision based zebra crossing detection

VideoRecognizer module leverages computer vision techniques to detect zebra pedestrian
crossings from video camera input. The detection algorithm takes in input a gray-scale
image from the video camera stream and the values of the 3D accelerometers.

The output contains a boolean value, indicating whether a crosswalk is recognized in
the picture. If this is the case, the output also contains the information regarding the
alignment of the observer with respect to the zebra crossing.

The first step of the VideoRecognizer detection is the horizon computation, common to
the FusionRecognizer technique presented in Section 4.4. It will be presented in Ap-
pendix A. The algorithm can also be executed without this step. In this case, however,
the quality of the detection degrades with the camera rotation and execution time opti-
mizations that leverage the knowledge of the horizon cannot be applied. The next step is
the feature extraction (Section 4.3.1) using the LSD algorithm detailed in Appendix B.2.
Section 4.3.2 deals with the line segment analysis while the stripe analysis is discussed
in Section 4.3.3. Finally, the relative position is computed in Section 4.3.4. Section 4.3.5
shows the evaluation of the VideoRecognizer module.

4.3.1 Feature extraction

In the considered object recognition problem, the features used for the detection are
the straight lines representing the long edges of each stripe. For this reason, in the
second step, the image is processed to detect and isolate straight line segments. This is
performed in three sub-steps.

Chapter 4. Urban navigation for visually impaired users 39

2.a) The first sub-step is the line segment detection. For this purpose a modified version
of the Line Segment Detector (LSD) algorithm [92] is used. The implemented algorithm,
described in details and evaluated in Appendix B, differs with respect to the one proposed
in [92]: it ignores the points above the horizon and the line segments whose angle with
respect to the horizon is bigger than π/6 (only the stripes that are roughly perpendicular
to the observer are considered). Figure 4.3 shows the result of the original LSD algorithm
compared with the result of the modified version.

(a) Original LSD (b) Modified LSD (the dotted
line is the horizon)

Figure 4.3: Extraction of line segments (in white or black)

2.b) The second sub-step consists in merging segments that approximately lie on the same
line and whose distance is below a given threshold value. This is useful because the LSD
procedure may recognize parts of the same line segment as individual line segments due to
noise in the image, imprecise coloration of the stripes or objects between the stripes and
the observer (e.g.: a pole positioned between the user and the stripe). Similarly, in this
sub-step the line segments that are approximately parallel and very close to each other
are merged into a single segment if they have the same gradient orientation. Otherwise
both line segments are discarded. Figure 4.4 shows the result of the application of this
sub-step.

2.c) In the last sub-step the line-segments whose length is below a threshold value are
pruned. Indeed, since the stripes are formed by long line segments, dropping short
segments does not discard any useful feature.

4.3.2 Line segment analysis

In the third step of the algorithm, the line segments are analyzed in order to group
them into sets, each one representing a potential crosswalk. Since each zebra crossing is
composed by at least two white stripes, a set of line segments that contains less than four

Chapter 4. Urban navigation for visually impaired users 40

(a) Result after step 2.a (b) Result after step 2.b

Figure 4.4: Line segments merging

elements cannot correspond to a crosswalk. For this reason, after each of the following
sub-steps, the groups containing less than four elements are pruned.

3.a) As observed above, the long edges of the stripes are parallel. For this reason, the
line segments are grouped according to their slope. The computation is based on the
observation that, in projective geometry, two parallel lines laying on the ground plane
are either parallel to the horizon or they meet on the horizon. Exploiting this property,
the identification of the parallelism among line segments is conceptually straightforward.
Figure 4.5a shows two groups of line segments, the line segments belonging to one group
are colored in white the others in black.

3.b) In the second sub-step, each group is partitioned into blocks according to the dis-
tances among the line segments. The idea is to exploit two geometrical properties of
crosswalks: the height of the stripes is constant and the centers of the stripes lie on the
same line. The former property can be checked by ordering the line segments according
to their distance from the observer and then iteratively computing the distances be-
tween pairs of consecutive line segments. Since the crosswalk is observed in perspective
geometry, the height of stripes must decrease as the considered pairs are farther from
the observer. The latter property is more involved during the detection. Indeed, the
fact that stripes can be partially covered by obstructions (e.g. a car passing by) or not
totally included in the picture prevents the LSD algorithm from recognizing the entire
line segment. For this reason, the algorithm has been designed to tolerate the case in
which the line segments are not perfectly aligned and to only exclude from the group the
line segments whose horizontal distance from the group barycenter is significant. Fig-
ure 4.5b shows two groups of line segments grouped according to their distances. The
group represented in black will be pruned as it contains two line segments only.

3.c) One obvious property of the line segments corresponding to a crosswalk is that, con-
sidering them in their order from the observer, the gradient of two consecutive elements

Chapter 4. Urban navigation for visually impaired users 41

(a) Parallelism grouping (b) Distance grouping

Figure 4.5: Grouping of line segments

must have an opposite sign. The last sub-step checks if this property holds and, if this
is not the case, partitions the group accordingly.

4.3.3 Stripes analysis

During the stripe analysis step, each set of line segments is processed in order to prune
from the set the elements that are recognized as not representing a crosswalk. This
step is conceptually different from the previous one as line segments are not considered
in pairs, but in groups of 3 (or 4) elements, representing 2 consecutive stripes (or 3
consecutive stripes, respectively). If, at the end of this step, a set still contains at least
four elements, then it can be safely regarded as a crosswalk. For the validation to be
positive, the following two criteria must be simultaneously satisfied: color consistency
and cross ratio.

Color consistency aims to capture the difference in the color between a stripe and the
background. Intuitively the dark (light) stripes should be darker (lighter, respectively)
than the average color of the background. The validation proceeds as follows. First,
considering some sample points, the average (avg), minimum (min) and maximum (max)
color intensity of the half-plane below the horizon (i.e., the background) is computed.
Then, again considering some sample points, the average color intensity inside a stripe
is determined. If the color intensity of a stripe is within a threshold range from the
min in case of light stripes or max in case of dark stripes the stripe is considered valid.
Note that this approach to color consistency is preferable with respect to the absolute
color computation because it is independent of the actual color of stripes which may be
affected by lighting conditions.

Chapter 4. Urban navigation for visually impaired users 42

The cross ratio is a projective invariant (a ratio preserved by the projective transforma-
tions) of an ordered quadruple of distinct points which lie on a straight line L. This
approach has been previously proposed for the zebra crossing validation by Uddin and
Shioyama [79]. Considering the points A,B,C,D depicted in Figure 4.6, it holds that
any choice of origin or scale does not influence the value of

AC ·BD
BC ·AD

Since the stripes of a crosswalk have all the same width, it holds that

AC ·BD
BC ·AD

=
4

3

The solution checks, for any set of three consecutive stripes, if the cross ratio holds, also
taking into account that some approximation, expressed in terms of a threshold value,
should be tolerated.

A
B
C

D

L

Figure 4.6: Cross ratio

4.3.4 Relative position computation

If a crosswalk is identified, the last step of algorithm computes its relative position of the
detected crossing with respect to the observer. In absence of ground plane rectification
it is unfeasible to compute the precise position. However, if the user is instructed to
keep the device always roughly in the same position, it is possible to estimate whether to
adjust the user’s position or not based on where the crossing is found inside the captured
image.

The position is computed as a set of three values: the rotation, the lateral shift, and the
distance.

The rotation is derived from the slope of the stripe closest to the observer. A threshold
is computed in such a way that, if the stripes have an inclination with respect to the user
of 30 deg or more, the absolute value of the slope is greater than the threshold. In that
case, the rotation is set to “left” or “right” if the slope is positive or negative respectively,

Chapter 4. Urban navigation for visually impaired users 43

and the user is instructed to rotate accordingly. In other cases the rotation is set to
“aligned”

The lateral shift signals if a movement is required from the user to cover the lateral
distance from the center of the visible part of the crosswalk. A value is computed as the
distance, in pixels and along the x-axis (or the horizon, when available), between the
center of the line segments closest to the observer and the center of the picture. As in
the previous case, a threshold is set such that lateral distances greater than 1m result in
lateral shift being set to “left” or “right” as needed. In other cases lateral shift is set to
“centered”

Finally, the distance between the user and the crosswalk is computed. First, the distance,
in pixel, between the horizon and the line segment closest to the user is found. A threshold
is set such that frontal distances above 1m result in distance being set to “far”, otherwise
it is set to “near”

4.3.5 Evaluation

The computer-driven evaluation was performed by repeatedly running the VideoRecog-
nizer library on two sample sets of images, each one containing 200 items. One set
contains pictures of crosswalks, while the other contains pictures of common urban envi-
ronments (e.g. tramlines, shadows of trees and buildings, etc.) without zebra crossings.
It should be observed that the latter set of picture was specifically designed in order to
contain pictures of items that could be erroneously recognized as zebra crossings, like
tramlines, stairs. etc. Also, both set of images were taken in different light and weather
conditions, including the natural light of a bright sunny day, a cloudy day and the arti-
ficial light in the night. All the images in the test sets were captured by the iPhone 4
camera with the low quality streaming video presets corresponding to a 192x144 resolu-
tion. These pictures were taken with an application specifically developed that inserts
the values of the accelerometers within the picture file as EXIF data. This makes it pos-
sible to use the accelerometer data during the recognition phase of the tests conducted
on a PC platform.

The quantitative experiments highlighted three aspects of the developed algorithm:

1. The recognition is accurate, in the sense that if there are crosswalks in the picture,
they are properly recognized, otherwise no crosswalk is detected. Note that, for
the algorithm to guarantee safe road crossing, the number of false positives must
be equal to zero, namely areas on the road background which are not crosswalks
must not be erroneously recognized as crosswalks.

2. Given the time efficiency of the algorithm, it can be embedded in applications
running on off-the-shelf smartphones.

Chapter 4. Urban navigation for visually impaired users 44

3. The use of data acquired through accelerometers highly improves both the accuracy
and the efficiency of crosswalk recognition.

To evaluate the accuracy of the algorithm, precision and recall metrics are used. Precision
is the ratio between the number of properly recognized crosswalks and the number of all
the detected crosswalks, including erroneously detected ones. Recall is the ratio between
the number of properly recognized crosswalks and the number of all pictures containing
crosswalks.

The time efficiency was expressed as the average execution time per image in milliseconds.
The tests were performed both on an iPhone 4 and on an IBM ThinkPad T60 with Gentoo
Linux, with a 1,6GHz Intel Core solo processor and 4GB of RAM.

For what concerns the impact of the accelerometer data, a variation of the VideoRecog-
nizer library that does not compute the horizon and that does not rely on accelerometer
information was evaluated.

Our experiments highlight that two parameters have a major impact on precision and
recall. One parameter, called “color distance” is used during the stripe analysis (see
Section 4.3.3) to define the minimum allowed difference between the average color of a
given stripe and the average image color. The other parameter called “width expansion”
is a multiplier coefficient used during the line segment analysis (see Section 4.3.2) to
predict the next stripe’s maximum allowed width given the width of the last recognized
stripe.

Figure 4.7 shows that the recall monotonically decreases with increasing values of “color
distance”. Vice versa, when this parameter is set to values smaller than 0.05 some false
positive results are returned. Consequently, it is necessary to define a trade-off between
precision and recall. Given that the aim of the VideoRecognizer is to have no false
positive, 0.075 was used as the default value for this parameters so that no false positive
results are returned while about 70% of the zebra crossings are actually recognized.
Analogous considerations were conducted for the “width expansion” parameter.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.025 0.05 0.075 0.1 0.125 0.15

Pr
ec

is
io

n
 /

 R
ec

al
l

Color Magnitude Threshold

Recall
Precision

(a) “color distance” recall and
precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6

R
ec

al
l

Scaling factor

(b) “scaling factor” recall

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6
0
10
20
30
40
50
60
70
80
90
100
110
120

P
c

E
xe

cu
ti
o
n
 t

im
e

(m
s)

iP
h
o
n
e

E
xe

cu
ti
o
n
 t

im
e

(m
s)

Scaling factor

(c) “scaling factor” execution time

Figure 4.7: Impact of the parameters “color distance” and “scaling factor”

Chapter 4. Urban navigation for visually impaired users 45

In the experiments it emerges that the size of the image is the parameter that most
significantly affects the computation time. Figures 4.7c and 4.7b show the computation
time and the recall, respectively, for different values of the “scaling factor” parameter
that defines how much the original 192x144 image should be scaled before processing.
Independently from the value of this parameter the precision is equal to 1. As expected,
both the recall and the execution time monotonically decrease with smaller images.
However, while the execution time decreases almost linearly between 0.6 and 0.1, the
recall is not significantly affected for values of “scaling factor” between 0.6 and 0.3,
while it rapidly decreases for smaller values. Vice versa, for larger images, i.e, “scaling
factor” larger than 0.6 (not represented in the figures), the recall does not significantly
improves, while the computation time still grows almost linearly. Figure 4.7c shows
the computation time both on a PC and on an iPhone 4. It can be observed that the
computation on the iPhone 4 is about one order of magnitude slower but the recognition
process can still be performed in less than 0.1 seconds. Thanks to this analysis, it
is possible to conclude that a good trade-off between computation time and recall is
obtained with values of “scaling factor” between 0.6 and 0.3. In this implementation
of Navigator , the objective was to process about ten images per second and hence the
choice was to use 0.5 as the default value for “scaling factor”.

One set of experiments conducted was devoted to measure the improvement introduced
in the recognition process by use of the accelerometers. To achieve this, the dataset of
images representing zebra crossings was divided into those taken in an almost portrait
position and the others (called “sloped” in the following). Our results (see Figure 4.8)
show that the use of accelerometers increases the recall by more than 100% with sloped
images. Moreover, the accelerometer data can reduce the computation time of about
25%, for both sloped and portrait pictures.

0

0.2

0.4

0.6

0.8

Portrait Sloped

R
ec

al
l

Orientation

without accelerometers
with accelerometers

(a) Recall

0

1

2

3

4

5

6

7

Portrait Sloped

E
xe

cu
ti
o
n
 t

im
e

(m
s)

Orientation

without accelerometers
with accelerometers

(b) Execution time

Figure 4.8: Impact of accelerometer data on recall and execution time

Chapter 4. Urban navigation for visually impaired users 46

4.4 Sensor fusion based zebra crossing detection

Differently from the approach explored in the previous section, the FusionRecognizer
module, described in the following, heavily leverages the spatial orientation data for
enhancing the detection procedure, mainly through the reconstruction of the ground
plane on the camera input.

The input of the algorithm is the grayscale image from the device’s video camera stream
and the gravity acceleration data from the accelerometers. Note that accelerometers
actually measure the combined acceleration due to user’s movement and gravity. Since,
for the purpose of this work, only the gravity component of the acceleration is required,
sensor fusion techniques that leverage gyroscope and accelerometer data are used to
compute the gravity acceleration vector by subtracting the component of the acceleration
caused by the user movements from the accelerometer measurements. At the moment,
the sensor fusion algorithm adopted in this work is the one adopted by the iOS 8.0 API.
In the considered API, the gravity component of the acceleration, as well as the device
orientation in space, are accessible though the CMDeviceMotion system class 2. This
approach is possible on modern iOS and Android devices (iOS 4.0 and up, android 2.3 and
up). As a future work, the Kalman filter sensor fusion algorithm [93] will be implemented,
both for enabling the use of the detection algorithm on other mobile platforms and for
increasing the precision of the gravity vector computation.

The gravity acceleration with respect to the device is expressed as a three dimensional
unit vector a = 〈ax, ay, az〉. The gravity acceleration components ax, ay and az are
measured in g = 9.80665m/s2 and take values in [−1, 1]. Since the gravity force is
normal to the ground plane, they represent, respectively, the portion of the gravity that
is applied on the device x, y and z axes (see Figure 4.9a). These values correspond to
the sine of the inclination with respect to the ground plane of the corresponding axes of
the device.

Z

Y

X

(a) Device axes

Roll

Yaw

Pitch

(b) Rotations

Figure 4.9: Device orientation.

2developer.apple.com/library/ios/documentation/coremotion/reference/CMDeviceMotion_Class

https://developer.apple.com/library/ios/documentation/coremotion/reference/CMDeviceMotion_Class

Chapter 4. Urban navigation for visually impaired users 47

The output of the algorithm is the most suitable detected zebra crossing, if any. It is
characterized by a list of stripes, each defined by its top and bottom line segments and its
color (i.e., black or white). The position of each line segment is represented both in the
source image (e.g., Figure 4.10a) and on the rectified ground plane (e.g., Figure 4.10b).
The result also includes four compact and easy-to-use distance measurements (see Figure
4.10c): frontal distance, rotation angle, lateral distance from the left and right borders
of the crossing.

(a) Line segments in
the source image.

(b) Line segments in the rectified
ground plane.

W
hite strip

Dark stripe

W
hite stripe

Lateral distances
Fro

nta
l

dis
tan

ce

Rotation
angle

L

R

(c) Relative distances.

Figure 4.10: Recognizer output

It is internally divided into 7 steps (See Figure 4.11), the results of which are shown in
Figure 4.12.

Rectification matrix
computation

Line segments
grouping

Zebra crossing
validation

Final result
computation

Line segments
detection (on GPU)

Horizon
computation

Image
pre-processing

Figure 4.11: Recognizer flowchart

The image preprocessing step (Section 4.4.1) prepares the image for the segment detec-
tion. The horizon computation step is common to the technique presented in Section 4.3
and thus, will be presented in Appendix A. The image reconstruction technique that
computes the rectification matrix is described in Section 4.4.2 while the segment de-
tection step, explored in Appendix B.3, is outlined in Section 4.4.3. Section 4.4.4 and
Section 4.4.5 present the line segments grouping and stripes validation respectively. Fi-
nally, Section 4.4.5.1 describe the final result computation.

4.4.1 Image Pre-Processing

As observed in Section 4.1.1, zebra crossings can be painted with different colors and
therefore only the light intensity components of the image is used for the detection.

Chapter 4. Urban navigation for visually impaired users 48

(a) Pre-processing (b) Line segment detec-
tion

(c) Grouping (d) Validation

Figure 4.12: Main steps of the sensor fusion based zebra crossing detection

Hence, the images are acquired in grayscale. Clearly, the use of single-channel images
also helps improving the computation performance and reduces the memory footprint.

The acquired images contain many small details and uninteresting details, such as cracks,
paint imperfections, leaves and dirt. These imperfections may actually impair detection,
therefore resampling and blurring is used to filter them out. The first method rescales the
image until small details become undetectable while the second technique is applied along
with the segment detection algorithm (see Appendix B.2). Also, it reduces the image size
and thus diminishes the execution time of following per-pixel operations. However, the
size still has to be sufficient for a correct detection. As highlighted in the experiments (see
Section 4.4.6), the best results of the recognition, without significant loss of information
in terms of detected crossings, can be obtained with an image resolution that is much
smaller than the maximum camera resolution of modern smartphones.

The images in the test-sets were recorded at the resolution of 1080 × 1920 and resized,
with a linear interpolation filter, before running each test so that Recognizer can be run
with images at different resolutions.

4.4.2 Ground plane reconstruction

The planar reconstruction is useful during the zebra crossing recognition since it allows
to validate the crossings by examining the undistorted geometrical features, obtained
by rectifying the line segments obtained from the previous step. This differs from the
technique presented in Section 4.3 where geometrical reasoning is applied directly on the
detected line segments.

Planar rectification is a homography, represented by a 3 × 3 rectification matrix, that
removes the projective distortions from the image of a planar surface and returns a view

Chapter 4. Urban navigation for visually impaired users 49

of the same plane in which the camera’s axis is perpendicular to the plane. For the ground
plane, the rectified image is a view from directly above it, as seen in Figure 4.13b.

Once the rectification matrix is known, it can be selectively applied to some elements
(i.e., line segment end points) instead of the whole image, thus reducing the execution
time. Also, it is possible to switch back from the rectified image to the original one by
applying the inverse of the rectification matrix to the desired elements.

In a previous work ([34]) the rectification matrix was computed from the accelerometer
data as the product of two matrices: the affine rectification matrix, obtained by using
the technique proposed by Liebowitz and Zisserman ([94]), and the metric rectification
matrix, computed through a custom technique.

Lefler et al. [95] propose a technique for computing the rectification matrix from three
symmetric vanishing points. We experimentally observed that this technique yields better
performance (mainly in terms of recall) with respect to the one previously used. As seen
in Figure 4.13c, symmetric vanishing points are 3 points vx, vy and vz that create a right
angle with the camera point C. This technique can be applied easily since it leverages
already computed information: the gravity vector a (See Section 4.4) and the image
horizon hl (See Appendix A).

A previous attempt to use the edges of the zebra crossing for the computation of the
vanishing points yielded less precise results (due to the imprecision in the computation
of the vanishing point derived from the short edges of the stripes). This approach will
not be used in the following. However, as per reviewers’ suggestions, as a future work
the rectification computed by leveraging both the long edges of the detected stripes and
the accelerometer data will be evaluated.

hu

he

hf
π
6

hd

(a) Height

C

Ground
Plane

Image Plane

C'

Rectified Plane

Rectification

(b) Rectification homography

45°
45° C

v3

v1

v2

Ground
Plane

Image
Plane O

p3

h

(c) Symmetric vanishing points

Figure 4.13: Height extraction and rectification matrix computation.

The three symmetric points are defined as follows. Point C is the camera, O is the
projection of C on the ground plane and v3 is the point where CO intercepts the image
plane. To specify v1 and v2 let first define p3 as the projection of v3 on the vanishing
line. Then, v1 and v2 are the points laying on the vanishing line such that angles
v̂1Cp3 and v̂2Cp3 have a span of 45◦. The position of the three points in the image can

Chapter 4. Urban navigation for visually impaired users 50

straightforwardly be obtained. For example, the distance Pv3 between v3 and the image
principal point P can be computed with the following proportion:

sin(P̂Cv3) : Pv3 = sin(βy) : ih

where P̂Cv3 is the device pitch, βy is the vertical field of view (can be derived from the
camera intrinsic parameters) and ih is the image height. The computation is analogous
for v1 and v2.

The application of the rectification matrix to the image yields a “rectified plane” in
which the distances are proportional to those on the ground plane. More specifically,
the distance between any two points on the ground plane is equal to the distance of the
corresponding points on the rectified plane multiplied by a zoom factor.

The zoom factor is defined as the ratio dr(Ar, Br)/dg(Ag, Bg) where dr(Ar, Br) is the
distance of two arbitrary points in the rectified plane and dg(Ag, Bg) is the distance of
the corresponding points on the ground plane.

To compute the zoom factor Recognizer takes into account two points Ai and Bi on the
image plane and their projections Ar, Br, Ag and Bg on the rectified plane and ground
plane, respectively. See Figure 4.14.

βy

βy

C ih

F

P

ρ

Bg Ag

Bi

Ai

αB

αA

Br Ar

Ground plane

Rectified plane

Image plane

Figure 4.14: Zoom factor computation

Ai and Bi are arbitrary points below the horizon and that lie on line vl that is per-
pendicular to the horizon and that passes through the image principal point P . The
distance ArBr is computed by applying the rectification to Ai and Bi and computing
the euclidean distance on the resulting points Ar and Br. The distance AgBg on the
ground plane is computed as AgBg = FAg − FBg.

To compute FAg consider right triangle CFAg. Angle F̂CAg is equal to the device pitch
ρ minus αA. To compute angle αA, consider the following proportion:

AP : ih = 2sin(βy) : sin(αA)

where ih is the image height and βy is camera half vertical field of view. Consequently
αA = asin(AP · 2sin(βy)/ih). By knowing angle F̂CAg and hd = CF (the height of the

Chapter 4. Urban navigation for visually impaired users 51

device), FAg can be easily computed as:

FAg = hd · tan(ρ− asin(AP · 2sin(βy)/ih))

Analogously, FBg is computed as:

FBg = hd · tan(ρ− asin(BP · 2sin(βy)/ih))

As observed above, the computation of the zoom factor relies on the height hd of the
device from the ground. To estimate this value, Recognizer assumes that the user is
holding the device in a position like the one depicted in Figure 4.13a in which the elbow
is close to the hip and the forearm has an inclination of about π/6 with respect to
the ground plane. By considering the proportions of the human body [96], the device
height can be derived from the user’s height hu (either estimated or asked to the user).
Indeed, on average the height at elbow is 0.615 · hu and the forearm length is 0.205 · hu.
Consequently, the device height from the ground is estimated as:

hd = 0.615 · hu + sin(π/6) · 0.205 · hu

Clearly the above computation is subject to some approximation. However, the error is
practically not significant. For example, considering a 175cm tall person the technique
estimates that the device is held at 125cm from the ground. Even if the device is actually
kept at the height of the shoulders (a situation never observed during the experiments
with the users), at the height of 142cm, a zebra crossing at a distance of 2m is computed
as being 2.33m from the user. This does not significantly affect, for example, the number
of steps required to reach the start of the zebra crossing.

4.4.3 Line segment detection

The line segments detection relies on a modified version of the original EDLines algorithm
[97] described in Appendix B.3. The input is composed by the input image, the horizon
line and the rectification matrix. The output is a set of detected segments in the rectified
coordinate system. There are four main differences with respect to the original algorithm.

First, the proposed technique ignores the portion of the image above the horizon (See
Figure 4.12a)since no zebra crossings will ever be found there. This approach significantly
reduces the computation time for two different reasons: it speeds up the line segments
detection process itself and it reduces the number of detected segments, hence reducing
the computation time of successive processing steps. This solution also helps improving
the recognition accuracy as it prevents false positives (i.e., a false crossing recognized
above the horizon).

Chapter 4. Urban navigation for visually impaired users 52

The second difference with respect to the original EDLines algorithm is that the im-
plemented solution computes additional information about the detected line segments.
First, as shown in Appendix B.3, in addition to gradient direction, i.e., an angle in [0, π),
this solution also computes the gradient orientation of the detected segments, so, in prac-
tice, the angle of the gradient is computed in [0, 2π). Hence, it is possible to distinguish
between a light-to-dark gradient and a dark-to-light one. This is a useful information in
the following steps since the direction of the gradient can differentiate between segments
on top and on the bottom of each stripe. The line segment’s orientation is represented
by the order of its end points. Thus, two line segments s = AB and s′ = BA have the
same direction but opposite orientation. The second additional information computed
by this version of EDLines is whether each end point of each line segment lies on the
image boundary. This is useful, in the following computation, to distinguish between
stripes that terminate in the end point position and those that, instead, can potentially
continue but are not visible in the image.

The third difference is that the presented technique also merges close segments. Two
segments having slope distance and spatial distance both lower than specified thresholds
are merged. This is useful, for example, when two or more portions of a line segment have
been recognized as different line segments due to minor imperfections in the image, noise,
flawed coloration of the stripes or objects between the observer and stripes. Figure 4.15
shows an example. The line segment s resulting from the merging of two line segments s1
and s2 is computed as follows: first, the lines l1 and l2 on which the two line segments lay
are calculated. Then, a new line l (equation in general form: ax+by+c = 0) is computed
with parameters a, b and c being weighted averages (based on the two segments’ lengths)
of the corresponding parameters of lines l1 and l2. Finally, the segment s is computed
as the union of the two line segments’ projections on l.

In Section 4.3.1 this merging operation was computed using line segments in their rep-
resentation on the image and hence were subject to projection distortion. Vice versa, in
the current solution, line segments are rectified before being merged.

The fourth difference, described in Appendix B.3, is that, during line segment com-
putation, The orthogonal regression is used instead of least squares line fitting for the
purpose of determining the equation of the line on which each line segment lays. Orthog-
onal regression computes the orthogonal distance between each point and the candidate
line, differently from the line fitting algorithm that computes the vertical distance. Or-
thogonal regression is needed in this case since vertical line segments also need to be
computed.

As a final step, after lines segments merging, the segments that are too short to possibly
represent a stripe edge are pruned. Figure 4.12b shows an example of application of the
customized version of EDLines.

Chapter 4. Urban navigation for visually impaired users 53

(a) Split line segments (b) Split line segments (rectified)

(c) Merged line segments (rectified) (d) Merged line segments

Figure 4.15: Example of line segments merging

While the custom implementation of EDLines has been highly optimized, it is still the
most expensive operation of the detection procedure and it takes about 45% of the entire
computation time. The reason is that three operations required by EDLines have a time
complexity linear in the number of pixels in the image. These three operations consist
in the computation of: the gradient magnitude, the gradient direction and the anchors.
Since the aim of these three operations is to extract the so called “anchors”, they are
referred to as “anchors extraction”.

To reduce the computation time of “anchors extraction”, it has been implemented through
two fragment shaders, so that the computation can be run by the GPU highly paral-
lel architecture. Indeed, while the general purpose GPU computation frameworks like
CUDA and OPENCL are still not available on mobile devices, it is possible to use pro-
grammable fragment and vertex shaders that are actually available in mobile GPUs. The
core idea behind a fragment shader is that it defines how to compute each pixel of an
output image. To achieve a highly parallel computation, each pixel in the output image

Chapter 4. Urban navigation for visually impaired users 54

must be computed independently from all the others in the sense that it is not possible
to use, in the computation of a pixel, the result of the computation of a different one.

In this solution one fragment shader is used to compute gradient magnitude and direction.
These two operations can be computed in a single shader as both depend on the input
image only. Vice versa, anchors computation depends on the result of the other two
operations, hence it is implemented in a separate shader. The result of each operation
is stored in a different channel of an RGB image.

Experimental results, run on an iPhone 5s with the methodology presented in Sec-
tion 4.4.6, show that, on average, anchors extraction is more than 4 times faster when run
on GPU. In absolute terms, the average time required to compute these operations on a
single frame is about 8.5ms when computed in CPU and less than 2ms when computed
in GPU.

4.4.4 Line segments grouping

Starting from the lines segments extracted from the image, the solution rectifies them
with the procedure described in Section 4.4.3 and then groups them forming candidate
crossings. Each candidate crossing is characterized by a set of stripes, that, in turn, are
composed by a pair of line segments each. Line segments grouping processes the rectified
line segments, so that it is possible, for example, to straightforwardly check geometrical
properties (e.g., parallelism) and to compute quantified measurements (e.g., the width
of each stripe).

All line segments are first assumed to be part of a single set that is then partitioned
according to three criteria: “slope”, “horizontal overlapping” and ”vertical distance”. Each
grouping criterion is enforced by using an agglomerative hierarchical clustering technique
with single linkage. The first criterion (“slope”) is applied to the entire set of line segments
(considered as a single set) and results in a set of blocks, each one used as input for the
iterative application of the following criteria.

The idea behind the “slope” criterion is that the line segments in the same crossing are
mutually parallel. Thus, line segments having roughly the same direction are grouped
together.

The “Horizontal overlapping” criterion captures the fact that, in a zebra crossing, there
must be an overlap among the projections of stripes long edges on a line parallel to
them. This computation should not discard stripes that are partially outside the field of
view and, because of that, have a small overlap. It is possible to distinguish this cases
because it is known, due to the optimizations to the EDLines algorithm introduced in
Section 4.4.2, for each end-point of each line segment, if it lies on the image boundary.

Chapter 4. Urban navigation for visually impaired users 55

Finally, the “vertical distances” criterion is enforced. This validation guarantees that, in
each group, two consecutive line segments must have opposite gradient directions and
a distance of about 50cm (this is specific for Italian regulation, see Section 4.1.1. The
computation proceeds as follows. First, the distances between each pair of line segments
in the same group are computed. Then, the pair that has the distance closest to 50cm is
linked. Subsequently remaining pairs with the best distances are iteratively linked until
there are no free pairs or the distances are shorter or longer than specified thresholds

Figure 4.12c shows an example of the application of the three criteria above. All the
numbered line segments are not grouped with the line segments in the dashed box due
to the following reasons: line segments 7, 9, 10, 11, 12, 13 and 14 due to the slope
criteria; line segments 3 and 4 due to the horizontal overlapping criteria; line segments
1, 2, 5, 6 and 15 due to the vertical distance criteria. As explained in Section 4.4.5, all
numbered line segments are pruned due to the fact that they form groups with too few
line segments.

4.4.5 Stripes validation

After line segments grouping each resulting block is validated two criteria: “color consis-
tency” and “number of edges”.

The “Color consistency” criterion checks if each light (or dark) stripe has a color con-
sistently lighter (darker, respectively) than the average color of the candidate crossing.
By considering the average crossing’s color, minor imperfections due to shadows are tol-
erated. If, however, the contrast between the shadowed area and the rest is too high,
most likely the smaller area will be discarded by the color consistency check. Clearly the
expected color (light or dark) of a stripe is known due to the fact that the gradient of
its two edges is defined. The minimum required difference between the stripe color and
the crossing’s average color is specified by the “color consistency magnitude threshold”
parameter. Thanks to the “color consistency” criterion, structures that are geometrically
similar to stripes but without consistent dark/light alternating colors are discarded. An
example of application of the “color consistency” criterion is shown in Figure 4.16. After
the grouping phase, some line segments are grouped in a single block and hence are
marked as a candidate crossing (see Figure 4.16a). However, as can be observed in Fig-
ure 4.16b, there is a small difference in the coloration of the identified stripes. This is
captured by “color consistency” that correctly discards the crossing.

The second validation criterion, is “number of edges”. It defines that a valid zebra crossing
should be composed by a minimum number of edges. In the experimental settings, this
value is set to 5, hence guaranteeing that each crossing contains at least two white stripes,
as required by Italian regulation. Consequently, blocks that contain a smaller number of

Chapter 4. Urban navigation for visually impaired users 56

(a) Candidate crossing after grouping (b) After “color consistency”

Figure 4.16: Example of “color consistency”.

line segments are pruned. A candidate crossing that passed “color consistency” and still
has a sufficient number of line segments is returned as “validated crossing”.

In theory, the “number of edges” criterion could be only checked as the last step of
the recognition procedure (i.e., after “color consistency”). However, “number of edges”
validation is very efficient. For this reason it is enforced after each step of grouping and
validation in order to reduce the number of line segments to process, hence improving
the overall computation time of solution.

4.4.5.1 Final result computation

In many cases either none or a single validated crossing is returned by the validation
phase. However, it is possible that two or more crossings are returned. This happens,
for example, when the camera is viewing two distinct crossings or a single crossing is
erroneously split in two parts. To decide which is the “most relevant” crossing for the
user the following methodology is adopted. The cases in which two or more validated
crossings were present in the same image were isolated. It was empirically observed
that the most relevant crossing is always the one closest to the user among those having
roughly the same direction as the user. Consequently the solution first checks if any
detected crossing has an orientation angle within a threshold from the user’s orientation.
If favorable crossings are available, then all other crossings are discarded. Among the
remaining ones, the closest one to the user is selected as the most relevant.

The four distance measurements used to position the most relevant crossing are shown
in Figure 4.10c. “Frontal distance” is defined as the distance between the user and the
closest line segment (called CLS in the following). “Rotation angle” is the (oriented)
angular distance between the user’s heading and the crossing. In the figures the user
direction is represented as pointing upwards, so the rotation angle corresponds to the

Chapter 4. Urban navigation for visually impaired users 57

stripes angle. In theory, since the line segments should be mutually parallel, the angle is
the same for all line segments. However, in practice, there can be some approximation and
hence the rotation angle is computed as the average angle of all line segments. The third
and fourth distance measurements are “lateral distance left” and “lateral distance right”.
The definition of the former is given in the following, while the latter is computed in
an analogous fashion. “Lateral distance left” intuitively represents the distance between
the user and the left border of the crossing measured on CLS. More formally, it is
the (directed) distance between the left border of CLS and the projection of the user’s
position on CLS.

There is an issue arising in the computation of “lateral distance left” (the same holds for
“lateral distance right”). Indeed, it is possible that the edge of the first detected stripe
is not entirely contained in the image. In this case the left end-point of CLS does not
necessarily represent the left border of the closest stripe. Let’s consider two examples.
In Figure 4.17a the left end-point of CLS (point B) actually represents the left end of
the stripe (point A). Figure 4.17b shows the rectified view. Differently, in Figures 4.17c
and 4.17d the first stripe is not fully contained in the image and the left end-point of
CLS (i.e., point B′) is not the left end of the stripe (i.e., point A′). In the first case
(Figures 4.17a and 4.17b) it is clear that the user is close to the left border and hence
she/he should be instructed to strife right before crossing. n the second case, instead,
the same instruction is not given. Indeed, by observing the stripes that are farther from
the user, it is possible to infer that the first stripe extends on the left of the user hence,
intuitively, it is safe to start crossing in the current position. To capture this intuitive
reasoning, The left end-points that are marked as not-being on the image boundary (see
Section 4.4.2) are considered. If there are too few of these points, the “lateral distance
left” is marked as not quantifiable. Vice versa, an orthogonal regression algorithm is
used to find the stripe “border” i.e., the line that passes through these points. Then
the intersection A′ of this line with the line where CLS lies is computed. The “lateral
distance left” is expressed as the length of A′C ′.

4.4.6 Evaluation

Extensive experimental evaluation of the FusionRecognizer application was conducted
with the aim of tuning the system parameters, debugging the code and evaluating the
performances.

The FusionRecognizer solution was compared with VideoRecognizer ([32], [34]). A direct
comparison with other solutions is unfeasible because the implementation and the data
used for their evaluation are not public. Vice versa, as explained in Section 4.4.6.1, the
data used for the tests is public, so that a direct comparison of a future work with the
proposed solution is possible.

Chapter 4. Urban navigation for visually impaired users 58

CLS

A=B

C

(a) Left edge is visible.

C

User

CLS
A=B

(b) Figure 4.17a rectified.

CLS
A’ B’ C’

(c) Left edge is not visible.

A’ B’ C’

User
(d) Figure 4.17c rectified.

Figure 4.17: Distance from the left border computation.

In Section 4.4.6.1 the adopted evaluation methodology of FusionRecognizer and the ex-
perimental setting are described. Then, four sets of experiments are presented. The first
set is aimed at measuring the impact of GPU computation (Section 4.4.6.2). The second
set studies the impact of the most relevant system parameters (Section 4.4.6.3). The
third set compares FusionRecognizer with VideoRecognizer (Section 4.4.6.4). Finally,
the objective of the fourth set of experiments is to evaluate how precisely the position of
the crossing is computed by FusionRecognizer (Section 4.4.6.5).

4.4.6.1 Experimental methodology and setting

When FusionRecognizer is run in ZebraCrossing , the input image is taken directly from
the camera and this makes it impossible to run the recognition procedure twice with the
same input. To overcome this problem, two software applications were designed. The
former, called zRecorder , is a mobile application that records the stream of images and
motor sensors data (i.e., accelerometer and gyroscope). The latter, called zSimulator ,
reads the data stored by zRecorder , uses it as an input to run FusionRecognizer and

Chapter 4. Urban navigation for visually impaired users 59

to measure its performance. zSimulator can be run both on traditional devices (i.e.,
desktops and laptops) and on mobile devices and supports both the sequential reading
of input data as well as the parallel one, that simulates the concurrent behavior of
ZebraCrossing . Thanks to this solution it is possible to record a video and then to use
it several times as an input for FusionRecognizer . This significantly eases the debugging
process and enables regression tests, parameters tuning and reproducible experimental
tests.

Two sets of images (with corresponding motion data) were recorded at 1080 × 1920

resolution. Both sets are publicly available3. The first set, called TestSet1, consists of 40
videos and 4015 frames. All frames have been manually annotated to distinguish those
containing a zebra crossing (1877) from the remaining ones (2138). Videos and gravity
measurements were captured on an iPad 2 device in different illumination conditions
(sunny, cloudy and night).

The second set, called TestSet2, includes 6 videos with a total of 206 frames. In this
case, for each frame also the relative position of the crossing was annotated. To minimize
the approximation while collecting this information, the videos were recorded by using
a tripod positioned at a given frontal and left/right distance from the crossing. Since
the tripod is stationary, the frontal and lateral distances are fixed for each video. While
recording each video the camera (an iPhone 5, in this case) was rotated. To measure the
rotation, before starting the recording, the device was calibrate to be perfectly perpen-
dicular with the stripes and then, for each frame, the rotation angle was measured by
using gyroscopes information. Indeed it was observed that the error introduced by the
gyroscopes is negligible, also considering that the video duration is of few seconds and
that the device is not subject to sudden movements (since it is on a tripod).

A desktop pc was used for computationally intensive evaluations (e.g., parameters tuning)
and an iPhone 5s smartphone for evaluating the execution time.

Four indicators are taken into consideration: precision, recall, execution time and the
positioning accuracy. The precision, calculated as the the ratio of the correctly detected
crossings and all the detected crossings, measures the amount of false positives. A pre-
cision score of 1.0 means that each detection corresponds to a crossings in the examined
image, conversely a lower ratio implies that some crossings were detected where none
was present. The recall metric is computed as the ratio between the detected crossings
and all the correct crossings in the dataset. While a score of 1.0 means that all the
crossings were correctly detected, lower values indicate that some of the crossings were
not. Given the safety concerns for the navigation of users with visual impairments in
a dangerous environment, anything less than a perfect precision score is unacceptable,
while a high recall score, although important, is less critical. In the following, unless
differently stated, in the results the precision is always equal to one.

3http://webmind.di.unimi.it/ZebraRecognizerTestSet/

http://webmind.di.unimi.it/ZebraRecognizerTestSet/

Chapter 4. Urban navigation for visually impaired users 60

The execution time defines the average time needed to run FusionRecognizer . It does
not take into account the time required to load the image from the hard drive nor
the time required to resize the input image. Indeed, when FusionRecognizer is used in
ZebraCrossing , the input image is already acquired at the necessary resolution and no
resizing is needed. Clearly, lower execution time allows higher frame rates, increasing
the responsiveness of the detection with respect to the user’s movements. Also, it means
that the procedure is less computationally intensive, with a lower power consumption.

Finally, the positioning accuracy indicates how precise is the relative position returned
by FusionRecognizer . The positioning accuracy in a given frame is characterized by
four values, one for each distance measurements. Each value is the difference between
the distance computed by FusionRecognizer and the expected (actual) value. Clearly,
positioning accuracy can only be computed if the expected relative distance is known
and hence only using TestSet2.

4.4.6.2 Impact of GPU computation

The first set of experiments is aimed at assessing the improvements of the GPU imple-
mentation of anchors extraction (see Section 4.4.3). Figure 4.18 shows the comparison
between the CPU and the GPU implementations for different values of the “resolution”
parameter. As expected, this parameter significantly influences the execution time of
anchors computation as this is an operation with time complexity linear in the number
of pixels. Experimental results confirm this theoretical expectation. Indeed, the com-
putation time of the CPU implementation is 2.5ms for images with resolution 90× 160,
while it is almost exactly four times larger (i.e., 9.67ms) for images with four times the
number of pixels (i.e., 180× 320). The same holds for images with resolution 360× 640.
Differently, with the GPU implementation, the total computation time is composed by
a constant-time overhead (estimated to be about 1.5ms) and the actual computation,
whose cost is indeed linear in the number of pixels and about 10 times faster than with
the CPU implementation. So, overall, while the computation on the GPU leads to an
improvement of about 30% for 90 × 160 images, the improvement is much larger with
180× 320 images (the default resolution value) where the GPU implementation is more
than 4 times faster. For larger images the benefits are even higher (e.g., for 360 × 640

images the GPU implementation is about 8 times faster).

One question is how the GPU implementation of anchors extraction impacts on the over-
all computation time of FusionRecognizer . Figure 4.19 provides an answer by showing,
at the default resolution, how the entire computation time of FusionRecognizer is divided
between anchors extraction and all other operations. When anchors extraction is com-
puted in CPU, it requires almost the same time as all the other operations (precisely,
anchors extraction takes 44% of the entire computation time). Vice versa, with the GPU

Chapter 4. Urban navigation for visually impaired users 61

 0
 5

 10
 15
 20
 25
 30
 35
 40

90x160 180x320 360x640
C

o
m

p
ut

at
io

n
 t

im
e

(m
s)

Source resolution (pixels)

CPU
GPU

Figure 4.18: Computation time of anchors extraction

implementation, anchors extraction requires 15% of the entire computation time. Over-
all, since the GPU implementation is about 4 times faster, the overall FusionRecognizer
computation time improved by about 30%.

 0

 5

 10

 15

 20

 25

 30

CPU GPU

C
om

pu
ta

ti
on

 t
im

e
(m

s) Other
Anchors extraction

Figure 4.19: Impact of anchors computation time in FusionRecognizer

4.4.6.3 Parameters tuning

While a large set of system parameters was evaluated and tuned, the impact of three
of them appears to be most significant: “resolution”, “group-angle threshold” and “color
consistency magnitude threshold”. The “resolution” parameter specifies the size of the
image on which the detection is run. The “group-angle threshold” defines the maximum
angular distance between two line segments that are grouped together (see Section 4.4.4).
The “color consistency magnitude threshold” defines the minimum difference in color
intensity (value range between 0 and 255) between a stripe and the average color of the
crossing (see Section 4.4.5). These parameters are listed in Table 4.1 together with their
minimum, maximum and default values.

Figure 4.20 shows that with a very low resolution (below 90 × 160) recall diminishes
drastically. This is due to the fact that in these cases the features are hard to detect.
For high resolutions (above 180 × 320) there is also a reduction in recall due to the

Chapter 4. Urban navigation for visually impaired users 62

Parameter Min Default Max
Resolution 90× 160 180× 320 720× 1280

Goup-angle thres. 1.5 3 7.5
Color magnitude thres. 1 5 9

Table 4.1: Most influential parameters and their values

fact that noise and imperfections are more visible and impair drastically the segment
detection stage. This behavior can be offset by using stronger smoothing during the
preprocessing step (see Section 4.4.1). The best results can therefore be achieved with a
resolution of 180× 320.

0

0.2

0.4

0.6

0.8

1

11
x2

0

90
x1

60

18
0x

32
0

27
0x

48
0

36
0x

64
0

45
0x

80
0

54
0x

96
0

63
0x

11
20

72
0x

12
80

R
ec

al
l

Image resolution

Figure 4.20: Tuning of “resolution” parameter

For “group-angle threshold” observe (see Figure 4.21a) that, for larger values of this
parameter, recall is higher due to the fact that larger blocks of line segments are generated
with the application of the “slope” criterion hence it is less likely that they are pruned by
the “number of edges” criterion. However, for values larger than 3◦, some false positives
can be introduced and hence precision diminishes, although very slowly. For this reason,
the default value is 3.

The analysis of “color magnitude threshold” is similar: for smaller values of this parameter
the “color consistency” criterion is easier to satisfy hence there is a higher recall. However,
for values smaller than 5 precision is less than 1. Hence, the default value chosen is 5.

4.4.6.4 Comparison with VideoRecognizer

FusionRecognizer is compared with with the VideoRecognizer solution proposed in [32]
and described detailedly in Section 4.3, and a previous version of FusionRecognizer ,
proposed in [34]. These are called “Version 1" and “Version 2”, respectively. The three
solutions are compared according to two metrics: recall and computation time. For each
version the corresponding default system parameters, which, as previously stated, are
tuned to yield a precision equal to 1 are used.

Chapter 4. Urban navigation for visually impaired users 63

0.82

0.84

0.86

0.88

0.9

1.5 3 4.5 6 7.5 9

R
ec

al
l

Grouping Angle Threshold

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.5 3 4.5 6 7.5 9

P
re

ci
si

on

Grouping Angle Threshold

(a) Group-angle threshold

0.88

0.885

0.89

0.895

0.9

0.905

1 2 3 4 5 6 7 8 9

R
ec

al
l

Color Magnitude Threshold

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1 2 3 4 5 6 7 8 9

P
re

ci
si

on

Color Magnitude Threshold

(b) Color magnitude thresholds

Figure 4.21: System parameters tuning.

For what concerns the recall, Figure 4.22 shows that it improved from .69 in Version
1 to .78 in Version 2 up to .89 in the current version of Recognizer . The improvement
from Version 1 to Version 2 is mainly due to the fact that in Version 2 the geometrical
properties are checked on the rectified image. The improvements from Version 2 to the
current version is due to the number of improvements described in Sections 4.4.3 and
4.4.4.

 0

 0.2

 0.4

 0.6

 0.8

 1

Version
1

Version
2

Current

R
ec

al
l

Figure 4.22: Recall comparison

For what concerns the computation time, in Version 1 the average time to process each
frame is 74ms, while in Version 2 it is 23ms. In the current version of Recognizer the
average time is 22ms with the CPU implementation of anchors extraction while it is

Chapter 4. Urban navigation for visually impaired users 64

16 with the GPU implementation. The small improvement between Version 2 and the
current CPU implementation is due to two contrasting factors: on one side, the code was
engineered and optimized, hence improving the computation time by about 20%. On the
other side, a bug was fixed in the line segments merging algorithm (see Section 4.4.3). The
effect of the bug was to erroneously terminate the merging algorithm, hence resulting in
partially incorrect result but faster computation. After fixing that bug all line segments
are now correctly merged, but the improvement in computation time from Version 2 to
the current version is negligible. Still, the GPU implementation of anchors extraction
guarantees an improvement of about 30%.

 0
 10
 20
 30
 40
 50
 60
 70
 80

Version
1

Version
2

Current
CPU

Current
GPU

C
om

pu
ta

ti
on

 t
im

e
(m

s)

Figure 4.23: Computation time comparison

4.4.6.5 Positioning accuracy

The results of a set of experiments aimed at asserting the positioning accuracy of Fu-
sionRecognizer in terms of the four distance measurements is reported. As noted in
Section 4.4.6.1, the dataset is publicly available4 and it is composed of 6 short videos
totaling 206 frames, captured at well known positions and angles. The position of the
stripes computed by FusionRecognizer is evaluated against the known positions. In
the following “error” indicates the absolute value of the difference between the distance
(frontal, angular or left/right) returned by Recognizer and the expected (correct) dis-
tance.

For what concerns the frontal distance, the average error is 0.22m. While an error of 20
centimeters does not significantly impact on the overall effectiveness of ZebraCrossing ,
in some cases the error is much larger due to the fact that the visible stripe closer to the
user is not recognized. In current tests this problem introduces an error up to 1m (i.e.,
when the two closer stripes are not recognized). Fortunately the incorrect recognition of
the closer stripes happens in few frames (less than 3%) that are generally non-consecutive
(the longest sequence measured is composed by two consecutive frames). This makes it
possible to identify the occurrence of this problem in the Logic module by checking for

4http://webmind.di.unimi.it/ZebraRecognizerTestSet/

http://webmind.di.unimi.it/ZebraRecognizerTestSet/

Chapter 4. Urban navigation for visually impaired users 65

sudden changes in the frontal distance. Indeed, since the temporal distance between two
consecutive frames is less than 0.1s (frequency is more than 10 frames per second), a
change in the frontal distance larger than 0.5m clearly indicates that the closer stripes
have not been recognized.

For what concerns the rotation angle, the average error is about 2.2◦. In some sporadic
cases it is possible that the error is up to 9.5◦ (in 93% of the cases the error is less than
7◦). Hover, in this case it is not possible to check for sudden changes, as a user can
possibly rotate very quickly. However, values can be easily smoothed by using a moving
average in the Logic module. For example with a moving average of length 3, the average
error in the rotation angle is 1.0◦ and the maximum error is 3.0◦.

During the experiments it was observed that the computation of the lateral distance
is subject to a non-negligible approximation caused by two factors: first, EDLines fre-
quently does not recognize the entire stripe edge, but just a portion of it and consequently
the computation of the border is not always precise. Second, the projection of the user’s
position on CLS (the line segment closest to the user) can be imprecise due to approxi-
mations in the computation of the CLS angle. To address the former issue, the proposed
solution excludes, from the border computation, the points that introduce an error above
a given threshold. This is useful, for example, when there are few line segments that are
much shorter than the actual stripe edge. To address the latter issue, when computing
the projection on CLS, instead of using the angle of CLS, the average angle computed
among all the stripes was used. The resulting technique always correctly identifies a
lateral distance as not quantifiable (i.e., the border is out of the field of view, see Sec-
tion 4.4.5.1). In some rare cases it happens that, even if the border is visible, it is still
identified as not quantifiable. This is often due to the fact that the border is only visible
in the stripes that are far away from the user and these stripes are not recognized. In
any case, in 87% of the cases, if a border is visible, than it is identified by the technique
and, in these cases the average error is 0.25m.

4.5 The user interaction module

The Navigator component implements the multi-modal user interaction paradigm. From
the application-design point of view, this module faces a number of challenges. First of
all, it is necessary to provide the user with a large amount of information (i.e., the
position of the crosswalk) mainly through audio but, at the same time, it is important
not to overwhelm the user with too much audio.

Another challenge is due to the usage context of the application. Recall that the users
of ZebraCrossing are on the move. In this context, blind persons often use one hand
to hold the white cane or the guide dog, hence it is important to be able to hold the
device firmly with one hand only. In addition, since the user is interested in nearby zebra

Chapter 4. Urban navigation for visually impaired users 66

crossings, the device’s camera has to be pointed towards the user’s immediate vicinity
with a suitable angle for a correct detection of possible close crossings.

To face these challenges, the interface has been designed based on four main principles:

• Quiet navigation - The system should distract the user as little as possible,
all the while communicating information necessary for guiding the user correctly.
Especially while the user is crossing the street, the distraction should be kept at
minimum.

• Step by step - In order to limit the quantity of information conveyed to the user
at a time, the navigation is divided in steps, each having a small set of messages
that can be given to the user one at a time.

• Thumb input - One handed input is limited to the usage of only the thumb
finger. This allows to keep a firm grip on the device while using simple gestures
for interacting with the device

• Camera pointing assistance - The user is assisted in pointing the device towards
the ground in such way to be able to detect nearby zebra crossings correctly.

The “Step-by-step” message generation logic is described in Section 4.5.1. The output
modes (“speech”, “mono sonification” and “stereo sonification”), that were designed to
convey the computed messages, will be discussed in Section 4.5.2. The “Thumb-only”
input technique will be explored in Section 4.5.3. Finally, the experimental evaluation
of Navigator will be described in Section 4.5.4

4.5.1 Step-by-step navigation

The navigation is divided into three operational modes that correspond to the three
main activities involved in the act of crossing: searching for the crosswalk (operational
mode “Search”), reaching a good starting position to cross (operational mode “Align”)
and actually crossing (operational mode “Cross”). Each operational mode is associated
with different feedback messages that are optimized for that specific situation and with
different parameters adopted in the crosswalk recognition process. Some feedback mes-
sages, when triggered, also switch the system from one operational mode to another (e.g.,
when correctly aligned, the application triggers the “Cross” message and switches from
the “Align” to the “Cross” mode).

The “Search” operational mode sets the system parameters in such way to favor the
detection of distant crossings and yield the fastest possible detection rate. The “Align”
and “Cross” modes trigger the detection algorithm only after a certain amount of time
passed or when a significant rotation has been detected from the device’s gyroscope (since

Chapter 4. Urban navigation for visually impaired users 67

rotations have a huge impact on the differences in scenery captured by the camera),
thus reducing the detection rate and battery consumption. Additionally, the “Cross”
operational mode also reduces the audio volume of the feedback messages in order to
reduce the distraction for the user and raise the awareness to the surrounding sounds.
Initially we considered also the absence of feedback during the crossing. However, a
preliminary test showed how, in absence of feedback, users tend to drift laterally during
straight walking. In particular, in one test, one user would consistently drift left so much
to approach the border of the stripes every meter and thus require software’s feedback
to readjust his position.

“Not found” message is activated each time the device does not detect any crossings.
When the system is in other operational modes, this message triggers the “Search” oper-
ational mode. The “Approach” message is triggered when a crossing is detected and the
user’s distance from the detected crossing is higher than a specified threshold. It also
causes the switch from “Search” and “Cross” operational modes to “Align” mode. When
the difference between the user’s direction and the direction of the stripes is above a
threshold, the message “Rotate Left” or “Rotate Right” are triggered according to the
rotation direction. When the user’s projection on the lowest line of the stripes is outside
of the left or the right border of the stripes, respectively the “Step Left” or “Step Right”
feedback is triggered. The last four messages will induce a switch from the “Search” mode
to the “Align” mode. The “Cross” message signals that the user is aligned with respect
to the stripes and can cross the street. Thus, it also causes a switch from “Search” and
“Align” to “Cross” operational mode.

To assist the user in pointing the device’s camera correctly, two mode independent feed-
back messages (“Incline Up”, “Incline Down”) are provided. At any point during the
interaction, the device’s inclination with respect to the ground plane is computed from
the gravity measurements (See Section 4.4) and the user is notified it the device’s incli-
nation is not optimal. The inclination is considered correct when the device can capture
the ground plane between the minimum distance dmin and the maximum distance dmax

from the user. These values are set based on the current operational mode, and the
device’s correct inclination range is computed starting from them as follows.

Given the user’s height h and the camera’s vertical field of view βy (See Section 4.4.2), if
we want to capture the ground plane at a minimum distance of dmin, the inclination has to
be at most θmax = atan(dmin/h)+βy. Instead if we want to capture the ground plane at
a maximum distance of dmax, the inclination has to be at least θmin = atan(dmax/h)−βy.

Table 4.2 lists the feedback messages and possible operation mode changes they cause.

The output modes described in Section 4.5.2 define the ways to convey the listed feedback
messages to the user.

Chapter 4. Urban navigation for visually impaired users 68

Message Description States

Not found No crosswalks found, search Align → Search
Cross → Search

Approach Crosswalk is distant, approach Search → Align
Cross → Align

Rotate left Rotate in place to the left

Search → AlignRotate right Rotate in place to the right
Step left Do a lateral step to the left
Step right Do a lateral step to the right

Cross Crosswalk is in front of you, cross Search → Cross
Align → Cross

Incline up Incline the device up -Incline down Incline the device down

Table 4.2: Messages and state changes

4.5.2 Output interaction modes

In order to deliver the guidance messages to the user, the Navigator module employs
auditory feedback that can be conveyed through two separated interaction techniques:
speech and sonification (See Section 2.1). The latter can further be split in two cat-
egories: mono and stereo. Three output modes are therefore available to the user:
“speech” (Section 4.5.2.1), “mono sonification” (Section 4.5.2.2) and “stereo sonification”
(Section 4.5.2.3).

4.5.2.1 Speech output

Considering the computed feedback messages, the Navigator module delivers to the user
a set of instructions using the OS’s text-to-speech API (present on both iOS and An-
droid). Considering the fact that the subjects who participated to the evaluation were all
Italian mother-tongue, the instructions were delivered in Italian (an English translation
is available between brackets).

Table 4.3 list the feedback messages, the corresponding speech output in Italian and the
translation in English.

The speech message is reproduced only once and the user should continue with the last
suggested action until Navigator changes to another suggested action. The user can
replay the last message with a specific thumb gesture (See Section 4.5.3.

One of the main problems with speech guiding mode is that it does not convey quantified
information about the relative position between the user and the crossing. For example,
if the user is instructed to rotate on the right, he/she does not know how much rotation
is required in order to be aligned with the crossing. In theory, it could be possible to
design a speech guiding mode in which the quantity is reproduced (e.g., “rotate right

Chapter 4. Urban navigation for visually impaired users 69

Message Output Translation
Not found “Non trovato” “Not found”
Approach “Strisce davanti” “Crossing ahead”
Rotate left “Ruota a sinistra” “Rotate left”
Rotate right “Ruota a destra” “Rotate right”
Step left “Passo a sinistra” “Step left”
Step right “Passo a destra” “Step right”
Cross “Attraversa” “Cross”
Incline up “Alza il dispositivo” “Raise the phone”
Incline down “Abbassa il dispositivo” “Lower the phone”

Table 4.3: Speech messages in Italian and English

- 20 degrees”). However, this guiding mode would be much more verbose and, most
importantly, it is clearly impractical to update the quantity associated to the message
(i.e., the rotation angle in the above example) while the user is moving.

To overcome this problem, the sonification guiding modes, described in the following
sections, inform the user about the quantity associated with the instruction.

4.5.2.2 Mono sonification output

The process of user-centric analysis of the system raised another important requirement
that has a direct impact on the sound design: some people with VIB are not willing to
wear any type of headphones while walking, not even bone-conducting headphones5. For
that reason, a mono sonification output has been designed and evaluated. It delivers the
audio signal exactly in the same way to the two ears and hence is suitable to be played
by the device speaker.

In order to deliver left-right-type messages without relying on sound spatialization, low
pitch sounds were associated to a rotation/step towards the left, and high pitch sounds
towards the right. This choice can be intuitively explained considering the keyboard of
the piano from the point of view of the player (high-pitch notes on the right).

Considering the list of speech messages in Table 4.2, the following mono sonifications
have been designed and implemented:

• Rise/lower the phone. Impulsive sound with fast transients and harmonic spectrum
(similar to a short beep). Two quick repetitions with no pause. High pitch (800 Hz)
for the ’rise’ message and low pitch (200 Hz) for the ’lower’ message. The signal is
repeated increasing linearly the rate (from 1 Hz to 2.5 Hz) the closer the user gets
to the right inclination.

5Bone-conducting headphones do not occlude the ear canal, therefore do not impede the perception
of the sounds from the surrounding.

Chapter 4. Urban navigation for visually impaired users 70

• Rotate left/right. Impulsive sound with fast transients and in-harmonic spectrum
(similar to a percussive sound on metal). The left-right information is delivered
modifying the frequency of the stimulus; 300 Hz for the left rotation and 1200 Hz
for the right rotation. The repetition rate of the sound is modified linearly from
1.6 Hz (large rotation) to 3.3 Hz (small rotation), varying continuously until the
user reaches the target angle.

• Step left/right. Impulsive sound with fast transients and in-harmonic spectrum
(similar to a percussive sound on wood). Two fast (200 ms) repetitions. The left-
right information is delivered modifying the frequency of the stimulus; 300 Hz for
the left step, and 1200 Hz for the right step.

• Not found. Low frequency (200 Hz) in-harmonic sound, slow transients, two repe-
titions (300 ms the first and 500 ms the second).

• Crossing ahead. Pure-tone (single frequency with no harmonic components) impul-
sive sound. A rising scale of 6 notes (between 800 and 1700 Hz, one each 100 ms)
for a required 10 m advance, 5 notes for 8 m, 4 notes for 6 m, 3 notes for 4 m and
2 notes for 2 m. The scale is repeated every 1000 ms, modifying the message as
the person gets closer to the target.

• Cross. Impulsive sound with fast transients and in-harmonic spectrum (similar to
a percussive sound on wood). A group of three notes (one note every 150 ms) with
fundamentals at 500-800-1000 Hz is repeated every 1200 ms. If the user is required
to proceed towards the right, the frequency of the fundamentals is divided by 0.33
(lower pitch), while if towards the right is multiplied by 2 (higher pitch). The level
of the sound is rather low, but it becomes louder (up to +20 dB) the more the user
needs to modify the path towards the left or the right. When the user is at less
than 4 meters from the target, the delay between repetitions is decreased linearly
(down to 700 ms).

4.5.2.3 Stereo sonification output

Differently from the mono sonification, in the stereo sonification mode the audio signal
is delivered differently to the two ears through sound spatialization. Thus, the user can
clearly perceive certain sounds as coming from the left or from the right. This sonification
requires the user to wear a pair of headphones, and employs, for a determined set of
messages, a binaural spatialization approach [45]. Considering the low resolution of bone-
conducting headphones in terms of high frequencies (above 10 kHz) and the individual-
related features of a full Head Related Transfer Function (HRTF) simulation, this was
not implemented performing a full spatialization, but simply modifying the differences
in level and time of arrival of the sound at the two ears (i.e. Interaural Level Differences
- ILD and Interaural Time Differences - ITD). In the following, the spatialization was

Chapter 4. Urban navigation for visually impaired users 71

performed employing ILD (from 0 to 10 dB) and ITD (from 0 to 0.5 ms). For a precise
spatialization, the sound had to feature a large and dense spectrum. In order to satisfy
this constraint, it was conceived to create a set of impulsive sounds of short duration,
using an approach similar to the one employed by [98].

The following stereo sonifications have been designed and implemented:

• Rise/lower the phone. Same as mono mode.

• Rotate left/right. Same sound as mono mode, frequency 500 Hz. The impulse is
continuously repeated every 400 ms, and is spatialised on the left if the user needs
to turn left, and vice-versa if the user needs to turn right. The repetition continues
until the user can centre the sound on the front (therefore when reaching the target
angle).

• Step left/right. Same sound as mono mode, frequency 500 Hz. Sound spatialized
on the left or on the right (depending on the required direction)

• Not found. Same as mono mode.

• Crossing ahead. Same as mono mode.

• Cross. Same sound as mono mode, with frequencies 500-800-1000 Hz. The left-
right direction is given by gradually spatializing the sound on the left or on the
right, so that the task of the user is to rotate in order to keep the sound central.

4.5.3 Thumbs-only input

As previously noted, all the application input needs to be inserted with the thumb only
and with easy-to-do gestures, which is possible since only limited input from the user is
required.

Overall, the entire application requires 5 commands from the user, listed in Table 4.4

Gesture Command
Tap Repeat the last message with speech
Swipe left | right Previous | Next output mode
Swipe up Toggle detection
Swipe down Extended information

Table 4.4: Thumb gestures and associated commands

The description of the specified gestures is described in the following.

Chapter 4. Urban navigation for visually impaired users 72

Repeat the last message with speech. The Navigator automatically provides in-
structions only when strictly needed in terms of short speech output or with the sonifi-
cation techniques described previously. However, in presence of background noise when
the output is not perceived correctly or, in case of sonifications, if the user is unsure of
the meaning of the played sound, a speech confirmation can be requested by the user
with a tap on the screen. As seen in the experimental results, this functionality is of-
ten requested by the users during the learning of the sonification interaction techniques
designed.

Previous | Next output mode. Experimental results show how there is not a single
guiding mode that is the best for every visually impaired user. Thus, Navigator allows
the user to switch between the three guiding modes with horizontal swipe gestures on
the screen. Swiping to the left will change the mode to the previous one while swiping
right will switch to the next one. The order of the guiding modes is: Speech, mono
sonification, stereo sonification.

Toggle detection. The user is interested in the detection of zebra pedestrian crossings
only when interested in crossing the street. In order to reduce the battery consumption
when the user does not desire to run the detection, a gesture is available to halt or start
ZebraCrossing . Swiping up with the thumb on the screen will trigger the detection or
turn it off.

Extended information. The user can also be interested in knowing the relative po-
sition of the detected stripes in details so to have a more precise idea on how to align
correctly. With a swipe down with the thumb on the device’s touchscreen, the following
information is conveyed with the speech output: rotation distance between the user’s
direction and the crossing’s direction (e.g., 10 deg), the lateral distance between the user
and the stripes (e.g., 1.5m to the left), the frontal distance between the user and the
crossing (e.g., distant 5m) and the length of the visible crossing (e.g., 10m long).

4.5.4 Evaluation

We conducted three sets of empirical evaluations: a qualitative evaluation with blind-
folded sighted subjects (Section 4.5.4.1), a qualitative evaluation with blind subjects
(Section 4.5.4.2) and, finally, a quantitative and qualitative evaluation conducted with
three visually impaired subjects (Section 4.5.4.3). In Section 4.5.4.4 we report a discus-
sion of the empirical results.

The trials were conducted with an iPhone 5s and wireless bone-conducting headphones6.
6Headphones are Aftershoks bluez 2

Chapter 4. Urban navigation for visually impaired users 73

15°

75°

45° 0.5m

1m

1.5m

2m

3m

4m

0.5m 0.5m

2.5m

1

2

3

4

6

5

Figure 4.24: Layout of the plastic sheeting where tests were conducted. Numbers and arrows
represent starting points and starting directions, respectively.

4.5.4.1 Quantitative evaluation with sighted subjects

The quantitative evaluation was conducted with 11 blindfolded sighted subjects.

Tests were conducted in an outdoor environment where real-size zebra crossing was
represented on a large plastic sheeting. The zebra crossing used during the experiments
are compliant with Italian traffic regulations: they are composed by five light stripes
over a dark background and each stripe is 2.5m large and 0.5m wide7 (see Figure 4.24).

The outdoor environment was chosen in order to give a more realistic setting to the
tests. In order to reduce the subjects’ ability to orientate by means of environmental
sounds and audio feedback and to minimize hazards, it was decided to carry out the test
in a large courtyard. Sound of traffic and other environmental noises were audible, but
particularly diffuse in the environment, and generally not usable for orientation purposes.
For the same reason, the plastic sheeting was moved or rotated after each test, so that
it was impossible for the subjects to predict the position of the zebra crossing based on
previous trials. Also, in order to avoid that tactile or audio feedback coming from the
ground surface could give clues to help orientation, during each test, the subjects walk
or stand over the plastic sheeting, that is actually much larger than the zebra crossing
itself.

Each test was organized into three phases: learning, practice and measurements. During
the learning phase each subject had access to a document describing the test structure,
introducing ZebraCrossing and the three different auditory guiding modes. The doc-
ument was presented in the form of an HTML page, so that subjects could listen to
sonification examples8.

7Italian regulation defines zebra crossings that are similar to those used in most countries worldwide
8The document was presented in Italian. Its English translation is available here: http://webmind.

di.unimi.it/zebraexplanation/

http://webmind.di.unimi.it/zebraexplanation/
http://webmind.di.unimi.it/zebraexplanation/

Chapter 4. Urban navigation for visually impaired users 74

0
10
20
30
40
50
60
70
80

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

ti
m

e
(s

)

subject

Align
Cross

1110987654321

Figure 4.25: Average alignment and crossing time in the two rounds.

During the practice phase each subject could try ZebraCrossing with the three auditory
guiding modes. No time constraint was enforced: each subject could freely decide how
long to practice with each guiding mode until he/she felt comfortable with it. On average,
subjects tested the speech guiding mode for about 1 minute, and the other two modes
for about 2 minutes each.

During the measurement phase each subject was asked to autonomously align with the
zebra crossing and to actually cross it. These two operations were repeated for two
“rounds” of tests. During each round, three trials are conducted, one for each guiding
mode in the order: speech, mono, stereo. Each trial starts from a different starting point
with an associated starting direction. The choice of the starting points was guided by
the idea that the time and effort required to cross should be almost the same for all
starting points. So, after some informal trials, we decided to use the 6 starting points
depicted in Figure 4.24.

During the measurement phase, the ZebraCrossing app recorded a number of parameters
for each trial and in particular: the time to align (i.e., to reach the first stripe), the time
to cross (i.e., from the first stripe to the end of the crossing), the complete list of messages
and the number of tap on the screen to repeat/clarify the message.

During the measurement phase all subjects have been able to successfully complete all
crossings. The only exception is subject 6 that, during the trial with the mono guiding
mode, second round, misinterpreted a “rotate left” message and walked straight. Since
the subject was going to hit a parked car, the supervisor had to stop the test.

Figure 4.25 shows, for each subject and each guiding mode, the average time required
in the two rounds to align and cross. We can observe that 5 subjects have been able
to align and cross faster with speech guiding mode, 2 subjects with mono and 4 with
stereo. Mean alignment time is 24s, 29s and 28s with speech, mono and stereo modes,
respectively while mean crossing time is 10s, 14s and 12s, respectively. Overall, the mean
time to align and cross is 34s, 44s and 41s.

Chapter 4. Urban navigation for visually impaired users 75

Above results seem to suggest that there is not a clear difference in crossing time for the
three guiding modes. These results can be also graphically observed in the boxplot shown
in Figure 4.26a. This chart also highlights that, differently from what expected, there is
no learning effect between the first and second round. Indeed, on average, the crossing
time in the second round is slightly lower for the mono guiding mode and slightly higher
for the other two guiding modes.

Another metric that can help understanding the performance of the three guiding modes
is the total number of changes in the message to be conveyed during a crossing (in the
following we call this metric “number of messages”). Clearly, a smaller value indicates
higher performance. In this case it emerges that speech and stereo guiding modes yield
very similar results, while mono sonification requires a slightly larger number of instruc-
tions, on average (see box plot in Figure 4.26b).

Inferential statistics have been performed to identify whether the differences between
guiding mode groups are statistically significant.

Considering the time to align and cross, the data sets are normally distributed, therefore
a one-way ANOVA was conducted. The results show that there are no statistically
significant differences between the three groups (F (2, 63) = 1.178, p = 0.314).

Considering the number of messages, the data sets are not normally distributed, there-
fore a Kruskal-Wallis test was conducted. As for the time measurements, no statistical
difference was found between the three groups (χ2 = 0.164, p = 0.921).

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Speech Mono Stereo

Ti
m

e
to

 a
lig

n
an

d
cr

os
s

(s
)

Sonification mode

First trial
Second trial

Mean

(a) Time to align and cross

 0

 5

 10

 15

 20

 25

 30

 35

Speech Mono Stereo

N
um

be
r o

f m
es

sa
ge

s

Sonification mode

First trial
Second trial

Mean

(b) Number of messages

Figure 4.26: Boxplot representation (♦ symbol represents mean)

During the tests with the two sonifications, we observed that some subjects were fre-
quently requiring ZebraCrossing to read the current instruction by tapping on the device
screen. We believe that these subjects did not get acquainted with the sonification
technique and hence they needed to get constant speech feedback in addition to the soni-
fication. For example, during the second round with the stereo guiding mode, subject
4 tapped on the device almost three times for each new message received (67 taps and
24 messages). Vice-versa, other subjects used the tap gesture only sporadically. For
example, subject 5 taped only 2 times in the second round with the mono guiding mode
during which he received 15 messages in total.

Chapter 4. Urban navigation for visually impaired users 76

4.5.4.2 Qualitative evaluation with blind subjects

The qualitative evaluation was conducted in an indoor environment during an exhibition
of assistive technologies9. The evaluation was conducted by 12 blind subjects and it was
divided into three phases: learning, practice and questionnaire. The learning and practice
phases were conducted with the same methodology as for the quantitative evaluation.
The questionnaire is aimed at providing an answer to the following questions.

• How much demanding is it to follow the instructions with each guiding mode?

• Which is the preferred guiding mode?

• Which is the level of satisfaction in the use of ZebraCrossing with the preferred
guiding mode.

To provide an answer to the questions above, we designed two lists of sentences. The
former is derived from the System Usability Scale and is composed of 7 sentences, related
to the ease of use of the three auditory guiding modes. Subjects could evaluate each
sentence with a rate from 1 (‘totally disagree’) to 5 (‘totally agree’).

The latter list of sentences is derived from IBM Computer Usability Satisfaction Ques-
tionnaire (CSUQ) and is preceded by a single question, asking which is the preferred
auditory guiding mode. Then, 8 sentences follow, all referring to ZebraCrossing with
the preferred auditory guiding mode. Subjects could rate each sentence from 1 (‘totally
disagree’) to 7 (‘totally agree’).

All subjects agree that instructions provided with the speech guiding mode are simple to
follow (see Figure 4.27). There is not the same consensus about the easiness of following
instructions with the mono guiding mode: 8 subjects argue they are easy to follow (with
a rate of 4 or 5) while 4 subjects argue they are not so easy (with a rate of 3). Very
similar result for the stereo guiding mode: 8 subjects argue that instructions provided
with the stereo guiding mode are easy to follow. Interestingly, only one subjects found the
instructions provided with both mono and stereo guiding modes hard to follow. Instead,
6 users found one of the two guiding modes is hard to follow, while the other is not.
This suggests that subjects have clear and contrasting preferences. To confirm this, 50%
of the subjects argue that mono guiding mode is more intuitive than stereo, while 50%

argue the opposite. None of the subjects believes that the two sonifications have the
same level of intuitiveness.

There is another statement in which there is not a consensus among the subjects: ‘Hear-
ing sounds from the environment is more difficult in the speech mode than in mono or
stereo”. 6 subjects agree with this sentence (rate of 4 or 5), 4 subjects do not have a
clear position (rate of 3), while 2 users disagree (rate of 1 or 2).

9HANDImatica 2014, held in Bologna, Italy.

Chapter 4. Urban navigation for visually impaired users 77

0 1 2 3 4 5

The instructions in the speech mode are simple to follow

The instructions in the mono mode are simple to follow

The instructions in the stereo mode are simple to follow

The messages in the mono mode are difficult to remember

The messages in the stereo mode are difficult to remember

The stereo mode is more intuitive than the mono mode

Hearing sounds from the environment is more difficult in
the speech mode than in mono or stereo

Strongly disagree Strongly agree

Mean

Stdev

Figure 4.27: Questionnaire and results, first part.

The difference feelings of the subjects reflect in their preferred guiding mode. Three
subjects prefer the speech guiding mode, 4 prefer the mono and 5 prefer the stereo one.

In the second part of the questionnaire, devoted to establish the overall level of satisfac-
tion, subjects converge more towards a positive view of ZebraCrossing (see Figure 4.28).
Indeed, subjects argue to be satisfied by the ease of use of the application (rates 7, 6 and
5 given by 5, 5 and 2 subjects, respectively) and that they have been able to complete
the crossing using ZebraCrossing (rate 7 from 9 subjects). Vice versa, subjects mainly
agree on the fact that learning to use the application requires some effort. The sentence
“It was easy to learn to use this system” got an average rate of 5.3. Finally, most subjects
believe that the auditory interface is pleasant (9 subjects give a rate of 6 or 7).

0 1 2 3 4 5 6 7

Overall, I am satisfied with how easy it is to use this system

I can effectively cross the road using this system

I feel comfortable using this system

It was easy to learn to use this system

Whenever I make a mistake using the system.
I recover easily and quickly

The (auditory) interface of this system is pleasant

The information is effective in helping me
complete the tasks and scenarios

Overall, I am satisfied with this system

Strongly disagree Strongly agree

Mean

Stdev

Figure 4.28: Questionnaire and results, second part.

4.5.4.3 Qualitative and quantitative evaluation with visually impaired sub-
jects

The third set of tests consisted in a quantitative and qualitative evaluation conducted
with three subjects with severe visual impairments. The evaluation was conducted with

Chapter 4. Urban navigation for visually impaired users 78

0

10

20

30

40

50

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

sp
ee

ch

m
on

o

st
er

eo

ti
m

e
(s

)
subject

Align
Cross

141312

Figure 4.29: Crossing time in the 6 tests conducted by each of the 3 subjects with visual
impairments.

three subjects: one of them was blind, the other two were low visioned and not able to
recognize zebra crossing through residual sight.

The evaluation consisted in three phases. The first phase is analogous to the quantitative
evaluation described in Section 4.5.4.1. Note that the two low visioned subjects were
blindfolded.

The second phase was conducted in a urban crossroad and consisted in a set of about
10 crossings attempts. A supervisor was constantly taking care of the subject, avoiding
any hazard. At each crossing attempt the supervisor was guiding the subject to the
crossing vicinity and then asked the subject to align with the crosswalk. Once aligned,
the subject had to wait for the traffic light to turn green (this information was provided
by the supervisor) and then was asked to cross. In case the crossing did not complete
before the traffic light turns yellow, the supervisor was instructed to guide the subject
towards the sidewalk. No formal measurements were collected during this phase. The
objective is to allow the subjects to use ZebraCrossing in a real environment.

The third phase consisted in the qualitative evaluation described in Section 4.5.4.2 with
an additional set of open questions.

In phase one, all subjects have been able to successfully complete the crossing in all
attempts. Figure 4.29 shows the time to align and cross measured in phase one. For
what concerns the comparison among the three guiding modes, results are not dissimilar
to those presented in Figure 4.25. One difference is that, in the case of subjects with
visual impairments, the average crossing time is about 27s with the three guiding modes,
hence it is more than 10s faster than for blindfolded sighted user. The number of messages
is also similar: mean values are 20, 11 and 14 for the three guiding modes. In this regard
we have to underline that Subject 12 (the visually impaired subject) had some problems,
at the beginning, finding the correct inclination of the device and this caused a large
number of ‘raise’ and ‘lower’ messages in the two runs with the speech guiding mode.

Chapter 4. Urban navigation for visually impaired users 79

In phase two, all users have completed the crossing before the traffic light turned yellow.
The subjects conducted at least one test with each guiding mode, but they were left
free to choose how to conduct the majority of test and all of them choose to use their
preferred guiding mode (that is listed below).

In phase three, it emerges that the three subjects agree on the fact that the instructions
provided in the speech and the mono guiding modes are easy to follow while the same
holds only partially with the stereo guiding mode (two subjects rated 4 and the other
rated 3). Vice versa, there is not a consensus about how hard it is to remember the
sonifications; two subjects argue they are hard to remember, while Subject 14 ague the
opposite.

Meaningfully, each of the three subjects prefer a different guiding mode. Subject 11

prefers stereo guiding mode and justify the choice by clarifying that the stereo guiding
mode “provides both the spatial references and the clearness of the speech messages
that can be activated by tapping”10. Subject 12 declares to prefer the speech guiding
mode because it is less cognitive demanding. This subject comments that “you need
to get used to this app, because when you are crossing you need to pay attention to
the surrounding. With the stereo [and mono] guiding mode[s], you need to concentrate
to remember the sounds [i.e., the association between the sounds and the instruction]
and this may distract you”. Finally, Subject 13 prefers the mono guiding with these
motivations: “I like the other two [guiding modes] as well. Still, stereo [guiding mode]
requires me to concentrate, while speech messages can get confused with other sounds
in the environment”.

Finally, the last questions about the overall satisfaction denote high satisfaction by all
three subjects.

4.5.4.4 Discussion

A number of discussion points emerge from the analysis of the experimental results and
from the experience derived by the observation of the trials.

First, it is quite clear that there is not a guiding mode which is best suited for all subjects.
Indeed, while speech guiding mode allows the subjects to align and cross more quickly
on average, looking at the majority of the individual subjects (6 out of 11) it is faster
to align and cross with one or both the sonification guiding modes. More importantly,
subjects distribute their preferences for the best guiding mode almost uniformly among
the three solutions.

This result is, at least partially, consequence of the different abilities and leaning rate of
the subjects. Indeed, we observed that some subjects have been able to get acquainted

10Interview was conducted in Italian, we report here and in the following the translation of the subjects’
comments.

Chapter 4. Urban navigation for visually impaired users 80

with one of the two sonifications (or both) in the few minutes of practicing, hence taking
actual benefit from them (e.g., in terms of time to align and cross) and preferring these
guiding modes with respect to the speech one. Vice-versa, for other subjects the effort
required to understand the messages in the mono and stereo guiding mode was so high
that they simply preferred to constantly rely on the speech messages they could obtain
by tapping on the device. Clearly, these subjects prefer the speech guiding mode.

To judge the applicability of the two sonifications, we should consider that, while they
are less intuitive (all subjects believes that at least one of the two sonifications is harder
to understand than the speech guiding mode), subjects still express their appreciation for
them even after a short practice (11 out of 14 subjects prefer the mono or stereo guiding
mode). There is also another consideration: during the test no learning effect emerged.
We argue that this is due to the short duration of the trials. We also suspect that there
can be a sort of ‘tiring’ effect because the subjects are required to keep concentrated
for about 20 minutes of evaluation. Indeed, 5 of the 11 blindfolded subjects required a
longer average time to align and cross during the second round than during the first one.
We speculate that, since the sonifications are less immediate, they should take larger
benefit from the learning effect derived by frequent use of ZebraCrossing .

Another aspect is that the tests conducted on the plastic sheeting are more challenging
than those on the real environment. Indeed, when testing the app on the plastic sheeting,
no haptic or audio clue is available. Vice-versa, when crossing on the road there are a
number of hints that can help a person with VIB to orientate with the crossing, including,
for example, the sidewalk and traffic noise.

One final remark is related to the unexpected high dispersion of the quantitative results
with respect to the mean. Indeed, relative standard deviation is 41%, 47% and 40%

for speech, mono and stereo guiding modes, respectively. Combining these data with
the experience derived from the observation of the experiments, we can highlight two
important facts. First, some users are more confident and hence move faster (e.g., subject
9) while others are more cautious (e.g., subject 5) and tend to move and rotate more
slowly. Second, there are some human errors that can lead one subject to have different
results in two tests with the same guiding mode. For example, subject 4 completed the
two trials with stereo guiding mode in 28s and 104s, respectively: in the second round
the subject misinterpreted a message so he believed that the crossing was on his right
while actually it was on his left. This caused the align process to take much longer (78s
in total) than in the other test with the same guiding mode.

Chapter 4. Urban navigation for visually impaired users 81

4.6 Zebra crossing detection from satellite and street view
imagery

In the following, the Satellite Macronavigation module is described. It detects zebra
crossings from satellite and street view imagery gathered from on line map services.
Currently Google maps and Google street view imagery is used, but the work can be
extended to consider other data sources. The developed solution complements the smart-
phone based detection described in the previous sections with mainly three goals in mind.

First, to signal to the user, during the navigation, the presence of crossings in proximity
and to guide the user towards a crossing still too distant to be detected. Also, the
knowledge that a crossing is nearby can be used to confirm that the visual detection by
the Recognizer step is correct.

Second, to mark the crossings on map services and share the information with the users.
The knowledge of the existence of crossings can be useful to people with visual impair-
ments during the route planing.

And third, similarly to the work of Hara et al. [64], as a first step in the design of a
crowd-sourcing platform for describing the surroundings of each detected zebra crossing
in terms of nearby objects and features. This information can be very helpful to a visually
impaired person for finding the crossing and navigate towards it.

Google maps and street view API are usable only through web browsers so parts of the
algorithm are javascript snippets executed on web browser while detection components
are developed in c++.

The algorithm has 4 steps: Satellite imagery acquisition (Section 4.6.1), satellite de-
tection (Section 4.6.2), street view selection (Section 4.6.3) and street view detection
(Section 4.6.4). The evaluation of the Satellite module is described in Section 4.6.5

4.6.1 Satellite imagery acquisition

This step identifies areas on which to apply the detection. First, the satellite imagery
from Google maps are downloaded given an area. The resolution of the downloaded
images is the maximum available for a given area. The images of neighboring areas
have an overlap in order to detect also crossings that would otherwise be on the border
between two images. The download is limited to street areas (as in Figure 4.30b), which
lessens disk usage, avoids possible false positives and reduces execution time.

The step that limits the research to street areas works as follows: First, the algorithm
computes the distance d of the image center point from the closest street (information
gained from Google maps API). If d is less than half the diagonal of the image id, then

Chapter 4. Urban navigation for visually impaired users 82

(a) Distance from the road (b) Area with stripes (c) Area without stripes

Figure 4.30: Downloaded satellite images

the image will have a street in it and thus it is downloaded. Figure 4.30a shows an image
of a crossing whose center is at d < id from the closest street while Figure 4.30c shows
an area discarded by the validation procedure.

4.6.2 Detection on satellite images

In the second step, a cascade classifier recognizes the zebra crossings in an input satellite
image (Figure 4.31a). The detection algorithm first detects line segments in the image
through a custom version of EDLines line segment detector [97]. The EDLines detection
proceeds as follows:

First, the image gradient and magnitude is computed (Figures 4.31b, 4.31c) and local
maxima are extracted as anchor points. Then, shown in Figure 4.31d, starting from
anchors, nearby points are linked to form pixel chains, which are then fitted to line
segments through least squares line fitting (Figure 4.31e) and validated perceptually by
Helmholtz principle [99] (Figure 4.31f).

The segments are then clustered according to slope, horizontal and vertical distances
in the same way as in Section 4.4.4 and then they are grouped in candidate crossings
(Figure 4.31g). In Figure 4.31h, the crossings are validated based on the color difference
between white and black stripes, following the procedure described in Section 4.4.5.
Finally, the area of the crossing, shown in Figure 4.31i, is computed.

4.6.3 Street view imagery selection

In defining the street view to use for the detection, often the closest street view is not
the most suitable one. If the position of the panorama is exactly on the crossing, it is
possible that the area of the crossing is covered by the image of the Google car during
the capture of the panorama. The imagery interpolates the surrounding data to cover
the missing area but, as seen in Figure 4.32a, the results are not usable for the detection.

Chapter 4. Urban navigation for visually impaired users 83

(a) Original image (b) Magnitudes (c) Orientations

(d) Anchors & edges (e) Segments (f) Validation

(g) Grouping (h) Color consistency (i) Crossing

Figure 4.31: Steps of the EDLines algorithm and satellite detection

Thus, the solution is to view the crossing from streetview panoramas at a certain distance.
The solution uses the Google street view javascript api, through which, given the id of
a panorama, it is possible to retrieve the links of the available neighboring panoramas
(Figure 4.32b). So both the pictures at the closest panorama to the desired coordinates
and at the neighboring panoramas are downloaded for the following detection. The
heading of the panorama image is computed from the GPS coordinates of the panorama
and the target crossing detected during the previous stage.

Chapter 4. Urban navigation for visually impaired users 84

(a) Interpolation error (b) Nearby streetview

Figure 4.32: Closest street view has an interpolation error, a nearby street view doesn’t

4.6.4 Detection on street view images

The last step detects the crossings in street view images in the areas suggested by the
satellite detection. First, the ground plane in the street view image is reconstructed.
Given that the camera parameters do not change, once the reconstruction is computed,
it can be used also in other images. The technique used for the metric reconstruction
(Liebowitz and Zisserman [94]) requires the knowledge of the plane’s vanishing line (the
horizon) for the affine rectification and two known angles or proportions in the image for
the metric rectification.

The horizon is always horizontal in the street view imagery and it can be positioned on the
center of the image by enforcing the pitch parameter of the panorama to 0. For the other
constraints it is sufficient to have the knowledge of a square on the ground plane. Indeed,
in this case it is possible to choose a square of known dimensions, as in Figure 4.33a,
thus knowing that the sides of the squares are equal and that the angle between any of
the sides is π gives the constraints required for the rectification and knowing exactly the
length of the sides to be 4m allows to scale the reconstructed ground plane to known
distance proportions. With this information the computation follows straightforwardly
the suggested method [94] and Figure 4.33b is obtained.

Once the ground plane is reconstructed, it is possible to map on the image the crossings
found on the satellite imagery during the step 2). Indeed, since the coordinates of the
street view camera and of the crossing are known, with a simple scaling and translation
transformations, it is possible to map the detected crossing on the street view image
(Figures 4.34c, 4.34b).

This information can be used to limit the research area inside the street view image
in order to reduce the execution time and to improve the precision of the solution by

Chapter 4. Urban navigation for visually impaired users 85

(a) Known square (b) Rectified plane

Figure 4.33: Rectification is calculated by knowing a square in the street view image

discarding areas that should not contain crossings (Figure 4.34d). Finally, in Figure 4.34e,
the crossing is detected in the street view image with a cascade classifier similar to the one
used for the mobile device-based detection of zebra crossings, described in Section 4.6.2.

(a) Satellite search area (b) Reconstructed image search area

(c) Search area (d) Segments (e) Crossing

Figure 4.34: Steps of the detection on street view imagery

4.6.5 Evaluation

While generally the satellite image detection results in clean, complete crossings, as in
Figure 4.31, in some cases the detection can be penalized by damaged or covered stripes.

Chapter 4. Urban navigation for visually impaired users 86

Figure 4.35 shows some of the common defects in the detection.

(a) Damaged stripes (b) Moving objects (c) Fixed objects (d) Shadows

Figure 4.35: Errors in detection from satellite images

Another common problem is the incorrect mapping between the crossing’s coordinates
in the satellite image and in the street view (Figure 4.36). The reason behind this error
is that the coordinates of street view panoramas are clipped to the closest street by the
google maps API. Thus, there is an error between the actual coordinates of the street
view and the one exposed by the API. In 19 panoramas manually positioned at the
correct coordinates, the distance from the shown coordinates is of 3m in average and up
to 6m.

In this set it is worth noting that out of 19 images, 10 preserve an overlap between the
area of the crossing in the image and the estimated area that is over 50%, 5 have an
overlap that is less that 50% and 4 have no overlap.

(a) 3m error (b) 3m error rectified (c) 6m error (d) 6m error rectified

Figure 4.36: Errors in positioning of 3m and 6m

A more extensive evaluation of the satellite imagery detection module considered an
area of 1.71km2 in San Francisco, CA, United States. The imagery corresponding to the
area was captured and comprised a dataset of 2350 images 11. The satellite detection
was tuned in such way to favor the recall score. Thus, of the 138 zebra crossings in
the area, 135 were correctly detected (For example, see Figure 4.37a), while 3 crossings
were not, yielding a recall score of 0.978. A significant amount of false positives were
to be expected. Indeed, there were 45 false positive detections, yielding a precision
score of 0.75. However these corresponded to patterns that either were positioned in
unlikely locations or were due to the particular satellite point of view. For example, in

11The area and the detection results can be seen at webmind.di.unimi.it/satzebra/

http://webmind.di.unimi.it/satzebra/

Chapter 4. Urban navigation for visually impaired users 87

Figure 4.37b a pattern was detected on the roof of a building, while in Figure 4.37c the
pattern was found on a window of a house. These errors were easily filtered out by a
following street view detection step yielding no actual false positives (i.e., a precision
score of 1).

(a) Correct detection (b) False positive on the roof (c) False positive on a window
of a house

Figure 4.37: Examples of correct and erroneuos detections of zebra crossings from satellite
imagery

Chapter 5

Conclusions and future work

The research presented in this dissertation tackles the issue of spatial understanding and
cognitive mapping for persons with visual impairments through the usage of assistive
technologies developed on smartphones and mobile devices. In particular, two research
fields are explored. Section 5.1 outlines the research conducted in the field of exploration
of abstract bi-dimensional spaces, spatial concepts and spatial relations in didactic assis-
tive technologies. Section 5.2, instead, draws the conclusions of the research in the field
of assistive technologies used to improve the cognitive mapping during the independent
mobility in urban environments.

5.1 Didactic and educational tools

In the field of assistive didactics, the research focused on techniques to convey spatial
information to visually impaired students through audio channel. Two different audio-
based sensory substitution interaction paradigms were explored. The first one, called
“sonification interaction”, is based on sonification techniques and leverages different qual-
ities of the sound, such as loudness and pitch, to convey the spatial information (e.g.,
distance or size of objects) about the explored space to the user. The second one, dubbed
“object-based interaction” adopts more complex, evocative sounds or speech as tags to
identify objects on a two-dimensional interface, through an exploration technique akin to
screen readers commonly used by persons with visual impairments for the accessibility
of touch screens on mobile devices.

The two techniques were evaluated through user-based testing and it was shown that
each technique applies to different use cases. The “sonification interaction” approach is
more suitable for the recognition of a small number of complex shapes, when the position
information has to be relayed with precision and when the resolution of the investigated
space is high. Another typical use of sonification is to convey the relative position of

88

Chapter 6. Conclusions and future work 89

objects in space with respect to the user. Vice-versa, the “object-based interaction”
has been successfully adopted when the spatial resolution of the objects is lower, but
objects themselves have intrinsically different properties that are easily conveyed vocally
or through sound cues.

5.1.1 Elementary grade math and geometry learning

The “object-based interaction” approach has been designed into an interaction technique
which has been implemented inMathMelodies, a commercial software for teaching mathe-
matics and geometry to elementary school children with and without visual impairments.
The solution has been evaluated with three visually impaired and two sighted children
which, after roughly 2 minutes of supervised training, were able to complete all the
exercises proposed successfully.

Currently, the software is freely available on the AppStore for iOS devices and it has been
downloaded more than 700 times in the first two months after the English version has
been released. Clearly, a commercial release allows to reach a higher numbers of users
and testers than a similar research limited only to the academic field. As a future work we
intend to take advantage from the software distribution to the public and automatically
collect usage data for the evaluation of the proposed solution.

Another future improvement consists in developing a collaborative system that allows the
final user (or the teachers) to directly collaborate in the development of the app content.
The definition of this crowdsourcing system can drastically reduce the development costs
of the next versions of MathMelodies and ease the scalability of this solution.

5.1.2 Function graph exploration

The “sonification interaction” approach has been developed in the context of a tablet de-
vice prototype that allows visually impaired students to explore function graphs. In
particular three interaction modes based on sonification have been designed, two of
which use propriception by taking benefit from the direct interaction with the tablet
touchscreen.

The experimental evaluation was conducted with 7 visually impaired users and compares
the proposed interaction paradigm with alternative approaches for the function graph
exploration: tactile paper and another sonification software, “AGC”. The evaluation
shows that the proposed solution, after only 5 minutes of training, allows the users
to have a much better understanding of the the function graph than existing solutions.
This is the case even with tactile paper, with which the users were all well acquainted.

As a future work we intend to focus on each sonification technique proposed, compare
them to other solutions and identify the approach that best suites each exploration

Chapter 6. Conclusions and future work 90

mode. We also plan to engineer and distribute the solution as a commercial application.
Experience with other didactic software show how this would allow a larger distribution
of the solution, which in turn can have positive effects on future research. Indeed, by
remotely collecting usage data, it could be possible to evaluate the solution with a much
larger number of users.

5.2 Unassisted urban navigation

The cognitive mapping of the surrounding space during the independent mobility of
persons with visual impairments faces important issues. First, purely visual elements,
such as writings and signs, cannot be accessed through haptic or acoustic means. Thus,
these cues are not considered by a visually impaired person during way-finding. Also,
objects outside the haptic vicinity of the visually impaired person (that is the area that
can be explored by touch or with the white cane) are also ignored during exploration
and can only be accessed after a approaching them. Additionally, in case of mobility in
urban environments, approaching distant objects is not a trivial task and, in areas with
vehicular traffic, poses danger to the visually impaired.

The first goal of the research therefore consisted in identifying distant, visual cues in
order to assist the user in the correct cognitive mapping of the surroundings and navi-
gation. In particular, the issue of zebra pedestrian crossing detection was tackled. The
approach leveraged the satellite imagery and the camera and spatial sensors present on
smartphones and mobile devices to identify the stripes of the zebra crossing visually.

The second goal focused on conveying the information related to the detected crossings
in such a way to guide the user in a safe, efficient and unassisted way. Different speech
and sonification based interaction paradigms were designed, developed and evaluated for
this goal. The user evaluation shows that the techniques proposed are indeed feasible for
assisting a visually impaired user in autonomous urban way-finding.

5.2.1 Zebra crossing detection

For the purpose of detecting zebra pedestrian crossings, three different detection tech-
niques were designed and implemented. The first technique consists in a purely computer
vision-based detection on images captured by a mobile device’s camera. An alternative
approach that also leverages accelerometer and gyroscope data was engineered and im-
plemented.

The two approaches were thoroughly evaluated on a dataset of 4015 frames consisting
in camera images (1877 with and 2138 without crossings), accelerometer and gyroscope
data. The evaluation shows how the proposed solutions compare favorably with other

Chapter 6. Conclusions and future work 91

solutions available in literature. The evaluation also highlighted how the inclusion of
accelerometer and gyroscope data both enhances the efficiency and the quality of the
detection. In particular, a significant improvement in recall was observed (from 0.7 to
0.9). Also, the execution time of the procedure was drastically improved (from 74ms to
16ms).

A third detection technique, leveraging satellite and street view imagery for the zebra
crossings detection, was engineered, developed and evaluated. This approach is orthog-
onal to the other two techniques as it does not allow to detect the crossings in the user’s
immediate vicinity (under 20m). Instead, it is leveraged to notify the user of the distant
crossings (20m to 100m) if the user is interested in crossing the street and no nearby
crossings are available. This solution was evaluated with a dataset of 2350 satellite images
of a 1.71km2 area in San Francisco, CA, United States yielding promising results.

As a future work, the detection of other visual cues, such as traffic lights (its position
and its current color), will be investigated. Additionally, the solutions proposed will be
integrated in a comprehensive urban navigation tool for visually impaired users.

5.2.2 Speech and sonification interaction

For the purpose of guiding the users towards and over zebra pedestrian crossings, three
interaction paradigms were designed: one speech based and two sonification based inter-
action techniques, which were evaluated with visually impaired and blindfolded sighted
subjects. Experimental results show that ZebraCrossing prototype can effectively guide
people with VIB in road crossing with any of the three auditory guiding modes. Most
subjects (75%) declare to prefer one of the two sonification modes with respect to the
speech mode. This result supports the usefulness of the two sonifications, also considering
that subjects prefer the sonifications despite being less immediate to use. At the same
time, results show that there is not a single guiding mode that is the best for every user.
Indeed, some users prefer the immediate understanding of the information received with
speech output wile others favor the minimal intrusiveness of the sonification approaches.
Finally, while some users are comfortable with bone conducting headphones used during
the tests, speech and mono sonification can be also used by individuals are not willing
to wear headphones while walking autonomously.

Another promising guiding mode is being currently investigated. Each new message is
conveyed with a speech message or distinct sound; additionally, the quantity associated
with the message is conveyed to the user through sonification. So, for example, it would
be possible to have a ‘rotate right’ message followed by a sound that informs the users
about the quantity of rotation and that changes dynamically while the user rotates. The
main difference with respect to the sonifications presented in this contribution is that

Chapter 6. Conclusions and future work 92

there is only one sonification for all messages, and this should simplify the process for
each user to get acquainted with the new guiding mode.

The results presented in this contribution open several directions in research and devel-
opment. The three guiding modes presented in this paper find their direct application
in commercial software to support road crossing. Once the software is available on the
market, it will be possible to remotely collect usage statistics from a large population.
For example it will be possible to monitor how many people use each guiding mode, to
collect statistical data about crossing performance or how many people use the applica-
tion with headphones. Even more significant, remote monitoring of real usage will make
it possible to collect data about long term learning effect, which is a very important
aspect that was not practically possible to take into account in this contribution. In
turn, information collected remotely will guide the design of future sonifications.

Appendix A

Horizon computation from gravity
acceleration data

The horizon is the ground plane vanishing line and, as such, it is used in two ways by
the zebra crossing detection techniques described in Chapter 4.

First, during the segment detection on the images with perspectively distorted groud
plane (i.e. From smartphone or street view), the horizon is used for speeding up the
computation by ignoring the area above the it since, clearly, no zebra crossings will ever
be found there.

Second, in Section 4.3.2, the horizon is also used during the ground plane reconstruction
step for computing the rectification matrix.

To compute the horizon line equation inside the image we need the slope θ of the horizon
line and a point through which the horizon passes. To obtain both, our technique re-
quires the device’s attitude in space, the image image size (width iw and height ih), the
image principal point p and the half horizontal and vertical angles of view, βx and βy.
While the image size is known and the attitude is derived from the gravity acceleration
measurements, the other three values can be obtained from the camera sensor size (sensor
width Sw and height Sh) and the camera’s intrinsic parameters that are fixed for each
device and can be obtained from the camera producer or through camera calibration.
Table A.1 shows the matrix of intrinsic parameters.

Note that, for the camera we used in our experiments, it holds that the skew coefficient
γ is zero and that the focal length f is the same on both axes (i.e., f = fx = fy).
From these values, we can easily obtain p = [u0, v0] (where u0 and v0 are specified in the
intrinsic parameters) and βx = atan(Sw/2f) and βy = atan(Sh/2f).

93

Appendix A. Horizon computation from gravity acceleration data 94

fx γ u0
0 fy v0
0 0 1

Table A.1: Intrinsic camera parameters matrix.

The gravity acceleration components ax and ay measure the roll inclination of the de-
vice (see Figure 4.9b) with respect to the ground plane. This value corresponds to the
inclination of the horizon on the device’s screen. Consequently: θ = atan2(ax,−ay).

The pitch inclination of the device (see Figure 4.9b) with respect to the ground plane,
captured by the gravity acceleration component az, is used to find the point through
which the horizon passes. In case of a perfectly vertically held device, the horizon passes
through the point:

hp =

(
u0,

ih · az
2 · sin(βy)

+ v0

)
For example, considering the principal point to be roughly at the center of the image,
when az = 0 the horizon is at the center of the screen. Similarly, when az = sin(βy)

(i.e: the inclination is the same as the field of view of the camera) the horizon is at the
bottom of the screen and when az = − sin(βy) it is at the top of the screen.

Generalizing for any orientation of the device we obtain:

hp =

[
sin(θ) · iw · az
2 · sin(βx)

+ u0,
cos(θ) · ih · az
2 · sin(βy)

+ v0

]

Given the inclination θ and the point hp, the horizon line equation is:

hl = sin(θ) · x+ cos(θ) · y − sin(θ) · hpx − cos(θ) · hpy

Appendix B

Comparison of line segment
detection methods

Three segment detection algorithms were implemented, aiming for a fast and accurate
detection: The well known Hough transform based probabilistic line segment detector
(Appendix B.1), LSD (Appendix B.2) and EDLines (Appendix B.3).

A detailed evaluation of the implementations of the three detectors can be found in
Appendix B.4.

B.1 Hough probabilistic line segment detector

The Hough line segment detection is divided in two steps. In the first step, described in
Section B.1.1, the edge is computed with a custom version of the canny edge detection.
In the last step (Section B.1.2, the Hough probabilistic line segment detector is applied
on the edge map.

As a preprocessing step, the input picture is smoothed for filtering out imperfections in
the crossing’s paint or shape.

B.1.1 Custom canny edge detection

The OpenCV implementation of the Canny edge detection is used: non-maxima suppres-
sion and hysteresis thresholding are applied on a sum-image of horizontal and vertical
Sobel edge detections However, the adopted implementation differs from the original
Canny algorithm: it differentiates between the orientation of the intensity gradient in
order to distinguish the starting of a stripe from the ending of a stripe.

95

Appendix B. Comparison of line segment detection methods 96

This is obtained by using the first order sobel operator for diferentiating between the
increasing and the decreasing gradients instead of the second order sobel. The canny
edge mapping is then applied on high and low values of the sobel image generating two
different images based on the gradient orientation.

Figure B.1: Custom canny edge detection isolates increasing and decreasing gradients

B.1.2 Hough line segment detection

The Hough transform-based line segment detection [100] conducts the detection through
the use of a voting procedure executed for each pixel of the input binary image.
The voting procedure is conducted in a parameter space with the number of dimensions
equal to the number of unknown parameters of the feature to be detected. In case of
lines, given the slope-intercept equation form

y = θx+ ρ

the unknown parameters are the slope θ (Theta) and the y-intercept ρ (Rho) of the line.
Each point on the input image specifies the most probable parameters (or a set of the
most probable parameters) of the line it belongs to by exploring its neighboring points.
Different points casting the same parameter vote possibly lay on the same line. During
the hough step, the parameter space is computed in range θ ∈ (−π, π] instead of [0, π)
so to accomodate the distinction between line orientations introduced in the previous
section. The group of segments that were obtained from the increasing gradient cast
votes in [0, π) range while the decreasing gradient segments vote in [pi, 0).

The local minima and maxima in the parameter space (high number of votes for the
same parameter pairs), exceeding a specified threshold, are extracted from the image
as lines as per Figure B.2. Afterwards, the extracted lines are cut into line segments
corresponding to the edges of the edge map with the usage of a minimum segment length
and a maximum gap threshold.

Appendix B. Comparison of line segment detection methods 97

Figure B.2: Hough parameter space peaks correspond to the detected line segments.

B.2 LSD

A linear-time (with respect to the number of pixels) line segment detection algorithm
named “LSD: A Line Segment Detector”, using only the gradient orientation (without
the gradient magnitude information), has been studied by Grompone von Gioi et al. [92]
The algorithm does not depend on an initial edge detection and requires no parameter
tuning. Regarding the quality of the detection, Grompone von Gioi at al. state that
on average there is one false positive segment per image and that the discarded line
segments are likely to appear in noise and therefore can be discarded safely.

The detector is structured in 3 stages: partitioning of the picture into line-support regions
(Section B.2.1), individuation of the line segments (Section B.2.2) and validation of the
found line segments. Since conceptually, the validation is identical to the one used
in EDLines algorithm, it will be described along with the definition of the EDLines
algorithm (Section B.3.3).

B.2.1 Line support regions

The first step detects the gradient orientation for each pixel of the picture and groups
adjacent areas that share the same gradient orientation up to a certain tolerance. This
process is executed by starting from pixels with strong edge intensity and greedily con-
nects close regions (Figure B.3).

Appendix B. Comparison of line segment detection methods 98

Figure B.3: Gradient computation, support regions extraction

B.2.2 Segment identification

Afterwards, the detected regions are approximated to rectangles according to the global
gradient direction and distribution of the region. Finally, the obtained rectangles are
extracted as line segments (Figure B.4).

Figure B.4: Rectangle definition, segment extraction

B.3 EDLines

The implementation of the EDLines algorithm adopted in Section 4.3.3, follows the
description by Akinlar and Topal [97] but also introduces new optimizations. It is divided
in three steps. In the first step, described in Section B.3.1, the edge map is computed
as chains of pixels. The chains are then processed to extract straight line segments
(Section B.3.2). Finally, Section B.3.3 describes the segments validation based on the
Helmholtz principle.

B.3.1 Edge Drawing

The Edge drawing step computes an array of chains of pixels starting from the input
image. Differently from previous pixel chain based methods [101], which compute the
edge map of the image and extract the chains of pixels as two steps, EDLines computes
the edges directly as pixel chains, resulting in clean and contiguous edges. The algorithm,

Appendix B. Comparison of line segment detection methods 99

(a) Original image (b) Magnitudes (c) Orientations

(d) Anchors, edges (e) Segments (f) Validation

Figure B.5: The steps of the EDLines algorithm

called “Edge Drawing” [102], can execute most operations in one pass, thus having lower
computation time. The algorithm is implemented as following steps:

0 - preprocessing. A Gaussian filter is applied to the input image for noise suppres-
sion. Differently from [97], during the parameter tuning for the zebra crossing detection,
the best results were obtained with a kernel size k = 9 and σ = 1

1 - gradient magnitude and direction computation. For each pixel (x, y) of the
image, having the intensity I(x, y), the gradient direction d(x, y) (Figure B.5c) and
magnitude m(x, y) (Figure B.5b) are calculated. For the gradient magnitude, the same

Appendix B. Comparison of line segment detection methods 100

operator as in the original definition of the algorithm is used [97]:

m(x, y) =

√
mx(x, y)

2 +my(x, y)
2

Where
mx(x, y) =

I(x+ 1, y)− I(x, y) + I(x+ 1, y + 1)− I(x, y + 1)

2

my(x, y) =
I(x, y + 1)− I(x, y) + I(x+ 1, y + 1)− I(x+ 1, y)

2

Instead, for the gradient direction, the gradient is computed as:

d(x, y) = atan2(mx(x, y),my(x, y))

where atan2 is the two argument arctangent function, available in the standard C math.h
library. This way, the gradient directions range in [0, 2π) instead of [0, π), thus distin-
guishing between the gradients having the same direction and opposite orientations. This
allows to differentiate when the color changes from dark to light (e.g., from dark stripes
to light) and vice-versa. Also, given that the atan2 (and atan) operations are computa-
tionally expensive, a 16-value LUT approximation has also been implemented. As shown
in Section B.4, the speed increase is significant and the detection does not deteriorate.

P

(a) Horizontal edge

P

(b) Vertical edge

A

(c) Horiz. chain

A

(d) Vert. chain (e) Chaining procedure

Figure B.6: Edges, chains and chaining procedure

2 - anchors computation. Local maxima in the gradient magnitude map are marked
as anchors. First, the edge orientation is calculated. Ifmx(x, y) > my(x, y) then the edge
is considered vertical, otherwise it is horizontal. For a point P = (x, y) on a horizontal
edge the neighbors are (x, y− 1) and (x, y+1) (Figure B.6a), whereas on a vertical edge
the neighbors are (x+1, y) and (x−1, y) (Figure B.6b). Then, if the examined point has
a gradient stronger by a threshold than both neighbor points, it is considered an anchor.

Appendix B. Comparison of line segment detection methods 101

As an optimization, the anchors are saved as an array. This way, when computing the
edges, the anchor array is iterated, instead of scanning the whole image again.

3 - chain linking. Starting from the anchors, the algorithm searches neighbor pixels
with the same edge orientation, and links the one with the strongest gradient magnitude.
For example, in Figure B.6c, the neighbor points are searched horizontally from the
anchor A, while in Figure B.6d they are searched vertically. The new pixel becomes the
new anchor and the search continues from there. As seen in Figure B.6e, starting from
an anchor point, the procedure iterates until there are no valid pixels on the path or the
path reaches another path or image border. In Figure B.5d the resulting edges and their
initiating anchors (a small subset of initial anchors) are shown.

The operations 0) to 2) are applied on all the pixels of the image and can actually be
executed efficiently in one pass, while the operation 3) is executed only on a small subset
of points. Thus, the computation time is linear in the number of pixels of the image and,
as shown in Section B.4, lower than in the other examined algorithms.

B.3.2 Line fitting

The line fitting algorithm computes line segments from chains of pixels obtained in the
previous step (See Figure B.5e). The original EDLines algorithm uses the least squares
line fitting technique (Figure B.7a). This approach first computes a line such that the
sum of the squares of the vertical distances of the points to the line is minimized. In this
implementation, instead, the orthogonal regression method is used (Figure B.7b).

(a) Least squares line fitting (b) Orthogonal regression

Figure B.7: Least squares and orthogonal line fitting procedures

This approach minimizes the sums of the squares of the orthogonal distances of the points
to the line. Thus, it is suitable also for the fitting of vertical line segments, where the
vertical distances are imprecise or unavailable. Afterwards the line is cut to obtain the
line segment.

Precisely, from the initial chain of pixels, a small initial valid line segment is searched
and then expanded until the orthogonal regression error is lower than a threshold. In
the original algorithm the expansion is done incrementally one pixel at a time. Instead,
this implementation can also expand the line segment dichotomically in a greedy fashion.

Appendix B. Comparison of line segment detection methods 102

That is, given a chain of pixels (Figure B.8a), the algorithm tries to obtain a good initial
line segment starting from the beginning of the chain. If the starting pixels are not
aligned (Figure B.8b), they are discarded until an initial strong line segment is found
(Figure B.8c). The algorithm tries to match as much as possible of the remaining chain
immediately (Figure B.8d). If the expansion fails, the number of points for the expansion
is halved and the expansion is tried again (Figure B.8e). The procedure iterates until
the expansion fails with a step of 1 pixel and the final good line segment is returned
(Figure B.8f). This way, small imperfections, which might halt the expansion in the
beginning, have a lower impact. Thus, longer segments are created while the cost of the
operation is small with respect to the total execution time of the algorithm.

(a) Edge chain (b) Bad initial seg-
ment

(c) Good initial seg-
ment

(d) Cannot include
all

(e) Included portion (f) Final segment

Figure B.8: Greedy expansion

B.3.3 Validation

The validation procedure follows the technique suggested by Desolneux et al. [99]. In
this technique, line segment is considered valid if its probability in a random noise model
is low. For this, the concept of the “Number of False Alarms” (NFA) is used. A segment
of length n and having k aligned points is valid only if NFA(n, k) ≤ ε where ε defines the
maximum number of false detections of the given segments in the image. This value, in
accordance to Desolneux et al. [99], is set to 1, which corresponds to one false detection
per image. NFA is computed as follows:

NFA(n, k) = N4 ·
n∑

i=k

(
n

i

)
pi(i− p)n−i

where N4 defines the number of possible segments in a N×N image, and the probability
of two points being perceptually aligned p = 1/8 = 0.125, since, perceptually, two points
are aligned if their angles are within π/8 of each other.

Akinlar and Topal [97] use this formula also to compute the minimum length a segment
in an image must have for being perceptually valid, even if all its points are aligned.

Appendix B. Comparison of line segment detection methods 103

Indeed, by setting n = k, it is possible to find n given N :

n >= −4log(N)/log(p)

Once n has been computed, it is possible to discard segments shorter than n, even without
computing the alignment of their pixels. In Figure B.5f, valid segments are drawn.

B.4 Comparison and evaluation

Figure B.9a shows the execution times and Figure B.9b the average number of segments
detected per image on the ZebraRecognizerTestSet11 run on an Intel i5 2450M 2-core
(4-thread) machine with Gentoo linux 3.14.14 kernel. The execution times of this imple-
mentation of the EDLines algorithm compare favorably to the openCV implementation
of the Hough probabilistic line segment detector and even more so with respect to the
previously adopted LSD algorithm. EDLines is 2 to 3 times faster than LSD at any
resolution, while the difference with Hough is constantly from 2ms to 8ms (avg. 4ms).

0

20

40

60

80

100

120

140

160

90
x1

60

18
0x

32
0

27
0x

48
0

36
0x

64
0

45
0x

80
0

54
0x

96
0

63
0x

11
20

72
0x

12
80

E
xe

cu
ti

on
 ti

m
e

(m
s)

EDLines
LSD
Hough

Image resolution

(a) Execution times

0

100

200

300

400

500

600

700

90
x1

60

18
0x

32
0

27
0x

48
0

36
0x

64
0

45
0x

80
0

54
0x

96
0

63
0x

11
20

72
0x

12
80

N
um

be
r

of
 li

ne
 s

eg
m

en
ts

Image resolution

LSD
Hough

EDLines

(b) Number of segments

Figure B.9: Comparison between EDLines, LSD and Hough

At 320×180 resolution, most of the computation time (73%, 4.39ms) is spent in gradients
and anchors computation (See Figure B.10). Pixel chaining requires 18%, or 1.16ms while
orthogonal line fitting takes 7% of the execution time, corresponding to 0.46ms. The
validation step weights only for 3.6% on the computation time (0.22ms). Figure B.10 also
shows the impact of the optimizations on the execution time of the detector. Specifically,
the use of the anchor array instead of the anchor image and the use of the LUT table
for the atan2 computation save about 1.1ms each.

For all three algorithms the number of detected segments is linearly proportional to the
image resolution (Figure B.9b). In particular, EDLines detects half the segments that
LSD detects at a given resolution. There are two reasons for this. 1) EDLines does not
detect very short segments, often detected by LSD (Figure B.11) and 2) the greedy line

1http://webmind.di.unimi.it/ZebraRecognizerTestSet/

http://webmind.di.unimi.it/ZebraRecognizerTestSet/

Appendix B. Comparison of line segment detection methods 104

0
1
2
3
4
5
6
7
8
9

10

Defa
ult

One
 by

 on
e f

itt
ing

Lea
st

sq
ua

res

Atan
 L

UT

Atan
2 g

rad
. d

ir.

Atan
 gr

ad
. d

ir.

Anc
ho

rs
im

ag
e

E
xe

cu
ti

on
 ti

m
e

(m
s)

Gradients and anchor computation
Pixel Chaining
Orthogonal line fitting
Validation

Figure B.10: Cost of different operations of the segment detection

fitting of this implementation often identifies single longer segments rather than many
smaller ones (Figure B.13b). Hough, having a global notion of the structure of the image,
finds the intersecting segments easily and generally tends to produce 2 to 3 times less
line segments than EDLines and 5 to 6 times less segments than LSD.

(a) Image with many intersecting lines in fore-
ground

(b) Hough detects foreground segments better
but not the background structures

(c) Lsd finds small portions of foreground seg-
ments and the background structures

(d) EDLines finds none of the foreground
structure but finds some background segments

Figure B.11: The effect of foreground intersecting lines on Hough, Lsd and EDLines

On the other hand, the Hough based detector often detects many false positive segments

Appendix B. Comparison of line segment detection methods 105

and fails to grasp the structure of the underlying figure. In Figure B.12 an anisotropic
structure such as a tree causes the Hough detector to identify many false positive seg-
ments, whereas EDLines detects much less even with respect to LSD.

(a) A tree canopy is an
anisotropic structure

(b) Hough finds many
long false positives

(c) Lsd finds small spo-
radic false positives

(d) EDLines finds only
few false positives

Figure B.12: Anisotropic structures cause some false positives in LSD and many in Hough

As seen in Figure B.10, the cost of the Orthogonal regression and Greedy chaining is
negligible, while solving two problems. The Orthogonal regression (Figure B.13d) detects
vertical segments lost during Least squares line fitting (Figure B.13c), while the Greedy
chaining detects as one (Figure B.13b) otherwise fragmented segments (Figure B.13a).

(a) One by one chaining (b) Greedy chaining (c) Least Squares fitting (d) Orthogonal regress.

Figure B.13: Effects of Greedy chaining and Orthogonal regression optimizations

The substitution of the atan2 function with a LUT approximation achieved an enhance-
ment in the computational costs (Figure B.10) without significant deterioration in the
detection. Indeed, most of the segments are detected with both methods. For example,
out of the 36 line segments detected by the atan2 version (Figure B.14a) and 45 line
segments found by the LUT version (Figure B.14b), the 30 longest segments correspond
in both images. The same holds for the other examples in Figure B.14.

An interesting evaluation method, proposed by Zhang et al. [103] will be considered as
a future work. This approach compares EDLines, LSD and other detectors according
to the idea of the repeatability, defined as the capability of detecting the same line
segments in different conditions of the same scene (e.g., for better stereo matching).
Namely the conditions examined are the change of view point, scale, blur, lighting and
lossy compression. For the target use case, that is detection of a crossing while the user

Appendix B. Comparison of line segment detection methods 106

(a) Found:36,Match:30 (b) Found:45,Match:30 (c) Found:53,Match:53 (d) Found:63,Match:53

(e) Found:40,Match:37 (f) Found:59,Match:37 (g) Found:19,Match:17 (h) Found:30,Match:17

Figure B.14: Effects of the LUT atan2 approximation

is on the move, this measure is indeed interesting and it is worth noting that, in the
author’s implementation, in all cases LSD and EDLines performed better than other
detectors and similarly between them.

Bibliography

[1] McGookin, D., Brewster, S., and Jiang, W. Investigating touchscreen accessibility
for people with visual impairments. In Proceedings of Nordic Conference on Human
Computer Interaction. ACM, 2008.

[2] Robert M Kitchin, Mark Blades, and Reginald G Golledge. Understanding spatial
concepts at the geographic scale without the use of vision. Progress in Human
Geography, 1997.

[3] RM Kitchin and RD Jacobson. Techniques to collect and analyze the cognitive
map knowledge of persons with visual impairment or blindness: Issues of validity.
Journal of Visual Impairment and Blindness, 1997.

[4] Simon Ungar. Cognitive mapping without visual experience. Cognitive mapping:
past, present, and future, 2000.

[5] R Dan Jacobson. Cognitive mapping without sight: Four preliminary studies of
spatial learning. Journal of Environmental Psychology, 1998.

[6] Susanna Millar. Understanding and representing space: Theory and evidence from
studies with blind and sighted children. Clarendon Press/Oxford University Press,
1994.

[7] Passini, R. and Proulx, G. Way finding without vision: an experiment with con-
genitally blind people. In Environment and behavior. Kluwer, 1988.

[8] Steven M Casey. Cognitive mapping by the blind. Journal of Visual Impairment
& Blindness, 1978.

[9] Simon Ungar, Mark Blades, and Christopher Spencer. Visually impaired children’s
strategies for memorising a map. British Journal of Visual Impairment, 1995.

[10] Linda Pring. Psychological characteristics of children with visual impairments:
learning, memory and imagery. British Journal of Visual Impairment, 2008.

[11] Thomas Dick and Evelyn Kubiak. Issues and aids for teaching mathematics to the
blind. The Mathematics Teacher, 1997.

107

Bibliography 108

[12] John A. Gardner. Access by blind students and professionals to mainstream math
and science. In Proceedings of the 8th International Conference on Computers
Helping People with Special Needs. Springer, 2002.

[13] Thomas Westin, Kevin Bierre, Dimitris Gramenos, and Michelle Hinn. Advances
in game accessibility from 2005 to 2010. In Proceedings of the 6th International
Conference on Universal Access in Human-computer Interaction. Springer, 2011.

[14] Timothy Roden and Ian Parberry. Designing a narrative-based audio only 3d game
engine. In Proceedings of the International Conference on Advances in Computer
Entertainment Technology. ACM, 2005.

[15] Daniel Miller, Aaron Parecki, and Sarah A. Douglas. Finger dance: A sound game
for blind people. In Proceedings of the 9th International Conference on Computers
and Accessibility. ACM, 2007.

[16] José Ángel Vallejo-Pinto, Javier Torrente, Baltasar Fernández-Manjón, and Manuel
Ortega-Moral. Applying sonification to improve accessibility of point-and-click
computer games for people with limited vision. In Proceedings of the 25th BCS
Conference on Human-Computer Interaction. British, 2011.

[17] Linda Bussell. Touch tiles: Elementary geometry software with a haptic and au-
ditory interface for visually impaired children. In EuroHaptics 2003, 2003.

[18] Rameshsharma Ramloll, Wai Yu, Stephen Brewster, Beate Riedel, Mike Burton,
and Gisela Dimigen. Constructing sonified haptic line graphs for the blind stu-
dent: First steps. In Proceedings of the 4th International Conference on Assistive
Technologies. ACM, 2000.

[19] René Gutschmidt, Maria Schiewe, Francis Zinke, and Helmut Jürgensen. Haptic
emulation of games: Haptic sudoku for the blind. In Proceedings of the 3rd Inter-
national Conference on Pervasive Technologies Related to Assistive Environments.
ACM, 2010.

[20] Roope Raisamo, Saija Patomäki, Matias Hasu, and Virpi Pasto. Design and eval-
uation of a tactile memory game for visually impaired children. Interact. Comput.,
2007.

[21] Ravi Kuber, Matthew Tretter, and Emma Murphy. Developing and evaluating a
non-visual memory game. In Proceedings of the 13th International Conference on
Human-computer Interaction. Springer, 2011.

[22] Bei Yuan and Eelke Folmer. Blind hero: Enabling guitar hero for the visually
impaired. In Proceedings of the 10th International Conference on Computers and
Accessibility. ACM, 2008.

Bibliography 109

[23] Beggs, W. D. A. Psychological correlates of walking speed in the visually impaired.
Ergonomics, 1991.

[24] Guth, D., Ashmead, D., Long, R., Wall, R., and Ponchillia, P. Blind and sighted
pedestrians’ judgments of gaps in traffic at roundabouts. Human Factors: The
Journal of the Human Factors and Ergonomics Society, 2005.

[25] Schroeder, B. J., Rouphail, N. M., and Emerson, R. S. W. Exploratory analysis
of crossing difficulties for blind and sighted pedestrians at channelized turn lanes.
Transportation Research Board of the National Academies, 2007.

[26] Arditi, A., Holtzman, J.D., and Kosslyn, S.M. Mental imagery and sensory expe-
rience in congenital blindness. In Neuropsychologia. Elsevier, 1988.

[27] Fukasawa, N., Matsubara, H., Myojo, S., and Tsuchiya, R. Guiding passengers in
railway stations by ubiquitous computing technologies. In Proceedings of IASTED
Human-Computer Interaction. ACM, 2005.

[28] Li, B., Ramsey-Stewart, E., Johar, K., Woo, D., and Rizos, C. More freedom for
the blind and vision impaired-a proposed navigation and information system. In
IGNSS Symposium. ACM, 2009.

[29] Gerino, A., Alabastro, N., Bernareggi, C., Ahmetovic, D., and Mascetti, S. Math-
melodies: inclusive design of a didactic game to practice mathematics. In Proceed-
ings of International Conference on Computers Helping People with Special Needs.
Springer, 2014.

[30] Taibbi, M., Bernareggi, C., Gerino, A., Ahmetovic, D., and Mascetti, S. Audio-
functions: Eyes-free exploration of mathematical functions on tablets. In Proceed-
ings of International Conference on Computers Helping People with Special Needs.
Springer, 2014.

[31] Ahmetovic, D. Independent way-finding for visually impaired users through multi-
sensorial data analysis on mobile devices. In Proceedings of International Confer-
ence on Pervasive Computing and Communications (PhD Forum). IEEE, 2012.

[32] Ahmetovic, D., Bernareggi, C., and Mascetti, S. Zebralocalizer: identification and
localization of pedestrian crossings. In Proceedings of 13th International Conference
on Human-Computer Interaction with Mobile Devices and Services. ACM, 2011.

[33] Ahmetovic, D. Smartphone-assisted mobility in urban environments for visually
impaired users through computer vision and sensor fusion. In Proceedings of In-
ternational Conference on Mobile Data Management (PhD Forum). IEEE, 2013.

[34] Ahmetovic, D., Bernareggi, C., Gerino, A., and Mascetti, S. ZebraRecognizer:
efficient and precise localization of pedestrian crossings. In Proceedings of the 22nd
International Conference on Pattern Recognition. IEEE, 2014.

Bibliography 110

[35] Marius Von Senden. Space and sight: the perception of space and shape in the
congenitally blind before and after operation. 1960.

[36] Janet F Fletcher. Spatial representation in blind children. 1: Development com-
pared to sighted children. Journal of Visual Impairment and Blindness, 1980.

[37] Everett W Hill, John J Rieser, Mary-Maureen Hill, Marc Hill, et al. How per-
sons with visual impairments explore novel spaces: Strategies of good and poor
performers. Journal of visual impairment & blindness, 1993.

[38] Florence Gaunet, Catherine Thinus-Blanc, et al. Early-blind subjects’ spatial abil-
ities in the locomotor space: Exploratory strategies and reaction-to-change perfor-
mance. PERCEPTION, 1996.

[39] Paul Bach-Y-Rita, Carter C Collins, Frank A Saunders, Benjamin White, and
Lawrence Scadden. Vision substitution by tactile image projection. 1969.

[40] Stephen E. Krufka and Kenneth E. Barner. Automatic production of tactile graph-
ics from scalable vector graphics. In Proceedings of the 7th International Conference
on Computers and Accessibility. ACM, 2005.

[41] John A. Gardner and Vladimir Bulatov. Scientific diagrams made easy with iveotm.
In Proceedings of the 10th International Conference on Computers Helping People
with Special Needs. Springer, 2006.

[42] Andreas Stefik, Christopher Hundhausen, and Robert Patterson. An empirical
investigation into the design of auditory cues to enhance computer program com-
prehension. International Journal on Hum.-Comput. Stud., 2011.

[43] B.N. Walker and D.M. Lane. Auditory display: sonification, audification, and
auditory interfaces. Westview Press, Boulder, CO, USA, 1994.

[44] T. Hermann and H. Ritter. Listen to your data: model-based sonification for data
analysis. Advances in intelligent computing and multimedia systems, 1999.

[45] Dorte Hammershøi and Henrik Møller. Methods for binaural recording and repro-
duction. Acta Acustica united with Acustica, 2002.

[46] Philip Mendels and Joep Frens. The audio adventurer: Design of a portable audio
adventure game. In Proceedings of the 2nd International Conference on Fun and
Games. Springer, 2008.

[47] Joy Kim and Jonathan Ricaurte. Tapbeats: Accessible and mobile casual gaming.
In Proceedings of the 13th International Conference on Computers and Accessibility.
ACM, 2011.

Bibliography 111

[48] Daniel Ramos and Eelke Folmer. Supplemental sonification of a bingo game. In
Proceedings of the 6th International Conference on Foundations of Digital Games.
ACM, 2011.

[49] Patrick Ng and Keith Nesbitt. Informative sound design in video games. In Pro-
ceedings of the 9th Australasian Conference on Interactive Entertainment: Matters
of Life and Death. ACM, 2013.

[50] J.T. Cothroan B.N. Walker. Sonification sandbox: A graphical toolkit for auditory
graph. In Proceedings of the 9th Meeting of International Community for Auditory
Display. ACM, 2003.

[51] Stephen H. Choi and Bruce N. Walker. Digitizer auditory graph: Making graphs
accessible to the visually impaired. In Proceedings of the 28th International Con-
ference on Human Factors in Computing Systems. ACM, 2010.

[52] Heuten, W., Wichmann, D., and Boll, S. Interactive 3d sonification for the ex-
ploration of city maps. In Proceedings of the 4th Nordic Conference on Human-
computer interaction. ACM, 2006.

[53] Paul Stanley. Assessing the mathematics related communication requirements of
the blind in education and career. In Proceedings of the 11th International Con-
ference on Computers Helping People with Special Needs. Springer, 2008.

[54] Cagatay Goncu and Kim Marriott. Gravvitas: generic multi-touch presentation of
accessible graphics. In Human-computer interaction–INTERACT 2011. Springer,
2011.

[55] Tatiana V Evreinova, Grigori Evreinov, and Roope Raisamo. An evaluation of the
virtual curvature with the stickgrip haptic device: a case study. Universal access
in the information society, 2013.

[56] Poppinga, B., Pielot, M., Magnusson, C., and Rassmus-Gröhn, K. Touchover map:
Audio-tactile exploration of interactive maps. In Proceedings of 13th International
Conference on Human-Computer Interaction with Mobile Devices and Services.
ACM, 2011.

[57] Daniel Vogel and Patrick Baudisch. Shift: a technique for operating pen-based
interfaces using touch. In Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 657–666. ACM, 2007.

[58] Nicholas A Giudice, Hari Prasath Palani, Eric Brenner, and Kevin M Kramer.
Learning non-visual graphical information using a touch-based vibro-audio inter-
face. In Proceedings of the 14th international ACM SIGACCESS conference on
Computers and accessibility. ACM, 2012.

Bibliography 112

[59] Burger Dominique, Bouraoui Amina, Mazurier Christian, Cesarano Serge, and
Sagot Jack. Tactison: a multimedia learning tool for blind children. Computers
for Handicapped Persons, 1994.

[60] Ullman, B.R. and Trout, N.D. Accommodating pedestrians with visual impair-
ments in and around work zones. In Journal of the Transportation Research Board.
TRB, 2009.

[61] Reginald G Golledge. Geography and the disabled: a survey with special reference
to vision impaired and blind populations. Transactions of the Institute of British
Geographers, 1993.

[62] Nicholas A Bradley and Mark D Dunlop. An experimental investigation into
wayfinding directions for visually impaired people. Personal and Ubiquitous Com-
puting, 2005.

[63] H Petrie. User requirements for a gps-based travel aid for blind people. Orientation
and navigation systems for blind persons, 1995.

[64] Kotaro Hara, Shiri Azenkot, Megan Campbell, Cynthia L Bennett, Vicki Le, Sean
Pannella, Robert Moore, Kelly Minckler, Rochelle H Ng, and Jon E Froehlich.
Improving public transit accessibility for blind riders by crowdsourcing bus stop
landmark locations with google street view. In Proceedings of the 15th International
Conference on Computers and Accessibility. ACM, 2013.

[65] J. Sudol, O. Dialameh, C. Blanchard, and T. Dorcey. Looktel, a comprehensive
platform for computer-aided visual assistance. In Proceedings of the International
Conference on Computer Vision and Pattern Recognition (Workshop). IEEE, 2010.

[66] H. Petrie, V. Johnson, T. Strothotte, A. Raab, S. Fritz, and R Michel. Mobic:
Designing a travel aid for blind and elderly people. Journal of Navigation, 1996.

[67] Rosen Ivanov. Indoor navigation system for visually impaired. In Proceedings of the
11th International Conference on Computer Systems and Technologies (workshop).
ACM, 2010.

[68] Wu, H., Marshall, A., and Yu, W. Path planning and following algorithms in an
indoor navigation model for visually impaired. In Proceedings of the 2nd Interna-
tional Conference on Internet Monitoring and Protection. IEEE, 2007.

[69] James Coughlan and Roberto Manduchi. Functional assessment of a camera phone-
based wayfinding system operated by blind users. In Proceedings of the Interna-
tional Symposium on Research on Assistive Technology. IEEE, 2007.

[70] Chan, K.Y., Manduchi, R., and Coughlan, J. Accessible spaces: navigating through
a marked environment with a camera phone. In Proceedings of the 9th International
Conference on Computers and accessibility. ACM, 2007.

Bibliography 113

[71] Malek Adjouadi. A man-machine vision interface for sensing the environment.
Journal of rehabilitation research and development, 1991.

[72] Masakatsu Kourogi, Tomoya Ishikawa, Yoshinari Kameda, Jun Ishikawa, Kyota
Aoki, and Takeshi Kurata. Pedestrian dead reckoning and its applications. In Pro-
ceedings of the International Symposium on Mixed and Augmented Reality (Work-
shop), 2009.

[73] Iwan Ulrich and Johann Borenstein. The guidecane-applying mobile robot tech-
nologies to assist the visually impaired. Transactions on Systems, Man and Cyber-
netics, Part A: Systems and Humans, 2001.

[74] AR Jimenez, F Seco, C Prieto, and J Guevara. A comparison of pedestrian dead-
reckoning algorithms using a low-cost mems imu. In Intelligent Signal Processing,
2009. WISP 2009. IEEE International Symposium on, pages 37–42. IEEE, 2009.

[75] Malek Adjouadi. Computer vision techniques to aid the blind. 1985.

[76] Se, S. Zebra-crossing detection for the partially sighted. In Proceedings of the
conference on Computer Vision and Pattern Recognition. IEEE, 2000.

[77] Uddin, M.S. and Shioyama, T. Detection of pedestrian crossing using bipolarity
feature-an image-based technique. In Tran. on Intelligent Transportation Systems.
IEEE, 2005.

[78] Uddin, M.S. and Shioyama, T. Detection of pedestrian crossing and measurement
of crossing length - an image-based navigational aid for blind people. In Transac-
tions on Intelligent Transportation Systems. IEEE, 2005.

[79] Uddin, M.S. and Shioyama, T. Bipolarity and projective invariant-based zebra-
crossing detection for the visually impaired. In Workshop on Computer Vision
Applications for the Visually Impaired. IEEE, 2005.

[80] Ivanchenko, V., Coughlan, J., and Shen, H. Crosswatch: a camera phone system
for orienting visually impaired pedestrians at traffic intersections. In Proceedings
of 11th International Conference on Computers Helping People with Special Needs.
Springer, 2008.

[81] J.M. Coughlan and H. Shen. Crosswatch: a system for providing guidance to
visually impaired travelers at traffic intersection. Journal of assistive technologies,
2013.

[82] Volodymyr Ivanchenko, James Coughlan, and Huiying Shen. Detecting and locat-
ing crosswalks using a camera phone. In Proceedings of the International Conference
on Computer Vision and Pattern Recognition (Workshop). IEEE, 2008.

Bibliography 114

[83] Ivanchenko, V., Coughlan, J., and Shen, H. Staying in the crosswalk: A system
for guiding visually impaired pedestrians at traffic intersections. In Assist technol
Res Ser. IOS, 2009.

[84] Murali, V. and Coughlan, J. M. Smartphone-based crosswalk detection and local-
ization for visually impaired pedestrians. In International Conference on Multime-
dia and Expo (workshop). IEEE, 2013.

[85] Angin, P., Bhargava, B., and Helal, S. A mobile-cloud collaborative traffic lights
detector for blind navigation. In Proceedings of International Conference on Mobile
Data Management. IEEE, 2010.

[86] Tsubasa Yoshida, Kris M. Kitani, Hideki Koike, Serge Belongie, and Kevin Schlei.
Edgesonic: Image feature sonification for the visually impaired. In Proceedings of
the 2nd International Conference on Augmented Human. ACM, 2011.

[87] Ivan Kopecek and Radek Oslejsek. Hybrid approach to sonification of color im-
ages. In Convergence and Hybrid Information Technology, 2008. ICCIT’08. Third
International Conference on. IEEE, 2008.

[88] Ronald Aylmer Fisher. Statistical methods for research workers. 1934.

[89] JohnWTukey. Comparing individual means in the analysis of variance. Biometrics,
pages 99–114, 1949.

[90] Art. 145, d.p.r. 16/12/1993, n. 495, in materia di ‘regolamento di esecuzione e di
attuazione del nuovo codice della strada’; relativo all’ art. 40 c.s.

[91] Kay Fitzpatrick, Susan T Chrysler, Vichika Iragavarapu, and Eun Sug Park. Cross-
walk marking field visibility study. Technical report, 2010.

[92] Von Gioi, R. G., Jakubowicz, J., Morel, J.M., and Randall, G. Lsd: A fast line
segment detector with a false detection control. Transactions on Pattern Analysis
and Machine Intelligence, 2010.

[93] Kalman, R.E. A new approach to linear filtering and prediction problems. In
Transactions of the Journal of Basic Engineering. ASME, 1960.

[94] Liebowitz, D. and Zisserman, A. Metric rectification for perspective images of
planes. In Proceedings of Computer Vision and Pattern Recognition. IEEE, 1998.

[95] Lefler, M., Hel-Or, H., and Hel-Or, Y. Metric plane rectification using symmetric
vanishing points. In Proceedings of the 20th International Conference on Image
Processing. IEEE, 2013.

[96] Huston, R. Principles of biomechanics. CRC press, 2008.

Bibliography 115

[97] Akinlar, C. and Topal, C. Edlines: Real-time line segment detection by edge
drawing (ed). In Proceedings of 18th International Conference on Image Processing.
IEEE, 2011.

[98] Brian FG Katz, Emmanuel Rio, Lorenzo Picinali, and Olivier Warusfel. The effect
of spatialization in a data sonification exploration task. 2008.

[99] Desolneux, A., Moisan, L., and Morel, J.M. Meaningful alignments. International
Journal of Computer Vision, 2000.

[100] Richard O. Duda and Peter E. Hart. Use of the hough transformation to detect
lines and curves in pictures. In Communications of ACM. ACM, 1972.

[101] A. Etemadi. Robust segmentation of edge data. In Proceedings of the International
Conference on Image Processing and its Applications. IEEE, 1992.

[102] Topal, C., Akinlar, C., and Genç, Y. Edge drawing: a heuristic approach to ro-
bust real-time edge detection. In International Conference on Pattern Recognition.
IEEE, 2010.

[103] Zhang, Y., Liu, Y., and Zou, Z. Comparative study of line extraction method
based on repeatability. Journal of Computational Information Systems, 2012.

	1 Introduction
	1.1 Context
	1.2 Problem description
	1.3 Contributions
	1.4 Methodology
	1.5 Outline

	2 Related work
	2.1 Spatial understanding in didactic assistive technologies
	2.2 Cognitive mapping in smartphone-assisted mobility

	3 Didactic assistive technologies
	3.1 Interaction techniques
	3.2 Math learning for children with visual impairments
	3.2.1 Design challenges
	3.2.2 Proposed solution
	3.2.3 Evaluation

	3.3 Analysis of functions through sonification
	3.3.1 Function graph exploration techniques
	3.3.2 AudioFunctions prototype
	3.3.3 Evaluation

	4 Urban navigation for visually impaired users
	4.1 Problem definition
	4.1.1 The zebra crossing pattern
	4.1.2 Safe navigation in urban environments
	4.1.3 Smartphone driven computer vision

	4.2 System architecture
	4.3 Computer vision based zebra crossing detection
	4.3.1 Feature extraction
	4.3.2 Line segment analysis
	4.3.3 Stripes analysis
	4.3.4 Relative position computation
	4.3.5 Evaluation

	4.4 Sensor fusion based zebra crossing detection
	4.4.1 Image Pre-Processing
	4.4.2 Ground plane reconstruction
	4.4.3 Line segment detection
	4.4.4 Line segments grouping
	4.4.5 Stripes validation
	4.4.6 Evaluation

	4.5 The user interaction module
	4.5.1 Step-by-step navigation
	4.5.2 Output interaction modes
	4.5.3 Thumbs-only input
	4.5.4 Evaluation

	4.6 Zebra crossing detection from satellite and street view imagery
	4.6.1 Satellite imagery acquisition
	4.6.2 Detection on satellite images
	4.6.3 Street view imagery selection
	4.6.4 Detection on street view images
	4.6.5 Evaluation

	5 Conclusions and future work
	5.1 Didactic and educational tools
	5.1.1 Elementary grade math and geometry learning
	5.1.2 Function graph exploration

	5.2 Unassisted urban navigation
	5.2.1 Zebra crossing detection
	5.2.2 Speech and sonification interaction

	A Horizon computation from gravity acceleration data
	B Comparison of line segment detection methods
	B.1 Hough probabilistic line segment detector
	B.1.1 Custom canny edge detection
	B.1.2 Hough line segment detection

	B.2 LSD
	B.2.1 Line support regions
	B.2.2 Segment identification

	B.3 EDLines
	B.3.1 Edge Drawing
	B.3.2 Line fitting
	B.3.3 Validation

	B.4 Comparison and evaluation

	Bibliography

