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Replacing of animal by plant protein in foods is currently an important topic of 

discussion due to the ecological and physiological benefits associated with 

vegetable sources of proteins. In view of the growing global population, as well 

as, the limited availability of agricultural lands, there is an urgent need for high 

quality proteins from sustainable plant sources such as legumes (e.g., soy, pea, and 

lupin). Animal proteins are expensive in terms of market price, land requirement 

and environmental impact, on the other hand, vegetarian sources of protein are 

almost always incomplete proteins not getting all nine essential amino acids from 

foods. However is established as eating a variety of vegetable source proteins one 

can obtain the complete range of amino acids and the recommended daily protein 

requirement. Vegetable proteins also supply essential fats, complex carbohydrates, 

and fibers. Ultimately vegetable proteins are economic and versatile alternative to 

animal proteins as functional ingredients in food formulations and among plant 

proteins, legumes represent, together with cereals, the main plant source of 

proteins in human diet. 

 

     1.1 Legumes Proteins 

1.1.1 Nutritional importance of legumes 

Legumes have played a vital part in many ancient civilizations. The use of legumes 

as a basic dietary staple can be traced back more than 20,000 years in some eastern 

cultures. Legumes are crop plants from the family Fabaceae (or Leguminosae). 

The key characteristic of legume plants is the ability, of nearly all its members, to 

fix atmospheric nitrogen to produce their own protein compounds thanks to the 



12 

 

symbiotic association with nitrogen‐fixing bacteria (i.e. rhizobia) found in the root 

nodules. 

Leguminous seeds are an important source of food proteins. The beneficial effect 

of dietary intake of legume seed are the basis of various health claims. Grain 

legumes are widely recognized as important sources of food and feed proteins. In 

many regions of the world, legume seeds are the unique supply of protein in the 

diet and very often they represent a necessary supplement to other protein sources. 

On the other hand in developed countries plant proteins can now be regarded as 

versatile functional ingredients or as biologically active components more than as 

essential nutrients. This evolution towards health and functionality is mainly 

driven by the demands of consumers and health professionals, such as the partial 

replacement of animal foods with legumes is claimed to improve overall 

nutritional status and, the needs of the food industry, respectively (Duranti M., 

1997). Legume seeds accumulate large amounts of proteins during their 

development. They are stored in membrane bound organelles (protein bodies) in 

the cotyledonary parenchyma cells, survive desiccation on seed maturation and 

undergo hydrolysis at germination, thus providing ammonia and carbon skeletons 

to the developing seedlings. Seed proteins that behave in this way are termed 

'storage proteins'. However, because of their insolubility in water and solubility in 

salt solutions, the storage proteins are also named globulins and the two terms are 

commonly used interchangeably. Besides storage proteins, legume seeds contain 

several comparatively minor proteins including trypsin inhibitors, lectins, 

lipoxygenase and urease, which are relevant to the nutritional quality of the seed. 
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Some of them, like urease from jack-bean, also seem to have adopted a storage 

role by virtue of their amount in the seed (Casey R., 1986). 

 

1.1.2  Nutritional value of legume seed proteins 

1.1.2.1 Nutritional Value  

All legume seed proteins are relatively low in sulphur-containing amino acids and 

tryptophan, but the amounts of another essential amino acid, lysine, are much 

greater than in cereal grains (Ampe et al., 1986; Rockland L.B., 1981). Therefore, 

with respect to lysine and sulphur amino acid contents, cereal and legume proteins 

are nutritionally complementary. The degree of mutual supplementation may also 

depend, however, on the contents of second limiting amino acids, i.e. threonine in 

cereals and tryptophan in legumes (Duranti M., 1997).  

Lupin flours can be an excellent choice for improving the nutritional value of food 

products. The high lysine, low methionine content complements that of wheat flour 

proteins, which are poor in lysine and relatively higher in the sulphur-containing 

amino acids. In lupins, the main limiting amino acids are methionine and cystine, 

followed by valine and then tryptophan. Since lupins are legumes, the lack of 

sulphur-containing amino acids is not surprising, valine seems to be adequate in 

L. albus (Aguilera J. M., 1978). Lupin protein isolates, prepared on a bench scale, 

have been shown to have good nutritional properties when supplemented with 

methionine or mixed with cereals (Ruiz, 1976). Studies have shown that lupin flour 

can be successfully incorporated into products at up to 20% inclusion, to produce 

products that rate higher in terms of color, texture, taste and overall acceptability 
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than the control (Kohajdová Z. ;Karovičová, 2011). A number of pasta products 

containing lupin flour are currently available on the domestic market (Kyle, 1994). 

Soybean flours are increasingly being used in many countries because they are a 

good source of vegetable proteins, with a low fat content. The nutritional value of 

the soybean is not the only factor enhancing its consumption, as it plays an 

important role in health (Jacques et al., 1992a, b). All nine of the essential amino 

acids required by humans can be found in the amino acid composition of soybean. 

A digestibility of 95–100% has been found in isolated soybean protein in 

evaluations of animals and humans (Jacques et al., 1992b). Moreover, the essential 

amino acid content in soybean exceeds the amino acid requirements of children 

and adults, which confirms the protein quality of this vegetable.  

 

1.1.2.2 Legume seed antinutritional compounds 

Legume seeds contain several antinutritional protein and non-protein compounds. 

The presence of anti-nutritional compounds in crop plants is the result of an 

evolutionary adaptation which enables the plant to survive and complete its life 

cycle under natural conditions, regardless of the negative consequences on the 

quality and safety of the food products. Indeed, due to their anti-nutritional or even 

toxic properties, various potentially harmful compounds have been shown to play 

a protective role against insects, fungi, predators and a number of stress conditions 

(Peumans and Vandamme, 1995).  
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1.1.2.3 Protein antinutritional compounds 

To this class belong seed hydrolase inhibitors, which are important in determining 

the quality of legume seeds.  Their antinutritional effect in the irreversible 

inhibition of various digestive enzyme is well documented (Leterme et al., 1992). 

If inactivate, the protein inhibitors may even play a positive nutritional role, due 

to their high content of sulfphur-containing amino acids relative to the majority of 

the seed proteins. The most important protein inhibitors are Trypsin Inhibitors 

(Tis) of both the Bowman-Birk type in Pisum sativum and Kunitz type in Glicine 

max and -amylase inhibitors. It has been shown that the Tis, have been proven to 

act as protective agents against insect attack (Hilder et al., 1990; Johnson et al., 

1989; Liener, 1986; Moreno et al., 1990). Seed lectins are sugar-binding proteins, 

as well as hemagglutinins, which are able to agglutinate red blood cells. Some 

lectins can cause agglutination of the red blood cells followed by hemolysis and, 

in extreme cases, death. Allergies to legume seeds are relatively uncommon in 

humans due to the low allergenic capacity of storage proteins (Lallès, 1996), but 

they could develop with increased consumption.  

 

1.1.2.4 Non-Protein antinutritional compounds 

Legume seeds contain a number of non-protein antinutritional compounds with 

significantly different structures and effects. To this class belong: alkaloids, phytic 

acid, phenolic compounds, saponins, vicine and convicine. Alkaloids limit the 

acceptance of various legume seeds, such as lupin, both for their strong bitter taste 

and toxicity (Cuadrado, 1992). Due to the water solubility of alkaloids and their 
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low size, it is possible to remove them from the seeds by soaking and cooking in 

water. A probable role of alkaloids can also be to provide the seeds pest protection. 

In addition, alkaloids extracted from lupin seeds can be used for pharmacological 

and other biomedical purposes. Phytic acid, is present in legume seeds, making up 

the major portion of the total phosphorous in the seed. Phytic acid is responsible 

for the reduction of the bioavailability of essential minerals, forming insoluble 

complexes which are less available for digestion and absorption in the small 

intestine. Phenolic compounds, such as tannins, can crosslink with proteins by 

reacting with lysine or methionine residues, making them unavailable during 

digestion (Davis, 1981). Vicine and convicine are confined to Vicia and are known 

to be responsible for a type of hemolytic anemia, known as favism. Legumes are 

well known inducers of intestinal gasses (flatulence), due to the presence of -D-

galactopyranosyl residues bound to the glucose moiety of sucrose. Animals and 

humans are not able to digest such oligosaccharides, because of the absence of -

galactosidase in their intestinal mucose, consequently the galactosides pass into 

the colon and are fermented by the intestinal bacteria with production of gas 

(Fleming, 1981). Saponins are a diverse group of compounds commonly found in 

legumes; their general structure consists of a steroid or triterpene group linked to 

one or more sugar molecules. The presences of both polar and non-polar groups 

provide saponins with strong surface-active properties, which are responsible for 

their adverse biological effects. A well-known toxic effect of saponins is their 

ability to lyse erythrocytes, as well as other cells, such as those found in the 

intestinal mucose, thus affecting nutrient absorption. 
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1.2 The seed proteins 

Legume seeds accumulate large amounts of proteins during their development. 

Despite wide variation in their detailed structures, all seed storage proteins have a 

number of common properties. First, they are synthesized at high levels in specific 

tissues and at certain stages of development, in fact, their synthesis is regulated by 

nutrition, and they act as a sink for surplus nitrogen. However, most also contain 

cysteine and methionine, and adequate sulfur is therefore also required for their 

synthesis. Many seeds contain separate groups of storage proteins, some of which 

are rich in sulfur amino acids and others of which are poor in them. The presence 

of these groups may allow the plant to maintain high levels of storage protein 

synthesis despite variations in sulfur availability. Storage proteins are stored in 

membrane bound organelles (protein bodies) in the cotyledonary parenchyma 

cells, survive desiccation on seed maturation and undergo hydrolysis at 

germination, thus providing ammonia and carbon skeletons to the developing 

seedlings. Osborne (1924) classified them into groups on the basis of their 

extraction and solubility in water (albumins), dilute saline (globulins), alcohol-

ether mixtures (prolamins), and dilute acid or alkali (glutelins). The major seed 

storage proteins include albumins, globulins, and prolamins. 

 

1.2.1 Classification of seed storage proteins 

Legume seeds accumulate proteins during their development, most are bereft of 

catalytic activity and play no structural role in the cotyledonary tissue. For the 
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insolubility in water and solubility in salt solutions, the storage proteins are also 

called globulins. 

 

1.2.2 The globulins  

The globulins are the most widely distributed group of storage proteins; they are 

present not only in dicots but also in monocots (including cereals and palms) and 

fern spores. They can be divided into two groups based on their sedimentation 

coefficients (SV20): the 7S vicilin-type globulins and the 11S legumin-type 

globulins. Both groups show considerable variation in their structures, which result 

partly from post-translational processing. In addition, both are deficient in cysteine 

and methionine, although 11S globulins generally contain slightly higher levels of 

these amino acids.  

 

1.2.3 The 11S globulins 

The 11S legumins are the major storage proteins not only in most legumes but also 

in many other dicots and some cereals (oats and rice). The mature proteins consist 

of six subunit pairs that interact with non covalent bond. Each of these subunit 

pairs consists in turn of an acidic subunit of MW, ~40,000 Da and a basic subunit 

of MW, ~20,000 Da, linked by a single disulfide bond. Each subunits pair is 

synthesized as a precursor protein that is proteolytically cleaved after disulfide 

bond formation. Legumins are not usually glycosylated, an exception being the 

12S globulin of lupin (Duranti, 1988). 
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1.2.4 The 7S globulins 

7S globulins are typically trimeric proteins of MW, ~150,000 to 190,000 Da that 

lack cysteine residues and hence cannot form disulfide bonds. Their detailed 

subunit compositions vary considerably, mainly because of differences in the 

extent of post-translational processing (proteolysis and glycosylation). For 

example, the vicilin subunits of pea are initially synthesized as groups of 

polypeptides of MW, ~47,000 and ~50,000 Da, but post-translational proteolysis 

and glycosylation then give rise to subunits with MW values between 12,500 and 

33,000 Da. These subunits are difficult to purify and characterize, but molecular 

cloning allowed their origins and the sites of proteolytic cleavage and 

glycosylation to be identified. The globulins of soybean and common bean are 

extensively  glycosylated, while in pea and the fava bean virtually no glycosylation 

occurs, but processing by proteolytic cleavage is common (Shewry P.R.; Napier, 

1995). 

 

1.3 Functional food: soybean and lupin proteins for hyperlipidemia and 

glucose control   

1.3.1 Functional foods 

A close relationship exists between diet and major diseases of the industrialized 

world such as hyperlipidemia, obesity, diabetes, metabolic syndrome, and tumor 

development.  

However, the only dietary intervention or, alternatively, the use of specific drugs 

may not be sufficient to prevent and treat these diseases, because there may be 



20 

 

contraindications to their use. Therefore, is necessary to identify innovative 

approaches for their prevention and treatment involving the use of compounds 

effective but non-toxic, and possibly present in the foods themselves. 

The functional foods are a large and heterogeneous group of food products, which 

are characterized by having specific beneficial properties. In fact, although there 

is still no universally accepted definition for the term "functional food", there is a 

general consensus that functional foods are special foods that can confer specific 

health effects to the diet beyond the simple nutrition value. It is extremely 

important to emphasize that the fundamental characteristic of a functional food is 

just in his nature to be a food and not a product in the form of pills, tablets or 

capsules. The market for functional foods, although still " niche" has increased 

rapidly over the past few years. The reasons for the growth of the market for 

functional foods lies in the increased awareness of the role of diet in maintaining 

a level of optimum health and prevention of specific diseases related to sedentary 

lifestyle and unbalanced diet (obesity, hypertension, osteoporosis, diabetes, 

cardiovascular diseases, etc.).  

How easily derived, is rather difficult to establish a precise and universal definition 

of the term “functional food” given the large and diverse group of food products 

to which it refers. In other words, we cannot yet have an official definition, 

common to all states that produce and trade for functional foods.  

Today we have experimental evidence that peptides from soybean and lupin can 

play function of nutraceutical compounds able to reduce plasma cholesterol, 

triglycerides and glucose concentrations. However, the molecular determinants 
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responsible for these activities and their mechanism/s of action are actually under 

study. 

 

1.3.2 Biological activity of legume proteins and their impact on the 

nutraceutical and supplements industry  

The business for nutraceutical ingredients in the world is worth € 50 billion and 

continues to grow (source Cordis - Information Service of the European 

Commission in the field of research and development for science). Currently the 

leader in the industry are the United States and Japan, with an ever-increasing 

progress of EU countries (eg; France). In this business field numerous products 

with hypocholesterolemic action (for example, products based on phytosterols) are 

present which base their mechanism of action on preventing the absorption of 

dietary cholesterol and the reabsorption of endogenous cholesterol in the 

gastrointestinal tract.  The molecules that are discussed in this regard instead with 

their innovative mechanism of action (after confirmation following on human 

beings test), will be open to the sector of prevention, generating a strong impact 

on businesses as well as the health of the consumer. 

 

1.3.3 Consumer Health care: cost, risk prevention and drug consumption  

The diseases that have the greatest impact on the healthcare and pharmaceutical 

industries are: metabolic syndrome, coronary heart disease and tumors. 

In the coming years, health care spending is set to increase, since there is a higher 

risk of developing cardiovascular disease. Dyslipidemia is an important 
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cardiovascular risk factor which can be modified through targeted actions for its 

prevention.   

The cardiovascular system drugs are the drugs most commonly used (32.7%) with 

a coverage of 94% of the Italian health system (SSN), although there are regional 

variations. The National Report 2007 shows the expenditure per capita in 

Lombardia amounted to EUR 197.5. 

Functional foods may be defined differently in function of the context in which 

they are considered: the public, the food industry or agriculture. The most 

commonly accepted definition is the one that treats them as “products formulated 

with natural chemical components with the function to provide health benefits, 

lowering the risk of some diseases, participate in specific biological processes or 

correct some diseases caused by nutritional deficiencies”. Nutritional foods are 

often referred to as nutraceuticals. Some of them are similar to conventional foods, 

are used as components of a usual diet and are able to produce health benefits 

and/or reduction of chronic diseases. Others are obtained from the same foods but 

are marketed as dietary or medicinal formulations; they are also able to exercise 

beneficial physiological activity or protective activity against chronic diseases 

(Stephen, 1998).  

Functional foods may be obtained in different ways, and today, the techniques used 

in this field are constantly changing. The most common modifications are designed 

to the production processes of the food which allow more retention of some 

components that would otherwise be lost, selection of plants which enable for 

obtaining of new cultivars with modified composition of the food product. 
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Application of genetic interventions that allow to obtain foods with characteristics, 

sometimes very specific depending on the requirements is the general 

improvement of the techniques of industrial production. 

The beneficial effect of functional foods may be determined by the presence of 

components characterized by varied chemical nature including alkaloids, saponins, 

isoflavonoids, phytates and proteins of various nature. In the latter case, the 

biological activity may be due to peptides released from food proteins after 

enzymatic digestion. The hydrolysis can take place during the process of 

gastrointestinal digestion or result from processes of germination, fermentation 

(the proteolytic system of bacteria is able to contribute to the liberation of peptides) 

and food handling. 

 

1.4 Soy protein  

Evidence of the beneficial properties of legume seed proteins in the prevention and 

even therapy of various diseases, many of which typical of the affluent countries, 

is currently accumulating. In particular, pathologies such as diabetes, cancer, 

cardiovascular disease (CVD), hypertension and obesity appear to be involved. A 

health claim related to legume seed protein dietary intake as a mean to prevent 

heart attack and other CVD-related syndromes has already been published. More 

recently, other scientists' boards have claimed that "grain legumes effectively 

contribute to a balanced diet and can prevent widely diffused diseases, including 

type II diabetes and cardiovascular diseases" (Alissa, 2011) 
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Soybean storage proteins have already been shown to play a major role in the 

plasma lipid homeostasis control. This biological activity was the basis of a USA-

Food and Drug Administration (USA-FDA) health claim in 1999. In particular, 

soy proteins have been defined by the USA-FDA as a powerful tool in reducing 

the risk of cardiovascular disease. A daily intake of 25 gr of soy protein may reduce 

the value of LDL cholesterol by  10-20% of in hypercholesterolemic patients 

(FDA, 1999) 

 
 

 

 

 

 

 

 

 

Fig.1 Glycine max (soy) 

 

1.4.1 Classification  

The components present in greater quantities in soy are proteins, which on average 

constitute up to 40% of the total dry substance (Liu, 1997) .  

Storage globulins comprise two main protein constituents in soybean seeds that 

can be differentiated by their sedimentation coefficients, the 7S protein or -

conglycinin and the 11S protein or glycinin. The 11S fraction is a non-glycosylated 

http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://herbalsilnan.altervista.org/ALICAMENTI/glycinemax.htm&ei=4GVHVLHZM8idPd2_gIAM&psig=AFQjCNEOCDPrxHMxDnPRzuUFeMVHnQzqOQ&ust=1414051381922414
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protein characterized by 12 polypeptide chains divided into 6 basic and 6 acid 

subunits with an overall molecular weight around 350,000 Da. The fraction 7S, 

molecular weight around 150,000 Da, is a glycoprotein formed by three different 

subunits, α, α' and β, associated in various combinations. Within the protein, α, α' 

and β are present in ratio 2:1.7:1 and have molecular weights of 67, 71 and 50 kDa 

respectively. Taking advantage of the different isoelectric point its possible 

separate the two globulins. 

 

1.4.2-Conglycinin 

1.4.2.1 Different purified fractions of -conglycinin           

The proteins of the soybeans are represented by two major components, glycinin 

and - conglycinin, which amounted to 40 % and 30 % compared to total protein 

(Utsumi, 1997a). In the literature there are references about 

conglycinin. These terms were defined by Catsimpoolas and Ekenstam 

(1969), referring to the three distinctive separated cractions from a crude 

preparation of conglycinin. Following further studies Catsimpoolas states that in 

-conglycinin has enzymatic activity typical of the 2S subunit. - and -

Conglycinin not have enzymatic activity and differ from the other according to the 

ability to polymerize reversibly at neutral pH following a decreasing ionic strength 

from 0.5 to 0.1 M. -conglycinin has a coefficient of sedimentation of about 7S at 

high values of ionic strength and 9-10 S for smaller values of ionic strength; this 

property is not found for -conglycinin . Because of its high proportion in the 7S 
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fraction, -conglycinin was studied more intensely than - and -conglycinin (Liu, 

1997). 

 

1.4.2.2 The composition of -conglycinin subunit 

-conglycinin has a trimeric structure analogous to that of other 7S globulins 

(Utsumi, 1997a) and is composed of three kinds of subunit namely , ' and .  

The  and ’ subunit of -conglycinin are composed of the extension regions (, 

125 residues, ’, 141 residues) and by “core” region (418 residues for the  and 

’) (Maruyama et al., 1998). subunit consists only of the “core” region (416 

residues), as presented in the Figure 2. All subunits are glycosylated (Utsumi, 

1997b). 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig.2  
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Fig.2: The amino acid sequences of the ' and  subunits are shown by dots (.) when they 

are identical to those of the  subunit and by letters when non-identical. Dashes (-) are 

introduced for maximal alignment of the sequences. Arrowhead indicates the position 

where the insert sequence reported by Doyle et al. occurred. The regions corresponding 

to the deletion mutants c (position 126-543 of  subunit) and 'c (position 142-559 of 

’subunit) are surrounded by a box. 

 

1.4.2.3 Different molecular species of -conglycinin 

In the presence of denaturing agents such as urea and SDS, the proteins of 

leguminous 11S and 7S release their constituent polypeptide chains (Duranti M., 

1997) that can be solved using a ion exchange chromatography (Liu, 1997). 

These polypeptides are naturally heterogeneous, (Pusztai and Stewart, 1980) the 

heterogeneity is evident both in size and in the charge levels (Brown et al., 1981; 

Horstmann et al., 1993; Tucci et al., 1991) and resulting from a combination of 

two factors, the multi gene origin of each globulin and post-translational 

modifications (Wright, 1986). The relative contribution of these factors varies 

significantly between different genes and inside of the same genus. (Duranti M., 

1997). It is evident that the mechanisms for the assembly of the native proteins 7S 

and 11S from their heterogeneous subunits are not clearly defined that the random 

association can occur in many cases (Gatehouse et al., 1981),  this exponentially 

increases the number of molecular species in both classes. The situation is further 

complicated by the fact that many of these proteins, especially the 7S, are 

glycosylated in irregular way (Duranti M., 1997). Among the ten species of -

conglycinin theoretically possible, six (from B1 to B6) were isolated (Thanh, 1976) 

(Table 1). 
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Table 1. Compositions in the subunits of the six molecular species of conglycinin 

 

The six form of -conglycinin are able to dimerize in a reversible manner to low 

levels of ionic force or to a pH between 4.8 and 11.0. 

 

1.4.2.4 Structure-function relationships at the molecular level: the properties 

of -conglycinin  

The functional properties of the three subunits , ', and , of conglycinin have 

been described using recombinant proteins obtained by means of an expression 

system with E. coli. (Maruyama et al., 1999). The use of recombinant proteins is 

necessary for the presence of different molecular species of conglycinin in the 

seeds of Glycine max. The expression systems used by Utsumi and Maruyama 

have provided homogeneous molecular species of conglycinin and  and ' 

subunits without regions of the extension. 

Solubility: The properties of gelation and the formation of foams and emulsions, 

are based on the solubility of the conglycinin in the solution medium. 

conglycinin soluble in water but not in saline solutions (Osborne, 1924). The 

isoelectric point of conglycinin is between 4.8 and 4 (Koshiyama, 1968) . Like 

the native protein, at a value of ionic strength equal to 0.5 M, the  and '  

B1 1' and 2 

B2 1 and 2 

B3 1 1' and 1 

B4 2 and 1 

B5 21' 

B6 2 
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recombinant subunits are soluble. To a value of 0.08 M ionic strength the two 

recombinants subunits are insoluble at pH value greater than 4.8. While the native 

protein is insoluble in a more restricted range of pH. It is evident that the 

oligosaccharide residues of the native protein and the of extension regions of the 

 and ' subunit will greatly affect the solubility. 

Thermal stability: At pH 7.6 and 0.5 ionic strength of the thermal stability of the 

individual subunits , ' and  are equal to 90.8 °C, 81.7 °C and 78.6 °C 

respectively. Under equal conditions, to the regions of the "core" of  and 'values 

are equal to 77.3 °C and 83.3 °C respectively (Maruyama et al., 1998); for the -

conglycinin native will have two different values, 79.0 °C and 83.1°C. These 

experimental results suggest that the oligosaccharide residues do not contribute to 

thermal stability of the native protein and that, the stability of the different 

molecular species is conferred by the subunit having the lower denaturation 

temperature between the subunits constituting the protein. 

 

1.4.3 The cholesterol-lowering activity of -conglycinin 

The hypocholesterolemic property of purified proteins from soy has been clearly 

demonstrated in animal models and in humans (Carroll, 1991). The reduction of 

serum cholesterol is apparently associated with the activation of the receptors for 

the catabolism of the major transporters of cholesterol in plasma, the low density 

lipoproteins (Lovati et al., 1987; Sirtori et al., 1997). In this regard two hypotheses 

have been proposed; a direct effect of the protein (mainly 7S and 11S globulins or 

fragments thereof), or an effect of soy isoflavones: daidzein and geneistein. Both 
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of these assumptions are based on experimental findings and clinical outcomes 

(Anderson et al., 1995; Erdman, 1995). 

 

1.4.3.1 Increased expression of the LDL receptor-cholesterol by -conglycinin 

The exposure of 7S soy globulin in HepG2 cells at different concentrations was 

associated with a dose-dependent increase in the uptake and degradation of LDL 

cholesterol (Lovati et al., 1992; Lovati et al., 1996). Further evidence showed that 

the expression of LDL receptors on blood type system cells, lymphocytes, 

increases following the consumption of soy protein (Lovati et al., 1987). 

Subsequently, the metabolic fate of the individual subunits of -conglycinin was 

studied in HepG2 cells. In the first place it has been demonstrated that the 7S 

globulin interacts at the cellular level with the binding sites sensitive to heparin-

sensitive binding sites with little competition from the more abundant proteins 

present in the incubation medium. A study based on laser fluorescence showed that 

the globulin 7S is picked up by HepG2 and subjected to proteolysis only in the 

extra-nuclear compartment(Manzoni et al., 2003). It was also observed that in 

HepG2 cells, after 96 hour exposure to 7S soy globulin the the  and ’subunits 

were not in their original primary structure while the  subunit resulted essentially 

indigested. Finally, while subunit did not increase the expression of LDL 

receptor,  and ’ subunits showed powerful LDL receptor induction (Lovati, 

1998). In the system used to evaluate the cholesterol-lowering property of -

conglycinin, the soy isoflavones contenent was present in very low concentrations. 

In order to confirm that the LDL receptor activity of soy may reside in the protein 
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we explored, in the same experimental system, the LDL receptor of proteins 

isolated from a commercial isoflavones-free soy protein concentrate (Croksoy). 

Previous studies from our group had indicated indirectly, between the subunits 

constituting the 7S globulin (, ' and ) that the ' subunit as likely responsible 

for increased LDL receptor activity. This hypothesis was formulated on the basis 

of the very clear lack of LDL receptor activation by a mutant soybean variety 

“Kebury” lacking the ’ subunit of -conglicinin. These conclusions have been 

confirmed directly thanks to the availability of purificated ’subunit separated 

from 7S globulin by affinity chromatography on a matrix containing Zn2+. This 

technique was adopted starting from the observation that the ' contains, in the 

region of extension, a number of histidines higher than that of the  subunit which 

are able to bind several transition metals, including  Zn2+. The exposure of HepG2 

cells in the condition previously described, to purified, ' subunit has determined 

the activation of LDL receptor and, in parallel the increase of LDL receptor 

promoter activity (Manzoni et al., 2003).  

This confirms that the LDL receptor activating-cholesterol lowering properties of 

soy proteins, was due to the ' subunit of the 7S soy. These results suggest that the 

activation properties of the receptors for LDL cholesterol can be traced to a stretch 

of 37 amino acids that are found in the N-terminal region of the subunit ', but not 

subunit (Wright, 1998). An additional hypotheses about the activity of ' lies in 

the possibility of an interaction with sterol regulatory element protein, such as 

SREBP-2, able to increase the expression of the LDL receptors (Manzoni et al., 

2003). 
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1.4.3.2 Interaction of -conglycinin with thiredoxin 1 (Trx1) and cyclophilin 

B (CyPB) 

The interaction of the 7S globulin with cell membranes occurs through specific 

binding with proteins from the relatively low molecular weight (Lovati et al., 

1996). Analysis of the N-terminal amino acid sequence of the proteins involved in 

these interactions have identified two specific protein ligands: Trx 1 and CYPB 

(Manzoni et al., 2003). The fundamental role of these two proteins in cellular 

homeostasis is widely recognized and confirmed by their relevant conservation 

during evolution (Arner and Holmgren, 2000). Cyclophilin B, belonging to the 

family of peptidyl-proline cis-trans isomerase (Bergsma et al., 1991), is a 

cyclosporine binding-protein (Cacalano et al., 1992); is primarily associated to the 

cell secretory pathway and is essential for the folding structure of proteins in vivo 

(Hoffmann and Schiene-Fischer, 2014; Steinmann et al., 1991) 

In particular, CyPB is stored both in the endoplasmic reticulum both in complexes 

on the plasma membrane (Allain et al., 1994). Thioredoxin 1 is a small 

multifunctional protein, with a complex redox in the conserved sequence of the 

active site (-Cys-Gly-Pro-Cys) (Lillig and Holmgren, 2007) that plays a variety of 

roles from elimination of the reactive species of oxygen to the regulation of the 

proliferation of some cell types. It has been observed an increase of the expression 

of Trx and glutaredoxin 1 in samples of human coronary arteries as a result of 

intake of soy protein; this suggests a possible involvement of dithiol-disulfide 

oxidoreductase complex in the protection of human coronary (Okuda et al., 2001). 
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The involvement of these proteins main help to understand the complex 

mechanisms involved in reducing the progression of the atheromatous plaques 

observed after administration of a diet with soy proteins in an animal model of 

human soft plaques (Castiglioni et al., 2003) 

Has been observed “in vitro”  interaction of 7S globulin with Trx 1, this suggests 

that Trx 1 could to act as a carrier of the 7 S globulin in the cells, where it acts by 

regulating the expression of the receptors for LDL cholesterol (Manzoni et al., 

2003). The interaction of 7S globulin with CyPB, however, suggests the 

involvement of this vegetable protein in the cholesterol transport between the 

endoplasmic reticulum and the cavity of the cell surface of the arteries.  

 

1.5 Cholesterol and Atherosclerosis 

1.5.1 The functions of cholesterol in the human body 

Cholesterol is the typical sterol of animal cells. In vertebrates, the most amount of 

cholesterol is produced in the liver. A small part of cholesterol is incorporated into 

the membranes of the hepatocyte, while a large portion is exported under one of 

the two possible forms: bile acids or cholesterol esters. Bile acids and their salts 

are relatively hydrophilic derivatives of cholesterol synthesized in the liver to 

promote the digestion of lipids. Cholesterol esters are formed in the liver by the 

action of cholesterol acyl transferase. This enzyme catalyzes the transfer of a fatty 

acid from acetyl coenzyme A to the hydroxyl group of cholesterol, converting the 

cholesterol in a form even more hydrophobic. Cholesterol esters are stored in the 

liver or are transported in those tissues that use cholesterol. 
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All animal tissues during growth need cholesterol for the synthesis of membranes 

and some organ (for example, the adrenal cortex and the gonads) since it is used 

as precursor for the production of steroid hormones. Cholesterol is also the 

precursor of vitamin D. (Cox, 1993). 

 

1.5.2 The transport of cholesterol 

Cholesterol esters that must be transported to peripheral tissues, are secreted into 

the blood as constituents of lipoprotein complexes called very low density 

lipoproteins (VLDL). 

During the movement of VLDL, triglycerides, and most of their apolipoprotein are 

removed in the capillaries of muscle and adipose tissue, converting sequentially 

VLDL into intermediate density lipoproteins (IDL), and then in low density 

lipoprotein (LDL). The peripheral tissues, normally, derive the majority of their 

exogenous cholesterol from LDL by receptor-mediated endocytosis. Inside the 

cell, cholesterol esters are hydrolyzed by a lysosomal lipase in free cholesterol, 

used by cells or which is esterified by acyl transferase cholesterol to be stored as 

droplets of esters from cholesterol. Cholesterol, cholesterol esters and triglycerides 

from food are transported in the blood by lipoprotein complexes synthesized in the 

intestine and are called chylomicrons. After removal of triglycerides from the 

peripheral tissues, chylomicrons residues bind to specific receptors of the liver 

cells and are internalized via receptor-mediated endocytosis in a manner similar to 

that of LDL. In the liver, the dietary cholesterol is used in the biosynthesis of bile 

acids or compacted into VLDL to be excreted. Cholesterol circulates constantly in 
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the blood, between the liver and the peripheral tissues. While LDL transport 

cholesterol from the liver, cholesterol is transported back to the liver by the high 

density lipoproteins (HDL) (Voet, 1992).When the amount of cholesterol 

synthesized and obtained from the diet exceeds the amount necessary for the 

synthesis of cells membranes, bile salts and sterols, the pathological accumulation 

of cholesterol in the blood vessels can lead to the formation of atherosclerotic 

plaques capable to obstruct the vessels. The atherosclerosis is related to high levels 

of cholesterol in the blood and in particular to the levels of cholesterol bound to 

LDL; there is in fact, an indirect correlation between HDL levels and coronary 

damage (Cox, 1993).  

According to the National Institute of Health deaths caused by atherosclerosis in 

Italy in 2008 amounted to 6808; 64% of these deaths belong to the female 

population. Cardiovascular diseases (CHD), the deadline of a slow process of 

atherosclerosis of the blood vessels are the leading cause of death in Western 

countries, especially the United States of America and northern Europe. Many 

factors contribute to their development, and between them a fundamental role is 

played by the recruitment of a diet rich in animal fats and low in protein of plant 

origin. It should be remembered that only 5% of the population atherosclerosis is 

genetic origin, while in the remaining 95% is related to etiology of eating habits 

and behavior of individuals, which are crucial in particular for plasma cholesterol 

levels. The increase in plasma lipids, particularly cholesterol and low density 

lipoproteins (LDL), is one of the key factors in the onset and development of 

atherosclerosis. Numerous studies conducted both in animal models and humans, 
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have shown how this increase is caused not only by the presence in the diet of 

cholesterol and saturated fatty acids, but also by proteins of animal origin.  

 

1.5.3 The LDL receptor 

The LDL-R gene provides instructions for making a protein called a low density 

lipoprotein receptor (Kong et al., 2006). This receptor binds to particles called low 

density lipoproteins (LDLs), which are the primary carriers of cholesterol in the 

blood (Jeon and Blacklow, 2005). Cholesterol is a waxy, fat-like substance that is 

produce in the body and obtained from foods that come from animals. 

Low density lipoprotein receptors sit on the outer surface of many types of cells, 

were they pick up low density lipoprotein circulating in the bloodstream and 

transport them into the cell. Once inside the cell, the low density lipoprotein is 

broken down to release cholesterol. After low density lipoprotein receptors drop 

off their cargo, they are recycled back to the cell surface to pick up more low 

density lipoproteins (Goldstein and Brown, 2001).  

Low density lipoprotein receptor plays a critical role in regulating the amount of 

cholesterol in the blood. They are particularly abundant in the liver, which is the 

organ responsible for removing most excess cholesterol from the body.  

The LDL-derived cholesterol acts at several levels, including suppression of 

transcription of HMGCoA reductase gene though the sterol regulatory element 

binding proteins (SREBPs) (Osbornet, 2000) pathway and acceleration of the 

degradation of the enzyme protein and suppresses transcription of the LDL 

receptor gene. The LDL derived cholesterol also regulates other processes in a 
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coordinated action that stabilizes the cell’s cholesterol contenent. It activates a 

cholesterol-esterifying enzyme, acyl CoA, cholesterol acyltransferase (ACAT) 

(Yamashita et al., 2014), so that excess cholesterol can be stored as cholesteryl 

ester droplets in the cytoplasm. The internalization of LDL is also regulated by 

PCSK9 protein (pro-protein convertase subtilisin/kexin type 9) (Rashid et al., 

2005) whose function is to induce the degradation of the LDL-R on the cell 

surface. The sterol regulatory element binding proteins, are localized at the 

membrane of the smooth endoplasmic reticulum and regulate the expression of 

over 30 genes involved in lipid metabolism. SREBPs consist of about 150 amino 

acids organized into three domains: an NH2 terminal domain, containing the 

binding site to the DNA, two hydrophobic trans-membrane segments and a COOH 

terminal domain, member of the link with SREBP cleavage-activating protein 

(SCAP), which acts as a sensor of the level of sterols. In the absence af sterols, the 

SCAP-SREBP escort him from the endoplasmatic reticulum (ER) to the Golgi 

apparatus, where they are located two different protease, SP1 (serine protease) and 

SP2 (zinc protease). The action of these two enzyme determines the release from 

the end of the –NH2 terminal nuclear SREBP (n SREBP) a fragment between 60-

70 kDa able to translocate to nucleus and interact with DNA. At nuclear level the 

nSREBP binds the sterol-responsive element (SRE)-1 of target genes involved in 

cholesterol homeostasis increasing their expression. When the cholesterol 

contenent in the cell increase, the SCAP changes in conformation, preventing the 

complex SCAP/SREBP moving to the Golgi apparatus to begin the sequence of 

events described above. 
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The number of low density lipoprotein receptors on the surface of the liver cells 

determines how quickly cholesterol (in form of low density lipoproteins) is 

removed from the bloodstream (Defesche, 2004). Mutation in the LDLR gene 

cause an inherited form of high cholesterol called familial hypercholesterolemia. 

More than 1.000 mutation have been identified in this gene. Some of these genetic 

changes reduce the number of low density lipoprotein receptors produced within 

cells. Other mutation distrupt the receptor’s ability to remove low density 

lipoproteins from the blood. As a result, people with mutation in the LDLR gene 

have very high blood cholesterol levels. The excess of cholesterol circulating  

through the bloodstream, it is deposited abnormally in the tissues such as skin, 

tendons, and coronary arteries, inducing a great increase in the risk  to have an 

heart attack (Ueda, 2005).  

Most people with familial hypercholesterolemia inherit one altered copy of LDL-

R gene from an affect parent and one normal copy of the gene from the other 

parent. These case are associate with an increased risk of early heart disease, 

typically beginning in a person’s forties or fifties. Rarely, a person with familial 

hypercholesterolemia is born with two mutated copies of the LDL-R genes. This 

situation occurs when the person has two affect parents, each of whom passes on 

one altered copy of gene. The presence of two LDL-R mutations results in a more 

severe form of hypercholesterolemia that usually appears in childhood (Marais et 

al., 2004; van Aalst-Cohen et al., 2004) 
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1.6 Lupin Protein  

Legume seeds are an abundant source of proteins and lupin is one of the richest. 

Lupin seed deserves largest interest as a result of its chemical composition and 

augmented availability in many countries in recent years. Lupin is a non-starch 

leguminous seed with a high protein content, almost as high as that of soybean 

(about 35% of the dry weight), and a relatively low oil content (Duranti et al., 

2008).  

Lupin is an economically and agriculturally valuable plant which is able to grow 

in many and different soils and climates. Interest in lupin production is increasing, 

due to its potential as a source of protein, or for pharmaceutical purposes, a green 

manure or, due to the high alkaloid content, as a natural component of plant 

pesticides (Sujak et al., 2006). Apart from the high protein content, lupin has a 

strong capability for nitrogen fixation and organic phosphorus release from soil 

and can be used in crop rotation during intensive grain production (Fan et al., 2002; 

Honeycutt, 1998). The best utilization of this plant can be extended to the 

production of protein concentrates, which, “when added to other food products or 

fodder”, can enrich their nutritional values, thus giving functional food (Archer et 

al., 2004; Batterham et al., 1986; Dijkstra et al., 2003; Guillaume et al., 1987; 

Linnemann and Dijkstra, 2002). Lupin seeds may also be a potential source of 

alimentary cellulose for the production of dietetic food. Among the lupin seed 

species, the most cultivated, primarily in Australia, is blue lupin (Lupinus 

angustifolius L.), while the typical European and South American varieties are 

yellow (Lupinus luteus L.) and white (Lupinus albus L. Fig.3) lupins. Blue and 



40 

 

yellow lupin seeds are mostly used for feed, while the white lupins are primarily 

grown for food uses.  

 

 

 

 

 

 

 

 

Fig. 3  (Lupinus albus L.) white lupin. 

 

1.6.1 Classification 

Most proteins of legume seeds are located in the storage vacuoles of the 

cotyledonary tissues and mostly, but not exclusively, belong to the family of the 

storage proteins which serve as nitrogen and carbon skeleton sources for the 

emerging plantlet (Duranti et al., 2008). White lupin seeds contain two classes of 

proteins, which according to Osborne’s classification, correspond to the albumin 

and globulin fractions. Seeds of white lupin have a protein content ranging from 

33% to 47%, according to genotype and location (Dervas et al., 1999). Oil content 

varies from 6% to 13% with a high concentration of polyunsaturated fatty acids 

(Huyghe, 1997). The presence of alkaloids proves to be non-toxic at low 

concentrations. Since most alkaloids of lupin are water-soluble, the alkaloid level 
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of lupin (0.5–4%) can be decreased to 0.04% by soaking in running water, brine 

or scalding. Also it has been possible to grow sweet genetic varieties with low 

alkaloid contents ranging from 0.008% to 0.012% (Allen, 1998) (Tsaliki et al., 

1999; Vasilakis and Doxastakis, 1999). Globulins are the typical salt soluble 

storage proteins of the seeds. This definition may not fit all cases, since both the 

solubility and the storage role of a protein are not always unequivocally defined, 

but for the sake of simplicity we will refer to the main lupin seed proteins as 

globulins. The first separation of lupin seed globulins dates back to the pioneering 

work of Blagrove and Gillespie (1975). These Authors used a cellulose acetate 

electrophoresis technique to separate four main fractions in L. albus and L. 

angustifolius. These fractions were named -, -, , -conglutins on the basis of 

their electrophoretic mobility. Further separations included isoelectric focusing, 

which illustrated the acidic nature of -, -, -conglutins and the basic nature of -

conglutin, and ion exchange chromatography which showed the extreme 

heterogeneity of the composition of these proteins (Casero, 1983; Duranti, 1981; 

Restani, 1981) as compared to other legume seed proteins. 

 

1.6.2-Conglutin 

1.6.2.1 Molecular characteristics  

-Conglutin is an unusual basic 7S protein, which is equally soluble in water and 

salt solutions. This protein represent 4-5 % of total proteins in mature lupin seeds 

(Duranti, 1981). At neutral pH, the prevalent form of -conglutin is a tetramer 

(Duranti et al., 2000), or a hexamer, according to other authors (Blagrove & 
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Gillespie, 1975). At acidic pH, the oligomer dissociates to a monomer of about 50 

kDa, with a quick transition around pH 5.0 (Duranti, 1986a, b). Each monomer is 

in turn composed of two disulphide linked subunits of 17 and 29 kDa (Restani, 

1981). Both subunits are heterogeneous as a probable result of post-translational 

proteolysis. However, heterogeneity is much less pronounced than in - and -

conglutins. Endogenous proteolysis converts the pro-polypeptide into the two 

mature subunits, as described for L. angustifolius -conglutin (Ilgoutz et al., 1997). 

However, the precise site of cleavage has not been identified yet, as trimming of 

the terminal regions of both subunits is likely to occur (Ilgoutz et al., 1997). 

Recently, four large and five small chains have been identified by proteomic 

analysis (Magni et al., 2007). The 29 kDa subunit is glycosylated with covalently 

linked mannose and glucosamine units. The corresponding glycosylation 

consensus sequence is present in both gene and resides in a cysteine-rich stretch in 

proximity to the N-terminal region. Two complete deduced amino acid sequences 

of -conglutin have been deposited. However, only the product of one gene 

(Q9FEX1_LUPAL) has been detected in the mature dry seeds (Scarafoni et al., 

2001). Lupin -conglutin is located in the protein bodies of developing lupin seeds 

(Pernollet, 1978; Shewry, 1995; Weber, 1980). However, the protein has also been 

detected in the extracellular apoplastic regions of germinating lupin cotyledons 

(Duranti, 1994). The unusual stability of -conglutin during seed germination and 

in “in vitro” tests with various proteolytic enzymes (Duranti et al., 1995) strongly 

suggests that it is not a storage protein. On the other hand, if the denatured protein 

is submitted to proteolytic attack, degradation by trypsin and other enzymes is 



43 

 

complete. This suggests an ‘‘all or none’’ cleavage mechanism of -conglutin 

(Duranti, unpublished data). Whether this feature reflects some functionality of the 

protein has yet to be established. The unusual extra-vacuolar location of -

conglutin adds further evidence that this protein probably plays a non storage role 

(Citharel, 1988; Duranti et al., 1991; Duranti, 1994). Intense research activity of 

our group is devoted to elucidating the physiological role of this protein. -

Conglutin displays further unique properties of its own: it binds divalent metal 

ions, especially Zn++ and Ni++ (Duranti et al., 2001) which have been shown to 

promote the refolding of the denatured protein (Duranti et al., 2002) and, 

independently, insulin with a Kd of     10-5 M over a wide range of pH values 

(Magni et al., 2004). 

 

1.6.2.2 The glucose lowering activity of conglutin 

Lupin -conglutin is a protein known to elicit a significant glucose decrease 

response. Although the mechanism of action of this dietary protein is still far from 

being understood, these experimental findings represent the rationale behind the 

attribution of anti-diabetic properties to lupin seeds, as claimed by traditional 

pharmacopoeia. 

Some years ago, the ability of this protein to lower plasma glucose concentrations 

upon glucose overload in mice was first shown (Magni et al., 2004). Since then, 

experimental evidences on the peculiar biological effects of -conglutin have 

accumulated. In particular, the effect of -conglutin on the activation of 
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differentiating myocyte signaling pathway closely resembled that of insulin 

(Terruzzi et al., 2011).  

As a matter of facts,-conglutin cell stimulation resulted in the persistent 

activation of protein synthetic pathway kinases, and increased glucose transport, 

GLUT4 translocation, as well as muscle-specific gene transcription regulation. 

Further studies on the oral administration of -conglutin to animal models and 

healthy humans confirmed its remarkable capacity of decreasing glycaemia 

(Bertoglio et al., 2011). In a study aimed at identifying the metabolic fate of the 

protein, “in vitro”  and “ex vivo” approaches showed that the protein can be 

transcytosed through a Ca-Co2 cell monolayer and cross the intestinal barrier in 

an intact form (Capraro et al., 2011). Other functional “in vitro”  studies showed 

the peculiar resistance of this protein to a number of proteolytic enzymes (Capraro 

et al., 2009). This feature supports the hypothesis that at least part of the protein 

may reach the intestinal lumen in an active form and thus exert systemic biological 

activity (Capraro et al., 2011). 

-Conglutin was found to interact “in vitro” with insulin with a Kd around 7 x 10-

5 M and, most importantly, to significantly reduce plasma glucose in rodents 

(Magni et al., 2004). Since insulin-binding to its own receptor causes a series of 

phosphorylation/dephosphorylation reactions, which lead the insulin signal from 

the receptor to the final metabolic and myogenic pathway. It was hypothesize, in 

fact, that the effect of -conglutin on blood glucose is due to an insulin-mimetic 

effect of the protein at the level of the intracellular pathway of the insulin 

receptor/IRS-1/PI-3-kinase, eventually leading to the recruitment and 
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translocation of GLUT4. Secondly, as insulin promotes muscle protein synthesis 

induced muscle anabolism, it was hypothesize the activation by -conglutin.   

 

1.7 Diabetes Mellitus 

On September 14, 2011, the International Diabetes Federation announced that 336 

million people worldwide now have type 2 diabetes, and that the disease is 

responsible for 4.6 million deaths each year, or one death every seven seconds. It 

affects 12% of US adults and >25% of those over the age of 65. Diabetes is no 

longer restricted to the Western world, and the greatest increases in disease 

incidence in the next few decades are expected to be in China and India. These 

prevision serve to emphasize that there is currently a fast-growing diabetes 

pandemic. This is a major healthcare problem because diabetes increases the risk 

of heart disease, stroke, and microvascular complications such as blindness, renal 

failure, and peripheral neuropathy. Consequently, it places a severe economic 

burden on governments and individuals: the cost of diabetes and its complications 

amounts to $ 612 million per day in the USA alone. Diabetes mellitus is a chronic 

illness that requires continuing medical care and ongoing patient self-management 

education and support to prevent acute complications and to reduce the risk of 

long-term complications. Diabetes care is complex and requires multifactorial risk 

reduction strategies beyond glycemic control. 

The classification of diabetes includes four clinical classes: 

 Type 1 diabetes (results from -cell destruction, usually leading to absolute 

insulin deficiency) 
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 Type 2 diabetes (results from a progressive insulin secretory defect on the 

background of insulin resistance) 

 Other specific types of diabetes due to other causes, e.g., genetic defects in 

-cell function, genetic defects in insulin action, diseases of the exocrine 

pancreas (such as cystic fibrosis), and drug- or chemical-induced (such as 

in the treatment of HIV/AIDS or after organ transplantation) 

 Gestational diabetes mellitus (GDM) (diabetes diagnosed during pregnancy 

that is not clearly overt diabetes) 

Diabetes is a group of metabolic diseases characterized by hyperglycemia 

resulting from defects in insulin secretion, insulin action, or both. The chronic 

hyperglycemia of diabetes is associated with long-term damage, dysfunction 

of different organs, especially the eyes, kidneys, nerves, heart, and blood 

vessels. 

More pathogenic processes are involved in the development of diabetes. These 

range from autoimmune destruction of the β-cells of the pancreas with 

consequent insulin deficiency to abnormalities that result in resistance to 

insulin action. The basis of the abnormalities in carbohydrate, fat, and protein 

metabolism in diabetes is deficient action of insulin on target tissues. Deficient 

insulin action results from inadequate insulin secretion and/or diminished 

tissue responses to insulin at one or more points in the complex pathways of 

hormone action. Impairment of insulin secretion and defects in insulin action 

frequently coexist in the same patient, and it is often unclear which 

abnormality, if either alone, is the primary cause of the hyperglycemia 
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For more time, the diagnosis of diabetes was based on plasma glucose criteria, 

either the fasting plasma glucose (FPG) or the 2 hours value in the 75 gr oral 

glucose tolerance test (OGTT) (Association, January 2010 ) . People with diabetes 

should receive medical care from a team that may include physicians, nurse 

practitioners, physician’s assistants, nurses, dietitians, pharmacists, and mental 

health professionals with expertise and a special interest in diabetes. It is essential 

in this collaborative and integrated team approach that individuals with diabetes 

assume an active role in their care. 

 

1.7.1 Insulin  

Insulin is known as potent anabolic hormone and is essential for appropriate tissue 

development, growth, and maintenance of whole-body glucose homeostasis. 

Insulin  is secreted by the β cells of the pancreatic islets of Langerhans in response 

to increased circulating levels of glucose and amino acids after a meal. This 

hormone regulates glucose homeostasis at many sites, reducing hepatic glucose 

output (via decreased gluconeogenesis and glycogenolysis) and increasing the rate 

of glucose uptake, primarily into striated muscle and adipose tissue. In muscle and 

fat cells, the clearance of circulating glucose depends on the insulin-stimulated 

translocation of the glucose transporter GLUT4 isoform to the cell surface. Insulin 

also profoundly affects lipid metabolism, increasing lipid synthesis in liver and fat 

cells, and attenuating fatty acid release from triglycerides in fat and muscle. Insulin 

resistance occurs when normal circulating concentrations of the hormone are 
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insufficient to regulate these processes appropriately. Thus, by definition, insulin 

resistance is a defect in signal transduction.  

 

1.7.2 The insulin receptor 

The insulin receptor consists of two  subunits and two  subunits that are 

disulfide linked into a 22 heterotetrameric complex. Insulin binds to the 

extracellular  subunits, transmitting a signal across the plasma membrane that 

activates the intracellular tyrosine kinase domain of the  subunit. The insulin 

receptor (IR) then undergoes a series of intramolecular transphosphorylation 

reactions in which one  subunit phosphorylates its adjacent partner on specific 

tyrosine residues (Pessin and Saltiel, 2000).  

 

1.7.3 Insulin signaling pathway 

Following binding of insulin to the extracellular portion of the IR, the second 

messenger system involved in insulin signaling diverges into separate pathways 

that regulate distinct biological effects. These specific second messenger proteins 

are also employed in mediating the effects of a variety of other hormones. Thus, a 

specific and coordinated cellular response to insulin stimulation requires the 

integration of a full network of signaling processes (Taniguchi et al., 2006). The 

substrate tyrosine kinase activity of the IR initiates a cascade of cellular 

phosphorylation reactions that regulate protein interactions and enzymatic 

activities. Substrates of the IR include the insulin receptor substrates IRS-1 and 

IRS-2, as well as Shc (Src homology collagen) and APS (adaptor protein with a 
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PH and SH2 domain) (Taniguchi et al., 2006). These phosphorylated substrates 

then serve as docking molecules that bind to and activate cellular kinases, initiating 

the divergent signaling pathways that mediate cellular insulin action. The pathway 

of insulin signaling is that the stimulation of glucose transport and most other 

metabolic effects of insulin are regulated by activation of the phosphatidylinositol 

3- kinase (PI3K) pathway, facilitated by binding of the regulatory subunit of PI3K 

to phosphotyrosine residues on IRS-1. The ultimate effector system for regulating 

glucose disposal is the translocation of GLUT4-containing vesicles to the plasma 

membrane.  

 

1.7.4 The association of PI-3K with IRS proteins and activation of Akt/PKB 

The predominant function of the insulin receptor substrate (IRS) proteins seems to 

be the activation and/or regulation through many pathways of the phosphoinositide 

3-kinase (PI3K). PI3K is a heterodimer with two separate subunit, regulatory and 

catalytic subunits (p85 and p110 respectively). In its resting state, PI3K is present 

as an inactive p85-p110 complex. After the activation of a receptor tyrosine kinase 

(RTK), due to the phosphorylation of its cytoplasmic tail, the p85-p110 complex 

is recruited to the receptor by interaction of an SH2 domain on p85 with 

phosphotyrosine residues on the RTK (Fruman et al., 1998). This interaction is 

believed to release the inhibitory effects of p85 on the catalytic p110 (Yu et al., 

1998). P110 is able to interact with its lipid substrates, the phosphatidylinositol, 

and convert PIP2 to PIP3. Recruitment of PI3K by RTK also puts p110 in close 

proximity to these lipid substrates residing in the plasma membrane. The major 
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exception to this reaction is that PI3K can be activated by signal adapter proteins, 

such as IRS-1 and IRS-2, rather than by RTKs themselves (White, 2002). It is 

important to note, IRS-mediated activation of PI3K requires that phosphorylated 

YMXM motifs occupy both SH2 domains within p85. Generation of PIP3 by 

activated PI3K near the plasma membrane results in interaction with, and 

subsequent phosphorylation of, its primary substrate Akt. Akt requires, for its full 

activation, the phosphorylation of the residue of Ser473 and the residue Thr308 and 

interacts with the phosphatidynol3, 4biphospate (PI3,4P2), 4,5 trisphosphate 

(PI3,4,5P3), produced by PI3K. These phospholipids are essential for its activation: 

their interaction with the PH domain of Akt modifies the conformation and makes 

that Akt is recruited to the cell membrane, where the protein complex Rictor-

mTOR (Target of its mammalian rapamycin) phosphorylates at ser473 level and it 

facilitates the subsequent phosphorylation, at the level of treonina308, by PDK1 (3-

phosphoinositide dependent protein kinase-1) (Sarbassov et al., 2005). One of the 

major substrates of Akt is glycogen synthase kinase-3 (GSK-3), which participates 

in the regulation of glucose homeostasis regulating the synthesis of glycogen. The 

levels of glycogen (synthesized mainly in the liver and muscle) are tightly 

regulated by the action of the enzyme glycogen synthase (GS), which synthesizes 

and its antagonist, the enzyme glycogen phosphorylase. In basal conditions, GSK-

3 inhibits glycogen synthesis by blocking the activity of GS inhibitory 

phosphorylation pathway. The activation of the insulin pathway leads to 

IRSs/PI3K/Akt inhibitory phosphorylation of GSK-3 at residues Ser regulators 21 
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(on  isoform of GSK-3) and Ser 9 (on  isoform of GSK-3). This activates the 

GS and the glycogen synthesis (Lee and Kim, 2007).  

 

1.7.5 Insulin resistance 

Tissue insulin resistance predisposes an individual to significant health risks in 

addition to its role in the pathogenesis of type 2 diabetes mellitus (Groop, 1999). 

In humans, insulin-stimulated muscle glucose disposal rates vary widely across the 

normal population, and the insulin-resistant state refers to individuals in the lower 

end of a normal distribution, rather than a discreet pathological condition. In “in 

vivo”, muscle insulin sensitivity is regulated on a long-term basis by factors such 

as obesity, and is altered in a more rapid manner by changes in dietary habits and 

physical activity (Barnard, 1992).Though more difficult to quantify, there is also 

evidence for genetic or intrinsic differences in muscle insulin sensitivity (Groop, 

1999). In any individual, therefore, the degree of insulin sensitivity is determined 

by the interaction of numerous factors, both genetic and environmental. Both acute 

and chronic regulation of tissue insulin sensitivity can occur via multiple pathway 

through which the cellular mediators of insulin signaling can be altered by protein 

interactions and other modifications. 
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Food proteins are considered as source of bioactive peptides and amino acids that 

can exert physiological functions to promote health and prevent chronic diseases, 

such as lipid disorders (Lovati, 2006) diabetes (Lovati et al., 2012), hypertension 

(Matoba et al., 2001) cancer (Chiesa et al., 2008; De Mejia, 2010 ; Galvez et al., 

2001) and obesity (Martinez-Villaluenga et al., 2010) which are typical of 

industrialized societies. It is known that during gastrointestinal digestion or food 

processing, these peptides are released from the parent protein and act as 

regulatory compounds with hormone-like activities (Martinez-Villaluenga et al., 

2010). Soybean (Glycine max) and white lupin (Lupinus angustifolium) comprise 

the most widely grown legume crops in the world. In addition to being an 

invaluable source of oil and protein for food and feed, many papers from our group 

pointed out the positive effect of soybean and white lupin proteins on lipid and 

glucose metabolism.  Despite intensive studies in this area, the protein molecules 

directly responsible for the observed effect have not been unequivocally identified 

nor with regard to the protein of soya nor with regard to those of white lupin. 

 

The aim of the present doctorate thesis is to evaluate in “in vitro” and “in vivo” 

experiments the ability of polypeptides from soybean and from white lupin to 

interact with the molecular mechanisms involved in the regulation of plasma and 

tissue lipids as well as in the glucose homeostasis control. 

 

For soybean proteins, the ’ subunit of the soybean 7S globulin, the so called -

conglycinin, was shown to have a key role in the up-regulation of high affinity-
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LDL receptors, in “in vivo” and “in vitro” systems (Duranti et al., 2004; 

Maruyama et al., 1999) suggesting that biologically active peptides, capable of 

modulating lipid homeostasis, are likely to be produced by cell and gastrointestinal 

enzymes. The native 7S globulin is a randomly assorted hetero-trimer,, ’ and 

 subunits , with molecular mass of 150-200 kDa (Manzoni et al., 2003). The and 

’ chain consist of a core regions with a high degree of homology (87%) and 

extension regions (, 125 residues; ’, 141 residues) exhibiting lower homology 

(57%), whereas subunit consists of only a core region that has homology with  

and ’ core regions (75 and 72 %, respectively) (Lovati et al., 2000). Although, 

the results from “in vitro” and “in vivo” experiments justify the lipid-lowering 

activity of ’ subunit, a related concern is the biological fate of this polypeptide 

“in vivo” because it seems unlikely that it crosses the intestinal barrier with no 

modification. We hypothesized, in fact, that peptides, deriving from the activity of 

gastric/intestinal enzymes on soybean proteins, might be absorbed by the 

enterocytes and reach the liver through the blood stream, where they elicit the 

biological effect (Lovati et al., 2000; Lovati, 1998; Manzoni et al., 2003) . Our 

research group has been following two different approaches to identify the active 

peptide/s involved in the lipid regulation. The first one has been to reduce the 

length of the polypeptide chain of ’ subunit by a biotechnological process 

obtaining an extension form of ’ chain, roughly covering one third of the full-

length polypeptide from N-terminus, which has been shown to up-regulate the 

LDL-R in Hep G2 cells (Consonni et al., 2011). The second approach has been to 
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make a screening of peptides with amino acid sequences occurring in ’,  and  

subunits of soy -conglycinin, and test their biological effect “in vitro”. These 

peptides have been evaluated for their effect on the expression of LDL receptor, 

sterol regulatory element binding protein-2 (SREBP-2) and hydroxymethylglutaril 

coenzyme A reductase (HMGCoA red) in HepG2 cells. Moreover, the peptide 

which resulted more promising among the different compounds has been tested in 

“in vivo” experiment in order to evaluate its potential on lipid homeostasis in a rat 

model of human hypercholesterolemia. 

Recently new data on the potential of -conglutin, a seed glycoprotein with a 

molecular weight of 47 kDa, on the glucose metabolism are emerging. Since the 

“in vitro” interaction of -conglutin with mammalian insulin has been described 

in the present study the effect of an oral dose of this protein was studied in an 

animal model of diabetes in order to evaluate its ability to modulate the plasma 

glucose rise. Moreover in “in vitro” experiments the ability of -conglutin to 

interact with cell compartment and to interfere in the insulin pathway has been 

followed in order to ascertain whether the protein was characterized by insulin-

like property. 

Although, the data presented in this report need to be confirmed by human studies 

the potential of peptides from ’ subunit of soybean as well as that of lupin seed 

–conglutin to control plasma lipids and  glycaemia could be considered before 

developing new therapeutic strategies for the prevention or regression of lipid and 

glucose metabolism modifications. 
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3.1 Materials 

3.1.1 Isolation of -conglutin 

Dry mature seeds of white lupin (L. albus L, var. Multitalia) were kindly provided 

by Dr Massimo Fagnano, University of Naples, Naples, Italy. Type F, a -

conglutin-enriched lupin protein isolate, prepared as described in Bez et al (Bez, 

2005), was kindly supplied by Fraunhofer Institute (Munich, Germany). This 

preparation, the composition of which is detailed in the cited reference, contained 

about 80% protein and was used as such in the “in vivo” experiments. A 

laboratory-scale purified -conglutin was utilized in the “in vitro” assay. The 

procedure for -conglutin purification, as described by Duranti et al. (Duranti et 

al., 1994) was slightly modified to improve the homogeneity of the preparation. In 

particular, after conventional chromatographic steps, which included gel 

permeation chromatography, ion exchange chromatography on both Whatman 

DE52 diethylaminoethyl-cellulose and carboxymethylcellulose, a further step of 

metal affinity chromatography was added. For this purpose, the protein solution 

was loaded onto a nickel column (NiNTA-Agarose; Qiagen, Milan, Italy) 

equilibrated in 50 mM-Tris–HCl, pH 7.4, containing 0.5 M NaCl. The protein 

bound to the matrix was subsequently eluted with 50 mM sodium acetate, pH 4.5, 

containing 0.5 M NaCl. The purified protein was desalted by dialysis against 

MilliQ water and freeze dried. For the estimation of purified -conglutin 

concentrations, optical measurements at 280 nm were made. The extinction 

coefficient of 0.733 for a solution of 1 mg/ml was used (Capraro et al., 2010). SDS-

PAGE was carried out on 12% polyacrylamide gels, according to Laemmli 
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(Laemmli, 1970) under reducing conditions using a mini-Protean II cell (Bio-Rad, 

Milan, Italy). Samples were heated at 100 °C for 5 min before loading. The gels 

were stained with Coomassie Blue. Densitometric scanning of the gel was carried 

out by ImageMaster 1D software (Amersham Pharmacia Biotech, Milan, Italy). 

 

3.1.2 Isolation of soybean 7S globulin and ’ subunit 

 For the isolation of the 7S globulin, a modification of a published procedure (Wu 

and 1999) was used. Our procedure consisted in the selective extraction of the 7S 

globulin with 7 mM NaHSO3 at 4°C with stirring for 16 h. The flake weight to 

buffer volume ratio was 1:15. Centrifugation at 8000 xg for 1 h at the same 

temperature allowed the recovery of a supernatant, which consisted essentially of 

7S globulin, and a pellet containing all insoluble materials, including the glycinin 

fraction and a residual amount of 7S globulin. The 7S globulin was recovered from 

the supernatant by 40% aqueous ethanol precipitation and centrifugation as above. 

The pellet was then freeze-dried. Isolation of the 'subunit: Urea (8 M) in 50 mM 

Tris-HCl, pH 7.4, containing 0.5 M NaCl (loading buffer) was used as a denaturing 

agent to dissociate the 7S globulin subunits. The resulting solution was applied to 

a MAC matrix coupled with Zn2+, in a ratio of 30 g of 7S globulin/L of resin. The 

resin was thoroughly washed with the loading buffer to elute the unbound fraction. 

The bound fraction was subsequently eluted with 0.1 M imidazole in the loading 

buffer. The recovered 7S globulin ’subunit was then precipitated and washed 

with 40% aqueous ethanol before freeze drying. 
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This procedure was applied to 250 g of defatted soybean flakes to obtain 5 g of ’ 

subunit. The whole procedure, has been patented (Bradford, 1976; Duranti, 2002). 

Total soybean proteins for SDS-PAGE analysis were directly extracted with 

sample denaturing buffer containing 3.75% SDS and 350 mM 2-mercaptoethanol. 

Protein concentrations were determined with the Bradford method (Bradford, 

1976), using bovine serum albumin as the standard protein.  

 

 

 

 

 

 

 

Figure.1: 7S soybean globulin subunits: homology grade  

 

3.1.3 7S ’ extension 

An ’polypeptide consisting of 216 amino acid residues from the N-terminus, 

containing the extension region plus a stretch of the core region (Fig. 1) was cloned 

and over-expressed in Pichia pastoris. The yield of the recombinant polypeptide, 

which was termed ’E, was 8-fold greater than the truncated version previously 

obtained. The ’ E polypeptide was purified by conventional biochemical 

techniques to make it available for biological assay. The recombinant polypeptide 
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was used in “in vitro” and “in vivo” experiments to evaluate its potential on lipid 

homeostasis. 

 

3.2 Sinthetic soy peptides  

From database searching (http://www.uniprot.org), we identified five peptides, 

belonging to ’,  and  subunit of 7S soy (Glycine max) globulin with the aim to 

investigate the potential of soybean peptides on cholesterol homeostasis, and anti-

inflammatory activities as well as on anti-adipogenic and anti-oxidant properties 

in different cell lines. 

Synthetic peptides A and B (purity > 98%) were purchased by EZBiolab Inc., IN 

46032, USA. Peptides C, D and E were custom synthesized by GenScript 

(Piscataway, NJ, USA) (Table 1). 

 

Amino acid sequence of synthetic peptides from soybean -conglycinin 

Peptide Sequence MW pI Subunit 

A SEEEEEDQ 994 3.4 ’-extension 

B QKEEEKHEWQ 1370 4.9 ’-extension 

C RKQEEDEDEEQQRE 1847 4.3 ’ 

D EITPEKNPQLR 1324 6.2 ’, ,  

E KNPQLR 754 11.0 ’, ,  

S= Ser; E= Glu; D= Asp; Q= Gln; K= Lys; H= His; W= Trp; R= Arg; I= Ile; T=Thr; N= Asn; P= Pro; L= Leu;  

Table 1: Amino acid sequence of synthetic peptides from soybean -conglycinin 

 

 

 

http://www.uniprot.org/


61 

 

3.2.1 NPDNDE synthetic peptide 

A synthetic peptide corresponding to position 314-319 of ’ chain 7S soy globulin 

was purchased by EZBiolab Inc as previously reported and used in “in vitro”  and 

“in vivo”  experiment to evaluate its potential on cholesterol homeostasis. The 

purity was greater than 98%. 

 

3.3 Fluorescein isothiocyanate (FITC)-tagged proteins. 

-Conglutin, was incubated overnight at 4°C in conjugation buffer (0.5 mM 

carbonate/bicarbonate, pH 9.5) in the presence of FITC (30 μg/mg protein) under 

stirring. Unreacted dye was removed using a PD 10 column by elution with PBS. 

The integrity of tagged proteins was verified by SDS gradient gel electrophoresis 

(7.5–17.5%). 

 

3.4 Animal and Diet  

Male Sprague–Dawley CD rats (Charles River Laboratories Italia Srl, Calco-

Lecco, Italy), body weight (b.w.) 125–150 g (5-6 week), were housed in a room 

with controlled lighting (12 h/d), constant temperature (20-22 °C) and relative 

humidity (55–65%).  

 

3.4.1 Hypercholesterolemic diet  

After their arrival from shipment an adjustment period to the new home condition 

was allowed during which they were fed a standard diet (pelleted commercial non-
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purified diet (4RF21-Mucedola, Italy). Rats were then divided into five groups of 

9 rats on the basis of b.w. and transferred to a Nath’s hypercholesterolemic (HC) 

diet (1 g/100 g cholesterol and 0.5 g/100 g cholic acid). To distinguish effects on 

plasma lipids as a function of altered food intake were included a group of rats 

pair-fed the control diet. 

After 2 week of HC diet rats were allocated to treatment groups on the basis of 

b.w. and plasma lipids so that the distribution among the groups was similar.  

 

3.4.2 Glucose overloading 

Following a two day adaptation period, during which they were fed a standard diet 

(pelleted commercial non-purified diet - Mucedola 4RF21; Settimo Milanese, 

Milan, Italy), the animals were given 10% D-glucose in drinking-water for the 

entire experimental period. The rats had free access to water. The mean daily water 

intake was between 20 and 30 ml/rat, estimating an average daily intake of D-

glucose about 2–3 g. After 1 week, the animals were divided in two groups of 

twelve rats according to their b.w. and plasma glucose concentrations, so that the 

distribution between the groups was similar.  

 

3.5 Animal’s treatment 

All procedures involving animals and their care were conducted in accordance 

with institutional guidelines that are in compliance with national (D.L. no. 116, 

G.U. Suppl. 40, 18 February 1992, Circolare no. 8, G.U. July 1994) and 

international laws and policies (EEC Council Directive 86/609, OJL 358, 1, 12 
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December 1987; Guide for the Care and Use of Laboratory Animals published by 

the US National Institute of Health-NIH Publication no. 85-23, revised 1996). 

 

3.5.1 -Conglutin treatment  

The animals were daily treated (at 09.00 hours) by gavage for three weeks as 

follows: one group (D-glucose) received only the vehicle (1% 

carboxymethylcellulose), whereas the other group (D-glucose + -conglutin) 

received 100 mg/kg b.w. type F, corresponding to 28 mg/kg b.w. -conglutin in 

carboxymethylcellulose (CMC). A third group of rats received only the vehicle 

without D-glucose in drinking-water (controls). Food intake and b.w. were 

monitored weekly. 

 

3.5.2 7S ’ extension treatment  

The animals were daily treated (at 09.00 hours) for four  weeks by gavage as a 

suspension in a 1% (w/v) aqueous solution of CMC as follows: IDN 6442 20 

mg/kg b.w. (15.42 mg of 7S-’ corresponding to 5.53 mg '/kg b.w., IDN 6443  

25 mg/kg and 50 mg/kg b.w. (5,65 mg /kg b.w. and 11,3 mg/kg b.w. of protein), 

clofibrate (Sigma-Aldrich, Milan, Italy) 200 mg/kg b.w.. Control groups on either 

the standard or the hypercholesterolemic diet received vehicle only. Food intake 

was monitored daily whereas variations in b.w. weekly.  
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3.5.3 NPDNDE treatment  

The animals fed casein-cholesterol (HC) diet, divided into three groups (12 rats 

each) homogeneous for plasma lipids, were daily treated for three weeks (21 day) 

by gavage as a suspension of 1% (w/v) aqueous solution of CMC as follows: 

synthetic peptide NPDNDE 5 mg/Kg b.w., soybean 7S alfa’20 mg/kg b.w. or 

clofibrate (Sigma-Aldrich, Milan, Italy) 200 mg/kg b.w..  



"In vivo"-Conglutin experiment 

3.6 Glucose consumption 

At the end of the experimental period, glucose loading was carried out on 10 h 

fasted animals. At time 0, each rat was given 2 g/kg b.w. D-glucose, administered 

orally. Blood samples were withdrawn from the tail vein of each rat under light 

diethyl ether anesthesia at 30, 60, 120 and 180 min following the carbohydrate 

load. Aliquots of serum were stored at – 20°C until assayed. Glucose was 

determined by enzymatic method (Sigma-Aldrich, Milan, Italy). 

To estimate the degree of insulin resistance (IR), the homeostasis model 

assessment (HOMA) was used as an index of IR according to Midaoui & De 

Champlain (20). The HOMA-IR index was calculated using the following 

equation:   

                             fasting insulin U/ml x fasting glucose mmol/22.5 
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"In vivo"S'experiment 

3.7 Blood and liver collection  

At the end of the experimental period, rats were anesthetized and whole blood was 

collected from the abdominal aorta in the presence of EDTA (1mg/ml). Plasma 

samples were kept at –20°C for subsequent determinations. Immediately after 

sacrifice the liver was collected, washed with ice-cold 150 mM NaCl, fast freezing 

in liquid nitrogen and placed at −80°C for long-term storage. A small portions of 

liver were quickly placed in RNAlater™ solution for tissue archiving without risk 

of RNA degradation. The Institutional guides for the care and use of laboratory 

animals were followed, and the experiments were supervised by the Laboratory 

Animal Welfare Service.  

 

3.8 Lipoprotein isolation and analysis 

Pool of plasma from three rats in the same experimental group were used for 

lipoproteins fractionation by sequential preparative ultracentrifugation. 

Ultracentrifugation was performed at 5°C in a Beckman Model L-5-50B 

ultracentrifuge (Beckman Instruments, Palo Alto, CA) with a 50 titanium rotor. 

Lipoproteins were separated into very low density lipoprotein (VLDL) by 

centrifugation for 18 h at 100,000 xg. For isolation of low density lipoprotein 

(LDL, 1.006<d<1.045 g/mL) and high density lipoprotein (HDL, 1.045<d<1.21 

g/mL) the centrifugation was done at 100,000 xg for 20h and 24 h respectively. 

Isolated lipoprotein fractions were dialyzed against 0.02 M phosphate buffer (pH 

7.4) containing 0.15 M NaCl, 0.01% Na2EDTA and 0.02% NaN3 (Havel et al., 
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1955). Cholesterol and triglyceride concentrations in plasma and in lipoprotein 

fractions as well as glucose levels were determined by enzymatic methods (Horiba 

ABX S.A.S, Italy). 

 

3.9 Liver lipids extraction.  

Immediately after blood collection, livers were perfused in situ with ice-cold saline 

then removed and weighed. Liver from three rats for group were pooled and lipids 

were extracted with chloroform/methanol (2/1, v/v) according to the method 

described by Folch (Folch et al., 1957). Duplicate pieces of 0.25 g frozen liver 

were cut up and homogenized with 10 mL of a 2:1 chloroform/methanol solution 

with Ultra-Turrax T25. The homogenate was vortexed for 15 s every 5 min for a 

total of 30 min. Then filtered and the filtrate washed with 5 mL 

chloroform/methanol solution. Subsequently, 0.84 g/L KCl was added, followed 

by further vortexing and subsequent resting for 30 min. After removal of the top 

(water) layer, the bottom layer was evaporated to dryness by flushing with 

nitrogen. 

 

3.10 Cholesterol and triglycerides liver measurement  

Cholesterol and triglycerides content in the lipid residue was measured by 

enzymatic color method, after total lipids were dissolved in Triton X-100 (Carr et 

al., 1993). Results are expressed as milligrams triglyceride or cholesterol per gram 

liver (wet wt).  
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3.11 RT-PCR experiments.  

Total RNA was extracted from frozen liver using RNeasy Mini Kit (QIAGEN 

S.r.l., Italy) according to instruction of the manufacturer and resuspended in 40 µl 

of water. All RNA samples were examined as to their concentration, purity and 

integrity based on absorbance ratio at 260/280 nm and at 230/260 nm. Overall 

sample integrity was confirmed by agarose gel electrophoresis, showing sharp and 

intense 18S and 28S ribosomal RNA bands with a total absence of smears. For 

real-time PCR determinations five micrograms of total RNA were retrotranscribed 

whith “iScript cDNA Synthesis Kit” (Bio-Rad Laboratories Srl, Italy) according 

to instruction of the manufacturer. Real-time RT-PCR assays were performed by 

the TaqMan technology on an ABI PRISM 7000 SDS (Applied Biosystems, 

Weiterstadt, Germany). Each PCR reaction contained 5 μL cDNA template 

(corresponding to approximately 50 ng of the total extracted RNA).  

We assessed LDL-R and 18 S mRNA expression levels using the R.norvegicus 

LDLR, and Eukaryotic 18S rRNA Endogenous Control TaqMan® Gene 

Expression Assays (Inventoried) (Applied Biosystems® by Life Technologies 

Italia). The comparative Ct method was used to quantify the results. 

 

-Conglutin experiments in cells cultures 

3.12 Cells 

Hepatoma cell line (HepG2) was obtained from American Type Culture Collection 

(Rockville, MD, USA). Cells were grown in monolayer in 75 cm2 flasks and 

maintained at 37 °C in a humidified atmosphere of 95% air, 5% CO2 in Dulbecco’s 
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minimum essential medium (DMEM; 5.5 mM glucose) containing 10% fetal 

bovine serum, non-essential amino acids (1 %, v/v), penicillin (105 U/l) and 

streptomycin (0.1 g/l), and of sodium pyruvate (0.11 g/l). 

 

3.13 Glucose consumption 

To evaluate glucose consumption 2 day before the experiments HepG2 cells were 

plated in twenty-four-well plates (1.5x 105 cells/well) with some left blank. Cells 

were starved in serum-free DMEM supplement with 0.2% bovine serum albumin 

(BSA) and glucose at various concentrations (5.5, 11.1 and 16.5 mM). After 12 h, 

the medium was removed and the cells were exposed to 10-5 M -conglutin with 

or without metformin (10 nM) and/or insulin (100 nM), including the blank wells, 

for 24 or 48 h. At the end of incubation periods, glucose concentrations in the 

medium was determined by the glucose oxidase method. The amount of glucose 

consumption was calculated by subtracting the glucose concentration of cells 

treated with different compounds from the cells treated with vehicle (Li et al., 

2007). In the same experimental conditions cell viability was evaluated by 

methyltetrazolium salts assay, essentially as described by Lovati et al. (Lovati et 

al., 2000).  

 

3.14 FACS Analysis 

3.14.1 Glucose uptake by HepG2 cells 

The glucose uptake was measured by using the fluorescent glucose analogue 2-[N-

(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NDBG) at 50 M 
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concentration. The assay was carried out as previously described with minor 

modifications (Zou et al., 2005) . Cells were incubated in DMEM containing 11.1 

mM glucose in the absence/presence of 2-NBDG or 2-NBDG with 10-5 M -

conglutin or 100 nM insulin for 6 h. At the end of incubation, the 2-NBDG uptake 

reaction was stopped by removing the incubation medium and washing the cells 

twice with pre-cold phosphate buffered saline (PBS), as described (Lovati et al., 

2012). Cells in each well were subsequently re-suspended in PBS and maintained 

at 4 C° for flow cytometry analysis, which was carried out by using a FACScalibur 

(Becton Dickinson, Franklin Lakes, N.J., USA) flow cytometer. The fluorescence 

intensity of 2-NBDG present into the cells was recorded on the FL1 channel, 

following elimination of the dead cells labeled with propidium iodide; for each 

measurement the data from 5,000 single cell events were detected.  

To assess cell viability, culture media from cells exposed to the different 

compounds were tested by methyltetrazolium salts assay, as described by Lovati 

et al. (Lovati et al., 2000). 

 

3.14.2 Effect of endocytosis inhibitor on FITC- -conglutin  

HepG2 cells grown in DMEM containing 11.1 mM glucose were pretreated for 30 

minutes with or without different inhibitors of caveolae/lipid raft-mediated 

endocytosis [filipin (5g/ml) and genistein (200 M)], of clathrin-mediated 

pathway [chlorpromazine (25 M), methyl--cyclodextrin (5 mM) and of 

macropinocytosis [amiloride (5 mM)]. The cells were then incubated with FITC-

-conglutin (10-5 M) for 4 h at 37°C in the presence of inhibitors. After incubation 
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cells were washed with PBS 1x twice and detached by trypsinization. After 

centrifugation, cells were washed, resuspended in PBS and maintained at 4 C° for 

flow cytometry analysis, which was carried out by using a FACScalibur (Becton 

Dickinson, Franklin Lakes, N.J., USA) flow cytometer.  

 

3.15 Confocal Analysis  

3.15.1 Time course of -Conglutin uptake  

HepG2 cells were grown on glass coverslips and incubated in DMEM containing 

11.1 mM glucose with/without 10-5 M  -conglutin for 30 min, 3, 6 and 24 h. 

Afterwards, they were fixed with 4% paraformaldehyde (PMF), permeabilised 

with Tryton X-100 0.1% and washed with PBS. Labelling was carried out 

overnight at 4°C with anti--conglutin serum 1:100 v/v in PBS, followed by 2 h 

incubation at 20 °C in anti-rabbit conjugated with Alexa-Fluor 568 (1:200 v/v in 

PBS) and staining with DAPI (1:20.000 in PBS). Finally, coverslips were sealed 

with Mowiol on glass slides and examined with a video-confocal microscope 

(Vico-Nikon, Italy). 

 

3.15.2 Effect of Amiloride inhibitor on FITC- -conglutin  

HepG2 cells grown on glass coverslips were pretreated in DMEM (11.1 mM 

glucose) for 30 minutes with/without inhibitors of macropinocytosis (amiloride 

5mM). Then, cells were incubated with FITC--conglutin (50 mg/ml)  for 4 h at 

37°C in the continuous presence of inhibitors After cell fixation with PFM, the 

cells were washed with PBS pH 7.4 (Sigma) and permeablized with 0.1% Triton 



71 

 

X-100 (Sigma) in PBS for 20 minutes. The cells were washed and the nuclei 

labelled with 4′, 6′-Diamidino-2-Phenylindole (DAPI 1:20.000 in PBS) for 10 

minutes. After washing with PBS the coverslips were mounted in Vectashield 

mounting medium for fluorescence (Vector Laboratories) and subsequently, the 

cells were analyzed with confocal microscope.  

 

3.16 Mass spectrometry 

For mass spectrometry analysis, each 2D-gel spot was excised and destained in 

0.1% trifluoroacetic acid acetonitrile 1:1 (v/v) and dryed in a Speed Vac. Gel 

pieces were rehydrated with trypsin (sequence grade, Sigma Aldrich) solution (0.2 

g trypsin/spot in 50 L 50 M ammonium bicarbonate), and incubated overnight 

at 37°C. Peptides were extracted from the gel using 0.1% trifluoroacetic acid 

acetonitrile 1:1 (v/v). The material was dried, resuspended in 10 mL 0.1% v/v 

formic acid and desalted using Zip-Tip C18 (Millipore) before mass spectrometric 

(MS) analysis. Samples were separated by liquid chromatography using an 

UltiMate 3000 HPLC (Dionex, now Thermo Fisher Scientific). Buffer A was 0.1% 

v/v formic acid, 2% acetonitrile; buffer B was 0.1% formic acid in acetonitrile. 

Chromatography was performed using a PepMap C18 column (15 cm, 180 lm ID, 

3 lm resin, Dionex). The gradient was as follows: 5% buffer B (10 min), 5-40% B 

(60 min), 40-50% B (10 min), 95% B (5 min) at a flow rate of 0.3 lL/min. 

Mass spectrometry was performed using a LTQ-Orbitrap Velos (Thermo Fisher 

Scientific) equipped with a nanospray source (Proxeon Biosystems, now Thermo 

Fisher Scientific). Eluted peptides were directly electro-sprayed into the mass 
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spectrometer through a standard non-coated silica tip (New Objective, Woburn, 

MA, USA) using a spray voltage of 2.8 kV. The LTQ-Orbitrap was operated in 

positive mode in data-dependent acquisition mode to automatically alternate 

between a full scan (m/z 350–2000) in the Orbitrap and subsequent CID MS/MS 

in the linear ion trap of the 20 most intense peaks from full scan. Data acquisition 

was controlled by Xcalibur 2.0 and Tune 2.4 software (Thermo Fisher Scientific). 

Data Base searching was performed using the Sequest search engine contained in 

the Proteome Discoverer 1.1 software (Thermo Fisher Scientific). The following 

parameters were used: 10 ppm for MS and 0.5 Da for MS/MS tolerance, 

carbamidomethylation of Cys as fixed modification, Met oxidation and 

Ser/Thr/Tyr phosphorylation as variable modifications, trypsin (2 misses) as 

protease. 

 

3.17 Transmission electron microscopy (TEM) and immune-gold 

Labelling HepG2 cells, plated and grown on Transwell®, were incubated as above 

with/without 10-5 M -conglutin for 30 min, 3 and 24 h. Transwell membranes 

were washed with cold PBS and incubated for 1 h in PBS with 10 g/L heparin. 

Then, Transwell® membranes were fixed with 1.2% glutaraldehyde and 3.3% 

paraformaldehyde in 0.1 M PBS pH 7.4 at 4 °C for 3 h, dehydrated in an ethanol 

series and embedded in London Resin (Duranti, 1994). Immune-labelling was 

carried out on ultrathin sections at 4 °C overnight with an anti--conglutin 

polyclonal serum (1:100) and goat anti-rabbit antibody (1:20) conjugated with 20 
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nm gold particles. Ultrathin sections were stained with 2% uranyl acetate and lead 

citrate and examined with a JEOL 100SX TEM (Jeol Ltd., Tokyo, Japan).  

 

3.18 Homology 3D modelling 

-Conglutin 3D model was prepared by homology modelling using the programme 

ESyPred3D (http://www.unamur.be/sciences/biologie/urbm/bioinfo/esypred/) availed 

on line.  With the amino acid sequence sequence Q9FSH9_LUPAL and the 

soybean homologous protein, Bg7S, 3D structure as the template (PDB accession 

number: 3AUP). 

 

3.19 Western blotting 

Isoelectric focusing and -conglutin internalization and 

phosphorylation 

For IEF/SDS–PAGE analyses, cells were incubated with/ without 10-5 M -

conglutin for 6 h. At the end of incubation, cell medium was removed and the 

monolayers were incubated in PBS containing 10 g/L heparin for 1 h. After 

incubation HepG2 cells were lysed by a solution of 8 M urea, 2% CHAPS and 65 

mM 1,4- dithiothreitol (DTT) (Amersham Biosciences, Milan, Italy). The protein 

extracts were centrifuged at 10.000 xg for 30 min and immediately analysed or 

kept frozen at -80 °C until use. Isoelectric focusing (IEF) was performed on 7 cm 

pH 3-10 linear IPG strips (Amersham Biosciences, UK) following the procedure 

described by Capraro et al. (Capraro et al., 2008). The separation was performed 

on 9 cm X 7 cm 12% polyacrylamide SDS–PAGE gels using a mini-PROTEAN 

http://www.unamur.be/sciences/biologie/urbm/bioinfo/esypred/
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III cell (Bio-Rad, Milan, Italy). The 2-D separations were repeated three times for 

each analytical set. The proteins in gels were transferred to 0.45 m-pore 

nitrocellulose membranes (Protran, Whatman, Dassel, Germany) by using the TE 

77 PWR Semidry Transfer Unit (Amersham Biosciences, UK), according to 

Towbin et al. -conglutin was immune-detected as already described (Magni et al., 

2005; Towbin et al., 1979).  

After blocking, membranes were then soaked in PBS buffer containing rabbit anti-

γ-conglutin (1:1500) and then with HRP-conjugate (1:2000). The labelled bands 

were detected with 0.6 g/l peroxidase (Bio-Rad) and hydrogen peroxide with 4-

chloro-1-naphthol (Sigma-Aldrich) as substrate. 

The antiserum to -conglutin was raised in rabbit using a non-glycosylated form 

of γ-conglutin in order to suppress potential carbohydrate unspecific binding, as 

described by Restani et al. (2005). The polyclonal antibodies were then immuno-

affinity purified as described by Casey (1979). This antibody preparation was used 

for all experiments carried out in this work.  

 

3.19.2 Insulin receptor pathway PI3K-AKT 

HepG2 cells were incubated with or without -conglutin 10-5M, Insulin 100 nM 

and Metfornin 10 mM in DMEM containing 11.1 or 30 mM Glucose for 6 or 24 

h. After incubation for indicated times cells were lysated  and the  cell pellet was 

treated with Nonidet P-40 (NP-40) lysis buffer [10 mmol/L Tris  Cl, pH 7.4, 10 

mmol/L NaCl, 3 mmol/L MgCl2 and 0.5% (v/v) NP40, containing a protease 

inhibitor cocktail]. Cells were separated into cytosolic and nuclear fractions by 
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centrifugation at 12,000 xg for 10 min. In the supernatants containing cytosolic 

protein concentrations were measured using BCA protein assay kit (Sigma-

Aldrich). Protein samples (20–50 µg prepared with the Laemmli method) were 

separated by 10 % SDS-PAGE and transferred to nitrocellulose membranes 

(Millipore, Bedford, MA). The membranes were blocked with 5% BSA in TBST 

(Tris-Buffered Saline and Tween 20) and probed overnight at 4 °C with anti Akt 

(Cell Signalling) 1:2000, anti Phospho-Akt Ser 473 (Cell Signalling) 1:2000, anti 

AMPK (Cell Signalling) 1:2000, anti Phospho-AMPK (Cell Signalling) 1:2000 

and anti β-actin (Sigma-Aldrich) 1:10000. After undergoing TBST washes, the 

membranes were incubated with peroxidase-conjugated secondary antibodies, and 

immunoreactive bands were visualized by enhanced chemiluminescence (BioRad 

ChemiDoc XRS). 
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7S ' experiment in cells cultures 

3.20 Cells cultures 

3.20.1 HepG2 cells  

HepG2 cells were grown in monolayers in 90 mm-diameter Petri dishes, and 

maintained at 37 °C in a humidified atmosphere of 95% air, 5% CO2 in minimum 

essential medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 

nonessential amino acid solution (1%, v/v), penicillin (105 U/L), streptomycin (0.1 

g/L), tricine buffer (20 mM, pH 7.4), NaHCO3 (24 mM) and sodium pyruvate (0.11 

g/L). For experiments, cells were seeded in 35-mm plastic dishes (3-5 x 105 cells) 

and used just before reaching confluence.  

 

3.20.2 The 3T3-L1 preadipocytes  

The 3T3-L1 preadipocytes were seeded at 3x104 cell/well in 24-well plates and 

cultured in DMEM containing 1% sodium piruvate, 1% penicillin/streptomycin 

and 10% calf bovine serum (days 1 and 2). After reaching 100% confluence, the 

cells were differentiated in DMEM containing 1% sodium pyruvate, 1% 

penicillin/streptomicyn, 10% FBS, 0.5 mM isobuthylmethylxantine, 1 mM 

dexametasone and 1.7 mM insulin for 8 days, at which time >90% of cells were 

mature adipocytes with fat droplets (Martinez-Villaluenga et al., 2009). Cells were 

treated on day 8 of the differentiation process with 50 mM synthetic peptides 

dissolved in Dulbecco’s phosphate buffer saline. The incubation lasted 48 h at 

37°C in a 5% CO2 atmosphere.  

 



77 

 

 

3.20.3 Macrophages cell line RAW 264.7 

Macrophages cell line RAW 264.7 induced by LPS (1 mg/mL), were incubated for 

24 h in medium containing DMEM, 1% penicillin/streptomicyn, 1% sodium 

piruvate, and 10% FBS at 37°C in 5% CO2/95% air, in the presence of each peptide 

at 25 mM concentration.  

 

3.21 Cell viability  

Culture media from HepG2 cell lines exposed to synthetic peptides at different 

concentrations were tested by measuring the lactate dehydrogenase (LDH) 

activity, using a kinetic (LDH/LD) diagnostic kit (Sigma Diagnostics), essentially 

as previously described (Young, 1990) 

Adipocytes and macrophages viability was tested by using the CellTiter 96 

Aqueous One Solution Proliferation assay kit based on the novel tetrazolium 

compound, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4 

sulfophenyl)-2H-tetrazolium, inner salt (MTS), and an electron coupling reagent, 

phenazine ethosulfate (PES) (Promega Corporation, Madison, WI, USA) 

(Marshall et al., 1995). 

 

3.22 RT-PCR 

3.22.1 Lipid homeostasis evaluation  

For experiments designed to evaluate LDL-R, SREBP-2, PCSK9 and HMGCoA 

reductase mRNA expression, HepG2 cells were incubated for 6-8-16 h in MEM + 



78 

 

5% LPDS in the presence of 7S ’peptides (1 M and 10  M) or simvastatin (1 

M). Total RNA from HepG2 cells was isolated using RNeasy Mini Kit (Qiagen, 

Italy) according to the manufacturer’s instructions. All RNA samples were 

examined as to their concentration, purity and integrity based on the absorbance 

ratio at 260-280 nm and at 230-260 nm. Overall sample integrity was confirmed 

by agarose gel electrophoresis, showing sharp and intense 18S and 28S ribosomal 

RNA bands with the total absence of smears. In real time-PCR experiments five 

micrograms of total RNA from HepG2 was retrotranscripted with “iScript cDNA 

Synthesis Kit” (Bio-Rad Laboratories) according to the manufacturer´s 

instructions. RT-PCR assays were performed by the TaqMan technology on an 

ABI PRISM 7000 SDS (Applied Biosystems, Weiterstadt, Germany). Each PCR 

reaction contained 5 μL cDNA template, corresponding to approximately 50 ng of 

the total extracted RNA. We assessed LDL-R and 18 S (endogenous control) 

mRNA expression levels using the human LDL-R (Hs00181192_m1), and 18S 

(4319413E); HMGCoA red (hs00168352_m1), SREBP2 (hs00190237_m1) and 

PCSK9 (hs00845399_m1) Pre-Developed TaqMan Assay Reagents (Applied 

Biosystems). Results were compared to the values detected in untreated cells 

(arbitrary unit = 1). 

 

3.23 Oil Red O assay 

3.23.1 Lipid quantification in 3T3-L1 adipocytes  

Treated adipocytes were washed with cold Dulbecco’s phosphate buffer saline and 

fixed with 10% formaldehyde for 1 h. Then, cells were washed with 60% 
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isopropanol and let air-dried. Oil Red O stock solution (0.2 g in 60% isopropanol) 

was filtered through a 0.22 m membrane and added to lipid droplets for 10 min. 

After Oil Red O lipid staining, cells were washed with water four times and were 

air-dried. Oil Red O dye was eluted by adding 100% isopropanol after 10 min 

incubation at room temperature. Absorbance (A) at 510 nm of eluted isopropanol 

was measured using a microplate reader (Biotek Instruments, Winooksi, VA, 

USA). Inhibition of lipid accumulation in adipocytes was calculated using the 

following equation (Martinez-Villaluenga et al., 2009): 

% inhibition of lipid accumulation= (A control, 510 nm –A treatment, 510 nm)/A control, 510 nm 

x 100 

 

3.24 Fatty acid synthase (FAS) 

FAS activity was assayed by spectrophotometric method using a Sinergy 2 

Microplate Reader System equipped with a temperature controller (Biotek 

Instruments, Winooksi, VA, USA) as described (Martinez-Villaluenga et al., 

2010). NADPH oxidation was followed at 37°C by measuring the decrease in 

absorbance at 340 nm in a 96-well clear-bottomed polystirene plate (Corning, NY, 

USA). Reactions were performed in a final volume of 150 µL containing 3 µM 

acetyl-CoA, 10 µM malonyl-CoA and 35 µM NADPH and 0.3 µM FAS in 0.1 M 

potassium phosphate buffer. Initial rates were calculated for the slope of the 

progress curves during the first 5 min. Inhibition studies were performed by 

measuring the residual FAS activity after enzyme preincubation with peptides at 

different concentrations for 20 min at 37 ºC. 
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3.25 Oxygen radical absorbance (ORAC) assay. 

The ORAC assay was performed following Prior et al. (Prior et al., 2003) and 

Davalos et al. (Davalos et al., 2004) methods. Fluorescein reacted with free 

radicals generated by 2,2′-azobis(2-methylpropionamidine) dihydrochloride 

(AAPH) yielding a non-fluorescent product. Loss of fluorescence was measured 

over time in fluorescent microplate reader, (Biotek Instruments, Winooksi, VA, 

USA) at 37°C and sensitivity 60. Readings were made every minute at λexc 485 nm 

and λemi 520 nm. Then, the area under curve (AUC) was calculated as previously 

reported (Darmawan et al., 2010) and compared to a standard antioxidant, Trolox 

(vitamin E analogue). Results were expressed as µmol Trolox equivalents (TE)/ 

µmol peptide.  

 

3.26 Statistical analyses 

Data were expressed as means ± standard deviation or ± SEM of at least three 

replicates. Results were compared using one-way analysis of variance (ANOVA) 

followed by Dunnett’s test. P values < 0.05 were considered as statistically 

significant. 
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Results of Conglutin experiments  

 

4.1 Conglutin administration reduces plasma glucose in the “in vivo” model 

of type 2 diabetes 

The dosage of 28 mg/kg b.w. -conglutin was selected according to lowest dosage 

of the previous trials consisting of acute glucose overloads in normal rats (Magni 

et al., 2004). Body Weight were not modified either by glucose feeding or by -

conglutin treatment in all groups: controls, (244.6 ± 3.8) g; glucose-treated, (243.7 

± 5.5) g; glucose-treated + -conglutin, (241.00 ± 8.0) g. As depicted in Fig.1a, 

chronic glucose administration resulted in a statistically significant (p≤0.01) 

increase in fasting blood glucose (2.5 fold); conversely, simultaneous treatment 

with -conglutin attenuated the rise in glucose (1.9 fold) so that the glucose levels 

in these animals were reduced by 22% in comparison with those recorded in the 

glucose-treated rats.  

In glucose-drinking rats, insulin levels increased by 170% (2.7 fold) Fig. 1b; p≤ 

0.05); the treatment with -conglutin reduced this increase to 79% (p≤0.05), 

although the levels remained higher than in control animals. Chronic glucose 

feeding increased the IR index, as expressed by HOMA-IR, by 582% (Fig.1c; 

p≤0.05). -Conglutin treatment attenuated this increase by 252% in glucose-fed 

rats, and the comparison between the HOMA-IR indexes in the two groups of rats 

(glucose-treated and untreated) showed an improvement in IR by 48% (p≤0.05), 

following daily administration of -conglutin.  
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Figure 1 
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Figure 1: Effects of chronic glucose drinking, combined with or without -conglutin (-

C) supplementation (a) on plasma glucose levels expressed in mmol/l, (b) on plasma 

insulin levels expressed in ng/ml and (c) on index of insulin resistance (IR; plasma 

glucose x insulin/22.5= homeostasis model assessment (HOMA)). Values are means, 

with their standard errors represented by vertical bars, n 12. Mean values were 

significantly different from those of controls: * p≤0.05, ** p≤0.01. Mean values were 

significantly different from those of glucose group: †† p≤0.01. 

 

The oral glucose tolerance test, carried out at the end of experimental period on all 

animals enrolled in the study, showed (Fig. 2a) a statistically significant reduction 

upon 3-week treatment with -conglutin, both fasting blood glucose and 

postprandial blood glucose (2 h) were reduced (221 and 212 %, respectively; 

p≤0.05), suggesting improved insulin sensitivity in the treated animals (Fig. 2b). 
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Figure 2 b 

 

Figure 2:  (a) Influence of -conglutin (-C) supplementation on plasma glucose 

concentrations of rats during oral glucose overloading trials (2 g/kg b.w.). Plasma glucose 

was assayed in rats at various times from glucose overload as reported in the ‘Materials 

and methods’ section. (b) Fasting blood glucose (FBG) and 2 h postprandial blood 

glucose (PBG) determined during glucose overload experiment in the rats. Values are 

means, with their standard errors represented by vertical bars, n 12. ** Mean values were 

significantly different from those of controls (p≤0.01). † Mean values were significantly 

different from those of glucose group (p≤0.05).  

 

4.2 -Conglutin improved glucose metabolism “in vitro”  

Glucose consumption was examined in HepG2 cells following incubation with 

purified -conglutin. The dose of 10-5 M -conglutin was selected from previous 

experiments, where an up-regulation of LDL receptors was detected in HepG2 
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cells after pre-incubation with -conglutin (Sirtori et al., 2004). Cells were grown 

in DMEM containing different glucose concentrations in order to simulate normal 

(5.5 mM =99 mg/dl) or moderate high glucose (11.1 mM = 200 mg/dl) and severe 

hyperglycaemia (16.5 mM~300 mg/dl) in human subjects. Moreover, insulin (100 

nM and metformin (10 mM) were used alone or in combination with -conglutin 

to assess the potential synergism/antagonism in glucose consumption following 24 

or 48 h incubation. As depicted in Fig. 3, the addition of insulin or metformin to 

HepG2 cells grown in DMEM containing different amounts of glucose induced a 

statistically significant increase (p≤0.05) in the glucose consumption after 24 and 

48 h incubation. When the glucose in the culture medium was normal (5.5 mM), 

no statistically significant effect on glucose consumption was detected on the 

addition of -conglutin in all experimental conditions (control, insulin and 

metformin). On the other hand, the effect of -conglutin in glucose consumption 

(p≤0.05) was evident in cells grown in DMEM with moderate (11.1 mM) or 

elevated (16.5 mM) glucose content; moreover, the concomitant addition of -

conglutin to HepG2 cells exposed to insulin or metformin increased further the 

glucose consumption, normally stimulated by both compounds. In particular, when 

the glucose concentration in the culture medium increased from 5.5 to 11.1 mM, 

the glucose expenditure induced by -conglutin, after 24 h of incubation, was 

elevated to 100, 60 and 18 %, respectively in controls, insulin- and metformin-

treated cells (Fig. 3b). When the glucose concentration increased from 11.1 to 16.5 

mM, the amount of glucose consumed in 24 h was enhanced by 109, 33 and 43 %, 

respectively in controls, insulin- and metformin- treated cells by the addition of    
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-conglutin addition (Fig. 3c). This trend was shared by HepG2 cells incubated for 

48 h in the same experimental conditions: the addition of -conglutin induced a 

statistically significant increase in the amount of glucose consumed as depicted in 

the Fig. 3 (e and f). The glucose-lowering effect of -conglutin observed in HepG2 

cells was not linked to an increment in cell number, due to the glucose level, since 

we did not observe any change in methyltetrazolium salts optical density (data not 

shown) In addition, the results obtained following the exposure of HepG2 cells to 

-conglutin were compared for each time and glucose concentration with the 

respective controls. Moreover, a previous experiment (data not shown), in which 

mannitol was added to 5.5 mM glucose DMEM, pointed out that the present results 

were due to the activity of tested compounds (-conglutin, insulin and metformin) 

and not to the effect of hyperosmolarity. 
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Figure 3: Glucose consumption by HepG2 cells after 24 (panels A) and 48 h (panels B) 

growth at different glucose concentrations (1: 5.5 mM; 2: 11.1 mM and 3: 16.5 mM).  

The trials were: cells alone (control), treated with insulin (100 nM) or metformin (10 mM) 

in the absence (white bars) or presence (black bars) of 10 -5 M -conglutin. The tests were 

performed in DMEM supplemented with 0.2% BSA as detailed under Methods. Data are 

means + S.E.M. of 3 independent experiments, each performed in quadruplicate. * p≤0.05 

vs the -conglutin untreated trials. 

 

 

4.3 Flow cytometry glucose uptake assay 

The 2-NDBG uptake was examined in HepG2 cells following incubation with 

10 purified γ-conglutin. Insulin (100 nM) was used alone or in combination 

with γ-conglutin to assess the potential synergism/antagonism in glucose analogue 

uptake following 6 h incubation, as already observed in previous works  (Terruzzi 

et al., 2011).  

As shown in Figure 4, γ-conglutin alone or in combination with insulin stimulated, 

in a statistically significant way, the HepG2 cell glucose uptake by 64 % and 184 

%, respectively vs the untreated cells. Insulin alone increased glucose uptake by 

119%.  γ-Conglutin did not show any binding capacity toward glucose, as assessed 

by affinity chromatography and changes in refractometric indexes (Capraro 2011, 

unpublished results), therefore any direct involvement of the lupin protein in 

glucose transport into the cell could be ruled out. 

 

 

 

 

 



89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Effect of γ-conglutin on basal and insulin-stimulated 2-NBDG uptake in HepG2 

cells. Cells were incubated in DMEM containing 11.1 mM glucose in the 

absence/presence of 2-NBDG (50 M) with and without 10-5 M γ-conglutin and 100 nM 

insulin for 6h. At the end of incubation cells were collected for the flow cytometry 

analysis. The relative fluorescence intensities minus the background levels were used for 

subsequent statistical analyses. Vertical bars show the mean ±SEM of three independent 

experiments, each performed in quadruplicate. Significant differences are marked by          

* p≤0.05 vs control cells, o p≤0.05 vs γ-conglutin treated cells and ☐ p≤0.05 vs insulin 

and γ-conglutin treated cells 
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4.4 Time course of -conglutin uptake by HepG2 cells as assessed by confocal 

microscopy using -conglutin antibodies 

The uptake of -conglutin by HepG2 cells, as monitored with  fluorescently- 

labelled -conglutin antibodies in confocal microscopy, is shown in Figure 5, 

thirty min after the treatment, it was already possible to observe some fluorescent 

spots around the cells (Fig. 5A), suggesting the presence of protein aggregates 

leaning against cell membranes. Whether these aggregates were only stacked 

outside the membrane or, at least in part, already inside the cells it was not clear at 

this time (Fig. 5A).  

Conversely, the intracellular uptake of some of these aggregates was more evident 

3 h later (Fig. 5B). A very different distribution pattern of fluorescence was 

observed at 6 h after the treatment, when the whole cytoplasm showed a diffuse 

and intense fluorescence, suggesting that -conglutin had spread in it, without a 

specific localization or aggregation in dense bodies. Some fluorescence spots were 

still visible at the cell border, possibly outside membranes. This scenario 

completely changed at 24 h, when the diffused cytoplasm fluorescence was much 

less intense and large brilliant spots were again visible at the cell periphery. At any 

considered time, nuclei were not labelled. 
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Figure 5: Immune-detection by confocal microscopy of HepG2 cells at different 

incubation times with -conglutin (red); nuclei are counterstained in blue by DAPI. 

Nuclei were not labelled at any considered time, as well as control cells without -

conglutin treatment (panel E). All bars = 20 m.  
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4.5 Two-D electrophoresis and mass spectrometry evidence of -conglutin 

internalisation and phosphorylation by HepG2 cells 

In order to confirm the intracellular uptake of lupin -conglutin by treated HepG2 

cells and monitor the status of the internalized protein, 2D IEF/SDS–PAGE of the 

cell lysates at 6 h incubation, when the cells showed a 64% increase of glucose 

uptake, was performed. The resulting 2D electrophoretic maps of the untreated 

control cells and cells after 6 h treatment with -conglutin are shown in Figure 6, 

panels A and A’, respectively. The two maps showed a very similar pattern. 

However, some spots, which were not present in the control sample, appeared in 

the -conglutin treated sample. These two positions in the electrophoretic map 

corresponded to that of -conglutin subunits (Magni et al., 2007), which consists 

of a main small subunit around 17 kDa and pI 6.2 and large ones of 30 kDa and pI 

8.7. For further evidence, the 2D maps of untreated and treated cells were blotted 

and revealed with anti--conglutin antibodies (Fig. 6 B and B’). With the 

untreated cells, no labelling was visible throughout the map, suggesting that no 

protein component of the cells cross-reacted with -conglutin antibodies. 

Conversely, in panel B’, two main spots around 30 kDa and other less distinct ones 

at 17 kDa were detected by the antibodies, thus confirming the presence of intact 

-conglutin subunits. Other unforeseen spots reacting with -conglutin antibodies 

were found in the blotted map (Fig. 6, panel B’) at the large subunit position, but 

with unusually low pIs. The acidic spots in the blotted map, indicated as spot 1 

(S1) and spot 2 (S2), as well as a main spot in the canonical position of -conglutin 

large subunit (S3), were excised, trypsin treated and submitted to MS/MS 
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spectrometry, as described under Methods. The results of mass analyses are 

detailed in Table 1. The analysis allowed to unequivocally identify the 3 spots as 

-conglutin, in agreement with the Western blot data. Moreover, the presence of 

phosphorylated amino acids was detected in various tryptic peptides of spots 1 and 

2, whilst none was seen in the unmodified -conglutin. The position of the 

phosphorylated amino acids in -conglutin sequence is shown in Table 1. The 

analysis of the predicted 3D structure of -conglutin confirmed the expected 

location of the modified amino acids at the surface of the molecule (not shown). 

However, due to the incompleteness of the sequence coverage, the presence of 

other phosphorylated amino acids could not be excluded 

 

 

Figure 6: Two-D electrophoretic maps of proteins from HepG2 cell lysates incubated for 

6 h in DMEM without (A) and in presence (A’) of the lupin seed protein -conglutin (10-

5 M). Figure B and B’, show antibody revelation of -conglutin in the blotted maps of 

S1 S2

 
 S1 

S3

 
 S1 
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cells incubated with (B’) or without (B) -conglutin. Reference -conglutin is also 

showed. In panel A’, the spots corresponding to the 30 kDa and 17 kDa -conglutin 

subunits were circled after identification by comparison to the reference map (see the 

white lupin 2D reference map on http://www.lupinproteinteam.unimi.it). These spots are 

not present in the untreated sample (panel A, dotted circles to locate the empty areas). 

Antibody revelation evidences the large (marked as Spot 3) and small subunits of -

conglutin in the treated sample (panel B’). Two acidic spots, revealed by the same 

antibodies, are marked Spot 1 and 2, respectively.  

 

a The residue position is referred to sequence Q9FSH9. 

 Table 1: List of phosphorylated peptides in 2D-gel spots S1, S2 and S3. 

 

4.6 Uptake and fate of -conglutin in HepG2 cells by TEM immune-labelling 

To shed light on the intracellular uptake pathway and the presence of -conglutin 

aggregates, TEM immune-localization of the protein at 30 min, 3 h and 24 h was 

performed. -Conglutin aggregation occurred around the numerous microvilli 

present on HepG2 cell membranes (Figure 7A and B), consistently with the above 

mentioned fluorescent spots leaning against cell membranes. These microvilli 

Sequence  Identified phosphorylated 

residue 
Position a Xcorr Charge m/z(Da) MH+ (Da) 

Spot S1       
HSIFEVFTQVFANNVPK T 36 1.58 3 686.33496 2056.99033 

RTPLMQVPVLLDLNGK T 298 1.74 3 625.34088 1874.00809 

KISGGVPSVDLIMDK S 327 1.87 4 410.46106 1638.82241 

AVGPFGLCYDTKK Y 321 1.43 2 768.34937 1535.69145 

SCSNLFDLNNP S 409 1.60 2 680.76617 1360.52507 

Spot S2       
RTPLMQVPVLLDLNGK T 36 2.07 3 625.33844 1874.00077 

KISGGVPSVDLIMDKSDVVW

R 
S 327 1.42 3 799.72986 2397.17502 

IPQFLFSCAPTFLTQK T 149 1.11 3 659.99481 1977.96988 

Spot S3       
Various peptides belonging to 

 -conglutin sequence 
No phosphorylated 

residues  
- - - - - 
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seemed to trap the protein, sometimes in large aggregates (Fig.7B). At 3 h 

treatment, some small aggregates were visible both stacked to the cell membrane 

(Fig.7C) or inside the cytoplasm (Fig.7D), with no clear signs of endocytosis, 

possibly because the lack of osmication during the fixation process prevented 

membrane visualization. Moreover, intense labelling was localized both in the 

protein aggregates stacked to microvilli and in some dense bodies in the cytoplasm 

(Fig. 7E). These bodies, being only labelled in some parts, were possibly formed 

by other substances, besides -conglutin, and corresponded to the brilliant 

fluorescent spots observed in the cytoplasm by confocal microscope at the same 

time course. Intriguingly, dense bodies were not present at 24 h, but the labelling 

was scattered in the cytoplasm, with rare aggregation (Fig. 7F). Serial sectioning 

showed that some of these protein aggregates were invaginated into the cell 

membrane, however still outside the cell (Fig. 7G). 
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 Figure 7: TEM ultrathin sections of HepG2 cells at 0 min (A), 30 min (B), 3 h (C-E) and 

24 h (F, G) incubation with-conglutin. -Conglutin is sometime localized in electron-

dense bodies (panel E, arrows) or scattered throughout the cytoplasm (panel E, 

arrowheads) and rare protein aggregates (P) are present. (G) Serial sectioning of an 

aggregate showing that its invagination into the cell membrane (arrow) (V, microvilli). 

ER, endoplasmic reticulum; M, mitochondrion. 
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4.7 Effect of endocytosis inhibitor on the cellular uptake of FITC--conglutin  

To clarify the mechanism of internalization of -conglutin into the HepG2 cells, 

inhibitory experiments of -conglutin cellular uptake were carried out using 

specific endocytosis inhibitor. The effect of the following endocytosis inhibitors 

on internalization of the protein were examined: filipin (5g/ml) and genistein 

(200 M) for caveolae/lipid raft mediated endocytosis, chlorpromazine (25 M), 

methyl--cyclodextrin (5 mM) for clathrin-mediated pathway and amiloride (5 

mM) for macropinocytosis. To study whether incubation with inhibitors of 

endocytosis would affect internalization of -conglutin, cells were preincubated 

for 30 minutes at 37 °C with inhibitors  and then, exposed  to FITC--conglutin 

(50 g/ml) for 4 h at 37°C in the presence of inhibitors (Figure 8). Treatment of 

the cells with amiloride significantly affect the FITC--conglutin internalization, 

with an approximately 69% decrease in the amount of cellular uptake. Treatment 

with filipin had no significant effect on -conglutin internalization. Methyl--

cyclodextrin, chlorpromazine and genistein showed a lower significant reduction 

in the internalization of protein (40%, 33% and 14% respectively). These results 

indicate that in HepG2 cells, the -conglutin was internalized preferentially 

through macropinocytosis pathway. 
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Figure 8: Effect of endocytosis inhibitors on FICT--conglutin uptake: HepG2 cells were 

pretreated for 30 minutes with or without inhibitors of caveolae/lipid raft-mediated 

endocytosis [filipin (5 g/ml) and genistein (200 M)], of clathrin-mediated pathway 

[chlorpromazine (25 M), methyl-b-cyclodextrin (5 mM) and of macropinocytosis 

[amiloride (5 mM)]. Then, cells were incubated with FITC--conglutin (50 g/ml) for 4 

h at 37°C in the presence of inhibitors. Subsequently, the cells were analyzed by FACS. 

*p < 0,05 vs controls, ** p <  0,01 vs controls. 

 

4.8 Effect of macropinocytosis inhibitor on FITC--conglutin internalization  

To confirm the potential role of macropinocytosis in the uptake of FICT--

conglutin, confocal microscopy study was carried out on HepG2 cells using 

amiloride (5 mM). As showed in Figure 9 after 4 h of incubation with -conglutin 

and in the absence of inhibitor, cytoplasm showed a diffuse and intense 

fluorescence due to the presence of FITC-protein. When cell were treated with 
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amiloride a very different distribution pattern of fluorescence was observed in 

panel C. FITC--conglutin was in fact visible at the cell border, outside 

membranes. This result confirmed the previous data, suggesting the 

macropinocytosis as main via of -conglutin internalization. 

  

 

 

 

 

 

 

 

 

 

Figure 9: Immune-detection by confocal microscopy of HepG2 cells at 4h incubation 

with FITC--conglutin (green); and with amiloride (5 mM) (panel C). Nuclei are 

counterstained in blue by DAPI, as well as control cells without -conglutin treatment 

(panel A). All bars = 20 m. 

 

 

 

4.9  -Conglutin: Involvement in PI3K-AKT insulin receptor pathway  

4.9.1 Effects of -conglutin on AMPK phosphorylation 

We monitored the ability of both insulin and -conglutin to stimulate the same 

signaling pathway in HepG2 cells. Insulin and Metformin, the first-line oral anti-

diabetic drug, was used as a positive control.  

To start the study of the potential effect of -conglutin on key proteins of the insulin 

signaling, AMPK, a sensor of energy status for maintaining cellular energy 

C 
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homeostasis (Hardie, 2011), was evaluated by analyzing the levels of  total and 

phosphorylated proteins in cell lysates by Western blot analysis. 

Figure 10 showed that the 24 h treatment with -conglutin, alone or in concomitant 

presence of insulin did not induce an increase in the levels of AMPK 

phosphorylated proteins. Metformin, as aspect, showed the high levels of the p-

AMPK/AMPK ratio.  

 

 

 

 

    Figure 10 A 

  

 

 

 

 

 

 

 

 

 

Figure 10 B  

Figure 10: Effect of -conglutin on phosphorylated 5’-AMP-activated protein kinase 

(AMPK) levels in HepG2 cells after 24 hour treatment. (A) Western blot analysis of 
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representative experiments. Equal loading of Western blots was ensured by -actin. (B) 

Values of p-AMPK/AMPK ratio relative to the control condition. (*) Indicate statistically 

significant differences (p≤ 0.05). 

 

4.9.2 Effects of -conglutin on AKT phosphorylation 

Akt, serine/threonine-specific protein kinase, is the molecular key in mediating the 

metabolic effects of insulin signaling. It lays downstream of PI3K and facilitates 

glucose uptake and glycogen synthesis in the liver (Whiteman et al., 2002). To test 

the modulation of Akt by -conglutin, phosphorylated and total Akt were evaluated 

in cell lysates by Western blot analysis after 6 and 24 hour incubation in DMEM 

containing 11.1 or 30 mM Glucose. Figure 11 A and B, show the results of cells 

treatment with -conglutin, insulin and metformin in the different experimental 

condition.  

After 6 h incubation in 11.1 mM Glucose DMEM , in cells treated with -conglutin 

we have a 5 fold increase in the phosphorylation of  Akt which goes up to 25 fold 

when cell were treated in concomitant presence of insulin. A similar rise in p- Akt 

value is present in all experimental conditions 

                      

 

 

 

 

 

Figure 11A 
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Figure 11B         

Figure 11: Effect of -conglutin on levels of phosphorylated and total Akt protein, in 

HepG2 cells, following 6 and 24 h incubation in DMEM with 11.1 or 30 mM glucose. 

(A) Bands of representative experiments. Equal loading of Western blots was ensured by 
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-actin. (B) Data of p-Akt/Akt ratio; values are expressed as relative to the control 

condition and are means ± SD* (p ≤0.05). 

 

A different pattern was observed in HepG2 cells after 24 h of incubation in 11.1 

mM DMEM where in presence of -conglutin was observed a decrease in the 

phosphorylated form of protein. Because is now that PI3K is involved in Akt 

activation, in order to confirm the role of PI3K/Akt pathway in the effect of -

conglutin the cells were expose to a selective inhibitor of PI3K/Akt 

(LY294002) and the levels of Akt and its phosphorylated form were assayed and 

compared with the values recorded in cells incubated in the absence of inhibitor. 

In figure 12 (A/B) data show that LY294002 treatment decreased p-Akt levels 

in all experimental condition (6 or 24 h incubation)  whereas the increased ratio of 

p-Akt/Akt were recovered in HepG2 cells in the presence of -conglutin alone or 

in the  concomitant presence of insulin  when cells are not exposed to LY294002 

vs values detected in control groups. However, neither LY294002 than -

conglutin, significantly affected the levels of total Akt indicating that the inhibition 

in phosphorylation at Ser-473 Akt was not due to a nonspecific effect.  

This data, suggest that PI3K/AKT pathways may be involved in the glucose 

homeostasis effect induced by -conglutin-induced effects. 
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 Figure 12 A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 B 

 

Figure 12: Effect of-conglutin and selective inhibitor LY294002 (LY) on total Akt and 

p-Akt levels in HepG2 cells. Cells were incubated in the presence or absence of 20 M 

LY for 1 h and later with 10-5M -conglutin or 100 nM Insulin for 6 or 24 h. (B) Data of 

p-Akt/Akt and (A) Bands of representative experiments. * indicate statistically significant 

differences (p ≤ 0.05). 
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Results of  ’ 7S soy protein experiments 

 

4.10 Body weight and food consumption in animal treated with ’ 7S 

subunit 

At the end of the experimental period (four week) the oral administration of IDN 

6442 (7S’enriched), IDN 6443 (’E) (Supplied by INDENA, Scientific 

department Milano, Italy), and clofibrate, in rats maintained on a 

hypercholesterolemic diet, or feed on standard diet, body weight and food intake 

was comparable with that of the untreated rats. Table 2 shows that in fact the 

increase () of body weight recorded at the end of treatment was similar in the 

different groups, both treated and non-treated rats with the test compounds, 

indicating that the amounts of recombinant polypeptide (’E) used in this 

experiment did not affect either the normal process of growth of the animals 

neither on the food consumption that was equal to 14.6 gr/day for rats fed in 

hypercholesterolemic diet. This value, due to the higher caloric content of the diet 

itself, is lower than that of the rats fed with on standard diet (20 gr/day). 

 

4.11 Plasma levels of total cholesterol, triglycerides and blood glucose of 

hypercholesterolemic rats 

It can be observed that the hypercholesterolemic diet is able to induce a statistically 

significant increase, (p≤0.001), in the levels of total cholesterol, plasma 

triglycerides, and glucose compared to the values found in animals fed the standard 

diet (Table 3). In particular, plasma cholesterol and triglycerides levels increased 
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by 399 and 70% respectively in rats fed HC diet respect to the rats fed standard 

diet at the end of the treatment. The oral treatment with proteins under 

investigation caused a statistically significant reduction in the cholesterol and 

triglyceride levels compared to the values found in untreated animals (* p≤0.05, 

** p≤0.001). 

 

 

Table 2: Effect of administration of IDN 6443, IDN 6442 and clofibrate on the 

performance of body weight in rats fed on hypercholesterolemic diet. p≤ 0.05 vs 

standard diet. 

 

As show in Table 3 as show that, IDN 6442 (7S-' rich), administered at a dose 

of 20 mg / kg b.w (around to 15.42 mg of 7S protein enriched in ’ subunit which 

correspond to 5.53 mg/kg b.w. of protein of ' subunit) induced a reduction in the 

levels of cholesterol and triglycerides (-27% and -34%, respectively) comparable 

to that previously published (Duranti et al., 2004).  IDN 6443 ( 'E), was used at 

concentrations of 25 mg/kg b.w. (5.65 mg protein /Kg b.w.) and 50 mg /Kg b.w. 

Group Body weight gr  
Food intake 

 Pre Post gr gr/day 

Standard diet 160±2 341±12 181±11 20±0.8 

HC diet 151±3 326±10 175±9 14±0.9 

+IDN 6442 (20 mg/Kg) 153±2 331±7 178±7 14±1.0 

+IDN 6443 (25 mg/Kg) 148±2 350±7 201±7 15±0.8 

+IDN 6443 (50 mg/Kg) 154±2 334±7 180±6 15±1.2 

+ Clofibrate (200 mg/Kg) 152±2 321±6 169±7 15±0.9 
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(11.3 mg protein /kg b.w.), and although the concentration of active principle is 

minimal compared to the amount of product administered, is characterized by a 

remarkable reduction activity of both total cholesterol (-29 and 26%, respectively 

with 25 and 50 mg/kg b.w.) and  triglycerides (-13 and - 23%, respectively with 

25 and 50 mg/kg b.w.).  The lipid-lowering effect is comparable to that observed 

in rats treated with 200 mg/kg of clofibrate, as a reference drug. No statistically 

significant change in plasma glucose levels were induced by the treatment with the 

test compounds. 

 

    

 Cholesterol Triglycerides Glucose 

 mmol/L mmol/L mmol/L 

    

 

Standard diet 1.19±0.09 0.71±0.05 4.95±0.1 

    

HC diet 5.94±0.16    1.21±0.06 6.43±0.67 

    

+ IDN 6442 (20 mg/Kg) 4.34±0.16**      0.80±0.07* 5.21±0.56 

    

+ IDN 6443 (25 mg/Kg) 4.24±0.15**  1.05±0.04** 6.63±0.42 

    

+ IDN 6443 (50 mg/Kg) 4.39±0.27** 0.93±0.06** 6.07±0.14 

      

 + Clofibrate (200 mg/Kg) 4.06±0.26**   0.79±0.11*  6.36±0.44 
 

Table 3: Concentrations of total cholesterol and triglyceride in plasma rats fed HC diet 

for 28 day treated or untreated   IDN 6442, IDN 6443 and clofibrate respectively. Doses 

(20; 25, 50; 200) are mg of product administered for (kg body weight for day). Values 

are means ± SEM, n = 9 rats. *p≤0.05, **p≤0.01 versus HC rats.  

 

 

 



108 

 

4.12 Serum lipid and lipoprotein concentrations 

In rats fed with standard diet, cholesterol is mainly carried (about 63%) by the 

high-density lipoprotein (HDL). The switch to hypercholesterolemic diet, is 

characterized by an evident increase in the concentration of cholesterol and 

triglycerides parallel by a marked increase (values ranging between 61 and 77% in 

relation to the treatment) in the concentration of lipoproteins of density less than 

<1.006 gr/ml (VLDL) that become the main transporter of cholesterol with a 

decrease in HDL fraction. 

 

  
 

Hypercholesterolemic diet 

 

Standard 
Diet 

Control 
 IDN 6442 
20 mg/Kg  

IDN 6443 
25 mg/Kg 

 IDN 6443 
50 mg/Kg 

Clofibrate 
200 mg/Kg  

cholesterol  
mmol/L       

Total 1.19±0.09 5.94±0.16 4.34±0.16** 4.24±0.15** 4.39±0.27** 4.06±0.26** 

VLDL 0.33±0.01 4.10±0.31 2.63±0.15** 2.80±0.13** 2.73±0.08** 3.10±0.09** 

LDL 0.12±0.01 0.39±0.05 0.29±0.03* 0.24±0.02* 0.25±0.04* 0.08±0.01** 

HDL 0.75±0.02 1.45±0.08 1.42±0.08 1.22±0.09* 1.43±0.05 0.85±0.04** 

AI  0.6±0.01 3.01±014 2.05±0.08 2.49±0.08 2.08±0.05 3.74±0.04 

triglycerides  

mmol/L       

Total 0.71±0.05 1.21±0.06 0.80±0.07** 1.05±0.04* 0.93±0.06** 0.79±0.11** 

VLDL 0.67±0.02 1.15±0.06 0.72±0.07** 0.99±0.04* 0.88±0.04** 0.75±0.04** 

LDL 0.04±0.00 0.04±0.00 0.03±0.00 0.04±0.00 0.03±0.00* 0.02±0.00** 

HDL 0.01±0.00 0.03±0.01 0.04±0.01 0.02±0.01 0.02±0.00** 0.01±0.00** 

 

Table 4: Plasma total cholesterol and triglycerides and their distribution in the separated 

lipoproteins of rats fed on a standard or the hypercholesterolemic diet with or without 

treatment with IDN 6442, IDN 6443 and Clofibrate. AI (atherogenic risk index, 

estimated in term of VLDL-chol + LDL-chol to HDL-chol ratio).  Values are means 
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+ SEM of 9 rats per group for plasma total cholesterol and triglycerides. The cholesterol 

and triglycerides in the different lipoproteins are from 3 pools of 3 animals per group. 

Value are means of 3 replicate.*p≤0.05, **p≤0.001 vs control. 

 

 

The treatment with the different products (IDN 6442, IDN 6443 and clofibrate), at 

the concentrations tested in this study, leads to a statistically significant reduction 

(p≤0.001, p≤0.05) in the amount of cholesterol carried by VLDL with little 

variation in that transported by LDL and HDL, when compared with values 

detected in hypercholesterolemic untreated rats (Table 4). Moreover, it is worth to 

note that the treatment with the different products based on soy proteins are able 

to reduce markedly the atherogenic risk index, estimated in term of VLDL-chol + 

LDL-chol to HDL-chol ratio, compared to that of rats fed on HC diet. In rats 

treated with 7S '-rich or the ' E polypeptides at different doses (25 and 50 mg/Kg 

b.w.), the index was, in fact, reduced by 54, 43 and 52 %, respectively (Table 4). It 

should however be noted that the 7S soybean polypeptides administration did not 

induce  a return to the lipid distribution in the various lipoprotein classes as showed 

in Table 5, in which the data are expressed not as an absolute value (mg/dl) but as 

a percentage. The same trend is observable as regards the transport of triglycerides 

by the different lipoprotein fractions in hypercholesterolemic rats. 
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  Hypercholesterolemic Diet   

 
Standard diet Veicolo 

+ IDN 6442 
20 mg/Kg 

+ IDN 6443 
25 mg/Kg 

+ IDN 6443 
50 mg/Kg 

+ Clofibrate 
200 mg/Kg  

COL 
(mmol/L)       

       

Total 1.19±0.09 5.94±0.16 4.34±0.16** 4.24±0.15** 4.39±0.27** 4.06±0.26** 

%VLDL 27.8 68.4 60.6 65.7 62.0 76.7 

%LDL 10.1 6.7 6.7 5.5 9.5 2.0 

%HDL 60.5 24.8 32.7 28.7 32.4 21.2 

       
TG  

(mmol/L)       
       

Total 63±4.6 107±5.5 71±6.2** 93±3.3* 82±5.2** 70±9.8** 

%VLDL 92.4 95.0 88.4 93.7 94.7 95.8 

%LDL 6.5 2.9 4.5 3.9 3.1 2.3 

%HDL 1.9 2.3 6.1 2.4 2.2 1.8 

 

Table 5: Effect of administration of IDN 6442 and IDN 6443 on the distribution of 

lipoproteins cholesterol and triglycerides (percentage) in rats on a hypercholesterolemic 

diet. Data are expressed as mean ± S.E.M. of 9 rats per group. Treatment: 28 days. 

Significance between the different groups of animals in hypercholesterolemic diet:             

** p≤0.001 vs vehicle.  

 

 

4.13 Liver lipids  

As expected, the administration of the Nath’s hypercholesterolemic diet induced a 

significant increase (approximately 2-fold) of the liver weight, together with a 

parallel increase in levels of free and esterified cholesterol, compared to animals 

feed with the standard diet. The free/esterified ratio was 9-fold lower in HC 

animals (Table 6). However, no treatment with the test substance (IDN 6442: 7S 

' enriched; IDN 6443' extension and  clofibrate) was able to induce a substantial 

change in terms of statistically significant differences compared to the value 

detected in untreated hypercholesterolemic rats either as lipid content (total 

cholesterol and triglycerides) or as a distribution (free and esterified cholesterol). 
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The only statistically significant difference observed was related to the lower 

content of esterified cholesterol in the groups treated with IDN 6442 and clofibrate. 

This trend is confirmed if it is taken into account the overall content of esterified 

cholesterol in the liver. It can be observed, in fact, that the treatment with IDN  

6422 (E.C. 178 total mmoles p≤0.05) and with clofibrate (E.C. 171 total mmoles, 

p≤0.05) have been able to induce a statistically significant reduction of the 

esterified cholesterol to the hypercholesterolemic control group (E.C. 227 total 

mmoles). Regarding the total content of triglycerides in the liver it can be observed 

that the treatment with clofibrate was able to induce a clear reduction of liver 

triglycerides contenent (from 470 total mmoles in hypercholesterolemic vs 323 

total mmoles in clofibrate treated rats); this reduction is also found when the data 

are expressed as mmoles of triglyceride per gram of liver tissue. The treatment 

with IDN 6422 and IDN 6443 did not lead to a statistically significant variation of 

the content in hepatic triglycerides compared to the values found in 

hypercholesterolemic controls. 
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Table 6: Data are expressed as mean ± SEM of three pool for 9 rats in the group. Each 

analysis was carried out in triplicate. * p ≤0.05, ** p ≤0.001 vs vehicle. 

 

 

4.14 Evaluation of the LDL receptor expression by RT-PCR  

The treatment with ’E-polypeptides has induced an increased expression of 

the mRNA of LDL receptor (LDL-R) compared to that recorded in animals fed on 

hypercholesterolemic diet and treated with vehicle alone, as show in Figure 13. In 

particular, the administration of IDN 6442 and IDN 6443 at the highest 

concentration (50 mg/kg b.w.), induced an increased expression of the mRNA of 

LDL-R (+1.7 fold) compared to values recorded in control group. The compound 

IDN 6443, at a concentration of 25 mg/kg body weight, resulted in a 1.8-fold 

increase, whereas the treatment with clofibrate induced a 2 fold increase in the 

  

Standard 
diet  

HC  diet 

 
 Control IDN 6442 IDN 6443 clofibrate 

 
 

 

 

20 

mg/kg 
    25 mg/kg 50 mg/kg 200 mg/kg 

Body weight, 
g 

341±12 326±10 331±7 350±7 334±7 321±6 

Liver weight, 
g 

9.53±0.68 18.90±1.38 17.41±0.67 21.62±2.16 18.41±0.94 19.26±1.23 

FC, mmol/g 3.98±0.18 5.92±0.31 6.36±0.44 4.50±0.36 5.61±0.31 9.41±0.08 

EC, mmol/g 0.87±0.09 11.99±0.28 10.20±0.12* 12.99±1.41 16.03±0.18 8.86±0.14* 

FC/EC mmol/ 
mmol 

4.57 0.49 0.62 0.35 0.35 1.06 

TG, mmol/g 7.25±0.77 24.88+1.90 29.74±1.37 35.54±1.29 28.29±1.92 16.82±1.63** 
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expression of mRNA of LDL-R compared to those observed in the 

hypercholesterolemic control group. 

 

 

                                           

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 13: Effect of the administration of the peptides IDN6442 (20 mg/Kg), IDN6443 

(25 and 50 mg/kg) and clofibrate (200 mg/kg), in hypercholesterolemic rats, the mRNA 

expression of the LDL receptor compared to the HC control treated with CMC. Data are 

expressed as mean ± S.E.M. (pool n. 3) relative to 9 rats per group. Each analysis was 

conducted in triplicate. Significance between the different groups of animals fed on 

hypercholesterolemic diet: ** p≤0.001 vs vehicle.  
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Synthetic peptides from soy 

 

4.15 Effect of synthetic peptides on lipid homeostasis in HepG2 cells 

Sterol response element-binding protein SREBP-2 preferentially regulates genes 

involved in cholesterol homeostasis by activating the transcription of 5-hydroxy-

3-methylglutaryl-coenzyme A reductase (HMGCoA Red) and low density 

lipoprotein receptor (LDL-R) (Brown and Goldstein, 1997). The results obtained 

in the present study pointed out that some of peptides, belonging to ’,  and  

subunits of 7S soy globulin, when exposed to HepG2 cells displayed different 

effect on the expression of LDL-R, SREBP-2 and HMGCoA red mRNAs, as 

recorded by real time PCR. As expected (Figure 14) simvastatin induced a marked 

increase of LDL-R (+1.5 fold), SREBP-2 (+1 fold) and a marked decrease of 

HMGCoA red (-60%) vs untreated cells. Peptide C (RKQEEDEDEEQQREE) and 

E (KNPQLR) tested at 1 M concentration displayed increased expression of 

mRNA LDL-R (+2.3, and +1.9 fold), SREBP-2 (+1.8, and +3.3 fold) and a 

decreased expression of mRNA HMGCoA red (-30, and -70 %, respectively) vs 

values detected in untreated cells (arbitrary unit = 1). This trend was similar to that 

observed in HepG2 cells treated with 1 M simvastatin. Peptide D showed similar 

behavior at higher concentration (10 M); increased expression of mRNA LDL-R 

(+0.5 fold), SREBP-2 (+2 fold) vs untreated HepG2 cells have been detected. 

Although the amino acid sequences of peptides A and B are present in ’ extension 

(’E) polypeptide they were ineffective, at both tested concentrations, on LDL-R 

and SREBP-2 mRNA expression; although an inhibition of HMGCoA red 
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expression was observed. This result could suggest that these amino acid 

sequences are not completely involved in the lipid lowering mechanism.  

 

 

 

 

Figure 14 
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Figure 14: Effect of synthetic peptides on the expression of LDL-R, SREBP-2, and 

HMGCoA red mRNAs by RT-PCR. HepG2 cells were incubated for 16 h in MEM + 5% 

LPDS in the presence of each peptide (1 and 10 M) or simvastatin (1 M). Results were 
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compared to the values recorded in untreated cells (arbitrary unit=1, red line). Values are 

the mean +S.D. of three independent triplicates. Abbreviation: S=simvastatin.                       

** p<0.005; *p<0.05 vs negative control (untreated cells) 

 

 

 

4.16 Effect of synthetic peptides from -conglycinin on lipid accumulation, 

FAS activity and anti-oxidant activity in 3T3-L1 adipocytes 

Table 7 presents the percentage inhibition of lipid accumulation in 3T3-L1 

adipocytes after 48 h of treatment with 50 M peptides compared to their controls. 

Treatment with synthetic peptides from -conglycinin decreased lipid 

accumulation in the adipocytes from 12 to 27 % compared to negative controls 

(untreated cells). All synthetic peptides were potent inhibitors of FAS activity. In 

particular, the large peptide C (RKQEEDEDEEQQRE) resulted the most active 

compound to reduce lipid content. It was shown, in fact, a higher inhibitory effect 

(-27% vs untreated cells) on lipid accumulation and a significantly higher (p< 0.05) 

potency (IC50= 16 mM) on FAS inhibitory response compared to the other peptides 

under study. Moreover, peptides B (QKEEEKHEWQ) and D (EITPEKNPQLR) 

showed decreased lipid accumulation (18 and 19%, respectively) and the same 

potency (26 and 25 M, respectively). Peptides A (SEEEEEDQ) and E 

(KNPQLR) were characterized by higher IC50 and lower inhibition of lipid 

accumulation in comparison with the other peptides tested. These results confirm 

previous data where the FAS inhibitory potency of soy peptides also correlated 
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with their molecular mass; in addition the large inhibitory peptide 

(RKQEEDEDEEQQRE) bond to thioesterase domain of human FAS blocking the 

active site of such domain, as predicted by molecular docking (Martinez-

Villaluenga et al., 2010). The ORAC assay is widely used to determine antioxidant 

capacity (AC) “in vitro”  by measuring the scavenging activity of peroxyl or 

hydroxyl radicals (Davalos et al., 2004) . The amino acid sequence of peptides 

tested belong to ’,and  subunit of -conglycinin none of them showed a 

significant anti-oxidant capacity, since the results obtained varied between 11 and 

15 mol Trolox equivalent/mmol peptide (Table 7).  

 

 

Peptide % inhibition 
of lipid accumulation 

FAS activity 

IC50 (M) 

AC 
 

A 12 + 1.3* 56* 11 

B 18 + 2.0* 26* 15 

C 27 + 3.2** 16** 11 

D 19 + 3.1* 25* 13 

E 14 + 1.8* 73* 13 

 

Table 7: Antioxidant activity and inhibitory effect of synthetic peptides (50 mM) on lipid 

accumulation in 3T3-L1 adipocytes after 48 h and on fatty acid synthase (FAS) activity. 

AC= anti-oxidant capacity (mol Trolox equivalents/mmol peptide). Values are the mean 

+ S.D. of three independent triplicates. ** p<0.005; *p<0.05 vs negative control 

(untreated cells). 
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4.17 Effect of synthetic peptides on inflammation markers in RAW 264.7 

cells 

It is known that inflammation is part of the defense mechanism against infectious 

agents and injury. We studied the effect of each peptide (25 M concentration) on 

the protein expression of iNOS in macrophages using Western blot. Table 8 shows 

that the expression of iNOS was differently affected by synthetic peptides. 

Western blot analyses (data not shown) pointed out the protein expression of iNOS 

was barely detected in the non-stimulated cells. However, the level increased 

markedly after 24 h of LPS treatment. Peptide A (SEEEEEDQ), B 

(QKEEEKHEWQ), and E (KNPQLR) reduced the expression of iNOS by -71,        

-75 and -44%, respectively. COX-2 appears to be the dominant source of 

prostaglandin formation in inflammation, although its role in the reduction of 

inflammation was indicated in COX-2 Knock Out mice. To evaluate the role of 

synthetic peptides in inflammation, expression of COX-2 in LPS-stimulated RAW 

264.7 cells was measured. As indicated in Table 8, COX-2 expression was 

markedly reduced by peptide A, B, and E by 54, 34, and 79 %, respectively. 

Peptide C (RKQEEDEDEEQQRE), and peptide D (EITPEKNPQLR) showed 

lower inhibitory activity on both inflammation markers. These data support 

previous results indicating that peptides released by “in vitro” or “in vivo” 

enzymatic digestion from different protein components present in the soybean seed 

are characterized by different physiological functions.  
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Peptide % inhibition of iNOS  % inhibition of COX-2 

A 71 + 3.8** 54 + 1.6 ** 

B 75 + 2.1 ** 34 + 2.5 ** 

C                   43 + 2.9 * 20 + 1.7 * 

D 25 + 1.7 * 25 + 2.3 * 

E 44 + 2.8 ** 79 + 3.6 ** 

 

Table 8: Effect of synthetic peptides (25 mM) on pro-inflammatory responses in LPS-

induced RAW 264.7 macrophages after 24 h. Values are the mean + S.D. of three 

independent triplicates. ** p<0.005; *p<0.05 vs negative control (untreated cells). 

 

  

4.18 Effect on plasma lipids and LDL receptor expression of the “in vivo”  

        treatment with synthetic peptide (NPDNDE)   

Total cholesterol and triglyceride were analysed at the end of 21 days of treatment 

with NPDNDE (5 mg/Kg b.w. /day), results are shows in Figure 15. The data were 

compared with that obtained in rats treated either with whole ’ (20 mg/Kg b.w.) 

or clofibrate (200 mg/Kg b.w.), as reference drug. The oral administration of 

NPDNDE peptide resulted in lower plasma lipid level, cholesterol (-37%, 

triglycerides, -38%) vs value recorded in rats fed casein-cholesterol diet alone. 

Four-fold amount of ’ chain reduce cholesterol and triglyceride by 37 and 25% 

respectively. Similar results were obtained in clofibrate-treated rats. Moreover, 

synthetic peptide increased the expression of mRNA LDL-R (+53 %) (Fig 15 B), 

thus restoring receptor activity suppressed by HC diet.  
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 Figure 15 A 

 

Figure 15 B 
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* * 

* 

 

Figure 15 C 

Fig 15: (A) Plasma lipid levels, cholesterol and triglycerides in HC fed rats after 21 days 

oral administration of NPDNDE peptide. (B) Expression of LDL-R mRNA in liver of HC 

rats treated with NPDNDE peptide. Results were compared to the values detected in 

untreated rats (arbitrary unit = 1) *p<0.05 vs control. 

 

 

4.19 Modulation of SREBP-2, LDL-receptor, and PCSK9 mRNA expression  

in HEPG2 by NPDNDE peptide 

To evaluate the potential effect of NPDNDE peptide on the modulation of LDL-

R, SREBP-2 and PCSCK9, HepG2 cells were incubated for 6, 8 and 16 h in MEM 

+5% LPDS w/wo whole ’ subunit (3.5 M), or synthetic peptide (10-5 M), or 

simvastatin (1 M), as a positive control. At the end of incubation, cells were 

processed for LDL-R, SREBP2 and PCSK9 mRNAs by RT-PCR. Increased 

mRNA expression of LDL-R at 6h by + 2.5 fold (for both substances) (Figure 16 

A), for SREBP2 (8h: +1.5, +1.2 fold), and PCSK9 (8h: +3,5; +1.5 fold) were 
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detected in cells exposed to NPDNDE, respectively vs ’and simvastatin exposed 

cells (Fig. 16 B-C). 

 

Figure 16 A 

Figure 16 B 
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Figure 16 C 

Fig.16: Effect of NPDNDE peptide on the expression of LDL-R, SREBP-2 and PCSK9 

mRNA by RT-PCR. HepG2 were incubated with 3.5 M ’7S subunit or synthetic 

peptide (10-5 M). Results were compared to the values recorded in untreated cells 

(arbitrary unit =1). Values are the mean ± S.D. of three independent triplicates. * p≤0,05; 

**p≤0,005 vs negative control. 
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5. DISCUSSION AND CONLUSION   
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Type 2 diabetes is a chronic metabolic disorder, often characterized by Insulin 

resistance, which leads to several secondary complications, including 

hypertension, atherosclerosis, coronary artery disease and hyperlipidemia (King et 

al., 1998). Approximately 150 million people worldwide are affected by the 

disease at present, with a projection of 300 million people being affected by 2025. 

Diabetes has become a serious public health problem, particularly in developed 

countries (Parikh et al., 2007). Research in an effective anti-diabetic agent, in 

addition to those already available, would be of great interest for the treatment of 

type 2 diabetes. Legume seeds, due to the nutraceutical potentialities of some of 

its proteins, may provide an alternative to the usual treatment of glucose 

metabolism disorders. Specifically, lupin flours, such as other pulses, are 

characterized by a low glycaemic index, so they can be useful in the prevention of 

IR in human subjects (Duranti, 2006).  

Lupin seeds are characterized by a high content of protein, about 35%, and by low 

levels of isoflavones and anti-nutritional factors (Champ, 2001). The anti-diabetic 

activity of toasted lupin seeds was initially described, in the middle of the last 

century, by Ferranini & Pirolli (Ferranini, 1937) and by Orestano (Orestano, 1940), 

who proposed lupin as a substitute for the insulin therapy in mild-to-medium 

diabetes mellitus, but no further studies have been carried out to identify the 

molecule responsible of this biological effect.  A few years ago the isolated lupin 

protein was found to bind insulin in vitro, by using both affinity chromatography 

on an insulin-bound matrix and Surface Plasmon Resonance (SPR). In parallel, 

suitable amounts of isolated protein were tested in glucose overloading trials on 
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rats. The results, reported in a significant decrease of the under-curve area of time 

course of glycaemic concentration with an effect similar to that of metformin at 

about half the dose of the lupin protein (Magni et al., 2004). Studies on both the 

biological activity of lupin γ-conglutin and its metabolic effects are currently 

ongoing. 

In the attempt of identifying the active principle responsible of the glucose 

controlling capacity attributed to a lupin seed component, a study on a specific 

lupin protein, named conglutin γ, was initiated. -Conglutin was considered a good 

candidate on the basis of previous finding that an homologous soybean seed 

protein, named Bg7S, was found to display a binding capacity to some small 

regulatory proteins, including insulin (Hanada and Hirano, 2004). However, these 

precursor studies primarily focused on the modalities and possible physiological 

role of the interaction between the soybean protein and an endogenous regulatory 

peptide, thus neglecting the potential effect(s) of the soybean protein on the human 

body carbohydrate metabolism. Due to the amino acid sequence similarity (63%) 

between soybean Bg7S (SwissProt Database accession number: P13917) and lupin 

γ-conglutin (SwissProt Database accession number: Q9FSH9), a molecular and 

metabolic study on the latter protein was recently undertaken. 

In this work we have studied the potential effect of -conglutin treatment glucose 

lowering effect in “in vivo” and “in vitro” models, monitor the protein 

internalization in cells and studied the interference whit the insulin receptor 

pathway.  
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In the first study, the addition of 10% glucose in drinking water induced 

hyperglycaemia and hyperinsulinaemia in rats similar to that observed in human 

subjects. No side effects have been detected during the experimental period, such 

as those recorded in animals undergoing streptozotocin (Dabros et al., 2004) or 

alloxan (Pari and Saravanan, 2002) treatment to mimic diabetes. -Conglutin 

administration has been demonstrated to counteract the plasma glucose increase as 

well as to improve the insulin sensitivity, normally reduced by the glucose rich 

drinking-water. In the -conglutin treated rats, the insulin sensitization was 

increased significantly, as indicated by the 48% reduction in the homeostasis 

model of insulin resistance. It is worth noting that the hypoglycaemic effect in vivo 

was obtained by the use of a preparation, which contained a -conglutin amount 

corresponding to the lowest dose previously used in acute trials of glucose 

overload (Magni et al., 2004). Moreover, lower glucose levels were detected in -

conglutin treated rats following oral glucose overload; these results were 

confirmed by lower glycaemia in fasting and two hours postprandial conditions. 

Recently, Terruzzi et al. (Terruzzi et al., 2011) have demonstrated that -conglutin 

may regulate muscle energy metabolism, protein synthesis and major 

histocompatibility complex gene transcription through the modulation of insulin 

signaling pathway. Moreover, -conglutin resistance to proteases at neutral pH 

values (Capraro et al., 2009)  could explain the maintenance of its activity after 48 

h of incubation, as we have observed in HepG2 cells.  
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In the present report the role of -conglutin in controlling glucose concentrations 

has been assessed using the purified protein in cell assays, however, the synergic 

effect of other protein/peptide components present in the type F sample used in “in 

vivo” experiment, cannot be excluded. In addition, the reduced increase in plasma 

glucose (-24%) and insulin (-33%) levels, recorded in rats following -conglutin 

treatment vs the values found in the pair fed animals, could be of pharmacological 

relevance. It is noteworthy, in fact that these decreases have been obtained by the 

use of a single daily administration of a purified food protein. The prerequisite for 

any biological activity is the interaction of the component under study with 

components present on plasma membrane or its direct entry into the target cells. 

This, in turn, implies that the protein can reach the district of its action in an intact 

or, at least, still active form. A number of plant and seed proteins have been found 

to be fully or partially resistant to proteolytic enzymes into the gastro-intestinal 

tract in force of their peculiar amino acid sequences and or structures (Clemente et 

al., 2000). In this respect, -conglutin was shown to undergo an ‘all or none’ 

mechanism of proteolytic degradation “in vitro”. In fact, when -conglutin native 

conformation was lost, the protein became susceptible to proteolytic enzymes; 

conversely, if the native structure was preserved, as it occurs at any pH value 

greater than 3.0, no degradation was observed (Capraro et al., 2009). In this work 

we used a different approach to get complementary information on the 

internalization and possible covalent modifications of -conglutin in HepG2 cells, 

as the basis for further studies aimed at unveiling the mechanism of action of this 

protein. Remarkably, microscopy showed that the -conglutin did get in contact 
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with the cell in the form of molecular aggregates. The spontaneous formation of 

these aggregates at neutral pH values (Capraro et al., 2010) may facilitate the 

interaction with the cell structures devoted to captation of foreign materials, such 

in the cases of albumin in astrocytes (Bento-Abreu et al., 2009) and human 1-acid 

glycoprotein (AGP) (Komori et al., 2012). Intracellular accumulation of -

conglutin is particularly evident in confocal microscopy at 6 h incubation, when 

also glucose uptake is significantly increased (64%). The 2D electrophoresis was 

carried out on HepG2 cell lysates at the same time of treatment and the lupin 

protein was detected. The position of its two subunits in the map suggested that 

the covalent integrity of the protein was preserved. However, a shift in the map of 

-conglutin related spots to more acidic pH values denoted a significant pI change 

of some polypeptides. Mass spectrometry unequivocally showed that this pI drift 

was due to multiple phosphorylation of the protein. No phosphorylation events 

have been previously described for -conglutin. 

To elucidate the cell internalization routes of -conglutin, experiments using 

specific inhibitors of endocytosis, were carried out on HepG2 cells and the uptake 

of the protein was detect by fluorescence-activated cell sorting (FACS). We have 

chosen Chlorpromazine (CPZ) and methyl-β-cyclodextrin (MβCD) to inhibit the 

clathrin-mediated endocytosis pathway (Wang et al., 1993) (Rejman et al., 2005) 

(Manunta et al., 2004; Subtil et al., 1999), filipin and genistein  (Aoki et al., 1999; 

Orlandi and Fishman, 1998; Rejman et al., 2005) to inhibit the raft/caveolae-

mediated endocytosis pathway and amiloride to inhibit macropinocytosis pathway 

(Hewlett et al., 1994). The treatment with amiloride significantly affected the 
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FITC--conglutin internalization, with an approximately 69% decrease in the 

amount of cellular uptake. The treatment with other inhibitor such as MβCD, CPZ 

and genistein showed a lower reduction in the uptake of protein (40 %, 33% and 

14% respectively). Pretreatment of the cells with filipin, had no significant effect 

on -conglutin uptake. These results suggest that in HepG2 cells -conglutin was 

internalized preferentially trough macropynocytosis pathway. 

On the other hand, the macropinocytotic pathway is one of the major physiological 

mechanism for the endocytic uptake of certain peptide sequences (Kaplan et al., 

2005; Nakase et al., 2004; Wadia et al., 2004) compared with other routes of entry 

inside the cells.  

HepG2 cells are largely used for biochemical and nutritional studies as a cell 

culture model of human hepatocytes because maintain their morphology and most 

of their function in culture (Brandon et al., 2006; Nakajima et al., 2000). Moreover, 

HepG2 cells has been used to study the hepatic glucose production and the 

modulation of the insulin pathway “in vitro”system (Lin et al., 2007; Lin and Lin, 

2008). 

To assess whether the -conglutin was involved in the activation of intracellular 

kinases like to the insulin signaling cascade on IRS-1/PI-3-kinase pathway on the  

glucose homeostasis (Saltiel and Kahn, 2001), we have processed cell protein from 

HepG2 cells. Firstly observed that incubation of cells with -conglutin alone or in 

the presence of insulin, did not induce an increase in the levels of AMPK 

phosphorylated proteins; metformin, as expect (Hawley et al., 2002) showed the 

highest levels of the pAMPK/AMPK ratio.  
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However when cell was treated with -conglutin, for 6 hours we observed a five 

fold increased in the phosphorylation of AKT and a similar rise in p-AKT value is 

present in all experimental conditions. To confirm this data, HepG2 cells were 

exposed to a selective inhibitor of AKT (LY294002); data showed that after 6 or 

24 hours of treatment, LY294002 decreased the p-AKT levels in all cells incubated 

with this inhibitor with or without presence of -conglutin or insulin alone or in 

combination. These data suggest that, this protein triggers in the PI3K/AKT 

metabolic pathways involved in the glucose homeostasis. The linkages between 

diet and health are no longer a matter of discussion. Moreover, the specific and/or 

limited effects of current drug treatments for diabetes, combined with dangerous 

effects that most of them induce, have fueled the search for alternative medicine. 

Furthermore, the specific role of many food components, their synergies and 

antagonism are still a largely unexplored area. The case of dietary 

proteins/peptides is particularly intriguing due to the dramatic changes they may 

undergo from food production to food digestion. Our findings, by showing that -

conglutin can be taken up by HepG2 cells in an intact form and is modified by 

multiple phosphorylation, open the way to more focused studies aimed to 

understand the mechanisms of action of this bioactive lupin seed protein able to 

lower glycaemia in animals and humans. 

Further studies, aimed at understanding the protein moiety of -conglutin 

responsible for the glucose-lowering effect and the molecular mechanism thereby, 

are currently being undertaken. Moreover, the hypothesis that -conglutin could 

act as an insulin-like agent should not be excluded. In conclusion, the present study 
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provides the “in vivo” and “in vitro” evidence of the involvement of -conglutin 

on cell glucose homeostasis, thus suggesting the potential use of this food protein 

in the control of glycaemia in patients with manifest or pre-clinical diabetes as well 

as for applications as functional foods and dietary supplements. 

Soybean (Glycine max) seed proteins have proved to be active in plasma 

cholesterol and triglyceride lowering activity (as demonstrated in the recent meta-

analysis involving different randomised controlled intervention studies (Anderson 

and Bush, 2011; Harland and Haffner, 2008). Controversial discussions on the key 

role played, respectively, by proteins, isoflavones, fibers and other minor 

components are still ongoing, as witnessed by another review on the topic (Dewell 

et al., 2006). But, well as the fact that each compound is probably involved in 

different pathways and mechanisms on the role of soybean proteins, in October 

1999, the U.S. Food and Drug Administration (FDA) approved a health claim that 

allowed food label claims for reduced risk of heart disease on foods that contain 

more than 6.25 g of soybean protein per serving ((FDA), 1999). In particular, a 

daily soybean protein intake of 25 g was considered beneficial, based on a number 

of previous clinical observations. 

Although the substitution of animal with plant proteins in the diet of 

hypercholesterolemic individuals is known to be associated with a significant 

cholesterol reduction since long (Hodges et al., 1967) and the identification of the 

responsible molecules, including phytoestrogens, dietary fibers, protein 

components, etc., is still matter of debate, this claim is one of the rare examples of 

an official acknowledgement of this beneficial effect of a dietary protein on health. 
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However, the amounts of soybean proteins needed to trigger the biological activity 

are extremely large from the dietetic point of view. Therefore in the last years the 

identification of the active molecule(s) has been strongly pursued as a strict 

requirement for the design of suitable intervention protocols. The first “in vivo” 

evidence of the involvement of the 7S globulin family of soybean storage proteins 

was obtained in 1992 by Lovati et al. (Lovati et al., 1992). In this study, the 

administration of 7S soybean globulin significantly reduced cholesterolemia (-

35%) vs casein fed rats. These findings were confirmed by studies on the 

stimulation of low density lipoproteins (LDL) receptors and degradation of LDL 

in cultured hepatocytes (Lovati et al., 1992). Later on, an evidence of the 

involvement of one of the 7S globulin subunits, namely the α′ subunit, was 

indirectly shown by the lack or reduced activity of a soybean cultivar naturally 

devoid of this polypeptide chain (Manzoni, 1998). Further studies (Manzoni et al., 

2003) confirmed these previous findings, by showing the up-regulation of LDL-R 

by the α′ subunit. The direct demonstration of the key role played by the α′ subunit 

in reducing plasma lipids in rats fed cholesterol-rich diet came later, thanks to the 

isolation of relatively large amounts of this subunit from the 7S globulin oligomer 

(Duranti et al., 2004). This achievement was based on the observation that the N-

terminal region of the α′ subunit, the so-called extension region, differed from the 

corresponding region of α subunit being richer in histidine residues (SwissProt 

Database accession numbers of α′ and α subunits: P11827 and P13916, 

respectively). On this basis, a preparative metal affinity chromatography column, 

was used to isolate the α′ subunit in gram amounts, making it possible to test the 
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isolated subunit in hypercholesterolemic animal models as well as in cell assays 

(Duranti et al., 2004). These results, by showing that the α′ subunit oral 

administration to rats significantly reduced plasma cholesterol and triglyceride 

levels, confirmed “in vivo” the results obtained with soybean proteins, 7S globulin 

and α′ subunit, in isolated cell systems, ruled out any isoflavone effect (Fukui et 

al., 2002) and substantiated the role of a legume dietary protein in the management 

of dislipidaemia. In addition, the up-regulation of the β-VLDL receptors in liver 

cells from hypercholesterolemic rats in response to oral treatment with this 

polypeptide was demonstrated (Duranti et al., 2004). Nonetheless, since the 

purification procedure devise is not easy to scale up, by implying a denaturation 

step to dissociate the 7S globulin oligomer, the possibility of cloning and 

expressing in proper host organisms the active subunit or a fragment thereof, 

bearing the biological activity, is currently being investigated by own group. 

Although the mentioned results represent a relevant point in the utilization of a 

dietary protein for the control of cholesterol and triglycerides hematic levels, still 

the mechanism of action of this protein is not understood. From a recent study, it 

appeared that soybean protein in the diet can also increase the size of LDL, a 

known protective effect against arterial diseases (Desroches et al., 2004). 

Moreover, the interaction of the soybean 7S globulin with thioredoxin 1 and 

cyclophilin B, two cell protein components involved in the protection from 

oxidative stress, was demonstrated (Manzoni et al., 2003). Due to the complexity 

of the metabolic and regulatory pathways involved, further research activities with 

suitable models and experimental approaches are needed to identify underlying 
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mechanism(s). All these direct evidences support the epidemiological association 

between soybean protein intake and reduced cardiovascular risk (Anderson and 

Major, 2002). Indeed, a positive effect of soybean proteins on carotids lesions in 

high fat diet fed rabbits (Castiglioni et al., 2003) and a global anti-atheromatous 

effect in mice (Adams et al., 2004) suggest a link between soybean protein 

consumption and atherosclerosis reduction.  

In this context, also the involvement of pulses other than soybean in the control of 

lipidaemic homeostasis has been considered (Dabai et al., 1996). In particular, a 

report on the reduction of plasma total and LDL-cholesterol induced by lupin 

proteins in rats on a high fat diet has appeared (Sirtori et al., 2004). In attempt to 

identifying the putative responsible molecule, γ-conglutin, a lupin protein which 

will be extensively mentioned in the following paragraph, has been put forward. 

Previously, another legume seeds, namely faba bean (Vicia faba) was proved to 

have a beneficial impact on lipid profiles. In human studies, Weck et al. (Weck et 

al., 1983) demonstrated that in hypercholesterolemic subjects, faba bean proteins 

had a cholesterol-reducing efficacy comparable to that of soybean protein. This 

effect was later confirmed on hypercholesterolemic rats by Macarulla et al. 

(Macarulla et al., 2001). 

In this study we tested different peptides from 7S soy globulin in “in vitro” and “in 

vivo” models. 

The results obtained in the present study, indicated that the compound IDN 6443 

('E), administered to rats fed  hypercholesterolemic diet, while not being able to 

reduce the levels of liver lipids, was effective in inducing a stimulation, not dose 
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dependent , in the expression of the LDL receptor. In particular, the administration 

of the reference compound (7S’-rich, IDN6442) (50 mg/kg b.w.), induced an 

increased expression of the LDL-R (+1.7 fold) compared to the values recorded in 

the control group. The compound IDN 6443 (’E), at the concentration of 25 

mg/kg b.w. resulted in a 1.8 fold increase, whereas the treatment with clofibrate 

induced a 2 fold increase in the expression of mRNA of LDL-R compared to those 

observed in the hypercholesterolemic control group. These results confirmed 

previously published data (Duranti et al., 2004) on the positive modulation of the 

LDL receptor in rats treated with the reference compound (IDN 6442).  

More studies aimed to identify the cellular molecular target in view of a possible 

association of this product with other lipid-lowering drugs, are at present object of 

evaluation. In addition, the results obtained in this experiment indicate that IDN 

6443 ('E), administered to rats fed hypercholesterolemic diet, was able to reduce, 

in a statistically significant manner, the levels of plasma lipids, both total and 

associated with the different lipoprotein classes. IDN 6443 ('E), was used at 

concentrations of 25 mg/kg b.w. (5.65 mg protein/Kg b.w.) and 50 mg/Kg b.w. 

(11.3 mg protein/kg b.w.); although the concentration of active principle is 

minimal compared to the amount of product administered, this product was 

characterized by a remarkable reduction activity of both total cholesterol (-29 and 

26%, respectively with 25 and 50 mg/kg b.w.) and  triglycerides (-13 and - 23%, 

respectively with 25 and 50 mg/kg b.w.).  The lipid-lowering effect is comparable 

to that observed in rats treated with 200 mg/kg of clofibrate, as a reference drug.   
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Alteration of cell lipid homeostasis plays a key role in the development of chronic 

diseases, such as heart failure and metabolic syndrome, which are typical of the 

affluent countries. Previous studies indicated that -conglycinin lowers plasma 

levels of cholesterol and triglycerides in humans (Kambara, 2002; Ma et al., 2013), 

as well as in animal models of human hyperlipidemia (Duranti et al., 2004; Ferreira 

Ede et al., 2011) and induces an  up-regulation of LDL high affinity receptors as 

recorded in hypercholesterolemic patients (Lovati et al., 1987) and cell cultures 

(Lovati et al., 1992; Mochizuki et al., 2009).  Although, “in vitro” and “in vivo” 

data suggest the ’ subunit as responsible of the biological effect, it is not possible 

to exclude that other subunits of -conglycinin can be involved in lipid modulation 

and/or in activities to them related. Moreover the results obtained in the present 

study pointed out that some of peptides, belonging to ’,  and  subunits of 7S 

soy globulin, when exposed to HepG2 cells displayed different effect on the 

expression of LDL-R, SREBP-2 and HMGCoA red mRNAs, as recorded by real 

time PCR. As expected simvastatin induced a marked increase of LDL-R (+1.5 

fold), SREBP-2 (+1 fold) and, a marked decrease of HMGCoA red (-60%) vs 

untreated cells. Peptide C (RKQEEDEDEEQQREE) and E (KNPQLR) tested at 1 

M concentration displayed increased expression of mRNA LDL-R (+2.3, and + 

1.9 fold), SREBP-2 (+1.8, and +3.3 fold), and a decreased expression of mRNA 

HMGCoA red (-30, and -70 %, respectively) vs values detected in untreated cells. 

This trend was similar to that observed in HepG2 cells treated with 1 M 

simvastatin. Peptide D showed similar behavior at higher concentration (10 M); 
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increased expression of mRNA LDL-R (+0.5 fold), SREBP-2 (+2 fold) vs 

untreated HepG2 cells have been detected. 

In a previous work, a marked reduction of apo B accumulation has been found in 

the media of HepG2 cells exposed both to whole 7S soy globulin and to a 

commercial isoflavone-poor soy concentrate (CroksoyR70) (Lovati et al., 2000). 

In addition, an increased up-regulation of LDL-R was detected in the same cell 

line after incubation with a synthetic peptide (MW 2271 Da) corresponding to 

positions 301-324 of ’ subunit of 7S soy globulin (Lovati et al., 2000). Moreover, 

Mochizuki et al. (Mochizuki et al., 2009) showed that short peptides (7S-peptides) 

derived from highly purified -conglycinin suppressed the secretion of 

apolipoprotein B-100 in the medium and increased the cleaved nuclear form of 

SREBP-2 in HepG2 cells. Recently, a LDL-R transcription stimulating peptide 

(FVVNATSN), deriving from 7S globulin  chain, has been identified from a 

soybean hydrolysate prepared by a protease from Bacillus amyloliquefaciens and 

then by chemical synthesis (Cho et al., 2008). In HepG2 cells in fact an increased 

LDL-R transcription (+148%) was detected at a concentration of 100 M of this 

peptide. Although the mechanism underlying the increased expression of LDL-R 

and SREBP-2 mRNAs and the reduced expression of HMGCoA reductase mRNA 

remains to be elucidated in details, it is worth to note that all peptides were potent 

inhibitors of FAS activity as reported below. 

Recently, a number of studies have suggested that FAS is a potential target for 

drug discovery. In contrast to normal tissues, high levels of FAS expression have 
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been found in many human cancers, including carcinoma of the breast, prostate, 

colon, ovary and in adipose tissue  (Berndt et al., 2007; Sheng et al., 2009). 

The discovery and development of pharmacologic FAS inhibitors are the premise 

for the treatment of cancer, diabetes, hyperlipidemia, obesity and related diseases. 

Plant-derived compounds have been discovered as potential FAS inhibitors 

(Brusselmans et al., 2005; Na et al., 2006; Rivkin et al., 2006). Previous “in vitro” 

studies have shown that soybean -conglycinin contains active peptides that 

inhibit FAS (Gonzalez de Mejia, 2009) and fatty acid biosynthesis in adipocytes 

(Martinez-Villaluenga et al., 2008). Treatment with synthetic peptides from -

conglycinin decreased lipid accumulation in the adipocytes from 12 to 27 % 

compared to negative controls (untreated cells). Previous data correlate the FAS 

inhibitory potency of soy peptides to their molecular mass. The large inhibitory 

peptide (RKQEEDEDEEQQRE) bond to thioesterase domain of human FAS 

blocking the active site, as predicted by molecular docking (Martinez-Villaluenga 

et al., 2010). The intake of 5 g of -conglycinin per day decreased visceral fat in 

humans and increased the activities of hepatic oxidation enzymes in mice and 

rats (Moriyama et al., 2004). Newly, it was shown that soybean hydrolysates play 

a role in regulating body weight (Vaughn et al., 2008) and controlling lipid 

accumulation (Martinez-Villaluenga et al., 2008). 

Recent research have suggested that oxidative stress is related to atherosclerosis 

as well as to diabetes and cancer, although the exact impact of this association has 

still to be determined  (Song et al., 2007). None of the peptides tested in present 

work which belong to ’,  and  subunit of -conglycinin showed a significant 
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anti-oxidant capacity, since the results obtained varied between 11 and 15 mol 

Trolox equivalent/mol peptide (Table 7 in results capitol). Chen et al. reported 

that soy peptides containing histidine are characterized by antioxidant properties. 

Since the peptides studied are lacking in histidine amino acid, this could justified 

their inefficacy as antioxidant compounds. Moreover, although the interaction of 

’chain, or fragment thereof, with thioredoxin 1 and cyclophilin B has been 

previously indicated (Manzoni et al., 2003) we have not information about the 

potential interaction of peptides with cell membrane components as well the 

endocytotic pathway involved. Despite the results obtained in the present study, 

Elias et al. demonstrated the improvement of the antioxidant capacity of soybean 

when protein was hydrolyzed into peptides (Elias et al., 2008). 

It is known that inflammation is part of the defense mechanism against infectious 

agents and injury. On the other hand, it is also associated to many chronic diseases 

such as cardiovascular disease, diabetes and cancer (Agarwal et al., 2009). From 

this, the reduction of expression or activity of the enzymes iNOS/COX-2 is the 

target to prevent chronic diseases related to inflammation. Nitric oxide synthases, 

(NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) 

from L-arginine.  Nitric oxide, plays an important role in the regulation of immune 

function, anti-apoptosis, and neurotransmission (Chung et al., 2001). Although it 

was demostrated (Martinez-Villaluenga et al., 2009) that protein hydrolysates from 

soybean reduced prostaglandin 2 (PGE2) production in LPS-induced 

macrophages, there is no information about the effect of purified peptides 

fromconglycinin on the iNOS and COX-2 following treatment of RAW 264.7. 
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We studied the effect of each peptide (25 M concentration) on the protein 

expression of iNOS in macrophages using Western blot. Results shows that 

expression of iNOS was differently affected by synthetic peptides, peptide A 

(SEEEEEDQ), B (QKEEEKHEWQ), and E (KNPQLR) reduced the expression of 

iNOS by 71, 75 and 44%, respectively. To evaluate the role of synthetic peptides 

in inflammation, we also measured the expression of COX-2 in LPS-stimulated 

RAW 264.7 cells. As indicated in Results section, COX-2 expression was 

markedly reduced by peptide A, B, and E by 54, 34, and 79 %, respectively. 

Peptide C (RKQEEDEDEEQQRE), and peptide D (EITPEKNPQLR) showed 

lower inhibitory activity on both inflammation markers. These data support the 

hypothesis that peptides, released by “in vitro” or “in vivo” enzymatic digestion 

from different protein components present in the soybean seed, are characterized 

by different physiological functions.  

The NPDNDE synthetic peptide corresponding to the position 314-319 of α’ chain 

7S soy globulin was tested “in vitro” and “in vivo” experiments. Results obtained 

after treatment with this peptide showed an increased mRNA expression of 

SREBP2 (+1.5; 1.2 fold), LDL-R (+2.5; 2.5 fold) and PCSK9 (+3.5; +1.5 fold) 

were detected in cells exposed to NPDNDE and simvastatin, respectively vs 

control cells. “In vivo” experiment rats fed hypercholesterolemic diet were daily 

treated by gavage with synthetic peptide NPDNDE (5 mg/Kg b.w.) for 21 days; 

the results were compared with that obtained in rats treated either with whole α’ 

(20 mg/Kg b.w.) or clofibrate (200 mg/kg b.w.), as reference drug. The oral 

administration of peptide resulted in lower plasma lipid levels (cholesterol, -37%; 
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triglycerides, -38%) vs values recorded in rats fed casein-cholesterol diet alone. 

Four-fold amounts of α’ chain reduced cholesterol and triglycerides by 37 and 

25%, respectively. Similar results were obtained in clofibrate-treated rats. 

Moreover, synthetic peptide increased the expression of mRNA of LDL-R (+ 

53%), thus restoring the receptor activity normally suppressed by the HC diet. This 

is the first “in vivo” evidence of potential activity of the NPDNDE synthetic 

peptide from α’chain 7S soy globulin on lipid homeostasis through SREBP-2 and 

PCSK9 pathways. 

The results presented in this 7S soy protein study pointed out that peptides, 

designed considering the differences among the amino acid sequences of the three 

subunits of 7S soy globulin and chemically synthesized, as well as a 

biotechnological product such as  ‘E were characterized by biological properties 

making them a suitable source of active peptides. Moreover, this study showed 

that the protein component and not any other potentially bioactive compounds, 

such as isoflavones, are responsible of the detected activities. These soy peptides 

played, in fact, a key role in the complex mechanism of cell physiology and this 

depends on the different cell line used. These molecules, following confirmation 

of their biological activity in “in vivo” models, will open to the sector of 

prevention, generating a strong impact on businesses as well as on the consumer 

health.  Moreover, the biotechnological product (’E) can effectively reduce 

cholesterolemia upregulating LDL receptor activity, a widely accepted mechanism 

of cholesterol reduction associated with the intake of vegetable proteins. The 
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growing interest in this product suggest its potential therapeutic use in 

hypercholesterolemia.  

In conclusion the results of these studies are the basis for the development of 

functional foods with beneficial effects on various diseases, including 

hyperlipidemia, diabetes, cardiovascular disease and so on, to be used alone or in 

combination with drug therapies. Moreover, the knowledge of the amino acid 

sequence responsible of the biological effect could be of help for the selection of 

soy cultivars or the production of genetically modified soybean crops rich in 

bioactive compounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 

 

REFERENCES 

 
 

 Adams, M.R., Golden, D.L., Franke, A.A., Potter, S.M., Smith, H.S., and Anthony, 

M.S. (2004). Dietary soy beta-conglycinin (7S globulin) inhibits atherosclerosis in 

mice. The Journal of nutrition 134, 511-516. 

 

 Agarwal, S., Reddy, G.V., and Reddanna, P. (2009). Eicosanoids in inflammation and 

cancer: the role of COX-2. Expert review of clinical immunology 5, 145-165. 

 

 Aguilera J. M., T.A. (1978). The revival of the lupin. Food Technology 32, 70-76. 

 

 Alissa, E.M.F.,G.A. (2011). Functional Foods and Nutraceuticals in the Primary 

Prevention of Cardiovascular Diseases. J Nutr Metab doi:10.1155/2012/569486. 

 

 Allain, F., Denys, A., and Spik, G. (1994). Characterization of surface binding sites 

for cyclophilin B on a human tumor T-cell line. The Journal of biological chemistry 

269, 16537-16540. 

 

 Allen, J.G. (1998). Toxins and lupinosis. In J. S. Gladstones, C. A. Atkins, & J. 

Hamblin (Eds.), Lupines as a crop plants biology, production and utilization. South 

Perth: CAB 411–428. 

 

 Ampe, C., Van Damme, J., de Castro, L.A., Sampaio, M.J., Van Montagu, M., and 

Vandekerckhove, J. (1986). The amino-acid sequence of the 2S sulphur-rich proteins 

from seeds of Brazil nut (Bertholletia excelsa H.B.K.). European journal of 

biochemistry / FEBS 159, 597-604. 

 

 Anderson, J.W., and Bush, H.M. (2011). Soy protein effects on serum lipoproteins: a 

quality assessment and meta-analysis of randomized, controlled studies. Journal of the 

American College of Nutrition 30, 79-91. 



146 

 

 

 Anderson, J.W., Johnstone, B.M., and Cook-Newell, M.E. (1995). Meta-analysis of 

the effects of soy protein intake on serum lipids. The New England journal of medicine 

333, 276-282. 

 

 Anderson, J.W., and Major, A.W. (2002). Pulses and lipaemia, short- and long-term 

effect: potential in the prevention of cardiovascular disease. The British journal of 

nutrition 88 Suppl 3, S263-271. 

 

 Aoki, T., Nomura, R., and Fujimoto, T. (1999). Tyrosine phosphorylation of caveolin-

1 in the endothelium. Experimental cell research 253, 629-636. 

 

 Archer, B.J., Johnson, S.K., Devereux, H.M., and Baxter, A.L. (2004). Effect of fat 

replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal 

perceptions of satiety and food intake in ment. British  Journal of  Nutrition 91, 591-

599. 

 

 Arner, E.S., and Holmgren, A. (2000). Physiological functions of thioredoxin and 

thioredoxin reductase. European journal of biochemistry / FEBS 267, 6102-6109. 

 

 American Diabetes Associations. ( January 2010 ). Diagnosis and Classification of 

Diabetes Mellitus. Diabetes care 33, 62-69. 

 

 Barnard, R.J.Y., J. F.  (1992). Regulation of glucose transport in skeletal muscle. 

FASEB Journal 6, 3238 – 3244. 

 

 Batterham, E.S., Andersen, L.M., Lowe, R.F., and Darnell, R.E. (1986). Nutritional-

Value of Lupin (Lupinus-Albus)-Seed Meal for Growing-Pigs - Availability of Lysine, 

Effect of Autoclaving and Net Energy Content. British Journal Nutrition 56, 645-659. 

 

 Bento-Abreu, A., Velasco, A., Polo-Hernandez, E., Lillo, C., Kozyraki, R., Tabernero, 

A., and Medina, J.M. (2009). Albumin endocytosis via megalin in astrocytes is 



147 

 

caveola- and Dab-1 dependent and is required for the synthesis of the neurotrophic 

factor oleic acid. Journal of neurochemistry 111, 49-60. 

 

 Bergsma, D.J., Eder, C., Gross, M., Kersten, H., Sylvester, D., Appelbaum, E., 

Cusimano, D., Livi, G.P., McLaughlin, M.M., Kasyan, K., et al. (1991). The 

cyclophilin multigene family of peptidyl-prolyl isomerases. Characterization of three 

separate human isoforms. The Journal of biological chemistry 266, 23204-23214. 

 

 Berndt, J., Kovacs, P., Ruschke, K., Kloting, N., Fasshauer, M., Schon, M.R., Korner, 

A., Stumvoll, M., and Bluher, M. (2007). Fatty acid synthase gene expression in 

human adipose tissue: association with obesity and type 2 diabetes. Diabetologia 50, 

1472-1480. 

 

 Bertoglio, J.C., Calvo, M.A., Hancke, J.L., Burgos, R.A., Riva, A., Morazzoni, P., 

Ponzone, C., Magni, C., and Duranti, M. (2011). Hypoglycemic effect of lupin seed 

gamma-conglutin in experimental animals and healthy human subjects. Fitoterapia 

82, 933-938. 

 

 Bez, J.S., M.; Knauf, U.  et al. (2005). Protein isolates from sweet white lupin seeds: 

pilot production and techno-functional properties. In Optimized Processing for 

Preparing Healthy and Added Value Food Ingredients from Lupin Kernel, the 

European Protein-rich Grain Legume [A Arnoldi, editor] Rome: Aracne Editrice SRL, 

21-35. 

 

 Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of 

microgram quantities of protein utilizing the principle of protein-dye binding. 

Analytical biochemistry 72, 248-254. 

 

 Brandon, E.F., Bosch, T.M., Deenen, M.J., Levink, R., van der Wal, E., van Meerveld, 

J.B., Bijl, M., Beijnen, J.H., Schellens, J.H., and Meijerman, I. (2006). Validation of 

in vitro cell models used in drug metabolism and transport studies; genotyping of 

cytochrome P450, phase II enzymes and drug transporter polymorphisms in the human 



148 

 

hepatoma (HepG2), ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, 

LS180) cell lines. Toxicology and applied pharmacology 211, 1-10. 

 

 Brown, J.W., Bliss, F.A., and Hall, T.C. (1981). Linkage relationships between genes 

controlling seed proteins in French bean. TAG Theoretical and applied genetics 

Theoretische und angewandte Genetik 60, 251-259. 

 

 Brown, M.S., and Goldstein, J.L. (1997). The SREBP pathway: regulation of 

cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 

89, 331-340. 

 

 Brusselmans, K., Vrolix, R., Verhoeven, G., and Swinnen, J.V. (2005). Induction of 

cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid 

synthase activity. The Journal of biological chemistry 280, 5636-5645. 

 

 Cacalano, N.A., Chen, B.X., Cleveland, W.L., and Erlanger, B.F. (1992). Evidence for 

a functional receptor for cyclosporin A on the surface of lymphocytes. Proceedings of 

the National Academy of Sciences of the United States of America 89, 4353-4357. 

 

 Capraro, J., Clemente, A., Rubio, L.A., Magni, C., Scarafoni, A., and Duranti, M. 

(2011). Assessment of the lupin seed glucose-lowering protein intestinal absorption 

by using in vitro and ex vivo models. Food Chem 125, 1279-1283. 

 

 Capraro, J., Magni, C., Fontanesi, M., Budelli, A., and Duranti, M. (2008). Application 

of two-dimensional electrophoresis to industrial process analysis of proteins in lupin-

based pasta.Food Science  Technology 41, 1011-1017. 

 

 Capraro, J., Magni, C., Scarafoni, A., and Duranti, M. (2009). Susceptibility of Lupin 

gamma-Conglutin, the Plasma Glucose-Lowering Protein of Lupin Seeds, to 

Proteolytic Enzymes. Journal of agricultural and food chemistry 57, 8612-8616. 

 



149 

 

 Capraro, J., Spotti, P., Magni, C., Scarafoni, A., and Duranti, M. (2010). Spectroscopic 

studies on the pH-dependent structural dynamics of gamma-conglutin, the blood 

glucose-lowering protein of lupin seeds. Int J Biol Macromol 47, 502-507. 

 

 Carr, T.P., Andresen, C.J., and Rudel, L.L. (1993). Enzymatic determination of 

triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clinical 

biochemistry 26, 39-42. 

 

 Carroll, K.K. (1991). Review of clinical studies on cholesterol-lowering response to 

soy protein. Journal of the American Dietetic Association 91, 820-827. 

 

 Casero, M.D., M.;Cerletti, P. (1983). Heterogeneity of subunit composition in lupin 

globulins. Journal of the Sciences of Food and Agriculture 34, 1113-1116. 

 

 Casey R., D.C., Ellis T.H.N. (1986). Oxford Surveys of Plant molecular and Cell 

Biology 3. 1-95  

 

 Castiglioni, S., Manzoni, C., D'Uva, A., Spiezie, R., Monteggia, E., Chiesa, G., Sirtori, 

C.R., and Lovati, M.R. (2003). Soy proteins reduce progression of a focal lesion and 

lipoprotein oxidiability in rabbits fed a cholesterol-rich diet. Atherosclerosis 171, 163-

170. 

 

 Champ, M. (2001). Benefits of pulses in human diet. Proceedings of 4th European 

Conference on Grain Legumes Valladolid: AEP, 10-113. 

 

 Chiesa, G., Rigamonti, E., Lovati, M.R., Disconzi, E., Soldati, S., Sacco, M.G., Cato, 

E.M., Patton, V., Scanziani, E., Vezzoni, P., et al. (2008). Reduced mammary tumor 

progression in a transgenic mouse model fed an isoflavone-poor soy protein 

concentrate. Molecular nutrition & food research 52, 1121-1129. 

 

 Cho, S.J., Juillerat, M.A., and Lee, C.H. (2008). Identification of LDL-receptor 

transcription stimulating peptides from soybean hydrolysate in human hepatocytes. 

Journal of agricultural and food chemistry 56, 4372-4376. 



150 

 

 

 Chung, H.T., Pae, H.O., Choi, B.M., Billiar, T.R., and Kim, Y.M. (2001). Nitric oxide 

as a bioregulator of apoptosis. Biochemical and biophysical research communications 

282, 1075-1079. 

 

 Citharel, J.D., D. (1988). The  conglutin of Lupinus albus L. Var. Lutop 

(Leguminoseae). Synthesis during seed maturation. Plant Physiology and 

Biochemistry 211-218. 

 

 Clemente, A., Vioque, J., Sanchez-Vioque, R., Pedroche, J., Bautista, J., and Millan, 

F. (2000). Factors affecting the in vitro protein digestibility of chickpea albumins. J 

Sci Food Agr 80, 79-84. 

 

 Consonni, A., Lovati, M.R., Parolari, A., Manzoni, C., Morazzoni, P., Magni, C., and 

Duranti, M. (2011). Heterologous expression and purification of the soybean 7S 

globulin alpha' subunit extension region: in vitro evidence of its involvement in cell 

cholesterol homeostasis. Protein expression and purification 80, 125-129. 

 

 Cox, A.L.D.L.N.M.M. (1993). Principles of Biochemistry 2. Auflage, 1090 Seiten, 

zahlreiche Abb und Tab Worth Publishers, New York  

 

 Cuadrado, C.B., C.; Muzquir, M. (1992). Analysis of lupine alkaloids by high 

performance liquid chromatography. In: ed I Picard, Proc Ist Eur Conf Grain Legumes, 

AEP, Angers, 421-422. 

 

 Dabai, F.D., Walker, A.F., Sambrook, I.E., Welch, V.A., Owen, R.W., and 

Abeyasekera, S. (1996). Comparative effects on blood lipids and faecal steroids of five 

legume species incorporated into a semi-purified, hypercholesterolaemic rat diet. The 

British journal of nutrition 75, 557-571. 

 

 Dabros, W., Goc, A., Turyna, B., and Kordowiak, A.M. (2004). Influence of vanadyl 

sulphate [VOSO4] on biochemical activity and morphology of control and 



151 

 

streptozotocin-diabetic rat liver Golgi complexes. Polish journal of pathology : official 

journal of the Polish Society of Pathologists 55, 25-32. 

 

 Darmawan, R., Bringe, N.A., and de Mejia, E.G. (2010). Antioxidant capacity of 

alcalase hydrolysates and protein profiles of two conventional and seven low glycinin 

soybean cultivars. Plant Foods Human Nutrition 65, 233-240. 

 

 Davalos, A., Gomez-Cordoves, C., and Bartolome, B. (2004). Extending applicability 

of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. Journal of 

agricultural and food chemistry 52, 48-54. 

 

 Davis, K.R. (1981). Effect of processing on composition of Tetrahymena relative 

nutritive value on green and yellow peas, lentils and pea beans. Cereal Chemestry, 58, 

454-460. 

 

 De Mejia, E.W., W.; Vermont,P. (2010 ). Lunasin, with an arginine–glycine–aspartic 

acid motif, causes apoptosis to L1210 leukemia cells by activation of caspase-3. 

Molecular Nutrition and Food Research ,54,406-414. 

 

 Defesche, J.C. (2004). Low-density lipoprotein receptor--its structure, function, and 

mutations. Seminars in vascular medicine 4, 5-11. 

 

 Dervas, G., Doxastakisk, G., Hadjisavva-Zinoviadi, S., and Triantafillakos, N. (1999). 

Lupin flour addition to wheat flour doughs and effect on rheological properties. Food 

Chemestry 66, 67-73. 

 

 Desroches, S., Mauger, J.F., Ausman, L.M., Lichtenstein, A.H., and Lamarche, B. 

(2004). Soy protein favorably affects LDL size independently of isoflavones in 

hypercholesterolemic men and women. The Journal of nutrition 134, 574-579 

 

 Dewell, A., Hollenbeck, P.L., and Hollenbeck, C.B. (2006). Clinical review: a critical 

evaluation of the role of soy protein and isoflavone supplementation in the control of 



152 

 

plasma cholesterol concentrations. The Journal of clinical endocrinology and 

metabolism 91, 772-780. 

 

 Dijkstra, D.S., Linnemann, A.R., and van Boekel, T.A.J.S. (2003). Towards 

sustainable production of protein-rich foods: Appraisal of eight crops for Western 

Europe. PART II: Analysis of the technological aspects of the production chain. Crit 

Rev Food Sci 43, 481-506. 

 

 Duranti, M. (1986a). Enzymatic Subunit Splitting of Lupine Storage Proteins. 

Nahrung 30, 271-274. 

 

 Duranti, M. (1986b). The Structure of Lupine Seed Proteins. Nahrung 30, 221-227. 

 

 Duranti, M. (2002). Italian Patent, submission number MI2002A000147. 

 

 Duranti, M. (2006). Grain legume proteins and nutraceutical properties. Fitoterapia 

77, 67-82. 

 Duranti, M., Consonni, A., Magni, C., Sessa, F., and Scarafoni, A. (2008). The major 

proteins of lupin seed: Characterisation and molecular properties for use as functional 

and nutraceutical ingredients. Trends Food Sci Tech 19, 624-633. 

 

 Duranti, M., Di Cataldo, A., Sessa, F., Scarafoni, A., and Ceciliani, F. (2002). Metal 

ions restore the proteolytic resistance of denatured conglutin gamma, a lupin seed 

glycoprotein, by promoting its refolding. Journal of agricultural and food chemistry 

50, 2029-2033. 

 

 Duranti, M., Faoro, F., and Harris, N. (1991). Immunocytochemical Localization of 

Conglutin-Gamma and Legumin-Like Globulin in Developing and Mature Seeds of 

Lupinus-Albus L. Protoplasma 161, 104-110. 

 

 Duranti, M., Gius, C., Sessa, F., and Vecchio, G. (1995). The Saccharide Chain of 

Lupin Seed Conglutin-Gamma Is Not Responsible for the Protection of the Native 

Protein from Degradation by Trypsin, but Facilitates the Refolding of the Acid-Treated 



153 

 

Protein to the Resistant Conformation. European Journal of Biochemistry 230, 886-

891. 

 

 Duranti, M., Lovati, M.R., Dani, V., Barbiroli, A., Scarafoni, A., Castiglioni, S., 

Ponzone, C., and Morazzoni, P. (2004). The alpha' subunit from soybean 7S globulin 

lowers plasma lipids and upregulates liver beta-VLDL receptors in rats fed a 

hypercholesterolemic diet. The Journal of nutrition 134, 1334-1339. 

 

 Duranti, M., Restani, P., Poniatowska, M., & Cerletti, P. (1981). The seed globulins 

of Lupinus albus. Phytochemistry, 2071-2075. 

 

 Duranti, M., Scarafoni, A., Di Cataldo, A., and Sessa, F. (2001). Interaction of metal 

ions with lupin seed conglutin gamma. Phytochemistry 56, 529-533 

 

 Duranti, M., Scarafoni, A., Gius, C., Negri, A., and Faoro, F. (1994). Heat-Induced 

Synthesis and Tunicamycin-Sensitive Secretion of the Putative Storage Glycoprotein 

Conglutin-Gamma from Mature Lupin Seeds. European Journal of Biochemistry 222, 

387-393. 

 

 Duranti, M., Sessa, F., Scarafoni, A., Bellini, T., and Dallocchio, F. (2000). Thermal 

stabilities of lupin seed conglutin gamma protomers and tetramers. Journal of 

agricultural and food chemistry 48, 1118-1123. 

 

 Duranti M., G.C. (1997). Legume seed: protein contenent and nutritional value. Field 

Crops Research 53, 31-45. 

 

 Duranti, M.F., F.;  Harris, N.  (1994). The unusual extracellular localization of 

conglutin  in germinating Lupinus albus seeds rules out its role as a storage protein. 

Journal of Plant Physiology 143, 711-716. 

 

 Duranti, M.G., N.; Takajashl, T.; and Cerletti, P. (1988). The legumin-like storage 

proteins of Lupinus albus seeds. Phytochemistry 27, 15-23. 



154 

 

 Elias, R.J., Kellerby, S.S., and Decker, E.A. (2008). Antioxidant activity of proteins 

and peptides. Crit Rev Food Sci Nutr 48, 430-441. 

 

 Erdman, J.W., Jr. (1995). Control of serum lipids with soy protein. The New England 

journal of medicine 333, 313-315. 

 

 Fan, X.H., Tang, C., and Rengel, Z. (2002). Nitrate uptake, nitrate reductase 

distribution and their relation to proton release in five nodulated grain legumes. Ann 

Bot-London 90, 315-323. 

 

 Food and Drug Administration, (1999). Food labeling health claims: soybean protein 

and coronary hearth disease. Final Rule Fed Regist 64, 57699-57733. 

 

 Ferranini, A.P., M. (1937). L’azione del decotto di semi di Lupinus albus sulla curva 

glicemica da carico di glucosio nei soggetti normali e diabetici. Folia Med 23, 729–

748. 

 

 Ferreira Ede, S., Silva, M.A., Demonte, A., and Neves, V.A. (2011). Soy beta-

conglycinin (7S globulin) reduces plasma and liver cholesterol in rats fed 

hypercholesterolemic diet. Journal of medicinal food 14, 94-100. 

 

 Fleming, S.E. (1981). A study of relationship between flauts potential and 

carbohydrate distriuition in legume seeds. Journal Food Science 46, 794-798. 

 

 Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation 

and purification of total lipides from animal tissues. The Journal of biological 

chemistry 226, 497-509. 

 

 Fruman, D.A., Meyers, R.E., and Cantley, L.C. (1998). Phosphoinositide kinases. 

Annual review of biochemistry 67, 481-507. 

 

 Fukui, K., Tachibana, N., Wanezaki, S., Tsuzaki, S., Takamatsu, K., Yamamoto, T., 

Hashimoto, Y., and Shimoda, T. (2002). Isoflavone-free soy protein prepared by 



155 

 

column chromatography reduces plasma cholesterol in rats. Journal of agricultural 

and food chemistry 50, 5717-5721. 

 

 Galvez, A.F., Chen, N., Macasieb, J., and de Lumen, B.O. (2001). Chemopreventive 

property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits 

acetylation. Cancer research 61, 7473-7478. 

 

 Gatehouse, J.A., Croy, R.R., Morton, H., Tyler, M., and Boulter, D. (1981). 

Characterisation and subunit structures of the vicilin storage proteins of pea (Pisum 

sativum L.). European journal of biochemistry / FEBS 118, 627-633. 

 

 Goldstein, J.L., and Brown, M.S. (2001). Molecular medicine. The cholesterol quartet. 

Science 292, 1310-1312. 

 

 Gonzalez de Mejia, E.M.-V., C.;Roman, M.;Bringe, N.A.  (2009). Fatty acid synthase 

and in vitro adipogenic response of human adipocytes inhibited by  and ’ subunits 

of soybean -conglycinin hydrolysates. Food Chem 119, ,1571-1577. 

 

 Groop, L.C. (1999). Insulin resistance: the fundamental trigger of type 2 diabetes. 

Diabetes, obesity & metabolism 1 Suppl 1, S1-7. 

 

 Guillaume, B., Otterby, D.E., Linn, J.G., Stern, M.D., and Johnson, D.G. (1987). 

Comparison of Sweet White Lupin Seeds with Soybean-Meal as a Protein-Supplement 

for Lactating Dairy-Cows. J Dairy Sci 70, 2339-2348. 

 

 Hanada, K., and Hirano, H. (2004). Interaction of a 43-kDa receptor-like protein with 

a 4-kDa hormone-like peptide in soybean. Biochemistry 43, 12105-12112. 

 

 Hardie, D.G. (2011). AMP-activated protein kinase: an energy sensor that regulates 

all aspects of cell function. Genes & development 25, 1895-1908. 

 



156 

 

 Harland, J.I., and Haffner, T.A. (2008). Systematic review, meta-analysis and 

regression of randomised controlled trials reporting an association between an intake 

of circa 25 g soya protein per day and blood cholesterol. Atherosclerosis 200, 13-27. 

 

 Havel, R.J., Eder, H.A., and Bragdon, J.H. (1955). The distribution and chemical 

composition of ultracentrifugally separated lipoproteins in human serum. The Journal 

of clinical investigation 34, 1345-1353. 

 

 Hawley, S.A., Gadalla, A.E., Olsen, G.S., and Hardie, D.G. (2002). The antidiabetic 

drug metformin activates the AMP-activated protein kinase cascade via an adenine 

nucleotide-independent mechanism. Diabetes 51, 2420-2425. 

 

 Hewlett, L.J., Prescott, A.R., and Watts, C. (1994). The coated pit and macropinocytic 

pathways serve distinct endosome populations. The Journal of cell biology 124, 689-

703. 

 

 Hilder, V.A., Gatehouse, A.M.R., and Boulter, D. (1990). Genetic-Engineering of 

Crops for Insect Resistance Using Genes of Plant-Origin. East Sch Ag, 51-66. 

 

 Hodges, R.E., Krehl, W.A., Stone, D.B., and Lopez, A. (1967). Dietary carbohydrates 

and low cholesterol diets: effects on serum lipids on man. The American journal of 

clinical nutrition 20, 198-208. 

 

 Hoffmann, H., and Schiene-Fischer, C. (2014). Functional aspects of extracellular 

cyclophilins. Biological chemistry 395, 721-735. 

 

 Honeycutt, C.W. (1998). Crop rotation impacts on potato protein. Plant Food Hum 

Nutr 52, 279-291. 

 

 Horstmann, C., Schlesier, B., Otto, A., Kostka, S., and Muntz, K. (1993). 

Polymorphism of legumin subunits from field bean (Vicia faba L. var. minor) and its 

relation to the corresponding multigene family. TAG Theoretical and applied genetics 

Theoretische und angewandte Genetik 86, 867-874. 



157 

 

 

 Huyghe, C. (1997). White lupin (Lupinus albus L). Field Crops Research 53, 147-160. 

 

 Ilgoutz, S.C., Knittel, N., Lin, J.M., Sterle, S., and Gayler, K.R. (1997). Transcription 

of genes for conglutin gamma and a leginsulin-like protein in narrow-leafed lupin. 

Plant molecular biology 34, 613-627. 

 

 Jacques, H., Laurin, D., Moorjani, S., Steinke, F.H., Gagne, C., Brun, D., and Lupien, 

P.J. (1992a). Influence of diets containing cow's milk or soy protein beverage on 

plasma lipids in children with familial hypercholesterolemia. Journal of the American 

College of Nutrition 11 Suppl, 69S-73S. 

 

 Jacques, H., Laurin, D., Moorjani, S., Steinke, F.H., Gagne, C., Brun, D., and Lupien, 

P.J. (1992b). Influence of Diets Containing Cows Milk or Soy Protein Beverage on 

Plasma-Lipids in Children with Familial Hypercholesterolemia. Journal of the 

American College of Nutrition 11, S69-S73. 

 

 Jeon, H., and Blacklow, S.C. (2005). Structure and physiologic function of the low-

density lipoprotein receptor. Annual review of biochemistry 74, 535-562. 

 

 Johnson, R., Narvaez, J., An, G.H., and Ryan, C. (1989). Expression of Proteinase 

Inhibitor-I and Inhibitor-Ii in Transgenic Tobacco Plants - Effects on Natural Defense 

against Manduca-Sexta Larvae. Proceedings of the National Academy of Sciences of 

the United States of America 86, 9871-9875. 

 

 Kambara, H.M., H.; Takamatsu, K.; Kito, M. (2002). Triglyceride-lowering effect of 

soybean -conglycinin in humans. Ther Res 23, 85-89. 

 

 Kaplan, I.M., Wadia, J.S., and Dowdy, S.F. (2005). Cationic TAT peptide transduction 

domain enters cells by macropinocytosis. Journal of controlled release : Official 

journal of the Controlled Release Society 102, 247-253. 

 



158 

 

 King, H., Aubert, R.E., and Herman, W.H. (1998). Global burden of diabetes, 1995-

2025: prevalence, numerical estimates, and projections. Diabetes care 21, 1414-1431. 

 

 Kohajdová Z. ;Karovičová, J.a.S., S. (2011). Lupin Composition and Possible Use in 

Bakery– A Review. Czech J Food Sci 29, 203-211. 

 

 Komori, H., Nishi, K., Uehara, N., Watanabe, H., Shuto, T., Suenaga, A., Maruyama, 

T., and Otagiri, M. (2012). Characterization of hepatic cellular uptake of alpha1-acid 

glycoprotein (AGP), part 2: involvement of hemoglobin beta-chain on plasma 

membranes in the uptake of human AGP by liver parenchymal cells. Journal of 

pharmaceutical sciences 101, 1607-1615. 

 

 Kong, W.J., Liu, J., and Jiang, J.D. (2006). Human low-density lipoprotein receptor 

gene and its regulation. Journal of molecular medicine 84, 29-36. 

 

 Koshiyama, I. (1968). Factors influencing conformation changes in a 7S protein of 

soybean globulins by ultracentrifugal investigations. Agric Biol Chem 32, 879-887 

 

 Kyle, A.S.W. (1994). The current and potential uses of lupins for human food. In M 

Dracup, & J Palta (Eds), Proc First Austr Lupin Techn Symp Perth 89-97. 

 

 Laemmli (1970). Cleavage of structural proteins during the assembly of the head of 

bacteriophage T4. Nature 227, 660–665. 

 

 Lallès, J.P.P., G. (1996). Biochemical features of grain legume allergens in humans 

and animals. Nutr Rev 54, 101-107. 

 

 Lee, J., and Kim, M.S. (2007). The role of GSK3 in glucose homeostasis and the 

development of insulin resistance. Diabetes research and clinical practice 77 Suppl 1, 

S49-57. 

 

 Leterme, P., Monmart, T., and Thewis, A. (1992). Varietal Distribution of the Trypsin-

Inhibitor Activity in Peas (Pisum-Sativum L). Anim Feed Sci Tech 37, 309-315. 



159 

 

 

 Li, Y.Y., Wu, H.S., Tang, L., Feng, C.R., Yu, J.H., Li, Y., Yang, Y.S., Yang, B., and 

He, Q.J. (2007). The potential insulin sensitizing and glucose lowering effects of a 

novel indole derivative in vitro and in vivo. Pharmacological research : The official 

journal of the Italian Pharmacological Society 56, 335-343. 

 

 Liener, I.E.S., N. and Goldstein,I.J. (1986). The lectins: properties, Functions and 

Applications in Biology and Medicine Accademic press, Orlando, FL. 

 

 Lillig, C.H., and Holmgren, A. (2007). Thioredoxin and related molecules--from 

biology to health and disease. Antioxidants & redox signaling 9, 25-47. 

 

 Lin, C.L., Huang, H.C., and Lin, J.K. (2007). Theaflavins attenuate hepatic lipid 

accumulation through activating AMPK in human HepG2 cells. Journal of lipid 

research 48, 2334-2343. 

 

 Lin, C.L., and Lin, J.K. (2008). Epigallocatechin gallate (EGCG) attenuates high 

glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. 

Molecular nutrition & food research 52, 930-939. 

 

 Linnemann, A.R., and Dijkstra, D.S. (2002). Toward sustainable production of 

protein-rich foods: Appraisal of eight crops for Western Europe. PART I. Analysis of 

the primary links of the production chain. Crit Rev Food Sci 42, 377-401. 

 

 Liu, K. (1997). Soybeans: Chemistry, Technology and Utilization. International 

Thomson Publishing Asia. 

 

 Lovati, M.R., Manzoni, C., Canavesi, A., Sirtori, M., Vaccarino, V., Marchi, M., 

Gaddi, G., and Sirtori, C.R. (1987). Soybean protein diet increases low density 

lipoprotein receptor activity in mononuclear cells from hypercholesterolemic patients. 

The Journal of clinical investigation 80, 1498-1502. 

 



160 

 

 Lovati, M.R., Manzoni, C., Castiglioni, S., Parolari, A., Magni, C., and Duranti, M. 

(2012). Lupin seed gamma-conglutin lowers blood glucose in hyperglycaemic rats and 

increases glucose consumption of HepG2 cells. The British journal of nutrition 107, 

67-73. 

 

 Lovati, M.R., Manzoni, C., Corsini, A., Granata, A., Frattini, R., Fumagalli, R., and 

Sirtori, C.R. (1992). Low density lipoprotein receptor activity is modulated by soybean 

globulins in cell culture. The Journal of nutrition 122, 1971-1978. 

 

 Lovati, M.R., Manzoni, C., Corsini, A., Granata, A., Fumagalli, R., and Sirtori, C.R. 

(1996). 7S globulin from soybean is metabolized in human cell cultures by a specific 

uptake and degradation system. The Journal of nutrition 126, 2831-2842. 

 

 Lovati, M.R., Manzoni, C., Gianazza, E., Arnoldi, A., Kurowska, E., Carroll, K.K., 

and Sirtori, C.R. (2000). Soy protein peptides regulate cholesterol homeostasis in Hep 

G2 cells. The Journal of nutrition 130, 2543-2549. 

 

 Lovati, M.R., C.; Castiglioni, S.;Disconzi,E. (2006). Soy peptide and cholesterol 

homeostasis. FASEB journal : Official publication of the Federation of American 

Societies for Experimental Biology 86. 

 

 Lovati, M.R., C.; Giannazza,E.; and Sirtori,C.R. (1998). soybean protein products as 

regulators of liver low-density lipoprotein receptors. I. identification of active 

conglycinin subunits. Journal Agric Food Chem 46, 2474-2480. 

 

 Ma, D., Taku, K., Zhang, Y., Jia, M., Wang, Y., and Wang, P. (2013). Serum lipid-

improving effect of soyabean beta-conglycinin in hyperlipidaemic menopausal 

women. The British journal of nutrition 110, 1680-1684. 

 

 Macarulla, M.T., Medina, C., De Diego, M.A., Chavarri, M., Zulet, M.A., Martinez, 

J.A., Noel-Suberville, C., Higueret, P., and Portillo, M.P. (2001). Effects of the whole 

seed and a protein isolate of faba bean (Vicia faba) on the cholesterol metabolism of 

hypercholesterolaemic rats. The British journal of nutrition 85, 607-614. 



161 

 

 

 Magni, C., Ballabio, C., Restani, P., Sironi, E., Scarafoni, A., Poiesi, C., and Duranti, 

M. (2005). Two-dimensional electrophoresis and western-blotting analyses with anti 

Ara h 3 basic subunit IgG evidence the cross-reacting polypeptides of Arachis 

hypogaea, Glycine max, and Lupinus albus seed proteomes. Journal of agricultural 

and food chemistry 53, 2275-2281. 

 

 Magni, C., Scarafoni, A., Herndl, A., Sessa, F., Prinsi, B., Espen, L., and Duranti, M. 

(2007). Combined 2D electrophoretic approaches for the study of white lupin mature 

seed storage proteome. Phytochemistry 68, 997-1007. 

 

 Magni, C., Sessa, F., Accardo, E., Vanoni, M., Morazzoni, P., Scarafoni, A., and 

Duranti, M. (2004). Conglutin gamma, a lupin seed protein, binds insulin in vitro and 

reduces plasma glucose levels of hyperglycemic rats. The Journal of nutritional 

biochemistry 15, 646-650. 

 

 Manunta, M., Tan, P.H., Sagoo, P., Kashefi, K., and George, A.J. (2004). Gene 

delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic acids 

research 32, 2730-2739. 

 

 Manzoni, C., Duranti, M., Eberini, I., Scharnag, H., Marz, W., Castiglioni, S., and 

Lovati, M.R. (2003). Subcellular localization of soybean 7S globulin in HepG2 cells 

and LDL receptor up-regulation by its alpha' constituent subunit. The Journal of 

nutrition 133, 2149-2155. 

 

 Manzoni, C.L., M.R. ; Gianazza,E.; Morita,Y.;  Sirtori,C.R. (1998). Soybean Protein 

Products as Regulators of Liver Low-Density Lipoprotein Receptors. II.-' Rich 

Commercial Soy Concentrate and ' Deficient Mutant Differently Affect Low-Density 

Lipoprotein Receptor Activation. Journal Agric Food Chem 46, 2481-2484. 

 

 Marais, A.D., Firth, J.C., and Blom, D.J. (2004). Homozygous familial 

hypercholesterolemia and its management. Seminars in vascular medicine 4, 43-50. 

 



162 

 

 Marshall, N.J., Goodwin, C.J., and Holt, S.J. (1995). A critical assessment of the use 

of microculture tetrazolium assays to measure cell growth and function. Growth 

regulation 5, 69-84. 

 

 Martinez-Villaluenga, C., Bringe, N.A., Berhow, M.A., and Gonzalez de Mejia, E. 

(2008). Beta-conglycinin embeds active peptides that inhibit lipid accumulation in 

3T3-L1 adipocytes in vitro. Journal of agricultural and food chemistry 56, 10533-

10543. 

 

 Martinez-Villaluenga, C., Dia, V.P., Berhow, M., Bringe, N.A., and Gonzalez de 

Mejia, E. (2009). Protein hydrolysates from beta-conglycinin enriched soybean 

genotypes inhibit lipid accumulation and inflammation in vitro. Molecular nutrition & 

food research 53, 1007-1018. 

 

 Martinez-Villaluenga, C., Rupasinghe, S.G., Schuler, M.A., and Gonzalez de Mejia, 

E. (2010). Peptides from purified soybean beta-conglycinin inhibit fatty acid synthase 

by interaction with the thioesterase catalytic domain. The FEBS journal 277, 1481-

1493. 

 

 Maruyama, N., Katsube, T., Wada, Y., Oh, M.H., Barba De La Rosa, A.P., Okuda, E., 

Nakagawa, S., and Utsumi, S. (1998). The roles of the N-linked glycans and extension 

regions of soybean beta-conglycinin in folding, assembly and structural features. 

European journal of biochemistry / FEBS 258, 854-862. 

 

 Maruyama, N., Sato, R., Wada, Y., Matsumura, Y., Goto, H., Okuda, E., Nakagawa, 

S., and Utsumi, S. (1999). Structure-physicochemical function relationships of 

soybean beta-conglycinin constituent subunits. Journal of agricultural and food 

chemistry 47, 5278-5284. 

 

 Matoba, N., Doyama, N., Yamada, Y., Maruyama, N., Utsumi, S., and Yoshikawa, M. 

(2001). Design and production of genetically modified soybean protein with anti-

hypertensive activity by incorporating potent analogue of ovokinin(2-7). FEBS letters 

497, 50-54. 



163 

 

 Mochizuki, Y., Maebuchi, M., Kohno, M., Hirotsuka, M., Wadahama, H., Moriyama, 

T., Kawada, T., and Urade, R. (2009). Changes in lipid metabolism by soy beta-

conglycinin-derived peptides in HepG2 cells. Journal of agricultural and food 

chemistry 57, 1473-1480. 

 

 Moreno, J., Altabella, T., and Chrispeels, M.J. (1990). Characterization of Alpha-

Amylase-Inhibitor, a Lectin-Like Protein in the Seeds of Phaseolus-Vulgaris. Plant 

physiology 92, 703-709. 

 

 Moriyama, T., Kishimoto, K., Nagai, K., Urade, R., Ogawa, T., Utsumi, S., Maruyama, 

N., and Maebuchi, M. (2004). Soybean beta-conglycinin diet suppresses serum 

triglyceride levels in normal and genetically obese mice by induction of beta-

oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride 

absorption. Bioscience, biotechnology, and biochemistry 68, 352-359. 

 

 Na, M., Jang, J., Min, B.S., Lee, S.J., Lee, M.S., Kim, B.Y., Oh, W.K., and Ahn, J.S. 

(2006). Fatty acid synthase inhibitory activity of acylphloroglucinols isolated from 

Dryopteris crassirhizoma. Bioorganic & medicinal chemistry letters 16, 4738-4742. 

 

 Nakajima, K., Yamauchi, K., Shigematsu, S., Ikeo, S., Komatsu, M., Aizawa, T., and 

Hashizume, K. (2000). Selective attenuation of metabolic branch of insulin receptor 

down-signaling by high glucose in a hepatoma cell line, HepG2 cells. The Journal of 

biological chemistry 275, 20880-20886. 

 

 Nakase, I., Niwa, M., Takeuchi, T., Sonomura, K., Kawabata, N., Koike, Y., 

Takehashi, M., Tanaka, S., Ueda, K., Simpson, J.C., et al. (2004). Cellular uptake of 

arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Molecular 

therapy : the journal of the American Society of Gene Therapy 10, 1011-1022. 

 

 Okuda, M., Inoue, N., Azumi, H., Seno, T., Sumi, Y., Hirata, K., Kawashima, S., 

Hayashi, Y., Itoh, H., Yodoi, J., et al. (2001). Expression of glutaredoxin in human 

coronary arteries: its potential role in antioxidant protection against atherosclerosis. 

Arteriosclerosis, thrombosis, and vascular biology 21, 1483-1487. 



164 

 

 

 Orestano, G. (1940). Sull’azione ipoglicemica dei semi di Lupinus albus. Arch 

Farmacol Sperim 70, 113-117. 

 

 Orlandi, P.A., and Fishman, P.H. (1998). Filipin-dependent inhibition of cholera toxin: 

evidence for toxin internalization and activation through caveolae-like domains. The 

Journal of cell biology 141, 905-915. 

 

 Osborne, T.B. (1924). The Vegetable Proteins, Longmans: London,U.K. 

 

 Osbornet, T.F. (2000). Sterol Regulatory Element-binding Proteins (SREBPs):  Key 

Regulators of Nutritional Homeostasis and Insulin Action.The Journal of Biological 

Chemestry 275, 32379-32382. 

 

 Pari, L., and Saravanan, G. (2002). Antidiabetic effect of Cogent db, a herbal drug in 

alloxan-induced diabetes mellitus. Comparative biochemistry and physiology 

Toxicology & pharmacology : CBP 131, 19-25. 

 

 Parikh, N.I., Pencina, M.J., Wang, T.J., Lanier, K.J., Fox, C.S., D'Agostino, R.B., and 

Vasan, R.S. (2007). Increasing trends in incidence of overweight and obesity over 5 

decades. The American journal of medicine 120, 242-250. 

 

 Pernollet, J.C. (1978).Protein bodies of seeds: ultrastructure, biochemistry, 

biosynthesis and degradation.Phytochemistry 17, 1973-1980. 

 

 Pessin, J.E., and Saltiel, A.R. (2000). Signaling pathways in insulin action: molecular 

targets of insulin resistance. The Journal of clinical investigation 106, 165-169. 

 

 Peumans, W.J., and Vandamme, E.J.M. (1995). The Role of Lectins in Plant Defense. 

Histochem J 27, 253-271. 

 

 Prior, R.L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-

Woodill, M., Huang, D., Ou, B., and Jacob, R. (2003). Assays for hydrophilic and 



165 

 

lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of 

plasma and other biological and food samples. Journal of agricultural and food 

chemistry 51, 3273-3279. 

 

 Pusztai, A., and Stewart, J.C. (1980). Molecular size, subunit structure and 

microheterogeneity of glycoprotein II from the seeds of kidney bean (Phaseolus 

vulgaris L.). Biochimica et biophysica acta 623, 418-428. 

 Rashid, S., Curtis, D.E., Garuti, R., Anderson, N.N., Bashmakov, Y., Ho, Y.K., 

Hammer, R.E., Moon, Y.A., and Horton, J.D. (2005). Decreased plasma cholesterol 

and hypersensitivity to statins in mice lacking Pcsk9. Proceedings of the National 

Academy of Sciences of the United States of America 102, 5374-5379. 

 

 Rejman, J., Bragonzi, A., and Conese, M. (2005). Role of clathrin- and caveolae-

mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Molecular 

therapy : the journal of the American Society of Gene Therapy 12, 468-474. 

 

 Restani, P., Duranti, M., Cerletti, P., & Simonetti, P. (1981). Subunit composition of 

the seed globulins of Lupinus albus. Phytochemistry 20, 2077-2083. 

 

 Rivkin, A., Kim, Y.R., Goulet, M.T., Bays, N., Hill, A.D., Kariv, I., Krauss, S., 

Ginanni, N., Strack, P.R., Kohl, N.E., et al. (2006). 3-Aryl-4-hydroxyquinolin-2(1H)-

one derivatives as type I fatty acid synthase inhibitors. Bioorganic & medicinal 

chemistry letters 16, 4620-4623. 

 

 Rockland L.B., R.T.M. (1981). Legume protein quality. Food Technology 28, 79-82. 

 

 Ruiz, L.H., EL (1976). Conditions affecting production of a protein isolate from lupin 

seed kernels, 27, 7. 

 

 Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose 

and lipid metabolism. Nature 414, 799-806. 

 



166 

 

 Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation 

and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101. 

 

 Scarafoni, A., Di Cataldo, A., Vassilevskaia, T.D., Bekman, E.P., Rodrigues-Pousada, 

C., Ceciliani, F., and Duranti, M. (2001). Cloning, sequencing and expression in the 

seeds and radicles of two Lupinus albus conglutin gamma genes. Biochimica et 

biophysica acta 1519, 147-151. 

 

 Sheng, H., Niu, B., and Sun, H. (2009). Metabolic targeting of cancers: from molecular 

mechanisms to therapeutic strategies. Current medicinal chemistry 16, 1561-1587. 

 

 Shewry P.R.; Napier, J.A.T., A.S. (1995). Seed storage proteins: Structures and 

biosynthesis.Plant Cell 7, 945-956. 

 

 Shewry, P.R., Napier, J. A., & Tatham, A. S. (1995). Seed storage proteins: structures 

and biosynthesis.Plant Cell, 7, 945-956. 

 

 Sirtori, C.R., Gianazza, E., Manzoni, C., Lovati, M.R., and Murphy, P.A. (1997). Role 

of isoflavones in the cholesterol reduction by soy proteins in the clinic. The American 

journal of clinical nutrition 65, 166-167. 

 

 Sirtori, C.R., Lovati, M.R., Manzoni, C., Castiglioni, S., Duranti, M., Magni, C., 

Morandi, S., D'Agostina, A., and Arnoldi, A. (2004). Proteins of white lupin seed, a 

naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL 

receptor activity in HepG2 cells. The Journal of nutrition 134, 18-23. 

 

 Song, F., Jia, W., Yao, Y., Hu, Y., Lei, L., Lin, J., Sun, X., and Liu, L. (2007). 

Oxidative stress, antioxidant status and DNA damage in patients with impaired 

glucose regulation and newly diagnosed Type 2 diabetes. Clinical science 112, 599-

606. 

 

 Steinmann, B., Bruckner, P., and Superti-Furga, A. (1991). Cyclosporin A slows 

collagen triple-helix formation in vivo: indirect evidence for a physiologic role of 



167 

 

peptidyl-prolyl cis-trans-isomerase. The Journal of biological chemistry 266, 1299-

1303. 

 

 Stephen, A. (1998). Regulatory aspects of functional products. Functional foods 

biochemical & processing aspects edited by Mazza,G. and Ph.D. Agricolture and Agri-

food Canada, Technomic publishing, Lancaster-Basel, chapter 13. 

 

 Subtil, A., Gaidarov, I., Kobylarz, K., Lampson, M.A., Keen, J.H., and McGraw, T.E. 

(1999). Acute cholesterol depletion inhibits clathrin-coated pit budding. Proceedings 

of the National Academy of Sciences of the United States of America 96, 6775-6780. 

 

 Sujak, A., Kotlarz, A., and Strobel, W. (2006). Compositional and nutritional 

evaluation of several lupin seeds. Food Chem 98, 711-719. 

 

 Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signalling 

pathways: insights into insulin action. Nature reviews Molecular cell biology 7, 85-

96. 

 

 Terruzzi, I., Senesi, P., Magni, C., Montesano, A., Scarafoni, A., Luzi, L., and Duranti, 

M. (2011). Insulin-mimetic action of conglutin-gamma, a lupin seed protein, in mouse 

myoblasts. Nutrition, metabolism, and cardiovascular diseases: NMCD 21, 197-205. 

 

 Thanh, V.H.S., K. (1976). Major proteins of soybean seeds. A straighforward fraction 

and their characterizazion. Journal of Agricoltural and Food Chemestry 24, 1117-

1121. 

 

 Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins 

from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 

Proceedings of the National Academy of Sciences of the United States of America 76, 

4350-4354. 

 



168 

 

 Tsaliki, E., Lagouri, V., and Doxastakis, G. (1999). Evaluation of the antioxidant 

activity of lupin seed flour and derivatives (Lupinus albus ssp. Graecus). Food Chem 

65, 71-75. 

 

 Tucci, M., Capparelli, R., Costa, A., and Rao, R. (1991). Molecular heterogeneity and 

genetics of Vicia faba seed storage proteins. TAG Theoretical and applied genetics 

Theoretische und angewandte Genetik 81, 50-58. 

 

 Ueda, M. (2005). Familial hypercholesterolemia. Molecular genetics and metabolism 

86, 423-426. 

 

 Utsumi, S.M., Y.; Mori,T. (1997a). Structure-function relationships of soy proteins. 

Food protein and their application, Damodaran,S Paraf A Ed S. Paraf A Ed., 257-291 

 

 Utsumi, S.M., Y.; Mori,T. (1997b). Structure-function relationships of soy proteins. 

Food protein and their application, Damodaran,S Paraf A Ed, 257-291. 

 Van Aalst-Cohen, E.S., Jansen, A.C., de Jongh, S., de Sauvage Nolting, P.R., and 

Kastelein, J.J. (2004). Clinical, diagnostic, and therapeutic aspects of familial 

hypercholesterolemia. Seminars in vascular medicine 4, 31-41. 

 

 Vasilakis, K., and Doxastakis, G. (1999). The rheology of lupin seed (Lupinus albus 

ssp. graecus) protein isolate films at the corn oil-water interface. Colloid and Surface 

B,12, 331-337. 

 

 Vaughn, N., Rizzo, A., Doane, D., Beverly, J.L., and Gonzalez de Mejia, E. (2008). 

Intracerebroventricular administration of soy protein hydrolysates reduces body 

weight without affecting food intake in rats. Plant Foods Hum Nutr 63, 41-46. 

 

 Voet, D.V., J. (1992). Biochemestry. Zanichelli Editore, 745-753. 

 

 Wadia, J.S., Stan, R.V., and Dowdy, S.F. (2004). Transducible TAT-HA fusogenic 

peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. 

Nature medicine 10, 310-315. 



169 

 

 Wang, L.H., Rothberg, K.G., and Anderson, R.G. (1993). Mis-assembly of clathrin 

lattices on endosomes reveals a regulatory switch for coated pit formation. The Journal 

of cell biology 123, 1107-1117. 

 

 Weber, E.N., D. (1980). Protein bodies, storage organelles in plant seeds. Biochemie 

und Physiologie der Pflanzen 175, 279-306. 

 

 Weck, M., Hanefeld, M., Leonhardt, W., Haller, H., Robowsky, K.D., Noack, R., and 

Schmandke, H. (1983). [Field bean protein diet in hypercholesteremia]. Die Nahrung 

27, 327-333. 

 

 White, M.F. (2002). IRS proteins and the common path to diabetes. American journal 

of physiology Endocrinology and metabolism 283, E413-422. 

 

 Whiteman, E.L., Cho, H., and Birnbaum, M.J. (2002). Role of Akt/protein kinase B in 

metabolism. Trends in endocrinology and metabolism: TEM 13, 444-451. 

 

 Wright, D.J. (1986). The seed globulins. ed BJF Hudson development in Food Protein 

5, 81-157. 

 

 Wright, D.J. (1998). Developments in Food Proteins. Hiddson BJF 6, 119-177. 

 

 Wu, S.M., P. A.; Johnson, L. A.; Fratzke, A. R. & Reuber, M. A., and (1999). Pilot-

plant fractionation of soybean glycinin and -conglycinin. J Am Oil Chem Soc 76, 

285–293. 

 

 Yamashita, A., Hayashi, Y., Nemoto-Sasaki, Y., Ito, M., Oka, S., Tanikawa, T., Waku, 

K., and Sugiura, T. (2014). Acyltransferases and transacylases that determine the fatty 

acid composition of glycerolipids and the metabolism of bioactive lipid mediators in 

mammalian cells and model organisms. Progress in lipid research 53, 18-81. 

 

 Young, D.S. (1990). Effects of Drugs on Clinical Laboratory Test. AACC Press, 

Washington, DC. 



170 

 

 Yu, J., Zhang, Y., McIlroy, J., Rordorf-Nikolic, T., Orr, G.A., and Backer, J.M. (1998). 

Regulation of the p85/p110 phosphatidylinositol 3'-kinase: stabilization and inhibition 

of the p110alpha catalytic subunit by the p85 regulatory subunit. Molecular and 

cellular biology 18, 1379-1387 

 

 Zou, C., Wang, Y., and Shen, Z. (2005). 2-NBDG as a fluorescent indicator for direct 

glucose uptake measurement. Journal of biochemical and biophysical methods 64, 

207-215. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


