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Chapter 1

Introduction

The widespread diffusion of mobile devices has radically changed the way
people interact with each other and with object of their daily life. In particular,
modern mobile devices are equipped with multiple radio interfaces allowing
users to interact at different spatial granularities according to the various radio
technology they use.

The term interaction assumes different meanings depending on the spa-
tial granularity we consider. The interactions mediated by mobile broadband
network (3G/4G) allow user communicate by using the traditional channels
— such as calls and text messages — and bring pervasivity to new communi-
cation media, such as Online Social Networks (OSNs) and Instant Messaging
(IM), and contents sharing applications. Each user interaction uses network
resources, in particular, the massive usage of the new communication media
has led to a increasing demand of data traffic which has shown the limits
of the actual mobile network architecture. Network operators are now look-
ing for solutions to improve network capabilities and to make the overall
network more flexible and scalable, in order to deal with future data traffic
demand [2I]. Radio technologies such as Wi-Fi and Bluetooth (BT) are en-
ablers of medium /short range interactions. These interactions can be exploited
to create mobile applications and services which allow users to discover and
interact with the surrounding people and environment, such as local content
diffusion services, proximity social discovery services, opportunistic contents
sharing applications, and more. This medium/short range interactions can
also be exploit to create Opportunistic Networks (ONs) which leverage hu-
man mobility to create contact opportunities. Proximity radio technologies,
like Near Field Communication (NFC), are suitable to detect very short range
interactions with objects of our daily life, thus allowing people to interact with
them and to embed them in their social space according to the paradigms of
the Internet of Things (IoT) and Smart Cities. These aforementioned kind
of interactions are able to capture the willingness of mobile users to interact
with other people or with nearby objects. For example, the aforementioned



technologies are able to emulate an intentional physical handshake between
two persons as well as a willful touch to an object.

In this complex and rich scenario, many issues and challenges are still
open from a technological, architectural, and mobile services and applications
points of view. First of all, how to improve the scalability and flexibility of the
cellular network in order to tackle the rising demand of data traffic. Second,
how to guarantee a suitable Quality of Service (QoS) and Experience (QoE)
to mobile users, which require more and more ubiquitous and integrated ac-
cess to mobile services. Another issue concerns the management of wireless
spectrum, which is a very limited resource. This has induced the research
community to find solutions which use and integrate multiple wireless tech-
nologies to enlarge access bandwidth and to offload data traffic. In this field,
many problems are still unresolved, for example; how to seamlessly integrate
different alternative radio technologies with cellular network, how to scale up
Wi-Fi/BT opportunistic network to very dense metropolitan area and guar-
antee a suitable QoS, or how to develop efficient offload network service both
from users and operator point of view. Moreover, from the application and
services design point of view, the rapid change in the habits of mobile users
has led to a new kinds of applications and services which are closer to the
needs of the users in mobility and they are able to exploit the capabilities of
the modern mobile devices. For example, applications have included contex-
tual research services based on the mobile user context (geographical position,
personal interests, surrounding information, and more) which can be inferred
by gathering information through sensors and radio interface (accelerometer,
GPS, Wi-Fi, and more). Moreover, we can find sensing applications which col-
lect data by using on-board sensors and send them to central services where
they are analyzed to infer for example actual car traffic condition or road
surface status. These types of mobile applications/services have posed many
challenges, such as how to efficiently collect, to store and to analyze the huge
amount of sensed data, how to identify mobile user context in order to offer
to a user what she/he is really looking for, and how to preserve user’s privacy.

The research community is progressively moving to heterogeneous net-
work solutions which include many different wireless technologies seamlessly
integrated to address a wide variety of use cases and requirements. In 5th-
Generation (5G) of mobile network we can find multiple network typology such
as device-to-device (D2D), vehicular networks, machine-to-machine(M2M),
and more, which are integrated in the existing mobile-broadband technology
such as LTE and its future evolutions [32].

In this thesis we consider, as a general scenario, people carrying multiple
radio equipped mobile devises moving inside a metropolitan area served by
heterogeneous and integrated radio access network. In this scenario, users can
have experience all kinds of interactions described above. For example, they
can perform traditional phone activities (calls and text messages), can access
to multimedia contents through data connection, interact with the surround-
ing environment using Wi-Fi and NFC technologies. This can be useful to
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retrieve information about city events, public transportation system sched-
ule and delays local contextual advertisement as well as to interact with city
objects such as museums, monuments, and so forth.

In this work we provide network solutions, mobile services, and applica-
tions consistent with the 5G mobile network vision by using users interactions
as a common starting point. We focus on three different spatial granularities,
long, medium /short, and micro mediated by cellular network, Wi-Fi, and NFC
radio technologies, respectively. We deal with various kinds of issues and chal-
lenges according to the distinct spatial granularity we consider. We start with
an user centric approach based on the analysis of the characteristics and the
peculiarities of each kind of interaction. To accomplish this task we use multi-
ple techniques. The set of used techniques includes knowledge extraction from
datasets by means of data mining and statistical methods, network simulation
as well as the analysis of the potentiality of a certain kind of interaction to
create mobile services and applications. In the following sections we present
a more detailed description about the contributions of this work.

1.1 Long range interactions using cellular network

The daily behavior and interactions of people carrying mobile devices are
responsible for the traffic load of today’s networks. In particular, cellular net-
work is now suffering from an unprecedented demand of bandwidth and ubig-
uitous connectivity especially in metropolitan areas. Cisco forecasts that in
2018 the amount of mobile data traffic will be around 16 EB per month [21].
The actual mobile network architecture, characterized by inflexible and hier-
archical structure, is unable to deal with this huge amount of traffic. Mobile
operators are looking for solutions following three main directions. One is to
enhance radio spectrum efficiency in order increase the bandwidth at radio ac-
cess network. Another effort is to modify the network architecture according to
new trends of Network Function Virtualization (NFV) and Software Defined
Network (SDN), to improve the flexibility and the scalability of the overall
network. Moreover, mobile operators are trying to integrate other wireless
technologies, such as WiFi, to offload data traffic and to save radio resources.

The effort in this innovation process has involved many research commu-
nities including telecommunication companies and the 3GPP consortium —
responsible for drawing up the standards of mobile network. With respect to
the spectrum efliciency telecommunication company are looking for Hetero-
geneous Network (HetNet) solution [24, [9] consisting of a mix of macro-cells,
low-power nodes (micro, pico, and femtocells), and also WiFi nodes. Het-
Net architecture offers better use of spectrum, reduced transmitting power
consumption, as well as better radio coverage in densely populated areas. The
adoption of HetNet architecture has lead to the development of new techniques
of Self Organized Network (SON), which are well described in [4]. These tech-
niques include automatic inter-cell interferences and traffic load balancing,
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allowing Radio Access Network (RAN) to automatically manage network re-
sources according to actual local context. The improvement of overall network
flexibility and scalability is today a key challenge towards the definition of fu-
ture cellular network. In this direction, telecommunication companies are now
rethinking their core network moving from actual fixed and rigid hierarchical
infrastructure to Cloud and distributed architectures [33], 12} 119l 59} [46] by
using NFV and SDN approaches. Regarding network offload solutions we can
find different approaches. Local IP Access (LIPA) and Selected Internet IP
Traffic Offload (SIPTO) are standardized solutions in LTE rev.10 [I] which
provide access to local resources (contents, devices, and so forth) directly from
cellular network. LTE Direct (LTE-D) [95] is a new technology which use the
same LTE licensed spectrum to provide a device-to-device (D2D) connectiv-
ity suitable for social and point of interests discovery services, as well as D2D
communication channels. Other approaches concern the interoperability with
other wireless technologies in particular Wi-Fi [5, [0, [47]. These approaches
have led to an hybrid network architecture in which part of data traffic is
delivered by means of opportunistic networks leveraging D2D connectivity.

All mentioned solutions are strongly related to mobile users behavior. Hu-
man mobility highly affect mobility management systems, HetNet deployment,
and D2D connectivity. Human sociality impacts how people perform interac-
tions by mean of mobile phones, and how they use different communication
media. Users profiles determine accessed and shared contents providing useful
information to cache or prefetch popular contents [I00]. Thus, a clear com-
prehension of the different aspects of human behavior is a key point along the
path of the creation of the future mobile networks.

The recent availability of large phone datasets [30] [49, 58] [16, 110} [86] con-
taining information about locations, phone interactions, and Internet traffic of
mobile subscribers has allowed research communities to study different aspects
of mobile users behavior on a large scale. Mobility aspects have been studied
in [45] 23], [88], [106] showing that the mobility patterns of people are quite reg-
ular and strictly related to users sociality and lead to the formation of spatial
communities [I8] [I6]. Mobile data traffic was analyzed in [100] 110} 86, Q9]
characterizing which type of applications are causing the most of data traf-
fic, the relationship between mobility and used applications, as well as the
impact crowded events on cellular network traffic load. Human interactions
mediated by mobile phone were studied both from temporal and social point
of view. Temporal inhomogeneities of users phone activities have been stud-
ied in [10] [65] 58], showing that users have the propensity to organize their
activities in bursts. Structure and dynamics of the underling social network
have been studied in [66} [78] [IT8], 106, [83] by using the complex network theo-
retical framework. Studies on human phone interactions dynamics have led to
the development of generative models [10, [63], [65] taking into account different
aspects of mobile users behavior. These models could be used by mobile oper-
ator to simulate subscribers activities and generated traffic to better evaluate
costs and benefits of new network technical solutions.
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Contributions

In Chapter [2] we study different aspects of human behavior to support the
development of a new network service and architecture, a new set of mobile
services and applications. To perform this task, we deeply analyze a mobile
phone dataset of a large Italian mobile operator by means of data mining and
statistical tools. In particular, we provide the following contributions.

First we analyze users mobility by showing that humans exhibit regular
pattern visiting a few preferred location. This result is in accordance with pre-
vious literature results [22], 45 117, 116 [56] [85]. We further integrate mobility
aspects by considering mobile phone call interactions between users who are
in proximity each other (e.g. to update quickly when we are a few minutes
late to a meeting, to gather a group of friends attending the same event, to
share contents with co-located friends, and so forth). We found that this type
of interactions are on average 15-20% of the overall call traffic. Based on these
findings, we propose a new network architecture which leverages NFV/SDN
paradigms. On this architecture we develop two mobile services able to of-
fload part of data traffic from the core network. The first one is a contents
delivery service leveraging the regularity of users mobility patterns to prefetch
contents close to location from which it could be accessed by users. The sec-
ond one is a network service which is aware of users proximity and is able
to manage communication channels locally without involving core network
resources. For the contents delivery service we provide a quantitative analy-
sis of the benefits both from network operator and subscribers point of view,
while for the other service we tackle its feasibility in the actual LTE/LTE-A
standard architecture.

Second, we deeply analyze the temporal inhomogeneities of mobile phone
interactions by proposing a novel theoretical framework for detecting and an-
alyzing multidimensional bursts thanks to the introduction of a new burst
detection algorithm and metrics suitable to describe multidimensionality fea-
tures. In particular, we study the interplay between different communication
media from users point of view by observing that users have the propensity
to organize their phone activities in order to minimize switches between dif-
ferent media rather than follow some order induced by social importance.
We argue that users tend to avoid time consuming tasks of changing media.
Based on this finding we develop a multidimensional bursts generative model
which is the first model taking into account the interplay between different
communication media.

Last, we study how users manage theirs sociality by means of mobile
phones and we find similar results as in [78] by observing that users het-
erogeneously distribute activities across their phone contacts. We extend this
work by developing a simple method to automatically extract the most signif-
icant social ties from the analysis of calls log. Based on this result, we develop
a mobile application helping users to manage their sociality proving a suitable
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user interface to organize multidimensional phone interactions by minimizing
the costs of media switching.
Chapter [2]is based on the following publications:

e S. Gaito, D. Maggiorini, C. Quadri, and G.P. Rossi. Selective offload and
proactive caching of mobile data in lte-based urban networks. In Mobile
Data Management (MDM), 2013 IEEE 1/th International Conference on,
volume 1, pages 271-274, June 2013

e Sabrina Gaito, Giovanni Manta, Christian Quadri, Gian Paolo Rossi, and
Matteo Zignani. Groo-me: Handling the dynamics of our sociality on mo-
bile phone. In Wireless and Mobile Networking Conference (WMNC), 2014
7th IFIP, pages 1-4. IEEE, 2014

e Christian Quadri, Matteo Zignani, Lorenzo Capra, Sabrina Gaito, and
Gian Paolo Rossi. Multidimensional human dynamics in mobile phone
communications. PLoS ONE, 9(7):¢103183, 07 2014

1.2 Short range interactions in urban space

Wireless technologies, such as WiFi and Bluetooth, provide medium-short
connectivity range and are today included in any mobile device on sale. By
leveraging users mobility it is possible to exploit radio contacts among devices
to build multi-hop ad hoc networks in which mobile devices, and consequently
users, are active nodes of a network. Due to the nodes mobility and the limited
radio range the connectivity is intermittent and each node needs to temporary
store packets until the connectivity is reestablished. This aspect introduces a
certain delay in packets delivery which is very high compared to other wireless
networks — such as mobile phone networks and wireless mesh networks — made
Opportunistic Networks (ONs) unsuitable for Instant Messaging (IM) services,
multimedia streaming services or other services having strict time constraints.

Nevertheless, ONs can be used to support a wide range of delay tolerant
service and application, for example cloud service synchronization (e.g., pic-
tures/videos upload), mobile sensing (e.g., for traffic or road surface quality),
local advertisement and contents diffusion, opportunistic collaborative games
[75] and so forth. These kind of services and applications can be deployed
on ONs and it is possible to offload the generated data traffic from cellular
network.

Contributions

In Chapter [3] we explore the feasibility of ON deployed on Public Trans-
portation System (PTS) which offers some benefits w.r.t. ONs made up by
humans only. First, buses have no power constraints and can be equipped with
powerful radio interfaces and high capacity storage appliances. Second, buses
follows predefined paths and timetables which make mobility patterns more
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predictable than humans ones. Last, PTS provides a good coverage across all
metropolitan area.

We analyze the scalability of the Op-HOP routing algorithm [37] compar-
ing it with the state of art of routing algorithms for PTS: MaxProp [14] and
RAPID [7]. By means of extensive simulations on a real metropolitan PTS we
show that Op-HOP outperforms both algorithms in terms of delivery time,
packed delivery and resources usage. We then improve the performance of the
entire backbone by introducing fixed nodes deployed at bus stops. We develop
a suitable method for the deployment of fixed nodes. By using this method
we show that a very limited number of fixed nodes are required to increase
the network capacity and delivery ratio, as well as to reduce packet delivery
time.

Chapter [3]is based on the following publications:

e Christian Quadri, Dario Maggiorini, Sabrina Gaito, and Gian Paolo Rossi.
On the scalability of delay-tolerant routing protocols in urban environ-
ment. In Wireless Days, pages 1-6, 2011

e Sabrina Gaito, Dario Maggiorini, Christian Quadri, and Gian Paolo Rossi.
On the impact of a road-side infrastructure for a dtn deployed on a public
transportation system. In Networking (2), pages 265-276, 2012

1.3 Micro range interactions and Internet of Things

The availability of micro range wireless technologies, as NFC, enables new
set of mobile services and applications allowing users to interact with objects
present in metropolitan area (e.g., museums, monuments, shops, and other
points of interest), meeting the Internet of Things (IoTs) and Smart Cities
paradigms.

Contributions

In Chapter [4 we exploit micro range interactions mediated by NFC radio tech-
nology to build up an online social network, named THINPLE. THINPLE is
made of persons and things, and both can interact each other realizing the In-
ternet of Things and People paradigm. In THINPLE the online social space of
users reflects the offline users sociality which is expressed by person-to-person
or persons-to-objects contacts. Links are created by means of NFC radio con-
tacts only, this process of creation of social ties capture the willingness of users
to create a relationship. As we can see this approach is totally different from
traditional online social networks which are now suffering from proliferation
of a very large number of worthless ties.

We develop the prototype of THINPLE and we use it to support a research
study on difference between online and offline human sociality [40], and to
support a mobile application to help tourists in keeping track of encountered
monuments and point of interests.
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Chapter [4]is based on the following publication:

e Sabrina Gaito, Christian Quadri, Gian Paolo Rossi, and Matteo Zignani.
Thinple - the new online sociality is built on top of nfc-based contacts. In
Wireless Days, pages 1-5, 2012



Chapter 2

Long range interactions in cellular network

In this chapter we present a comprehensive analysis of different aspects of
mobile users long range interactions to design new network services and mobile
applications. Thanks to the anonymized dataset from an important Italian
mobile operator we are able to extract behavioral information about mobile
subscriber and by leveraging the results of the analyses we propose new data
traffic offload strategies, new mobile services and applications.

We start from the analysis of regularity of mobility pattern of mobile
subscribers and we found that humans are regular in their mobility and have
the propensity to visit few locations. Our results are in accordance with other
previous literature works [22] [45] 117 116, 56l [85]. Then we investigate the
impact of phone call interactions between users who are close to each other.
These interactions may occur for a quick update when we are a few minutes
late for a meeting, among colleagues in a workplace, to gather a group of
friends attending the same event or visiting the same place, to share contents
with co-located friends, and so forth. We found that this kind of interactions
are on average 15-20% of the overall call traffic, by exploiting this knowledge
the mobile operators could benefit from proximity aware network architecture
saving a significant amount of call traffic from core network.

The last aspect we analyze is the bursty behavior of humans phone activi-
ties. We start from consolidated literature works [10} [104} [65] and analyze the
inter-event time distribution showing that it follows a power-law distribution.
We extend previous works by considering time series composed by different
types of phone activities (in our case calls and text messages). Each type
of phone activities represent a different communication channel or dimension
through which mobile user express her/his mobile sociality. The comprehen-
sion of the interplay between the dimensions is one of the key point in under-
standing the complexity of human behavior. In this direction we develop a new
burst detection algorithm which is able to accurately detect multidimensional
bursts given a time series of phone activities. We propose a theoretical frame-
work capable to completely describe bursty behavior. First, we consider the
burst at high level without investigating the internal multidimensionality by
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defining three features: persistence, focus, and frequency. Persistence accounts
for the persistence a user puts in doing a specific task. Focus accounts for the
level of exclusive concentration a user is willing to assign to a burst activity
avoiding interruption by different tasks. Frequency describes how frequently a
user opts for doing a burst activity in the time scale of a day. Then we zoom
in the inner structure of a single burst to analyze the interplay between the
different dimensions by defining three features which completely describe the
multidimensionality of bursts: number of dimensions, symbol prevalence and
interleaving degree. Number of dimensions indicates the number of different
types of phone activities performed user during burst activity. Symbol preva-
lence accounts for predominance of a communication media w.r.t. the others.
Finally, interleaving degree quantifies how frequently user switches between
different communication media. We found that users use both media fairly
(calls and text messages) and the order with which users organize their phone
activities does not seem to be influenced by social factor, but is mainly in-
fluenced by a media selection process that try to minimize the costly task of
switching between different media.

After analyzing the different aspects of human behavior we exploit them to
propose new mobile network services to help the network operators addressing
the problem of continuous increase of demand for data traffic. In particular,
we propose a network architecture based on Network Function Virtualization
(NFV) and Software Defined Network (SDN) which is able to scale and to
be deployed on demand in depending on traffic level and required Quality of
Service (QoS). Based on this infrastructure, we present two network services.
The first one is a proactive caching service which exploits the regularity of
mobility patterns to prefetch contents close to the location from which users
could require them. The second one is a proximity-aware service acting at edge
network level; this service is able to detect and manage mobile phone calls hap-
pening between users who are in proximity to each other. Both these services
allow mobile network operators to offload part of data traffic away from their
core network, saving resources and potentially offering better QoS/QoE to
mobile subscribers.

As already discussed, from the analysis of multidimensional bursty be-
havior we have learned that users organize their phone activities having the
propensity to minimize switches between different communication channels.
This counterintuitive fact lead us to design new mobile application — named
Groo-Me — helping user to organized their phone activities by first selecting
the person with who interact and then the communication channel. Moreover,
the application maintains the users’ personal network, helps users to control
their core sociality (grooming coalition according to the Dunbar theory [28§]),
exploits burstiness and periodicity to predict the next user’s activity, and
collects statistics about the user’s interactions on different channels.

In the last part of this chapter, we present a new multidimensional burst
generative model which is able to correctly reproduce the characteristics of
multidimensional bursts.
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2.1 Related work

The recent availability of mobile phone datasets has given the possibility to
study mobile users behavior on a large scale. Mobile phone dataset can be
divided in two main categories based on type of data available.

The first category contains the CDR (Call Detail Record) based datasets
collected by mobile operators for billing purposes. They usually contain infor-
mation about mobile phone interactions (calls and text messages) providing
the identifiers of users and their locations (based on the current serving cell
tower). This kind of dataset can also contain Internet data traffic CDRs but
they only indicate the amount of data traffic without any information related
to the content. CDRs based datasets have some limitations. First, the loca-
tion information are registered if and only if users perform phone activities,
otherwise we have no information about users position. This pose some is-
sues in reconstructing mobile users mobility pattern due to the holes in the
mobility traces during the inactive periods. Second issue is the lack of details
in Internet data traffic making impossible to know which kind of contents
users accessed. Last issue is the coarse grain location information which is
cell tower based, nevertheless this last limitation is considerably reduced in
metropolitan area due to the high density cell tower deployment. This fact
makes location information more precise. Examples of CDRs based dataset in
[30, [49, 58], [16], [8]].

The second category contains mobile datasets collected by network mo-
bile operator for networking purposes and they contain detailed information
about Internet traffic. In particular, they contain data traffic records of IP
flows passing through the core network and control packets traffic. Due to the
massive amount of data generated this kind of dataset are limited in covered
time period, usually one day or less. Examples of this category are found in
[110], [86] 99].

Mobility aspects have been studied in [45] [88] [I6] where they have shown
the regularity of mobile users mobility pattern. In particular, they found that
tend to visit a few set of preferred locations and, by means of clustering
techniques they identified home and work locations.

Social network structure has been studied in [80, [82]. These works have
reconstructed the social network structure by exploiting mobile phone inter-
actions (call and text message) and the locations of the users (by inferring
the co-location of the mobile users). By applying the complex network the-
oretical framework to the reconstructed social network it has emerged that
graphs properties are similar to those observed in the online social networks.
Other works are more focused on the local properties of mobile social graphs.
In [49] it was analyzed the communication properties of the links and it was
introduced an indicator of their persistence. They have shown that persistent
links are strictly related to reciprocal edges, meaning that communications in
mobile phone social network are strongly bidirectional.



2.1 Related work 12

Temporal dynamics of human interactions through the diverse commu-
nication media have become a subject of intensive research because a clear
grasp of the same is considered a key factor in understanding the formation
of the today’s information society. A vast and well-established literature re-
garding the properties of social networks built on each communication media
is now available [72] 82] [84] [80| [7'7, (50, [3T 17, (105 108 62] 107, [71] 68]. All
these studies have shown that a pronounced temporal inhomogeneity char-
acterizes this type of communication activity, i.e. users perform sequences
of rapidly occurring events, interleaved by long inactive periods. As a con-
sequence, starting from the seminal work of Barabasi [I0] who stressed the
inappropriateness of the Poisson process in their modeling, human dynamics
has become to be considered as bursty. Previous research on user communica-
tion temporal behavior has mainly focused on a sole communication activity.
Nonetheless, human sociality is expressed through different communication
channels - each channel describes a specific dimension of human sociality as a
whole - and therefore the understanding of its dynamics and complexity may
be improved by reckoning on all different dimensions together. Thus, the study
of multidimensionality has become an inescapable fact when designing both
practical and theoretical frameworks that describe human activities. A few
seminal works [79] [102] 111 [13] have adopted a multidimensional approach to
study the structural properties of social networks when multiple communica-
tion channels are considered, while [61] 64] model a collective bursty temporal
process as composed of subprocesses and study spatiotemporal correlations
inside utilization patterns of mobile service users.

The studies of the burstiness of human behavior have led to the develop-
ment of burst generative models aiming to reproduce the characteristics of
bursts. Starting from the work of Barabasi [I0] the bursty human behavior is
model by means of priority queue in which each event has a prefixed priority,
the higher is the priority of a task the shorter is the waiting time of its execu-
tion. This model was extended in [63] by introducing variable priority tasks.
A simple Markov chain model is presented in [65], which is designed to gener-
ate inter-event times. The model has two states which correspond to in-busrt
(characterized by short inter-event time) and normal behavior (characterized
by long inter-event time). The transition probabilities are derived from the
bursts length distribution.

The studies on the data usage patterns was conducted mainly by the
AT&T research group [60, 100, 110, @9]. Thanks to the availability of data
traffic IP flows they analyzed how the mobile users use different mobile appli-
cations and where they access to different contents. In particular, they studied
the interplay between the kind of used mobile application and the city area
(e.g., if exists a difference between contents accessed in business area w.r.t.
shopping one). Moreover, they studied the impact of the crowded events on
the generated data traffic in terms of used mobile applications (e.g., browser,
social media, and more) and accessed contents. These studies can help the
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mobile network operators to better design and shape dedicated network ar-
chitecture to improve quality of service, and to support crowded events.

2.2 Analysis of different aspects of human behavior

2.2.1 Datasets
CDRs based mobile dataset

We use a large anonymized dataset of mobile-phone Call Data Records (CDR)
— containing call, text message activities and Internet access of mobile sub-
scribers — gathered in Milano metropolitan area from March 26 to May 31,
2012, for a total of 67 days. The dataset contains records for more than 69 mil-
lions phone call records, 20 millions text message and more than 60 millions
Internet accesses.

Each record contains the following information: date, hour, source user-
ID and the cell-ID of the cell tower from which the phone activities was
performed. In case of call and text message records it is also reported the
user-ID of the receiver and the cell-ID of the cell tower in which the receiver
was when she/he received the call or text message. Additionally, in case of
phone call record it is specified the duration of the call in seconds. In case of
Internet access records we have information on the amount of data uploaded
and downloaded during the session. However we have not any information
about the content of the data traffic for privacy reasons.

This dataset has two limitations. First the positions are relative to the
current serving cell tower, coarser than GPS position, but in metropolitan
area the deployment of cell towers is very dense made the location information
more precise. Second, this is a billing dataset; meaning that we have location
information if and only if the users perform any phone activities.

Other mobile dataset

We use a second mobile dataset which contains information of call, text mes-
sage activities and Internet access in an aggregated form. The dataset covers
the same metropolitan area from 1 to 31 December 2013. Unfortunately, this
dataset is not CDRs based, so we have no access to the details of performed
phone activities. Nevertheless, we have the per-location information about the
amount of phone activities performed by mobile users. Moreover, we have an
aggregated form of the spatial flow records of voice call. Each flow record
contains the amount of voice call directed from one location to another over
a time slice of 10 minutes.

In this dataset locations are square regions with sides 250 meters long and
we have no information about the cell tower. However, the size of a single
square region can be compared with the area covered by a single cell tower
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in a metropolitan area. In the following we will use the term cell to refer to
both cell tower and square areas.

Required preprocessing

In the following we present the result of the analyses on different aspects of
the mobile users behavior. For each analysis we first preprocess the original
dataset to extract a subset of users that is relevant for the specific purpose of
the analysis. To help the reader, for each analysis we present the characteristics
of the extracted subset of users in a dedicated sub section.

2.2.2 Mobility in urban space
Dataset preprocessing

The dataset preprocessing is performed as follows. We first limit the obser-
vation period to a single week, from 14 to 20 of May. Then we consider only
those users active each day (a user is active when she/he generates at least
one activity per day). Moreover, the selection applies to working days only,
because mobility patterns and content requests are very different during the
week-end. Finally, we select the users in the dataset to those visiting] at least
two different cells every day because we are are not interested in users who
remain all day in the same locatiorﬂ

After the preprocessing we obtain a dataset of 49,067 users who were active
over a total of 1,716 cells. Using this preprocessed dataset we extract all per-
user activity patterns, where an activity pattern is defined as the set of cells
where a given user is active.

Analysis

We initially consider the overall number of cells involved in the activity pat-
terns of users during the considered week; for each user we compute the num-
ber of different cells she/he accesses during the whole first week and we show
the related histogram in Fig The mean value of 19 cells and the median
of 16 show that, apart from a tail of users accessing a very large number of
cells, most have activity in a limited number of cells per week. This behavior
is even more evident if the analysis is performed on a daily basis. In Fig.
we report the histogram of the mean (over the week) number of cell accessed
by user in a day. In line with similar studies [22], 45|, 117, 116, 6], most users
are active in very few different locations/cells (mean: 6, median: 5), while a
very small percentage of individuals show a higher mobility.

! In this context the terms visited and accessed are used to refer to the cell tower
from which users performed their phone activities

2 This affirmation is not completely true because users could have moved during
the day without performing any phone activities.
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To properly understand the regularity of the user mobility along the week
is useful to know whether or not the set of cell it is changing daily. We extract
this information by analyzing the per-user set of regularly accessed cells. The
results are reported in Fig. where we can observe that 60% of users have
at least one favorite cell that they access daily. These results clearly state that
individuals are accustomed to following regular mobility patterns that include
a small number of cell visited daily. This information must be combined with
the minimum number of cells required to serve a single user during the entire
week. Fig. shows that more than 90% of users require only two cells at
most: 60% require one cell, the remaining 30% of users require only two cells.
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2.2.3 In proximity person-to-person interactions

Mobile network allows users to communicate over long distance providing
global connectivity, but our daily experience offers a rich record of interactions
that we perform with people happening to be at short distance of our current
location. In this section we analyze the impact of short distance interactions
on the network of mobile operators.

Dataset preprocessing and methodology

We use two anonymized datasets containing voice call and text messages ac-
tivities of mobile subscriber in the Milan’s metropolitan area in two different
time intervals.

The first dataset, Data-Proz 1, contains CDRs extracted from dataset
described in Section [2:2.] considering only call records over a time period of
9 week. By means of CDRs we are able to derive the spatial flow of phone
activities, by identifying the cell in which the calling user is when she/he starts
an activities and the one where the called user is when she/he receives the call
or the text message. Clearly, this task is performed between users belonging
to the same mobile operator.

As a second dataset, Data-Prox 2, we use the other dataset described in
Section [2.2.1]extracting only the call flow records which are natively contained
in the dataset.

We classify each spatial flow record in three different groups according to
the destination cell: in cell, in neighborhood, and other. A flow is classified as
in cell if the call or the group of calls have the same source and destination
cell.

The notion of neighborhood is slightly different between the two datasets.
In Data-Prox 1 the cells have a location-name attribute — street/square name
or city zone — representing a coarse grain division of the metropolitan area.
We consider a call to be in neighborhood if caller and callee cells have the
same place name. In case of Data-Prox 2 we consider the cell’s neighborhood
as described in Fig. in which the first Geo-Ring is formed by the cells
adjacent to the calling location, the second Geo-Ring by those surrounding
the cells of the first Geo-Ring, and so forth. If not otherwise specified, a cell
is in meighborhood if it belongs to the first Geo-Ring starting from the calling
location. Finally, a flow is classified as other if it does not belong to the other
two categories.

In the sequel we will use the term in proximity to indicate the traffic
belonging to the in cell and in neighborhood classes.

Impact of traffic in proximity on the overall network traffic

We firstly estimate the share of the global call interactions that can be as-
cribed to communications among individuals in the neighborhood. To this
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Fig. 2.4: Per-class traffic distribution in working and weekend days.

purpose, we consider the aggregated traffic of the total amount of call flows.
In Fig. we report the traffic percentage for the three classes defined above
in both datasets. We further separate working days from weekends to highlight
possibly different human behavior. From the figure we can observe that nearly
12-15% of traffic during working days and 14-22% during the weekend is com-
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posed by calls directed to in proximity cells. This observation has impact on
the utilization of network resources and means that the proximity detection
capability, when combined with the ability to switch this device-to-device lo-
cal traffic at the edge of the core network, turns out to be a viable approach
to remarkably decongest the core network. In practice, (north-south) traffic
toward the P-GW would benefit of 12-15% reduction on average in favor of
equal (east-west) traffic flows, if we limit operations to the inner circle of cells.

Fig.[2.5] reports the temporal distribution of in proximity traffic during the
working days in the two datasets. We consider time slices of one hour and for
each time slice we compute the percentage of calls that falls within the three
proximity classes. For both datasets, in the lower part of the figures, we plot
the overall call traffic (in number of calls) during the day. Calls are distributed
according to a well known trend with two peaks, one at 11-12 a.m. and one
at 5-7 p.m., and with most of call traffic concentrated from 8 a.m. to 8 p.m..
Of course, the impact of offloading in proximity traffic is more remarkable if
performed during rush hours.

From Fig. [2.5a and we can observe that, by considering only the most
significant time slices, the percentage of in proximity traffic is around 15-20%
and 15-16% for Data-Prox 1 and Data-Prox 2 respectively, confirming the
results reported in Fig.

Spatial distribution of in proximity traffic

The question we answer in this section is the following: is the traffic in prox-
imity fairly and uniformly distributed over all the cells, or a subset of cells
shows different behavior? To show how in proximity call traffic is distributed
over the considered geographic area, we firstly compute the per-cell percent-
age of calls directed in proximity. Fig. and plot the total number
of per-cell outgoing calls against the percentage of in proximity calls. The
two datasets show a slightly different behavior. In fact, the distribution of
the outgoing calls in Data-Prox 2 (Fig. is concentrated in lower val-
ues (mean 852.8 and 95-percentile 3488) than those in Data-Prox 1 (mean
1386.1 and 95-percentile 3277), and the distribution of the percentage of in
proximity calls has mean 10.40% and 6.28% for Data-Prox 1 and Data-Prox 2
respectively. Interestingly, in Fig. 2.6b] we can observe that in both datasets
cells producing higher volume of voice call traffic have also higher number of
in proximity calls. It turns out that these cells are the best candidate taking
advantage of a network infrastructure able to offload the local traffic from
the operator core network. But how many cells should the mobile operator
equip with offloading capabilities to achieve the desired level of core network
decongestion?

To identify the trade off we sort the cells in descending order according to
the absolute number of in proximity calls, and, for each specified offload level,
we select the top ranked cells required to match the required offload level. The
result is reported in Fig. We still observe some difference between the
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Fig. 2.5: Per-class temporal distribution of inter-personal traffic during a work-
ing day (top). Absolute number of calls during a working day (bottom).

two datasets. In Data-Prox 1 the percentage of required cells increases more
quickly than in Data-Prox 2 so that, to offload the 10% of traffic, the 50% and
the 12% of cells is needed in Data-Prox 1 and Data-Prox 2, respectively. This
behavior is explained by the above mentioned arguments. In fact, for dataset
Data-Prox 2, the cells in the tail of both distributions, contribute significantly
to the overall amount of offloaded traffic. By contrast, Data-Prox 1 does not
present this characteristic, so it is required a greater percentage of cells to
meet the same offloaded traffic level.

Finally, by using the GPS coordinates contained in the dataset Data-
Prox 2, we are able to draw the heat map of the absolute number of in prox-
imity calls. In Fig. 2.:6d] we report the map by labeling the most significant
locations. As expected, they are highly populated city’s areas, including the
city center and the two main railway stations. The hottest location is placed
in a business district, in between the two stations.
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Call duration analysis

In this section, we compare the call duration between calls classified as in
proximity, and the others. Fig.[2.7reports the cumulative distribution function
of the call duration in minutes. It turns out that the duration of in proximity
calls is shorter than other calls (mean 1.23 and 2.62 minutes, respectively), and
that the percentage of missed calls, or rings, is slightly higher in proximity than
otherwise (27% and 21%, respectively). These findings can be rooted to the
well known human behavior of using such form of interaction to synchronize
one another before a real-life encounter.

Impact of popular events

Mobile operators are used to deploy temporary cells in specific urban areas
to absorb the extra access requests raising in conjunction with popular events
[99]. To properly dimension and equip such an extra budget of cells, it is helpful
to understand the impact of interactions in proximity during the event. To this
purpose, we select the set of cells covering the area of two important events:
the first is an important football match held at the San Siro stadium, while
the second is the opening event at the Scala Theater. For the selected cells,
we compare the amount of traffic in proximity the day of the event against
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Fig. 2.7: Cumulative distribution function of the call duration without consid-
ering missed calls and rings. Mean call duration is 1.23 and 2.62 minutes for in
proximity/near and other calls respectively.

the other daysﬂ In Fig. we only report the absolute and percentage value
of the first event. We can observe that the football event has a significant
impact in terms of increase in absolute number of calls. This is mainly due
to the fact that the area surrounding the stadium is not densely populated.
From the figure we can observe that during the event the percentage of in
proximity call grows up to 150-200%. During the opening event we observe a
lower increase of absolute number of calls in proximity, because the theater
is located in the more populated city center. In this case we found that the
percentage of in proximity call grows up to 50-100% w.r.t. the days without
event.

2.2.4 Multidimensional burstiness of mobile phone interactions

In this section we perform a multidimensional study of human sociality as
an expression of the use of mobile phones, where the user has different com-
munication media. In particular we focus on user temporal communication
behavior in the interplay between the two complementary communication
media, text messages and phone calls, that represent the bi-dimensional sce-
nario of analysis. Our study provides a theoretical framework for detecting
and analyzing multidimensional bursts by introducing a new burst detection
algorithm and metrics suitable to describe multidimensionality features. In
fact multidimensional bursts exhibit a complex inner structure that accounts
for how individuals organize their activities once a burst is initiated. The in-
terplay among the different dimensions can be fully described by defining the
triplet of metrics < d, p,¢ > which captures the number of dimensions d, the
dimensions prevalence p and the tendency to switch among dimensions ¢.

3 For the background traffic we average the amount of traffic over all other days.
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Fig. 2.8: Impact of a popular football match event on the traffic level of in
proximity calls. The considered event is the football match between Inter and
Milan A.C., the two main football teams of Milan. The match lasted from 8:45
p.m to 10:30 p.m.

The use of this general framework enabled us to offer empirical evidence
of multidimensional bursty nature by analyzing the combined phone call/text
message communication patterns of approximately one million people over a
three-month period. Multidimensional analysis sheds light on human social
interactions by phone and give answers to new emerging research questions:
How do individuals schedule different phone activities? Is the mental selec-
tion process driven by technology or by social relationships? We find that the
structure of the phone activity sequences is mostly influenced by the com-
munication media. This behavior has to do with the uncomfortable and time
consuming task of media switching which is able to condition the mental
scheduling process.
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Dataset preprocessing

The dataset was preprocessed to obtain significant time series of outgoing
phone activities to highlight the active role in the initialization of the com-
munication. The preprocessing phase focused on the dynamics of per-day ac-
tivities of users. In fact, in line with the arguments proposed in [65], we are
less interested in observing the role of human circadian and weekly activity
patterns which act on both weekly and 24-hour time scales. In practice, we
put more emphasis on human behavior in performing phone activities during
a day than in natural life cycles.

The following analysis considers the outgoing phone activities of individ-
uals as a sequence of discrete temporal events. For each pair (user, day), we
build the time series of the outgoing phone activities performed by that par-
ticular user on that particular day. Finally, we obtain the set of time series
representing our sample. Thus, an event time series s of a given pair (user,
day) is defined as: Syser.day = €(t1,d1),e(t2,d2),. .., e(tm,dn), where e(t;,d;)
is the ¢ —th event, an outgoing call or text message activity performed by user
at day, t; represents the event’s starting time and d; is its duration, which we
assume to be 0 in case of text message. From now on, we will use the terms
time series and sequences as synonymous with s, disregarding indexes.

For this work purposes, we only considered the time series having a rele-
vant number of both texts and calls, i.e. lying above a given threshold. This
led us to obtain two sets of time series, namely Data-Burst 1 and Data-
Burst 2, by selecting two values of the threshold for outgoing calls and texts:
for Data-Burst 1 the threshold is 25, while for Data-Burst 2 the threshold
is 10. Moreover, in order to exclude anomalous users like robot-based event
generators, telecom frauds, telephone sales, and such, we required that the
daily activities should not exceed the threshold of 100 calls and 200 texts.
After this preprocessing, we found Data-Burst 1 to contain 5,716 time series
and Data-Burst 2 to contain 134,736. This way Data-Burst 1 accounts for
time series expressing a very intense activity, while Data-Burst 2 weakens the
activity level allowing us to check and generalize the behaviors observed in
Data-Burst 1.

Burstiness of phone activities

It is commonly accepted that inhomogeneous time-dependencies within a se-
quence of discrete events show a heavy-tailed inter-event time distribution,
where the inter-event time is the time elapsed between two consecutive events
es. More precisely, in our case inter-event times are defined as t;1; — ¢; for
text messages and t;11 — (t; + d;) for call, where ¢; is the start time of the
event ¢ ad d; is the duration of call i.

To prove the burstiness of phone activities we apply the method proposed
in Vasquez et. al. [I04] and extended by McGlohon et. al. [76], Then, we fit
the inter-event time data by using MLE (Maximum Likelihood Estimator),
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and select the model with the minimum AIC (Akaike Information Criterion).
Due to the considered temporal granularity of 1 minute, we take the discrete
counterpart of Pareto distribution, the Zeta distribution with scale parameter
.

To properly capture the overall bursty nature dynamics of phone activ-
ities, we firstly compute the aggregated inter-event times distribution. The
resulting complementary cumulative distribution function (CCDF) is shown
in Fig. 2.9 along with the best fitting power-law and exponential distributions.
It is visually evident and confirmed by the AIC criterion that the aggregated
inter-times follow a power law distribution, accounting for inhomogeneous
processes of call and text messages activities.

We further analyze the inter-event times distribution of the outgoing events
on the single sequence of the datasets and we apply the same fitting method-
ology described above. In Table [2.1] we report the result of the fitting method-
ology on the single sequence, as we can see more that 75% of time series —
considering all phone activities — fit with power-law distribution.

Data-Burst 1 Data-Burst 2
Media type|Power law| Exp. ||Power law| Exp.
Call 78.83% |21.17% 78.12% |25.88%
Sms 73.69% [26.31% 54.40% |45.60%
All 87.16% |12.84% 76.67% |23.33%

Table 2.1: Result of best fitting between power-law and exponential distribu-
tions.

We finally focus on the similarity of bursty activity sequences by comput-
ing the distribution of the scale parameter « of the best fitting power law
distribution computed above. The results are reported in Fig. [2.10] As shown
in the figure, values are scattered around a peak at 1.5. This partially corrob-
orates the results found in [I04], which showed a single group of users with
very similar behavior described by Gaussian distribution of « centered in 1.

Burst detection algorithms

Given a time series it is important to correctly identify which events are per-
formed in a burst and which are not. To this end different algorithms are
developed to automatically find out bursts and they differ in the features
they consider to identify the bursts: variation of event arrival rate [69], num-
ber of events occurred in a specific time window [114}, [44] and inter-event time
threshold [65] [68] 109]. In mobile phones dataset analysis the most used ap-
proach is the inter-event time threshold. This approach defines a burst as a
group of consecutive events having inter-event time below a certain threshold.
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Fig. 2.9: CCDF of aggregated inter-event times along the best fit power-law
and exponential distributions.

Nevertheless, all these approaches are limited to one-dimensional case and do
not consider temporal overlapping.

If we move from one dimension to a multidimensional burst time series the
burst detection algorithm based on inter-event time of consecutive events is
unable to correctly identify bursts, as they might be affected by a temporal
overlapping between different dimensions. In fact, circumstances may exist
where people communicate and socialize by different media simultaneously,
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as typing text messages while talking with friends nearby. Albeit rare, we
observe this behavior in a few sequences of our datasets, where texts were
interspersed with calls. Here we propose a different approach that is viable
for any multidimensional case.

Let us start by providing a formal definition of burst. In a burst each event,
except for the first and last ones, has at least k neighbor events within At. Let
us consider the event time series s = e(t1,dy), ..., €(tm, dp,) and the function §
representing the time elapsed between two events e(¢;, d;) and e(t;, d;) defined
as follows:

tj—(ti—‘rdi) iftj >t +d;
5(€(ti,di),6(tj7dj)) = (2].)
t; —1; iftigtj§t¢+di

For each event e(t;,d;) of the sequence, we counsider the set E;(At) =
{e(t;,d;) | d(e(ti,d;), e(tj,d;)) < At,i # j}, which represents the set of all
events e(t;,d;) having a time gap from e(t;, d;) below or equals to At.

We define a burst as a sequence b = e(ts, ds),...,e(ty,ds) such that each
set E;(At), with s < ¢ < f, has cardinality greater or equals to k. According
to this definition the burst length n, defined as card(b), is f — s+ 1.

From an algorithmic point of view, the given definition, and in general the
idea of burst, can be reported in a way that fits with the model adopted by
the density-based clustering algorithm framework [70]. A burst can be seen as
a time period where the probability density function p(t) exceeds a prefixed
threshold. Density-based clustering is exactly a non parametric framework
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Fig. 2.11: Example of event time series. This example explains how the burst
detection algorithm works. The algorithm correctly identifies the densest regions
(black dashed bozes) avoiding to include the event in between (red solid line).

whose aim is the extraction of high density regions of p(t). Therefore we
assume that the points we group correspond to the time of the event e; which
comes from an unknown probability density distribution p(t), while bursts
are the clusters. Among the various density-based methods proposed in the
literature, we select DBSCAN [34] because it scales to a large dataset and
is robust against noise. Given a distance threshold At, and a threshold k£ on
the number of the events within the interval [t; — At,t; + d; + At] (the choice
of the interval [t; — At,t; + d; + At] in the construction of the neighborhood
set accounts for the asymmetry of the function ¢), the algorithm finds the
maximally connected component (in terms of density reachability) of events
at a distance smaller than At from some core points. By the term core point,
we mean a point ¢; such that the number of events in [t; — At, t; + d; + At] is
greater than k. In Fig. we illustrate how the algorithm operates on a toy
sequence. In the figure we also observe an advantage that the density-based
approach offers w.r.t. simple aggregation on the inter-event time [65]. Density-
based methods overcome the so-called ’chaining-effect’ which affects the single
linkage methods as the inter-event aggregation. In fact the sole aggregation
can result in different clusters merged by a ’chain’ of single points between
the clusters. In the figure the chaining-effect induces the two detected bursts
to merge into one due to the single event in between.

Burstiness degree

We apply the above described detection algorithm to both datasets by varying
the threshold At from 1 to 60 minutes and k = 2 (the latter value enables
the comparison of our results with those obtained by implementing the single
linkage methods). The results are in Fig. In both datasets we found
that phone activities are very bursty and, even when we execute the detection
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Fig. 2.12: Mean of the percentage of events inside the bursts by varying the
threshold At from 1 to 60 seconds: (a) Data-Burst 1, (b) Data-Burst 2.

algorithm with the tight threshold value of 10 minutes, more than 80% of
activities occur inside burst. In the same figure we also report the results we
obtained by considering texts and calls separately. In both one-dimensional
cases these percentages are much lower due to the fragmentation of bursts
when the two media are alternated.

Burstiness, perceived as the generic concept of time inhomogeneity, has
been widely proved for many human activities including phone activities. Such
a behavioral concept has never been analyzed by means of quantitative mea-
sures that will favor an insight into a relevant human attitude as it occurs
when considering burstiness of some physical and biological events, such as
earthquakes and neuronal activities. With the notion of burstiness degree we
want to characterize burstiness of human social activities providing a quanti-
tative measure of the level of burstiness. In the following we define the three
attributes which characterize a bursty behavior along with the metrics suit-
able to quantitatively describe them. The first two are properties of the single
burst, while the third is ascribed to burst sequences. If we consider a time
series s containing m bursts by,..., by, where the u — th is composed by
the events b, = e, (ts,ds), ..., eu(ts, dy), we can define the three attributes as
follows:

e Persistence. This attribute accounts for the persistence a user puts in
doing a specific task. The higher the number of activities within a single
burst, the more the user is involved in her/his burst of activity. We can
measure it by means of the burst cardinality metric, that is the number of
events inside the burst: persistence(b,) = Card(b,).

e Focus. This attribute accounts for the level of exclusive concentration a
user is willing to assign to a single activity avoiding interruption by differ-
ent tasks. The more the user is focused on it, the smaller the elapsed time
between two consecutive events within a burst. We can measure it by com-
puting the descriptive statistics (mean, median, and standard deviation)
of the distribution of the intra-burst inter-event times, that it the elapsed
time between the end of an event and the start of the following one inside
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a burst. Formally, we define: focus(b,) = (ts41— (ts+ds), ..., tp—(ty_1+
dj-1)).

e Frequency. This attribute describes how frequently a user opts for do-
ing a given activity in the time scale of a day. We can measure it by
compute the descriptive statistics of the distribution of the inter-burst
inter-event times, i.e. the elapsed time between two consecutive bursts.
Formally, given the sequence s of mb burst, we define: frequency =
0(eu(ty,dy), eysi(ts,ds)),Yu=1,...,mb—1.

A taxonomy of user bursty behavior naturally arises. For example, a user
can be highly persistent in doing an activity by performing a relevant number
of activities inside a burst, but he could have the attitude to multitasking,
thus decreasing his focus; by contrast, we can imagine another user which is
very focused but is able to perform a small number of activities. The overall
burstiness degree is described by the triplet (burst-length, intra-burst inter-
event times, inter-burst inter-event times), where the higher the three observed
values, the higher the resulting burstiness degree.

The three burstiness degree components are computed on all sequences of
bursts and characterized by means of their distributions and point statistics.

Persistence

High values for the metric card(b) can be connected to the fact that a user
decides to perform a relevant number of phone activities. The best fitting
distribution of burst cardinality, card(b), is definitely the tapered-Pareto dis-
tribution that perfectly matches with a cut-off behavior induced by the time
threshold adopted in detecting bursts. In Fig. the sample burst lengths
and the tapered Pareto best fitting distributions are shown:

Flz)=1- (Ijn)aexp (I"“”A_I) (2.2)

where Z,,;, is the minimum value of sample, while a and A\ are the two
distribution parameters.

The tapered-Pareto model well fits phone burst cardinality, accounting
for the human decision process to dedicate themselves to a perform phone
activities. The very high level of persistence of phone activities is underlined
by the high mean and median values of the burst cardinality, as reported in
Table

Focus

The intra-burst inter-event times measures the average time to wait for the
next activity to occur inside a burst. Its analysis is reveling of whether people
have the attitude to dedicate time to a specific type of activity denying time
for others or they have an attitude to task interleaving. The distribution of
this index still exhibits the tapered Pareto model, as shown in Fig. and
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Fig. 2.13: CCDF of bursts length distribution and Tapered Pareto best fit. (a)
Data-Burst 1. (b) Data-Burst 2.

Data-Burst 1 Data-Burst 2
Mean| Med.|Std. ||Mean| Med.| Std.
Persistence (# events)| 13.77 | 9.00 |14.70|| 8.16 | 6.00 | 7.85
Focus (minutes) 471 | 2.00 |6.45| 6.21 | 3.00 |7.16
Frequency (minutes) |107.3| 64 |121.1]|141.9| 92 |142.5

Table 2.2: Mean, Median, and Standard Deviation of the burstiness degree
components.
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Fig. 2.14: CCDF of intra-bursts inter-times and Tapered Pareto best fit. (a)
Data-Burst 1. (b) Data-Burst 2.

the mean and median values, reported in Table confirm that bursts are
concentrated within a small time window. In fact, activities inside a burst are
separated by less than five minutes on average, while it takes more than one
hour between two consecutive bursts.

Thus people are highly focused on phone activities when they perform
them.

Frequency

The analysis of inter-bursts inter-event times distribution shows the average
burst generation frequency per a given type of communication.

In Fig. 2.15| we report the CCDF of inter-bursts inter-times and the relative
best fitting distribution which still is the tapered Pareto distribution. Also in
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Fig. 2.15: CCDF of inter-burst times and Tapered Pareto best fit. (a) Data-
Burst 1. (b) Data-Burst 2.

this case, the distribution parameters are very similar for both call and text
message.

The statistics of inter-bursts inter-event times, reported in Table [2.2] show
that bursts are significantly separated one another; in fact, both median and
mean values are more than twice the 30 min. threshold we adopted in the
burst detection algorithm. We can derive that phone activities are highly
concentrated in specific time periods of the day.

In summary, the empirical evaluation of the defined indexes for burstiness
degree allows to ascribe measurable data to phone activities, confirms that
both phone calls and text messages can be rooted in a human scheduling
process and provides an insight into the human behavior while using techno-
media for their social interactions. In fact, it has turned out that:

e persistent - individuals are used to explicitly allocate the required time to
phone activities, as revealed by high values of burst cardinality;

e focused - this time is almost exclusively dedicated and individuals have
the tendency to approach social interactions with a single-task attitude,
as shown by the very short intra-burst inter-event times;

e concentrated - phone activities are performed almost exclusively in dedi-
cated time periods, as confirmed by the very long inter-burst inter-event
times along with the very small number of phone activities performed
outside bursts.

Multidimensional features

Here we focus on the characterization of multidimensional bursts as the very
general burst category that includes one-dimensional bursts as the simplest
case. In the following we omit the features that have been already defined in
one-dimensional burst analysis and that are still valid in the general case (such
as inter-times or burst length). Therefore we focus on a set of features, and
corresponding quantifying metrics, able to fully characterize multidimension-
ality. Indeed, multidimensionality features each single burst, not the overall
time series, and so models and metrics relative to burst sequence still hold.
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Here we zoom in the single burst structure to describe its inner multidimen-
sionality.

To this end, we first introduce the variable d that indicates how many dif-
ferent types of activity exist within a burst, 4.e. the number of its dimensions,
and denote as d-burst a d-dimensional burst. We can now represent a d-burst
as a sequence of symbols belonging to the alphabet ¥ = {0,1,2,...,d — 1},
where card(X) = d. In our bi-dimensional datasets, we code text message = 1
and call = 0 and represent bursts as binary sequences.

Secondly, we characterize the burst multidimensionality by considering
the relative importance of the activities inside the burst. Given a d-burst, we
define as prevalence the vector p = (p1,pa, . .., pq) where p; is the probability
to draw the ¢ — th dimension symbol when considering a multinomial process
on the burst:

number of ¢ — th symbol occurrences
pi = (2.3)

n

where n is the burst length. In our case, piest = 1 — peqir holds and measures
the prevalence of one of the two activities w.r.t. the other, accounting for
the media selection preferences performed by a given user in a given burst of
phone activity.

Nevertheless, these two features fail to describe how often a user switches
from one medium to the other. Let us consider, for example text/call bursts.
In addition to the one-dimensional burst, where the user decides to perform
all activities on a single medium, multidimensional burst is a multiple symbol
sequence. Symbols can be more or less interleaved inside a sequence, account-
ing for how often the user switches between media inside a burst. This way
switches divide a burst into sub-sequences, each being a sequence of a sole
symbol. An extreme case, very similar to the one-dimensional one, occurs
when the burst can be divided in exactly two sub-sequences, one containing
text messaging, the other call only. We name this burst a disjoint burst, as the
user is definitely separating the two media. Single and disjoint bursts clearly
account for a monotone behavior w.r.t selecting a particular type of activity;
for example, a user may decide to use only one communication medium or to
send all texts prior to performing other activities.

By contrast, bursts where symbols of different media are interleaved with
one another are clearly an observable effect of the multidimensionality and
can provide valuable insight into the selection process underlying the user’s
activities. For sane of clarity, we use the term interleaved to identify bursts
that are neither disjoint nor one-dimensional. Of course, interleaved bursts
exhibit different degrees of interleaving, which account for how often the user
changes media or, equivalently, how many sub-sequences exist in the symbol
sequence.

Intuitively, the higher the degree of interleaving, the farther the sequence
moves away from the binary sequence representing the one-dimensional or
disjoint burst. In the general case of a d — burst the interleaving degree of a
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burst is formally expressed as follows:

s+1—d

L= (2.4)
where s is the number of switches from one symbol to another inside the
sequence. The numerator represents the difference between the number of
sub-sequences inside the current burst, s + 1, and inside a generic disjoint
type burst, d. The denominator is a normalization factor accounting for the
difference between the number of events in the burst, n, and the minimum
number of events of a d-dimensional burst, d. This coeflicient assumes values
in the interval [0,1]: 0 means that the burst is a disjoint or one-dimensional
burst, while 1 means that the type of activity changes from event to event. For
example, let us consider the bursts having the events sequence in Table

Burst ‘ L
0000011111} O
0011110001| 0.25
0011001100/0.375
0101010000/0.625
0101010101| 1

Table 2.3: Example of burst sequences and the computed interleaving degree.

Finally, the triplet < d, p,¢ > fully describes the multidimensional nature
of a burst.

We compute the interleaving degree on interleaved burst and we report the
histogram in Fig. [2.16] We can observe that the overall degree of interleaving
is very low, in fact more than 80% are below or equal to 0.5, accounting for a
very low level of interleaving attitude.

As a final step of the multidimensional analysis, the comparison between
the dataset’s time series and a randomized dataset (null model) is the mech-
anism we adopt to see if the footprint of human behavior can be recognized
in a user’s sequence of events or if it is simply the consequence of a random
selection of communication media. To produce the randomized dataset, we
shuffle the user activities of the original dataset as follows: we start with the
time series of activities and randomly permute the order of text messages
and phone calls a user executes. This shuffling method allows us to leave
untouched the inter-event times, ergo the detected bursts as well, while re-
moving the activity type selection process, which in our case corresponds to
the selection of communication media. The result of shuffling procedure is
reported in Table [2:4] We can observe that the shuffled process causes a re-
duction of one-dimensional and disjoint burst types; in particular, we see a
significant decrease in one-dimensional bursts. In fact, about 50% of bursts
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Fig. 2.16: Histogram of interleaved degree computed on interleaved burst. (a)
Data-Burst 1: mean 0.32, median 0.29, and standard deviation 0.20. (b) Data-
Burst 2: mean 0.36, median 0.31, and standard deviation 0.283.

Data-Burst 1 Data-Burst 2
Burst type Original|Shuffled |Var. rate||Original|Shuffled | Var. rate
One-dimensional| 24.57% | 6.42% | -73.86% || 32.79% | 10.72% | -67.29%
Disjoint 18.37% | 14.49% | -21.12% 25.11% | 21.51% | -14.33%
Interleaved 57.06% | 79.08% | +38.60% || 42.10% | 67.77% | +60.95%
Table 2.4: Comparative analysis between original and shuffled time series for

each dataset. The shuffled time series was obtained from the original ones by
performing a random permutation of the order of text messages and phone calls.

are one- dimensional or disjoint, unlike what we would observe if the choice
were obtained randomly.

The aforementioned arguments enforce the hypothesis that the execution
order of phone activities is mainly affected by the need to minimize the switch-
ing overhead between different communication media (and the relevant apps).
People experience a certain inertia which makes them to lean in single dimen-
sion and to persist in there up to completion of the planned burst activities.

These results magnify the burst nature of human communication and high-
light the extent to which the multidimensional approach enriches the big pic-
ture of mobile phone communication.
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Fig. 2.18: Distribution of Spearman correlation coefficient per burst
type. CDF of the Spearman correlation coefficient computed on Data-Burts 2 by
grouping burst by type and considering sequences with more than three distinct
TECELVETS.

Multidimensional sociality using mobile phone

In the previous section we have shown that the processing sequences of human
mobile phone activities are likely to be heavily influenced by media selection.
This argument is slightly counterintuitive - we would expect human interac-
tions to reflect the personal value (ranking) that individuals ascribe to their
social relationships - and thus deserves further analysis. Provided that indi-
viduals have the attitude to organize their sequences of phone activities in
multidimensional bursts with a very low interleaving degree, the question to
answer is: does the order in which activities inside a multidimensional burst
reflect the ranking that the user ascribes to her/his social relationships?



2.2 Analysis of different aspects of human behavior 36

To provide a quantitative answer to this question, we perform a corre-
lation analysis between burst activities and sociality rankings. The burst
activities ranking has been performed as follows. We consider the sequence
(r1,79,...,7y,) where r; represents the receiver of the i-th phone activity per-
formed by user in a burst and we consider the vector given by the first oc-
currence of all the receivers. The burst rank of each receiver v is defined as
the index of v in the vector of the first occurrences. For example consider the
following sequence (b, a, a, b, a, ¢, ¢, b). The vector of the first occurrences
is (b, a, c) which gives the following ranking b = 1, a = 2 and ¢ = 3. We can
stretch the scope of this ranking notion from a single burst to a full day by
joining all the sequences corresponding to the bursts happened on a specific
day.

We can describe the sociality ranking by organizing, in decreasing order,
the neighbors of each user on the basis of the number of interactions the user
has performed with her/his neighbor. Here we adopt the term ’interaction’ to
indicate a voice call or text message issued by a user. The sociality ranking has
been shortened by removing neighbors not included in the burst/day ranking.
This way the two rankings have the same cardinality. The evaluation of the
Spearman correlation coefficient enables the comparative analysis of the two
rankings.

We analyze the distribution of the Spearman coefficient p at both day
and burst level and we report the relevant distributions in Fig. To avoid
artifacts induced by small number of points, we consider sequences with more
than three different receivers. At a burst level we have nearly 28% of bursts
showing high degree of correlation or anti-correlation (|p| > 0.6), while at day
level we observe this percentage decreasing to 15%. These results highlight
that the choice of the next activity is not driven by social importance. This still
holds even in case of more regular behavior in terms of media selection, as it
happens in one-dimentional or disjoint bursts. As we can see in Fig.[2.18] where
the CDF of the Spearman coefficient grouped by burst type is reported, there
is no significant difference between burst types. In fact, we observe that around
30% of one-dimensional and disjoint bursts show high degree of correlation
or anti-correlation, which is similar to the the percentage observed in case
of interleaved bursts, around 25%. We can conclude that the communication
medium is the main ingredient to determine the organization of our sequence
of activities inside a burst.

How do users distribute their social efforts using mobile phone?

People maintain a large number of relationships (personal network) but, in
practice, their interactions are mostly concentrated on a small portion of
neighbor nodes with strong ties (grooming network to recall the notion of
Dunbar’s grooming network [28]). We investigate how users distribute their
social efforts, in terms of number of phone activities, among their networked
neighbors. We use the disparity Y;, previously used in [78] defined as follows:



2 Long range interactions in cellular network 37

Personal Network

@s—-300=0
A
!
|
i
i
N ’
»
PR
v ) ]
« ¥
*oan
| \
N
o0

Fig. 2.19: Schema of personal network of a single user. Each circle represent
another user with which user have interacted. Blue circles are weak ties, while
red ones are strong ties (users belong to grooming network).
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where k; is the degree of the user i, w;; is the weight of link between the
user 7 and one of her/his neighbor j, defined as the number of interactions
(call and text messages) between ¢ and j. The value s; is the total number of
interactions of user i, more formally s; = 2521 w;;. The disparity is a mea-
sure of local heterogeneity and it is usually plotted as k;Y; as a function of
degree k;. It assumes value 1 and does not depend on the k; in case of perfect
homogeneous behavior, while we have k;Y; = k; in case of severely heteroge-
neous behavior. In Fig. 2:20] we report the mean of disparity measure given
the degree. We note that, except for low and high degree values (less then 10
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Name Analysis Time Num. users Record used
period
Data-Mob Mobility 7 days 49,067 all
Data-Prox 1  In proximity phone 9 week 734,149 call
call
Data-Prox 2  In proximity phone 1 month unknown call
call
Data-Burst Multi-dimensional 9 week 5,716 pair user-day call and text
1 burst messages
Data-Burst Multi-dimensional 9 week 134,736 pair call and text
2 burst user-day messages

Table 2.5: Characteristics of preprocessed dataset.

and more than 100), the disparity value has a quasi-constant behavior. This
result can be interpreted as a user propensity to enlarge their grooming net-
work and to become more homogeneous by allocating her /his communication
efforts to a greater number of personal contacts. To understand this behavior,
we analytically derive a limit case in which a user allocates all efforts only to
contacts inside his grooming network. Additionally, we assume user uniformly
distributes efforts across the grooming network. Formally, we denote with G
the size of the grooming network and we assign to each user belonging to the
grooming network the same weight w;; = s;/G;. We consider the following
equalities chain:

G, Wis 2 G 55 2 1
kY =k ) =k - =ki= = 2.6
;( 5i ) ;(Gisi) G 20

where v is a constant. We extract the size of grooming network given the
degree as G; = k; /7. Therefore we obtain that the size of grooming network is
a percentage of the size of the personal network. In Fig. we can observe
that values span from 4.5 to 5.5 (for 10 < k; < 100) meaning that the grooming
network includes around 20% of the entire personal network. These results can
be interpreted as users propensity for enlarging their grooming coalition with
increasing of the personal network size. By using these results the grooming
network can be easily computed by taking the first quintile of the personal
network.

2.2.5 Summary of preprocessed dataset characteristics

We summaries in Table 2.5 the name and the main characteristics of the
preprocessed dataset presented in the previous sections. Hereafter, we will
refer to a specific dataset by name.

2.3 Design of new network services for mobile operators

Mobile operators are today facing the challenges of a dramatically increasing
demand on data traffic and are in urgent need to create the network capacity
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required to accommodate the expected growth of traffic in the near future
[21]. Operators are rolling out access network upgrades, such as the recent
LTE. Nevertheless, simply increasing the access bandwidth cannot always be
effective if it is not combined with complementary transformations of the
core network, which is caught in the grips of exploding traffic flows which
are extensively relying on a centralized, P-GW centric, architecture. These
arguments are making the traffic offloading of the core network one of the
primary goals that network operators must pursue today.

The mobile operators can use the data they collect about their subscribers
to extract behavioral information to make offloading solutions more efficient
both from the network and users point of view. From network point of view
operators can optimize the utilization of resources, while from users point of
view operators are able to guarantee a better Quality of Experience (QoE) to
their subscribers.

In this section we propose two complementary services/functionalities able
to offload part of mobile traffic from the core network. The first one is a proac-
tive contents distribution service which is able to prefetch digital contents close
to the location from which they could be requested by users. As a proof of
concept, we focus on the distribution of newspapers and magazines available
under subscription. Based on this assumption and by leveraging the regularity
of users’ mobility we provide a quantitative results of the performance of this
kind of service from both operator and user points of view. The second ser-
vice is an additional functionality provided at the edge of an operator network.
This last functionalities — named Proximity-Aware Traffic Offloading Service
(PATOS) — make the edge network aware of mobile interactions between users
in proximity of each other. By leveraging SDN and NFV technologies, the edge
network becomes able to create and manage users interactions in the nearby
without involving the core network. We provide a description of our solution
by showing its feasibility in the actual LTE network architecture.

2.3.1 Architecture overview

This section describes the NF'V /SDN-enabled infrastructure supporting both
services. It has been designed to meet the following general requirements:

e User Equipment (UE) unawareness — Proximity detection and traffic rout-
ing over local channels need to be transparent to the user and without in-
volving her/his equipment. A seamless handover is also required whenever
users enter/exit the local tracking area.

e On-demand deployment — We are not thinking of a stable deployment
of these capabilities. The mobile operator should be able to activate or
deactivate them when and where needed according to the dynamics of
traffic load or to support planned popular events.

e Flexibility and scalability — In our case, flexibility is mainly required to
ensure on-demand deployment. In fact, what we are considering here is an
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Fig. 2.21: Traffic offload architecture overview.

elastic concept of tracking area, where both size and functionalities may
dynamically change over time. The mobile operator should be able to vary
the number of eNBs belonging to it, and to flexibly allocate resources and
functional modules whenever it decides to place proximity aware services to
cover a given geographical area. Due to this relationship between tracking
area a location-awareness, in the following we often use the prefix local
to indicate functions and resources dedicated to the management of the
traffic in vicinity.

e Integration and interoperability — To favor a quick service deployment, the
PATOS-enabling proposal should be interwoven with current LTE Spec.
and reuse LTE protocols and functionalities. At the same time, it should be
easily placed inside the next generation of fully NFV /SDN-based cellular
networks (see, for instance, [59)]).

The aforementioned requirements cannot be satisfied by the current LTE
Specifications. In fact, the LTE-Direct Specification [95] can only support
interactions among devices in same radio range (~500 m, line of sight), while
the Local IP Access (LIPA) [94] approach has not the required flexibility
to ensure on-demand service deployment, and similar arguments apply to
the proposed LIPA’s evolutions [94], [97]. For instance, the well-defined APN
(Access Point Name) approach assumes that UEs support multiple APNs and
are aware of local and non-local traffic. NAT-based solutions require deep
packet inspection capability, which turns out to be a resource consuming and
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poorly scalable task. Finally, by requiring UEs to use different radio bearers in
case of local or non-local traffic, as in [19], a suitable policy to offload generic
data traffic can be obtained but this is achieved at the cost of some scalability
and transparency concerns. In fact, each bearer uses different Traffic Flow
Templates (TFTs) to distinguish between local and non-local traffic, and TFTs
need to be continuously updated whenever a UE enter or leaves the tracking
area.

These arguments led us to propose a NFV /SDN-based architecture, shown
in Fig. which seizes on virtualization and programmability to satisfy the
problem requirements, and insets the new functionalities in the current LTE
Specification.

The Radio Access Network (RAN) resources, underlying the offloading ar-
chitecture, consist of the set of eNBs in charge of providing radio connectivity
to UEs attached to the given tracking area.

On top of RAN, the SDN backhaul is the virtual local area network pro-
viding connectivity amongst eNBs and the other functional modules involved
in the tracking area operations. The Local MME acts as proxy of control mes-
sages. In particular, this module keeps track of mobile subscribers currently
attached to the relevant tracking area, retrieves subscriber’s attributes from
Home Subscriber Server (HSS), and forwards to the core network the control
messages not directed locally.

The Local IMS manages all local IP Multimedia Subsystem (IMS) mes-
sages and acts as a proxy for non-local IMS messages. The Local SGW (Local
Serving Gateway) is the data plane proxy which enables the access to local
contents. Both Local IMS and Local SGW cooperate with Local MME to
perform the function of proximity detector and to instruct the SDN controller
to create/modify/destroy control and data channels. Local SGW also provide
access to Data Kiosk data storage which contains cached and pre-fetched con-
tents that could be potentially accessed by users in the nearby area. Finally,
the Load Monitor performs a real time traffic load monitoring and manages
the resource utilization accordingly.

2.3.2 Mobile data traffic offload

The service we are going to present is a mobile data traffic ofload service that
helps mobile operators to selective reroute part of data traffic apart from core
network. The data presented in [2I] shows that mobile data contents are the
best candidate to offloading because they are responsible for generating much
of the mobile traffic growth through 2016 (with multimedia alone accounting
for nearly 70 %). Moreover, digital contents can be available under subscrip-
tion and are highly customizable, this two aspect can be exploited by mobile
operator to offer a new kind of services by optimizing the contents distribution
and at the same time by reducing the core network traffic.

This solution gives the opportunity to mobile operators to save core net-
work resources and also provide better QoE to mobile subscribers. We present
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our solution by steps. First we investigate the required number of cells to of-
fer a push-based contents distribution service and to guarantee a suitable
Quality of Service (QoS) to end users. Second we show the feasibility of a
pull-based contents delivery service providing a quantitative analysis of the
benefits by both network operators and users point of view. We use the dis-
tribution of newspapers and magazines as an example of pull-based contents
delivery service able to prefetch digital contents close to the users. To provide
the quantitative results we use the Data-Mob dataset.

Minimizing the number of cells

In this section we face the issue of finding the best selection of cells where
to deploy/activate the offload infrastructure. By using the results of the anal-
ysis on the user mobility presented above the per-user preferred cells may
be a good candidate for the deployment. In fact, by proactively caching the
contents according to a per-user subscription, the operator would certainly be
able to daily push the subscribed content to all users, thus ensuring that 100%
of the offload data are efficiently routed outside the core network. Nonethe-
less, the general operator’s achievement of the highest traffic breakout at the
lowest cost can be pursued by attempting a cell optimization that selects
cells shared among different users. To this purpose, we solve an instance of
standard formulation of Set Covering applied to the first week of the dataset.

Our minimization problem is constrained to ensure coverage to all users
for all days of the chosen week. The problem is defined as follows:

min Z T (2.7)

ceC
subject to:
Z a(u,c,d) . >1 Yu € Users,¥d € Days, (2.8)
ceC
z. €{0,1} (2.9)

where C is the set of cells accessed by users during the first week, a(u, ¢, d) is
a binary coefficient set to one iff the user u accessed to the cell ¢ the day d,
while z. is a binary variable set to one if and only if the cell ¢ belongs to the
optimal solution. Users is the set of all users, and Days is the set of the five
working days of the first week. The constraint of Eq. ensures that each
user is covered by at least one cell in each day of the week.

The number of cells resulting from the optimization problem is 1,081, the
63% of the total. In the following we will refer to this set of cells as C,.
This result is obtained after one hour of solver computation, with a relative
gap from the lower bound less than 2.50%. Besides, the value of continuous
relaxation is 1,031, about 61.1% of all cells.
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Despite the strong constraint, we have obtained an encouraging result
which allows the network operator to bound the deployment spending, while
covering all users. We evaluated this optimal placement with the dataset of
the second week, still considering a content push approach. By leveraging
the strong regularity that users show in their activity patterns, the placed
infrastructure ensures more than 95% of successful offload of the considered
traffic.

A Pull Approach to Content Delivery

The push approach we considered so far is highly effective but slightly op-
erator centric. In fact, it assumes that users accept a delivery service that
autonomously pushes contents to them when they happen to transit under
coverage of the cell selected by the operator. This can be effective in practice
for a subset of contents but not for their totality. Many users may actually
be willing to freely access their contents anytime and anywhere by pulling
them from the Internet. In the following, we consider such a pull approach
and we evaluate whether the described optimal placement remains effective
under changed access conditions. To evaluate this new setting, we randomly
select, for each user, 40% of her/his daily cell accesses and we use them to
describe the users’ requests for digital contents.

As a first performance index, we evaluate the amount of requests we can
serve through the offload infrastructure and compare them with those served
through the operator’s core network. In Fig. We report the traffic (aggre-
gated in bins of 10 minutes) along a sample day, with all days behaving quite
similarly. The black bars report the number of offloaded requests, while the
grey bars report the number of requests served by the core network. The sum
of both bars is the total number of users’ requests. While the overall number
of requests grows along the morning, has a peak in the launch pause and then
remains quite constant during the afternoon, the percentage of offloaded traf-
fic remains stable, as shown in Fig. [2:22D] In fact, the traffic breakout remains
quite stable, around 80% of the total. This is a good result from the operator’s
perspective, for it shows the viability of the placement under different settings
of access distribution.

From a user perspective, we assume that a mobile user may experience
a somehow improved service efficiency when exploiting the offload platform.
This argument makes interesting to estimate how fairly this opportunity is
distributed among the set of users. Such a measure highly depends on the
considered dataset, however, under our setting, the percentage of requests
offloaded in a representative day is reported in Fig. showing that about
50% of the users have all requests served by the offload infrastructure, while
only few users experience less than 50% of requests offloaded.

We then enlarge the analysis window to the whole second week and report
the results in Fig. On a weekly basis, the performance are very satisfy-
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Fig. 2.23: Histogram of users’ percentages of offloaded requests in a single day
(a). Histogram of users’ percentages of offloaded requests over the entire week
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ing; overall, 95% of users can experience improved performance in more than
half of their requests when compared to core-routed traffic.

Summarizing, we can say that from the network operators perspective
the results are encouraging, allowing them to save about 80% of requests
under subscription. From users perspective, the daily analysis showed a good
performance; for 90% of users the offload infrastructure satisfies at least half
of user requests, and 45% of users are always satisfied by infrastructure.

The Placement of Data Kiosks

As described in Fig. we assume that the offload platform includes data
kiosks which we envision to exploit for enhancing mobility support in a news
delivery system. In particular, we consider the delivery of two similar kinds of
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data contents: newspapers and weekly magazines. Both contents are character-
ized by a sort of durable subscription [103] where kiosks cache the subscribed
contents, independently of whether the user is connected to the associated
cell or not, for a specified time of content validity (one day and one week,
respectively). For the purposes of this thesis, we do not further differentiate
subscriptions inside each content category and assume that newspapers are
mostly accessed in the time window from 8:00 a.m. to 11:00 a.m., while mag-
azines have a larger access time window, from 8:00 a.m. to 18:00 p.m.. In
this caching system, contents are replaced daily or weekly, according to the
class they belong to. We want to define a cell selection process to proactively
cache contents based on the knowledge of the regularity of activity patterns
of subscribers. The problem to solve in this case is slightly different w.r.t. the
aforementioned one: here, we use the first week in the dataset to identify the
per-user subset of most visited cells and we place the subscribed content in
the associated kiosk. In practice, we leverage the regularity of user mobility
to increase the probability of finding the cached content when the user will
generate her/his content request during the second week.

The resulting new matching function f,(c) to each cell and for each user

u is as follows:
fule) = €™ 3" wy (c,d) (2.10)
de€Days

where ¢ represents a cell, d,, is the number of days in which the user u accesses
cell ¢, w (¢, d) is the number of accesses to cell ¢ during the day d and Days is
the set of trial days. This function allows us to consider, for every cell and for
every user, both the number of accesses in a day, w, (¢, d), and the number
of days it has been accessed by the user, e®(¢). For each user u, cells are
ordered by descending matching values and the first n elements are selected
as favorite cells. Thus, we denote with C), the set of the favorite cells of user
u. In the following analysis we consider n = 3, being other cells not relevant
according to Fig[2:2D] In the optimization process only the subset of favorite
cells belonging to the offload infrastructure (C, N C,) is considered. If the
intersection between C,, and C, is empty, then the user is discarded because
it will not benefit from the offloading infrastructure anyway. Thus, the set of
cells where minimization will take place is C'y defined as:

Cvf = C’o N {Uue Userscu} (211)

As above, we find the optimal set of cells for the whole set of users by
solving an instance of the set covering problem defined as follows:

min Y (2.12)

ceCy

subject to:
Z . >1 Vu € Users (2.13)
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Fig. 2.24: Network traffic load from 8:00 a.m. to 11:00 a.m. of a representa-
tive day (a). Histogram of users’ requests offloading percentage for newspaper
subscription (b).

and
z. € {0,1} (2.14)

where x. is a binary variable set to one iff the cell ¢ belongs to the optimal
solution.

Optimization is performed using mobility data of the first week while net-
work access simulation is performed using the second week. User content re-
trieval is simulated by randomly selecting one cell access per day in the time
window planned by the service. Since we suppose that each user submits only
one request per type of service during a day, two independent selections are
performed for each user.

Newspaper Subscription Performance Evaluation

After optimization, we are left with 993 cells where caching is required (92%
of total infrastructure cells and 58% of the total cells). This scant reduction is
due to the limited number of cells accessed during the morning. As a matter of
fact, the ratio between the number of cells accessed in the morning and those
accessed during the whole day is 0.88, meaning that most cells are accessed
later in the day.

By analyzing the performance from a network operator point of view, we
obtain the results depicted in Fig. In the figure, we report the traffic
(aggregated in bins of 10 minutes) along one representative day, being all
days very similar. Black bars show the traffic load of offload network while
grey bars show the traffic load of core network; the sum of the two bars is the
traffic offered to the entire network. The percentage of traffic offloaded is, in
the average, 70% of the total traffic.

From the user perspective, the best download performance are experienced
when the content is accessed by means of data kiosk. To evaluate these per-
formance, we compute for each user the percentage of requests satisfied in
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Fig. 2.25: Network traffic load from 8:00 a.m. to 6:00 p.m. of a representative
day (a). Mean user offloading percentage for magazine subscription (b).

offload. The related histogram on all users is reported in Fig. As we
can see, 35% of users are always satisfied by the offload infrastructure, while
more than 70% of users are satisfied more than half of the times.

Magazine Subscription Performance Evaluation

By extending the time window to an entire day (from 8 a.m. to 6 p.m.) we ob-
serve a stronger reduction in the number of required cells. In fact, the number
of caches to be deployed drops from 993 to 779: 72% of total infrastructure
cells and the 45% of the total cells.

Following the same methodology as before, Fig. reports the overall
percentage of traffic offloaded along a day. Also in this case, the percentage of
offloaded traffic is quite constant along the day, with a mean percentage value
of 63%. The performance index is lower than the newspaper service running
in the morning since most of the users access a larger set of cells and, as a
consequence, the probability to request for a content in a cell without cache
is greater. As before, the behavior for all other days is very similar.

Performance from users perspective is reported in Fig. Also in this
case we can observe that more than 70% of the users have a percentage greater
than 0.5, meaning that more than half of the requests are performed using the
offload infrastructure. Nevertheless, the percentage of users who get always
offloaded is lower than morning service: below 15% of the total population.

2.3.3 Proximity-aware person-to-person interaction offloading

The analysis conducted on the datasets Data-Prox 1 and Data-Prox 2 has
showed that more than 15% (in same case more than 20%) of mobile phone
calls involve persons who are in proximity each other. This fact confirms that
mobile operators and users could both benefit from proximity awareness be-
cause it would allow better network resources utilization and improved user’s
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Fig. 2.26: Message sequence of the establishment of a multimedia communica-
tion channel between two mobile subscribers

QoE. This section describes the set of simple functionalities that should be
deployed at the edge of the core network to deploy a Proximity-Aware Traf-
fic Offloading Service, or PATOS. PATOS is composed of the following two
components:

(i) proximity detector: it detects whether the called person happens to
be below a specified distance from the calling current location (for instance,
inside the workplace, the business district or a few blocks away from here).

(ii) device-to-device communication: this component establishes the
device-to-device channel between calling and called devices. This channel is
operated outside the core network whenever the devices are detected to be in
proximity.

PATOS message flow

The PATOS message flow is described in Fig. 2.:26] The procedure has been
designed to ensure transparency to the user and to leave unchanged current
LTE operations. As a result, the attach procedure is the standard LTE at-
tach procedure without any additional dedicated bearers or well-defined APNs
configuration.

When a UE is willing to initiate a IMS session, it sends an initiate com-
munication request (1.1) to local IMS server specifying the phone number of
called UE. Local IMS cooperates with local MME and local SGW to perform
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the prozimity detection task (1.2) and, if the callee UE is actually in prox-
imity, the bearer configuration (1.3) procedure is started. This procedure is
needed to guarantee the seamless handover when UEs leave the tracking area
by maintaining the information of currently active communication channels
between UEs inside the tracking area. As a next step (1.4), L-SGW sends
a configuration path request to SDN backhaul to setup communication path
between the eNBs. Once a path is created, the SDN backhaul notifies L-SGW
which notifies the L-IMS that path is created and it is ready to be used (1.6
and 1.7). At this stage L-IMS replies to UE (1.8) and communication can
start.

UEs are supposed to move during an IMS session. When a UE leaves
its current tracking area, the standard LTE handover procedure is adopted;
should the UE still remain in, the L-MME sends a Reconfigure active commu-
nication path/s request (2.2) to SDN backhaul to reconfigure the communi-
cation path according to current location of UEs (involved eNBs).

2.4 Design new mobile application to manage
multidimensional human interactions

We have seen that mobile phone activities are usually organized in bursts
showing the temporal inhomogeneity of the humans behavior in performing
social interactions. We have also seen that users use multiple communication
channels (call and text message, in our case) and we have observed that users
organize multidimensional burst in order to minimize the switches between
different channels. Finally, we have showed that mobile users allocate their
resources — in term of number of interactions — in a different way inside their
personal network. Nevertheless, this aspect does not influence the order inside
a single burst of activities. This last, counterintuitive, finding is the main mo-
tivation to develop a new mobile application that helps users to manage their
sociality. The application provides the user with a view of his social life that
takes advantage of all its richness and complexity: it organizes his personal
network by predicting whom he would like to contact within the current time
window, enables user to choose the contact to interact with without worrying
about the media to be used, and finally maintains her/his grooming network.
These features are achieved by completely on-board computation without any
centralized server.

2.4.1 Application functionalities
Media dependency

We are convinced that the mental decision process that determines the se-
quence of interactions by mobile phone must be driven by social ties. Media
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dependencies and switching costs from media to media are operational obsta-
cles hampering natural scheduling. Groo-Me adopts a new HCI model whose
attempt is the elimination of these obstacles to bring human interactions back
to their natural behaviour. Groo-Me always shows the contacts list ordered
by relative importance or strength of the tie. The user selects the person to
contact and then selects the channel to use for communication. When the
interaction terminates the app autonomously returns at the level of the list.
This eliminates the costs of switching and roots the decision process to the
sociality.

Grooming network

Groo-Me helps users to maintain their grooming network and becomes an
incentive to reinforce strong ties and to explore weak ones. This is possible
thanks to an intuitive and manageable user interface fed by on board computa-
tion of social relationships. To this purpose Groo-Me records the cumulative
amount of calls and text messages per-pairs of users over a sliding window
of one month. This feature enables Groo-Me to take into account possible
variations of grooming network over a long period. Each personal contact is
ranked according to the amount of interactions which is a measure of the
intensity of their social relationship. The mere counting of call and text mes-
sage interactions might rise uneven computations. In fact, text conversations
might require a high number of messages sent back and forth between two
persons. This could resort to unfairly recording the intensity of a relationship
expressed mainly by text messages. To limit this effect Groo-Me clusters all
text messages inside a bursts into a single interaction.

The application makes aware the user of her/his current grooming net-
work by graphically reporting her/his grooming contacts ordered by their
social strength. In Fig. 2:27 we report a screenshot of a grooming network
visualization. Besides, Groo-Me helps users to prevent strong ties from de-
caying by informing user about the variation of the social importance w.r.t.
previous period (in the application prototype we consider the week before).
To keep track for users who left the grooming network we provide a "lost"
button whose function is to show the list of users exited from the grooming
network w.r.t. the week before.

List of favorites

We build a list of favorites which leverages the computed grooming network,
user’s bursty behavior, and her/his propensity to call a contact in the groom-
ing network approximately at the same time of day. According to the average
burst duration, Groo-Me divides the day in one hour long slices. For each time
slice Groo-Me assigns to each user in the grooming network her /his likelihood
to be called. The likelihood corresponds to the ratio between the number of
past interactions occurred in that particular time slice and the total number of
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Fig. 2.27: Groo-Me visualization of a user’s grooming network. In this example
the size of grooming network is 6 (the smallest bubble has no photo associated
to the contact). The bubble size is inversely proportional to the rank. The green
circles around the bubble indicate a raise of the users in the grooming network
rank. Red and gray circles indicate a decrease or a stabilization of the rank,
respectively.
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Fig. 2.28: Histogram of the rank of personal contact in the list of favorites when
user called the contact. For each performed call we record the rank of personal
contact in the list of favorites if present. Mean 2.01, median 2.00 and standard
deviation 1.28

interactions. Finally, Groo-Me provides a service that dynamically builds a list
of favorites by ranking grooming contacts based on aforementioned likelihood.

We evaluated this service by simulating the favorite generation algorithm
on the dataset. To this purpose, we preprocessed the dataset to extract the
users that were active at least 60 days and we used the first 30 days as train-
ing period. As shown in Fig. 2.28 the approach is viable because the call
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prediction process actually places the 90% of predicted calls in the highest 4
positions.

2.4.2 Preliminary experiment

We have performed a preliminary experiment by distributing Groo-Me to
12 people, students and Faculty members, and we collected statistics after
a period of 2 month together with a survey report asking whether or not
the application were able to properly identify the real grooming network.
All reports reported that the detected grooming network is actually able to
mirror quite accurately the strong ties of their real-life sociality. Moreover,
the reported position of the predicted person in the favorite list happens to
be on average 1.55, indicating a high prediction level.

2.5 Multidimensional burst generative model

We develop a new generative model which focus on the reproduction of the
multidimensional inner structure of each single burst based on the three fea-
tures d, p and ¢ that fully describes the multidimensional nature of a burst.
The model might be easily interfaced with other generative models which pro-
vide values for n (e.g., by drawing from a given distribution as in [65]) and
model inter-burst times. We present a generative model for two-dimensional
bursts, along with results from a comparison between selected indexes and
statistics regarding an excerpt of sample data and a combinatorial analysis of
binary sequences.

The generative model of bursts of given length builds on a discrete time
Markov Chain (MC), which is instantiated in Fig. for the simplest case,
n = 3. Its regular structure makes it possible to infer the MC appearance
for any n. Each MC state represents a (set of) (sub)sequence(s), and may be
described by bindings of some integer variables, L (length), P (prevalence),
S (switches) and [ (last), that take values in [0,n], [0,n], [0,n — 1] and [0, 1],
respectively. In Fig. [2.29] states are annotated with characterizing bindings.
The value of P indicates the number of ’1’ in (sub)sequences. As for [, it
denotes the last event that occurred and allows one to track switches. The
one step transition probability matrix of the MC builds on two parameters,
pro, pri, which define the probabilities that the next event in a (sub)sequence
coincides with the last one. The values 1 — prg, 1 — pry, thus stand for switch
probabilities. We assume that at the beginning of a burst the two possible
events occur with same probability.

Some MC states, drawn in bold, correspond to aggregates of (sub)sequences:
the higher n, the bigger the impact of aggregation. This way the complexity
of the generative model’s solution, in terms of number of states, drops from
exponential (O(2"*1)) to polynomial (O(n¥), 2 < k < 3), so enabling the
analysis of bursts of realistic size.
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Fig. 2.29: Discrete time Markov chain. Graphical representation of the
discrete time Markov Chain (MC) in case of burst length n = 3. MC states are
described by four integer variables, L (length), P (prevalence), S (switches) and
l (last). L denotes the length of (sub)sequences represented by a state (in the
picture values of L correspond to the depth level in the DAG — Direct Acyclic
Graph). P and S indicate the number of ’1’s and the number of switches, respec-
tively. | denotes the last occurred event and allows tracking switches. Each state,
but So, is annotated with some variables’ bindings (top) and the (sub)sequences it
represents (bottom). States drawn in bold correspond to aggregates of sequences.
The parameters pro and pri represent the probabilities that the next event co-
incides with the last one. In order to make the MC irreducible, we assume that
each final state (L = 3) brings the system back to state So with probability 1
(these connections are omitted in the picture).

However, a direct use of the MC is unfeasible because its size become rel-
evant even for small values of n. The need of identifying a more expressive
formalization of the generative model of bi-dimensional bursts as binary se-
quences led us to consider a timed extension of Petri Nets (PN), known as
Generalized Stochastic Petri nets (GSPN) [3] 20]. The GSPN formalism eases
the task of modelers by providing compact, parametric and stochastically-
reconfigurable representations of even huge Markov processes.

The fact that a GSPN maps to a Markov process, i.e., a Continuous Time
MC (CTMC), does not represent a problem. If we consider only the instants
at which the state of the system changes, and we number these instances 0,
1, 2, .., then we get a discrete time Markov chain that is called Embedded
Markov Chain (EMC), or "jump process", of the CTMC. Letting g; ; be the
exponential transition rate from state ¢ to state j of a CTMC, the one- step
transition probability matrix of the EMC is defined by setting p; ; = 0, p; ; =
%—J if i # j, where v; = >, 2i Qi k- The stationary probability distribution
w of the EMC (which exists and is unique if the EMC is irreducible/positive
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recurrent) can be computed from that of the CTMC (), and vice-versa:
¥; = Cm;v;, where C' is a normalizing constant.

A GSPN generative model parametric in bursts’ length was built ensuring
that its embedded MC exactly matches the blueprint instantiated in Fig. [2:29]
for the case n = 3.

2.5.1 GSPN model

The bi-dimensional bursts’ generator is depicted in Fig. 2.30] together with
an accompanying map legend. The model was edited and analysed using the
the GreatSPN packageﬂ which natively supports GSPN. Let us just overview
its blueprint.

The model implements two event generators that operate in mutual exclu-
sion. Passing from one generator to the other is triggered by a (symmetric)
transition which emulates in some sense the switch attitude of humans.

Transition start starts the model up by putting n tokens in place length,
then (once all of them have been consumed, i.e., n events have occurred)
brings the model back to its initial state by triggering a sequence of immediate
transitions (recognizable from prefixes clean, flush) clearing the contents of
prevalence and other significant places. This way the underlying CTMC is
ergodic.

Bursts are randomly built by a pair of mutually exclusive timed transi-
tions (event_0, event_1), one for either type of event (sms/call). The rates of
the associated exponential distributions, A1, A\g, may be interpreted as mean
frequencies of events of a given type. The ratio p = )\f_‘s})\O expresses the
"average prevalence", and is one of the model’s two stochastic parameters.
The switching process is explicitly represented, so as to closely adhere to hu-
man dynamics: timed transition switch indirectly conflicts with both transi-
tions event i, its firing enables one of two (conflicting) immediate transitions
(switchTo 1) that concretely cause the alternation of the 0 and 1 generators.
Places switches and subsequence hold the number of switches occurred since
the beginning of the burst, and the length of the last subsequence, respectively.
The contents of place subsequence are cleared just after a switch occurrence.
Switching is driven by switch’s rate, A4, the ratio r = i—i represents the other
stochastic parameter of the model.

The parameters pr;, i € {0,1}, of the EMC associated with the GSPN
model are pr; = ﬁ The metrics of interest are derived from the probability
distribution on the subset of states {S;} in which v; = 1 (corresponding to
GSPN markings enabling uniquely transition restart, that map to the EMC
states in which L = n). Hence, they can be directly obtained from the GSPN
stationary distribution. Referring to the Fig. [2.29] these probabilities may be
seen as the probabilities of reaching the final states starting from Sy.

4 GreatSPN package is available at http://www.di.unito.it/ greatspn/
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Fig. 2.30: Bi-dimensional burst generative GSPN-model.

2.5.2 Results

In order to validate the model we performed steady state analysis for a number
of configurations. The metrics of interest are the distributions of prevalence
and switches (expressed as interleaving degree), which correspond to the dis-
tribution of tokens in the homonym places of the GSPN model. Steady-state
analysis outcomes are then faced to real data. Besides, we deepen how the
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Fig. 2.31: Comparative analysis in case of burst length 15. (a) Prevalence dis-
tributions. (b) Interleaving degree distribution. We use the following parameter
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Fig. 2.32: Comparative analysis on dataset Data-Burst 1. (a) Preva-
lence distribution. (b) Interleaving degree distributions. We use the following
parameters values: p = 0.5 and r = 3.

model performs against a fully random approach relying on sequence combi-
natorial analysis.

Note that in case of balanced sequences of length n, the formulas for the
distribution of prevalence (P(k,n), i.e., the probability to draw k symbols 1)
and switches (P(s,n), i.e., the probability to draw s switches) are:

S

P(k,n)=2() k:0...nP(s,n) = 52+ (",") s: 0...n—1 (2.15)

The formula for switches is derived from the following consideration. For
a sequence of length n, there are at most n — 1 switches. Then the binomial
(";1) is the number of times in which it is possible to put s switching points
among the n — 1 places.

The search parameter space is given by p ranging from 0.4 to 0.6, r ranging
from 3 to 6, which are symmetric intervals around the mean value observed in
dataset, and n ranging from 3 to 50. In order to reproduce real prevalence and
the interleaving degree distributions, first we selected the best parameters’
model using the Kolmogorov distance; then we weighted the obtained per
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length distributions according to the burst length distribution observed in the
datasets.

In Fig. and we report the prevalence and interleaving degree
distributions of the best fitting model versus the observed and combinato-
rial ones, both on specific size sequences and aggregated case. There is some
evidence that the model fits in sample data much better than combinatorial
analysis, which exhibits an unrealistic symmetrical trend with center (approx-
imately) 5. Note that the model is also able to reproduce the peaks due to
the one-dimensional and disjoint bursts, which represent the behavior farther
from randomness.

The key factor which makes the model closer to the real process w.r.t. the
combinatorial approach is its being driven by an explicit switching process
able to reproduce the real behavior. Conversely, the random approach is only
driven by prevalence parameters, while switching being just an indirect, not
tunable, consequence.

2.6 Summary

In this chapter we have analyzed long-range interactions mediated by cellular
network by means of two mobile datasets. By using data mining techniques,
we have studied different aspects of mobile users behavior such as mobility,
burstiness, and sociality. The analysis of the mobility aspects has shown that
users exhibit very regular mobility patterns visiting a small set of favorite
locations. Moreover, we have analyzed the impact of mobility on phone inter-
actions and we found that a considerable amount of phone calls (around 25%)
are performed between persons who are in proximity to each other. Based
on these findings, we have proposed a novel LTE-based network architecture
placed on the edge network and able to support in-proximity communication
channels and local data traffic offload. As a proof of concept, we have consid-
ered a newspaper/magazine distribution service. We have performed extensive
simulations using real mobility traces extracted from the dataset and we have
shown the benefits of the proposed network architecture from both operator
and user points of view. We then analyzed the temporal inhomogeneities of
mobile users behavior and we have found that users are usually organizing
their phone activities in bursts. We have extended previous literature results
by considering the multidimensionality of mobile users phone activities. We
have developed a theoretical framework suitable to describe the interplay be-
tween different communication media (calls and text messages in our case). By
applying this framework we have found that mobile users have the tendency
to organize their phone activities in order to minimize the switches between
different communication channels, rather than follow some order induced by
their sociality. Furthermore, we have developed a burst generative model based
on GPSN, which is able to correctly reproduce the observed interplay between
the communication media. Last, we have analyzed how mobile users manage
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their sociality through mobile phones. We found that users interact mostly
with a small subset of personal contacts, confirming the Dunbar grooming
network theory. Based on this analysis we have developed a new mobile appli-
cation which helps users to manage their sociality by means of a mobile phone
and to keep track of the temporal evolution of their grooming network.



Chapter 3

Short range in urban space

In this chapter we present an Opportunistic Network (ON) deployed on top
of Public Transportation System (PTS) to create a fully wireless backbone to
support delay tolerant services. We consider a network where nodes are buses,
this offers some advantages w.r.t. ONs made up by humans. First, nodes are
not subject to battery constraints, second they carry appliances having high
computational power and large storage capacity, and third, mobility patterns
are highly predictable because buses follow predefined paths and timetables.
This last aspect allows routing algorithms based on encounter probabilities,
such as [14] [7, [73], to better estimate values of probability since encounters
are more predictable.

In the first part of this chapter we discuss the Op-HOP routing algorithm
[37] which implements a single copy forwarding mechanism based on encounter
probabilities empirically computed by running simulations using real bus lines
paths and real timetable. In the second part we discuss the scalability of our
protocol against the state of art of routing algorithms specifically design for
ONs deployed on PTS. We consider MaxProp [14] and RAPID [7]: two multi-
copy algorithms developed for campus PTS named Dieselnet. We perform ex-
tensive simulation using the PTS of Milan and the results show that Op-HOP
is more scalable w.r.t. competitors in term of both delivery time and delivery
ratio. In the last part we show the improvement of algorithm performance by
introducing a support infrastructure made up by fixed relays placed at bus
stops. Each relay is equipped with a radio interface, computational power, and
data storage capacity, and it actively cooperates with mobile nodes (buses) to
forward packets. We present an algorithm to suitable deploy relays in order to
guarantee good network performance and to reduce the costs of the deploy-
ment in metropolitan area. Finally, we analyze the network performance of
proposed hybrid solution against the pure mobile one by showing that a very
limited number of relays can lead to a significant performance improvement
in term of delivery delay and delivery ratio.
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3.1 Related work

Delay Tolerant Networks (DTNs), as defined by Fall [35], are networks in
which links between nodes are not always active. When packet forwarding
is not possible, due to intermittent connectivity, the packets are temporary
stored in a local buffer until the connectivity is available again. Each node
is required to implement routing protocol compliant with the store-carry and
forward paradigms. Different number of routing algorithms have been already
proposed, as for example [55, [TTT] 8T [73, 101]. In particular, [73] is a multi-
copy forwarding scheme where probabilities are calculated on a per-node base
and adjusted with an aging policy. As special cases, in [53], [15], 54, 96, 52] data
exchanges taking place with contact opportunity are used to create an ON.

While human-based ONs are still too difficult to be managed due to the
unpredictability of human mobility, ONs on top of PTSs have already been
deployed in some specific cases. The very first works [87, 25, 26] focused on
rural environments in developing regions where buses linked small villages
spread over a large territory. In this situation, an opportunistic backbone can
be used to provide non time-critical Internet services (e.g., e-mail and non-real
time web browsing) to the population.

Later research have been conducted on campus bus networks (e.g., [14]
113), [7]), leading to the design of two most popular routing algorithms for
ONs: MaxProp and Rapid. Authors of MaxProp present in [14] a real deploy-
ment scenario where, by means of buses, five colleges have been linked with
nearby towns and to one another over an area of 150 square miles. MaxProp is
proposed a multi-copy routing algorithm based mainly on message priorities.
These priorities depend on the path likelihoods to destination nodes on the
basis of historical data and other complementary mechanisms. By means of
simulation MaxProp have been proven to outperform oracle-based protocols
hinged on knowledge of deterministic meetings between peers. This research
has been extended in [I13], where inter-contact time distribution is analyzed
both at bus and line levels. Rapid [7], on the other hand, model the routing
system as an allocation problem and try to optimize a specific routing metric
such as worst-case delivery delay or the fraction of packets that are delivered
within a deadline.

Other contributions targeting bus networks in urban environment are [57,
2, [74], 98], but they are either getting support from a partial network infras-
tructure or are outperformed by Rapid or Maxprop.

A recent theoretical work about performance analysis for deployment at
urban scale is [48]. In this work, authors studied the inter-contact times of
the transportations systems of Zurich and Amsterdam, discovering that they
follow an exponential distribution. Starting from this result, they predict the
performance of a simple epidemic routing using a Markov chain model and
demonstrate the feasibility of using a PTS as a DTN backbone in a city.



3 Short range in urban space 61

In two works |8 [I15] are presented solutions to enhance the performance
of DTN by means of fixed relays, creating an hybrid network made by fixed
and mobile nodes.

3.2 Op-HOP routing protocol

Op-HOP (Opportunistic Hopping on Probabilities) is a single-copy probability-
driven routing protocol designed to be suitable for a DTN deployed on top of
a PTS. Op-HOP builds paths using a probabilistic model based on the num-
ber of encounters rather than their durations and opportunistically exploits
unplanned encounters to improve delivery performance swerving data on an
extemporaneous shorter, or more reliable, path.

3.2.1 Routing on a Probabilistic Graph

The line overlaps of the PTS lead to the construction of a connectivity graph
which represents all the possible routes that the messages can take. This
problem can be represented as a graph G = (V, E'), in which each node v € V' is
a bus line and each edge e € E denotes the existence of at least one connection
among buses belonging to the two lines (i.e., the end-point nodes). A path
or route r on G represents the sequence of nodes (lines) a message has to
traverse in order to be delivered. The weight of an edge is a function of the
actual probability of encounter between the two lines.

3.2.2 Encounter Probability Model

Being i and j two bus lines, we denote with p; ; the probability that (any bus
of) line 7 encounters (any bus of) line j. For any bus b traveling on line 4, the
following Bernoullian random variable X () is defined:

. _ | 1if bus b encounters any bus of line j
Xo(7) = {0 otherwise (3.1)

During a day, a bus b makes ¢, trips and collects a sample x(j) of the
random variable X3 (j). At the end of the day the samples collected by all
buses of line i are aggregated, and the probability of encounter between line
7 and j is estimated as:

ey = e ) (32)
" Zbei t

Considering encounters between different pairs of lines as independent

events, the overall probability of a route r, made of d, hops, is:

dr
Dr = H Dk k+1 (3.3)
k=1
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where k£ enumerates the nodes along the route r.

Given any pair of source and destination lines, [ and m, let R, be the
set of all routes 77, connecting [ to m. The best path 7}, to deliver a packet
from [ to m is one in R, ,, maximizing the delivery probability:

Tlm = {rim SPry, 2 Prn VTLm € Rl,m} (3.4)

When applying this probabilistic model on real traces it is possible to create
a long path with high probabilities due to a large number of encounters of
buses along the path. In such cases, due to the number of forwarding required,
the high delivery probability is coupled with a potentially greater delivery
delay. Despite delivery probability is the most important metric for us, it
does not worth the effort to suffer a significant increase in term of traversed
hops in order to raise this probability by a negligible amount. To constraint
this phenomenon we decided to keep the probability model as Bernoullian,
but to slightly change the probability of encounter estimates by truncating
them to the first digit and reducing all probabilities of 1.0 to 0.9.

3.2.3 Construction of the Weighted Graph

An edge between two nodes exists, on the graph G, if the probability of en-
counter between the two bus lines is greater than zero. To correctly assign
weights to edges, we rely on the following chain of equalities:

dr
r = 1 3.5
rypeaécp rgleaé( og (kl_ll pk,k+1> (3.5)
d, 1
= min lo 3.6
rek ,; © (Pk,k+1> (30

Indeed, we define the weight w; ; of the edge connecting node i and j as

follows: .
w; ; = log ( > 3.7
1,7 pz’j ( )

To find the optimal routes, a shortest path algorithm — such as Dijkstra’s — is
applied to this probabilistically weighted directed graph G = (V, E, W).

3.2.4 Improving Routing Performance with Opportunistic
Contacts

To make the proposed routing algorithm completely opportunistic, forward-
ing opportunities must be exploited. When a bus b; comes in contact with
another bus bs, the routing table is looked up. For every packet in its buffer,
by performs forwarding if either: (i) by is the designated next hop, or (i7) by
has a shorter distance (or a better delivery probability) to the destination
than the designated next hop.
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Fig. 3.1: PTS layout in the city of Milan.

3.3 Routing protocols scalability comparison

3.3.1 Simulation environment and parameters
Urban Environment

The urban environment we used to evaluate our proposal is the city of Milan
(Italy) and its PTS. Milan is a medium size town (typical for many European
cities) and its PTS is a complex system extending above and below ground.
Due to the underground aquifer and archaeological remains, the subway sys-
tem is quite underdeveloped. The ground PTS of Milan, spans 69 lines over
49 square miles for a total paths length of 683 miles (13.85 miles for every
square mile).

The overall city structure is clearly not Manhattan-like (see Fig. :
crosses between bus lines occur at any time and there is no constant space
between intersection points. With this topology, buses run along three kinds
of routes: they may span across the city, run around the center, or cover only
a peripheral section making a relatively small loop.

While Manhattan-like topologies have been extensively studied in the past,
uneven topologies like the one we just described are less addressed. This is
why Milan represents an interesting case study: for its uneven topological
structure and the frequent contacts between nodes.

Simulation parameters

As simulator we use URBeS (Urban Backbone Routing Simulator) which was
tested and validated in [37] (for details about the simulator see Appendix [A]).
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In our experiments we considered IEEE 802.11b technology. Available band-
width is 10 Mpbs and the radio range is 100 meters. Communication takes
urban canyons into account; we consider only line-of-sight contacts.

Simulation starts at 4 a.m., with the first bus departing from its head of
the line at 5 a.m. and stops at 8 a.m. of the following day, with the las bus
going out of service around 6 a.m. All buses departing from their head of the
line before 5 a.m. are considered as running during the night and not in the
morning.

Data traffic generation is performed continuously during working hours:
from 8 a.m. to 8 p.m. During simulations each operating bus generates a
stream of 64 KB unicast packets at a constant rate; each packet will be deliv-
ered to a distinct, randomly chosen, bus line.

Data packet generation rate will vary from 20 to 80 packets per hour from
every bus. The total number of packets coming into play will thus be between
138,364 (20 packets per hour) and 553,396 (80 packets per hour). When a
packet is generated it is placed in the node local buffer until forwarding be-
comes possible; an isolated bus will keep accumulating packets while no con-
tacts are experienced. When an encounter happens all the packets are checked
for forwarding and transmitted in accordance with the adopted routing policy
if the encounter matches a positive opportunity. Bandwidth is accounted us-
ing a token bucket mechanism while buffer space availability is simply checked
before transmission. In case of contention a first-in-first-out policy is applied.
The size of the application buffer on board at every bus has been set to 4 GB.

When a bus reaches the end of the line it may or may not queue up and
wait for another scheduled departure. If the bus stays in line it will hold all
its data and will keep generating packets while waiting. If, on the other hand,
the bus leaves service all content will be pushed to the first bus waiting in
line. If there is no bus (because there are no more scheduled departures) all
the stored packets are dropped and packets will be considered lost.

3.3.2 Simulation results
Resources Usage

In our study we deal with two types of resources: buffer space on nodes, and
bandwidth availability.

For peak traffic, global buffer space allocation is reported in Fig. [3:2] As
it can be noted, with high level of traffic replication take a significant toll on
resources: to manage a total of 553,396 during a whole day we must manage
up to 8 millions replicas (almost 15 times as much) over around 600 buses
running at 8 p.m. This is due to the extremely high number of buses running
in a real urban environment and the frequent contacts in a complex topology.
Please, while reading the figures, consider the difference in scale: the average
allocation at the end of simulation must be multiplied by the number of buses
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Fig. 3.3: Count of missed forwarding opportunities by location with 20 packets
per hour from every bus.

(which is going to 0) while Fig. counts packets in millions; this is why one
figure is diverging while the other one is not.

Op-HOP, as a single copy algorithm, has a negligible impact on buffer
usage and its profile can be barely seen in the graphs.

Nevertheless, local buffer allocation is not a problem even for multi-copy:
on peak usage we account for an average of 1.6 GB of used space. The real
problem when using multi-copy is related to the required bandwidth, which
translates to missed forwarding opportunities: nodes with overloaded buffers
are not be able to spool all packets during a single contact. Fig. reports
a count, by physical location, of contacts which have been too short to allow
for a complete spool. Note, for every missed opportunity many packets are
affected. For sake of readability, in this case we used the lowest traffic profile.
In average, 13% of packets missing a forwarding opportunity will not get
delivered. Waiting for another good contact may require a full run, adding
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delay, and packets with too much delay will get discarded at the end of the
day.

As a result, keeping buffer usage at a minimum seems to be a winning
strategy for a urban DTN. This is vouching for the use of a single-copy ap-
proach.

Performance Evaluation

The performance metrics we are interested in measuring are delivery delay
and delivery rate. In a DTN, the number of traversed hops greatly affects the
delay. As we can see in Fig. [3:4] the average number of traversed hops with
increasing traffic decreases for multi-copy routing and is essentially stable for
the single-copy one. This seems to be a good result, but actually it is not:
the number of hops is decreasing because the delivery delay is increasing a
lot (more than 2 hours, see Fig. . Packets getting delayed too much are
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Fig. 3.6: Distribution of delivery delay at 80 packets per hour from every bus.

discarded at the end of the day and does not account for this statistic. On
the other hand, our single-copy approach keeps a steady behavior both for
the number of hops and the delivery delay. Once again, the answer sits on
the buffer usage: packets which cannot get forwarded on the right line are
required to wait for another run or to take a longer (non optimal) route to the
destination. The delay distribution histogram (Fig. offers an interesting
proof for this: MaxProp, which is the algorithm with the greatest number of
replicas has the greater share of packets getting delivered in 4 hours or more.
Op-HOP, on the other hand, increases delivery delay by a limited amount and
exposes a good scalability behavior.

Delivery ratio gets also affected: in Fig. [3.7] we can observe that starting
from 60 packets per hour from every bus the single copy approach outperforms
the multi-copy ones.

It is worth to be noted that multi-copy approaches do not reach 100% de-
livery ratio anyway (they top around 97%). This is caused by packets left on
buses at night not getting delivered due the extremely disconnected network;
of course, having multiple copies of the same packet limits this phenomenon
to traffic generated during late evening because all copies have to miss their
destination. On the other hand, single-copy routing is more prone to unde-
livered packets due to critical paths with low probability but will not suffer
from scalability issues on high traffic.

Instead, looking at low traffic simulations, single-copy approaches seem
to have lower delivery ratio. This is due to critical paths with relatively low
probability,

All performance metrics seems to indicate that multi-copy algorithms are
not scaling as good as single-copy one with increasing traffic. In particular,
our protocol, Op-HOP, seems to react very well to the complexity of the large
city and the offered load.



3.4 Supporting infrastructure 68

1+ e S b
=S —
BRIt
09 R
8
S 08 | .
Fea
[}
=
8
0.7 1
06 ]
Op-HOP ——
MaxProp -------
RAPID -
05 . . . . . ! |
20 30 40 50 60 70 80

Packets per hour from every bus

Fig. 3.7: Observed delivery rate.

3.3.3 Op-HOP performance limits

We have just seen that Op-HOP outperforms multi-copy routing algorithms.
Here we want to stress our protocol to find its limits in terms of scalability. We
perform a new set of simulations increasing the packets generation rate, from
100 to 400 packets per hour generated by every active bus. The simulations
results show the decrease of performances of Op-HOP. In Fig. [3:8a] we can
observe that delivery time increases reaching a mean value of 3.5 hours and a
median value of 2.5 hours in case of maximum packets generation rate. More-
over, in Fig. we observe a drop in delivery ratio performance, going to
around 70% with highest level of packets generation. These two results clearly
show performance issues with very high level of data traffic. We notice that
performance deteriorates especially during the late hours (after 8 p.m.) due to
the decrease of running buses. We found that this problem is more noticeable
in case of bus lines having only one neighbor line (neighbors distribution is
reported in Fig. with limited cross points, because if a forwarding oppor-
tunity is missed packets need to wait the completion of an entire trip to have
a new chance to be forwarded.

3.4 Supporting infrastructure

In the previous section we have shown the performance issue of Op-HOP rout-
ing algorithms at very high level of packets generation rate. We overcome this
problem by introducing a fixed road side infrastructure made up by fixed re-
lays equipped with WiF1i interface and data storage. In this section we provide
a comprehensive definition of our proposed infrastructure and we develop a
suitable algorithm to deploy and minimize the required relays. By means of
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extensive simulations we will show that a very limited number of road-side
units can lead to a significant performance improvement in term of delivery
delay and delivery ratio.

3.4.1 Infrastructure Deployment

Here we are going to introduce the road-side network infrastructure and de-
scribe our algorithm to select infrastructure nodes position.

Road-Side Exchange Points

Our road-side infrastructure will be made of apparatus we baptized Road-Side
eXchange Points (RSXPs). RSXPs are wireless-equipped appliances located
at bus stops and working as fixed disconnected relays. Operating in a urban
area, RSXPs are supposed to be permanently attached to power supply and
can adopt complex hardware to manage substantial data flows and store a
large amount of data in the internal memory.
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An RSXP will build an internal database of lines passing nearby. When a
bus comes into transmission range with an RSXP the following will happen:

1. The RSXP will declare to the bus all known lines.

2. The bus may decide, based on its forwarding policy, to send to the RSXP
packets whose next hop is known.

3. The RSXP will send to the bus all packets for which it is a valid next hop.

As we can see, the routing decision sits only on the bus, and the RSXP will
act as an external cache; changing routing policy will not require any upgrade
or management on the road-side infrastructure. Moreover, RSXPs are not
known to the buses: they are exploited when encountered in the same fashion
as a contact opportunity with another bus. This way, a faulty RSXP will not
jeopardize data forwarding on the DTN.

Reduction Algorithm Overview

The reduction algorithm we propose is composed of three phases.

1. Bus stops covering the same radio area are merged.

2. Relevant bus stops are identified from lines encounter probability.

3. Redundancy is eliminated by solving a Set-Covering optimization prob-
lem.

In the following Sections we describe in detail the three phases of the algo-
rithm.

Sites Selection

In order to select deployment sites for RSXPs we start from bus stop posi-
tions. At bus stops we have scheduled pulls up where a longer intra-contact
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time is experienced and a significant data transfer can take place. Moreover,
intersecting lines share the same bus stop, making the place a good location
for a packet waiting for a ride. Of course, placing an RSXP at every bus stop
will create a huge overlap and, as a consequence, a huge waste of resources.

In order to reduce the number of RSXP we implement the following greedy
algorithm.

1. An RSXP is created at each bus stop and is tagged with all bus lines
stopping there.

2. For every RSXP its neighborhood is analyzed and tagged lines are merged.
Two RSXPs are neighbors if and only if they are in mutual transmission
range and in line of sight.

3. RSXPs are sorted in descending order, based on the number of the distinct
lines the RSXP has in sight. The list is then scanned starting from the first
element; the algorithm removes all other RSXPs which are neighborhood
of current RSXP.

4. All RSXPs tagged with only one line are discarded because they will not
offer any real contact opportunity.

This algorithm guarantees that resulting RSXPs have all declared lines in-
sight, because if two stops of different lines are in-sight, also buses belonging
to those lines have both stops in-sight.

When this approach is applied to the city of Milan, the total number of
RSXPs is reduced from 3741 to 561 with a reduction of 85% for the number
of sites.

Required RSXPs

The number of RSXP can be further reduced based on the lines encounter
probability. We want to use the road-side infrastructure to forward data only
between those pairs of lines which have a low encounter probability. The
encounter probability between pairs of lines is calculated as in Section [3.2]
where a Binomial model based on history of buses encounters is used. This
way, we will boost probability only for those hops who are less likely to happen.

We define an RSXP to be required if and only if there is at least a pair
of lines which can be reached by the RSXP whose encounter probability is
below a certain threshold, 7. Only pairs of lines having a non-zero encounter
probability are considered, to avoid the case when two lines never encounter.
More formally, given L the set of all lines in the system, and L, the set of
lines reachable from RSXP z (L, C L) we can define the set U as the set of
all pairs of line whose encounter probability is lower than 7.

U={{u,v}|p(u,v)<7,ueLvelLre(01]} (3.8)

RSXP z is required if a pair {u,v} € U such that v and v € L, exist.
By applying this criterion we can tune our system to the best value for 7
with respect to the observed performances.
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For the city of Milan, the number of required RSXPs depending on 7 is
reported in Table second column.

Further Reduction

One last level of refinement can be reached: it is possible that the same pair
of lines is covered by more than one RSXP. This means that potentially we
might deploy more RSXPs than the ones needed to cover the set U.

This last reduction has been obtained by solving a set covering problem
on U. Given R as the set of required RSXP, the incidence matrix A can be
defined as:

A:[ai,j] 1eU,jeR
(3.9)

- _J 1 if RSXP j can see both buses of pair i € U
%3 =10 otherwise

Then we must find
min Y X (3.10)
JER
with
> ai;X;>1 VieUX;€{0,1} (3.11)
JER
In the formulas, X; represents the binary variable associated to RSXP j.
The third column of Table reports the number of RSXPs for the city
of Milan when applying the complete algorithm.

7 |Required RSXPs|Deployed RSXPs
0.1 30 17
0.2 78 47
0.3 128 79
0.4 168 101
0.5 198 110

Table 3.1: Number of RSXPs for several values of T.

3.4.2 Performance analysis
Simulation parameter

Data traffic generation is performed continuously during working hours: from
8 a.m. to 8 p.m. During simulations, unicast traffic is generated from <one bus
of a bus line> to <any bus of the destination bus line>, following a rationale
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discussed in [I13]. Each operating bus generates 64 kB packets at a constant
rate; each packet will be delivered to a distinct, randomly chosen, bus line.
Data packet generation will vary from 20 to 400 packets per hour from every
bus. The total number of packets coming into play is thus between 138, 364
(20 packets per hour) and 2, 766,965 (400 packets per hour).

When a packet is generated it is placed in the node local buffer until
forwarding becomes possible; an isolated bus will keep accumulating packets
while no contacts are experienced. When an encounter happens all the packets
are checked for forwarding. Forwarding is, of course, subject to bandwidth and
buffer limitations. Bandwidth is accounted using a token bucket mechanism
while buffer space availability is simply checked before transmission. In case
of contention a first-in-first-out policy is applied. The size of the application
buffer on board at every bus has been set to 4 GB. Packets are then forwarded
in accordance with the adopted routing policy.

When a bus reaches the end of the line it may or may not queue up and
wait for another scheduled departure. If the bus keeps a place in line it will
hold all its data and will keep generating packets while waiting. If, on the
other hand, the bus leaves service all content will be pushed to the first bus
waiting in line. If there is no bus in line (because there are no more scheduled
departures) all stored packets are dropped and will be considered lost.

When a packet is queued for forwarding, the adopted routing policy is
used to identify the next hop. Packet forwarding can take place under three
different conditions: (¢) the bus which is carrying the packet encounters a bus
belonging to the next-hop line, (i7) the carrying bus encounter an RSXP which
has in its database the next-hop line for the packet, and (i) if the packet
is queued on an RSXP and a bus belonging to the next-hop line shows up.
We adopt Op-HOP as routing policy in order to better asses the actual gain
provided from the infrastructure.

Simulation results

In this section we are going to discuss the outcome of our simulation exper-
iments. We will present Op-HOP performance improvements with respect to
various values of 7, including 0 and 1. When 7 is 0, pure ad hoc mode will be
adopted: no RSXP will be deemed as required and only bus-to-bus forwarding
will take place. This value will provide a baseline for performance comparison.
On the opposite, if 7 is 1, all RSXPs will be required and all forwarding oper-
ations will be performed through the infrastructure: bus-to-bus forwarding is
forbidden. Experiments with this value of 7 will provide a performance upper
bound.

Data Delivery

Unsurprisingly, exploiting the network infrastructure is reducing the average
delivery delay, as reported in Fig. From this figure, we can observe a
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significative improvement, up to one hour (i.e., 30%), even with low values of
7. Interestingly enough, increasing the offered load seems to make the situa-
tion better thanks to packets sitting on RSXPs and leaving in bursts for the
next hop. This behavior can also be partially explained observing the average
delivery ratio (Fig.|3.10b)). By combining Fig. and Fig. [3.10b| we can see
that packets following long paths gets discarded more frequently. Discarding
packets running long distances reduces the average delivery time for the ones
who are able to reach the destination.

Moreover, lower values of 7 seem to make delivery ratio worst while for
7 > 0.3 the situation improves. This behavior indicates that, depending on
the PTS, there is a lower bound for the number of RSXPs to deploy. Below
this bound, the infrastructure is not able to manage all the offered load. The
explanation is that overloaded RSXPs will not be able to spool out all queued
packets during a single bus contact, increasing significantly the buffering time
and leading to considerable packet drops at the end of the day.

Furthermore, we detected an uneven usage for the RSXP buffers. As an
example, in the worst case, with 7 = 0.1 (17 RSXPs) at peak traffic (6:30
p.m.) we have 14% of RSXPs whose buffer is empty and 23% of them who
are not able to spool all queues in a single bus encounter. On the other hand,
the most uniform situation can be observed with 7 = 0.5. As a matter of fact,
for the PTS of Milan, a good tradeoff value for 7 seems to be 0.4. In all the
examined cases the system seems to perform better than the infrastructure-
less version and setting 7 to 0.5 does not give a significative improvement over
0.4.

Number of Hops

The average number of hops for delivered packets is reported in Fig. [3-11al As
we can see in the picture, for low values of 7 the use of an infrastructure makes
the paths longer. This is confirming the performance degradation outlined in
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Sec. Greater values of 7 improve the situation but do not outperform
the infrastructure-less version in a sensible way when the traffic is very high.

Obviously, if we consider only the lines traversed by a packet, the paths
are actually becoming much shorter, as depicted by Fig. [3.110] This is due to
the fact that short paths traversing the infrastructure benefit from contacts
opportunity happening for sure (sooner or later). These short paths will no
longer get penalized in favor of longer, and more probable, ones. Nevertheless,
here we can observe that the reduction of the number of involved lines is not
proportional to 7 or the number of RSXPs. Once again, the answer can be
found in an uneven distribution of the network load: full buffers at RSXPs will
prevent some buses to use the shortest, planned, route and will make them
wait for a bus-to-bus forwarding opportunity.
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Another interesting consideration comes from Fig. [3.12] where the average
number of hops not taking place between buses is reported. While it is obvious
that increasing 7 we increase the number of RSXP and, in turn, the degree
of involvement of the infrastructure; it is less obvious that there is an upper
bound for the number of hops provided by the infrastructure regardless of the
number of RSXPs. In our case, the average infrastructure involvement is not
greater than 1.75 hops for any value of 7; unless, of course, we forbid data
forwarding between buses.

By comparing Fig. and Fig. we can observe that, for 7 > 0.3,
50% of the hops are from bus to RSXP (or vice versa). Looking to Fig.[3.11b
for the same values of 7, the average number of lines traversed by a packet is 2.
Putting these information together we can state that, after a certain density
of RSXPs (i.e., a certain threshold for 7) the average path converges toward a
sequence like “source line — RSXP — destination line’, and deploying RSXPs
above such density is a potential waste of resources. This is the explanation
for the upper bound in Fig. 312}

From the figures above, in the case of Milan, we can confirm that set-
ting 7 to 0.4 gives a good tradeoff between performances and infrastructure
deployment.

3.5 Summary

In this chapter we have considered medium- and short-range interactions me-
diated by Wi-Fi radio technology. We have exploited this kind of interactions
to create an Opportunistic Network (ON) deployed on top of Public Trans-
portation System (PTS) suitable to support delay tolerant applications and
services. By means of extensive simulations on the actual PTS of the city of
Milan we have shown that the single copy routing algorithm Op-HOP scales at
urban level avoiding the overhead of multiple replicas which affects MaxProp
and RAPID. Then, we have addressed the allocation problem for a network
infrastructure to augment the overall ON performance. The proposed solu-
tion consists in the creation of a road-side network infrastructure by means
of disconnected relays we call Road-Side eXchange Points (RSXP). Using a
suitable algorithm, we identify a proper subset of bus stops candidate to take
part in fixed infrastructure. By means of extensive simulations we have shown
the impact of RSXPs density on the DTN performances. Results indicate that
delivery delay will benefit from the presence of the infrastructure but, in order
to improve the delivery ratio, a minimum density is required. The number of
traversed hops indicates that the infrastructure involvement in the forwarding
process is upper bounded and deployment of RSXPs above a certain density is
a potential waste of resources. Using these results, we have demonstrated that
a lightweight, and non invasive, road-side infrastructure is a feasible way to
deploy a DTN over a PTS to provide mobile applications and services based
on location and context on a urban scale.



Chapter 4

Micro range in urban space and the Internet of

Things

Mobility in urban environment allows users to interact with objects present
in a metropolitan area, e.g., museums, monuments, shops, and other points
of interest.

The social graphs describing today’s social networks are quickly densify-
ing. This is progressively draining the value of online social networks due to
the widespread presence of no worth ties. Moreover, it is also raising concerns,
about spam control and preservation of user’s image against infringements de-
riving from posts issued by untrusted ’friends’. Despite the frequent encour-
agements to clean up personal links, the growth mechanism of today social
networks is unable to guarantee a trusted space where persons can reinforce
their friendship and enlarge their social capital.

THINPLE is a novel mobile computing app, aiming at building a pro-
tected and trusted online social space as the mirror of the real life sociality
manifested by physical encounters. By viewing the phone as an extension
of the user, THINPLE exploits each physical contact, through the short ra-
dio range of Near Field Communication (NFC). NFC is a next-generation
short-range wireless communication technology enabling the exchange of data
between devices brought within a 4 centimetres distance. Thanks to this very
short communication range, it allows us to capture the explicit willingness
and trustworthiness to mirror such a contact event into the personal online
sociality. Besides, this feature is enforced by Android system policies which
disables the NFC radio interface when the mobile phone is in standby. The
THINPLE’s approach, unlike current social networks, perfectly recreates real
life friendship creation phase as a synchronous event involving both parties.
At contact time, people agree about friendship, thus avoiding individuals get-
ting bored about spam of friendship requests. In THINPLE, the growth of the
social space of a person is only fuelled by contacts in the physical world.

This basic idea has another great and unexplored potential: through phys-
ical contacts. Inanimate objects of the real world can be added into the online
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sociality of individuals, thus turning into practice the concept of Internet of
things [6] and people. By equipping objects with NFC tags, a contact with an
object explicitly adds it to our space of sociality. As a consequence, restau-
rants and shops, monuments and points of interest, as well as home appliances
or personal belongings can enter the social graph of individuals and commu-
nicate through trusted channels to provide a variety of services: from fidelity
programs and advertisement to remote control and product traceability. More-
over, THINPLE makes possible the creation of emerging communities around
inanimate objects. These communities are based on a shared real interest
which makes itself visible through the creation of a link on the online social
network.

THINPLE provides a unifying framework where people and things are
seamlessly combined into a common graph. For this reason, the name THIN-
PLE is obtained from crasis of words things and people. THINPLE is inher-
ently a mobile application complemented by cloud services. It aims at the
following:

e create and manage the social capital of individuals as composed of trusted
people and loved objects;

e ensure a protected space where social interactions are conducted and the
personal social capital can be expanded;

e ecnable service providers to deploy their applications on the top of THIN-
PLE social network.

4.1 Related work

The scientific community has been attracted to study the human sociality
in order to better understand its leading mechanisms. The knowledge about
these mechanisms can be exploited to offer services leveraging the social infor-
mation, and to guide the design of new network paradigms as opportunistic
networks, which exploit unplanned encounters to route data among the de-
vices [89] [90, @T]. In the last years many efforts have been done to identify the
real human encounters. They have been inferred using devices (equipped with
Bluetooth, GPS, and Wi-Fi) proximity [29, B38| [39] or self reported surveys
[51, B0]. However these experiments only capture the people proximity, but
lack in capturing the explicit willingness of a meeting. Smartphones equipped
with NFC allow us to overcome this limitation. Up to now NFC has been
exploited to exchange personal information or content sharing between peo-
ple [27], and between people and object, as for payments. To the best of
our knowledge, this is the first social network based on real encounters, and
including both people and objects.
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Fig. 4.1: An example of THINPLE graph. a) White nodes represent people
and grey nodes represent things. The social capital of the node A (solid box) is
the union of their human (dotted box) and environmental (dashed box) capitals.
Solid lines represent links happened as a result of real encounters. b) Dashed
links represent two hops potential friendships mediated by the person B, while
the node (thing) D is the mediator for the community (gray box) grouping nodes
A and G.

4.2 The online sociality of THINPLE

THINPLE adopts a novel creation and growth policy and applies it to the
model of online sociality that is adopted by most of today’s social networks.
The THINPLE’s aim is expressing the social potential of people and things
by leveraging contacts in the real world to make explicit friendship requests
or interest towards a thing. This contact-based growth policy allows us to
create the scenario of Fig. where each person, let’s say A, B, C, E and
G (white nodes), is represented by a node in a graph with links to neighbor
nodes associated to encountered friends. In this view the node neighborhood
represents the real human capital of a person and mirrors his/her sociality.
Inanimate objects, let’s say D and F (grey nodes), surrounding a person and
catching his/her interest, can also enter the graph. They become the environ-
mental capital of a person. As a consequence each person is characterized by
a social capital (solid line in Fig. which is the union of human (dotted
box in Fig. and environmental capitals (dashed box in Fig. [4.1a)).

As we can see in Fig. a person can expand the borders of his/her
social capital by exploiting the his/her two-hops view as follows. As men-
tioned before the persons’ one-hop neighborhood (the social capital) is made
up by things (the environmental capital) and people (the human capital). The
two-hop viewing allows a user to look at the social capital of his/her human
capital only; in a nutshell you can see the friends and the objects of all your
friends, but you cannot see people who tapped on the same object. This choice
is motivated by observing that a two-hops view of people who tapped on an
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Fig. 4.2: The architecture of THINPLE-mobile and THINPLE-cloud.

object (for instance, a monument) is mostly useless (and often unaffordable).
For instance, A is aware of B and C neighbors (E and F), but s/he can’t see
D neighbors (G). This feature allows the creation of weak connections rep-
resenting potential new friendships. For instance, a node, say A, may use a
weak connection (dashed link), i.e., link towards a 2-hop node, to E to plan
an encounter, that still remains the only mechanism to let E enter the A’s
human capital (turning the dashed into solid link). As regards environmental
capital, the two-hop viewing makes easier the growing of personal environ-
mental capital. For example, should F be a monument, by viewing F in the
B’s space, A may be encouraged to visit it, tap on the NFC tag of F thus
letting F to enter his/her environmental capital.

In our design a thing’s node has a functionality that a person’s node has
not: it can act as a mediator to form a community of people sharing the same
interest about the thing (solid grey box in Fig. . Many of those could
be willing to share comments. To appease this wish, a person can join the
community that has been opened by the object. All communications inside a
community rely on the mediation of the relevant object and are not performed
through dashed links, as happening between persons.

In THINPLE the Internet of people and the Internet of things are merged
and linked by relationships that model real life attitude to manage and expand
personal human and environmental capital.

4.3 The functional architecture of THINPLE

In this section we present the functional architecture of THINPLE plat-
form. The architecture has been designed in order to easily allow the ser-
vice providers to deploy their application on the top of THINPLE platform.
To accomplish this task we build the THINPLE architecture maximizing the
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modularity and reusability of the different components. Another design guide-
line is the efficient management of the social graph, representing the social
network, and the contents associated to nodes and their relationships.

At the moment, THINPLE relies on a centralized social graph. In fact,
our first aim is the construction of a new sociality leaving privacy concerns
and disintermediation issues to a future phase. THINPLE has two functional
components: THINPLE-mobile and THINPLE-cloud (Fig. .

4.3.1 THINPLE-Mobile

The THINPLE-mobile component includes the following three modules:

e Contact Manager - this component receives the NFC contact descriptor

and generates the associated event that is described by the tuple <nodelD,
timestamp, [public key], [encounter ticket/>. While the timestamp is gen-
erated locally, all the other (mandatory and optional - in brakets) data
are exchanged at contact time. Both persons and things are identified by
a unique nodelD, obtained in a similar way of IMSI number of mobile
phones and is composed of three parts: type, country code, provider code,
tag number. The first is used to distinguish people and things; the second
is unused at the moment and accounts for future possible organization by
region; the third is set to 001 for THINPLE and could be useful when
different service providers will be using the same THINPLE platform. The
last is a progressive integer. This nodelD uniquely identifies it inside the
social graph on the THINPLE-cloud.
The Contact Manager has to manage two types of contact: among people,
and between people and things. In the first contact type, the mobile phone
is reader and sender of contact descriptor at the same time. In order to
successfully complete the exchange, both devices have to simultaneously
send their contact descriptors. Unfortunately, the end-devices of a NFC
channel are rarely synchronized. Due to the current Android NFC policy,
in such an asynchronous exchange the first sending device happens to block
the sending of the other one. To prevent this event, the Contact Manager
receiving the first NFC contact descriptor starts a timer. Should the timer
expire without closing the exchange, the Contact Manger transparently
opens a Bluetooth channel to complete it. At this point, both peers are
autonomously able to update their human capital on THINPLE-Cloud. In
the second contact type, the mobile phone is acting as NFC-reader and it
has the responsibility to update the users’s environmental capital. Each
contact event is locally cached to avoid multi event occurrences due to
multiple tapping;

e Network Manager - It realizes the Internet (cellular and WiFi networks)
connectivity to THINPLE-Cloud. The network channel (WiFi or 3G) is



4.3 The functional architecture of THINPLE 82

automatically selected by Android operating system. The Network Man-
ager negotiates with THINPLE-Cloud which contents to download. The
Network Manager sends to server the current channel condition, using
the system API, and the THINPLE-Cloud selects the contents to send
to mobile, according to its policy. For instance, if we are in presence of
a WiFi network (a very good network condition with respect to 3G net-
work), the server decides to send all contents to mobile (text, images,
video, and more). If we are in presence of 3G network, the server decides
to send to mobile the lighter part of contents (text and small images),
thus improving the responsiveness of the application. The content transfer
is operated through HTTP/HTTPS sessions. A local cache maintains the
most recent downloaded contents to avoid unnecessary network access may
cause waste of energy. In absence of radio connectivity, pending requests
to THINPLE-Cloud are temporarily queued locally and and they will be
sent to THINPLE-Cloud as soon as the connectivity became available.

Client Application - the component has two modules. The Applica-
tion Handler provides a unifying API interface towards the module Client
GUI to ensure transparency with respect to the underlying communication
channels. The Application GUI implements the user interface of THIN-
PLE. Moreover it is responsible to orchestrate the below components.

4.3.2 THINPLE-Cloud

On the server side, the THINPLE-cloud component includes:

Server applets - A set of JAVA Servlets manages all interactions with the
client side, through HTTP /HTTPS sessions, and with desktop users. Each
Servlet may generate requests to the Query Dispatcher module whenever
data have to be retrieved. The interface between the two modules has been
designed to ensure layer independence.

Social Graph - This component is responsible to manage the social net-
work using a Graph Database instead a Relational Database in order to
efficiently navigate into the social graph.

Content DB - This module manages a Relational Database containing
all contents regarding the node (name, photos, ...) and the relationships
(date of meeting, shared content, meeting place, ...).

Query Dispatcher - According to the type of the query this module
routes requests to the Social Graph (for instance, when it is required to
navigate the graph) or to the Content DB (for instance, to retrieve the
contents associated to a given object), and forwards replies to the proper
Servlet. The contents associated to graph nodes and social graph are kept
separated to satisfy scalability and performance issues.
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4.4 Enabling new mobile applications

The aggregation of people and things into a unifying social network is the
richness of THINPLE and enables or improves a variety of challenging mo-
bile applications and services beyond the traditional services of online social
network. It is in fact very simple to imagine a variety of application scenarios
centered around things, as briefly shown in the sequel.

e Example 1 - Let’s imagine that F is actually the bike of B. This enables
F to be present into the B’s space with general information and photos,
but also to deliver workout data for comprehensive off line analysis (see,
for instance, GarminConnect).

e Example 2 - Let’s now assume that the object D is a pub, or an art
gallery or a temporary shop. Each person who visited it at least once has
a link to it and all friends have a two-hops view of it. The owner of D
can advertise a forthcoming event that can be viewed two-hops apart. To
open a window onto the future, THINPLE powers the "I’ll go” button
that enables interested people to state the willingness to attend the event.
This would be useful not only to the owner of D, but also to favor people
aggregation.

In the following subsections we provide some more details about two novel
mobile applications we are working on and that are currently in a prototype
stage.

4.4.1 Innovating the Grand Tour approach to travels

The approach to cultural travels has been unchanged for almost three centuries
now. Both modern and Grand Tour travelers mine their voyage information
from books and guides. Today, several institutions rely upon the web to pro-
mote their cultural heritage; the web, however, is a great information source
mainly while preparing the trip. On the other hand, the attempts to port
guides on mobile devices went almost flat as unable to add value in terms
of both usability and functionalities. There is nothing that can be done to
complement traditional travel supports and to improve the travel experience?
We believe that innovation efforts could be certainly addressed to improve
usability and to satisfy all social needs that the travel experience generates.
THINPLE can do a lot in many directions. Let’s assume that D is a monu-
ment with NFC tag, relevant contents stored into the DB and a node created
in the THINPLE graph. When A taps on the D’s tag, s/he gets direct access
to D’s contents and, at the same time, D shows up in the A’s social space
thus enabling A to share with friends contents associated to D as well as to
join the D’s community. The main benefits achieved by using the THINPLE
approach with monuments are the following;:

e Usability - in this case, tapping on the NFC tag gives direct access to in-
formation relevant to the object a person has in front. A sort of autonomic
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content retrieval directed by pointing the object in front of you. A natural
and simple gesture.

e Human sociality - the travel is a life experience with known impact on the
sociality of a person. THINPLE helps users to automatically enrich their
social capital with contents about objects and friends, avoiding them using
different apps to publish life experiences. THINPLE can be useful to share
these experiences, to stimulate friends to do the same and to freely discuss
about something you like.

e Diary - THINPLE automatically generates the user travel diary mirroring
the real encounters (things and people) happening during user travel.

e Statistical analysis - All contact events with D are stored in the THINPLE-
cloud and provide the institution promoting a cultural legacy with a rich
dataset for operating its monuments and the communication channels to
promote them.

4.4.2 Product traceability and control

The information system of the manufacturer of a domestic boiler can perfectly
trace all the components that have been assembled to produce the final prod-
uct, but it is generally unable to track the last hop to the customer which
installs it at home. This makes difficult, for instance, to manage product re-
calls and to assist the customer for maintenance. Should the customer tap on
the product tag when it is delivered at home, the product immediately enters
the owner’s environment and the missing link is created. At this point, we can
envision a step forward; in fact, by providing the appliance with some com-
munication capability and by means of some synoptic panel the customer will
be able to remotely control his own boiler. This latter is an example in which
the exchange of public keys at contact time (see Sec. could be needed to
secure the communication between the two parties.
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4.5 Summary

In this chapter we have focused on micro-range interactions mediate by NFC
radio technology. We have exploited NFC radio contacts to build up an online
social network, named THINPLE, which realizes the Internet of Things and
People paradigm. In this social network persons and daily life objects are
seamlessly integrated in a unified social graph which is the expression of the
real offline sociality of the users. We have used THINPLE to support a research
study on the difference between online and offline human sociality and to
support a mobile application to help tourists in keeping track of encountered
monuments and point of interests.






Chapter 5

Conclusion

In this thesis we have proposed novel network solutions, mobile services and
applications which are consistent with the next generation of mobile network
vision. The 5th-Generation of mobile network will comprise multiple wireless
technologies seamlessly integrated to offer to users a wide set of services and
to guarantee them suitable QoE as well as ubiquitous and pervasive network
access. In this work we have started from the users perspective by considering
mobile users carrying multiple equipped devices with which they can interact
at different spatial granularities. We have considered three radio technologies:
cellular network, Wi-Fi, and NFC. We have shown that a clear understanding
of characteristic of users interactions can support the designing of new network
architectures, the provisioning of network resources, and the development of
novel mobile services and applications.

We have analyzed long-range interactions mediated by cellular network
by means of two mobile datasets. By using data mining techniques, we have
studied different aspects of mobile users behavior such as mobility, burstiness,
and sociality. The analysis of the mobility aspects has shown that users ex-
hibit very regular mobility patterns visiting a small set of favorite locations.
Moreover, we have analyzed the impact of mobility on phone interactions and
we found that a considerable amount of phone calls (around 25%) are per-
formed between persons who are in proximity to each other. Based on these
findings, we have proposed a novel LTE-based network architecture placed on
the edge network and able to support in-proximity communication channels
and local data traffic offload. As a proof of concept, we have considered a
newspaper /magazine distribution service. We have performed extensive sim-
ulations using real mobility traces extracted from the dataset and we have
shown the benefits of the proposed network architecture from both operator
and user points of view. We then analyzed the temporal inhomogeneities of
mobile users behavior and we have found that users are usually organizing
their phone activities in bursts. We have extended previous literature results
by considering the multidimensionality of mobile users phone activities. We
have developed a theoretical framework suitable to describe the interplay be-
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tween different communication media (calls and text messages in our case). By
applying this framework we have found that mobile users have the tendency
to organize their phone activities in order to minimize the switches between
different communication channels, rather than follow some order induced by
their sociality. Furthermore, we have developed a burst generative model based
on GPSN, which is able to correctly reproduce the observed interplay between
the communication media. Last, we have analyzed how mobile users manage
their sociality through mobile phones. We found that users interact mostly
with a small subset of personal contacts, confirming the Dunbar grooming
network theory. Based on this analysis we have developed a new mobile ap-
plication which helps users to manage their sociality by means of a mobile
phone and to keep track of the temporal evolution of their grooming network.

As a next step, we have considered medium- and short-range interactions
mediated by Wi-Fi radio technology. We have exploited this kind of inter-
actions to create an Opportunistic Network (ON) deployed on top of Public
Transportation System (PTS) suitable to support delay tolerant applications
and services. By means of extensive simulations on the actual PTS of the
city of Milan we have shown that the single copy routing algorithm Op-HOP
scales at urban level avoiding the overhead of multiple replicas which affects
MaxProp and RAPID. Then, we have addressed the allocation problem for
a network infrastructure to augment the overall ON performance. The pro-
posed solution consists in the creation of a road-side network infrastructure
by means of disconnected relays we call Road-Side eXchange Points (RSXP).
Using a suitable algorithm, we identify a proper subset of bus stops candidate
to take part in fixed infrastructure. By means of extensive simulations we have
shown the impact of RSXPs density on the DTN performances. Results in-
dicate that delivery delay will benefit from the presence of the infrastructure
but, in order to improve the delivery ratio, a minimum density is required.
The number of traversed hops indicates that the infrastructure involvement
in the forwarding process is upper bounded and deployment of RSXPs above
a certain density is a potential waste of resources. Using these results, we have
demonstrated that a lightweight, and non invasive, road-side infrastructure is
a feasible way to deploy a DTN over a PTS to provide mobile applications
and services based on location and context on a urban scale.

Finally, we have focused on micro-range interactions mediate by NFC radio
technology. We have exploited NFC radio contacts to build up an online social
network, named THINPLE, which realizes the Internet of Things and People
paradigm. In this social network persons and daily life objects are seamlessly
integrated in a unified social graph which is the expression of the real offline
sociality of the users. We have used THINPLE to support a research study
on the difference between online and offline human sociality and to support a
mobile application to help tourists in keeping track of encountered monuments
and point of interests.



Appendix A

URBeS: Urban Backbone Routing Simulator

URBeS (Urban Routing Backbone Simulator) is the experimental platform
we developed which is able to evaluate the QoS performance of a city BSN.
This is possible by acquiring real city topological data as well as the relative
PTS timetable. URBeS is able to accurately reproduce bus movements in
real urban environments and to simulate data forwarding among buses. Our
experimental platform is able to support any external routing policy in order
to compare performance of various routing algorithms. The functional scheme
of URBeS, reported in Fig.[AT] aims to emphasize both the modular design of
its functionalities and its support for any externally specified routing policy.

Maps Routing
/ Visualizer Policy

URBeS platform

Urban Data
Google Feed e °
E 2| Mobility 2| Traffic
Services Extractor Simulator Simulator

Fig. A.1: URBeS functional scheme.

The analysis of a city PTS starts from a Google transit [23] feed, which
is a database of planned trips, provided by a transit authority from which
we devise a movement model. GPS coordinates of every bus stop have later
been converted to Cartesian coordinates. Nodes along each line move between
coordinates accordingly to real timetables moving at a constant speed. Pauses
at stops are — when planned — included in the transit feed and thus simulated
accordingly.

The URBeS framework is then composed of three sequential modules.
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In the first phase, URBeS parses information from the feed and produces
a timetable of bus movements together with a topology of the PTS layout.

The output from the first phase is fed to an urban mobility simulation
module which is in charge of generate mobility traces for all the buses based
on the real PTS timetable. In this phase, URBeS also computes statistics
about bus contacts. They are useful for predicting intra- and inter-contact
times and for understanding city coverage of the PTS.

The last phase adds data traffic to the picture: network traffic is gener-
ated randomly by each bus and is delivered following the provided routing
policy. URBeS logs detailed information on profile delivery rates, delays, and
locations where forwarding takes place. Simulation is performed by means of
a custom-made discrete event simulation software we developed around the
concept of BSN. This development has been required in order to overcome
poor scalability in term of total traffic and number of nodes from existing
products (e.g., GloMoSim [I12] and ns—ﬂ, while introducing an highly opti-
mized urban canyon model which fails to be even in more modern simulation
environments (e.g., the ONE simulator [67]). Results from our simulator have
been positively evaluated against GloMoSim for low traffic levels using the
same output coming from Urban Mobility Simulator. Our simulator can thus
provide a valid comparison between different routing policies, while allowing
easy testing on multiple urban environments.

In the following sections we discuss the implementation details relative to
the three components of URBeS.

A.1 Google transit Feed Extractor

The Google transit Feed Extractor (FE) is actually a data converter tool which
reads a feed and stores all data useful for simulation in a more manageable
format.

A Google transit feed is a database comprised by several tables reporting
individual bus trips. Each trip is classified by a time context (e.g., Monday,
Sunday, or “New Years Eve”), a route id, and a bus head sign. In order to
build the topology, the FE starts from the list of trips and classifies all pos-
sible paths based on the stops made. Paths are then grouped together with
reversals and aliases; reversals are paths making the same stops in reverse or-
der, whereas aliases are routes having the same end of the line and almost the
same intermediate stops (i.e., their difference is below a certain threshold).
All paths in a group are identified as a single — looping — line, as traditionally
understood by passengers. All lines must be closed paths as that way it is
possible to assign buses for subsequent departures once they have completed
a round trip.

Lines which does not define a closed path are not used for data transporta-
tion because it is not possible for us to make a reasonable assumptions about

! ns-2 simulator is available at http://nsnam.isi.edu/nsnam/
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the future activity of buses running along them (such as in the case of shuttles
making one-way trips from the train station to the airport where there is no
timetable available for the way back). Thus, following the normal procedures,
we would be required to consider a bus reaching the end of the line as to be
going out of service and discarding all transported packets. Needless to say,
such a behavior is not useful for routing where encounters are not determinis-
tic and, as a consequence, such lines are not considered to be part of the data
distribution system.

The output generated from the FE is a database of routes and timetables
from real traces which are fed to the second module of URBeS.

A.2 Urban Mobility Simulator

The Urban Mobility Simulator (UMS) generates mobility traces for all buses
during a given period by using the database created by the FE.

The UMS module creates bus instances as needed to ensure scheduled
starts and manages buses going out of services when the PTS is overpopu-
lated. Buses leave the line head at the scheduled time and make all the stops
according to the set timetable; while completing a path a bus waits at the
head of the line, if necessary, for the next scheduled departure. If there are
already two buses in line, then we consider it to be overpopulated and the bus
goes out of service. In case of aliases, the bus waiting in line will select the
path of the next aliased line departing from the current head of line.

Since location and timetables from Google Transit are driving nodes during
simulation, UMS is completely decoupled from a movement model: we have
deterministic information about system evolution and there is no need to
add parameters coming from any external model. Give that in a real PTS,
timetables are planned taking into account average daily traffic, along the
day we are not required to predict and simulate traffic jams. Nevertheless, we
added random noise of up to ten minutes on the scheduled departure times,
in order to take into consideration small variations between average traffic
and actual street condition. Moreover, to determine if two buses are in radio
contact, a line-of-sight model is adopted. Urban canyons play a fundamental
role in wireless links and we take them into account by using a street map
created from bus routes.

At this stage, we compute a first analysis based on topology and bus
movement. The analysis provides the evolution of bus populations and relative
contacts, information about the number of neighbors, the and distribution of
intra- and inter-contact times.

The output of the UMS is a trace of bus movements in a bi-dimensional
space.
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A.3 Data Traffic Simulator

The Data Traffic Simulator (DTS) leverages the output of UMS by introducing
network traffic and applying a routing policy.

When a packet is generated it is placed in the node local buffer until
forwarding becomes possible; an isolated bus will keep accumulating pack-
ets while no contacts are experienced. When an encounter happens all the
packets are checked for forwarding. Forwarding is subject to bandwidth and
buffer limitations. Bandwidth is accounted using a token bucket mechanism
while buffer space availability is simply checked before transmission. In case
of contention a first-in-first-out policy is applied. Packets are then forwarded
in accordance with the adopted routing policy.

When a bus reaches the end of the line it may or may not queue up and
wait for another scheduled departure. If the bus keeps a place in line it will
hold all its data and will keep generating packets while waiting. If, on the other
hand, the bus leaves service all content will be pushed to the first bus waiting
in line. If there is no bus — because there are no more scheduled departures —
all the stored packets are dropped and considered lost.

The routing policy used by the BSN is provided as an external module and
may be either link-state or distance-vector. A user may implement his/her own
routing policy by defining the application logic based on which forwarding
will take place. This approach makes URBeS an ideal platform for routing
protocol development and comparison: multiple experiments can be easily run
specifying different routing modules to be used with the same traffic pattern.

The output of the DTS is a complete trace of the generated data traffic.
From this trace we can compute all needed performance indexes and perform
protocol analysis.
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