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Essentially, all models are wrong, but some ardulse

— George E.P. Box
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List of major abbreviations
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1. BACKGROUND AND RATIONALE

1.1 Prostate cancer epidemiology

Prostate cancer (PCa) is the second most commasiaseo among men worldwide [Ferlay et al,
2013]. Out of more than 1 million new diagnosesnested in 2012 (1,112,000 cases, 15% of
cancers diagnosed in men), almost 70% occurs i meveloped regions [Ferlay et al, 2013]. The
incidence rates greatly vary among countries (2&)fdeing highest in Australia/New Zealand and
Northern America and in Western and Northern Eurdpith an estimated 300 thousands deaths in
2012, PCa is the fifth leading cause of death foamcer in men (6.6% of total deaths). There is less
variation in mortality rates worldwide (10-fold)ah is observed for incidence, with the number of
deaths from PCa being larger in less developed thanore developed regions. The five-year
prevalence of PCa was estimated in nearly 4 milhi@m worldwide in 2008 [Bray et al, 2013].

In Italy, as in most developed countries, PCa haime the first cancer diagnosed among men,
with nearly 36,000 new cases estimated in 2013 (20%ll cancers among men), and the third
leading cause of death from cancer (9,000 deattm@men, 8% of cancer deaths) [AIRTUM-
AIOM, 2013]. After a dramatic increase of PCa imride rates in the period 1998-2003, they were
reported to be almost stable thereafter. Conver&&a mortality rates were constantly decreasing
in the last decade [AIRTUM-AIOM, 2013].

There are only three well-established risk factord?Ca, and they are all not modifiable: older age
(PCa is very rare in men younger than 40 yearstia@disk rapidly increases after age 50), black
race/ethnicity (PCa occurs more often in African-&man men and Caribbean men of African
ancestry), and a family history of the disease (R€kais much higher for men with several affected
relatives, particularly if they were young at tivee of cancer diagnosis) [Leitzmann & Rohrmann,

2012]. Modifiable factors, such as dietd, high intakes of red meat or high-fat dairy pragdjc



obesity, and pattern of sexual behavior might a®oinvolved in the development of PCa

[Leitzmann & Rohrmann, 2012].

1.2 Prostate-Specific Antigen test

Prostate-specific antigen (PSA) is a protein predua the prostate gland. PSA is mostly found in
semen, which is produced in the prostate, but saratbunts of PSA ordinarily circulate in the
blood. High levels of PSA in the blood may indic#te presence of PCa. PSA testing has been
shown to increase PCa detection by 81% in compangith digital rectal examination alone
[Catalona et al, 1994]. However, many other condgj such as an enlargeck( benign prostatic
hyperplasia) or inflamed prostaiee(, prostatitis), can also increase circulating P&els.

PSA testing for screening of PCa was introducechamy high-income countries between the mid-
1980s and the early 1990s and it represents a eisituation in which a widespread use of the test
at a population level has occurred long before efinitive results about its efficacy. As a result,
dramatic increases followed by sharp reduction®@a incidence were observed in the United
States (US), Canada, and Australia [Center et0dI2R Stabilizing PCa incidence trends for the last
decade were primarily observed for these same geantn other developed countries, such as in
northern and western Europe, gradually increasi@@ fhcidence trends have yet to yield a
dramatic peak [Center et al, 2012]. Converselyntadience trends, PCa mortality rates have been
decreasing in most high-resource settings. Imprevesnin treatments in the 1990s (including
radical prostatectomy, radiation therapy, and haorentverapy) coupled with an increased detection
of early-stage PCa as a result of PSA testing apgpdae reasonable explanations for the declining
mortality trends observed in many developed coestfCollin et al, 2008; Etzioni et al, 2008;
Baade et al, 2004].

However, the specific role of PSA testing in expiag these favorable recent declines in PCa
mortality continues to be debated, particularly egivthe downward trends observed also in

countries where the prevalence of PSA testing wasanably lowd.g, the United Kingdom, UK)



[Gavin et al, 2004] or across areas with very logfeneous PSA use [Etzioni et al, 2008]. In
addition, a recent Cochrane meta-analysis did inot & statistically reduced mortality risk when
including the results of five randomized trialsdlét al, 2013]. In particular, the findings of ttveo
largest randomized trials on the efficacy of schegmwith PSA test were not in agreement. The
“Prostate, Lung, Colon, and Ovary screening tr{®ILCO) conducted in the US, after 13 years of
follow-up, found no evidence of a mortality bendfit organized annual screening compared with
opportunistic screening, which is part of usuakc@ate ratio, RR=1.09; 95% confidence interval,
Cl: 0.87-1.36) [Andriole et al, 2012]; conversdilye PLCO study found a relative increase of 12%
of cumulative incidence in the intervention arm (HRL2; 95% CI: 1.07-1.17). On the other side,
the “European Randomized Study of Screening fostate Cancer” (ERSPC) found a reduction
around 20% in PCa mortality attributable to PSAHes confirmed also after 13 years of follow-up
by the recently published results (RR=0.79; 95% @#9-0.91) [Schroder et al, 2014]. However,
the corresponding incidence rate increase attiibeitdo screening was approximately 60%
(RR=1.57; 95% CI: 1.51-1.62). The ERSPC reported #hat the absolute risk reduction of death
from PCa was equivalent to one PCa death avoided &tk (95% CI: 490-1929) men invited for
PSA screening, or one per 27 (95% CI: 17-66) aolakii PCa diagnoses.

Further quantification of harms and benefits of R8#ting use are still needed to decide whether to
introduce organized screening at a population levetually, even though PSA testing and
subsequent treatments do contribute to the obse@®elthing mortality, the harms to benefits ratio
remains controversial because of adverse evenfsiésiing can detect cancers that may otherwise
go undiagnosed during a man’s lifetimez( overdiagnosis and, consequently, overtreatmert) a
treatment of PCa are serious and potentially liferiaag with significant risks of sexual, urinary,
and bowel-related symptoms. It has been estimatad28-42% of screen-detected PCa cases in the
US result from overdiagnosis due to PSA testinga[@ma et al, 2009]. In the European setting,
estimates of overdiagnosis are considerably higleaching 66% of screen-detected tumors

[Draisma et al, 2003]. This result is consisterthva lower baseline incidence of PCa in Europe, a
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lower PSA cut-off for biopsy referral (3 ng/mL ieweral European countries. 4 ng/mL in the
US), and a much higher frequency of compliance wWithpsy referral in Europe than in the US
[Schroder et al, 2009; Pinsky et al, 2005].

As a consequence of the most recent evidencestfreititerature, motivated largely by the results
of the PLCO and the ERSPC trials, updated clinycadlelines for PSA testing use are periodically
released by the American and the European asswwabf urology. However, these guidelines are
not always in agreement. The 2013 American Urokgissociation guidelines [Carter et al, 2013]
do not recommend PSA screening in men below 40sy&fasge, do not recommend PSA screening
in men aged 40-54 years and at average risk, reemuhrshared decision making for men aged 55-
69 years, and do not recommend PSA screening in>i@@nyears of age or in men with a life
expectancy lower than 10-15 years. Conversely 208 update of the European Association of
Urology guidelines [Heidenreich et al, 2013], aligh not recommending widespread mass
screening for PCa, strongly recommends screeningiem with a life expectancy >10 years
(irrespective of age) and a baseline PSA deteriomat 40-45 years of age.

The response to these recommendations in termiseotlinical practice is evolving. In order to
evaluate the impact of the new PSA screening guieelat a population level, Gulati and
colleagues [Gulati et al, 2014] predicted incideaoel mortality rates of PCa in the US for men
aged 50-84 years in the period 2013-2025. Thisystigtd two microsimulation models of PCa
natural history i(e., statistical representations of disease prograsdietection, treatment, and
survival which simulate, for each man in a popolatiage at PCa onset, age/stage at diagnosis,
etc.), previously developed in the framework of @encer Intervention and Surveillance Modeling
Network (CISNET) consortium, reconstructed PSA egneg patterns in the US, and incidence data
from the Surveillance, Epidemiology, and End ResyBEER) program [Etzioni et al, 2008;
Tsodikov et al, 2006]. Assuming a survival benefitPSA screening consistent with the ERSPC
trial, the study compared the effects of contimmaf recent PSA screening raies continuation

only for men aged <70 years, or discontinued sangefor all men: continuing PSA screening for
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all men will result in 710,000-1,120,000 overdiage®s in the US (out of approximately 3,800,000
total cases), but will avoid 36,000-57,000 deatfisereas, continuing screening only for men aged
<70 years will prevent 64%-66% of overdiagnosesvalltfail to prevent 36%-39% of avoidable
deaths; in contrast, discontinued screening iaggis will eliminate all overdiagnoses but will more
than double metastatic cases [Gulati et al, 2014].

As the number of —prevalent— men with PCa increamdditional resources are needed to screen,
investigate, biopsy, treat, and follow these pasieho adequately plan heath care resources and
cancer control policies, reliable estimates ofinenber of new PCa diagnoses are required, along
with reliable future projections of morbidity andontality indicators for PCa at a population level.
Estimates of PCa based solely on changes in theliagggution of the population or on historical
trends do not take into account of changes in aangeactivities. A Canadian study [Quon et al,
2011] estimated that the number of PCa casesnpletfrom 2009 to 2021 using a simple additive
model incorporating assumption (derived from t)iattn population aging, increasing PSA
screening, lowered PSA threshold for biopsy, angrawed biopsy sensitivity, but not taking into
account of other important factors.g, cohort effects). Even complex simulation modehngre
designed to translate the results of screenints timdo population settings in order to estimate th
impact of PSA diffusion not only in terms of PCa&igence, but also of overdiagnosis and harm-
benefit indicators [Draisma et al, 2009; DraismaleR003; Gulati et al, 2011; Etzioni et al, 2002]
however, screening patterns operating in real @tjouis are quite different from trials’ results. In
order to capture this higher complexity, Tsodikavak [Tsodikov et al, 2006] used a simulation
model to predict the effect of PSA screening diyedtom population databases and cancer
registries data but the model was not verifiedh®ydata, due to the lack of real information on PSA
testing.

Herein, widely used population-based methods fdimasing and projecting standard cancer
morbidity and mortality indicators will be appliéd the population of Friuli Venezia Giulia region

(northeastern ltaly) to PCa incidence, mortalityd @omplete prevalence. Taking advantage of the
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availability of both a population-based cancer sggiand of a digital health archive with complete
coverage of the resident population, data on oleselACa cases and data on PSA testing use will be

analyzed in order to better understand the implleS& diffusion in this real population.
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2. THE MIAMOD/PIAMOD METHODS FOR ESTIMATES AND
PROJECTIONS OF CANCER BURDEN

The Mortality and Incidence Analysis Model (MIAMORNd Prevalence and Incidence Analysis
Model (PIAMOD), developed by Verdecchia and colieag (1989 and 2002), are population-based
methods for estimating main epidemiological indscatof morbidity and mortality for chronic
degenerative diseases. They are currently widgiieapin Europe and in the US.

The choice between the two methods depends onagaitability: MIAMOD allows to estimate
incidence and prevalence using official statistnsdisease-specific mortality; PIAMOD allows to

estimate mortality and prevalence when incidenta filam disease-registries are available.

2.1 The transition rate method

The MIAMOD/PIAMOD methods are based on the assuompthat the natural history of chronic
irreversible diseases can be considered as a sagjaéstatistically independent transitions.

Assume for chronic degenerative diseases that thrbichprocess is irreversibled., an individual
who becomes ill at a certain time will remain ifitill death). In this setting, transition rate eduoré
allow to link mortality and prevalence to incideraogd survival in a unified framework.

Consider the model of Figure 2.1 [Verdecchia etl889], with two live stated.é. healthy and
diagnosed with a specific disease) and two deatkes{ e., death from the specific disease or death
from all other causes). For a specific ag@(x) represents the disease hazard for healthy people,
a(x) the death hazard from all causes toget(g),the death hazard from the specific disegéey)

the all-cause death hazard for people who becdna¢ dgey, andd(x,y) the specific-cause death

hazard for people who became ill at 3ge

13



Diagnosed with
u(y) the disease

a(x) B(V 6(1,%) Y(x)

Due to Due to the
other causes disease

Healthy

Figure 2.1 A compartmental representation of an irreversitidease-death process (y=age at diagnosis, x#tage)

Usually, a(x) andy(x) are known from official statisticfi(x,y) and d(x,y) can be also generally
derived from epidemiological sources and will beussed as known in the following(x) can be
known only if a specific-disease registry exist@wever, whereas incidence and mortality can be
directly derived from collected data, survival goevalence can only be derived from incidence
and mortality data. In particular, prevalence eates derived from disease registries data are
always partial, as they do not include cases orgulrefore the start of the registration activities
Two models have been developed in this framewatgm@ing to data availability.

« MIAMOD is a regression of mortality on observed tatity data €.g, from official

statistics) to back-calculate age-period-cohoridieicce model [Verdecchia et al, 1989].
* PIAMOD is a direct regression of age-period-cohacidence model on observed incidence

data €.g, from Cancer Registries) [Verdecchia et al, 2002].

2.2 Estimating cancer prevalence

For a birth cohort, prevalence at ageP(x), is the probability of being alive at agewith a past
diagnosis of cancer at any previous age (y < Xk ttbtained summing up, over age at diagngsis

all the specific-duration prevalence proportionstfe same cohort.
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Specific-duration prevalence:

ES (0,y) [1-P(¥)] u(y) 0S(y,
Pox =) = B = (1= PO O) RSB, )

Complete prevalence: P(x) = ;;(1,[1 — P(y)] u(y) RS(y, x) Q)
where

P(0) =0, i.e.,people are healthy at birth

1 —P(y)is the proportion of healthy people at age

u(y) is the probability of being diagnosed at gger incidence at age y

ES(y,x)is the survival of the general population betwaga y and x

OS(y,x)is the observed survival of the patients betwagnyaat diagnosis and age x

RS(y,x) % is the relative survival of the patients betwegayaat diagnosis and age

Equation (1) gives the estimated age-specific peexa probability for a birth cohort, provided that
the disease incidence and patient survival are kndwsystem of equations (1), including one
equation for each birth cohort, allows to recongteross-sectional prevalence series for an entire

observation period.

2.3 Estimating cancer mortality

For a birth cohort, mortality for cancer at ageM(x), is the probability of dying of the specific
cancer at age. It is obtained summing up, over age at diagngsall the specific-duration death
probabilities for the same cohort.
Specific-duration death:

M(x,x—y) =Pl,x—y)6(y,x) =[1-PW]uly) RS(y,x) 6(y,x)
Mortality: M(x) = Xy=oll =PI () RS(y,x) 6(y,x) 2)
whered(y,x) represents the crude probability of dying at ader the specific cancer, having being
diagnosed at agg The specific mortality is derived from the cuntiva relative survival (CRS)

curve, under the hypothesis of independent compeisks, as follows:
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o(y,X)= CRS(y,x) — CRS(y-1,x)

Equation (2) gives the estimated age-specific rityarobability for a birth cohort, provided that
the disease incidence, prevalence, and patienivalrare known. A system of equations (2),
including one equation for each birth cohort, alolw reconstruct cross-sectional mortality series

for an entire observation period.

2.4 Modeling cancer incidence with age-period-cohbmodels

Incidence, as needed to be plugged into equatibnand (2), can be modeled using age-period-
cohort (APC) models. Assume incidence probabilifyds a polynomial function of age (x), period

of diagnosis (t), and birth cohort (c = t — x),dbghout a logistic link functiom:

A P c
_ k K k
Dy ¢ (ﬁ) = ap+ Z Qg X" + Z A14a+kt + Z 14 a+p+k (T —X)
k=1 k=1 k=1

where

.+ Oy (@) = logit (uee(@) )

« A, P, and C are the degrees of the polynomialsads, period, and cohort, respectively, to
be chosen to give the best model fit. Since th@xdkrm is a linear combination of age and
calendar year, the coefficient of the period lineam (t) is suppressed to avoid convergence
problems ;4441 = 0).

e a=(ayaq,..,A112+p+c) IS the parameters’ vector to be estimated throsigtistical
regression.

Given a degree for polynomials, parameterare calculated according with MIAMOD/PIAMOD
methods as follows:

a) MIAMOD
e o parameters are back-calculated as maximum likefih(dL) estimates assuming

Poisson distributed cancer deaths, using a weidetest square iterative procedure as

described elsewhere in details [Verdecchia et3891De Angelis et al, 1994].
16



* For each set of parametersMIAMOD fitting algorithm calculates the estimatedncer
deaths and compares them with the observed caaadrsidfrom official statistics.
b) PIAMOD
* 0o parameters are calculated as ML estimates assuRwmngson distributed incident
cancer cases as described elsewhere in detaildgv@ria et al, 2002].
* For each set of parametersPIAMOD calculates the expected incident countsnfthe
APC model and compares them with the incident cacases observed by the Cancer
Registry.
The degree of the polynomials can be choose bgréift strategies in order to incorporate available
data into the most appropriate model for speci@isatiptive or explanatory purposes. The choice of
the degree of the polynomials is guided by a stepwrocedure based on likelihood ratio statistics
(LRS); the significance of inclusion of each aduhil regression parameter in the incidence model
is tested by comparing increasing order nested a@defollows:
G? = (LRS)— (LRS)i41 = ¥}
Standard errors of ML parameters are asymptotiaatliymally distributed and their covariance
matrix is obtained by inverting the second-ordemdgive of log-likelihood functioni(e., Fisher’s
matrix) [Verdecchia et al, 1989]. The significarafeeach parameter is evaluated using asymptotic
T test. Standardized regression residuals (StReshe also calculated using the expected (exp) and
observed (obs) counts as follows:

_ (expyt — obsy)

StRes,; =
* \ €XDxt

and plotted for checking regression goodness of fit

The general criteria for selecting the degree efgblynomials are based on significant reduction in
the model's LRS by introducing new parameters, iScance of each parameter, substantial

improvement of estimates when compared with obsledata, and robustness for projections.
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2.4.1 Cubic splines for modeling incidence

Cubic spline models can also be used instead gihpolials in modeling incidence function, as
they are more flexible for capturing irregular seamand sudden changes in incidence/mortality
rates [Hastie and Tibshirani, 1994]. The model toiess K third-order piecewise continuous
polynomials (.e., cubic splines) that connect K data points (knat#) unit separation. Polynomial

coefficients are chosen such that the resultingecand its first derivative are smooth at the knots
k-1
d.(a) = ag+ a;t + Z a; (t—t)3
j=2

(t-t), =0 ift<t

where ]
(t-t), =t-t ift>yg

tj is the j-th knot and K is the number of knots

left and right tails are constrained to be linea. (natural splines)

the ® function and its ¥ and 29 derivatives are constrained to be continuouseaktiots

the coefficients of the linear and cubic functi@me estimated by the fitting algorithm.

The number and the position of knots have to bedfixn advance; therefore, the model degrees of
freedom is artificially low. The best-fitting moded defined as the one minimizing the Akaike
Information Criterion (AIC) [Akaike et al, 1973].hE AIC, a variable selection criterion that
compromises between a good fit and a simple maded penalized likelihood that takes into
account the number of parameters estimated in toen

As the choice of knots is arbitrary, spline modsisuld be used only when strictly necessary.

2.5 Estimating relative survival

Survival used in MIAMOD/PIAMOD is supposed to bd nancer specific survival, that is:

» Cause-specific survival, when the information om ¢huse of death is available and reliable

18



Relative Survival (RS) for a given cancer, defimsdhe ratio of the proportion of observed
survivors (OS) in a cohort of cancer patients ® ghoportion of expected survivors (ES) in
a comparable cohort of people in the general pdipnla

0S

RS = —
ES

The cumulative relative survival (CRS) is the pradaf RS by follow-up interval (i) and

includes the survival experience of cancer patiewés follow-up time (d)

d
CRS (d) = 1_[ RS (i)

RS and CRS are useful when the information on these of death is unavailable or

unreliable.

There are two different approaches for includingiRBIIAMOD/PIAMOD estimates.

Tabulated RS can be directly derived from incidesuee follow-up data and population life-
tables using standard methods [Ederer et al, 198i¢. use of tabulated RS requires a
registration period long enough to catch main sialvidynamics due to improvements in
diagnostic procedures and more effective treatmevtseover, it requires the stationary
hypothesis for making projectionise(, the conservative hypothesis that survival propest
are equal to the most recent observable level)sdhequirements become particularly
critical for good prognosis cancer sitesf, prostate cancer) with long period dynamics.
Model-based RS can be derived using mixture curéetso These method allows long-term
extrapolation from limited observed survival, swali extrapolation to populations not
covered by cancer registration, smoothing of okerirends with high variability, and

flexible extrapolation scenarios.
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2.5.1 Mixture cure models with power function formodeling relative survival

Mixture cure models are based on the cancer patieaterogeneity assumption and allows for
simultaneous estimation of factors associated pntiportion of cured patients€., those who will
not die for the specific cancer) and factors relateh time to death for fatal cases(, those who
will die for the specific cancer).
Relative survival can be modeled for MIAMOD/PIAMOilizing mixture cure models of the
Weibull type with power function [Verdecchia et 4998].
CRS(d) = {C+ (1 —C) exp[-(Ad)"]}#
where
» C is the proportion of cured patientse(, cure fraction), defined as the limiting valuetioé
cancer survival function CRS, as time to diagnoaggproaches to infinity
C = 113; CRS(t)
* (1-C)isthe proportion of fatal cases
o exp[—(Ad)Y] is a Weibull functiodV (2, v, d) with:
A = scale parameter. It represents the excess dsétlof fatal cases and determines the
scale of the CRS curve.
y = shape parameter. It modulates the excess dshtbfifatal cases. The loweryg<1) the
higher is the risk of death for fatal cases inghert term and decreasing thereafter.
d = time since diagnosis or follow-up or duration.
* [ is the power function that allows to include i tnodel prognostic covariates.
In principle, all demographical and clinical vailieb related to survival can be included in the
model, playing a different role on cured proportad on time to failure for fatal cases. However,
the availability of such variables is often limiténl subsets of patients. Therefore, the principal
variables to be included in the survival model asaally sex, age at diagnosis, period of diagnosis,

and populationd.g, geographical area).
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Explicative covariates are included in the mixtetge models by means of the power function

which may depend on them as follows:

CRS(2,d) = (C+ (1 —C)W(,y,d)P £
where_Zis the vector of covariates afdncludes the corresponding relative risks,
and/or stratifying the baseline function paranseter

{cz+(1-Cc) WOz, d }

The choice of the more appropriate model dependdate characteristice.g, number of strata),
model hypothesise(g, age or population specific trends), and speaiitas of survival modeling
(e.g, projections, extrapolations to areas not covesedancer registration).

To summarize the results obtained from these motads indicators are considered: the cure

fraction, C, and the mean survival time for fata$es, T, which is given by

T2 (1 + 1)
A Y
whererl is the Gamma function.
Survival model parameters are estimated by mearss rain-linear regression procedure with the
inverse of the variances of the observations usaglegghts, using SAS (PROC NLIN, examples in

Appendix A).

2.6  Projections with MIAMOD/PIAMOD

Projections of morbidity and mortality trends inettMIAMOD/PIAMOD applications require
several hypotheses concerning incidence, sunawel,population evolution patterns.

* APC incidence model projections can be derived $suming the persistence of both age
and cohort effects during the calendar years fallgwhe observation period. For cancer
disease this assumption is quite reasonable, a®icask is generally determined by past
exposure to risk factors. Conversely, the periodl@h¢ not projected into the future, as it is

assumed that what happened simultaneously to allgagups in the observation period
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cannot happen in the same way in subsequent ybarsfore, only a linear drift is retained,
based on a defined number of years.

Survival projections should be derived providingpkusible range of scenarios. For
instance, a pessimistic hypothesis consists innaisgupatients survival to remain stable in
the future, whereas an optimistic one consistoimsitlering survival to continue improving
at the same rate observed in recent past yearsfolloeing assumptions can be made in
the MIAMOD/PIAMOD interface for backward and forvear relative survival
extrapolations: constant, dynamic with the sam@eslestimated from the data, dynamic
until a given calendar year, or dynamic until alvés bound (for backward only). In
MIAMOD, backward survival dynamic modifies the AHGcidence model derived from
mortality data and determines changes on mortalitgidence, and prevalence whereas
forward survival dynamic does not modify the APCidence model but influences
mortality and prevalence projections. In PIAMODpsval projection does not change the
APC incidence model but forward projection influeaanortality and prevalence trends and
backward projection influences prevalence.

Minor hypotheses are required for projecting popoitaevolution patterns. The number of
new born (e., population count at age 0) is assumed to be anohand equal to that of the
last available calendar year, also general moytaites are assumed to be constant and
equal to those of the last available calendar yaat,no migration is assumed. Population at
older age classes is estimated by accounting éomitrementing age of the cohort members

and for the expected number of deaths.

Prevalence and mortality projections can be derbyedsing equations (1) and (2), respectively.

The MIAMOD/PIAMOD software

MIAMOD software (source code in Fortran 77 for nfeame computers) was developed in 1989

by Italian National Institute of Health (Istitutauferiore di Sanita) [De Angelis et al, 1994].



In 2000 source migrated under Windows Operatinge®ysand in 2003, a unigue environment to

run MIAMOD and PIAMOD was developed in collaboratiwith the US National Cancer Institute

with a graphical user interface written in Visuadsc.

When model-based survival is used, the model pammestimate should be done externally to the

MIAMOD/PIAMOD interface, using SAS software (SASshitute Inc.).
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3. APPLICATION OF THE MIAMOD METHOD IN FRIULI
VENEZIA GIULIA

3.1 Comparison between estimated and observed pragt cancer incidence

rates

An analysis for estimating and projecting incidgnoertality, and prevalence for major cancer
sites (including prostate) was conducted in FMdnezia Giulia (FVG) region in the period 1970-
2015, using the MIAMOD method, in the frameworkaohational project coordinated by the Italian
National Institute of Health. The results are imgld in the paper by Zucchetto and colleagues
(2013) ‘Cancer estimates up to 2015, in Friuli Venezia @iul

Study findings clearly showed the high goodnesé§itasf estimates with observed data from the
FVG Cancer Registry for several cancer sites, exiwgpprostate. Actually, the incidence rates of

PCa were clearly underestimated by the MIAMOD médtlas explained in the following.

3.1.1 Methods

MIAMOD

The MIAMOD method [Verdecchia et al, 1989; De Angdlt al, 2004], was applied to estimate the
absolute number of incident cases, deaths and Ipréveases, crude and age-standardized (using
the standard European population) incidence andatitgrrates (per 100,000 person-years), and
prevalence proportions (per 100,000) for the peti®d0-2015. All estimates were carried out up to
age 99 years. Mortality data for all cancers, ganerortality, and population data by age, calendar
year, and geographical area for the period 197@206re obtained from the Italian National
Institute of Statistics (ISTAT). Specific-cause nadity data for the years 2003, 2006, and 2007
were used to validate expected mortality proje&j@s ISTAT had yet to publish data with causes

of death for the period 2004-2005. Relative survigatimates were calculated by means of
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parametric cure models of the Weibull type at téeel of macro area, using data from cancer
registries included in the EUROCARE-4 for the pdritP85-2002 [Capocaccia et al, 2009]. The
survival estimates for the North-East macro aregwassigned to FVG.

For PCa, a specific procedure was used to capegent rapid variations of time trends, as
suggested by data from cancer registries [Curadd, &007]. Mortality estimation up to the year
2010 was preliminarily performed by means of th&ANMOD method [Verdecchia et al, 2002],
using regional mortality data during the period Q- 2ZD07 as input (best model fit was found for an
APC model with 2-degree age, 2-degree period, ad€lgeee cohort polynomials). This allowed to
complete the missing cause-specific mortality teeeies in the years 2004 and 2005 and to base
incidence estimates on more recent mortality deltés longer mortality time series was then used
as input for the MIAMOD method (best model fit wiasind for an APC model with 2-degree age,
3-degree period, and 4-degree cohort polynomiaspectively). The survival time trend was
modeled by means of mixture cure models of the Wktipe with power function [Verdecchia et
al, 2009] for the period 2003-2005 and then assutmé@ constant onwardse(, equal to 2005 for
the period 2006-2015). The baseline Weibull mixttuee model was stratified by age at diagnosis
(age classes: 15-54, 55-64, 65-74, 75-84, 84-9%syemd estimated for each age-stratum at the
reference year (1994), including age-stratifiedqeerelative risks and an area relative risk eqoal

that of the North-East for all age strata (Appentljx

FVG Cancer Registry Data

Since 1995, the population-based Cancer Registrif\MiE has been registering incident cancer
cases diagnosed in people residing within the whexgonal territory [Birri et al, 2011]. The FVG
cancer registry, accredited at the Italian Assamabf Cancer registries (AIRTUM), together with
the registries of Umbria and Trento and Bolzanmnis of the very few Italian registries covering a
whole region [AIRTUM]. The registry has high comigieess and quality, in accordance with the

standards required by the International Associatiog@ancer Registries.
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All PCa cases diagnosed between 1995 an 2007 (F&t&ec registry activity period) were
considered. Routine indicators for PCa showed 30af% of cases were microscopically verified
and that only 0.2% were identified on the basisledth certificate onlyi.e., an indicator of poor
quality of data). Interestingly, 3.5% of cases w@&n diagnosed solely at autopsy. These cases
were excluded from this analysis, in order to iasee comparability with MIAMOD estimates,
given than usually diagnoses made during autopsyatr reported in death certificates and, hence,
do not affect mortality statistics.

As an alternative approach, PIAMOD method was algplied FVG cancer registry data in the
period 1995-2007 as input (the best model fit wamél for an APC model with 3-degree age, 5-
degree period, and 3-degree cohort polynomialpectely).

Annual PCa incidence rates per 100,000 resident were calculated using as denominator the
mean number of resident males in the correspondadgndar year (i.e., the mean between
population at ¥ January of the year y, and' January of the year y+1), derived from ISTAT

[ISTAT. Popolazione residente

3.1.2 Resaults

The estimates of PCa incidence, mortality, andgesce for the whole period 1970-2015 using the
MIAMOD method are reported in Figure 3.1. The congmns between observed and
MIAMOD/PIAMOD estimated incidence and mortality eatfor the common period 1995-2007 are
reported in Figures 3.2 and 3.3.

Although both increasing (the annual percent chaaB€, was 5.0; 95% CI: 3.7-6.5 for observed
incidence rates; and aPC was 5.2, 95% CI. 4.4d5.@Xpected rates), PCa incidence rates reported
by the FVG Cancer Registry were much higher thasdhestimated using MIAMOD, despite the
exclusion of autoptical cases (Figure 3.2). Actyathe huge grow of incidence rates in the same

period was not accompanied by a corresponding aseréen mortality, which was instead almost
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stable (aPC = -0.3, 95% CI: -0.2 to 1.4 for obsémrertality; aPC = -0.4, 95% CI: -0.8 to 0.1 for
expected mortality).

The application of PIAMOD method, using FVG CanBe&gistry data in the period 1995-2007 as
input, provided a far better estimation of PCadecice (Figure 3.3). However, limitations emerged
with regard to PCa mortality rates that were clearderestimated in comparison with observed
data up to 1999. As a consequence, complete praelestimates resulted to be highly inflated,
given the great influence of past mortality ratespoevalence for cancers with high survival, such
as PCa (Figure 3.4).

In any case, it is worth noting that lots of Italiareas are not covered by population-based cancer
registries or have still few years of observatierg( only in the very recent years the population
coverage of cancer registration reached 50% iry, If#®IRTUM]) causing the impossibility of

extensively using PIAMOD.
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Figure 3.1 Crude prostate cancer incidence and mortaligsrgter 100,000 men-year) and prevalence propsr(joar
100,000 men) estimated using the MIAMOD methodulFxenezia Giulia
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4. TRENDS OF PSA TESTING RATES IN FRIULI VENEZIA
GIULIA

4.1 PSA testing rates

4.1.1 Methods

Data on PSA testing use, which are collected foniatstrative purposes at a population-level, are
available in several Italian areas, even thosecogered by cancer registration. For instance, in
FVG, the regional digital health archive (a dataet@use in SAS, SAS Inc.) collects data on
diagnostic procedures, hospital discharges, andofmgical archives of the whole region. This
archive includes procedures performed in publicicstres as well as in private structures
accredited by the Regional Health System. Data $A fsts can be extracted from the outpatient
clinics database grestazioni ambulatoridl), available since 1998.

In the following analysis, both total-PSA and fle8A tests (FVG regional code 90.56.5 and
90.56.6, respectively) from 1998 up to 201i2.( last available year as of 2013) were considered.
Only PSA tests performed on resident men aged 4@sye more were included, as PCa is very
rare in men under 40 years and PSA testing at tlages is used in case of acute prostatic
conditions €.g, prostatitis) rather than for PCa screening. DataPSA testing use include the
regional identification code of the tested perdbe, date of PSA testing and other characteristics,
such as test price, but not serum PSA levels. Rptisnis of both types of examinations in the same
year to the same man were counted once. The owe&Al testing rates were calculated as the
number of PSA tested men in one calendar yeartbeemean resident male population in the same

year [ISTAT.Popolazione residenfe
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4.1.2 Results

PSA testing rates significantly increased from 92,per 100,000 men in 1998 up to 30,407 in
2009, and then slightly decreased down to 29,1120it2. Similar patterns emerged for all ages,
except for men agea70 years, for whom trends did not show any redactBigure 4.1).

Interestingly, among men aged 65-79 years, PSMtesttes rose up to approximately 50,000 per

100,000, meaning that one out of two men had bestad.
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1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Calendar year  No. of tested men  Mean male population PSA testing rate (95% Cl)
1998 37,472 292,944 12,791.5 (12662.3-12921.7)
1999 45,728 294,990 15,501.5 (15359.8-15644.3)
2000 56,141 297,675 18,859.8 (18704.1-19016.5)
2001 61,270 300,998 20,355.6 (20194.8-20517.4)
2002 73,239 305,645 23,962.1 (23788.9-24136.3)
2003 79,744 310,707 25,665.3 (25487.5-25844.1)
2004 86,640 315,634 27,449.5 (27267.0-27632.9)
2005 86,778 320,539 27,072.5 (26892.7-27253.3)
2006 92,743 325,043 28,532.5 (28349.2-28716.8)
2007 94,392 330,072 28,597.4 (28415.2-28780.4)
2008 101,513 335,416 30,264.8 (30078.9-30451.6)
2009 103,450 340,221 30,406.7 (30221.7-30592.6)
2010 103,778 344,389 30,133.9 (29950.9-30317.9)
2011 104,103 344,315 30,234.8 (30051.4-30419.0)
2012 99,645 342,276 29,112.5 (28932.0-29293.8)

Figure 4.1.Age-specific PSA testing rates per 100,000 menm-graaan ISTAT pop) by calendar year. Friuli Venezia
Giulia, men aged 40+ years, 1998-2012
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4.2 Joinpoint analysis of PSA testing rates trends

421 Methods

Joinpoint regression analysis [Kim et al, 2000] wasformed to identify points (knots) where a
statistically significant change over time in trag-{slope of the age-specific PSA testing rates
occurred and to estimated the rates trend withal ¢iane span between the knots. Analyses were
performed using the Joinpoint Regression Programergiegn 3.5 — April 2011; Statistical
Methodology and Applications Branch and Data MaagBranch, Surveillance Research Program

National Cancer Institute), using the following iops:

» Standard parameterization of Kehal. (2000) of the joinpoint regression model, that is:
ElyX = o + Bix+ A(x— )" + ... +A(X~ )" (1)
wherer is the unknown joinpoint ana)( = aif a> 0 and 0 otherwise.

» Log-linear model for the ratg that is: Iny) = x3 + e.

* Heteroscedastic random errors with standard dewiasipecified at each time period.
Regression coefficients are estimated by weighgadtisquares, where weights at each point
are:w = (y)/v, wherey? is the square of the response for that point\aisdthe square of
the standard deviation at each time period.

* The maximum number of joinpointk)(was set at 2, according to the recommendations fo

n=15 observed data points.

Number of Maximum Number of

Data Points Joinpoints

<7
7-11
12-16
17-21
22-26
27+

Urpwhrk @
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Let be:
« nthe total number of data points
« kthe number of joinpoints in the model
« pthe total number of parameters in the model, midky the joinpoint parameterp«2k+2)
+  Knmin and Kpax the minimum and maximum number of joinpoints
« Qx the weighted sum of squared errors (SSE) from the@eithat minimizes weighted SSE
with k joinpoints
«  Qqjkthe weighted SSE from the model that minimizepveid SSE withk joinpoints and
with thej™ joinpoint occurring ax
- FLdp thep™ quantile of the F distribution with andb degrees of freedom.
First, the procedure goes through each of thenpmint models, ki< k < Knhax For each of the
models, the program chooses the regression panametth the smallest weighted SSE. The
minimum SSE for a k-joinpoint model is calculatezing Lerman's grid-search method [Lerman,
1980] based on standard parametrization (1). Tmeesponding values forr{ . ) and (., [,
a,..., &) are the estimates of joinpoints and regressi@fficcents, respectively.
If k > 0 then the output lists the estimated joimi® The associated Cls come from Lerman (1980):

the 100(1 —0)% CI for the |' of k joinpoints includes all values of from the grid such that

Qxyj’kSC2d, where

Koy o
cs =01 + ﬂ) Fit,(1-a)

The sequential permutation test procedure is us@thdose the best joinpoint model, as described
elsewhere in details [Kim et al., 2000], and hetefly reported.
The procedure tests the hypothesis of no change
Ho: E[y|X = fo + fux
againsthe alternative hypothesis of two joinpoints
Ho: there existn andn, i < 1> such thatE[y[X] = B + Bix + (X — 1) + R(X — )"
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If the null hypothesis is rejected, then the samozgdure is applied to test the null hypothesis of
one joinpoint against the alternative of two joimgs, and so on. Because multiple tests are
performed, Bonferroni adjustment is used to enthaethe approximate overall type | error is less
than the specified significance lewel(default 0.05). Each of these permutation testcarded out

at significance level ofti;=a/(Kmax— Kmin). The Bonferroni adjustment is conservative beeaus
overall significance level is usually less than tieeninal level.

The annual percentage change (aPC) is computexhédr of the trends identified by the knots. For
any segment with slope the aPC is 100{@)pf{ 1}. The average annual percentage change (aaPC)
which is a weighted mean of the aPC’s from thegoint models, summarizes the trend over the

whole period.

4.2.2 Results

Joinpoint analysis estimated statistically sigmifit changes in PSA testing rates slopes in 2002 and
2008 (Tab. 4.1 and Fig. 4.2): the aPCs in the geri®98-2002, 2002-2008, and 2008-2012 were
16.9 (95% CI: 12.9 to 21.2), 3.6 (95% CI: 1.7 t6)5and -0.7 (95% CI: -3.1 to 1.8), respectively,

with an aaPC based on the last 10 years equal t®3% CI: 0.4 to 1.9).
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Table 4.1. Output of Joinpoint analysis of PSA testing rgtesdel with 2 joinpoints). Friuli Venezia Giulia

Model statistics

No. of No. of Degrees of Sum of squared Mean Squared
No. of Joinpoints Observations  Parameters Freedom errors Error
2 15 6 9 545.46604 60.60734
Estimated Joinpoints
Joinpoint Estimate Lower CI Upper CI
1 2002 2000 2004
2 2008 2003 2010
Estimated regression coefficients (Beta) Standardreterization
Parameter Standard
Parameter Estimate Error Y4 Prob > |t|
Intercept 1 -303.231978 30.07501 -10.082523 0.00002
Slope 1 0.156515 0.01504  10.406767 0.000016
Slope 2 - Slope 1 -0.121353 0.016977 -7.148073 0.000186
Slope 3 - Slope 2 -0.041853 0.012974  -3.225834 0.014535
General parametrization
Parameter Standard
Parameter Estimate Error Z Prob > |t|
Intercept 1 -303.231978 30.07501 -10.082523 0.00002
Intercept 2 -60.283413 15.79129 -3.81751 0.006563
Intercept 3 23.75739 20.729205 1.146083 0.289424
Slope 1 0.156515 0.01504  10.406767 0.000016
Slope 2 0.035162 0.007876 4.464653 0.00292
Slope 3 -0.006691 0.010311 -0.648948 0.537074

The permutation test found that model with 2 joimp® was significantly better than model with
just 1 (Tab 4.2). However, for comparison, also thasults of the model with 1 joinpoint are
reported in Figure 4.3. The model found significaiminges in PSA testing rates slopes in 2003: the
aPCs in the periods 1998-2003 and 2003-2012 wefe(28% CI: 11.7 to 18.3) and 1.4 (95% CI:

0.5 to 2.3), respectively.

Table 4.2. Permutation test output of Joinpoint analysis $AResting rates

Numerator Denominator
Null Alternate Degrees of Degrees of No. of Significance
Hypothesis Hypothesis Freedom Freedom Permutations P-Value Level
0 Joinpoint 2 Joinpoints 4 9 4500 0.000222  0.02B6000
1 Joinpoint 2 Joinpoints 2 9 4500 0.020222  0.050000
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Figure 4.3.Joinpoint analysis of PSA testing rates (modehwijoinpoint). Friuli Venezia Giulia

Stratified analysis according to age of men at R&AIng, found statistically significant changes in

the slopes of PSA testing rates for all age grdugisveen 2002-2003 and 2008-2009, except for

men aged 80-84 years, for whom only 1 joinpoinP@®3 emerged (Fig. 4.4). For men aged less

than 70 years the liner trend of the log-rate mltst period was decreasing, whereas for older men

PSA testing rates continue raising, though at afoextent.
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5. AGE-PERIOD-COHORT MODELS

Age-period-cohort models are utilized in order igedtangle the effects on time trends of age at the
event, calendar time of the event, and calendas tirbirth. Age-period-cohort models are herein

described using the approach of Carstensen [Caesie8007].

5.1 Methods

Age-period-cohort models are descriptive toolsr&tes observed in a Lexis diagram (Fig. 5.1).
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Figure 5.1 Lexis diagram, the birth cohort 1928-1937
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ConsiderA therate of an event observed in an arbitrary subset loéxis diagram, where D is the
number of cases who experimented the event andeMariount of risk timei.g., person-years at
risk of the event). Assuming that rates are constathin each tabulation category, the log-
likelihood contribution from observation of the dm quantity (D, Y) in one subset is:
| (AID, Y) =D log @) —AY

Except for the constant (D logl)], this is the same as the log-likelihood for dse&rvation of a
random variable D from Roissondistribution with meamlY.
The log-likelihood for the entire table of (D, Y9 the sum of such terms, because individuals are
independent and the contributions to different scéiom one individual are assumed to be
conditionally independent. Hence, models Aaran be fitted using programs for Poisson regrassio
for independent observations that allows forofiisetterm to separate the person-years from the
rate.
The rates can be modeled as functions of age Alagsriod P, and cohort of birth C, by letting D
the response, log(Y) thafsetand A, P, and C categorical explanatory varialslesPoisson model.
Since the cohort term is a linear combination &f agd calendar year (C = P — A), this produces an
unidentifiability problem which requires parameation constraints to be solved. There are several
ways of arriving at a parametrization of an ageguecohort model, such as:

» to constrain 1 period and 2 cohort parameters 10 (@&vice versy

« the Holford’s residual approach [Holford, 1983, to regress the age estimates on age, the

period estimates on period, and the cohort estenatecohort, and then to report residuals
as age, period, and cohort effects.
« the sequential methode., to fit an age-cohort model, and subsequently riog@lone

model using the log-fitted values from the age-cbhwdel as offset.
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5.1.1 Theage-period model

The age-period model states that the age-speafiesrhave the same shape in all periods,
eventually with a varying level. The model has paeameter per age class and one per period, but
always there is a one-parameter unidentifiabihityhe formulation.
log[A(a, p) = f(a) +g(p)
In this model only the first derivatives (contrastéf and gare identifiable. The natural constraint
is to fix one parameter to bedlpy) = 0. For periogwe will have:
log[A(a, )] = f(a) + g(po) = f(a)
Thus, for periogy, thef(a) are logs of age-specific rates, and the age-Bpeates are expi(a)].
Comparing the rates in any age class between perodp, gives
log[A(a, p)A(a, )] = log[A(a, p) — log[A(a, p)] = f(a) + g(p) —f(a) = g(p)

Thus, they(p) are logs of rate-ratios (RR) relative to the pepo.

5.1.2 Theage-cohort model

The age-cohort model states that the age-speaifes rhave the same shape in all cohorts, but
possibly with a varying level. The model has onexpeeter per age class and one per cohort.
log[A(a, c) =f(a) + h(c)
In this model only the first derivatives (contrgasté f andh are identifiable. This is traditionally
fixed by choosing a reference cohgytand constraim(cy) = 0. For cohortywe will have:
log[A(a, @)] = f(a) + h(co) =f(a)
thef(a) are logs of age-specific rates, and the age-Bpeates are expi(a)].
Comparing the rates in any age class between colaodc, gives:
log[A(a, c)iA(a, @)] = log[A(a, c) - log[A(a, @)] = f(a) + h(c) —f(a) = h(c)

Thus, theh(c) are logs of rate-ratios (RR) relative to the atleg
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5.1.3 Theage-drift model

The age-drift model is a sub-model of both the pgeed and the age-cohort model. Inspection of
the rate-ratio plots could suggest to replace #@g or the cohort parameters by a linear trend in
log-rates:

log[A(a, p) = f(a) +9(p) =f(a) + g(p — R)

log[A(a, c) = *(a) + h(p) =f*(a) + h(c — @)
The two models are analytically the same, givernt pha a + c. This implies that the rate-ratio
display (on the log-scale) would show a straighe.li

f(@) +9(p — p) =f(a) + g(a+c— (a0 + o)) =f(a) +g(a—ao) +g(c — o)

So going from the age-period-drift model to the-agkort-drift model is just to replace the age
effectf(a) by f*(a) =f(a) + g(a—ay).
The interpretation of this model is that rates @ase exponentially by time (period or cohort) at th

same pace, exg(p)] = explh(c)] per year for all age classes.

5.1.4 The age-period-cohort model

The general form of a multiplicative age-period-cdhmodel for rated(a, p)is:

log[A(a, p)] = f(a) +g(p) + h(c) (1)
where the covariates are mean agmean periog, and mean cohod, andf, g, hare functions of
age, period, and cohort, respectively. Given &atp — ¢, themodel can be written as follows:
log[A(a, p) =f(a) + & — 1(p) — 1(c) +
[9(p) — & + (p)] +
[h(c) + & + 1(0)]
for any (p), 1(c), andad.
Therefore, the parametrization produced by setthegtain period and cohort effects to 0

corresponds to choose values of the three arbiparymeterg(p), 1(c), ando.
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Any parametrization of the age-period-cohort mobeds 2 levels and a slope among the three
functions, but different principles can be usedd¢oomplish this.
One of these principles is based on an extensiagheohssumptions behind the way the age-cohort
model was parametrized:
1. The age-function is interpretable as log of agec#igerates in a cohortc(longitudinal
rates), after adjustment for the period effect;
2. The cohort function is interpretable as log-RR tretato the reference cohag;
3. The period function is 0 on average with O slopé&rpretable as the log-RR relative to the
age-cohort prediction (residual log-RR).
Depending on the subject matter, the role of coaod period could be interchanged, in which case
the age-effects would be cross-sectional ratesHerreference period.€. the period function
could be constrained to be 0 at a reference ggtéhe age-effects ab = po— ¢o would equal the
fitted rates for perioghy and cohorty, the period effects are interpretable as log-RiRstive to the
reference perio@y, and the cohort effects would be residual log-Rffastive topo).
A variant of this approach is to extract the di@} and report it as a parameter and then report both

cohort and period effects as ‘residuals’.

log[A(a, p} = f2(a) + & (c —co) + G(p) + h(0)

log[A(a, pY = (&) +3 (p—Po) + G(p) + h(c)
where G(p) andh(c) have 0 slope,f.(a) are the age-specific rates in the reference ¢afzand
f{,(a) are the age-specific rates in the reference gggoHence, age-specific rates can be chosen to

refer to either a specific cohort (longitudinalasit or a specific period (cross-sectional rates).

5.1.5 Modeing effects
The usual approach to model effects uses one ptaaper distinct value &, p, ¢, by defining the

variables as ‘factors’i.e., class variables). The classical approach has tzedefine a tabulation
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sufficiently coarse to avoid an excess amount cdipaters in the modeling€., typically in 5-year
intervals).
Another approach is to model the effects by paramsmoothing functions of the class mean,
since the three variables age, period, and colerbaginally continuous variables, such as the
followings:
« Splines e, 1% 2 39 degree polynomials in predefined intervals, caised to have
identical values and derivatives in interval boumneiacalled knots)
« Natural splinesie., 3° degree splines constrained to be linear beyondutermost knots)
» Fractional polynomialsi.ge., combination of polynomials of various power, unding non-
integer powers).
All these models are just generalized linear modélsufficient data are available there will be
little differences between these approaches. Ihthaber of parameters in the terms describing an
effect equals the number of categories, then thdemwill be the same as the factor moded.(
parametric models are sub-models of the classacabf model). Standard techniques of penalizing
the roughness of the effects are available fomginhe number of parameters and the location of
knots. However, these methods are not always désira describing demographic effects where
sudden changes may occarg, due to changes in diagnostic procedures).
Deviance statistics, that are the likelihood-ragst of each of the following models against the

model with a completely freely varying interactibatween age and period (or cohort), are usually

produced.
Model log[A(a, p)
Age f(a)
Age-drift* (cohort)  f(a) + &c
Age-cohort f(a) + h(c)
Age-period-cohort  f(a) + g(p) + h(c)
Age-period f(a) +g(p)

Age-drift* (period)  f(a) + &p

*The drift models are identical
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However, using deviance statistic for choosingrttuglel is not recommended, as deviance statistic

depends on the chosen tabulation rather than oadéguacy of the model in describing rates.

5.2 Age-period cohort analysis of PSA testing rates

5.2.1 Basicplots
Four basic plots were performed in order to preieny evaluate the effects of age, period, and
cohort on PSA testing rates time trends.

1) Rates for each ageersusperiod (Fig. 5.2).

2) Rates for each ageersuscohort (Fig. 5.3).

3) Age-specific rates for each period (Fig. 5.4).

4) Age-specific rates for each cohort (Fig. 5.5).
These plots are usually on the log-scale. The gigtand (3) indicate whether the major variations
in the rates are by period, in which case the ausl®uld be approximately parallel. The plots (2)
and (4), are useful for seeing whether the majoatians in the rates are by cohort, in which case
the curves should be parallel.
The plots (Fig. 5.2-5.5) indicated a more importeffiéct of period rather than of birth cohort on
PSA testing rates. The period effect was almostptetaly due to the change in rates after 1998-
2002; whereas, no clear difference across cohontrged. Therefore, the period 1998-2002 was
selected as reference for the period effect, arrtceffects were constrained to be equal on
average. As a consequence:
. The age effects are interpretable as age-speatfs in period 1998-2002 after adjustment for

the cohort effects

. The period effects are interpretable as RRs reldovhe reference period 1998-2002
. The cohort effects were constrained to be 1 onaaeewith 0 slope, and are interpretable as

the RRs relative to the age-period prediction ¢(hesi RR).
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The age-period-cohort analyses were performed imofy using classical factor model and natural
splines (Appendix B). The analyses were restritbetien 40-84 years old at PSA testing date.
Ten-year birth cohorts were approximated by subtrgche mid-point of the 5-year age group
(from 40-44 to 80-84 years) from the correspondingear period (1998-2002, 2003-2007, 2008-
2012). For instance, the age class 65-69 yearh, wgan age 67.5 in the period 1998-2002 with
mean date of diagnosis 2000.5 (i.€' Jiily 2000), has mean date of birth 2000.5 — 671933, but
comprises men born betweet January 1928 (1998 — 70 = 1928) andf B&cember 1937 (2002 —

65 = 1937) (Fig. 5.1).
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5.2.2 Factor mode

The results of age-period-cohort analysis withdachodel and deviance statistics are reported in
Table 5.1 (for mean age, mean period, and meanryodred plotted in Figure 5.6. Age-specific
PSA testing rates estimates were sharply increagintp the mean age 72.5e(, age class 70-75
years) and slightly reduced thereafter. As comp#rede period 1998-2002, PSA testing rates were
1.5-fold (95% CI: 1.50-1.51) and 1.6-fold higheb¥% CIl: 1.63-1.64) for the periods 2002-2008
and 2008-2012, respectively. No particular cohdféats emerged, except for increasing PSA
testing rates for men born after 1960. The estichakéft was 1.047 (95% CI. 1.0465-1.0475),

meaning that rates increase at the pace of 4.7%ye@e (period or cohort) for all age classes.
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Table 5.1.Maximum likelihood estimates of age-period-coteffects for PSA testing rates estimated with
factor model and analysis of deviance. Friuli Véaéziulia, 1998-2012

Age
Age Rate 2.5% 97.5%
42.5 2427.519 2383.537 2472.312
47.5 6456.883 6386.006 6528.546
52.5 13442.762 13340.276 13546.036
57.5 19221.785 19094.285 19350.136
62.5 23817.832 23670.292 23966.291
67.5 30568.037 30388.953 30748.177
72.5 31999.080 31811.567 32187.698
77.5 31176.170 30960.684 31393.156
82.5 27481.201 27205.600 27759.595
Period
Per P-RR 2.5% 97.5%

2000.5 1.000000 1.000000 1.000000
2005.5 1.506169 1.498699 1.513676
2010.5 1.635976 1.628081 1.643908

Cohort
Coh C-RR 2.5% 97.5%
1918 0.9898689 0.9715140 1.0085705
1923 0.9889873 0.9805391 0.9975082
1928 1.0074120 1.0019985 1.0128548
1933 1.0104333 1.0058013 1.0150867
1938 1.0070713 1.0024257 1.0117384
1943 1.0007073 0.9957160 1.0057236
1948 0.9952955 0.9900798 1.0005388
1953 0.9544327 0.9486290 0.9602719
1958 0.9556077 0.9480268 0.9632493
1963 1.0691179 1.0556067 1.0828020
1968 1.2578845 1.2283499 1.2881292

Drift
exp(Est.) 2.5% 97.5%

APC 1.046510 1.046015 1.047006
A-d 1.047002 1.046530 1.047475

Analysis of deviance

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

Age 18 48560
Age-drift 17 8081 1 40478 < 2.2e-16
Age-Cohort 8 7489 9 592 < 2.2e-16
Age-Period-Cohort 7 728 1 6761 < 2.2e-16
Age-Period 16 1362 -9 -634 < 2.2e-16
Age-drift 17 8081 -1 -6719 < 2.2e-16
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5.2.3 Natural splines

Age, period, and cohort estimates were also modededy natural spline functions. The best-fitting
model, defined as the one minimizing the AIC [Alait al, 1973], was found for an APC model
with 9 parameters for age, 2 for the period, arfdrihe cohort. The results of age-period-cohort
model, deviance statistics, position of knots o$ timodel are reported in Table 5.2. Results were
totally comparable to those estimated with thediaotodel, as expected due to the similar number

of parameters.
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Table 5.2.Age-period-cohort effects for PSA testing rategnitified through natural splines with 9 knots fgea2 for
period and 5 for cohort, analysis of deviance, position of knots. Friuli Venezia Giulia 1998-2012

Age

Age Rate 2.5% 97.5%
42.5 2429.674 2386.235 2473.903
47.5 6455.204 6387.538 6523.586
52.5 13443.208 13342.030 13545.154
57.5 19240.143 19114.384 19366.729
62.5 23821.204 23674.374 23968.944
67.5 30538.321 30360.789 30716.891
72.5 32053.651 31867.793 32240.594
77.5 31160.371 30946.235 31375.988
82.5 27488.273 27214.296 27765.007

Period
Per P-RR 2.5% 97.5%

2000.5 1.000000 1.000000 1.000000
2005.5 1.505572 1.498132 1.513050
2010.5 1.635669 1.627780 1.643597

Cohort
Coh C-RR 2.5% 97.5%
1918 0.9748847 0.9607054 0.9892733
1923 0.9949688 0.9884170 1.0015641
1928 1.0080206 1.0038048 1.0122540
1933 1.0083085 1.0054620 1.0111630
1938 1.0050177 1.0010482 1.0090029
1943 1.0065176 1.0027764 1.0102728
1948 0.9914833 0.9871371 0.9958485
1953 0.9526125 0.9486713 0.9565701
1958 0.9599768 0.9542127 0.9657757
1963 1.0676296 1.0576875 1.0776652
1968 1.2552934 1.2297908 1.2813248

Drift

exp(Est.) 2.5% 97.5%

APC 1.046498 1.046002 1.046993
A-d 1.047002 1.046530 1.047475

Analysis of deviance
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

Age 18 48560

Age-drift 17 8081 1 40478 < 2.2e-16 ***
Age-Cohort 13 7545 4 536 < 2.2e-16 ***
Age-Period-Cohort 12 746 1 6800 < 2.2e-16 ***
Age-Period 16 1362 -4 -617 < 2.2e-16 ***
Age-drift 17 8081 -1 -6719 < 2.2e-16 ***

Knots position
Age
11.11111% 22.22222% 33.33333% 44.44444% 55.55556% 66.66667%
42.50000 46.94444 51.38889 55.83333 60.27778 64.72222 69.16667

77.77778% 88.88889%
73.61111 78.05556 82.50000

Period
50%
2000.5 2005.5 2010.5

Cohort
20% 40% 60% 80%
1918 1929 1938 1948 1957 1968
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5.3 First PSA test

It should be noted that PSA testing, beyond beirsgraening and a diagnostic procedure, is also
used for monitoring cancer recurrence among patieith PCa during the follow-up subsequent to
therapies (prostatectomy included). Therefore, migh PCa are expected to undergo PSA testing
for several years also after cancer onset.

In order to have some indications with regard &® @mount of new potential cancer diagnoses, an
analysis was performed considering only men whehmeen tested for PSA level for the first time.
They could be either men who underwent PSA scregefuinthe first time (without having a PCa)
or men newly diagnosed with PCa (assuming thahaft with PCa have at least one PSA test at the
time of PCa diagnosis).

Because information on PSA test was not availableMG before 1998, the analysis was restricted
to men having had their first PSA test in the pge2001-2012, given that they had not any PSA test
in the previous period 1998-2000 (assuming 3 yaara reasonable time interval for considering a
man not already ‘under surveillance’ for PCa). FiRSA-testing rates were calculated as men tested
for the first time as respect to the mean residale population (ISTAT) (Fig. 5.7).

Dramatically decreasing trends were found for meerall (7,770 per 100,000 in 2001 down to
2,590 per 100,000 in 2012, with aPC = -9.6; 95%-00.7 to -8.6) and for all age groups starting
from 50-54 years; conversely, men aged less thaye&fs showed firstly an increasing and then a

decreasing trend.
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6. Prostate cancer incidence trends analysis

PCa incidence rates in FVG among men aged 40 gear®re were analyzed for the period 1995-
2009, taking advantage of the availability in 2@f4-yet unofficial and unpublished (courtesy of
the FVG Cancer Registry) — data for the period 20089 from the cancer registry.

A total of 15,107 cases of PCa were diagnosed leetvi®95 and 2009 in men aged 40 or more
years. The overall crude incidence rate of PCaeamad from 219.8 per 100,000 men in 1995 up to
385.5 in 2007, and then decreased down to 32820@9 (Fig. 6.1). As expected, PCa incidence
was very low —almost null- before 50 years of ag¢he whole considered period. Growing PCa
incidence rates were observed for all age groupsept men older than 74 years, but the greatest

increases were observed for the age classes bebbesmmd 69 years.
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Figure 6.1. Crude prostate cancer incidence rates per 100y@¥Byears by calendar year and age class at diagnos
Friuli Venezia Giulia Cancer Registry, men 40+ yedi995-2009
" Yet unpublished data for the period 2008-2009, mmyrof the FVG Cancer Registry
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6.1 Joinpoint analysis of prostate cancer incidencates

Joinpoint regression analysis was used to idemifiynnts where a statistically significant change
over time in log-linear slope of the PCa rates omzili(as in the previous analysis of PSA testing
rates, the aPCs were computed by means of geresgtdiliear models, assuming that random errors
were heteroscedastic).

Statistically significant changes in PCa inciderates slopes emerged in 1998 and 2007: the aPCs
in the periods 1995-1998, 1998-2007, and 2007-20€@ 12.1 (95% CI: 6.6 to 17.9), 1.9 (95% CI:

1.0to 2.8), and -7.0 (95% CI: -14.3 to 0.9), respely (Fig 6.2).

All - 2 Joinpoints
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Lower bound Upper bound

Period aPC 95% ClI 95% ClI
1995-1998 12.1 6.6 17.9
1998-2007 1.9 1.0 2.8
2007-2009 -7.0 -14.3 0.9

Figure 6.2.Joinpoint analysis of prostate cancer incidentesrémodel with 2 joinpoints). Friuli Venezia Gaulimen
40+, 1995-2009 aPC = annual percent change, Cl = confidenceviaker
"Yet unpublished data for the period 2008-2009, tesyrof the FVG Cancer Registry.

Stratified analyses by age class, though suffefioign low numbers of cases at the youngest ages,
highlighted different trends across strata (datasimwn): PCa incidence was increasing in the

whole period for age classes below 55 years anthéoage class 65-69 years; whereas, for the age
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classes 55-59 and 60-64 years there was a tendemeguction or stabilization in the last period,;

finally, the oldest age groups (70+ years) hadehsing PCa incidence rates in the whole period.

6.2 Age-period-cohort analysis of prostate cancencidence rates

The analyses were restricted to men 40-84 yearatdRCa diagnosis. Ten-year birth cohorts were
approximated by subtracting the mid-point of thgelr age group (from 40-44 to 80-84 years)
from the corresponding 5-year period (1995-199%022004, 2005-2009)k(g, for the age class
65-69 years-mean age 67-5in the period 1995-1999mean date of diagnosis 199¥.the mean
date of birth was 1930, but comprises men born éetmi925 and 1935).

The basic plots (Figures 6.3, 6.4, 6.5, 6.6) suggedeyond the known age affect, also effects of
both birth cohort and period. The period effect \almost completely due to the increase of rates
between the first and the second period followedabstabilization. Conversely, more complex
patterns emerged for the cohort effects: the masntly born men had increasing PCa incidence
rates between the first and the second period bhed stabilized; the ‘middle’ cohorts showed
increasing rates throughout the three periodsplidhest cohorts showed almost stable incidence.
Considering the period 1995-1999 as reference amstining cohort effects to be equal on
average, the age effects are interpretable as pmgdfis rates for the period 1995-1999, after
adjustment for the cohort effects; the cohort éffece interpretable as RRs relative to the reteren
period 1995-1999; the cohort effects are interfetaas the RRs relative to the age-period

prediction (residual RRs).
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The results of age-period-cohort analysis withdachodel are reported in Table 6.1 and plotted in
Figure 6.3. Cross-sectional age-specific PCa imtideates estimates in the period 1995-1999 were
sharply increasing up to the mean age class 7@ \and reduced thereafter. As compared to the
period 1995-1999, incidence rates were 1.4-folthéig95% CI: 1.3-1.4) in the subsequent periods.
An U-shaped cohort effect emerged, with more thdol@ increase of RRs for men born since

1955. The estimated age-drift was 2.3% (95% CRat2D7%) per year.

Table 6.1.Maximum likelihood estimates of age-period-cohdfe&s with factor model for prostate cancer
incidence. Friuli Venezia Giulia, men aged 40-84rge 1995-2009

Age
Age Rate 2.5% 97 .5%
42.5 0.5193459 0.2199192 1.226451
47.5 4.4970416  3.2170844 6.286246
52.5 32.0204454 27.7406472 36.960526
57.5 112.2174249 103.4575711 121.718984
62.5 295.2430945 278.4794266 313.015888
67.5 547.0890697 520.6926803 574.823618
72.5 744.4386480 711.4365445 778.971652
77.5 718.7318527 683.8425535 755.401186
82.5 530.0849055 494.5550783 568.167267
Period
Per P-RR 2.5% 97.5%

1997.5 1.000000 1.000000 1.000000
2002.5 1.372309 1.311457 1.435984
2007.5 1.368713 1.310946 1.429025

Cohort
Coh C-RR 2.5% 97.5%

1915 1.9812000 1.8020217 2.1781943
1920 1.1889220 1.1270688 1.2541696
1925 0.9584097 0.9258770 0.9920855
1930 0.8621196 0.8306825 0.8947465
1935 0.8211840 0.7883758 0.8553575
1940 0.9625678 0.9235295 1.0032564
1945 1.0966895 1.0380661 1.1586235
1950 1.4348490 1.3093996 1.5723172
1955 1.9882658 1.6566656 2.3862395
1960 2.5093354 1.6010833 3.9328148
1965 3.2817687 1.0193887 10.5651609

Drift

exp(Est.) 2.5% 97 .5%

APC 1.029528 1.025159 1.033915
A-d 1.023194 1.019034 1.027372

Analysis of deviance for Age-Period-Cohort model
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

Age 18 443.38

Age-drift 17 320.96 1 122.418 < 2.2e-16 ***
Age-Cohort 8 98.77 9 222.189 < 2.2e-16 ***
Age-Period-Cohort 7 25.35 1 73.423 < 2.2e-16 ***
Age-Period 16 294,67 -9 -269.317 < 2.2e-16 ***

"Yet unpublished data for the period 2008-2009, temyrof the FVG Cancer Registry
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Figure 6.3.Estimated effects of age-period-cohort analysisF@a incidence rates with factor model. Age efferts
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represent 95% confidence intervals. Friuli Venezialia, men aged 40-84 years, 1995-2009

“Yet unpublished data for the period 2008-2009, tEmyrof the FVG Cancer Registry

Age, period, and cohort estimates were also modedady natural spline functions. The best-fitting
model, defined as the one minimizing the AIC, wasnid for an APC model with 5 parameters for
age, 2 for the period, and 3 for the cohort. Th&ults of age-period-cohort model effects are
reported in Table 6.2 and plotted in Figure 6.4inkates were comparable to those derived from

the factor model but with narrower confidence indéés (Fig. 6.4).
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Table 6.2. Age-period-cohort effects identified through natwsplines (with 5 knots for age, 2 for period, ahdor
cohort) and position of knots. Friuli Venezia Gaylmen aged 40-84 years, 1995-2009

Age

Age Rate 2.5% 97.5%
42.5 1.574411 1.228764 2.017286
47.5 6.538197 5.492132 7.783503
52.5 27.151762 24.414868 30.195459
57.5 106.994066 100.542092 113.860076
62.5 307.787904 293.182601 323.120791
67.5 543.955944 518.254311 570.932190
72.5 751.416460 718.964081 785.333665
77.5 713.028205 678.890898 748.882070
82.5 538.705232 503.056900 576.879728

Period
Per P-RR 2.5% 97.5%

1997.5 1.000000 1.000000 1.000000
2002.5 1.359145 1.299252 1.421799
2007.5 1.363957 1.306500 1.423941

Cohort
Coh C-RR 2.5% 97.5%
1915 1.7750754 1.6433898 1.9173131
1920 1.2716607 1.2334780 1.3110252
1925 0.9682931 0.9477587 0.9892725
1930 0.8329229 0.8115997 0.8548065
1935 0.8403689 0.8154174 0.8660839
1940 0.9472657 0.9221808 0.9730329
1945 1.1438909 1.1245534 1.1635610
1950 1.4297263 1.3492651 1.5149856
1955 1.7972718 1.6149831 2.0001360
1960 2.2593037 1.9317732 2.6423667
1965 2.8401121 2.3102844 3.4914473

Drift

exp(Est.) 2.5% 97 .5%

APC 1.029286 1.024925 1.033665
A-d 1.023107 1.018946 1.027284

Analysis of deviance for Age-Period-Cohort model
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

Age 21 486.44
Age-drift 20 364.96 1 121.489 < 2.2e-16 ***
Age-Cohort 18 159.77 2 205.183 < 2.2e-16 ***
Age-Period-Cohort 17 92.55 1 67.225 2.422e-16 ***
Age-Period 19 338.99 -2 -246.444 < 2.2e-16 ***
Age-drift 20 364.96 -1 -25.964 3.478e-07 ***
Knots
Age

52.5 62.5 67.5 72.5 77.5 82.5

Period
1997.5 2002.5 2007.5

Cohort
1915 1930 1935 1950

"Yet unpublished data for the period 2008-2009, tesyrof the FVG Cancer Registry
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Figure 6.4.Estimated effects of age-period-cohort analysi$iGa incidence rates with natural splines modeé Ag
effects are reported as rates per 100,000 men{yeaod and cohort effects are reported as raiesr@RR). Dashed
lines represent 95% confidence intervals. Friuln&ga Giulia, men aged 40-84 years, 1995-2009

“Yet unpublished data for the period 2008-2009, tEmyrof the FVG Cancer Registry

In order to capture the changes in the trend of PCmlence rates observed by the joinpoint
analysis in the last years, the age-period-cohmatyais was also performed using 1-year intervals
for age and calendar time (this analysis was @sttito men 50+ years, due to elevated number of
missing counts in each cell of the Lexis diagranyainger ages). The results, using both factor
model and natural splines (the lowest AIC was foforda model with 4 parameters for age, 6 for
the period, and 5 for the cohort), considering eference period the year 1995, are reported in
Figure 6.5. The estimated age-drift was 2.3% (959901(®%-2.7%) per year (equal to the 5-year
interval analyses), but the period effects highkghdecreasing RRs in the last 3-4 years, after a

higher increase up to 2007.
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Figure 6.5.Estimated effects of age-period-cohort analysiPf@a incidence rates with factor model (continumness)
and natural splines (dashed lines) using 1-yearvats. Age effects are reported as rates per Q00yien-year, period
and cohort effects are reported as rate ratios.(RiR)li Venezia Giulia, men aged 50-84 years, 19089

“Yet unpublished data for the period 2008-2009, tEmyrof the FVG Cancer Registry
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6.3 Differences between observed and estimated ptate cancer incidence
rates up to 2009

Considering all ages, and excluding cases diagnadety at autopsy as in the previous comparison
(Fig. 3.2), observed PCa incidence data up to 200& compared with the expected incidence
rates previously estimated using MIAMOD (Fig. 6.€bserved rates were higher than those

expected, with differences ranging between 7% &% {median 11%) in the period 1996-2007,

but rates seemed to converge after 2007.

250
200

150

Crude rates per 100,000 men-year

100 =&— ObservedIncidence = @ Expected Incidence
50 -+
0 T T T T T T ]
1995 1997 1999 2001 2003 2005 2007 2009

Calendar year

Year Obs. rate Exp. rate Obs./Exp. rate ratio  Difference
1995 100.3 105.0 0.96 -4.7%
1996 123.4 113.0 1.09 8.4%
1997 140.9 121.7 1.16 13.6%
1998 155.2 130.6 1.19 15.9%
1999 159.4 139.3 1.14 12.6%
2000 167.0 147.4 1.13 11.7%
2001 169.9 154.9 1.10 8.8%
2002 176.8 161.4 1.10 8.7%
2003 184.2 166.7 111 9.5%
2004 192.5 169.8 1.13 11.8%
2005 184.6 172.4 1.07 6.6%
2006 196.4 174.6 1.12 11.1%
2007 214.4 176.2 1.22 17.8%
2008 187.4* 176.9 1.06 5.6%
2009 185.3* 177.9 1.04 4.0%

Figure 6.6. Crude prostate cancer incidence rates (per 100@h-year). Observed (continuous lines) and egtina
using the MIAMOD method (dashed lines). Friuli Ver@eGiulia, men (all ages), 1995-2009
“Yet unpublished data for the period 2008-2009
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7. DISCUSSION

Joinpoint and age-period-cohort analyses of PSAntpgates in the period 1998-2012 clearly
highlighted a period effect on the use of PSA tgsin FVG among men aged 40 years or more. In
particular, the PSA testing rates in the period82002 increased by 17% per year, then by 4% per
year up to 2008, and then stabilized. The periéecefvas cross-sectional and involved all the age
groups and birth cohorts at the same time. As coatbto the period 1998-2002, the PSA testing
rates were found to be 1.5-fold higher in the pp2003-2007 and seemed to stabilize thereafter.
Age effect reflects the tendency of men of beingtete® with PSA during life: this effect was
increasing with age up to the class 70-74 yeartio@affects, which are longitudinal and reflect
possible differences in the spread in the use && RSting across different birth cohorts, were
found to be not so important as the period andedfigets, but suggested that the youngest birth
cohorts were more prone to be screened throughteSitng.

While an appropriate use of PSA testing among metheé oldest age groups (up to 70 years)
cannot be excluded, the use of this test for sangemen aged 40-49 years is by far more
controversial, given the almost null incidence GfaFbefore 50 years, except for sub-groups of men
at particular high riske.g, those with first-degree relatives having had @ RCyoung age) [Carter
et al, 2013; Heidenreich et al, 2013].

The analysis of first-PSA testing rates betweenl280d 2012 showed dramatic decreasing trends
at all ages. Only the youngest mere.( under 50 years) showed firstly an increase aed th
reduction in the very last years. Beyond confirmatendency to lessen the use of PSA testing in
FVG, this decreasing trend may be also due to rady reached —almost— complete saturation of
the potential target population for PSA screenmghis region, especially at older agegy( in the
period 2008-2012, approximately 1 out of 3 men affed years has been tested with PSA, and 1

out of 2 men among those aged 65-79 years).
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The analysis of PCa incidence rates trends in F\& A&ighlighted a steep increase of PCa
incidence rates between 1995 and 1998 (12% pe}, yee#&wer increase up to 2007 (2% per year)
followed by stabilization or, probably, a reducti@though not statistically significant) up to 2009.
Although the data on PCa incidence derived fromR¥& cancer registry for the period 2008-2009
are not official yet, they are eventually overesiied rather than underestimatee.( ‘potential’
new cancer cases are automatically identified tfinoanad hoc algorithm from computerized
pathological archives, hospital discharges, andthde=rtificates databases and, in case of
disagreement between data sources, they are mamewised by qualified staff and, eventually,
refused). The trend of PCa incidence rates, thotightconsidered period was antecedeést, (
1995-2009vs 1998-2012), resembled to some extent the trerRIS#-testing rates. Conversely to
PSA-testing rates, PCa incidence rates in the agegscohort analysis resulted to be affected also
by cohort effects, indicating a more complex baselisk according to birth cohort. Several factors
could be potentially associated to the observedeased PCa risk for more recently born men,
including changes in behavioral and lifestyle fastover time €.g, dietary and sexual habits,
obesity) [Leitzmann et al, 2012].

In Italy, PCa incidence trends started to rise sulld after 1991, indicating the progressive
diffusion of screening with PSA in those years [€&tbi, 2007]. In FVG, the increasing rates of
PSA testing observed among all age classes edpeit@h 1998 up to 2002, assuming that this
increase started several years befetg 6ince 1991, as in ltaly), could reasonably expthe gap
between the PCa incidence rates estimated by MIAM@® those reported by the cancer registry,
especially in the period 1996-2007. Actually, MIANDOestimates are based on mortality data
which have not been so heavily modified by theodtiction of PSA test as PCa incidence rates
were. Hence, PCa incidence estimates produced MIAYOD could be considered as the rates
that would be observed in the absence of suchat grerease of screening with PSA in FVG. It is
reasonably to hypothesize that this difference betwobserved and estimated incidence rates was

attributable to screening with PSA more in termowérdiagnosis, rather than of early diagnosis
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(also considering the concurrent stable mortal®gthering data on Gleason score at PCa diagnosis
could be useful in order to better understand wdretim overdiagnosis occurred, as it should be
associated to an increase of lower Gleason scores.

The convergence of the two curves observed in dse dommon period (2008-2009), seems to
further support such hypothesis. The potential diegnosis proportions (between 7% and 18%)
seem to be much lower as respect to those estinoaiteéte basis of trials’ results [Etzioni et al,
2013]. However, most of those proportions wererreteto screening-detected PCa cases, whereas
the present estimate refers to the total PCa @ask# was based on a real population. Draisma and
colleagues (2009) reported a range of 9-19% of dd@gnosed cases over total cases (using 3
different simulation models) and Tsodikov and cadjees (2006) estimated an overdiagnosis up to
20% of total detected PCa. These results are @miith the present study estimates.

As suggested by Mistry and colleagues [Mistry e8Il 1], incidence data from a period prior to
the extensive use of PSA testirgq, before 1990 in UK), could be used to fit APC raksdto
predict rates in the absence of PSA testing instiiesequent periods. The predicted rates can be
used to calculate age-specific observed to pratli@sos that, in turn, can be used to adjust &tur
predictions. Unfortunately, FVG cancer registry slowt cover a period before PSA screening
diffusion, but the MIAMOD estimates provided areattative.

It is worth noting that data on PSA-testing, whente produced for administrative purposes, are
available also in areas not covered by cancertraga. Moreover, they are available within very
few months from the ‘real time’ of the evemtd, in FVG, as of December 2014, PSA testing data
were available up to 2013); conversely, cancerstags release incidence data several years
(usually 5 or more) after the time of the eveng tluthe complexity of the required quality checks
of data, as previously describeeld, in FVG, as of December 2014 the last publisheal yeas

2007).
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7.1 Conclusion

The widespread use of opportunistic PSA testinthenlast decades in high-income countries has
inflated the incidence of PCa without affecting theerall mortality at the same extent. Given that
areas covered by population-based cancer regisaresstill few —though increasing— also in
developed countries, and given that data from camggstries are usually not up to date, methods
applied for estimating the incidence of PCa at putettion level are tipically based on mortality
data. As a consequence of the PSA-testing diffusfeese methods could produce biased estimates
and, furthermore, even more biased projectiona@tlence and prevalence of PCa. The availability
of up-to-date information on PSA-testing in sevexedas offers the opportunity of evaluating the
estimates and projections of PCa incidence takmg account of the observed trends of PSA-

testing rates.

72



REFERENCES

* AIRTUM web sitehttp://www.registri-tumori.it/cmsfAccessed 22.9.2014]

* AIRTUM-AIOM. | numeri del cancro in ltalia 2013. termedia Ed., Brescia, 2013.
Available at http://www.registri-tumori.it/PDF/AIOM2013/I_numerdel_cancro_2013.pdf
[Accessed 22.9.2014]

» Akaike H. Information theory and an extension o thhaximum likelihood principle. In:
Second International Symposium on Information The®udapest: Second International
Symposium on Information Theory, 1973; p 267-81.

e Andriole GL, Crawford ED, Grubb RL 3rd, Buys SS,i&€D, Church TR, et al. Prostate
cancer screening in the randomized Prostate, L@wprectal, and Ovarian Cancer
Screening Trial: mortality results after 13 yeark follow-up. J Natl Cancer Inst
2012;104(2):125-32

 Baade PD, Coory MD, Aitken JF. International trendsprostate cancer mortality: the
decrease is continuing and spreading. Cancer C&ws#sol 2004;15:237-41.

» Birri S, Bidoli E, Zucchetto A, Dal Maso L, Zanier Serraino D. Cancer in Friuli Venezia
Giulia Incidence, survival, and prevalence datalaies as of 2007. Regione Friuli Venezia
Giulia — Centro di Riferimento Oncologico di Avianddine, September 2011. Available at
http://www.cro.it/PDF/Tumori%201995-2007%20-rev.pdccessed 6.7.2014].

« Bray F, Ren JS, Masuyer E, Ferlay J. Estimatedadfay cancer prevalence for 27 sites in
the adult population in 2008. Int J Cancer 2013(282133-45.

» Capocaccia R, Gavin A, Hakulinen T, Lutz JM, Santeds. Survival of Cancer patients in
Europe, 1995-2002: the EUROCARE-4 study. Eur J €aR009;45:3119-346.

e Carter HB, Albertsen PC, Barry, MJ et al. Early edtion of prostate cancer: AUA
guideline. J Urol 2013; 190:419-26

e Carstensen B, 2007. Age-period-cohort model for thexis diagram. Statist Med
2007;26:3018-45.

e Catalona WJ, Richie JP, Ahmann FR, et al. Comparafodigital rectal examination and
serum prostate specific antigen in the early digtecof prostate cancer: results of a
multicenter clinical trial of 6,630 men. J Urol #8951:1283-90.

» Center MM, Jemal A, Lortet-Tieulent J, Ward E, Bgrl, Brawley O, Bray F. International
Variation in Prostate Cancer Incidence and MostaliRates. European urology
2012;61:1079-92.

73



74

Collin SM, Martin RM, Metcalfe C, et al. Prostatancer mortality in the USA and UK in
1975-2004: an ecological study. Lancet Oncol 20@8%-52.

Crocetti E and AIRTUM working group. Tumore dellaogtate: trend di incidenza e di
mortalita. Epidemiologia e prevenzione 2007;31:100.

Curado MP, Edwards B, Shin HR, Storm H, Ferlay damie M and Boyle P, eds. Cancer
Incidence in Five Continents, Vol. IX IARC SciemtifPublications No. 160, Lyon, IARC,
2007; Available at http://ci5.iarc.fr/Cl5plus/ci®g.htm [Accessed 6.7.2014].

De Angelis G, De Angelis R, Frova L, VerdecchiaMIAMOD: a computer package to
estimate chronic disease morbidity using mortadihd survival data. Comput Programs
Biomed 1994;44:99-107.

Draisma G, Boer R, Otto SJ, van der Cruijsen IWmbais RA, Schroder FH, et al. Lead
times and overdetection due to prostate specifitg@m screening: estimates from the
European Randomized Study of Screening for Pros@decer. J Natl Cancer Inst
2003;95:868e78.

Draisma G, Etzioni R, Tsodikov A, Mariotto A, WevEr Gulati R, et al. Lead time and
overdiagnosis in prostate-specific antigen screerimportance of methods and context. J
Natl Cancer Inst 2009;101:374e83.

Ederer F, Axtell LM, Cutler SJ. The relative sulivate: a statistical methodology. Emd
results and mortality trend in canceNational Cancer Institute Monograph No. 6 US
Government Printing Office: Washington DC, 1961111.

Etzioni R, Penson DF, Legler JM, Di Tommaso D, Bder Gann PH, Feuer EJ.
Overdiagnosis due to prostate-specific antigenesing: lessons from U.S. prostate cancer
incidence trends. Journal of the National Cancstitite 2002; 94:981-90.

Etzioni R, Tsodikov A, Mariotto A, et al. Quantifig the role of PSA screening in the US
prostate cancer mortality decline. Cancer Causesr@®008;19:175-81.

Etzioni R, Gulati R, Mallinger L, Mandelbatt J. lménce of study features and methods on
overdiagnosis estimates in breast and prostate ecascreening. Ann Intern Med
2013;158:831-838.

Ferlay J, Soerjomataram |, Ervik M, Dikshit R, E§grMathers C, Rebelo M, Parkin DM,
Forman D, Bray, F. GLOBOCAN 2012 v1.0, Cancer lecice and Mortality Worldwide:
IARC CancerBase No. 11. Lyon, France: Internatiohgéncy for Research on Cancer;
2013. Available from: http://globocan.iarc.fr, assed on day/month/year [Accessed
22.9.2014].



Gavin A, McCarron P, Middleton RJ, et al. Evideméegorostate cancer screening in a UK
region. BJU Int 2004;93:730-4.

Gulati R, Tsodikov A, Etzioni R, Hunter-Merrill RAGore JL, Mariotto AB, Cooperberg
MR. Expected population impacts of discontinued sfate-specific antigen screening.
Cancer, 2014; 120(22):3519-26.

Gulati R, Mariotto AB, Chen S, Gore JL, Etzioni Bong-term projections of the harm-
benefit trade-off in prostate cancer screeningraoee favorable than previous short-term
estimates. J Clinical Epidemiol 2011;64: 1412-1417.

Hastie TJ, Tibshirani RJ. Generalized additive n&deondon: Chapman & Hall, 1994.
Heidenreich Al, Abrahamsson PA, Artibani W, Cattédntorsi F, Van Poppel H, Wirth
M, Mottet N. Early detection of prostate cancer:.rdpean Association of Urology
recommendation. Eur Urol 2013;64(3):347-54

Holford TR. The estimation of age, period and coleffects for vital rates. Biometrics
1983;39:311-24.

llic D, Neuberger MM, Djulbegovic M, Dahm P. Screem for prostate cancer. Cochrane
Database Syst Rev 2013; p. CD004720

ISTAT. Popolazione residente. Available at htt@hb.istat.it/ [accessed 6.10.2014].
ISTAT. Statistiche sulle cause di morte anno 2@0&ilable at
http://wwwe.istat.it/dati/dataset/20110412_ 00/ [exsmdl 6.10.2014].

Kim Hj, Fay MP, Feuer EJ, et al. Permutation téstgoinpoint regression with applications
to cancer rates. Stat Med 2000;19:335-51.

Leitzmann MF, Rohrmann S. Risk factors for the omdeprostatic cancer: age, location,
and behavioral correlates. Clin Epidemiol 2012;411—

Lerman PM. Fitting Segmented Regression Models Iyl Gearch. Applied Statistics
1980;29:77-84.

Mistry M, Parkin DM, Ahmad AS, Sasieni P. Cancecidence in the United Kingdom:
projections to the year 2030. Br J Cancer 2011 1#5-1803

Pinsky PF, Andriole GL, Kramer BS, Hayes RB, ProR{, Gohagan JK. Prostate biopsy
following a positive screen in the Prostate, Lu@gjorectal and Ovarian cancer screening
trial. J Urol 2005;173:746e50. discussion 50e51.

Platz EA, Giovannucci E. Prostate cancer. In: Seinétld D, Fraumeni JF, editors. Cancer
epidemiology and prevention. NewYork, NY: Oxfordi\rsity Press; 2006. p. 1128-50.
Quon H, Loblaw A, Nam R. Dramatic increase in patestcancer cases by 2021. BJU

International 2011;08:1734-8.
75



76

Schroder FH, Hugosson J, Roobol MJ, Tammela TLpZad, Nelen V, et alScreening
and prostate cancer mortality in a randomized Eemop study. N Engl J Med
2009;360:1320-8.

Schréder FH, Hugosson J, Roobol MJ, Tammela TLpdad, Nelen V, et al. Screening
and prostate cancer mortality: results of the EeampRandomised Study of Screening for
Prostate Cancer (ERSPC) at 13 years of follow-apcet 2014; 384(9959):2027-35.
Tsodikov A, Szabo A, Wegelin J. A population modélprostate cancer incidencstat
Med 2006;25(16):2846-66.

Verdecchia A, Capocaccia R, Egidi V, Golini A. A thed for the estimation of chronic
disease morbidity and trends from mortality datat $led 1989;8:01-206.

Verdecchia A, De Angelis R, Capocaccia R, Sant Nghdli A, Gatta G, Berrino F. The
cure of colon cancer: results from the Eurocardystint J Cancer 1998;77:322-9.
Verdecchia A, De Angelis G, and Capocaccia R. Esion and Projections of Cancer
Prevalence From Cancer Registry Data. Statistiddadicine 2002;21:3511-26.

Zucchetto A, Serraino D, Dal Maso L, Birri S, Framec S, Zigon D, and De Angelis R.
Cancer estimates up to 2015 in Friuli Venezia @iuliumori 2013;99:318-26



APPENDIX A — SAS PROC NLIN

Example for modeling survival with mixture cure models

/*NON-LINEAR REGRESSION - MIXTURE SURVIVAL MODELS*/

/* PARAMETERs IN THE SAS MODEL:
A = FATAL CASES (0<=A<=1)
(1-A)= PROPORTION OF CURED PATIENTS
GAMA = WEIBULL PARAMETER
LAMBDA = WEIBULL PARAMETER
B1= AGE EFFECT
B2= PERIOD EFFECT
B3= AREA EFFECT

*/
/* EXAMPLE: MODEL MARGINAL BASELINE, MARGINAL AGE AND PERIOD EFFECTS*/
TITLE 'MARGINAL BASELINE- MARGINAL AGE AND PERIOD EFFECTS';

PROC SORT DATA=prostate;
BY AREA;
RUN;

PROC NLIN method=gauss data=prostate outest=res noITprint maxiter=500;
by area;
parms a=0.3, LAMBDA=1.0, GAMA=1.0, B1=0.0, B2=0.0;
bounds LAMBDA>0.001, GAMA>0, O<=a<=1;
temp1=(LAMBDA*fup) **GAMA;
temp=exp(-temp1);
model surv=((1-a)+a*temp)**EXP(B1*(AGE2-AGEMED)+B2* (PER2-PERMED)) ;
_weight_=1./(survse**2);
output ouT=NLRES p=pred parms=a LAMBDA GAMA B1 B2;
RUN;

77



78



APPENDIX B — R code for age-period-cohort analysis

Example of apc.fit for modeling using factor or natuiral splines

library(Epi)
library(splines)

#DEFINITION OF MEAN VALUES FOR PERIOD, AGE, AND COHORT EFFECTS
psa$P[psa$period==11=2000.5
psa$P[psa$period==21=2005.5
psa$P[psa$period==31=2010.5

psa$A[psa$age==9]=42.5
psa$A[psasage==10]=47.
psa$A[psa$age==11]1=52.
psa$A[psasage==12]=57.
psa$A[psa$age==13]=62.
psa$A[psa$age==14]1=67.
psa$A[psasage==15]=72.
psa$A[psa$age==16]1=77.
psa$A[psa$age==17]1=82.

(6206, NS, BN ) BN BN G BN I 6) |

psa$C[psa$coorte==21=1920
psa$C[psa$coorte==3]=1925
psa$C[psa$coorte==4]1=1930
psa$C[psa$coorte==5]1=1935
psa$C[psa$coorte==6]=1940
psa$C[psa$coorte==7]=1945
psa$C[psa$coorte==81=1950
psa$C[psa$coorte==9]=1955
psa$C[psa$coorte==10]=1960
psa$C[psa$coorte==11]=1965
psa$C[psa$coorte==12]=1970

#FACTOR MODEL
psa.apc<-apc.fit(psa, model="factor", parm="APC", scale=10"5, ref.p=2000.5)
psa.apc

#PLOT

frame=apc.frame(

a.lab=seq(40,90,10),
cp.lab=seq(1920,2020,10),
r.lab=c(2000,5000,10000,20000,40000),

rr.ref=2000,
a.txt = "Age at PSA testing",
cp.txt = "Calendar time",

r.txt = "Rate x100,000 men-year",
rr.txt= "Rate ratio")
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apc.lines(psa.apc, frame.par=frame, lwd = 2, 1ty = 1, ci = rep( F, 3 )

)

#NATURAL SPLINE
#AKAIKE INFORMATION CRITERIA (AIC)

AIC=data.frame()

k=1
n=length(psa[,1])
for (i in 1:8) {
for (j in 1:10) {
for (1 in 1:2) {
psa.APC.ns=apc.fit(psa,model="ns",,npar=c(A=i+1,P=1,C=j+1),parm="APC",scale=10"5,
ref.p=2000.5)
AIC[k,1]1=1i+1
AIC[k,2]=1
AIC[k,3]1=j+1
AIC[k,4]1=2*(n-psa.APC.ns$Anoval[4,1])+n*(log( psa.APC.ns$Anoval[4,2]/n))
k=k+1

}

}

names (AIC)=c('knA','knP','knC', 'AIC")
AIC[AIC$AIC==min (AICS$AIC),]

#BEST FIT
psa.apc.ns<-apc.fit(psa, model="ns", npar=c(A=9,P=2,C=5),parm="APC", scale=10"5,
ref.p=2000.5)

psa.apc.ns
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