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Essentially, all models are wrong, but some are useful.  

— George E.P. Box
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PIAMOD – Prevalence and Incidence Analysis Model  

PSA – Prostate-Specific Antigen  
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1. BACKGROUND AND RATIONALE 
 

1.1 Prostate cancer epidemiology  

Prostate cancer (PCa) is the second most common neoplasm among men worldwide [Ferlay et al, 

2013]. Out of more than 1 million new diagnoses estimated in 2012 (1,112,000 cases, 15% of  

cancers diagnosed in men), almost 70% occurs in more developed regions [Ferlay et al, 2013]. The 

incidence rates greatly vary among countries (25-fold), being highest in Australia/New Zealand and 

Northern America and in Western and Northern Europe. With an estimated 300 thousands deaths in 

2012, PCa is the fifth leading cause of death from cancer in men (6.6% of total deaths). There is less 

variation in mortality rates worldwide (10-fold) than is observed for incidence, with the number of 

deaths from PCa being larger in less developed than in more developed regions. The five-year 

prevalence of PCa was estimated in nearly 4 million men worldwide in 2008 [Bray et al, 2013].  

In Italy, as in most developed countries, PCa has become the first cancer diagnosed among men, 

with nearly 36,000 new cases estimated in 2013 (20% of all cancers among men), and the third 

leading cause of death from cancer (9,000 deaths among men, 8% of cancer deaths) [AIRTUM-

AIOM, 2013]. After a dramatic increase of PCa incidence rates in the period 1998-2003, they were 

reported to be almost stable thereafter. Conversely, PCa mortality rates were constantly decreasing 

in the last decade [AIRTUM-AIOM, 2013].  

There are only three well-established risk factors for PCa, and they are all not modifiable: older age 

(PCa is very rare in men younger than 40 years and the risk rapidly increases after age 50), black 

race/ethnicity (PCa occurs more often in African-American men and Caribbean men of African 

ancestry), and a family history of the disease (PCa risk is much higher for men with several affected 

relatives, particularly if they were young at the time of cancer diagnosis) [Leitzmann & Rohrmann, 

2012]. Modifiable factors, such as diet (e.g., high intakes of red meat or high-fat dairy products), 
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obesity, and pattern of sexual behavior might also be involved in the development of PCa 

[Leitzmann & Rohrmann, 2012]. 

1.2 Prostate-Specific Antigen test 

Prostate-specific antigen (PSA) is a protein produced in the prostate gland. PSA is mostly found in 

semen, which is produced in the prostate, but small amounts of PSA ordinarily circulate in the 

blood. High levels of PSA in the blood may indicate the presence of PCa. PSA testing has been 

shown to increase PCa detection by 81% in comparison with digital rectal examination alone 

[Catalona et al, 1994]. However, many other conditions, such as an enlarged (i.e., benign prostatic 

hyperplasia) or inflamed prostate (i.e., prostatitis), can also increase circulating PSA levels. 

PSA testing for screening of PCa was introduced in many high-income countries between the mid-

1980s and the early 1990s and it represents a unique situation in which a widespread use of the test 

at a population level has occurred long before of definitive results about its efficacy. As a result, 

dramatic increases followed by sharp reductions in PCa incidence were observed in the United 

States (US), Canada, and Australia [Center et al, 2012]. Stabilizing PCa incidence trends for the last 

decade were primarily observed for these same countries. In other developed countries, such as in 

northern and western Europe, gradually increasing PCa incidence trends have yet to yield a 

dramatic peak [Center et al, 2012]. Conversely to incidence trends, PCa mortality rates have been 

decreasing in most high-resource settings. Improvements in treatments in the 1990s (including 

radical prostatectomy, radiation therapy, and hormone therapy) coupled with an increased detection 

of early-stage PCa as a result of PSA testing appear to be reasonable explanations for the declining 

mortality trends observed in many developed countries [Collin et al, 2008; Etzioni et al, 2008; 

Baade et al, 2004].  

However, the specific role of PSA testing in explaining these favorable recent declines in PCa 

mortality continues to be debated, particularly given the downward trends observed also in 

countries where the prevalence of PSA testing was reasonably low (e.g., the United Kingdom, UK) 
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[Gavin et al, 2004] or across areas with very heterogeneous PSA use [Etzioni et al, 2008]. In 

addition, a recent Cochrane meta-analysis did not find a statistically reduced mortality risk when 

including the results of five randomized trials [Ilic et al, 2013]. In particular, the findings of the two 

largest randomized trials on the efficacy of screening with PSA test were not in agreement. The 

“Prostate, Lung, Colon, and Ovary screening trial” (PLCO) conducted in the US, after 13 years of 

follow-up, found no evidence of a mortality benefit for organized annual screening compared with 

opportunistic screening, which is part of usual care (rate ratio, RR=1.09; 95% confidence interval, 

CI: 0.87-1.36) [Andriole et al, 2012]; conversely, the PLCO study found a relative increase of 12% 

of cumulative incidence in the intervention arm (RR=1.12; 95% CI: 1.07-1.17). On the other side, 

the “European Randomized Study of Screening for Prostate Cancer” (ERSPC) found a reduction 

around 20% in PCa mortality attributable to PSA-testing, confirmed also after 13 years of follow-up 

by the recently published results (RR=0.79; 95% CI: 0.69-0.91) [Schröder et al, 2014]. However, 

the corresponding incidence rate increase attributable to screening was approximately 60% 

(RR=1.57; 95% CI: 1.51-1.62). The ERSPC reported also that the absolute risk reduction of death 

from PCa was equivalent to one PCa death avoided per 781 (95% CI: 490-1929) men invited for 

PSA screening, or one per 27 (95% CI: 17-66) additional PCa diagnoses.  

Further quantification of harms and benefits of PSA testing use are still needed to decide whether to  

introduce organized screening at a population level. Actually, even though PSA testing and 

subsequent treatments do contribute to the observed declining mortality, the harms to benefits ratio 

remains controversial because of adverse events. PSA testing can detect cancers that may otherwise 

go undiagnosed during a man’s lifetime (i.e., overdiagnosis and, consequently, overtreatment) and 

treatment of PCa are serious and potentially life-altering with significant risks of sexual, urinary, 

and bowel-related symptoms. It has been estimated that 23–42% of screen-detected PCa cases in the 

US result from overdiagnosis due to PSA testing [Draisma et al, 2009]. In the European setting, 

estimates of overdiagnosis are considerably higher reaching 66% of screen-detected tumors 

[Draisma et al, 2003]. This result is consistent with a lower baseline incidence of PCa in Europe, a 
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lower PSA cut-off for biopsy referral (3 ng/mL in several European countries vs. 4 ng/mL in the 

US), and a much higher frequency of compliance with biopsy referral in Europe than in the US 

[Schröder et al, 2009; Pinsky et al, 2005]. 

As a consequence of the most recent evidences from the literature, motivated largely by the results 

of the PLCO and the ERSPC trials, updated clinical guidelines for PSA testing use are periodically 

released by the American and the European associations of urology. However, these guidelines are 

not always in agreement. The 2013 American Urological Association guidelines [Carter et al, 2013] 

do not recommend PSA screening in men below 40 years of age, do not recommend PSA screening 

in men aged 40-54 years and at average risk, recommend shared decision making for men aged 55-

69 years, and do not recommend PSA screening in men >70 years of age or in men with a life 

expectancy lower than 10-15 years. Conversely, the 2013 update of the European Association of 

Urology guidelines [Heidenreich et al, 2013], although not recommending widespread mass 

screening for PCa, strongly recommends screening in men with a life expectancy >10 years 

(irrespective of age) and a baseline PSA determination at 40-45 years of age.  

The response to these recommendations in terms of the clinical practice is evolving. In order to 

evaluate the impact of the new PSA screening guidelines at a population level, Gulati and 

colleagues [Gulati et al, 2014] predicted incidence and mortality rates of PCa in the US for men 

aged 50-84 years in the period 2013-2025. This study used two microsimulation models of PCa 

natural history (i.e., statistical representations of disease progression, detection, treatment, and 

survival which simulate, for each man in a population, age at PCa onset, age/stage at diagnosis, 

etc.), previously developed in the framework of the Cancer Intervention and Surveillance Modeling 

Network (CISNET) consortium, reconstructed PSA screening patterns in the US, and incidence data 

from the Surveillance, Epidemiology, and End Results (SEER) program [Etzioni et al, 2008; 

Tsodikov et al, 2006]. Assuming a survival benefit of PSA screening consistent with the ERSPC 

trial, the study compared the effects of continuation of recent PSA screening rates vs. continuation 

only for men aged <70 years, or discontinued screening for all men: continuing PSA screening for 
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all men will result in 710,000-1,120,000 overdiagnoses in the US (out of approximately 3,800,000 

total cases), but will avoid 36,000-57,000 deaths; whereas, continuing screening only for men aged 

<70 years will prevent 64%-66% of overdiagnoses but will fail to prevent 36%-39% of avoidable 

deaths; in contrast, discontinued screening in all ages will eliminate all overdiagnoses but will more 

than double metastatic cases [Gulati et al, 2014].  

As the number of –prevalent– men with PCa increases, additional resources are needed to screen, 

investigate, biopsy, treat, and follow these patients. To adequately plan heath care resources and 

cancer control policies, reliable estimates of the number of new PCa diagnoses are required, along 

with reliable future projections of morbidity and mortality indicators for PCa at a population level. 

Estimates of PCa based solely on changes in the age distribution of the population or on historical 

trends do not take into account of changes in screening activities. A Canadian study [Quon et al, 

2011] estimated that the number of PCa cases will triple from 2009 to 2021 using a simple additive 

model incorporating assumption (derived from trials) on population aging, increasing PSA 

screening, lowered PSA threshold for biopsy, and improved biopsy sensitivity, but not taking into 

account of other important factors (e.g., cohort effects). Even complex simulation modeling were 

designed to translate the results of screening trials into population settings in order to estimate the 

impact of PSA diffusion not only in terms of PCa incidence, but also of overdiagnosis and harm-

benefit indicators [Draisma et al, 2009; Draisma et al, 2003; Gulati et al, 2011; Etzioni et al, 2002]; 

however, screening patterns operating in real populations are quite different from trials’ results. In 

order to capture this higher complexity, Tsodikov et al. [Tsodikov et al, 2006] used a simulation 

model to predict the effect of PSA screening directly from population databases and cancer 

registries data but the model was not verified by the data, due to the lack of real information on PSA 

testing.  

Herein, widely used population-based methods for estimating and projecting standard cancer 

morbidity and mortality indicators will be applied in the population of Friuli Venezia Giulia region 

(northeastern Italy) to PCa incidence, mortality, and complete prevalence. Taking advantage of the 
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availability of both a population-based cancer registry and of a digital health archive with complete 

coverage of the resident population, data on observed PCa cases and data on PSA testing use will be 

analyzed in order to better understand the impact of PSA diffusion in this real population.  
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2. THE MIAMOD/PIAMOD METHODS FOR ESTIMATES AND 

PROJECTIONS OF CANCER BURDEN  

 

The Mortality and Incidence Analysis Model (MIAMOD) and Prevalence and Incidence Analysis 

Model (PIAMOD), developed by Verdecchia and colleagues (1989 and 2002), are population-based 

methods for estimating main epidemiological indicators of morbidity and mortality for chronic 

degenerative diseases. They are currently widely applied in Europe and in the US. 

The choice between the two methods depends on data availability: MIAMOD allows to estimate 

incidence and prevalence using official statistics on disease-specific mortality; PIAMOD allows to 

estimate mortality and prevalence when incidence data from disease-registries are available.  

2.1 The transition rate method  

The MIAMOD/PIAMOD methods are based on the assumption that the natural history of chronic 

irreversible diseases can be considered as a sequence of statistically independent transitions. 

Assume for chronic degenerative diseases that the morbid process is irreversible (i.e., an individual 

who becomes ill at a certain time will remain ill until death). In this setting, transition rate equations 

allow to link mortality and prevalence to incidence and survival in a unified framework. 

Consider the model of Figure 2.1 [Verdecchia et al, 1989], with two live states (i.e., healthy and 

diagnosed with a specific disease) and two death states (i.e., death from the specific disease or death 

from all other causes). For a specific age x, µ(x) represents the disease hazard for healthy people, 

α(x) the death hazard from all causes together, γ(x) the death hazard from the specific disease, β(x,y) 

the all-cause death hazard for people who became ill at age y, and δ(x,y) the specific-cause death 

hazard for people who became ill at age y.  
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Figure 2.1. A compartmental representation of an irreversible disease-death process (y=age at diagnosis, x=current age) 

Usually, α(x) and γ(x) are known from official statistics; β(x,y) and δ(x,y) can be also generally 

derived from epidemiological sources and will be assumed as known in the following; µ(x) can be 

known only if a specific-disease registry exists. However, whereas incidence and mortality can be 

directly derived from collected data, survival and prevalence can only be derived from incidence 

and mortality data. In particular, prevalence estimates derived from disease registries data are 

always partial, as they do not include cases occurring before the start of the registration activities. 

Two models have been developed in this framework, according to data availability. 

• MIAMOD is a regression of mortality on observed mortality data (e.g., from official 

statistics) to back-calculate age-period-cohort incidence model [Verdecchia et al, 1989]. 

• PIAMOD is a direct regression of age-period-cohort incidence model on observed incidence 

data (e.g., from Cancer Registries) [Verdecchia et al, 2002]. 

2.2 Estimating cancer prevalence 

For a birth cohort, prevalence at age x, P(x), is the probability of being alive at age x with a past 

diagnosis of cancer at any previous age (y < x). It is obtained summing up, over age at diagnosis y  

all the specific-duration prevalence proportions for the same cohort. 

Healthy

Due to the 

disease

Diagnosed with

the disease

Due to

other causes

POPULATION

DEATHS

ϒ(x)α(x)

μ(y)

β(y,x) δ(y,x)



 

15 

 

Specific-duration prevalence: 

 ���, � − �� = 	
 ��,
� �����
�� ��
� �
�
,��
	
��,
� 	
�
,�� = �1 − ����� ���� ����, ��     

Complete prevalence:   ���� = ∑ �1 − ����� ���� ����, �����
��      (1) 

where  

P(0) = 0, i.e., people are healthy at birth 

1 – P(y) is the proportion of healthy people at age y 

µ(y) is the probability of being diagnosed at age y, or incidence at age y  

ES(y,x) is the survival of the general population between age y and x 

OS(y,x) is the observed survival of the patients between age y at diagnosis and age x 

RS(y,x) = �
�
,��
	
 �
,��  is the relative survival of the patients between age y at diagnosis and age x. 

Equation (1) gives the estimated age-specific prevalence probability for a birth cohort, provided that 

the disease incidence and patient survival are known. A system of equations (1), including one 

equation for each birth cohort, allows to reconstruct cross-sectional prevalence series for an entire 

observation period. 

2.3 Estimating cancer mortality 

For a birth cohort, mortality for cancer at age x, M(x), is the probability of dying of the specific 

cancer at age x. It is obtained summing up, over age at diagnosis y, all the specific-duration death 

probabilities for the same cohort. 

Specific-duration death:

 ���, � − �� = ���, � − �� ���, �� = �1 − ����� ���� ����, �� ���, �� 

Mortality:    ���� = ∑ �1 − ����� ���� ����, �� ���, ���
��      (2) 

where δ(y,x) represents the crude probability of dying at age x for the specific cancer, having being 

diagnosed at age y. The specific mortality is derived from the cumulative relative survival (CRS) 

curve, under the hypothesis of independent competing risks, as follows:  
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δ(y,x)= CRS(y,x) – CRS(y-1,x). 

Equation (2) gives the estimated age-specific mortality probability for a birth cohort, provided that 

the disease incidence, prevalence, and patient survival are known. A system of equations (2), 

including one equation for each birth cohort, allows to reconstruct cross-sectional mortality series 

for an entire observation period. 

2.4 Modeling cancer incidence with age-period-cohort models 

Incidence, as needed to be plugged into equations (1) and (2), can be modeled using age-period-

cohort (APC) models. Assume incidence probability (µ) as a polynomial function of age (x), period 

of diagnosis (t), and birth cohort (c = t – x), throughout a logistic link function Φ:  

Φ�,� � !  =   � + #  $ �$
%

$��
+ #  �&%&$'$

�

$��
+ #  �&%&�&$ �' − ��$

(

$��
 

where  

• Φ�,� � ! = )*+,' ���,�� � !  

• A, P, and C are the degrees of the polynomials for age, period, and cohort, respectively, to 

be chosen to give the best model fit. Since the cohort term is a linear combination of age and 

calendar year, the coefficient of the period linear term (t) is suppressed to avoid convergence 

problems ( �&%&� = 0�. 

•  = � �,  �, … ,  �&%&�&(�  is the parameters’ vector to be estimated through statistical 

regression. 

Given a degree for polynomials, parameters α are calculated according with MIAMOD/PIAMOD 

methods as follows:  

a) MIAMOD 

• α parameters are back-calculated as maximum likelihood (ML) estimates assuming 

Poisson distributed cancer deaths, using a weighted least square iterative procedure as 

described elsewhere in details [Verdecchia et al, 1989; De Angelis et al, 1994].  
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• For each set of parameters α, MIAMOD fitting algorithm calculates the estimated cancer 

deaths and compares them with the observed cancer deaths from official statistics.  

b) PIAMOD 

• α parameters are calculated as ML estimates assuming Poisson distributed incident 

cancer cases as described elsewhere in details [Verdecchia et al, 2002]. 

• For each set of parameters α, PIAMOD calculates the expected incident counts from the 

APC model and compares them with the incident cancer cases observed by the Cancer 

Registry.  

The degree of the polynomials can be choose by different strategies in order to incorporate available 

data into the most appropriate model for specific descriptive or explanatory purposes. The choice of 

the degree of the polynomials is guided by a stepwise procedure based on likelihood ratio statistics 

(LRS); the significance of inclusion of each additional regression parameter in the incidence model 

is tested by comparing increasing order nested models as follows: 

/0 = �1���$− �1���$&� ≈  χ�0 

Standard errors of ML parameters are asymptotically normally distributed and their covariance 

matrix is obtained by inverting the second-order derivative of log-likelihood function (i.e., Fisher’s 

matrix) [Verdecchia et al, 1989]. The significance of each parameter is evaluated using asymptotic 

T test. Standardized regression residuals (StRes) can be also calculated using the expected (exp) and 

observed (obs) counts as follows:  

�'�34�,� =  �3�5�,� − *64�,��
73�5�,�  

and plotted for checking regression goodness of fit. 

The general criteria for selecting the degree of the polynomials are based on significant reduction in 

the model’s LRS by introducing new parameters, significance of each parameter, substantial 

improvement of estimates when compared with observed data, and robustness for projections. 
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2.4.1 Cubic splines for modeling incidence 

Cubic spline models can also be used instead of polynomials in modeling incidence function, as 

they are more flexible for capturing irregular shapes and sudden changes in incidence/mortality 

rates [Hastie and Tibshirani, 1994]. The model constructs K third-order piecewise continuous 

polynomials (i.e., cubic splines) that connect K data points (knots) with unit separation. Polynomial 

coefficients are chosen such that the resulting curve and its first derivative are smooth at the knots. 

Φ��8! =  8� + 8�' + # 89 �' − '9�&:
$��

9�0
 

where  ;�' − '9!& = 0            ,< ' ≤ '9
�' − '9!& = ' − '9      ,< ' > '9

? 
• '9 is the j-th knot and K is the number of knots 

• left and right tails are constrained to be linear (i.e., natural splines) 

• the Φ function and its 1st and 2nd derivatives are constrained to be continuous at the knots 

• the coefficients of the linear and cubic functions are estimated by the fitting algorithm. 

The number and the position of knots have to be fixed in advance; therefore, the model degrees of 

freedom is artificially low. The best-fitting model is defined as the one minimizing the Akaike 

Information Criterion (AIC) [Akaike et al, 1973]. The AIC, a variable selection criterion that 

compromises between a good fit and a simple model, is a penalized likelihood that takes into 

account the number of parameters estimated in the model.  

As the choice of knots is arbitrary, spline models should be used only when strictly necessary.  

2.5 Estimating relative survival 

Survival used in MIAMOD/PIAMOD is supposed to be net cancer specific survival, that is:  

• Cause-specific survival, when the information on the cause of death is available and reliable 
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• Relative Survival (RS) for a given cancer, defined as the ratio of the proportion of observed 

survivors (OS) in a cohort of cancer patients to the proportion of expected survivors (ES) in 

a comparable cohort of people in the general population.  

�� = @�A� 

The cumulative relative survival (CRS) is the product of RS by follow-up interval (i) and 

includes the survival experience of cancer patients over follow-up time (d) 

B�� �C� = D �� �,�
E

F��
 

RS and CRS are useful when the information on the cause of death is unavailable or 

unreliable. 

There are two different approaches for including RS in MIAMOD/PIAMOD estimates. 

• Tabulated RS can be directly derived from incidence and follow-up data and population life-

tables using standard methods [Ederer et al, 1961]. The use of tabulated RS requires a 

registration period long enough to catch main survival dynamics due to improvements in 

diagnostic procedures and more effective treatments. Moreover, it requires the stationary 

hypothesis for making projections (i.e., the conservative hypothesis that survival projections 

are equal to the most recent observable level). These requirements become particularly 

critical for good prognosis cancer sites (e.g., prostate cancer) with long period dynamics. 

• Model-based RS can be derived using mixture cure models. These method allows long-term 

extrapolation from limited observed survival, survival extrapolation to populations not 

covered by cancer registration, smoothing of observed trends with high variability, and 

flexible extrapolation scenarios. 
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2.5.1  Mixture cure models with power function for modeling relative survival  

Mixture cure models are based on the cancer patients heterogeneity assumption and allows for 

simultaneous estimation of factors associated with proportion of cured patients (i.e., those who will 

not die for the specific cancer) and factors related with time to death for fatal cases (i.e., those who 

will die for the specific cancer). 

Relative survival can be modeled for MIAMOD/PIAMOD utilizing mixture cure models of the 

Weibull type with power function [Verdecchia et al, 1998].  

B���C� =  GB + �1 − B� exp�−�KC�L�MN 

where  

• C is the proportion of cured patients (i.e., cure fraction), defined as the limiting value of the 

cancer survival function CRS, as time to diagnosis t approaches to infinity 

B = lim�→∞B���'�  

• (1 – C) is the proportion of fatal cases 

• exp�−�KC�L� is a Weibull function W�λ, γ, d� with: 

K = scale parameter. It represents the excess death risk of fatal cases and determines the 

scale of the CRS curve. 

γ = shape parameter. It modulates the excess death risk of fatal cases. The lower is γ (<1) the 

higher is the risk of death for fatal cases in the short term and decreasing thereafter. 

d = time since diagnosis or follow-up or duration. 

•  β is the power function that allows to include in the model prognostic covariates. 

In principle, all demographical and clinical variables related to survival can be included in the 

model, playing a different role on cured proportion and on time to failure for fatal cases. However, 

the availability of such variables is often limited to subsets of patients. Therefore, the principal 

variables to be included in the survival model are usually sex, age at diagnosis, period of diagnosis, 

and population (e.g., geographical area). 
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Explicative covariates are included in the mixture cure models by means of the power function  

which may depend on them as follows:  

B���U, C! =  �B + �1 − B� W�λ, γ, d�VWX ��NY� 
where Z is the vector of covariates and β includes the corresponding relative risks, 

 and/or stratifying the baseline function parameters 

Z?BY + �1 − BY! W�λ[, γ[, d� \?. 
The choice of the more appropriate model depends on data characteristics (e.g., number of strata), 

model hypothesis (e.g., age or population specific trends), and specific aims of survival modeling 

(e.g., projections, extrapolations to areas not covered by cancer registration). 

To summarize the results obtained from these models two indicators are considered: the cure 

fraction, C, and the mean survival time for fatal cases, T, which is given by 

] = 1K  Γ ^1 +  1_` 

where Γ is the Gamma function. 

Survival model parameters are estimated by means of a non-linear regression procedure with the 

inverse of the variances of the observations used as weights, using SAS (PROC NLIN, examples in 

Appendix A).   

2.6  Projections with MIAMOD/PIAMOD 

Projections of morbidity and mortality trends in the MIAMOD/PIAMOD applications require 

several hypotheses concerning incidence, survival, and population evolution patterns.  

• APC incidence model projections can be derived by assuming the persistence of both age 

and cohort effects during the calendar years following the observation period. For cancer 

disease this assumption is quite reasonable, as cancer risk is generally determined by past 

exposure to risk factors. Conversely, the period model is not projected into the future, as it is 

assumed that what happened simultaneously to all age groups in the observation period 
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cannot happen in the same way in subsequent years; therefore, only a linear drift is retained, 

based on a defined number of years.  

• Survival projections should be derived providing a plausible range of scenarios. For 

instance, a pessimistic hypothesis consists in assuming patients survival to remain stable in 

the future, whereas an optimistic one consists in considering survival to continue improving 

at the same rate observed in recent past years. The following assumptions can be made in 

the MIAMOD/PIAMOD interface for backward and forward relative survival 

extrapolations: constant, dynamic with the same slope estimated from the data, dynamic 

until a given calendar year, or dynamic until al lower bound (for backward only). In 

MIAMOD, backward survival dynamic modifies the APC incidence model derived from 

mortality data and determines changes on mortality, incidence, and prevalence whereas 

forward survival dynamic does not modify the APC incidence model but influences 

mortality and prevalence projections.  In PIAMOD, survival projection does not change the 

APC incidence model but forward projection influences mortality and prevalence trends and 

backward projection influences prevalence.  

• Minor hypotheses are required for projecting population evolution patterns. The number of 

new born (i.e., population count at age 0) is assumed to be constant and equal to that of the 

last available calendar year, also general mortality rates are assumed to be constant and 

equal to those of the last available calendar year, and no migration is assumed. Population at 

older age classes is estimated by accounting for the incrementing age of the cohort members 

and for the expected number of deaths.  

Prevalence and mortality projections can be derived by using equations (1) and (2), respectively. 

2.7  The MIAMOD/PIAMOD software 

MIAMOD software (source code in Fortran 77 for mainframe computers) was developed in 1989 

by Italian National Institute of Health (Istituto Superiore di Sanità) [De Angelis et al, 1994].  
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In 2000 source migrated under Windows Operating System and in 2003, a unique environment to 

run MIAMOD and PIAMOD was developed in collaboration with the US National Cancer Institute  

with a graphical user interface written in Visual Basic.  

When model-based survival is used, the model parameters estimate should be done externally to the 

MIAMOD/PIAMOD interface, using SAS software (SAS Institute Inc.). 
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3. APPLICATION OF THE MIAMOD METHOD IN FRIULI 

VENEZIA GIULIA 

 

3.1 Comparison between estimated and observed prostate cancer incidence 

rates 

An analysis for estimating and projecting incidence, mortality, and prevalence for major cancer 

sites (including prostate) was conducted in Friuli Venezia Giulia (FVG) region in the period 1970-

2015, using the MIAMOD method, in the framework of a national project coordinated by the Italian 

National Institute of Health. The results are included in the paper by Zucchetto and colleagues 

(2013) “Cancer estimates up to 2015, in Friuli Venezia Giulia” . 

Study findings clearly showed the high goodness of fit of estimates with observed data from the 

FVG Cancer Registry for several cancer sites, except for prostate. Actually, the incidence rates of 

PCa were clearly underestimated by the MIAMOD method, as explained in the following.  

3.1.1  Methods 

MIAMOD 

The MIAMOD method [Verdecchia et al, 1989; De Angelis et al, 2004], was applied to estimate the 

absolute number of incident cases, deaths and prevalent cases, crude and age-standardized (using 

the standard European population) incidence and mortality rates (per 100,000 person-years), and 

prevalence proportions (per 100,000) for the period 1970-2015. All estimates were carried out up to 

age 99 years. Mortality data for all cancers, general mortality, and population data by age, calendar 

year, and geographical area for the period 1970-2002 were obtained from the Italian National 

Institute of Statistics (ISTAT). Specific-cause mortality data for the years 2003, 2006, and 2007 

were used to validate expected mortality projections, as ISTAT had yet to publish data with causes 

of death for the period 2004-2005. Relative survival estimates were calculated by means of 
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parametric cure models of the Weibull type at the level of macro area, using data from cancer 

registries included in the EUROCARE-4 for the period 1985-2002 [Capocaccia et al, 2009]. The 

survival estimates for the North-East macro area were assigned to FVG.  

For PCa, a specific procedure was used to capture recent rapid variations of time trends, as 

suggested by data from cancer registries [Curado et al, 2007]. Mortality estimation up to the year 

2010 was preliminarily performed by means of the PIAMOD method [Verdecchia et al, 2002], 

using regional mortality data during the period 1970-2007 as input (best model fit was found for an 

APC model with 2-degree age, 2-degree period, and 2-degree cohort polynomials). This allowed to 

complete the missing cause-specific mortality time series in the years 2004 and 2005 and to base 

incidence estimates on more recent mortality data. This longer mortality time series was then used 

as input for the MIAMOD method (best model fit was found for an APC model with 2-degree age, 

3-degree period, and 4-degree cohort polynomials, respectively). The survival time trend was 

modeled by means of mixture cure models of the Weibull type with power function [Verdecchia et 

al, 2009] for the period 2003-2005 and then assumed to be constant onwards (i.e., equal to 2005 for 

the period 2006-2015). The baseline Weibull mixture cure model was stratified by age at diagnosis 

(age classes: 15-54, 55-64, 65-74, 75-84, 84-99 years) and estimated for each age-stratum at the 

reference year (1994), including age-stratified period relative risks and an area relative risk equal to 

that of the North-East for all age strata (Appendix A). 

 

FVG Cancer Registry Data 

Since 1995, the population-based Cancer Registry of FVG has been registering incident cancer 

cases diagnosed in people residing within the whole regional territory [Birri et al, 2011]. The FVG 

cancer registry, accredited at the Italian Association of Cancer registries (AIRTUM), together with 

the registries of Umbria and Trento and Bolzano, is one of the very few Italian registries covering a 

whole region [AIRTUM]. The registry has high completeness and quality, in accordance with the 

standards required by the International Association of Cancer Registries.  
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All PCa cases diagnosed between 1995 an 2007 (FVG cancer registry activity period) were 

considered. Routine indicators for PCa showed that 90.7% of cases were microscopically verified 

and that only 0.2% were identified on the basis of death certificate only (i.e., an indicator of poor 

quality of data). Interestingly, 3.5% of cases had been diagnosed solely at autopsy. These cases 

were excluded from this analysis, in order to increase comparability with MIAMOD estimates, 

given than usually diagnoses made during autopsy are not reported in death certificates and, hence, 

do not affect mortality statistics. 

As an alternative approach, PIAMOD method was also applied FVG cancer registry data in the 

period 1995-2007 as input (the best model fit was found for an APC model with 3-degree age, 5-

degree period, and 3-degree cohort polynomials, respectively). 

Annual PCa incidence rates per 100,000 resident men were calculated using as denominator the 

mean number of resident males in the corresponding calendar year (i.e., the mean between 

population at 1st January of the year y, and 1st January of the year y+1), derived from ISTAT 

[ISTAT. Popolazione residente]. 

3.1.2  Results  

The estimates of PCa incidence, mortality, and prevalence for the whole period 1970-2015 using the 

MIAMOD method are reported in Figure 3.1. The comparisons between observed and 

MIAMOD/PIAMOD estimated incidence and mortality rates for the common period 1995-2007 are 

reported in Figures 3.2 and 3.3. 

Although both increasing (the annual percent change, aPC, was 5.0; 95% CI: 3.7-6.5 for observed 

incidence rates; and aPC was 5.2, 95% CI: 4.4-6.0 for expected rates), PCa incidence rates reported 

by the FVG Cancer Registry were much higher than those estimated using MIAMOD, despite the 

exclusion of autoptical cases (Figure 3.2). Actually, the huge grow of incidence rates in the same 

period was not accompanied by a corresponding increase in mortality, which was instead almost 
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stable (aPC = -0.3, 95% CI: -0.2 to 1.4 for observed mortality; aPC = -0.4, 95% CI: -0.8 to 0.1 for 

expected mortality).  

The application of PIAMOD method, using FVG Cancer Registry data in the period 1995-2007 as 

input, provided a far better estimation of PCa incidence (Figure 3.3). However, limitations emerged 

with regard to PCa mortality rates that were clearly underestimated in comparison with observed 

data up to 1999. As a consequence, complete prevalence estimates resulted to be highly inflated, 

given the great influence of past mortality rates on prevalence for cancers with high survival, such 

as PCa (Figure 3.4).  

In any case, it is worth noting that lots of Italian areas are not covered by population-based cancer 

registries or have still few years of observation (e.g., only in the very recent years the population 

coverage of cancer registration reached 50% in Italy, [AIRTUM]) causing the impossibility of 

extensively using PIAMOD.  

 

  
Figure 3.1. Crude prostate cancer incidence and mortality rates (per 100,000 men-year) and prevalence proportions (per 
100,000 men) estimated using the MIAMOD method. Friuli Venezia Giulia 
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Figure 3.2. Crude prostate cancer incidence and mortality rates (per 100,000 men-year). Observed (continuous lines) 
and estimated using the MIAMOD method (dashed lines). Friuli Venezia Giulia. 
 

 

Figure 3.3. Crude prostate cancer incidence and mortality rates (per 100,000 men-year). Observed (continuous lines) 
and estimated using the PIAMOD method (dashed lines). Friuli Venezia Giulia. 
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Figure 3.4.  Crude prostate cancer incidence and mortality rates and prevalence proportion (per 100,000 men-year). 
Observed (continuous lines) and estimated using the PIAMOD method (dashed lines) up to 2015. Friuli Venezia Giulia.  
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4. TRENDS OF PSA TESTING RATES IN FRIULI VENEZIA 

GIULIA 

 

4.1 PSA testing rates  

4.1.1 Methods 

Data on PSA testing use, which are collected for administrative purposes at a population-level, are 

available in several Italian areas, even those not covered by cancer registration. For instance, in 

FVG, the regional digital health archive (a data-warehouse in SAS, SAS Inc.) collects data on  

diagnostic procedures, hospital discharges, and pathological archives of the whole region. This 

archive includes procedures performed in public structures as well as in private structures 

accredited by the Regional Health System. Data on PSA tests can be extracted from the outpatient 

clinics database (“prestazioni ambulatoriali”), available since 1998.  

In the following analysis, both total-PSA and free-PSA tests (FVG regional code 90.56.5 and 

90.56.6, respectively) from 1998 up to 2012 (i.e., last available year as of 2013) were considered. 

Only PSA tests performed on resident men aged 40 years or more were included, as PCa is very 

rare in men under 40 years and PSA testing at those ages is used in case of acute prostatic 

conditions (e.g., prostatitis) rather than for PCa screening. Data on PSA testing use include the 

regional identification code of the tested person, the date of PSA testing and other characteristics, 

such as test price, but not serum PSA levels. Prescriptions of both types of examinations in the same 

year to the same man were counted once. The overall PSA testing rates were calculated as the 

number of PSA tested men in one calendar year over the mean resident male population in the same 

year [ISTAT. Popolazione residente]. 
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4.1.2 Results 

PSA testing rates significantly increased from 12,792 per 100,000 men in 1998 up to 30,407 in 

2009, and then slightly decreased down to 29,113 in 2012. Similar patterns emerged for all ages, 

except for men aged ≥70 years, for whom trends did not show any reduction (Figure 4.1). 

Interestingly, among men aged 65-79 years, PSA testing rates rose up to approximately 50,000 per 

100,000, meaning that one out of two men had been tested.  

Figure 4.1. Age-specific PSA testing rates per 100,000 men-year (mean ISTAT pop) by calendar year. Friuli Venezia 
Giulia, men aged 40+ years, 1998-2012 

Calendar year No. of tested men Mean male population PSA testing rate (95% CI) 

1998 37,472 292,944 12,791.5 (12662.3-12921.7) 

1999 45,728 294,990 15,501.5 (15359.8-15644.3) 

2000 56,141 297,675 18,859.8 (18704.1-19016.5) 

2001 61,270 300,998 20,355.6 (20194.8-20517.4) 

2002 73,239 305,645 23,962.1 (23788.9-24136.3) 

2003 79,744 310,707 25,665.3 (25487.5-25844.1) 

2004 86,640 315,634 27,449.5 (27267.0-27632.9) 

2005 86,778 320,539 27,072.5 (26892.7-27253.3) 

2006 92,743 325,043 28,532.5 (28349.2-28716.8) 

2007 94,392 330,072 28,597.4 (28415.2-28780.4) 

2008 101,513 335,416 30,264.8 (30078.9-30451.6) 

2009 103,450 340,221 30,406.7 (30221.7-30592.6) 

2010 103,778 344,389 30,133.9 (29950.9-30317.9) 

2011 104,103 344,315 30,234.8 (30051.4-30419.0) 

2012 99,645 342,276 29,112.5 (28932.0-29293.8) 
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4.2 Joinpoint analysis of PSA testing rates trends  

4.2.1 Methods 

Joinpoint regression analysis [Kim et al, 2000] was performed to identify points (knots) where a 

statistically significant change over time in the log-slope of the age-specific PSA testing rates 

occurred and to estimated the rates trend within each time span between the knots. Analyses were 

performed using the Joinpoint Regression Program (Version 3.5 – April 2011; Statistical 

Methodology and Applications Branch and Data Modeling Branch, Surveillance Research Program 

National Cancer Institute), using the following options:  

• Standard parameterization of Kim et al. (2000) of the joinpoint regression model, that is: 

E[y|x] = β0 + β1x + δ1(x – τ1)
+ + ... + δk(x – τk)

+   (1) 

where τk is the unknown joinpoint and (a)+ = a if a > 0 and 0 otherwise. 

• Log-linear model for the rate y, that is: ln(y) = x'β + e. 

• Heteroscedastic random errors with standard deviation specified at each time period.  

Regression coefficients are estimated by weighted least squares, where weights at each point 

are: w = (y2)/v,  where y2 is the square of the response for that point and v is the square of 

the standard deviation at each time period. 

• The maximum number of joinpoints (k) was set at 2, according to the recommendations for 

n=15 observed data points.  

Number of  

Data Points 

Maximum Number of  

Joinpoints 

<7 0 
7 – 11 1 
12 – 16 2 
17 – 21 3 
22 – 26 4 

27+ 5 
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Let be: 

• n the total number of data points 

• k the number of joinpoints in the model 

• p the total number of parameters in the model, including the joinpoint parameters (p=2k+2) 

• Kmin and Kmax the minimum and maximum number of joinpoints 

• Qk  the weighted sum of squared errors (SSE) from the model that minimizes weighted SSE 

with k joinpoints  

• Qx,j,k the weighted SSE from the model that minimizes weighted SSE with k joinpoints and 

with the j th joinpoint occurring at x 

• F-1
a,b(p) the pth quantile of the F distribution with a and b degrees of freedom. 

First, the procedure goes through each of the k-joinpoint models, Kmin ≤ k ≤ Kmax. For each of the 

models, the program chooses the regression parameters with the smallest weighted SSE. The 

minimum SSE for a k-joinpoint model is calculated using Lerman's grid-search method [Lerman, 

1980] based on standard parametrization (1). The corresponding values for (τ1,… τk) and (β0, β1, 

δ1,..., δk) are the estimates of joinpoints and regression coefficients, respectively. 

If k > 0 then the output lists the estimated joinpoints. The associated CIs come from Lerman (1980): 

the 100(1 – α)% CI for the jth of k joinpoints includes all values of x from the grid such that 

Qx,j,k≤C2
α, where 

B0a = b$ ^1 +  cd − 5` e$,f�g�� �1 −  � 

The sequential permutation test procedure is used to choose the best joinpoint model, as described 

elsewhere in details [Kim et al., 2000], and here briefly reported.  

The procedure tests the hypothesis of no change  

H0: E[y|x] = β0 + β1x 

against the alternative hypothesis of two joinpoints 

H0: there exist τ1 and τ2 , τ1 < τ2  such that  E[y|x] = β0 + β1x + δ1(x – τ1)
+ + δ2(x – τ2)

+ 
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If the null hypothesis is rejected, then the same procedure is applied to test the null hypothesis of 

one joinpoint against the alternative of two joinpoints, and so on. Because multiple tests are 

performed, Bonferroni adjustment is used to ensure that the approximate overall type I error is less 

than the specified significance level α (default 0.05). Each of these permutation test are carried out 

at significance level of α1=α/(Kmax– Kmin). The Bonferroni adjustment is conservative because 

overall significance level is usually less than the nominal level α. 

The annual percentage change (aPC) is computed for each of the trends identified by the knots. For 

any segment with slope the aPC is 100{exp(β) – 1}. The average annual percentage change (aaPC), 

which is a weighted mean of the aPC’s from the joinpoint models, summarizes the trend over the 

whole period.  

 

4.2.2 Results  

Joinpoint analysis estimated statistically significant changes in PSA testing rates slopes in 2002 and 

2008 (Tab. 4.1 and Fig. 4.2): the aPCs in the periods 1998-2002, 2002-2008, and 2008-2012 were 

16.9 (95% CI: 12.9 to 21.2), 3.6 (95% CI: 1.7 to 5.5), and -0.7 (95% CI: -3.1 to 1.8), respectively, 

with an aaPC based on the last 10 years equal to 1.7 (95% CI: 0.4 to 1.9).  
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Period aPC  
Lower bound 

95% CI 
Upper bound 

95% CI 

1998-2002 16.9 12.9 21.2 

2002-2008 3.6 1.7 5.5 

2008-2012 -0.7 -3.1 1.8 
 

Figure 4.2. Joinpoint analysis of PSA testing rates (model with 2 joinpoints). Friuli Venezia Giulia  
aPC = annual percent change, CI = confidence interval 
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Table 4.1.  Output of Joinpoint analysis of PSA testing rates (model with 2 joinpoints). Friuli Venezia Giulia 

 

The permutation test found that model with 2 joinpoints was significantly better than model with 

just 1 (Tab 4.2). However, for comparison, also the results of the model with 1 joinpoint are 

reported in Figure 4.3. The model found significant changes in PSA testing rates slopes in 2003: the 

aPCs in the periods 1998-2003 and 2003-2012 were 14.9 (95% CI: 11.7 to 18.3) and 1.4 (95% CI: 

0.5 to 2.3), respectively. 

Table 4.2.  Permutation test output of Joinpoint analysis of PSA testing rates 

Null 
Hypothesis 

Alternate 
Hypothesis 

Numerator 
Degrees of 
Freedom 

Denominator 
Degrees of 
Freedom 

No. of 
Permutations   P-Value 

 
Significance 

Level 
0 Joinpoint 2 Joinpoints 4 9 4500 0.000222 0.0250000 
1 Joinpoint 2 Joinpoints 2 9 4500 0.020222 0.0500000 

Model statistics 

No. of Joinpoints 
No. of 

Observations 
No. of 

Parameters 
Degrees of 
Freedom 

Sum of squared 
errors 

Mean Squared 
Error 

2 15 6 9 545.46604 60.60734 

Estimated Joinpoints 

Joinpoint Estimate Lower CI Upper CI 

1 2002 2000 2004 

2 2008 2003 2010 

Estimated regression coefficients (Beta) Standard Parameterization 

Parameter 
Parameter 
Estimate 

 Standard          
Error    Z             Prob > |t| 

Intercept 1 -303.231978 30.07501 -10.082523 0.00002 

Slope 1 0.156515 0.01504 10.406767 0.000016 

Slope 2 - Slope 1 -0.121353 0.016977 -7.148073 0.000186 

Slope 3 - Slope 2 -0.041853 0.012974 -3.225834 0.014535 

General parametrization 

Parameter 
Parameter 
Estimate 

Standard 
Error Z            Prob > |t| 

Intercept 1 -303.231978 30.07501 -10.082523 0.00002 

Intercept 2 -60.283413 15.79129 -3.81751 0.006563 

Intercept 3 23.75739 20.729205 1.146083 0.289424 

Slope 1 0.156515 0.01504 10.406767 0.000016 

Slope 2 0.035162 0.007876 4.464653 0.00292 

Slope 3 -0.006691 0.010311 -0.648948 0.537074 
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Period aPC  
Lower bound 

95% CI 
Upper bound 

95% CI 

1998-2003 14.9 11.7 18.3 

2003-2012 1.4 0.5 2.3 
 

Figure 4.3. Joinpoint analysis of PSA testing rates (model with 1 joinpoint). Friuli Venezia Giulia 

 

Stratified analysis according to age of men at PSA testing, found statistically significant changes in 

the slopes of PSA testing rates for all age groups between 2002-2003 and 2008-2009, except for 

men aged 80-84 years, for whom only 1 joinpoint in 2003 emerged (Fig. 4.4). For men aged less 

than 70 years the liner trend of the log-rate in the last period was decreasing, whereas for older men 

PSA testing rates continue raising, though at a lower extent.  
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Figure 4.4. Joinpoint analysis of PSA testing rates by age class. APC: annual percent change; * Statistically significant





 

41 

 

5. AGE-PERIOD-COHORT MODELS  

Age-period-cohort models are utilized in order to disentangle the effects on time trends of age at the 

event, calendar time of the event, and calendar time of birth. Age-period-cohort models are herein 

described using the approach of Carstensen [Carstensen, 2007].  

5.1 Methods 

Age-period-cohort models are descriptive tools for rates observed in a Lexis diagram (Fig. 5.1). 

 

Figure 5.1. Lexis diagram, the birth cohort 1928-1937 
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Consider λ the rate of an event observed in an arbitrary subset of a Lexis diagram, where D is the 

number of cases who experimented the event and Y the amount of risk time (i.e., person-years at 

risk of the event). Assuming that rates are constant within each tabulation category, the log-

likelihood contribution from observation of the random quantity (D, Y) in one subset is: 

l (λ|D, Y) = D log (λ) – λY 

Except for the constant (D log (λ)), this is the same as the log-likelihood for an observation of a 

random variable D from a Poisson distribution with mean λY. 

The log-likelihood for the entire table of (D, Y) is the sum of such terms, because individuals are  

independent and the contributions to different cells from one individual are assumed to be 

conditionally independent. Hence, models for λ can be fitted using programs for Poisson regression 

for independent observations that allows for an offset term to separate the person-years from the 

rate. 

The rates can be modeled as functions of age class A, period P, and cohort of birth C, by letting D 

the response, log(Y) the offset and A, P, and C categorical explanatory variables in a Poisson model. 

Since the cohort term is a linear combination of age and calendar year (C = P – A), this produces an 

unidentifiability problem which requires parametrization constraints to be solved. There are several 

ways of arriving at a parametrization of an age-period-cohort model, such as: 

• to constrain 1 period and 2 cohort parameters to be 0 (or vice versa); 

• the Holford’s residual approach [Holford, 1983] i.e., to regress the age estimates on age, the 

period estimates on period, and the cohort estimates on cohort, and then to report residuals 

as age, period, and cohort effects. 

• the sequential method, i.e., to fit an age-cohort model, and subsequently a period-alone 

model using the log-fitted values from the age-cohort model as offset.  
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5.1.1  The age-period model 

The age-period model states that the age-specific rates have the same shape in all periods, 

eventually with a varying level. The model has one parameter per age class and one per period, but 

always there is a one-parameter unidentifiability in the formulation. 

log[λ(a, p)] = f(a) + g(p) 

In this model only the first derivatives (contrasts) of f and g are identifiable. The natural constraint 

is to fix one parameter to be 0, g(p0) = 0. For period p0 we will have: 

log[λ(a, p0)] = f(a) + g(p0) = f(a) 

Thus, for period p0, the f(a) are logs of age-specific rates, and the age-specific rates are exp[ f(a)]. 

Comparing the rates in any age class between period p and p0 gives 

log[λ(a, p)/λ(a, p0)] = log[λ(a, p)] – log[λ(a, p0)] = f(a) + g(p) – f(a) = g(p) 

Thus, the g(p) are logs of rate-ratios (RR) relative to the period p0. 

5.1.2  The age-cohort model 

The age-cohort model states that the age-specific rates have the same shape in all cohorts, but 

possibly with a varying level. The model has one parameter per age class and one per cohort. 

log[λ(a, c)] = f(a) + h(c) 

In this model only the first derivatives (contrasts) of f and h are identifiable. This is traditionally 

fixed by choosing a reference cohort c0 and constrain h(c0) = 0. For cohort c0 we will have: 

log[λ(a, c0)] = f(a) + h(c0)  = f(a) 

the f(a) are logs of age-specific rates, and the age-specific rates are exp[ f(a)]. 

Comparing the rates in any age class between cohort c and c0 gives: 

log[λ(a, c)/λ(a, c0)] = log[λ(a, c)] – log[λ(a, c0)] = f(a) + h(c) – f(a) = h(c) 

Thus, the h(c) are logs of rate-ratios (RR) relative to the cohort c0. 
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5.1.3  The age-drift model 

The age-drift model is a sub-model of both the age-period and the age-cohort model. Inspection of 

the rate-ratio plots could suggest to replace the period or the cohort parameters by a linear trend in 

log-rates: 

log[λ(a, p)] = f(a) + g(p) = f(a) + g(p – p0)  

log[λ(a, c)] = f* (a) + h(p) = f* (a) + h(c – c0) 

The two models are analytically the same, given that p = a + c. This implies that the rate-ratio 

display (on the log-scale) would show a straight line. 

f(a) + g(p – p0) = f(a) + g(a + c – (a0 + c0)) = f(a) + g(a – a0) + g(c – c0) 

So going from the age-period-drift model to the age-cohort-drift model is just to replace the age 

effect f(a) by f* (a) = f(a) + g(a – a0). 

The interpretation of this model is that rates increase exponentially by time (period or cohort) at the 

same pace, exp[g(p)] = exp[h(c)] per year for all age classes.  

5.1.4  The age-period-cohort model 

The general form of a multiplicative age-period-cohort model for rates λ(a, p) is: 

log[λ(a, p)] = f(a) + g(p) + h(c)     (1) 

where the covariates are mean age a, mean period p, and mean cohort c, and f, g, h are functions of 

age, period, and cohort, respectively. Given that a = p – c,  the model can be written as follows: 

log[λ(a, p)] = f(a) + δa  – µ(p) – µ(c) + 

[g(p) – δp + µ(p)] + 

[h(c) + δc              + µ(c)] 

for any µ(p), µ(c), and δ. 

Therefore, the parametrization produced by setting certain period and cohort effects to 0 

corresponds to choose values of the three arbitrary parameters µ(p), µ(c), and δ.  
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Any parametrization of the age-period-cohort model fixes 2 levels and a slope among the three 

functions, but different principles can be used to accomplish this.  

One of these principles is based on an extension of the assumptions behind the way the age-cohort 

model was parametrized: 

1. The age-function is interpretable as log of age-specific rates in a cohort c0 (longitudinal 

rates), after adjustment for the period effect; 

2. The cohort function is interpretable as log-RR relative to the reference cohort c0; 

3. The period function is 0 on average with 0 slope, interpretable as the log-RR relative to the 

age-cohort prediction (residual log-RR). 

Depending on the subject matter, the role of cohort and period could be interchanged, in which case 

the age-effects would be cross-sectional rates for the reference period (i.e., the period function 

could be constrained to be 0 at a reference date, p0, the age-effects at a0 = p0 – c0 would equal the 

fitted rates for period p0 and cohort c0, the period effects are interpretable as log-RRs relative to the 

reference period p0, and the cohort effects would be residual log-RRs relative to p0). 

A variant of this approach is to extract the drift (δ) and report it as a parameter and then report both 

cohort and period effects as ‘residuals’.  

log[λ(a, p)] = <hi (a) + δ (c – c0) + +j(p) + ℎl(c) 

log[λ(a, p)] = <gi (a) + δ (p – p0) + +j(p) + ℎl(c) 

where +j(p) and ℎl(c) have 0 slope,  <hi (a) are the age-specific rates in the reference cohort c0 and 

<gi (a) are the age-specific rates in the reference period p0. Hence, age-specific rates can be chosen to 

refer to either a specific cohort (longitudinal rates) or a specific period (cross-sectional rates). 

 

5.1.5  Modeling effects 

The usual approach to model effects uses one parameter per distinct value of a, p, c, by defining the 

variables as ‘factors’ (i.e., class variables). The classical approach has been to define a tabulation 
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sufficiently coarse to avoid an excess amount of parameters in the modeling (i.e., typically in 5-year 

intervals). 

Another approach is to model the effects by parametric smoothing functions of the class mean,  

since the three variables age, period, and cohort are originally continuous variables, such as the 

followings: 

• Splines (i.e., 1st, 2nd, 3rd degree polynomials in predefined intervals, constrained to have 

identical values and derivatives in interval boundaries called knots) 

• Natural splines (i.e., 3rd degree splines constrained to be linear beyond the outermost knots) 

• Fractional polynomials (i.e., combination of polynomials of various power, including non-

integer powers). 

All these models are just generalized linear models. If sufficient data are available there will be 

little differences between these approaches. If the number of parameters in the terms describing an 

effect equals the number of categories, then the model will be the same as the factor model (i.e., 

parametric models are sub-models of the classical factor model). Standard techniques of penalizing 

the roughness of the effects are available for tuning the number of parameters and the location of 

knots. However, these methods are not always desirable in describing demographic effects where 

sudden changes may occur (e.g., due to changes in diagnostic procedures).  

Deviance statistics, that are the likelihood-ratio test of each of the following models against the 

model with a completely freely varying interaction between age and period (or cohort), are usually 

produced.  

 

 

 

 

*The drift models are identical 

Model  log[λ(a, p)] 
Age f(a) 
Age-drift* (cohort) f(a) + δc  
Age-cohort f(a) + h(c) 
Age-period-cohort f(a) + g(p) + h(c)   
Age-period f(a) + g(p)  
Age-drift* (period) f(a) + δp 
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However, using deviance statistic for choosing the model is not recommended, as deviance statistic 

depends on the chosen tabulation rather than on the adequacy of the model in describing rates. 

5.2 Age-period cohort analysis of PSA testing rates 

5.2.1 Basic plots 

Four basic plots were performed in order to preliminary evaluate the effects of age, period, and 

cohort on PSA testing rates time trends. 

1) Rates for each age versus period (Fig. 5.2).   

2) Rates for each age versus cohort (Fig. 5.3).  

3) Age-specific rates for each period (Fig. 5.4).  

4) Age-specific rates for each cohort (Fig. 5.5).  

These plots are usually on the log-scale. The plots (1) and (3) indicate whether the major variations 

in the rates are by period, in which case the curves should be approximately parallel. The plots (2) 

and (4), are useful for seeing whether the major variations in the rates are by cohort, in which case 

the curves should be parallel.  

The plots (Fig. 5.2-5.5) indicated a more important effect of period rather than of birth cohort on 

PSA testing rates. The period effect was almost completely due to the change in rates after 1998-

2002; whereas, no clear difference across cohorts emerged. Therefore, the period 1998-2002 was 

selected as reference for the period effect, and cohort effects were constrained to be equal on 

average. As a consequence:  

• The age effects are interpretable as age-specific rates in period 1998-2002 after adjustment for 

the cohort effects 

• The period effects are interpretable as RRs relative to the reference period 1998-2002 

• The cohort effects were constrained to be 1 on average with 0 slope, and are interpretable as 

the RRs relative to the age-period prediction (residual RR). 

 



 

48 

 

The age-period-cohort analyses were performed in R, both using classical factor model and natural 

splines (Appendix B). The analyses were restricted to men 40-84 years old at PSA testing date.  

Ten-year birth cohorts were approximated by subtracting the mid-point of the 5-year age group 

(from 40-44 to 80-84 years) from the corresponding 5-year period (1998-2002, 2003-2007, 2008-

2012). For instance, the age class 65-69 years, with mean age 67.5 in the period 1998-2002 with 

mean date of diagnosis 2000.5 (i.e., 1st July 2000), has mean date of birth 2000.5 – 67.5 = 1933, but 

comprises men born between 1st January 1928 (1998 – 70 = 1928) and 31st December 1937 (2002 – 

65 = 1937) (Fig. 5.1). 

 

 

 

Figure 5.2. PSA testing rates per 100,000 men-year (log-scale) for each age class plotted against calendar year at PSA 
testing. Friuli Venezia Giulia, 1998-2012 
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Figure 5.3. PSA testing rates per 100,000 men-year (log-scale) for each age class plotted against birth cohort. Friuli 
Venezia Giulia, 1998-2012 

 

Figure 5.4. Age-specific PSA testing rates per 100,000 men-year (log–scale) by calendar period at PSA testing. Friuli 
Venezia Giulia, 1998-2012 

Birth Cohort

1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970

P
S

A
-t

es
tin

g 
ra

te
 p

er
 1

00
,0

00
 m

en
-y

ea
r 

- 
Lo

g 
S

ca
le

1000

10000

100000

40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84

Age class at PSA testing

35
-3

9 

40
-4

4 

45
-4

9 

50
-5

4
55

-5
9

60
-6

4

65
-6

9 

70
-7

4 

75
-7

9 

80
-8

4 

P
S

A
-t

es
tin

g 
ra

te
 p

er
 1

00
,0

00
 m

en
-y

ea
r 

- 
Lo

g 
S

ca
le

1000

10000

100000

1998-2002
2003-2007
2008-2012



 

50 

 

 

Figure 5.5. Age-specific PSA testing rates per 100,000 men-year (log–scale) by birth cohort. Friuli Venezia Giulia, 
1998-2012 

 

5.2.2  Factor model 

The results of age-period-cohort analysis with factor model and deviance statistics are reported in 

Table 5.1 (for mean age, mean period, and mean cohort) and plotted in Figure 5.6. Age-specific 

PSA testing rates estimates were sharply increasing up to the mean age 72.5 (i.e., age class 70-75 

years) and slightly reduced thereafter. As compared to the period 1998-2002, PSA testing rates were 

1.5-fold (95% CI: 1.50-1.51) and 1.6-fold higher (95% CI: 1.63-1.64) for the periods 2002-2008 

and 2008-2012, respectively. No particular cohort effects emerged, except for increasing PSA 

testing rates for men born after 1960. The estimated drift was 1.047 (95% CI: 1.0465-1.0475), 

meaning that rates increase at the pace of 4.7% each year (period or cohort) for all age classes.  
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Table 5.1. Maximum likelihood estimates of age-period-cohort effects for PSA testing rates estimated with 
factor model and analysis of deviance. Friuli Venezia Giulia, 1998-2012 

Age 

Age      Rate      2.5%     97.5% 

42.5  2427.519  2383.537  2472.312 

47.5  6456.883  6386.006  6528.546 

52.5 13442.762 13340.276 13546.036 

57.5 19221.785 19094.285 19350.136 

62.5 23817.832 23670.292 23966.291 

67.5 30568.037 30388.953 30748.177 

72.5 31999.080 31811.567 32187.698 

77.5 31176.170 30960.684 31393.156 

82.5 27481.201 27205.600 27759.595 

Period 

Per     P-RR     2.5%    97.5% 

2000.5 1.000000 1.000000 1.000000 

2005.5 1.506169 1.498699 1.513676 

2010.5 1.635976 1.628081 1.643908 

Cohort 

Coh      C-RR      2.5%     97.5% 

1918 0.9898689 0.9715140 1.0085705 

1923 0.9889873 0.9805391 0.9975082 

1928 1.0074120 1.0019985 1.0128548 

1933 1.0104333 1.0058013 1.0150867 

1938 1.0070713 1.0024257 1.0117384 

1943 1.0007073 0.9957160 1.0057236 

1948 0.9952955 0.9900798 1.0005388 

1953 0.9544327 0.9486290 0.9602719 

1958 0.9556077 0.9480268 0.9632493 

1963 1.0691179 1.0556067 1.0828020 

1968 1.2578845 1.2283499 1.2881292 

Drift 

     exp(Est.)     2.5%    97.5% 

APC  1.046510 1.046015 1.047006 

A-d  1.047002 1.046530 1.047475 

 

Analysis of deviance 

 

Resid. Df Resid. Dev Df  Deviance  Pr(>Chi)     

                    Age                      18      48560                       

Age-drift                17       8081  1    40478 < 2.2e-16  

Age-Cohort                8       7489  9      592 < 2.2e-16  

Age-Period-Cohort         7        728  1     6761 < 2.2e-16  

Age-Period               16       1362 -9     -634 < 2.2e-16  

Age-drift                17       8081 -1    -6719 < 2.2e-16   
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Figure 5.6. Estimated effects of age-period-cohort model for PSA testing rates with factor model. Age effects are 
reported as rates per 100,000 men-year, period and cohort effects are reported as rate ratios (RR). Friuli Venezia Giulia 

 

5.2.3  Natural splines   

Age, period, and cohort estimates were also modeled using natural spline functions. The best-fitting 

model, defined as the one minimizing the AIC [Akaike et al, 1973], was found for an APC model 

with 9 parameters for age, 2 for the period, and 5 for the cohort. The results of age-period-cohort 

model, deviance statistics, position of knots of this model are reported in Table 5.2. Results were 

totally comparable to those estimated with the factor model, as expected due to the similar number 

of parameters. 
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Table 5.2. Age-period-cohort effects for PSA testing rates, identified through natural splines with 9 knots for age, 2 for 
period and 5 for cohort, analysis of deviance, and position of knots. Friuli Venezia Giulia 1998-2012  

Age 

  Age      Rate      2.5%     97.5% 

 42.5  2429.674  2386.235  2473.903 

 47.5  6455.204  6387.538  6523.586 

 52.5 13443.208 13342.030 13545.154 

 57.5 19240.143 19114.384 19366.729 

 62.5 23821.204 23674.374 23968.944 

 67.5 30538.321 30360.789 30716.891 

 72.5 32053.651 31867.793 32240.594 

 77.5 31160.371 30946.235 31375.988 

 82.5 27488.273 27214.296 27765.007 

Period 

 Per     P-RR     2.5%    97.5% 

2000.5 1.000000 1.000000 1.000000 

2005.5 1.505572 1.498132 1.513050 

2010.5 1.635669 1.627780 1.643597 

Cohort 

  Coh      C-RR      2.5%     97.5% 

 1918 0.9748847 0.9607054 0.9892733 

 1923 0.9949688 0.9884170 1.0015641 

 1928 1.0080206 1.0038048 1.0122540 

 1933 1.0083085 1.0054620 1.0111630 

 1938 1.0050177 1.0010482 1.0090029 

 1943 1.0065176 1.0027764 1.0102728 

 1948 0.9914833 0.9871371 0.9958485 

 1953 0.9526125 0.9486713 0.9565701 

 1958 0.9599768 0.9542127 0.9657757 

 1963 1.0676296 1.0576875 1.0776652 

 1968 1.2552934 1.2297908 1.2813248 

Drift 

    exp(Est.)     2.5%    97.5% 

APC  1.046498 1.046002 1.046993 

A-d  1.047002 1.046530 1.047475 

 

Analysis of deviance  

              Resid. Df Resid. Dev Df Deviance  Pr(>Chi)     

                  Age                      18      48560                           

Age-drift                17       8081  1    40478 < 2.2e-16 *** 

Age-Cohort               13       7545  4      536 < 2.2e-16 *** 

Age-Period-Cohort        12        746  1     6800 < 2.2e-16 *** 

Age-Period               16       1362 -4     -617 < 2.2e-16 *** 

Age-drift                17       8081 -1    -6719 < 2.2e-16 *** 

 

Knots position 

Age 

          11.11111% 22.22222% 33.33333% 44.44444% 55.55556% 66.66667%  

 42.50000  46.94444  51.38889  55.83333  60.27778  64.72222  69.16667 

  

77.77778% 88.88889%            

 73.61111  78.05556  82.50000  

 

Period 

 50%         

2000.5 2005.5 2010.5  

 

Cohort 

20%  40%  60%  80%       

1918 1929 1938 1948 1957 1968 
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5.3  First PSA test  

It should be noted that PSA testing, beyond being a screening and a diagnostic procedure, is also 

used for monitoring cancer recurrence among patients with PCa during the follow-up subsequent to 

therapies (prostatectomy included). Therefore, men with PCa are expected to undergo PSA testing 

for several years also after cancer onset. 

In order to have some indications with regard to the amount of new potential cancer diagnoses, an 

analysis was performed considering only men who have been tested for PSA level for the first time. 

They could be either men who underwent PSA screening for the first time (without having a PCa) 

or men newly diagnosed with PCa (assuming that all men with PCa have at least one PSA test at the 

time of PCa diagnosis).  

Because information on PSA test was not available in FVG before 1998, the analysis was restricted 

to men having had their first PSA test in the period 2001-2012, given that they had not any PSA test 

in the previous period 1998-2000 (assuming 3 years as a reasonable time interval for considering a 

man not already ‘under surveillance’ for PCa). First-PSA-testing rates were calculated as men tested 

for the first time as respect to the mean resident male population (ISTAT) (Fig. 5.7).  

Dramatically decreasing trends were found for men overall (7,770 per 100,000 in 2001 down to 

2,590 per 100,000 in 2012, with aPC = -9.6; 95% CI: -10.7 to -8.6) and for all age groups starting 

from 50-54 years; conversely, men aged less than 50 years showed firstly an increasing and then a 

decreasing trend.  
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Figure 5.7. Crude first-PSA testing rates per 100,000 men-year, by age class and calendar year at testing. Friuli Venezia 

Giulia, men aged 40+ years, 2001-2012  
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6. Prostate cancer incidence trends analysis 

PCa incidence rates in FVG among men aged 40 years or more were analyzed for the period 1995-

2009, taking advantage of the availability in 2014 of –yet unofficial and unpublished (courtesy of 

the FVG Cancer Registry) – data for the period 2008-2009 from the cancer registry. 

A total of 15,107 cases of PCa were diagnosed between 1995 and 2009 in men aged 40 or more 

years. The overall crude incidence rate of PCa increased from 219.8 per 100,000 men in 1995 up to 

385.5 in 2007, and then decreased down to 328.3 in 2009 (Fig. 6.1). As expected, PCa incidence 

was very low –almost null– before 50 years of age in the whole considered period. Growing PCa 

incidence rates were observed for all age groups, except men older than 74 years, but the greatest 

increases were observed for the age classes between 55 and 69 years.  

 

 

Figure 6.1. Crude prostate cancer incidence rates per 100,000 men-years by calendar year and age class at diagnosis. 
Friuli Venezia Giulia Cancer Registry, men 40+ years, 1995-2009*. 
* Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry 
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6.1 Joinpoint analysis of prostate cancer incidence rates 

Joinpoint regression analysis was used to identify points where a statistically significant change 

over time in log-linear slope of the PCa rates occurred (as in the previous analysis of PSA testing 

rates, the aPCs were computed by means of generalized linear models, assuming that random errors 

were heteroscedastic).  

Statistically significant changes in PCa incidence rates slopes emerged in 1998 and 2007: the aPCs 

in the periods 1995-1998, 1998-2007, and 2007-2009 were 12.1 (95% CI: 6.6 to 17.9), 1.9 (95% CI: 

1.0 to 2.8), and -7.0 (95% CI: -14.3 to 0.9), respectively (Fig 6.2). 

 

Period aPC  
Lower bound 

95% CI 
Upper bound 

95% CI 

1995-1998 12.1 6.6 17.9 

1998-2007 1.9 1.0 2.8 

2007-2009 -7.0 -14.3 0.9 
Figure 6.2. Joinpoint analysis of prostate cancer incidence rates (model with 2 joinpoints). Friuli Venezia Giulia, men 
40+, 1995-2009* . aPC = annual percent change, CI = confidence interval 
*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry.  
 

Stratified analyses by age class, though suffering from low numbers of cases at the youngest ages, 

highlighted different trends across strata (data not shown): PCa incidence was increasing in the 

whole period for age classes below 55 years and for the age class 65-69 years; whereas, for the age 
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classes 55-59 and 60-64 years there was a tendency to reduction or stabilization in the last period; 

finally, the oldest age groups (70+ years) had decreasing PCa incidence rates in the whole period.  

6.2 Age-period-cohort analysis of prostate cancer incidence rates 

The analyses were restricted to men 40-84 years old at PCa diagnosis. Ten-year birth cohorts were 

approximated by subtracting the mid-point of the 5-year age group (from 40-44 to 80-84 years) 

from the corresponding 5-year period (1995-1999, 2000-2004, 2005-2009) (e.g., for the age class 

65-69 years −mean age 67.5− in the period 1995-1999 −mean date of diagnosis 1997.5− the mean 

date of birth was 1930, but comprises men born between 1925 and 1935).  

The basic plots (Figures 6.3, 6.4, 6.5, 6.6) suggested, beyond the known age affect, also effects of 

both birth cohort and period. The period effect was almost completely due to the increase of rates 

between the first and the second period followed by a stabilization. Conversely, more complex 

patterns emerged for the cohort effects: the most recently born men had increasing PCa incidence 

rates between the first and the second period and then stabilized; the ‘middle’ cohorts showed 

increasing rates throughout the three periods; the oldest cohorts showed almost stable incidence.  

Considering the period 1995-1999 as reference and constraining cohort effects to be equal on 

average, the age effects are interpretable as age-specific rates for the period 1995-1999, after 

adjustment for the cohort effects; the cohort effects are interpretable as RRs relative to the reference 

period 1995-1999; the cohort effects are interpretable as the RRs relative to the age-period 

prediction (residual RRs). 
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Figure 6.2. Prostate cancer incidence rates per 100,000 men-year (log-scale) for each age class plotted against calendar 
year at diagnosis. Friuli Venezia Giulia Region, men aged 40-84 years, 1995-2009* 

*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry.  
 

 

Figure 6.3. Prostate cancer incidence rates per 100,000 men-year (log-scale) for each age class plotted against birth 
cohort. Friuli Venezia Giulia Region, men aged 40-84 years, 1995-2009* 
*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry 
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Figure 6.4. Age-specific prostate cancer incidence rates per 100,000 men-year (log –scale), by calendar period at PSA 
testing. Friuli Venezia Giulia Region, men aged 40-84 years, 1995-2009* 
*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry 

 

Figure 6.5. Age-specific prostate cancer incidence rates per 100,000 men-year (log–scale) by birth cohort. Friuli 
Venezia Giulia Region, men aged 40-84 years, 1995-2009* 

*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry   
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The results of age-period-cohort analysis with factor model are reported in Table 6.1 and plotted in 

Figure 6.3. Cross-sectional age-specific PCa incidence rates estimates in the period 1995-1999 were 

sharply increasing up to the mean age class 70-75 years and reduced thereafter. As compared to the 

period 1995-1999, incidence rates were 1.4-fold higher (95% CI: 1.3-1.4) in the subsequent periods. 

An U-shaped cohort effect emerged, with more than 2-fold increase of RRs for men born since 

1955. The estimated age-drift was 2.3% (95% CI: 1.9%-2.7%) per year. 

 
Table 6.1. Maximum likelihood estimates of age-period-cohort effects with factor model for prostate cancer 
incidence. Friuli Venezia Giulia, men aged 40-84 years, 1995-2009*.   

Age 

    Age        Rate        2.5%      97.5% 

  42.5   0.5193459   0.2199192   1.226451 

  47.5   4.4970416   3.2170844   6.286246 

  52.5  32.0204454  27.7406472  36.960526 

  57.5 112.2174249 103.4575711 121.718984 

  62.5 295.2430945 278.4794266 313.015888 

  67.5 547.0890697 520.6926803 574.823618 

  72.5 744.4386480 711.4365445 778.971652 

  77.5 718.7318527 683.8425535 755.401186 

  82.5 530.0849055 494.5550783 568.167267 

Period 

     Per     P-RR     2.5%    97.5% 

 1997.5 1.000000 1.000000 1.000000 

 2002.5 1.372309 1.311457 1.435984 

 2007.5 1.368713 1.310946 1.429025 

Cohort 

    Coh      C-RR      2.5%      97.5% 

 1915 1.9812000 1.8020217  2.1781943 

 1920 1.1889220 1.1270688  1.2541696 

 1925 0.9584097 0.9258770  0.9920855 

 1930 0.8621196 0.8306825  0.8947465 

 1935 0.8211840 0.7883758  0.8553575 

 1940 0.9625678 0.9235295  1.0032564 

 1945 1.0966895 1.0380661  1.1586235 

 1950 1.4348490 1.3093996  1.5723172 

 1955 1.9882658 1.6566656  2.3862395 

 1960 2.5093354 1.6010833  3.9328148 

 1965 3.2817687 1.0193887 10.5651609 

Drift 

    exp(Est.)     2.5%    97.5% 

APC  1.029528 1.025159 1.033915 

A-d  1.023194 1.019034 1.027372 

 

Analysis of deviance for Age-Period-Cohort model 

                  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)     

Age                      18     443.38                           

Age-drift                17     320.96  1  122.418 < 2.2e-16 *** 

Age-Cohort                8      98.77  9  222.189 < 2.2e-16 *** 

Age-Period-Cohort         7      25.35  1   73.423 < 2.2e-16 *** 

Age-Period               16     294.67 -9 -269.317 < 2.2e-16 *** 
*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry 
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Figure 6.3. Estimated effects of age-period-cohort analysis for PCa incidence rates with factor model. Age effects are 
reported as rates per 100,000 men-year, period and cohort effects are reported as rate ratios (RR). Dashed lines 
represent 95% confidence intervals. Friuli Venezia Giulia, men aged 40-84 years, 1995-2009*  
*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry 

 

Age, period, and cohort estimates were also modeled using natural spline functions. The best-fitting 

model, defined as the one minimizing the AIC, was found for an APC model with 5 parameters for 

age, 2 for the period, and 3 for the cohort. The results of age-period-cohort model effects are 

reported in Table 6.2 and plotted in Figure 6.4. Estimates were comparable to those derived from 

the factor model but with narrower confidence intervals (Fig. 6.4).  

RR
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Table 6.2. Age-period-cohort effects identified through natural splines (with 5 knots for age, 2 for period, and 3 for 
cohort) and position of knots.  Friuli Venezia Giulia, men aged 40-84 years, 1995-2009*.  

Age 

    Age       Rate       2.5%      97.5% 

   42.5   1.574411   1.228764   2.017286 

   47.5   6.538197   5.492132   7.783503 

   52.5  27.151762  24.414868  30.195459 

   57.5 106.994066 100.542092 113.860076 

   62.5 307.787904 293.182601 323.120791 

   67.5 543.955944 518.254311 570.932190 

   72.5 751.416460 718.964081 785.333665 

   77.5 713.028205 678.890898 748.882070 

   82.5 538.705232 503.056900 576.879728 

 

Period 

     Per     P-RR     2.5%    97.5% 

     1997.5 1.000000 1.000000 1.000000 

     2002.5 1.359145 1.299252 1.421799 

     2007.5 1.363957 1.306500 1.423941 

 

Cohort 

      Coh      C-RR      2.5%     97.5% 

      1915 1.7750754 1.6433898 1.9173131 

      1920 1.2716607 1.2334780 1.3110252 

      1925 0.9682931 0.9477587 0.9892725 

      1930 0.8329229 0.8115997 0.8548065 

      1935 0.8403689 0.8154174 0.8660839 

      1940 0.9472657 0.9221808 0.9730329 

      1945 1.1438909 1.1245534 1.1635610 

      1950 1.4297263 1.3492651 1.5149856 

      1955 1.7972718 1.6149831 2.0001360 

      1960 2.2593037 1.9317732 2.6423667 

      1965 2.8401121 2.3102844 3.4914473 

 

Drift 

    exp(Est.)     2.5%    97.5% 

APC  1.029286 1.024925 1.033665 

A-d  1.023107 1.018946 1.027284 

 

Analysis of deviance for Age-Period-Cohort model 

                  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)     

                  Age                      21     486.44                           

Age-drift                20     364.96  1  121.489 < 2.2e-16 *** 

Age-Cohort               18     159.77  2  205.183 < 2.2e-16 *** 

Age-Period-Cohort        17      92.55  1   67.225 2.422e-16 *** 

Age-Period               19     338.99 -2 -246.444 < 2.2e-16 *** 

Age-drift                20     364.96 -1  -25.964 3.478e-07 *** 

 

Knots 

Age 

  52.5 62.5 67.5 72.5 77.5 82.5 

 

Period 

1997.5 2002.5 2007.5 

 

Cohort 

1915 1930 1935 1950 
*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry 
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Figure 6.4. Estimated effects of age-period-cohort analysis for PCa incidence rates with natural splines model. Age 
effects are reported as rates per 100,000 men-year, period and cohort effects are reported as rate ratios (RR). Dashed 
lines represent 95% confidence intervals. Friuli Venezia Giulia, men aged 40-84 years, 1995-2009* 
*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry 

 

In order to capture the changes in the trend of PCa incidence rates observed by the joinpoint 

analysis in the last years, the age-period-cohort analysis was also performed using 1-year intervals 

for age and calendar time (this analysis was restricted to men 50+ years, due to elevated number of 

missing counts in each cell of the Lexis diagram at younger ages). The results, using both factor 

model and natural splines (the lowest AIC was found for a model with 4 parameters for age, 6 for 

the period, and 5 for the cohort), considering as reference period the year 1995, are reported in 

Figure 6.5. The estimated age-drift was 2.3% (95% CI: 1.9%-2.7%) per year (equal to the 5-year 

interval analyses), but the period effects highlighted decreasing RRs in the last 3-4 years, after a 

higher increase up to 2007. 

 
 

 

RR
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Figure 6.5. Estimated effects of age-period-cohort analysis for PCa incidence rates with factor model (continuous lines) 
and natural splines (dashed lines) using 1-year intervals. Age effects are reported as rates per 100,000 men-year, period 
and cohort effects are reported as rate ratios (RR). Friuli Venezia Giulia, men aged 50-84 years, 1995-2009* 
*Yet unpublished data for the period 2008-2009, courtesy of the FVG Cancer Registry 
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6.3 Differences between observed and estimated prostate cancer incidence 

rates up to 2009 

Considering all ages, and excluding cases diagnosed solely at autopsy as in the previous comparison 

(Fig. 3.2), observed PCa incidence data up to 2009 were compared with the expected incidence 

rates previously estimated using MIAMOD (Fig. 6.6). Observed rates were higher than those 

expected, with differences ranging between 7% and 18% (median 11%) in the period 1996-2007, 

but rates seemed to converge after 2007.   

 

Year Obs. rate Exp. rate Obs./Exp. rate ratio Difference 

1995 100.3 105.0 0.96 -4.7% 

1996 123.4 113.0 1.09 8.4% 

1997 140.9 121.7 1.16 13.6% 

1998 155.2 130.6 1.19 15.9% 

1999 159.4 139.3 1.14 12.6% 

2000 167.0 147.4 1.13 11.7% 

2001 169.9 154.9 1.10 8.8% 

2002 176.8 161.4 1.10 8.7% 

2003 184.2 166.7 1.11 9.5% 

2004 192.5 169.8 1.13 11.8% 

2005 184.6 172.4 1.07 6.6% 

2006 196.4 174.6 1.12 11.1% 

2007 214.4 176.2 1.22 17.8% 

2008 187.4* 176.9 1.06 5.6% 

2009 185.3* 177.9 1.04 4.0% 

 
Figure 6.6. Crude prostate cancer incidence rates (per 100,000 men-year). Observed (continuous lines) and estimated 
using the MIAMOD method (dashed lines). Friuli Venezia Giulia, men (all ages), 1995-2009*  
*Yet unpublished data for the period 2008-2009 
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7. DISCUSSION 

Joinpoint and age-period-cohort analyses of PSA testing rates in the period 1998-2012 clearly 

highlighted a period effect on the use of PSA testing in FVG among men aged 40 years or more. In 

particular, the PSA testing rates in the period 1998-2002 increased by 17% per year, then by 4% per 

year up to 2008, and then stabilized. The period effect was cross-sectional and involved all the age 

groups and birth cohorts at the same time. As compared to the period 1998-2002, the PSA testing 

rates were found to be 1.5-fold higher in the period 2003-2007 and seemed to stabilize thereafter. 

Age effect reflects the tendency of men of being tested with PSA during life: this effect was 

increasing with age up to the class 70-74 years. Cohort effects, which are longitudinal and reflect 

possible differences in the spread in the use of PSA testing across different birth cohorts, were 

found to be not so important as the period and age effects, but suggested that the youngest birth 

cohorts were more prone to be screened through PSA testing. 

While an appropriate use of PSA testing among men in the oldest age groups (up to 70 years) 

cannot be excluded, the use of this test for screening men aged 40-49 years is by far more 

controversial, given the almost null incidence of PCa before 50 years, except for sub-groups of men 

at particular high risk (e.g., those with first-degree relatives having had a PCa at young age) [Carter 

et al, 2013; Heidenreich et al, 2013].  

The analysis of first-PSA testing rates between 2001 and 2012 showed dramatic decreasing trends 

at all ages. Only the youngest men (i.e., under 50 years) showed firstly an increase and then a 

reduction in the very last years. Beyond confirming a tendency to lessen the use of PSA testing in 

FVG, this decreasing trend may be also due to an already reached –almost– complete saturation of 

the potential target population for PSA screening in this region, especially at older ages (e.g., in the 

period 2008-2012, approximately 1 out of 3 men aged 40+ years has been tested with PSA, and 1 

out of 2 men among those aged 65-79 years).  
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The analysis of PCa incidence rates trends in FVG also highlighted a steep increase of PCa 

incidence rates between 1995 and 1998 (12% per year), a lower increase up to 2007 (2% per year) 

followed by stabilization or, probably, a reduction (though not statistically significant) up to 2009. 

Although the data on PCa incidence derived from the FVG cancer registry for the period 2008-2009 

are not official yet, they are eventually overestimated rather than underestimated (i.e., ‘potential’ 

new cancer cases are automatically identified through an ad hoc algorithm from computerized 

pathological archives, hospital discharges, and death certificates databases and, in case of 

disagreement between data sources, they are manually revised by qualified staff and, eventually, 

refused). The trend of PCa incidence rates, thought the considered period was antecedent (i.e., 

1995-2009 vs. 1998-2012), resembled to some extent the trend of PSA-testing rates. Conversely to 

PSA-testing rates, PCa incidence rates in the age-period-cohort analysis resulted to be affected also 

by cohort effects, indicating a more complex baseline risk according to birth cohort. Several factors 

could be potentially associated to the observed increased PCa risk for more recently born men, 

including changes in behavioral and lifestyle factors over time (e.g., dietary and sexual habits, 

obesity) [Leitzmann et al, 2012].  

In Italy, PCa incidence trends started to rise suddenly after 1991, indicating the progressive 

diffusion of screening with PSA in those years [Crocetti, 2007]. In FVG, the increasing rates of 

PSA testing observed among all age classes especially from 1998 up to 2002, assuming that this 

increase started several years before (e.g. since 1991, as in Italy), could reasonably explain the gap 

between the PCa incidence rates estimated by MIAMOD and those reported by the cancer registry, 

especially in the period 1996-2007. Actually, MIAMOD estimates are based on mortality data 

which have not been so heavily modified by the introduction of PSA test as PCa incidence rates 

were. Hence, PCa incidence estimates produced using MIAMOD could be considered as the rates 

that would be observed in the absence of such a great increase of screening with PSA in FVG. It is 

reasonably to hypothesize that this difference between observed and estimated incidence rates was 

attributable to screening with PSA more in terms of overdiagnosis, rather than of early diagnosis 
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(also considering the concurrent stable mortality). Gathering data on Gleason score at PCa diagnosis 

could be useful in order to better understand whether an overdiagnosis occurred, as it should be 

associated to an increase of lower Gleason scores.  

The convergence of the two curves observed in the last common period (2008-2009), seems to 

further support such hypothesis. The potential overdiagnosis proportions (between 7% and 18%) 

seem to be much lower as respect to those estimated on the basis of trials’ results [Etzioni et al, 

2013]. However, most of those proportions were referred to screening-detected PCa cases, whereas 

the present estimate refers to the total PCa cases and it was based on a real population. Draisma and 

colleagues (2009) reported a range of 9-19% of overdiagnosed cases over total cases (using 3 

different simulation models) and Tsodikov and colleagues (2006) estimated an overdiagnosis up to 

20% of total detected PCa. These results are in line with the present study estimates.  

As suggested by Mistry and colleagues [Mistry et al, 2011], incidence data from a period prior to 

the extensive use of PSA testing (e.g., before 1990 in UK), could be used to fit APC models to 

predict rates in the absence of PSA testing in the subsequent periods. The predicted rates can be 

used to calculate age-specific observed to predicted ratios that, in turn, can be used to adjust future 

predictions. Unfortunately, FVG cancer registry does not cover a period before PSA screening 

diffusion, but the MIAMOD estimates provided an alternative. 

It is worth noting that data on PSA-testing, which are produced for administrative purposes, are 

available also in areas not covered by cancer registration. Moreover, they are available within very 

few months from the ‘real time’ of the event (e.g., in FVG, as of December 2014, PSA testing data 

were available up to 2013); conversely, cancer registries release incidence data several years 

(usually 5 or more) after the time of the event, due to the complexity of the required quality checks 

of data, as previously described (e.g., in FVG, as of December 2014 the last published year was 

2007).  
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7.1 Conclusion 

The widespread use of opportunistic PSA testing in the last decades in high-income countries has 

inflated the incidence of PCa without affecting the overall mortality at the same extent. Given that 

areas covered by population-based cancer registries are still few –though increasing– also in 

developed countries, and given that data from cancer registries are usually not up to date, methods 

applied for estimating the incidence of PCa at a population level are tipically based on mortality 

data. As a consequence of the PSA-testing diffusion, these methods could produce biased estimates 

and, furthermore, even more biased projections of incidence and prevalence of PCa. The availability 

of up-to-date information on PSA-testing in several areas offers the opportunity of evaluating the 

estimates and projections of PCa incidence taking into account of the observed trends of PSA-

testing rates. 
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APPENDIX A −−−− SAS PROC NLIN  

Example for modeling survival with mixture cure models  

 

 

/*NON-LINEAR REGRESSION - MIXTURE SURVIVAL MODELS*/ 

 

/* PARAMETERs IN THE SAS MODEL:   

  A = FATAL CASES (0<=A<=1)  

(1-A)= PROPORTION OF CURED PATIENTS 

       GAMA = WEIBULL PARAMETER 

  LAMBDA = WEIBULL PARAMETER 

       B1= AGE EFFECT  

       B2= PERIOD EFFECT  

       B3= AREA EFFECT 

 

*/ 

 

/* EXAMPLE: MODEL MARGINAL BASELINE, MARGINAL AGE AND PERIOD EFFECTS*/  

 

TITLE 'MARGINAL BASELINE- MARGINAL AGE AND PERIOD EFFECTS'; 

 

PROC SORT DATA=prostate;  

BY AREA;  

RUN; 

 

PROC NLIN method=gauss data=prostate outest=res noITprint  maxiter=500; 

     by area; 

     parms a=0.3, LAMBDA=1.0, GAMA=1.0, B1=0.0, B2=0.0; 

     bounds LAMBDA>0.001, GAMA>0, 0<=a<=1; 

     temp1=(LAMBDA*fup)**GAMA; 

     temp=exp(-temp1); 

     model surv=((1-a)+a*temp)**EXP(B1*(AGE2-AGEMED)+B2*(PER2-PERMED)); 

     _weight_=1./(survse**2); 

     output ouT=NLRES p=pred parms=a LAMBDA GAMA B1 B2; 

RUN;
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APPENDIX B – R code for age-period-cohort analysis  

Example of apc.fit for modeling using factor or natural splines  

 

library(Epi) 

library(splines) 

 

#DEFINITION OF MEAN VALUES FOR PERIOD, AGE, AND COHORT EFFECTS 

psa$P[psa$period==1]=2000.5 

psa$P[psa$period==2]=2005.5 

psa$P[psa$period==3]=2010.5 

 

psa$A[psa$age==9]=42.5 

psa$A[psa$age==10]=47.5 

psa$A[psa$age==11]=52.5 

psa$A[psa$age==12]=57.5 

psa$A[psa$age==13]=62.5 

psa$A[psa$age==14]=67.5 

psa$A[psa$age==15]=72.5 

psa$A[psa$age==16]=77.5 

psa$A[psa$age==17]=82.5 

 

psa$C[psa$coorte==2]=1920 

psa$C[psa$coorte==3]=1925 

psa$C[psa$coorte==4]=1930 

psa$C[psa$coorte==5]=1935 

psa$C[psa$coorte==6]=1940 

psa$C[psa$coorte==7]=1945 

psa$C[psa$coorte==8]=1950 

psa$C[psa$coorte==9]=1955 

psa$C[psa$coorte==10]=1960 

psa$C[psa$coorte==11]=1965 

psa$C[psa$coorte==12]=1970 

 

 

#FACTOR MODEL   

psa.apc<-apc.fit(psa, model="factor", parm="APC", scale=10^5, ref.p=2000.5) 

psa.apc 

 

#PLOT 

frame=apc.frame( 

a.lab=seq(40,90,10),  

cp.lab=seq(1920,2020,10), 

r.lab=c(2000,5000,10000,20000,40000), 

rr.ref=2000, 

a.txt = "Age at PSA testing", 

cp.txt = "Calendar time", 

r.txt = "Rate x100,000 men-year", 

rr.txt= "Rate ratio") 
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apc.lines(psa.apc, frame.par=frame, lwd = 2, lty = 1, ci = rep( F, 3 ) 

 ) 

 

#NATURAL SPLINE        

#AKAIKE INFORMATION CRITERIA (AIC) 

 

AIC=data.frame() 

 

k=1 

n=length(psa[,1]) 

for (i in 1:8) { 

 for (j in 1:10) { 

  for (l in 1:2) { 

psa.APC.ns=apc.fit(psa,model="ns",npar=c(A=i+1,P=l,C=j+1),parm="APC",scale=10^5,

ref.p=2000.5) 

 AIC[k,1]=i+1 

 AIC[k,2]=l 

 AIC[k,3]=j+1 

 AIC[k,4]=2*(n-psa.APC.ns$Anova[4,1])+n*(log( psa.APC.ns$Anova[4,2]/n)) 

  k=k+1 

 } 

} 

} 

names(AIC)=c('knA','knP','knC','AIC') 

AIC[AIC$AIC==min(AIC$AIC),] 

 

 

#BEST FIT 

psa.apc.ns<-apc.fit(psa, model="ns", npar=c(A=9,P=2,C=5),parm="APC", scale=10^5, 

ref.p=2000.5) 

 

psa.apc.ns 
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