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Several studies have shown that Cd, a non-essential and toxic metal, is taken up from soil and 
translocated in a root-to-shoot direction through transporters of essential elements such as Zn, 
suggesting that the two metal ions may compete for the same transporter protein on a membrane. 
However, the movement of Zn and Cd ions across several biological membranes involves a wide range 
of transport systems, each characterized by a specific selectivity. Although divergent results have been 
obtained, they suggest that Zn-independent pathways for Cd translocation in plants could be possible.  

The proteins belonging to the HMA (Heavy-Metal ATPases) family have been partially 
characterized as the main actors of the process of translocation of trace elements (essential or non-
essential) to all organs of the plant. In particular, OsHMA2 is the main transport system so far 
described in rice as involved in the xylem loading of Zn and Cd, even though both its activity and 
function has not been unambiguously characterized.  

The research carried out in this PhD project took place in this context. Indeed, the general 
purpose was studying the main mechanisms involved in the systemic distribution of some trace 
elements in rice plants. In particular the activity was aimed at better understanding the Zn and Cd 
translocation pathways, and was focused on studying the possible competition between the two metal 
ions mainly for the root-to-shoot translocation, since these processes have been seen to be crucial in 
determining Cd accumulation in the shoots. Specifically, the aims of this study were: (i) to investigate 
the effects of the possible competition between Zn and Cd on their chelation and subcellular 
compartmentalization at the root level, thus in reducing the amount of the two metals potentially 
mobile through the plant. This was done using physiological techniques aimed at isolating and 
quantifying thiol based Zn- and/or Cd-binding complexes; (ii) to investigate the potential inhibitory 
effect exerted by Zn on Cd translocation in unstressed rice plants, performing a short-term positron-
emitting tracer imaging system (PETIS) experiment using 107Cd as tracer; (iii) to identify genes encoding 
transporters involved in a putative Zn-insensitive Cd xylem loading, thus responsible for a possible Zn-
independent Cd translocation pathway, by performing bioinformatic analysis. Our attention focused on 
the P1B-type ATPase (HMA) family in order to search for orthologs of the genes codifying the 
transporters that in the model plant Arabidopsis were found to mediate the xylem loading of Cd; (iv) to 
functional characterize the transporters encoded by the abovementioned genes by heterologous 
expression in Saccharomyces cerevisiae.  

A complete set of competition experiments were performed: in the first, rice plants (O. sativa L. 
ssp. japonica cv. Roma) were hydroponically grown and differentially exposed for a 10-day period to 
increasing Zn external concentrations, in the absence or presence of a steady amount of Cd, whilst, in 
the second, plants were exposed for 10 days to different Cd concentrations in the presence of a steady 
amount of Zn. The concentrations of Zn and Cd in xylem sap, roots and shoots were evaluated by 
inductively coupled plasma-mass spectrometry (ICP-MS), to determine their partitioning between plant 
organs. The results were related to the total Zn and Cd content in root fractions obtained by a 
sequential extraction procedure with buffer and acid. The procedure allowed to discriminate Zn and Cd 
ions potentially mobile (cationic) from those retained in complexes with thiol-peptides or other soluble 
molecules negatively charged in the extraction buffer (anionic), or tightly adsorbed to cellular matrices 
or apoplast components (acid soluble and ash); so, the last three fractions should be considered not 
available for root-to-shoot translocation. Moreover, the systemic movement of Cd in the whole rice 
plants was monitored by applying to the roots fresh marked (107Cd) culture solutions containing a 
steady amount of Cd and different concentrations of Zn in PETIS experiments. 

The main results clearly indicate the lack of a fully reciprocity considering the effect of Cd on 
Zn accumulation, and vice versa, since the accumulation of Zn in the shoot was significantly inhibited 
by Cd increases in all the analyzed conditions, whereas those of Cd was only partially impaired by Zn 
increases. Such a finding suggests that Cd ions may use at least two distinct pathways to be translocated 
from the root to the shoot. The first one – shared with Zn – is probably used for Zn translocation in 
physiological conditions, whilst the second one appears as a Zn-independent route that Cd may 
preferentially use when the first pathway is saturated with Zn. Moreover, the Zn-independent pathway 
seems constitutively expressed in rice plants since the partial inhibitory effect exerted by Zn on Cd 
translocation was also observed in short-term PETIS experiments performed with unstressed plants. 
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Since OsHMA2 appears to play an important role in Zn/Cd root-to-shoot translocation, in this work 
we also contributed to elucidate some aspects related to the OsHMA2 transport activity and selectivity 
by comparing the inhibitory effects exerted by Zn or Cd on the growth of yeast cells expressing, or not, 
OsHMA2. The results indicate that OsHMA2 enhances Zn and Cd tolerance in yeast, so we can 
reasonably conclude that OsHMA2 may pump excess of cytosolic Zn or Cd into the apoplast and thus 
has all the requisites to be considered the xylem loading system potentially involved in mediating the 
translocation of Cd through the Zn-dependent pathway. In addition, this study represents one of the 
first examples of growth inhibition analysis applied to plant gene functional characterization.  

In conclusion, our data provide several evidence to support the hypothesis that at least two 
competing pathways may be interested in mediating root-to-shoot Cd translocation in rice. The first 
one, prevailing at relatively low Zn concentrations, could involve OsHMA2 as Zn2+/Cd2+ xylem 
loading system, while the second one appears to involve a Zn-independent system that still needs to be 
identified among the plethora of transporters involved in the metal homeostasis. The possible future 
identification of the transporter(s) responsible for the Zn-independent Cd translocation pathway(s) 
could allow the development of markers to select rice genotypes able to exclude Cd from the shoots. 
Furthermore, these activities could have important technological implications in the fields of food 
safety, especially in cases where the strategies used for containing Cd accumulation in the crops be 
founded on Zn fertilization.  
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TRACE ELEMENTS 

Among metal elements, copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) are micronutrients as 

they are essential in trace amounts for physiological processes in living organisms and therefore are a 

significant component of the soil–plant–food continuum (Teklić et al., 2013). The essential trace 

elements play a wide range of critical roles in plants. Fe is a key component of haem proteins and a 

range of other enzymes. Cu is an integral component of certain electron transfer proteins in 

photosynthesis and respiration and is involved in lignification, while Mn is less redox active but is also 

involved in photosynthesis. Zn is non-redox-active but has a key structural and/or catalytic role in 

many proteins and enzymes. Other transition metals such as nickel (Ni) and molybdenum (Mo) are also 

essential micronutrients for plant functions. It must be emphasized that even if the most part of 

micronutrients play similar roles, they are not identical, so they cannot replace one another in the 

organism (Stiles, 1946; Marschner, 1995; Clemens, 2001, 2006; Hall and Williams, 2003; Kirkby and 

Römheld, 2004). When any of these metals is present in short supply, a range of deficiency symptoms 

can appear and growth is reduced (Marschner, 1995). However, although essential, when supplied in 

excess, these cations can become toxic, like heavy metals with no generally established function (e.g. 

cadmium, lead, arsenic, mercury, aluminum and silver). The non-essential trace elements are potentially 

toxic due to their reactivity with S and N atoms in amino acid side chains. They can be taken up from 

soil through the same transporters used for essential nutrients, and accumulated by crops. Such a 

process represents the main entry pathway for potentially health-threatening toxic metals into animal 

and human food chain. Thus, to maintain micronutrient homeostasis and to cope with the detrimental 

effects of non-essential metal ions, plants have developed a complex network of metal uptake, 

chelation, trafficking, and storage processes (Clemens, 2001; Hall, 2002; Hall and Williams, 2003).  

There is a significant natural variation in the homeostatic mechanisms among crop species and 

in cultivars within the same species for what concern both essential and non-essential trace elements 

(Bell et al., 1997; Clarke et al., 1997). This variation results from several genetically controlled barriers 

that affect the abovementioned processes at different levels. Although many factors controlling these 

processes have been widely investigated and are now well known, the physiological basis for 

micronutrient use efficiency in crop plants and the processes controlling the accumulation of trace 

elements in the edible portions still need to be clarified (Welch and Shuman, 1995; Welch and Graham, 

1999, 2004; Gregorio, 2002; Hall and Williams, 2003). The principal factors affecting the micronutrient 

use efficiency are here briefly discussed below. The first and most important barrier to micronutrient 

absorption resides at the root-soil interface (i.e. the rhizosphere) and several factors affect the trace 

element bioavailability, mostly depending on soil characteristics (e.g. pH and redox potential) (Gupta et 

al., 2008) or due to some root activities, such as: (a) proton efflux from root cells, especially considering 

non-graminaceous plants presenting the mechanism of Fe uptake defined as ‘strategy I’; (b) root 
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respiration leading to the release of carbon dioxide causing soil acidification; (c) efflux of reductive 

compounds; (d) plasma membrane reductase activity; (e) extrusion of organic acids, non-proteic amino 

acids and metal chelating phytosiderophores. In particular, the efflux of organic acids characterized by 

low molecular weight induces changes in the soil characteristics (mainly pH and redox potential) which, 

in turn, may affect metal solubility and mobility. However, the contribution of such compounds to the 

uptake of non-essential elements still need to be investigated in details (Prasad, 1995; Welch and 

Graham, 2004; Clemens, 2006). In fact, the total micronutrient content in soils is not related to that 

potentially available to the plant (Gupta et al., 2008); then, the bioavailability of a trace element is 

defined as the fraction of the nutrient that is absorbed and subsequently utilized for physiological 

functions (Fairweather-Tait and Hurrell, 1996). Moreover, absorption mechanisms (e.g. transporters 

and ion channels), located in the root-cell plasma membrane, must be sufficiently active and specific 

enough to allow the accumulation of micronutrients once they enter the apoplasm of root cells from 

the rhizosphere. Then, the nutrients must be efficiently translocated from the root to the shoot and 

accumulated in edible plant organs. Finally, micronutrients must be bioavailable to people that eat these 

plant portions since plants are the main source of micronutrients for animals and humans, especially 

staple food crops (Fairweather-Tait and Hurrell, 1996; Welch and Graham, 2004). 

Today, over three billion people worldwide are currently micronutrient (i.e. iron, iodine and 

zinc) malnourished (‘Hidden Hunger’) and the numbers are increasing (Gibson, 1994; Welch and 

Graham, 2004). Almost two-thirds of the deaths of children are associated with nutritional deficiencies, 

many from micronutrients deficiencies. This widespread issue results in poor health, increased rates of 

chronic diseases (coronary heart disease, cancer, stroke and diabetes), permanent impairment of 

cognitive abilities of infants born to micronutrient-deficient mothers and finally in high rates of 

mortality (Welch and Graham, 1999; Caballero, 2002). Most of people afflicted are dependent on staple 

crops for their sustenance. In fact the cereals, rice in particular, contain inherently low amounts of 

micronutrients and are eaten primarily after milling that removes most of the trace elements that cereals 

contain (Welch and Graham, 1999; Gregorio, 2002).  

The staple crops can be “biofortified”, meaning that the bioavailability of a micronutrient is 

increased using plant breeding and/or transgenic strategies, improving significantly the amount of these 

nutrients consumed by the world's poor without negatively impacting crop productivity (Bouis, 1996, 

2000; Welch and Graham, 1999, 2004; Graham et al., 2001, 2007). Other important goals of the 

research are enhancing substances (e.g. ascorbic acid and S-containing amino acids) that promote 

micronutrient bioavailability or decreasing the level of antinutrients (substances that reduce the 

bioavailability of trace metals to humans, e.g. phytate and polyphenolics) and limiting the detrimental 

effects of non-essential elements (e.g. Cd, As and Pb) on plants that have direct consequences on 

human health.  



    

 
7 

For the reasons abovementioned, agriculture needs a new paradigm based on food systems 

approaches aimed not only at productivity and sustainability, but also at empowering people and 

insuring balanced and adequate nutrition and improved health for all (Graham and Welch, 1996; Welch 

and Graham, 1999; Gregorio, 2002; Graham et al., 2007). 

 

 

ZINC HOMEOSTASIS 

Zinc (Zn) is a micronutrient essential for growth and development of all organisms (Broadley et al., 

2007; Alloway, 2009). In plants Zn exists only as Zn(II) and does not take part in oxidoreduction 

reactions (Marschner, 1995). The non redox active property of Zn combined with its geometry makes it 

fundamental for an array of cellular processes (Berg and Shi, 1996; Broadley et al., 2007; Palmer and 

Guerinot, 2009). In plants, Zn plays a key role as a structural constituent or regulatory cofactor of a 

wide range of enzymes (more than 300) (Vallee and Auld, 1990; Coleman, 1998) and proteins in many 

important biochemical pathways and these are mainly concerned with: (i) integrity of biomembranes; 

(ii) RNA and DNA metabolism; (iii) carbohydrate metabolism, both in photosynthesis and in the 

conversion of sugars to starch; (ii) protein metabolism; (iv) cell division; (v) auxin metabolism; (vi) 

pollen formation (Marschner, 1995; Cakmak, 2000; Alloway, 2007, 2009). Therefore, the relevance of 

these processes for cell metabolism makes clear that Zn uptake, homeostasis, and allocation to the 

different plant organs and cellular organelles need to be tightly regulated, in order to provide the 

required amount of Zn and to prevent the toxic effects caused by its excess. Homeostatic mechanisms 

include control of uptake, intracellular binding to metal chelators, efflux from the cell and sequestration 

into vacuoles (Clemens, 2001; Hall and Williams, 2003; Ishimaru et al., 2011). 

 

ZINC IN THE SOIL 

In soil, Zn is present in various forms coming from different inputs. The first one is the chemical and 

physical weathering of parent rocks. Other natural inputs arise because of atmospheric (e.g. volcanoes, 

forest fires, and surface dusts) and biotic (e.g. decomposition, leaching/washoff from leaf surfaces) 

processes (Broadley et al., 2007; Ishimaru et al., 2011). Moreover, different human activities have 

influenced Zn inputs to soils such as mining and smelting activities (Nriagu, 1996). Other 

anthropogenic inputs of Zn to soils include fossil fuel combustion, phosphatic fertilizers, limestone, 

manure, sewage sludge, other agrochemicals, particles from galvanized (Zn-plated) surfaces and rubber 

mulches (Chaney, 1993; Alloway, 1995).  

Zn in soil occurs in three primary fractions: (a) water-soluble Zn (including Zn2+ and soluble organic 

fractions); (b) adsorbed and exchangeable Zn in the colloidal fraction (associated with clay particles, 

humic compounds and Al and Fe hydroxides) and (c) insoluble Zn complexes and minerals (Barrow, 
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1993; Alloway, 1995). Zn is mobile at slightly acidic conditions and is immobilized in alkaline soils 

(Broadley et al., 2007; Gupta et al., 2008). The distribution of Zn between soil fractions is determined by 

soil-specific precipitation, complexation and adsorption reactions. Many factors determine soil Zn 

distribution and then inducing Zn deficiency including pH, soil type and moisture, mineral and clay 

types and contents, diffusion and mass flow rates, weathering rates, organic matter, soil biota and plant 

uptake (Hacisalihoglu and Kochian, 2003; Rashid and Ryan, 2004). The soluble Zn fraction consists for 

up to 50% of Zn2+, which is the dominant form available for plants (Hacisalihoglu and Kochian, 2003). 

 

ZINC DEFICIENCY 

Zn deficiency appears the most widespread and frequent micronutrient deficiency problem in crops 

worldwide, resulting in severe losses in yield and nutritional quality (Graham and Welch 1996; Cakmak, 

2000, 2002; Alloway, 2007). A wide range of crops are affected by Zn deficiency, including mainly 

cereals (i.e. rice, barley, wheat and maize), fodder crops, pulses, bush and tree fruits, nuts, vegetables 

and non-food crops, such as cotton and tobacco (Welch and Graham, 2004; Grotz and Guerinot, 

2006). In particular, it is estimated that nearly half of the soils on which cereals are grown have levels of 

available Zn low enough to cause Zn deficiency (Graham and Welch 1996; Cakmak et al., 1999; 

Alloway, 2007). This causes cereals to be inherently low in grain Zn concentrations to meet daily 

requirement of humans thus causing Zn deficiency symptoms and pathologies, especially in developing 

countries where cereal grains, especially wheat and rice, contribute to about 70% of the daily calorie 

intake (Cakmak, 2008). Zn deficiency in humans is a major nutritional and health problem in 

developing countries, especially among young children. It affects, on average, one-third of the world’s 

population, ranging from 4 to 73% in different countries (Hotz and Brown, 2004; Alloway, 2007; Black 

et al., 2008; Wessells and Brown, 2012).  

Concerning rice, Zn deficiency is widespread on neutral to alkaline-calcareous soils which 

contain more than 1% organic matter and incidence of the deficiency appears more closely related to 

Zn availability than to total Zn content (Forno et al., 1975). Moreover, flooding and submergence 

determine a decrease in available Zn due to pH changes and the formation of insoluble Zn compounds 

(Alloway, 2009).  

There are a relatively small number of different types of symptoms which are found to occur in 

crops suffering from Zn deficiency. These may occur at varying degrees of severity and in various 

combinations in different plant species. The main type of visible symptoms on both old and new leaves 

are: chlorosis, necrotic spots, ‘bronzing’ and ‘rosetting’. Other symptoms are: stunting of plants, dwarf 

leaves (‘little leaves’) and malformed leaves (e.g. ‘goblet’ leaves) (Marschner, 1995; Hacisalihoglu and 

Kochian, 2003; Alloway, 2007, 2009; Broadley et al., 2007). Moreover, deficiency of Zn causes low 
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fertility (Yamaji et al., 2013) and plants show a high susceptibility to environmental stress factors such as 

drought stress and pathogenic infections (Alloway, 2007). 

The prevention of Zn deficiency can be obtained through increasing Zn concentration in grains 

(‘biofortification’) through two possible strategies: agronomic and genetic. The first one uses soil-

applied Zn fertilizers or, less effective for rice, foliar sprays containing Zn (Broadley et al., 2007), but is 

not always successful due to agronomic, economic and environmental factors (Graham and Rengel, 

1993; Hacisalihoglu and Kochian, 2003). In the long-term, it appears more promising and cost-effective 

the genetic biofortification through breeding new varieties of crops (e.g. rice), accumulating higher Zn 

concentrations in grains or other edible parts. This will benefit whole population, especially those living 

in rural areas where it is more difficult to ensure that everybody has access to Zn-supplemented diets 

(Ruel and Bouis, 1998; Graham et al., 1999; Welch and Graham, 1999, 2004). Furthermore, this strategy 

would reduce fertilizer inputs and protect the environment as well (Hacisalihoglu and Kochian, 2003). 

 

ZINC UPTAKE BY PLANT ROOTS 

Zn is taken up from soil solution by roots primarily as Zn2+, but also potentially complexed with 

organic ligands. Then, Zn is translocated from root-to-shoot through the xylem. The Zn uptake into 

excised roots and intact plants is dependent from the Zn external concentration ([Zn]ext) following 

often the sum of one or more Michaelis-Menten functions, each defined by a Vmax and an affinity 

constant Km, plus a linear term, k (V/[Zn]ext). Some kinetic studies report a Michaelis-Menten function 

with a Km of 1.5-50 µM, and, occasionally, additional Michaelis-Menten functions with higher Km values 

(Wheal and Rengel, 1997; Hacisalihoglu et al., 2001). In many plant species, like sugarcane, rice and 

tomato, Km and Vmax differ between Zn-efficient and Zn-inefficient genotypes (Broadley et al., 2007). In 

rice, Zn uptake efficiency also correlates with exudation rates of low molecular weight organic anions 

and a substantial proportion of the phenotypic variation in Zn uptake efficiency is under genetic 

control (Hoffland et al., 2006; Wissuwa et al., 2006). Moreover, the linear term present in the Zn influx 

function seems due to the accumulation of Zn strongly bound to cell walls (Lasat et al., 1996; Hart et al., 

1998, 2002). 

Higher plants acquire Zn from the rhizosphere through a number of transporters which are 

strictly regulated. Plant genomes contain several gene families involved in the transport of divalent 

micronutrients, including Zn (Maser et al., 2001). The selectivity of these transporters determines 

whether other divalent cations are imported at the same time as Zn (Ramesh et al., 2003) and some of 

them have broad substrate specificity (Korshunova et al., 1999). Ionic selectivity is particularly 

important for plant Zn transporters in root cells. In soils that contain contaminants such as toxic heavy 

metal like cadmium (Cd), Zn transport mechanisms may allow for Cd entry into whole plants 
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(Holmgren et al., 1993; Zhao et al., 2002). Cd can be potentially lethal to plants and its entry into the 

food chain may result in human toxicity (Lasat et al., 2000; Pence et al., 2000). 

Several members of the Zn-regulated transporters and the Fe-regulated transporter-like protein 

(ZIP) gene family (Guerinot, 2000) have been characterized and shown to be involved in metal uptake 

and transport in plants (Eide et al., 1996; Korshunova et al., 1999; Vert et al., 2001, 2002; Connolly et al., 

2002). Moreover, their functional expression in yeast is an helpful tool to determine their substrate 

specificity. Yeast Zrt1 and Zrt2 are high- and low-affinity Zn uptake transporters, respectively (Eide, 

1998; Guerinot, 2000) and AtZIP1 and AtZIP3 from Arabidopsis thaliana expressed in the Zn-uptake 

mutant (zrt1zrt2) of the yeast Saccharomyces cerevisiae restore Zn uptake; indeed, they have been proposed 

to play a role in Zn transport. In particular, AtZIP1 and AtZIP3 are expressed in roots in response to 

Zn deficiency, suggesting that they transport Zn from the soil to the plant (Grotz et al., 1998; Guerinot, 

2000). Further characterization of homologs from several plant species supported the proposed role of 

ZIP transporters in Zn nutrition. In rice, for instance, many ZIP transporters have been identified. The 

Zn deficiency induces the expression of some ZIPs including OsZIP1 and OsZIP3 that seem 

important for Zn uptake from soil. They are also responsible for Zn homeostasis in shoots (Ramesh et 

al., 2003). A member of the ZIP family, TcZNT1, from the Zn/Cd-hyperaccumulating plant Thlaspi 

caerulescens, was shown to mediate high-affinity Zn uptake and low-affinity Cd uptake following 

heterologous expression in yeast (Pence et al., 2000). Another member of this family, GmZIP1, has 

been identified in soybean. By functional complementation of the zrt1zrt2 yeast cells, GmZIP1 was 

found to be highly selective for Zn, while yeast Zn uptake was inhibited by Cd. GmZIP1 was 

specifically expressed in the nodules and not in roots, stems or leaves, and the protein was localized to 

the peribacteroid membrane, indicating a possible role in the symbiosis (Moreau et al., 2002). 

Graminaceous plants specifically secrete mugineic acid family phytosiderophores (MAs) 

(Marschner, 1995) that play a role in Fe and Zn uptake and translocation (Takagi, 1976; Welch and 

Shuman, 1995; Suzuki et al., 2006, 2008). In fact, only these plants can synthesize the nicotianamine 

aminotransferase (NAAT), a critical enzyme in the biosynthetic pathway of MAs that catalyzes the 

aminotransfer of nicotianamine (NA), an essential intermediate in the production of MAs (Mori and 

Nishizawa, 1987; Shojima et al., 1990). Although MAs are produced only in graminaceous plants, NA 

has been found in all plants investigated to date (Takahashi et al., 2003). In particular, physiological and 

molecular studies have indicated that one of the principal metal chelators inside the plant is NA (Hell 

and Stephan, 2003; Takahashi et al., 2003). Unlike MAs, NA is not secreted and is thought to play a role 

in the internal transport of Fe and other metals, like Zn. NA also might function as scavenger to 

protect cells from oxidative stress (von Wirén et al., 1999). However, the precise roles of NA in higher 

plants remain unclear. The synthesis and secretion of MAs seem increased under Zn and Fe deficiency 

in wheat and barley (Cakmak et al., 1994; Walter et al., 1994; Suzuki et al., 2006). Moreover, a recent 
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study suggested that deoxymugineic acid (DMA) can increase Zn deficiency tolerance in rice (Widodo et 

al., 2010). In addition, a modelling study proposed a strong correlation between (DMA) secretion and 

rooting density, and suggested a role of DMA for Zn absorption in rice (Ptashnyk et al., 2011). Thus, 

DMA and NA are suggested to play a significant role in plant Zn uptake and mobilization.  

 

ZINC ROOT-TO-SHOOT TRANSLOCATION AND ZINC INTRACELLULAR MOVEMENTS 

Once inside the plant, metals must reach the tissues in which they are required. Developing tissues with 

low transpiration especially request higher Zn concentration for the active cell division and growth 

(Marschner, 1995), but the molecular mechanisms are still unknown (Yamaji et al., 2013). 

Once within the root epidermal and cortical cells after the uptake from the soil, Zn can reach 

the root xylem both through symplastic and apoplastic fluxes and must be actively loaded into the 

xylem and transported by the transpiration stream to shoot tissue (Curie et al., 2009). Proper loading 

and unloading of the vasculature is essential for metal transport in the plant (Palmer and Guerinot, 

2009). In Arabidopsis thaliana, Zn is effluxed into the xylem for root-to-shoot translocation by the heavy 

metal transporters AtHMA2 (Heavy-Metal ATPase) and AtHMA4, members of the P1B-type ATPase 

family (Hussain et al., 2004). AhHMA4 was also identified as the major responsible for shoot Zn 

hyperaccumulation in the hyperaccumulator Arabidopsis halleri (Becher et al., 2004; Weber et al., 2004), 

resulting from a triplication of the gene and changes in the regulation of their expression (Hanikenne et 

al., 2008). In the monocots rice (Satoh-Nagasawa et al., 2012; Takahashi et al., 2012), barley (Mills et al., 

2012) and Triticum aestivum (Tan et al., 2013) HMA2 has been recently identified as responsible for Zn 

xylem loading. The P1B-type ATPase family will be further discussed. Other metal transporters seem to 

be implicated in the Zn systemic movement. In particular, OsZIP4, OsZIP5 and OsZIP8 appear 

involved in Zn root-to-shoot translocation, and OsZIP4 and OsZIP8 seem also particularly important 

for Zn transport to seed (Ishimaru et al., 2005; Bashir et al., 2012). Also AtZIP4, expressed in both roots 

and shoots, is suggested as involved in the transport of Zn intracellularly or between plant tissues 

(Grotz et al., 1998; Guerinot, 2000). Furthermore, a recent paper (Song et al., 2010) proposed a Zn 

transport pathway independent from AtHMA2 and AtHMA4 in A. thaliana. The responsible for that 

pathway is suggested to be the AtPCR2 (Plant Cadmium Resistance 2). This plasma membrane protein 

seems implicated in the detoxification of Zn and in the translocation of Zn in a root-to-shoot direction. 

These roles are possible because AtPCR2 is expressed in epidermal cells and in the xylem of young 

roots, and in epidermal cells of fully developed roots. 

Once transported to the proper tissue, Zn has to be distributed to the different organelles to 

ensure sufficient levels to the necessary compartments. It has been suggested that the majority of Zn 

that is not associated with proteins is bound to various compounds, such as metal chaperones, NA, 

glutathione, or organic acids (Takahashi et al., 2003; Krämer et al., 2007; Palmgren et al., 2008). Zn is 
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exported from the cytosol and accumulated into the vacuoles by different transporters. The great part 

of them belongs to the cation diffusion facilitator (CDF) transporter family whose transporters are 

involved in heavy metal transport, particularly of Zn, Mn and Fe. For instance, the metal tolerance 

proteins (MTPs) are plant members of the CDF family involved in cellular metal homeostasis (e.g. 

MTP1 and MTP3 are involved in Zn homeostasis) (Blaudez et al., 2003; Kobae et al., 2004; Desbrosses-

Fonrouge et al., 2005; Arrivault et al., 2006; Gustin et al., 2009; Podar et al., 2012; Yuan et al., 2012). 

Another example of protein belonging to the CDF family involved in the Zn homeostasis is the Oryza 

sativa Zn transporter 1 (OZT1), a vacuolar Zn transporter recently characterized (Lan et al., 2013). 

Other transporters seem to be involved in the vacuolar sequestration of Zn, such as ZIF1 (Zinc-

induced facilitator 1), a member of the major facilitator superfamily (MFS) (Haydon and Cobbett, 2007) 

and the Arabidopsis MHX, a Mg2+/H+ exchanger that functions as an electrogenic exchanger of protons 

with Mg2+ and Zn2+ ions (Shaul et al., 1999). Finally, the overexpression of AtHMA3 (Heavy-Metal 

ATPase) improved plant tolerance to Zn, Cd, cobalt (Co) and lead (Pb), suggesting a role in the 

detoxification of different heavy metals, by participating in their vacuolar sequestration (Morel et al., 

2009). The transporters responsible for Zn remobilization from the vacuole are not yet identified. 

Furthermore, Zn is most likely transported in mitochondria by a ZIP, but no ZIP transporters have 

been assigned to this function yet (Palmer and Guerinot, 2009). 

 

 

CADMIUM AS A POTENTIAL RISK FOR FOOD SAFETY 

Some trace elements (e.g. Fe, Zn, Mn and Cu) are essential to all organisms; other trace metals, such as 

Cd, Pb, chromium (Cr), mercury (Hg) and the metalloid arsenic (As) are biologically non-essential and 

potentially toxic. They can enter plants using the same transporters used for essential nutrients uptake 

(Clemens, 2001, 2006; Mendoza-Cózatl et al., 2011). These heavy metals are important environmental 

pollutants, particularly in areas where there is high anthropogenic pressure. Their presence in the 

atmosphere, soil and water – even in trace concentrations – can cause serious health problems to all 

organisms (Sanità di Toppi and Gabbrielli, 1999). In particular, Cd pollution has become a global 

environmental problem (Zhang et al., 2013) and is of great concern in the environment because of its 

toxicity to animals and humans, and its relative mobility in the soil-plant system (McLaughlin and 

Singh, 1999; Kirkham, 2006). 

 

CADMIUM IN THE SOIL 

Cd is a toxic trace element with a great chemical similarity to Zn, with which it is commonly associated 

in natural geological settings. Cd(II) is the most common valence of Cd in natural environments 

(Traina, 1999) and occurs in the soil solution mainly as Cd2+, but also as Cd-chelates (Tudoreanu and 
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Phillips, 2004). The Cd concentrations range from 0.04 to 0.32 µM in non-polluted soil solutions, and 

from 0.32 to about 1 µM in soil solutions considered as polluted to a moderate level (Wagner, 1993). 

Cd occurs in the soil either naturally or through anthropogenic activities. In the first case, natural 

mineral outcrops can be enriched in Cd through the weathering of Cd-rich parent materials. The release 

of Cd in the soil due to anthropogenic activities has increased over the last decades since it has kept 

pace with the rising consumption of Cd by the industry. The most important sources of Cd which 

contaminate soils derive from fly-ash caused by smelting, refining and burning of fossil fuels, and from 

atmospheric deposition, urban refuse and sludge, agricultural and animal wastes (including fertilizers) 

(Alloway and Steinnes, 1999; Kirkham, 2006). The degree to which higher plants are able to take up Cd 

depends on its concentration in the soil and its bioavailability, affected by several factors mostly 

depending on soil characteristics. Cd concentration increases with clay proportion and availability is 

inversely related to soil pH and increases in oxidative condition. Moreover, soil organic matter has high 

sorption affinity for Cd, making Cd non-available (Prasad, 1995; Kirkham, 2006). Furthermore, Cd 

competes with nutrients (e.g. K, Ca, Mg, Fe, Mn, Cu, Zn and Ni) for plant uptake through the same 

transmembrane carriers (Sanità di Toppi and Gabbrielli, 1999). Therefore, the real bioavailable Cd 

concentration in soil strictly depends on the speciation processes it undergoes when introduced in the 

soil medium, as well as on the concentration and stability of the ligands it can be complexed to. Cd, 

compared to other metals including Cu, Pb, Hg, Fe and Al, tends to be more mobile and thus more 

available to plants (Prasad, 1995; Alloway and Steinnes, 1999). Finally, Cd bioavailability is deeply 

affected by plants, especially in the rhizospheric soil, due to different root activities like those 

abovementioned discussing on trace elements (i.e. root exudates) (Fairweather-Tait and Hurrell, 1996; 

Zhu et al., 1999; Welch and Graham, 2004; Clemens, 2006). Cd released to the environment enters in 

the food chain when it is taken up by roots and translocated to the edible portion of the plant, get 

bioconcentrated and can become dangerous to all kinds of organisms (Kawada and Suzuki, 1998). 

 

CADMIUM TOXICITY ON PLANTS 

The symptoms of Cd toxicity have been studied in several plant systems and under various conditions, 

mainly with applications of extremely high Cd2+ concentrations. Nevertheless, the consequences of 

acute Cd stress are well documented, the most of Cd toxicity bases are still not completely understood. 

Under long-term exposure to Cd almost all physiological processes are affected. Visible effects of 

exposure to high Cd2+ doses are leaf roll and chlorosis and growth inhibition, both of stems and roots 

(Prasad, 1995; Clemens, 2006). Many aspects of root anatomy are also altered, appearing to be species- 

and tissue-specific (Lunáčková et al., 2003; Seregin et al., 2004; Ďurčeková et al., 2007; Maksimović et al., 

2007; Seregin and Kozhevnikova, 2008). Cd has high affinity for sulfydryls and thus leads to protein 

misfolding, sulfur metabolism and membrane damages (Hall, 2002). Cd causes oxidative stress, even 
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though Cd is not directly involved in the production of reactive oxygen species (ROS), for example 

enhancing the lipid peroxidation (Clemens, 2006) and decreasing the activity of different anti-oxidative 

enzymes (e.g. glutathione reductase) (Gallego et al., 1996). Cd inhibits also the activity of other several 

enzymes (e.g. Rubisco) (Van Assche and Clijsters, 1990) and it significantly reduces the normal H+/K+ 

exchange (Obata et al., 1996). Cd inhibits photosynthesis and chlorophyll biosynthesis inhibiting many 

enzymes (e.g. Fe3+ reductase) (Alcantara et al., 1994), the photosystem II, and also the photosystem I, 

even though to a lesser extent (Siedlecka and Baszynsky, 1993; Seidlecka and Krupa, 1996), and leading 

to the degeneration of the fine structure of chloroplasts (Krupa et al., 1993). Furthermore, Cd can 

interfere with homeostatic pathways for essential metals (Roth et al., 2006) because of the chemical 

similarity between Cd2+ and functionally active ions located in active sites of enzymes and signaling 

components. Thus, Cd2+ ions displace divalent cations, such as Zn2+ and Fe2+, from structural proteins 

and enzymes causing the release of “free” ions which might trigger oxidative injuries (DalCorso et al., 

2008). Likewise, Ca2+ binding proteins such as calmodulin might well be prime intracellular binding 

sites of Cd2+ and such binding will most likely be detrimental to cellular signaling cascades (Clemens, 

2006). Finally, Cd inhibits the oxidative mitochondrial phosphorylation (Kessler and Brand, 1995) and, 

mimicking Ca2+ ions, Cd enters stomatal guard-cell and activates the opening of the plasma membrane 

anion and K+
out channels. As more ions leave the cell, water follows and turgor is lost with stomatal 

pore closure (Barceló and Poschenrieder, 1990; Costa and Morel, 1994) leading to, combined with the 

degradation of the xylem cells, a decreased tolerance of plants to water stress (Prasad, 1995).  

 

CADMIUM UPTAKE BY PLANT ROOTS 

Higher plants can take up Cd, depending on its availability and concentration, form soil or water. In 

fact, only a fraction of the total Cd is available for plant uptake (Clemens, 2006). The concentration 

dependence of Cd uptake from hydroponic solutions measured over short periods into either excised 

roots or intact plants generally follows the sum of a single Michaelis-Menten component plus a linear 

component. The linear component is often attributed to tight Cd binding to cell walls, but it could also 

represent an apoplasmic Cd flux to the xylem (White, 2001; White et al., 2002; Broadley et al., 2007). 

Estimates of the Km value for ‘high-affinity’ Cd uptake commonly fall between 20-1000 nM. Generally 

Cd uptake by plant roots is inhibited by Ca2+, Cu2+, Fe2+, Zn2+ or Mn2+ in the rhizosphere solution, due 

to a competition for uptake (Cataldo et al., 1983; Costa and Morel, 1993, 1994; Cohen et al., 1998; 

Lombi et al., 2002; Hart et al., 2002; Zhao et al., 2002; Berkelaar and Hale, 2003; Han et al., 2006; Zhao et 

al., 2006). It was assumed that for Cd, being a non-essential element, there would be no specific uptake 

mechanisms. Instead, Cd, and other non-essential metal ions, would enter plant cells via uptake systems 

for essential cations (Cosio et al., 2004; Roth et al., 2006; Papoyan et al., 2007). In plants many 

transporters for essential divalent cations have a Cd2+ uptake activity. It has been shown that Cd can 
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enter root cells through ZIP transporters. AtIRT1, a ZIP family transporter for Fe, Zn and Mn also 

mediates Cd uptake in Arabidopsis thaliana, whose expression is also induced by Fe deficiency (Cohen et 

al., 1998; Connolly et al., 2002; Vert et al., 2002). Also the rice OsIRT1 and OsIRT2 have an influx 

activity of Cd as well as Fe in yeast, suggesting a role in Cd uptake especially upon re-aeration of soil 

after flooding, when Fe is less available and OsIRTs result induced (Ishimaru et al., 2006; Nakanishi et 

al., 2006). Likewise, TcZNT1/TcZIP4 present in the Cd/Zn hyperaccumulator Thlaspi caerulescens 

mediates the uptake of both Zn and Cd when expressed in yeast (Pence et al., 2000). Competitive 

interaction between Cd and Zn in the uptake processes has been proved in non-accumulator plants 

(Cataldo et al., 1983), including crop species (Hart et al., 2002, 2005) and also in the Zn-

hyperaccumulator Arabidopsis halleri, in which Zn treatment caused inhibition of both short-term Cd 

influx and long-term Cd accumulation (Pence et al., 2000; Bert et al., 2003; Zhao et al., 2006; Ueno et al., 

2008). Moreover, transporters of the Nramps (Natural Resistance Associated Macrophage Proteins) 

family are also known to mediate Cd transport. In A. thaliana, AtNramp1 functions as a high-affinity 

transporter for Mn uptake under Mn deficiency (Cailliatte et al., 2010) and showed transport activity in 

yeast for Fe, Mn, and Cd (Curie et al., 2000; Thomine et al., 2000). In rice, OsNramp5 has recently been 

identified as the major responsible for Mn and Cd uptake, and seems to contribute also at the uptake of 

Fe (Ishimaru et al., 2012; Sasaki et al., 2012). Moreover, OsNramp1 showed transport activity for Fe and 

Cd in yeast but not Mn (Curie et al., 2000; Takahashi et al., 2011). OsNramp1 is suggested to be 

involved in cellular Cd uptake under Fe deficiency and Cd transport within the plant, but the exact role 

of OsNramp1 in rice is still unknown (Takahashi et al., 2011). The transporter LCT1 (Low-affinity 

Cation Transporter 1), a non-selective transmembrane transporter for Na, K (Schachtman et al., 1997; 

Amtmann et al., 2001) and for Ca, also appeared to mediate Cd transport to the yeast cell (Clemens et 

al., 1998). However, its subcellular localization in planta is still to be determined. Due to the similarity to 

Ca2+, Cd2+ can also enter root cells through cation channels, such as depolarization-activated calcium 

channels (DACC), hyperpolarization activated calcium channels (HACC) and voltage-insensitive cation 

channels (VICC), all of which are relatively non-selective between cations (White and Broadley, 2003; 

White, 2005). It is important to note that this type of transport is particularly significant in case of 

relatively low Cd concentrations, which is the most widespread condition in agricultural contaminated 

soils. Finally, in addition to the free ion form, Cd might be taken up from soil as Cd-chelates through 

YSL (Yellow-Stripe 1-Like) proteins (Curie et al., 2009). YSLs can also mediate the uptake of Fe, Zn, 

Mn and Cu complexed with organic compounds, such as phytosiderophores or non-proteic amino 

acids (Curie et al., 2001; Colangelo and Guerinot, 2006). 
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CADMIUM DETOXIFICATION 

Once inside root system, plants respond to Cd toxicity with a ‘firewall system’ that includes 

immobilization, exclusion, chelation and compartmentalization of the metal ions, as well as the 

expression of more general stress response mechanisms involving ethylene and stress proteins (Sanità 

di Toppi and Gabbrielli, 1999). Cd can firstly be immobilized by adsorbtion to the negative charges 

present on the cell walls. This portion of Cd is tightly bound to the apoplastic component and is 

unlikely to be released in the cytosol (Nishizono et al., 1989). The most recurrent general mechanism 

for Cd detoxification in plants is the metal chelation by a ligand in the cytosol and, in some cases, the 

subsequent compartmentalization of the ligand-metal complex (Song et al., 2014). The best-

characterized heavy metal-binding ligands in plants are the phytochelatins (PCs) and metallothioneins 

(MTs). MTs are Cys-rich polypeptides encoded by a family of genes. In contrast, PC is a family of Cys-

rich peptides with the general structure (γ-Glu-Cys)n-Gly (n = 2-11; Rauser, 1995; Zenk, 1996; Cobbett 

and Goldsbrough, 2002) enzymatically synthesized by PC synthase (PCS) from glutathione (GSH) in a 

transpeptidation reaction (Grill et al., 1989; Rea et al., 2004). Cd cellular uptake induces PC synthesis and 

produced PCs chelate the free Cd ions by forming the low molecular weight (LMW) complexes. These 

are then transported into vacuoles, where additional sulfur (S) in form of sulfide is incorporated to 

generate the high molecular weight (HMW) PC-Cd-S-2 complexes. Thus, LMW PC-Cd complex would 

function as a scavenger and carrier of cytoplasmic Cd, whereas the HMW PC-Cd-S-2 complexes would 

definitely function as storage of Cd, reducing its toxicity and increasing Cd tolerance of the organism 

(Ortiz et al., 1992, 1995; Rauser and Meuwly, 1995; Rauser, 2003; Clemens, 2006). Moreover, Cd can 

also be aspecifically transported across the tonoplast in form of free ion through antiporter 

mechanisms actuated by divalent cation/H+ transporters (CAX) (e.g. Ca2+/H+ transporters) (Salt and 

Wagner, 1993; Ortiz et al., 1995; Martinoia et al., 2007), due to the already mentioned similarities 

between Ca and Cd ions. Recently, a transporter belonging to the P1B-type ATPase class, HMA3, has 

been proved to mediate Cd vacuolar sequestration both in Arabidopsis (Morel et al., 2009) and rice 

(Ueno et al., 2009a, 2009b, 2010, 2011). OsHMA3 appears constitutively expressed in rice roots and 

highly selective for Cd sequestration into the root vacuoles. Interestingly, a single amino acid mutation 

in this protein from the high Cd-accumulating cultivar resulted in a complete loss of activity of this 

transporter, which – failing in its putative function of root firewall – both reduced Cd root retention 

and promoted root-to-shoot Cd translocation (Ueno et al., 2010; Miyadate et al., 2011; Satoh-Nagasawa 

et al., 2013). Finally, Lan and coworkers (2013) characterized a new vacuolar Zn transporter in rice 

(Oryza sativa Zn Transporter 1 - OZT1) belonging to the CDF family suggesting its involvement in Zn, 

Cd or other heavy metals transport and homeostasis in plant. The efficiency of all these processes may 

contribute to the natural variation in Cd partitioning between roots and shoots observed in crop 
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species, as only Cd ions escaping these detoxification pathways may be potentially available for root-to-

shoot translocation via the xylem (Nocito et al., 2011). 

 

CADMIUM ROOT-TO-SHOOT TRANSLOCATION 

Once within the root, Cd can reach the xylem either by radial symplastic or extracellular apoplasmic 

pathway and then must be actively loaded into the xylem vessels to be translocated to the shoots 

(Colangelo and Guerinot, 2006). The mass flux generated by the transpiration process is the driving 

force determining the movement of Cd along the xylem vessels up to the shoots (Salt et al., 1995; Hart 

et al., 2006) and Cd in the xylem sap is predominantly present in the free ionic form and only small 

amounts is complexed with citrate, malate and histidine in the hyperaccumulator A. halleri (Ueno et al., 

2008). In contrast, indirect evidence in Arabidopsis showed that small amounts of PCs undergo long-

distance transport in a root-to-shoot direction (Gong et al., 2003). However, the significance of this 

mechanism in Cd translocation still remains a controversial issue, especially in relation to the possible 

localization of Cd-PCs complexes into the xylem vessels, since several studies failed to detect these 

complexes in the xylem sap of different species (Salt et al., 1995; Mendoza-Cózatl et al., 2008; Ueno et 

al., 2008). Moreover, other experimental evidence strongly suggested phloem as the major vascular 

system for long-distance source to sink transport of Cd as Cd-PCs and Cd-GSH complexes (Mendoza-

Cózatl et al., 2008). 

It is generally accepted that Cd ions compete with Zn ions not only for plant uptake (Cataldo et 

al., 1983; Hart et al., 2002, 2005) but also for accumulation in the shoot, as they probably use the same 

transport systems to be loaded into the xylem. For instance, Hart and coworkers (2005) found that, 

under Zn deficiency, the low grain Cd trait in wheat may be connected with decreased Zn accumulation 

in grains. Moreover, a positive and strong correlation between Cd and Zn concentrations in the shoot 

has been observed in 69 rice varieties, where the root-to-shoot Cd translocation via the xylem has been 

proved to be the major and common physiological process determining Cd accumulation in shoots and 

grains of rice (Uraguchi et al., 2009).  

In the last decade some members of the P1B-type ATPase family that cluster with the 

Zn/Cd/Pb/Co subgroup (Axelsen and Palmgren, 2001; Baxter et al., 2003; Williams and Mills, 2005) 

have been identified as responsible for Cd and Zn xylem loading. In particular, AtHMA2 and AtHMA4 

play primary roles in root-to-shoot Zn translocation in Arabidopsis (Hussain et al., 2004) and several 

reports also suggest their involvement in Cd transport (Mills et al., 2003, 2005; Eren and Argüello, 2004; 

Verret et al., 2005; Wong and Cobbett, 2009; Wong et al., 2009). Both AtHMA2 and AtHMA4 are 

localized on the plasma membrane and the genes encoding them result predominantly expressed in the 

vascular bundles (Mills et al., 2003, 2005; Hussain et al., 2004; Verret et al., 2005), suggesting their 

function as efflux pumps to extrude the excess of the metals into the apoplast. The xylem loading of 
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both Zn and Cd ions itself could be intended as a detoxification system as it would allow the plant to 

translocate the excess of metals to the highly vacuolated cells in the shoot where they can be 

sequestered into the vacuolar compartment (Hussain et al., 2004). Interestingly, the hma2hma4 A. 

thaliana double mutant shows a near-complete abolition of root-to-shoot Cd translocation (Wong and 

Cobbett, 2009), whereas decreasing HMA4 transcript levels by RNA interference in Zn 

hyperaccumulator A. halleri resulted in enhanced Cd root retention capacity (Hanikenne et al., 2008). 

The role of HMA4 in Cd and Zn movement has also been confirmed in one other hyperaccumulator 

species, Thlaspi caerulescens, where HMA4 was seen to be involved in the xylem loading of both Zn and 

Cd (Papoyan and Kochian, 2004). Recently, OsHMA2, a rice Zn2+/Cd2+ATPase mainly localized in 

roots vascular bundles, has been characterized as responsible for Zn and Cd xylem loading (Nocito et 

al., 2011; Satoh-Nagasawa et al., 2012; Takahashi et al., 2012). Moreover, Satoh-Nagasawa and 

coworkers (2012) found in three Tos17 insertion rice mutants translocation ratios of Zn and Cd lower 

than in the wild type, suggesting that OsHMA2 is a major transporter of Zn and Cd from roots to 

shoots. More recently, the barley HMA2 (Mills et al., 2012) and Triticum aestivum HMA2 (Tan et al., 2013) 

have been characterized. Their heterologous expression in yeast demonstrated that HvHMA2 and 

TaHMA2 function as Zn and Cd pumps. TaHMA2 overexpression also improved root-to-shoot Zn 

and Cd translocation, especially when expressed in rice. These findings suggest that both HvHMA2 and 

TaHMA2 are responsible for root-to-shoot Zn and Cd translocation. The P1B-type ATPase family will 

be further discussed. Finally, Yuan and collaborators (2012) reported that rice MTP1, belonging to the 

CDF protein family and localized at the plasma membrane, is necessary for efficient translocation of 

Zn, Cd and other heavy metals, and maintenance of ion homeostasis in plant. 

However, divergent results have been obtained. For instance, contrasting effects of Zn 

application on Cd accumulation have been reported and they may depend on the several factors, not 

clearly understood yet, that interact both in the soil and within the plant (Christensen, 1987; Abdel-

Sabour et al., 1988; Oliver et al., 1994; Choudhary et al., 1995; Grant and Bailey, 1998; Hart et al., 2005). 

In particular, Christensen (1987) reported that Zn addition can displace Cd from soil adsorption sites 

so that Zn fertilization might lead to increased Cd uptake by plants because of increased Cd availability 

in the soil solution. By contrast, other studies have shown that the addition of Zn to soils can reduce 

Cd accumulation in the shoots (Abdel-Sabour et al., 1988; Oliver et al., 1994; Choudhary et al., 1995; 

Grant and Bailey, 1998). In particular, applications of low rates of Zn fertilizer (up to 5.0 kg Zn ha-1) 

were found to markedly decrease the Cd concentration in wheat grain grown in areas of marginal to 

severe Zn deficiency. No further significant decreases in Cd concentration in grain occurred at higher 

rates of applied Zn (Oliver et al., 1994). Taken together, all these results highlight that Zn and Cd have 

similar chemical properties, but also seem to suggest that the two metal ions shared only a part of their 

systemic movement pathways, that still need to be identified and fully understood. 
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CADMIUM EXPOSURE AND RISKS FOR HUMAN HEALTH  

When taken up by plants, Cd concentrates along the food chain and ultimately accumulates in the body 

of people eating contaminated foods. The most salient toxicological property of Cd is its exceptionally 

long half-life in the human body (more than 20 years). In addition, Cd is also a highly toxic metal 

usually at doses that are much lower than most toxic metals (Järup et al., 1998; Bernard, 2004; Nordberg 

et al., 2007). For these reasons, Cd results one of the most potentially toxic substances for human 

health, constituting a big issue in terms of food safety (ATSDR, 2008; Nordberg, 2009), and 

environmental exposure to Cd should be reduced. Therefore, in order to ensure a high level of 

protection of consumers, both the EU and the Codex Alimentarius Commission of the Food and 

Agriculture Organization/World Health Organization (FAO/WHO) fixed the official maximum 

allowable limits of Cd concentration in foodstuffs (COMMISSION REGULATION (EC) No 

629/2008, 2008; CODEX STAN 193-1995, 2009). In particular, the European Food and Safety 

Authority (EFSA) and the US Agency for Toxic Substances and Disease Registry (ATSDR) have 

reduced the provisional tolerable weekly intakes (PTWI) of Cd from 7 to 2.5 μg kg-1 body weight (b.w.) 

(EFSA Panel on Contaminants in the Food Chain – CONTAM –, 2011). The present levels of Cd 

intake of most European adult populations are far below the limit recommended by the Joint 

FAO/WHO Expert Committee on Food Additives (JECFA), below of PTWI, and below those of 

many populations worldwide as well as those of some European subgroups such as children and 

vegetarians (EFSA, 2011).  

Primary chronic exposure sources of Cd for the general population include food and tobacco 

smoking. Cd intake via food is a function of the Cd concentrations in the food and the amount 

consumed. Often it is not the food with the highest Cd levels, but foods that are consumed in larger 

quantities that have the greatest impact on Cd dietary exposure. The highest concentrations of Cd (10 - 

100 ppm) are found in offals as well as in some species of fish, mussels and oysters, especially when 

caught in polluted seas. Consumption of staple foods such as rice and wheat also significantly 

contributes to human exposure. The amounts of Cd ingested daily with food in most countries are in 

the range of 10 to 20 μg per day. The broad food categories of grains and grain products (26.9%), 

vegetables and vegetable products (16.0%) and starchy roots and tubers (13.2%) were identified as 

major contributors (UNEP, 2008; FAO/WHO, 2010; EFSA, 2012). Moreover, in the industry, Cd is 

hazardous both by inhalation and ingestion and can cause acute and chronic intoxications.  

Once absorbed, Cd irreversibly accumulates in the body and concentrates in the liver and even 

more in the kidneys, which can contain up to 50% of the total body burden of Cd in general 

population, but causes damages also to the skeletal system. Only a very low amount of Cd (0.005 - 

0.01%) is eliminated via the urine (Bernard, 1986, 2004, 2008; Kobayashi et al., 2002; Bhattacharyya, 

2009). The first well documented case of Cd poisoning occurred in the Jinzu River basin of the Toyama 
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Prefecture in Japan since 1910s, but generally recognized since 1950s. The locals named that disease 

“itai-itai byō” characterized by softening of the bones and kidneys failure. It was established that the Cd 

poisoning derived from Cd released into rivers by mining companies and then accumulated in rice 

grains (Kobayashi et al., 2002, 2009). 

 

STRATEGIES FOR REDUCING CADMIUM ACCUMULATION IN PLANTS 

Although nowadays the emissions of Cd in the environment are decreasing due to legislation and 

technological improvements, it is still important to reduce the accumulation of Cd in the edible plant 

organs which would be better achieved combining soil management practices and genetic approach 

(Grant et al., 2008). Concerning soil management, a number of strategies are available to reduce Cd 

contamination, like liming (Bolan et al., 2003; Holm et al., 2003), the application of organic matter 

(Grant et al., 1999) or the addition of Zn to soil, which is particularly well-expressed under conditions 

of Zn deficiency (Oliver et al., 1994; Choudhary et al., 1995). The water management is another factor 

deeply affecting Cd availability in soil: in rice cultivation, for instance, flooded conditions are desirable 

in order to reduce Cd accumulation in the grain (Cattani et al., 2008). Other techniques could include 

soil dressing, electronic thermodynamic remediation and on-site soil washing/clean up (Mulligan et al., 

2001; Murakami et al., 2007; Makino et al., 2008). Anyway, interventions on soil are neither always 

feasible nor cost-effective, thus do not solve the problem of Cd accumulation in plants grown 

especially on low contaminated soils.  

More promising seems the plant breeding to select for genetically low-Cd concentration 

cultivars, as it is happening for rice taking advantage from the broad variability in the Cd accumulation 

trait observed in japonica (low-Cd accumulating) and indica (high-Cd accumulating) cultivars, as well as in 

hybrids (Morishita et al., 1987; Arao and Ae, 2003; Arao and Ishikawa, 2006; Liu et al., 2007; Ishikawa et 

al., 2011). However, the genetic control of Cd accumulation remains poorly understood, even if in the 

recent years some progresses in this direction have been made. Two major QTL controlling Cd 

accumulation in rice have been identified on the short arm of chromosome 7: OsHMA3, responsible 

for Cd vacuolar sequestration and then functioning as a “firewall” to limit Cd translocation (Ueno et al., 

2009b, 2010; Ishikawa et al., 2010), and OsNRAMP5, the major transporter responsible for Mn and Cd 

uptake in rice (Ishikawa et al., 2012; Sasaki et al., 2012). These findings constitute the preliminary step to 

include low-Cd trait in the selection breeding strategy for the release of varieties able to exclude Cd 

from the grains. The high genetic variability both in different species and in different cultivars within 

the same species can be also exploited for phytoextraction purpose.  

Phytoextraction, a cost-effective and environmentally friendly green technology, utilizes the 

capacity of hyperaccumulator plants to extract heavy metals from soil. It has been proposed also for 

restore soil characterized by low level of Cd contamination (Krämer, 2005; McGrath et al., 2006). 
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Nevertheless, field trials or commercial operations that demonstrate successful phytoremediation of 

metals have been just few so far (Robinson et al., 2006; Maxted et al., 2007). However, among the Cd 

hyperaccumulators, S. nigrum L., Populus spp., Salix ‘calodendron’, Arabis paniculata and Salix spp. (Wei et 

al., 2005; French et al., 2006; Maxted et al., 2007; Yang et al., 2014), have been found to be valuable 

candidates for field conditions due to their potentially high biomass, which, along with accumulation 

capacity and growth rate are the main determinants of phytoextraction process (Salt et al., 1998).  

 

 

P1B-TYPE ATPase, A CLASS OF TRANSPORTERS WITH A MAJOR ROLE 

IN TRACE ELEMENTS MOVEMENT THROUGH THE PLANT  

BIOLOGY, STRUCTURE AND MECHANISM OF THE P-TYPE ATPases 

P-type pumps are a large, ubiquitous and varied family of membrane proteins that are involved in many 

transport processes in virtually all living organisms. Basically, P-type pumps use ATP to maintain an ion 

gradient across a cell membrane. In general, P-type ATPase genes are more widespread and varied in 

eukaryotes than in bacteria and archea. In Saccharomyces cerevisiae 16 P-type ATPases have been found 

(Goffeau, 1998), whereas in Arabidopsis thaliana 46 transporters belonging to this class have been 

identified, pointing out their importance in vascular plants (Baxter et al., 2003). All P-type ATPases are 

multi-domain membrane proteins with molecular masses of 70-150 kDa. Both the carboxyl and amino 

termini are on the cytoplasmic side of the membrane, so they all have an even number of 

transmembrane segments. Based on sequence homology, the P-type ATPase family can be divided into 

five branches, which are referred to as types 1 to 5 (Kühlbrandt, 2004).  

 

P1B-TYPE ATPases 

Particularly interesting for trace elements transport is the type-1B ATPases subgroup. P1B-ATPases, also 

known as Heavy Metal Associated (HMA) ATPases, transport heavy metals (Cu+, Cu2+, Zn2+, Co2+) 

across biological membranes (Lutsenko and Kaplan, 1995; Solioz and Vulpe, 1996; Axelsen and 

Palmgren, 1998; Rensing et al., 1999; Argüello, 2003; Williams and Mills, 2005). Due to the chemical 

similarities among transition metals, these pumps can aspecifically transport alternative non-

physiological substrates; for instance, Cu+-ATPases transport Ag+ while Zn2+-ATPases can transport 

Cd2+ and Pb2+, causing toxicity effects to the organisms (Argüello et al., 2007). Members of this class 

are, for instance, the bacterial metal-resistance proteins CopA (Rensing et al., 2000), ZntA (Okkeri and 

Haltia, 1999) and CadA (Rosen, 2002) which remove toxic ions such as Cu+, Ag+, Zn2+, Cd2+ or Pb2+ 

from the cell. The activity of these transporters is crucial to maintain the homeostasis of trace elements, 

such as Cu+ and Zn2+ by balancing the activity of the ABC-type metal-uptake proteins (Nelson, 1999; 
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Rosen, 2002). Close homologs of bacterial P1B-type ATPases have been found in S. cerevisiae (Goffeau, 

1998), plants (Axelsen and Palmgren, 1998) and animals (Lutsenko and Petris, 2003).  

 

MEMBRANE TOPOLOGY 

When compared to other P-ATPases, P1B-ATPases have a distinct structure which is characterized by a 

reduced number (six to eight) of transmembrane segments (TM), smaller ATP-binding domain (ATP-

BD) and the presence of N- and/or C- terminal metal binding domains (MBD) in many of them. P1B-

ATPases also present a particular distribution of TMs with respect to the large cytoplasmic loop 

forming the ATP-BD, having two TMs on the C-terminal end of the ATP-BD (Fig. 1). However, in 

spite of the indicated differences, a common pattern is present among these metal ATPases, which is 

the presence of large cytoplasmic loops. These central components appear to confer their basic 

functionality to these enzymes, i.e. the ability to transport metals using the energy resulting from ATP 

hydrolysis.  

The transmembrane metal binding sites (TM-MBS) of P1B-ATPases are responsible for metal 

recognition and movement across the membrane permeability barrier. Analysis of the available 

genomes reveals the presence of a CPC sequence in the center of their sixth transmembrane domain 

(H6), or some alternative sequences (SPC, CPS, CPT, CPA, CPG, CPD) in putative P1B-ATPases. This 

CPx or xPC motif appeared as a defining element of these enzymes that likely takes part in metal 

coordination during transport (Argüello et al., 2007). Enzyme phosphorylation by ATP, subsequent 

turnover and transport, require metal binding to the TM-MBS and this is independent of metal binding 

from the N- and C-MBDs (Voskoboinik et al., 1999; Bal et al., 2001; Mitra and Sharma, 2001; Fan and 

Rosen, 2002; Mana-Capelli et al., 2003; Mandal and Argüello, 2003). Metals activate P1B-ATPases with 

apparent affinities (K1/2) in the 0.1 - 3 µM range but, since most of these assays have been performed in 

the presence of various metal ligands (e.g. DTT, Cys and ATP), these K1/2 values do not refer to free 

metal concentrations but to the total metal in the media (Okkeri and Haltia, 1999; Voskoboinik et al., 

1999; Sharma et al., 2000; Fan and Rosen, 2002; Mandal et al., 2002; Tsivkovskii et al., 2002; Mana-

Capelli et al., 2003; Eren and Argüello, 2004). Considering the low dissociation constants for the soluble 

metal complexes (metal-thiolate, metal-chaperone, metal-ATP) (Martell and Smith, 2004), it can be 

proposed that these complexes deliver the metal directly to the TM-MBS, perhaps by a kinetically 

controlled ligand exchange. The question remains whether this is a plausible in vivo mechanism of metal 

delivery to the TM-MBS.  

The large cytoplasmic loop between transmembrane domains H6 and H7 of P1B-ATPases, 

referred to as ATP-binding domain (ATP-BD), encompasses the nucleotide binding (N) and the 

phosphorylation (P) domains. The smaller loop between H4 and H5 forms the actuator (A) domain.  



    

 
23 

The ATP-BD structure generally consists of the P- and N-domain joined by two short loops (the hinge 

region) (Sazinsky et al., 2006). The P-domain contains the DKTGT sequence as well as a number of 

residues conserved in all P-ATPases that interact with the ATP γ-phosphate during binding and 

hydrolysis, including the aspartic acid phosphorylated during the catalytic cycle (Sørensen et al., 2004). 

The N-domain contains the ATP-binding pocket, pointing out toward the cytosol near the P-domain 

and might be associated with various roles still to be clarified, including alternative regulatory 

mechanisms and required targeting. This and the P-domain together form the so-called 

phosphorylation site (Olesen et al., 2007).  

In the A-domain has been found the highly conserved sequence (S/T)GE(P/S) and, in the 

Ca2+-ATPase, the interactions of this segment with the P-domain during enzyme 

phosphorylation/dephosphorylation appears critical since it drives the rotation of the A-domain with a 

subsequent rearrangement of TMs (Toyoshima and Nomura, 2002; Olesen et al., 2004; Toyoshima and 

Inesi, 2004; Toyoshima et al., 2004). This rearrangement, in turn, leads to metal deocclusion and release. 

Although the different disposition of TMs across the P1B-ATPase class might require different 

transmembrane movements, the structural similarities suggest an equivalent mechanism for metal 

release. 

Most P1B-ATPases have various types of cytoplasmic metal binding domains (MBD) located 

either in the N-term (N-MBD) or C-term (C-MBD). The N-MBDs observed in Cu+-ATPases and 

some bacterial Zn2+-ATPases are 60-70 amino acids domains and contain a highly conserved CxxC 

metal binding sequence (Rensing et al., 1999; Arnesano et al., 2002; Lutsenko et al., 2003). In vitro, these 

N-MBDs can bind both monovalent and divalent cations including Cu+, Cu2+, Zn2+ and Cd2+ 

(DiDonato et al., 1997; Lutsenko et al., 1997; Jensen et al., 1999; Liu et al., 2005). Moreover, plant Zn2+-

ATPases possess N-MBDs with a unique conserved CCxxE sequence (Eren et al., 2007). Although the 

N-MBD is required for maximum enzyme turnover rate, it would not influence the metal binding to 

the TM-MBS and the resulting transport selectivity. In other words, it might not be essential for the 

transport of the metal but plays an important role in the post-translational regulation of the enzyme, 

maybe controlling the conformational changes the transporter goes through during the catalytic cycle, 

determining the phosphorylation/dephosphorylation processes that are the rate limiting step of the 

transport mechanism (Eren et al., 2007). Plant Zn2+-ATPases also present long C-term containing 

numerous His and Cys. These can have various lengths and generally present two different patterns: 

numerous Cys but no (or few) His residues (e.g. AtHMA3) or, alternatively, His- and Cys-rich C-MBD 

(e.g. AtHMA2 and AtHMA4) (Argüello et al., 2007). As observed for the N-term, also the C-term plays 

a role in metal coordination due to the functional groups contained in its sequence; so, probably the C-

term is required for the maximum turnover rate but it does not affect the interaction of metals with the 

transport sites, as already postulated for N-MBDs (Eren et al., 2006).  
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CATALYTIC MECHANISM 

P1B-ATPases, like all P-ATPases, transport metals across biological membranes following the classical 

E1/E2 Albers-Post catalytic cycle (Fig. 2), well studied especially in P2-ATPases (Na+/K+-, Ca2+-, and 

H+/K+-ATPases) (MacLennan et al., 1997; Kaplan, 2002). In simple terms, in the E1 state, the metal 

ion (M) binds to its high-affinity site in the TM-MBD, which is accessible from the cytoplasm. The ion 

binding itself causes the P-domain to move into the E1 conformation. As a result, the key Asp residue 

within the P-domain can be phosphorylated by Mg2+-ATP, which is delivered to the phosphorylation 

site by the N-domain. In the E1P state, the Asp is phosphorylated, and is able to transfer the 

phosphoryl group back to ADP. In the rate-limiting E1P to E2P transition, the P-domain reorientates 

from its E1 to its E2 position, while the A-domain rotates to get in contact with the phosphorylation 

site, apparently protecting the phosphoryl group against hydrolysis, and ADP dissociates. The A-

domain rotation seems also involved in the shutting off the cytoplasmic ion-access channel, preventing 

the binding of additional metal ions. The P-domain movement then disrupts the high-affinity metal 

binding site (TM-MBS) so the ion is released to the outside (extracellular/lumenal side) through an exit 

channel. The TM-MBS is now available to bind a proton (H+) from the outside with high affinity. The 

hydrolysis of the phosphorylated Asp results in the E2 state. Mg2+ and inorganic phosphate (Pi) 

dissociate so the enzyme reverts to the E1 state, in which H+ is released into the cell, and another cycle 

can begin (Kühlbrandt, 2004).  

Because of their central role in cellular metabolism, the mechanism of action of P-ATPases 

needs to be tightly controlled on a short enough timescale to respond to cellular and external stimuli as 

well as to stress signals. Regulation is achieved at several different levels. P1B-ATPases are regulated by 

domains that are situated within to the main chain of the enzyme. Moreover, plants have been found to 

have N- or C-terminal binding regulatory domains (Eren et al., 2006; Eren et al., 2007; Wong et al., 2009; 

Mills et al., 2010). 

Transport experiments clearly indicated that P1B-ATPases drive metal efflux from the 

cytoplasmic compartment to the outside (Rensing et al., 1997; Voskoboinik et al., 1998; Fan and Rosen, 

2002; Mana-Capelli et al., 2003; Eren and Argüello, 2004). However, due to experimental difficulties to 

obtain highly active everted vesicles or, alternatively, conditions to stabilize the metal occluded within 

the binding site (E1P state), for most P1B-type ATPases the correct stoichiometry of the transport has 

not been established yet. Liu and coworkers (2006) provided evidence of the binding of 1 Zn2+ ion per 

ATPase to the TM-MBS of E. coli ZntA in the absence of other substrates. Even though it could be 

argued whether the metal binding site of the TM-MBS was fully occupied, this study is of great interest 

as it is the first analyzing isolated metal binding to the TM-MBS.  
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DISTRIBUTION AND PHYSIOLOGICAL ROLES 

Unlike other P-ATPases subfamilies, P1B-ATPases are present in all life kingdoms. P1B-ATPases were 

first identified and partially characterized in bacteria, in which they maintain metal homeostasis, 

particularly those of Cu and Zn (Argüello et al., 2007). This has been demonstrated by gene knockout 

studies that resulted in sensitivity of bacteria to high concentrations of metals (Odermatt et al., 1993; 

Phung et al., 1994; Rensing et al., 1997, 2000; Rutherford et al., 1999; Tottey et al., 2001). Along with 

these studies, complementation assays enabled an initial insight on the substrate specificity of P1B-type 

ATPases. As mentioned above, functional and biochemical assays showed that P1B-ATPases can also 

transport non-physiological substrates (Tab. 1).  

The extremophile Archaeoglobus fulgidus has two P1B-type ATPases, CopA and CopB, that 

transport Cu+ and Cu+2 respectively, suggesting the presence of a fine tuning Cu homeostasis 

depending on redox conditions (Mandal et al., 2002; Mana-Capelli et al., 2003). In humans there are two 

genes (ATP7A and ATP7B) encoding Cu+-ATPases: mutations in these genes lead to Menkes 

syndrome and Wilson disease respectively, which are associated with genetic Cu transport disorders 

(Bull et al., 1993; Vulpe et al., 1993; Bull and Cox, 1994; Lutsenko et al., 2003). Studies on these proteins 

have considerably contributed to the understanding of P1B-ATPase functions.  

Plants significantly differ from other organisms both in number and selectivity of their P1B-type 

ATPases; higher plant have more P1B-ATPases than other organisms (Williams and Mills, 2005). From 

evolution studies and phylogenetic analysis it emerged that higher plants evolved with a relatively high 

number of P1B-ATPases in their genomes (Baxter et al., 2003) and it is possible to suppose that 

gradually there has been a diversification of functions so that some P1B-ATPases that first have a simple 

role in expelling metals in excess from the cell, then turned out to be involved in xylem loading of 

micronutrients for long-distance transport (Williams and Mills, 2005). So far, several studies have been 

conducted in the model plant Arabidopsis that have led to a classification of these transporters. Eight 

genes have been found in the dicot Arabidopsis (AtHMA1 to AtHMA5, AtHMA6/PAA1, 

AtHMA7/RAN1 and AtHMA8/PAA2). In the last few years the attention has also been extended to 

P1B-ATPases of monocots: nine genes have been found in rice (O. sativa) (OsHMA1 to OsHMA9) and 

ten in barley (H. vulgare) (HvHMA1 to HvHMA10). Even though rice genome has been sequenced 

since 2002 (Goff et al., 2002; Yu et al., 2002), poor functional information are still available on P1B-type 

ATPases of rice. A dendrogram showing the relationships between P1B-ATPase in Arabidopsis and rice 

is reported in fig. 3. A previous comparison between P1B-type ATPases of these two model species was 

performed by Baxter and collaborators (2003). More recently, Williams and Mills (2005) analyzed the 

P1B-ATPases of Arabidopsis, rice, barley and two algae species. In all dendrograms six clusters can be 

clearly identified. This means that the common ancestor of monocots and dicots was likely to have six 

P1B-type ATPases. This is also proved by the high degree of conservation in intron number and 
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position observed in Arabidopsis and rice P1B-ATPases within the same cluster but not between 

different clusters, as well as in the type of putative metal binding domains and their location. From 

functional studies, mainly conducted on Arabidopsis, and the comparison of sequences from 

Arabidopsis and rice, it is possible to divide these pumps into two big groups based on the metal 

specificity: Cu/Ag ATPases (clusters 3-6) and Zn/Cd/Co/Pb ATPases (clusters 1-2) (Williams and 

Mills, 2005). Finally, in Tab. 1 is summarized the current knowledge on P1B-type ATPases of 

Arabidopsis and rice, following the six clusters in which they are divided. 

 

 

THE POSITRON-EMITTING TRACER IMAGING SYSTEM (PETIS) FOR 

STUDYING THE SYSTEMIC MOVEMENT OF TRACE ELEMENTS 

Since last decades, new opportunities for studying biology have been opened up by radionuclide 

imaging technologies. In particular, significant advancements in the positron emission tomography 

(PET) technique have been done and now is possible to obtain images of molecular dynamics for 

quantitating physiological functions noninvasively in clinical and animal studies (Kawachi et al., 2011a). 

However, the conventional radionuclide counting and imaging tools used in plant science (i.e. Geiger-

Müller counter, NaI(Tl) scintillation detectors and autoradiography) are invasive and require calibration 

by statistical analysis over a large number of test plants. In addition, in many cases real-time detection 

apparatuses have a limited field of view (FOV), making them inadequate for studying the most 

important agricultural theme (Kawachi et al., 2011b). A new imaging system has been developed in 

recent years by Uchida and coworkers (2004), the positron-emitting tracer imaging system (PETIS), 

which is equipped with planar-type imaging apparatus. Most of the higher plants studied in laboratory 

experiments are thin and small; therefore, 2-D planar images are sufficient for studying them. 

Radioisotopes tracers, like 11C, 13N, 15O, 52Fe, 52Mn, 62Zn, 64Cu, and 107Cd, can be produced by a 

cyclotron (Arakawa et al., 1995; Ishioka et al., 1999; Watanabe et al., 2001, 2009) or can be now bought 

directly as commercial products (e.g. 65Zn and 22Na), depending on their half-life. At the moment, 

PETIS is one of the most powerful tools for conducting real-time imaging in vivo on intact plants for 

studying, for instance, uptake and translocation of mineral nutrients (macro- and micronutrients) 

(Kiyomiya et al., 2001b; Ohtake et al., 2001; Suzuki et al., 2006, 2008; Tsukamoto et al., 2006; Kawachi et 

al., 2008; Suwa et al., 2008; Ishii et al., 2009; Kawachi et al., 2011a, 2011b; Yoneyama et al., 2011) and 

non-essential elements (e.g. Cd) (Fujimaki et al., 2010; Ishikawa et al., 2011; Hu et al., 2013; Nakamura et 

al., 2013; Yoshihara et al., 2014). Moreover, it is also possible to gain information about the distribution 

and translocation of water (Kiyomiya et al., 2001a) and photoassimilates (Matsuhashi et al., 2005; 

Kawachi et al., 2006a, 2006b).  
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YEAST AS A MODEL SYSTEM TO STUDY METAL IONS TRANSPORT: 

HETEROLOGOUS PLANT GENE EXPRESSION 

Analysis of gene function is of central importance for the understanding of physiological processes. In 

1978, the development of yeast transformation provided a new way to isolate eukaryotic genes (Hinnen 

et al., 1978) and, since then, functional expression has been frequently used to prove the function of 

genes or to isolate new genes and has contributed a lot to the functional analysis of the gene products 

(Romanos et al., 1992; Frommer and Ninnemann, 1995). Since 1986, yeast cells have been used as 

functional expression systems for membrane proteins of bacterial and animal origin. For plant genes, 

yeast has become the preferred expression system. This technique can be especially valuable for the 

analysis of plant functions for which no mutants are available and for which no screening scheme or 

phenotype is predictable. This approach has been most powerful in identifying genes that are otherwise 

difficult to define, such as integral membrane proteins. The major breakthrough in transport physiology 

was the isolation of carrier genes involved in the uptake and distribution of specific nutrients. The 

expression assay also allows the analysis of structure-function relationships (Frommer and Ninnemann, 

1995). 

Heterologous expression systems are based on the assumption that the basic principles of 

protein expression and function are similar in all organisms. The sequences of most eukaryotic proteins 

are well conserved (Botstein and Fink, 1988). Eukaryotic organisms share many principles of cell 

compartmentation, intracellular transport, and regulation, such as vesicular trafficking along the 

secretory pathway (Bednarek and Raikhel, 1992; Bennett and Scheller, 1993). Nevertheless, important 

differences exist between fungal, plant, and animal cells in terms of presence and composition of cell 

walls, and the presence of specialized organelles such as plastids and vacuoles. Regarding energization 

of secondary active transport processes at the plasma membrane, plants are similar to yeast cells 

because they both use proton gradients. Multicellular organisms, however, have many properties for 

which no equivalent exists in unicellular organisms, such as intercellular communication across cell 

walls and through signals transferred in the vascular system in plants (Frommer and Ninnemann, 1995). 

Heterologous systems can be used if the respective function is lacking in the host. Examples of 

plant transporters functionally expressed in yeast are reported below. The plasma membrane A. thaliana 

H+-ATPase AHA2 partially complemented the S. cerevisiae ATPase pma1 mutation. The protein was 

functional, but a large proportion was trapped in the endoplasmic reticulum (ER). Removal of the C-

terminal domain of AHA2 led to increased targeting to the plasma membrane and fully complemented 

pma1. The same yeast mutant was used to compare the biochemical properties of three known major 

H+-ATPase isoforms (Palmgren and Christensen, 1994). Other ATPase proteins have been 

characterized by complementation of the ccc2 mutant of yeast. In particular, Brassica napus RAN1 
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(Southron et al., 2004), Arabidopsis AtHMA5 (Kobayashi et al., 2008) and rice OsHMA5 (Deng et al., 

2013) have been identified as Cu-transporting proteins using drop test analysis. 

Other membrane proteins not localized on the plasma membrane have also been functionally 

expressed in yeast. HMA3 P1B-type ATPase of Arabidopsis (Gravot et al., 2004) and rice (Ueno et al., 

2010), which are localized on the tonoplast, have been functionally characterized also by expression in 

wild type (wt) and/or mutant strain (ycf1) of S. cerevisiae, which is more sensitive to Cd than the wt. 

Another P1B-ATPase well characterized using both wt and mutant strains, including ycf1, is the plasma 

membrane-localized rice HMA2. In particular, wt and/or ycf1 mutant strains have been used to 

functional characterize OsHMA2 for Cd transport (Nocito et al., 2011; Satoh-Nagasawa et al., 2012; 

Yamaji et al., 2013). Moreover, zrc1 (Satoh-Nagasawa et al., 2012; Takahashi et al., 2012) and zrt1zrt2 

(Yamaji et al., 2013) mutant strains have been transformed in order to prove that OsHMA2 is also able 

to transport Zn. In particular, zrc1 mutant is sensitive to high Zn concentrations (Kamizono et al., 1989; 

MacDiarmid et al., 2000); conversely, zrt1zrt2 results sensitive to low Zn concentrations (Regalla and 

Lyons, 2006). All the cited studies used yeast drop tests to functional characterize these proteins. 

However, controversial results have been sometimes obtained. Yamaji and coworkers (2013), for 

instance, obtained opposite results from those previously reported by Nocito et al. (2011) and Satoh-

Nagasawa and coworkers (2012). In particular, they supposed OsHMA2 as an influx transporter instead 

of an efflux transporter of Zn and Cd, as hypothesized by the other research groups. A similar case is 

that of AtHMA4: expression of AtHMA4 in yeast resulted in hypersensitivity to excess Zn and Cd in 

one study (Bækgaard et al., 2010), but resulted in increased tolerance to excess Zn and Cd in others 

(Papoyan and Kochian, 2004; Mills et al., 2005; Verret et al., 2005). These inconsistencies may be 

attributed to different yeast strains, experimental conditions, expression vector, and medium 

components (Yamaji et al., 2013).  

Some decades ago, Galgiani and Stevens (1976) developed a turbidimetric technique for 

studying yeast susceptibility to antimicrobial substances. This method is reproducible, inoculums 

independent, rapid, free from subjectivity and observer variability. For what regard plant gene 

functional characterization, only sometimes yeasts have been grown in liquid culture and growth rates 

of different transformants have been compared (Ramesh et al., 2003; Gravot et al., 2004; Nocito et al., 

2011; Li et al., 2014). Finally, only in few studies (Clemens et al., 1999; Li et al., 2014) the yeast growth 

has been expressed in relation to different metal (Cd or Al) concentrations. In addition, Li and 

collaborators (2014) reported the growth of the different transformants as a ‘relative growth’, which is 

independent from the inoculums and the growth rate.  

 

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=B%26%23x000e6%3Bkgaard%20L%5Bauth%5D
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FIGURES AND TABLES 

 

Figure 1. Schematic illustration of the topology and main domains present in P1B-ATPases. 

 

 

 

Transmembrane segments, H1 to H8, are indicated. The relative locations of the cytoplasmic actuator (A), phosphorylation 

(P) and nucleotide (N) domains are shown, as well as the ATP binding domain (ATP-BD). The conserved amino acids in 

H6, H7 and H8 form the transmembrane metal binding sites (TM-MBS); the N- and C-terminal metal binding domains 

(MBDs) are also reported (adapted from Argüello et al., 2007). 
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Figure 2. P1B-ATPases catalytic cycle. 

 

 

 

E1, E2, E1P and E2P represent the basic conformations that the enzyme can assume. Mn+ represents a metal transported by 

these enzymes; n indicates the uncertainty on the specific stoichiometry of transport. Mn+
cyt and Mn+

out represent the 

cytoplasmic or extracellular/luminal localization of the transported metal (adapted from Kühlbrandt, 2004; Argüello et al., 

2007).  
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Figure 3. Dendrogram showing families of P1B-ATPases in Arabidopsis and rice. 

 

 

 

The dendrogram was constructed using ClustalW (http://clustalw.ddbj.nig.ac.jp/). Accession numbers for Arabidopsis 

thaliana (UniProtKB) are: AtHMA1, Q9M3H5; AtHMA2, Q9SZW4; AtHMA3, P0CW78 (Q9SZW5); AtHMA4, O64474; 

AtHMA5, Q9SH30; AtHMA6, Q9SZC9 (Q3E9R8); AtHMA7, Q9S7J8; AtHMA8, B9DFX7. Accession numbers for Oryza 

sativa (Rice Genome Annotation Project, GenBank or PlantsT) are: OsHMA1, LOC_Os06g47550; OsHMA2, PlantsT 

64490; OsHMA2v, which is OsHMA2 of the cultivar Volano, GenBank HQ646362; OsHMA3, LOC_Os07g12900; 

OsHMA4, LOC_Os02g10290; OsHMA5, LOC_Os04g46940; OsHMA6, LOC_Os02g07630; OsHMA7, 

LOC_Os08g37950; OsHMA8, LOC_Os03g08070; OsHMA9, LOC_Os06g45500. In brackets the accession numbers for 

AtHMA3 and AtHMA6 used by Nocito and coworkers and out of brackets the new accession numbers for AtHMA3 and 

AtHMA6 (adapted from Nocito et al., 2011).  
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 Table1. Summary of distribution and metal specificity of Arabidopsis (A. thaliana) and rice (O. sativa) P1B-ATPases and the relative references. 

Sub-group Cluster Protein Tissue expression 
Cellular 

localization 
Metal specificity References 

Zn/Cd/Pb/Co 

1 

AtHMA1 Roots, shoots, flowers 
Chloroplast 

envelope 
Ca2+, Zn2+, Cu+, 

Cd2+, Co2+ 
Seigneurin-Berny et al., 2006; Moreno et al., 2008; Kim et al., 2009; Boutigny et 
al., 2014 

OsHMA1 
Roots, shoots, flowers, 

seeds 
Chloroplast 

envelope 
Zn2+ Williams and Mills, 2005; Suzuki et al., 2012 

2 

AtHMA2 
Vasculature of roots 

and shoots 
Plasma membrane Zn2+, Cd2+ 

Eren and Argüello, 2004; Hussain et al., 2004; Eren et al., 2006; Eren et al., 
2007; Wong and Cobbett, 2009; Wong et al., 2009 

AtHMA4 
Vasculature of roots 

and shoots 
Plasma membrane Zn2+, Cd2+, Pb2+ 

Mills et al., 2003, 2005; Hussain et al., 2004; Verret et al., 2004, 2005; Papoyan 
and Kochian, 2004; Wong and Cobbett, 2009 

OsHMA2 
Vasculature of roots 

and shoots 
Plasma membrane Zn2+, Cd2+ 

Nocito et al., 2011; Satoh-Nagasawa et al., 2012; Takahashi et al., 2012; Satoh-
Nagasawa et al., 2013; Yamaji et al., 2013 

AtHMA3 Roots, leaves Vacuole 
Cd2+, Pb2+, Zn2+, 

Co2+ 
Gravot et al., 2004; Morel et al., 2009; Chao et al., 2012 

OsHMA3 Roots, shoots Vacuole Cd2+ 
Ueno et al., 2010; Miyadate et al., 2011; Ueno et al., 2011; Satoh-Nagasawa et 
al., 2013 

Cu/Ag 

3 

AtHMA5 Roots, flowers ? Cu+ Andrés-Colás et al., 2006; Kobayashi et al., 2008 

OsHMA4  ? ?  

OsHMA5 
Vasculature of roots 

and shoots 
Plasma membrane Cu+ Deng et al., 2013 

4 

AtHMA7 ? 
Post-Golgi 

compartment 
Cu+ Hirayama et al., 1999; Woeste and Kieber, 2000; Binder et al., 2010 

OsHMA6 ? ? ?  

OsHMA9 
Vasculature of roots 

and shoots 
Plasma membrane 

Zn2+, Cd2+, Pb2+, 
Cu2+ 

Lee et al., 2007 

5 

AtHMA6 Roots, shoots 
Chloroplast 

envelope 
Cu2+ Shikanai et al., 2003; Abdel-Ghany et al., 2005 

OsHMA7 ?  ?  

6 

AtHMA8 Shoots 
Thylakoid 
membrane 

Cu2+ Abdel-Ghany et al., 2005 

OsHMA8 ?  ?  
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It has been reported that Cd, a non-essential and toxic metal, is taken up from soil and translocated in a 

root-to-shoot direction through transporters of essential elements such as Zn, suggesting that the two 

metal ions may compete for the same transporter protein on a membrane. However, the movement of 

Zn and Cd ions across several biological membranes involves a wide range of transport systems, each 

characterized by a specific selectivity. Although divergent results have been obtained, they suggest that 

Zn-independent pathways for Cd translocation in plants could be possible.  

The proteins belonging to the HMA (Heavy-Metal ATPases) family have been partially 

characterized as the main actors of the process of translocation of trace elements (essential or non-

essential) to all organs of the plant. In particular, OsHMA2 is the main transport system so far 

described in rice as involved in the xylem loading of Zn and Cd, even though both its activity and 

function has not been unambiguously characterized. Moreover, it has been shown that root-to-shoot 

Cd translocation via the xylem is the major and common physiological process determining Cd 

accumulation in shoots and grains of rice plants.  

The research carried out in this PhD project took place in this context. Indeed, the general 

purpose was studying the main mechanisms involved in the systemic distribution of some trace 

elements in rice plants. In particular the activity was aimed at better understanding the Zn and Cd 

translocation pathways, and was focused on studying the possible competition between Zn and Cd 

mainly for the root-to-shoot translocation, since these processes have been seen to be crucial in 

determining Cd accumulation in the shoots.  

Specifically, the aims of this study were: (i) to investigate the effects of the possible competition 

between Zn and Cd on their chelation and subcellular compartmentalization at the root level, thus in 

reducing the amount of the two metals potentially mobile through the plant. This was done using 

physiological techniques aimed at isolating and quantifying thiol based Zn- and/or Cd-binding 

complexes; (ii) to investigate the potential inhibitory effect exerted by Zn on Cd translocation in 

unstressed rice plants, performing a short-term positron-emitting tracer imaging system (PETIS) 

experiment using 107Cd as tracer; (iii) to identify genes encoding transporters involved in a putative Zn-

insensitive Cd xylem loading, thus responsible for a possible Zn-independent Cd translocation pathway, 

by performing bioinformatic analysis. Our attention focused on the P1B-type ATPase family in order to 

search for orthologs of the genes codifying the transporters that in the model plant Arabidopsis were 

found to mediate the xylem loading of Cd; (iv) to functional characterize the transporters encoded by 

the abovementioned genes by heterologous expression in Saccharomyces cerevisiae.  
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MATERIALS AND METHODS 
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PLANT MATERIAL, GROWTH CONDITIONS AND SAMPLING 

Rice (Oryza sativa L. spp. japonica cv. Roma) caryopses were placed on filter paper saturated with distilled 

water and incubated in the dark at 26 °C. Seven days later, seedlings were transplanted into 5 L plastic 

tanks (eight seedlings per tank) containing the following complete nutrient solution (pre-growing 

solution): 1.5 mM KNO3, 1 mM Ca(NO3)2, 500 μM MgSO4, 250 μM NH4H2PO4, 30 μM Na2O3Si, 25 

μM Fe-tartrate, 46 μM H3BO3, 9 μM MnCl2, 1 μM ZnCl2, 0.3 μM CuCl2, 0.1 μM (NH4)6Mo7O24 (pH 

6.5). Seedlings were kept for a 12-day-pre-growing period in a growth chamber maintained at 26 °C and 

80% relative humidity during the 16-h light period and at 22 °C and 70% relative humidity during the 

8-h dark period. Photosynthetic photon flux density was 400 μmol m-2 s-1. At the end of the pre-

growing period, plants were differentially exposed for a 10-day period to different concentrations of Zn 

(0.1, 1 and 10 μM), in the absence or presence of a steady amount of Cd (0.1 μM), or to different 

concentrations of Cd (0.01, 0.1 and 1 μM), in the presence of a steady amount of Zn (1 μM), by 

supplementing the pre-growing solution with different amounts of ZnCl2 and/or CdCl2. All hydroponic 

solutions were renewed daily to minimize nutrient depletion.  

Plants were harvested and roots were washed for 10 min in ice-cold 5 mM CaCl2 solution to 

displace extracellular Cd (Rauser, 1987), rinsed in distilled water and gently blotted with paper towels. 

Shoots were separated from roots and the tissues were frozen in liquid N2 and stored at -80 °C, or 

analyzed immediately. 

For PETIS (positron-emitting tracer imaging system) experiments, rice (O. sativa L. spp. japonica 

cv. Nipponbare) caryopses placed on plastic mesh floated on distilled water and incubated in the dark 

at 25 °C. Seven days later, seedlings were pre-grown in a one-quarter-strength Kimura B nutrient 

solution for 7 days and then grown in a full-strength Kimura B nutrient solution for another 7-day 

period. The Kimura B nutrient solution consisted of 700 μM (NH4)2SO4, 470 μM MgSO4, 370 μM 

CaCl2, 270 μM K2SO4, 170 μM Na2HPO4, 11 mg L−1 Fe-citrate, 15 μM H3BO3, 4.6 μM MnSO4, 0.16 

μM CuSO4, 0.15 μM ZnSO4, 0.10 μM Na2MoO4 (pH 5.5). Plants were kept in a growth chamber 

maintained at 30 °C and 65% relative humidity during the 16-h light period and at 25 °C and 65% 

relative humidity during the 8-h dark period. Photosynthetic photon flux density was 400 μmol m-2 s-1. 

 

DETERMINATION OF Zn AND Cd IN ROOTS AND SHOOTS 

Samples of 200 mg fresh weight (FW) were mineralized at 120 °C in 5 mL 14.4 M HNO3, clarified with 

1.5 mL 33% (w:v) H2O2 and finally dried at 80 °C. The mineralized material was dissolved in 5 mL 0.1 

M HNO3 and filtered on a 0.45 μm nylon membrane. Zn and Cd content was measured by inductively 

coupled plasma mass spectrometry (ICP-MS; Bruker Aurora M90 ICP-MS). 
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ANALYSIS OF ROOT-TO-SHOOT Zn AND Cd TRANSLOCATION 

At the end of the exposure period, shoots were cut at 2 cm above the roots with a microtome blade. 

Xylem sap exuded from the lower cut surface was collected for 45 min and stored into 1.5 mL plastic 

vial. The amount of collected sap was determined by weighing and the concentration of Zn and Cd was 

measured by ICP-MS. 

 

DETERMINATION OF NON-PROTEIN THIOLS  

Roots were pulverized using mortar and pestle in liquid N2 and stored frozen in a cryogenic tank. For 

total non-protein thiol (NPT) content, 400 mg of root powders were extracted in 600 μL of 1 M 

NaOH and 1 mg mL-1
 NaBH4, and the homogenate was centrifuged for 10 min at 13 000 g and 4 °C. 

Four hundred microliters of supernatant was collected, 66 μL of 37% HCl was added and then 

centrifuged again for 10 min at 13 000 g and 4 °C. For the quantification, volumes of 200 μL of the 

supernatant were collected and mixed with 800 μL of 1 M K-Pi buffer (pH 7.5) containing or not 0.6 

mM Ellman’s reagent {[5,5’-dithiobis(2-nitrobenzoic acid); DTNB]}. The samples’ absorbances at 412 

nm were then spectrophotometrically measured. 

 

Zn AND Cd FRACTIONING IN RICE ROOTS 

Metal fractioning was carried out essentially as described by Rauser and Meuwly (1995). Briefly, frozen 

root tissues (2 g FW) were pulverized in a cold mortar with a pestle and then homogenized with ice-

cold N2-purged 100 mM Tris-HCl (pH 8.6), 1 mM phenylmethanesulfonyl fluoride (PMSF) and 1% 

(v:v) Tween 20 at the ratio of 1 mL of buffer to 1 g tissue FW. The homogenate was centrifuged at 4 

°C and 48 000 g for 6 min, the supernatant (extract 1) was collected and frozen immediately in liquid 

N2, and the pellet was resuspended in a volume of N2-purged 10 mM Tris-HCl (pH 8.6) and 1% (v:v) 

Tween 20, previously used to rinse the mortar kept on ice. The suspension was centrifuged again, and 

the supernatant (extract 2) was collected and added to the extract 1 for freezing. Resuspension and 

centrifugation of the homogenized tissue debris was repeated four more times to collect extracts 3-6. 

At the end of this sequence, the pellet was suspended in a volume of ice-cold 100 mM HCl, centrifuged 

at 4 °C and 48 000 g for 6 min and the supernatant (extract 7) was retained. This sequence was repeated 

two more times to obtain extracts 8 and 9. The exhausted pellet was transferred to a glass tube, 

mineralized at 120 °C in 10 mL 14.4 M HNO3, clarified with 3 mL 33% (w:v) H2O2 and finally dried at 

80 °C. The mineralized material was dissolved in 5 mL 0.1 M HNO3 and filtered on a 0.45 μm nylon 

membrane. 

Extracts 1 to 6 were resolved into two fractions, referred to as anionic and cationic, by anion-

exchange chromatography. Buffer extract was loaded, at 20 mL h-1, onto a 0.5 x 2 cm column of 

diethylaminoethyl cellulose (DEAE) Sephadex A-25 (GE Healthcare, Uppsala, Sweden) equilibrated 
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with 10 mM Tris-HCl (pH 8.6). After loading, the column was washed with 50 mL of equilibrating 

buffer to remove unadsorbed solutes. All the fluid passing through the anion-exchanger was collected 

for Zn and Cd analysis (cationic fraction). Anionic material was eluted with 6 mL of 10 mM Hepes (pH 

8.0) and 1 M KCl. Five milliliters of the anionic fraction so obtained was further resolved by gel 

filtration on a Sephadex G-50 column (0.8 x 130 cm) equilibrated with 10 mM Hepes (pH 8.0) and 300 

mM KCl. The column was developed in equilibrating buffer at 12.5 mL h-1
 at 4 °C. The absorbance at 

254 nm was recorded and fractions of about 5 mL were collected for Zn, Cd and NPT analysis. The 

column was calibrated by using 5 mL of 0.25% (w:v) Blue dextran 2000 and 1% (w:v) K3Fe(CN)6 to 

estimate void (V0) and total volume (Vt), respectively. The partition coefficient, Kav, was calculated 

using the following equation: Kav = (Ve - V0)/(Vt - V0), where Ve was the elution volume. For NPT 

determination, selected fractions from gel filtration were pooled in a glass tube, lyophilized, and finally 

analyzed as above described. The amount of Zn and Cd ions in mineralized pellets, extracts and 

column effluents was measured by ICP-MS. 

 

107Cd TRACER 

107Cd was produced as described by Fujimaki et al. (2010). Briefly, a silver foil was bombarded for 2 h 

with a 17 MeV energetic proton beam at a current of 5 μA from a cyclotron at Takasaki Ion 

Accelerators for Advanced Radiation Application, Japan Atomic Energy Agency. The irradiated 

material was dissolved in HNO3, and then diluted in warm water. Silver was precipitated by adding to 

the solution a 0 to 2 M gradient of HCl. Supernatant, containing 107Cd was filtered, dried and dissolved 

in water. Aliquots of 107Cd (6.7 MBq) were added to 12.2 mL of the culture solutions [0.5 mM CaCl2, 

0.1 μM nonradioactive CdCl2, different concentrations (0.1, 1, 10 μM) of ZnSO4] used for the 

experiments. 

 

PETIS IMAGING 

Rice plants were transferred into appropriate 120 x 14 x 10 mm plastic vessels, containing 12 mL of 

full-strength Kimura B nutrient solution. Before starting the experiments, plants were acclimatized for 

1 h in aerated 0.5 mM CaCl2 solutions. In a typical experiment, 6 vessels – each containing one plant – 

were placed in the mid-plane between two opposing detector heads of the PETIS apparatus (a 

modified type of PPIS-4800; Hamamatsu Photonics, Japan). Detectors were focused on the plants in 

order to observe the culture solutions, the whole root apparatus, the shoot bases, and the proximal 

portions of the shoots, in a 12 x 19 cm field of view (FOV). The entire setup was installed in a growth 

chamber maintained at 30 °C and 65% relative humidity in continuous light at the density of 400 μmol 

m-2 s-1. 
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PETIS experiments were started by injecting the 107Cd marked culture solutions in the different 

plastic vessels. All the solutions were continuously stirred with gentle aeration in order to maintain an 

uniform composition. The surface level of the solution in the vessels was maintained by supplying fresh 

0.5 mM CaCl2 solutions with an appropriate solution supply system. Images of the 107Cd distribution in 

the FOV were obtained every one minute for 24 h. The data of serial images obtained from the PETIS 

apparatus were analyzed for 107Cd distribution in specific regions of interest (ROIs; background, culture 

solution, distal roots, proximal roots, shoot base, and proximal shoot) using NIH ImageJ 1.45s 

software (Schneider et al. 2012). ROIs were manually selected on the image data and the time-activity 

curves (time-courses of signal intensity in the ROIs) were generated and used to estimate the dynamics 

of Cd in the culture solution, whole root apparatus, shoot base, and proximal shoot, as described by 

Yoshihara et al. (2014). 

 

AUTORADIOGRAPHY 

At the end of the PETIS experiments, plants were dissected, fixed on paper sheets with adhesive tape, 

and then placed in contact with imaging plates (BAS-MS2040, GE Healthcare, Japan) in cassettes for 3 

days. The imaging plates were scanned using a Bio Imaging Analyzer (Typhoon FLA 7000, GE 

Healthcare, Japan) to generate the autoradiographic images of 109Cd in the plants. In fact, 109Cd with a 

longer half-life (461 days) than 107Cd (6.5 h) was also obtained at a minor ratio (approximately 1:3000) 

in the production process of 107Cd. 

 

CLONING OF OsHMA2, OsHMA4 AND OsHMA5 cDNA 

Total RNA was extracted from rice roots using TRIzol Reagent (Life Technologies) and first-strand 

cDNA synthesis was carried out using SuperScript III first-strand synthesis system for reverse 

transcription polymerase chain reaction (RT-PCR) (Life Technologies), according to the manufacturer’s 

instructions. The entire coding sequence of the heavy metal P1B-ATPase 2 (OsHMA2), 4 (OsHMA4) 

and 5 (OsHMA5) was amplified by PCR using the first-strand cDNA, Pfu DNA polymerase (Promega) 

and the following couples of primers: 

 

Gene Fwd Primer Sequence (5’ → 3’) Rev Primer Sequence (5’ → 3’) 

OsHMA2 AAAAAGGATCCTAAATAATGGCGGCGGAGGGAGGG AAAAAGGATCCCTACTCCACTACGATCTCAGG 

OsHMA4 AAAAATAAATAATGGAGCAGAATGGAGAGAA AAAAATCACACCAAATCCGGGTCAT 

OsHMA5 AAAAAGGATCCTAAATAATGGCGGCGAGCACTCGAGC AAAAAGGATCCTCAACGGCCCAGTTTTGGGCT 

 

The primers were designed according to OsHMA2 sequence in PlantsT database (PlantsT 64490) and 

to OsHMA4 and OsHMA5 sequences in the MSU Rice Genome Annotation Project Database and 
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Resource (OsHMA4 - LOC_Os02g10290; OsHMA5 - LOC_Os04g46940). The forward primers 

included a consensus sequence for yeast translation initiation (underlined) before the ATG codon 

(bold) (Cigan and Donahue, 1987; Donahue and Cigan, 1988; Hamilton et al., 1987). The EcoRI-ended 

OsHMA4 cDNA was cloned into the EcoRI site of the yeast (Saccharomyces cerevisiae) expression vector 

pESC-URA and pESC-TRP (Stratagene) under the control of GAL10 promoter, while the BamHI-

ended OsHMA2 and OsHMA5 cDNAs were cloned into the BamHI site of the yeast expression vector 

pESC-URA and pESC-TRP (only OsHMA5) under the control of GAL1 promoter. The identity of the 

PCR products was verified by sequencing both the strands. 

 

OsHMA2, OsHMA4 AND OsHMA5 FUNCTIONAL CHARACTERIZATION IN YEAST 

The yeast strain INVSc1 (MATa his3D1 leu2 trp1-289 ura3-52) was transformed with the chimeric 

OsHMA2-pESC-URA, OsHMA4-pESC-URA, OsHMA5-pESC-URA or the empty pESC-URA vector 

by the standard lithium acetate method (Gietz et al., 1992; Yeast Protocols Handbook, Clontech). 

URA3 recombinant yeast cells were selected on solid synthetic minimal medium (SD) containing 2% 

(w:v) Glc, 6.7 g L-1 yeast nitrogen base without amino acids and 1.92 g L-1 yeast synthetic dropout media 

without uracil (Sigma) and then plated both on fresh solid SD and SG media. The SG medium differed 

from the SD one for the presence of 2% (w:v) Gal instead of Glc.  

The standard lithium acetate method (Gietz et al., 1992) was also used to transform the yeast 

mutant strain ZHY3 (zrt1zrt2) (MATα ade6 can1 his3 leu2 trp1 ura3 zrt1::LEU2 zrt2::HIS3) (Zhao and 

Eide, 1996), sensitive to low Zn concentrations, with the chimeric OsHMA4-pESC-TRP, OsHMA5-

pESC-TRP or the empty pESC-TRP vector. TRP1 recombinant yeast cells were selected on solid 

synthetic minimal medium (SD) containing 2% (w:v) Glc, 6.7 g L-1 yeast nitrogen base without amino 

acids and 1.92 g L-1 yeast synthetic dropout media without tryptophan (Sigma) and then plated both on 

fresh solid SD and SG media. The SG medium differed from the SD one for the presence of 2% (w:v) 

Gal instead of Glc.  

Moreover, during previous studies, the yeast strain INVSc1 was transformed with the empty 

pYES2.1 expression vector or the chimeric OsHMA2-pYES2.1, OsHMA4-pYES2.1, OsHMA5-

pYES2.1 obtained cloning the full length coding sequences of the genes into the expression vector 

pYES2.1/V5-His-TOPO (pYES2.1, Life Technologies) under the control of GAL1 promoter.  

For the drop test analyzing the Cd tolerance, URA3 recombinant cells of the yeast strain 

INVSc1 were grown to approximately 1 A600 unit in the liquid SD medium, washed twice with sterile 

distilled water and then resuspended in water to final 0.01, 0.1 and 1, or 0.5, 0.05 and 0.005 A600 units. 

Ten microliters of each cell suspension was dropped on SG media, in order to induce gene expression, 

containing or not different concentration of Cd2+ (from 10 to 200 μM), supplemented as CdCl2. Yeast 

cells were incubated at 28 °C for 3 or 5 days and analyzed for Cd tolerance. 



    

 
41 

For the drop test analyzing the Cd tolerance, URA3 recombinant cells of the yeast strain 

INVSc1 were grown to approximately 1 A600 unit in the liquid SD medium, washed twice with sterile 

distilled water and then resuspended in water to final 0.01, 0.1 and 1, or 0.5, 0.05 and 0.005 A600 units. 

Ten microliters of each cell suspension was dropped on SG media, in order to induce gene expression, 

containing or not different concentration of Cd2+ (from 10 to 200 μM), supplemented as CdCl2. Yeast 

cells were incubated at 28 °C for 3 or 5 days and analyzed for Cd tolerance. 

In addition, OsHMA4 and OsHMA5 were also tested for the Zn transport using a yeast mutant 

strain ZHY3 defective for Zn uptake. TRP1 recombinant cells were grown to approximately 1 A600 unit 

in the liquid SD medium, washed twice with sterile distilled water and then resuspended in water to 

final 0.01, 0.1 and 1 A600 units. Ten microliters of each cell suspension was dropped on SG media, in 

order to induce gene expression, supplemented or not with 0.2 mM ZnCl2 and 0.2 mM EDTA 

(2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid) that chelates Zn creating a Zn-limiting condition. 

Yeast cells were incubated at 28 °C for 3 days and analyzed for Zn transport. 

For the growth analysis, recombinant yeast cells of the strain INVSc1 carrying the chimeric 

OsHMA2-pESC-URA, OsHMA4-pESC-URA, OsHMA5-pESC-URA or the empty pESC-URA vector 

were grown – in liquid SD or SG, under continuous shaking (150 rpm), at 28°C – up to reach a mid-log 

phase. Yeast cells were then resuspended to a final absorbance of 0.05 A600 unit in fresh liquid SD or 

SG media and finally grown under the same condition for 6 (SD) or 27 (SG) h. For the growth 

inhibition analysis, yeast cells expressing OsHMA2, OsHMA4, OsHMA5 or harboring the empty 

pESC-URA vector were resuspended to a final absorbance of 0.01 A600 in fresh liquid SG media 

containing or not different excesses of Zn2+ (from 1.5 to 16.5 mM) or Cd2+ (from 15 to 165 μM), 

supplemented as ZnCl2 or CdCl2 respectively, and then grown for 48 h, under continuous shaking (150 

rpm), at 28°C.  

Yeast growth was monitored by measuring the optical density at 600 nm. The duplication times 

of the yeast cells were calculated by fitting the equation A600(t) = A600(t0) e
kt to the experimental data. 

The percentage of growth inhibition was calculated with respect to the growth of the yeast cells in the 

absence of any excess of Zn or Cd and data were fitted with a four parameter sigmoid curve using 

SigmaPlot for Windows version 11.0 (Systat Software, Inc., Chicago, IL, USA). 

 

STATISTICAL ANALYSIS 

Statistical analysis was carried out using SigmaPlot for Windows version 11.0 (Systat Software, Inc., 

Chicago, IL, USA). Quantitative values are presented as mean ± standard error of the mean (SE). 

Significance values were adjusted for multiple comparisons using the Bonferroni correction. Statistical 

significance was at P < 0.05. Student’s t-test was used to assess the significance of the observed 
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differences between plants exposed or not to Cd in each Zn exposure condition analyzed. Statistical 

significance was at P ≤ 0.001. 
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FIGURES AND TABLES 

 

Figure 1. The setup of the PETIS imaging apparatus. 

 

 

 

A panoramic view of the setup of the PETIS imaging apparatus; plants were set at the centre of two detector heads 

(indicated with red arrows) with LED lighting, reservoir tank and a bubbling pump (backside). 
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SECTION I 

A zinc independent pathway for root-to-shoot cadmium translocation  

RESULTS AND DISCUSSION 
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RESULTS 

 

To better characterize the possible interactions between Cd and Zn translocation pathways we 

performed two set of experiments: in the first, rice plants were hydroponically grown and differentially 

exposed for a 10-day period to increasing Zn external concentrations (from 0.1 to 10 μM), in the 

absence or presence of a steady amount of Cd (0.1 μM), whilst, in the second, plants were exposed for 

10 days to different Cd concentrations (from 0 to 1 μM) in the presence of a steady amount of Zn (1 

μM). In all the experiments changes in metal concentrations did not produce either significant effects 

on the growth of both roots and shoots, or any apparent symptoms of stress (data not shown): at the 

end of the exposure period, root and shoot dry weights of a single plant were 0.128 ± 0.004 g and 0.588 

± 0.023 g, respectively. 

 

Zn AND Cd PARTITIONING BETWEEN ROOT AND SHOOT 

Results of the first experiment indicated that, in the absence of any Cd sources, Zn concentration in 

roots and shoots significantly increased as Zn availability in the external medium did. A similar trend 

was observed in the presence of a steady amount of Cd (0.1 μM); however, in this condition, Zn 

concentration in the shoots was lowered by the presence of Cd, whilst in the roots it was not 

significantly affected by the presence of the interfering metal (Fig. 1a,b). Finally, Cd accumulation in 

shoots and roots was significantly affected moving the external Zn concentration from 0.1 to 1 μM. 

Interestingly, a further increase in Zn availability in the medium - up to reach 10 μM - did not produced 

any additional decrease in Cd accumulation (Fig. 1c,d). 

In the second experiment, the concentration of Zn in the shoots significantly decreased as Cd 

availability in the external medium increased, whilst Zn accumulation in the roots did not seem 

significantly affected by Cd availability (Fig. 1e,f). Under the same conditions a steady increase in Cd 

accumulation was observed in both shoots and roots moving the external Cd concentration from 0.01 

to 1 μM (Fig. 1g,h). 

  

ANALYSIS OF ROOT-TO-SHOOT TRANSLOCATION OF Zn AND Cd 

Dynamics of root-to-shoot translocation of Zn and Cd were examined by measuring their 

concentrations in the xylem sap of rice plants exposed to the different combinations of the metals. In 

these experiments, translocation was estimated as the amount of Zn and Cd ions loaded and 

transported in the xylem sap for 45 min. 

 The amount of Zn ions transported in the xylem sap linearly increased as Zn concentration in 

the external medium did, both in the absence and in the presence of 0.1 μM Cd2+ (Fig. 2a). As expected 

the presence of a steady amount of Cd (0.1 μM) slightly decreased Zn translocation in all the conditions 
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analyzed (Fig. 2a). In the same experiment Cd translocation was significantly inhibited moving the 

external Zn concentration from 0.1 to 1 μM, and then resulted not affected following a further increase 

in Zn availability (Fig. 2b). On the other hand, enhancing Cd concentration in the external medium 

progressively reduced Zn translocation (Fig. 2c) and induced significant increases in the amount of Cd 

ions transported in the xylem sap (Fig. 2d). In the latter case, the translocation isotherm of Cd started 

to approach saturation at 0.1 μM. 

In both the experimental setup, Zn and Cd translocation was linearly related to the total amount 

of Zn and Cd ions accumulated in the shoots over the 10-day period (Fig. 3). 

 

EFFECT OF Zn AND Cd EXPOSURE ON NON-PROTEIN THIOL BIOSYNTHESIS 

Since activation of thiol metabolism may potentially allow a greater proportion of Zn and Cd to be 

retained in roots through vacuolar sequestration, we measured the levels of non-protein thiols (NPTs) 

in roots of plants exposed to the different combination of the two metals. The NPT levels of the roots 

increased as the Zn concentration in the external medium did, either in the absence or in the presence 

of 0.1 μM Cd2+. Interestingly, the levels of NPTs measured for each Zn exposure condition were 

significantly enhanced by the concomitant presence of Cd in the media (Fig. 4a). Finally, the NPT levels 

of the roots significantly increased as the external Cd concentration did (Fig.4b). 

  

FRACTIONING OF Zn AND Cd IN RICE ROOTS 

Fractioning of Zn and Cd retained by roots was carried out using a sequential extraction procedure 

with buffer and acid (Rauser and Meuwly, 1995; Nocito et al., 2011). Table 1 and 2 summarize results 

obtained in representative experiments where the sum of Zn and/or Cd ions recovered in the different 

fractions accounts for at least 97% of the total Zn and/or Cd content of the roots. Following 

extraction, three main metal-ion fractions were obtained: i) buffer soluble (extracts 1-6); ii) acid soluble 

(extracts 7-9); iii) ash (non-soluble Zn and/or Cd). Extracts 1 to 6 were further resolved into two 

fractions, named anionic and cationic, by anion-exchange chromatography.  

The procedure we used for metal ion fractioning allowed to discriminate Zn and Cd ions 

potentially mobile (cationic) from those retained in complexes with thiol-peptides or other soluble 

molecules negatively charged in the extraction buffer (anionic), or tightly adsorbed to cellular matrices 

or apoplast components (acid soluble and ash). So, the last three fractions should be considered not 

available for root-to-shoot translocation (Nocito et al., 2011). An integrated analysis of data in which 

the total amount of each metal ions retained by roots is divided into two fractions – named mobile 

(cationic, i.e. potentially available for root-to-shoot translocation) and non-mobile (anionic + acid 

soluble + ash) – according to Nocito et al. (2011) is reported in Figure 5. Results indicated that both 

mobile and non-mobile fractions of Zn were linearly related to the Zn concentration in the external 
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medium, either in the absence or in the presence of Cd (Fig. 5a); however, the presence of a steady 

amount of Cd in the medium significantly enhanced the concentration of Zn ions in the mobile 

fractions because of the contraction in the amount of the metal in the non-mobile fractions. In these 

last conditions, increases in Zn external concentration decreased Cd content in the roots but did not 

produce any significant effect on the amount of Cd in the mobile fraction (Fig. 5b). On the other hand, 

increases in Cd external concentration significantly enhanced the amount of Zn and Cd ions measured 

in the mobile fractions (Fig. 5c,d). 

Finally, the anionic buffer-soluble fractions were further resolved by gel filtration on a Sephadex 

G-50 column into peaks I, II and III (Fig. 6). Zn/Cd ions into peak I at the void volume of the column 

(V0) were ascribed to non-specific adsorption of the metal ions to proteins. Peaks II and III – centred 

between V0 and Vt of the column – were designated as the classical HMW thiol based Cd-binding 

complexes and LMW thiol based Zn- and/or Cd-binding complexes, respectively, since the amount of 

NPTs recovered in these fractions accounted for 22 (1 μM Zn2+, 0 μM Cd2+) to 89% (1 μM Zn2+, 1 μM 

Cd2+) of the total GSH equivalents measured in the roots; no thiols were found in peaks II and III of 

the anionic buffer-soluble fraction obtained from roots of plants grown under 0.1 μM Zn2+ in the 

absence of Cd2+ (data not shown). Neither Zn nor Cd ions were found at total volume (Vt) of the 

column (Kav = 1). Peaks II (HMW) were centred around Kav = 0.44 for Cd, whilst peaks III (LMW) 

were centred around Kav = 0.58 and Kav = 0.62, for Zn and Cd, respectively. Data analysis revealed that 

rice roots sequestered Zn and Cd differently. In all cases Zn appeared in LMW complexes. In the 

absence of any source of Cd LMW Zn-binding complexes significantly increased as the Zn external 

concentration did (Fig. 6a,b,c). Interestingly, the concomitant presence of Cd in the external medium 

significantly enhanced the amount of Zn ions found in LMW complexes. Moreover, the amount of Cd 

ions in LMW complexes remained constant in all the Zn conditions analyzed, differently from that 

found in HMW complexes, which instead decreased as Zn external concentration increased (Fig. 

6e,f,g). On the other hand, LMW and HMW Cd-binding complexes appeared in a dynamic equilibrium 

depending on Cd external concentrations, as indicated by the ratio between the amount of Cd ions 

retained in each complex, which deeply changed moving toward the highest Cd external concentration, 

in the presence of a steady amount of Zn (Tab. 3, 4). Finally, in the same conditions, the amount of Zn 

found in LMW complexes significantly increased as Cd external concentration did (Fig. 6b,d,f,h). 

 

KINETIC ANALYSIS OF 107Cd SYSTEMIC MOVEMENT 

The systemic movement of Cd in the whole plant was further analyzed using 107Cd in short-term (24 h) 

PETIS experiments. Figures 7a shows the field of view of a typical experiment and the regions of 

interest (ROIs) used to estimate the dynamics of Cd in the plants. In particular, six ROIs (background, 

culture solution, distal roots, proximal roots, shoot base, and proximal shoot) were set for each plant. 
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The experiments were started by applying to the roots fresh marked (107Cd; 0.55 MBq mL-1) culture 

solutions containing 0.5 mM CaCl2, 0.1 μM CdCl2, and different concentrations of Zn2+ (0.1, 1, and 10 

μM). 107Cd absorption by roots was immediately observed after injection as clearly showed by the 

comparison of figure 7b with 7c. In all the conditions analyzed, the amount of Cd in the roots 

increased over the time reaching a common maximum plateau value at about 11 h for both plants 

exposed to 0.1 and 1 μM Zn2+, and about 16 h for plants exposed to 10 μM Zn2+. Concerning the 

shoots (Fig. 7d), 107Cd signals appeared in the lower parts of the stems (shoot bases; Fig. 8) within 1 h 

from the injections and then linearly increased at least up to 10 h. Considering the initial slope of each 

curve (from 0 to 10 h) we estimated that the rate of Cd translocation was significantly higher in plants 

exposed to 0.1 μM Zn2+ (0.0126 ± 0.0003 nmol h-1) with respect to those exposed to 1 or 10 μM Zn2+, 

for which the estimated rate of Cd translocation was similar (0.0078 ± 0.0002 nmol h-1 or 0.0075 ± 

0.0004 nmol h-1, respectively). Similar results were obtained in a second independent analysis (Fig. 9). 

 

 

DISCUSSION 

 

It has been reported that Cd accumulation in plants can be inhibited by increasing the level of Zn in the 

soil. Such an observation could be mainly due to an effect of Zn on biological processes involved in Cd 

uptake and translocation, since it is unlikely to suppose this effect as the result of soil chemical 

processes (Basta and Tabatabai, 1992). In fact, the addition of Zn to the soil should increase the 

bioavailability of free Cd ions resulting in greater Cd uptake and accumulation in the plants. Several 

studies have shown that Zn and Cd ions may compete for the same transporter protein on a 

membrane. This means that increasing the concentration of Zn will decrease the movement of Cd 

through the transporter, and vice versa. Thus, the concept of competition necessarily implies the 

existence of a reciprocal interference between the two ions, which is intrinsically associated to their 

physical characteristics and to the selectivity of the transport system we consider. However, the 

presence of scarcely selective transport systems does not necessarily imply the existence of a “strong 

reciprocity” between the systemic fluxes of Zn and Cd in the whole plant, since the movement of the 

two ions across a plethora of biological membranes may involve several and often-different transport 

systems, each characterized by a specific selectivity. Finally, the level of complexity may be further 

increased considering that the expression level of each transporter may be often modulated by the 

nutritional status of the plant and that, once inside the cells, Zn and Cd ions are subjected to complex 

equilibria, which may differentially influence their relative mobility inside the plant. Such aspects have 

important technological implications in the fields of food safety, especially in cases where the strategies 

used for containing Cd accumulation in the crops be founded on Zn fertilization. In this view, we 
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performed a complete set of competition experiments with Zn and Cd in order to analyze their 

possible interactions and reciprocal effects at the translocation level using rice plants grown in a soil-

free system.  

The main results we obtained clearly indicate the lack of a fully reciprocity considering the 

effect of Cd on Zn accumulation, and vice versa, since the accumulation of Zn in the shoots was 

significantly inhibited by Cd increases in all the analyzed conditions, whereas those of Cd was only 

partially impaired by Zn increases (Fig. 1). In fact, Cd accumulation in the shoot was reduced by 16% 

moving the external Zn concentration of one order of magnitude (from 0.1 to 1 μM), then remained 

essentially unaffected by a further increase in Zn availability, from 1 to 10 μM, indicating Cd 

accumulation in this range as a Zn-independent process. However, from this data we cannot conclude 

that the effects of Zn on shoot Cd accumulation necessarily results from mechanisms involved in root-

to-shoot Cd translocation, since Cd absorption by plants seemed affected by Zn concentration, as 

indicated by the total amount of Cd in the whole plant, whose value decreased as Zn concentration in 

the external medium increased (Fig. 1c,d). A similar consideration may be done for Zn accumulation in 

the shoot under different Cd concentrations (Fig. 1e,f). However, Zn and Cd translocation, evaluated at 

the end of the exposure period on the bases of metal concentrations in the xylem sap, resulted linearly 

related to total amount of Zn and Cd ions accumulated in the shoots over the 10-day period (Fig. 2, 3), 

suggesting the hypothesis that the differential effect produced by the two metals on Zn and Cd 

accumulation in the shoot was reasonably due to the existence of at least two translocation pathways 

with different metal selectivity. Moreover, it is also important to consider that the total amounts of Zn 

and Cd ions in the root tissues are often poor indicators of their actual availability to be loaded into the 

xylem and then translocated in a root-to-shoot direction, since, once inside the cells, Zn and Cd ions 

may be trapped into the root through selective binding sites or molecules with high affinity for the 

metals or through transfer across a membrane into an intracellular compartment (Clemens, 2006; Ueno 

et al., 2010; Nocito et al., 2011). Thus the concentration of Zn and Cd ions potentially mobile in the 

plants should result from different biochemical and physiological processes involved in metal chelation, 

compartmentalization and adsorption (Souza and Rauser, 2003; Nocito et al., 2011; Olsen and 

Palmgren, 2014).  

It has been shown that different photosynthetic organisms respond to excess of Zn and Cd ions 

by producing phytochelatins (PCs), a class of thiol compounds involved in metal chelation and vacuolar 

sequestration (Grill et al., 1987, 1988; Zenk, 1996; Tennstedt et al., 2009; García-García et al., 2014; Song 

et al., 2014), which may largely contribute to Zn and Cd root retention (Tennstedt et al., 2009; Wong 

and Cobbett, 2009). In our conditions, rising Zn or Cd exposure progressively increased, with different 

efficiency, the level of NPTs in the roots (Fig. 4). Such a finding may be reasonably ascribable to the 

activation of PC biosynthesis, as revealed by the gel filtration analysis of the anionic fractions in which 
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most of Zn and Cd ions resulted immobilized with thiol compounds in LMW and HMW complexes 

(Fig. 6; Tab. 3, 4) as previously reported in other papers (Rauser and Meuwly, 1995; Souza and Rauser, 

2003; Nocito et al., 2011). Moreover, fractioning of metals accumulated in the root also revealed that 

the three main fractions were in a dynamic equilibrium in which the increases in Zn or Cd external 

concentration, in the presence of a steady amount of Cd or Zn, respectively, resulted in changes in the 

amount of the two metal ions in each fraction (Tab. 1, 2). 

Focusing the attention on the cationic fractions (Fig. 5; Tab. 1, 2) we can make some educated 

guesses about changes in the relative mobility of Zn and Cd into the root, since, as above mentioned, 

only the metal ions belonging to these fractions have all the requisites to be considered potentially 

available for root-to-shoot translocation (Nocito et al., 2011). Increases in Zn external concentration, in 

the presence of a steady amount of Cd, did not produce significant changes in the amount of Cd ions 

in the mobile fractions but conversely increased the amount of free Zn ions in the same fractions. Such 

behaviors may be ascribable to competition phenomena between the two ions for both root absorption 

and negative charges on cellular matrices or apoplast components. In fact, the increases in Zn external 

concentration not only reduced the total amount of Cd in the root, but also displaced non-mobile Cd 

ions from cellular matrices (Fig. 5; Tab. 1, 2). On the other hand, the increases in Cd external 

concentration, in the presence of a steady amount of Zn, significantly enhanced the amount of both Zn 

and Cd ions in the mobile fractions (Fig. 5; Tab. 1, 2). Also in this case we can speculate that the 

gradual saturation of cellular matrices with Cd ions may have displaced Zn ions leading to a transient 

increase in the activity of the free Zn forms that, in turn, has been only partially counterbalanced by a 

week increase in the amount of Zn ions immobilized with thiol compounds in the LMW complexes 

(Fig. 6; Tab. 3, 4). Finally, by plotting the translocation data obtained in the two experimental setup as a 

function of the Zn/Cd or Cd/Zn concentration ratios in the mobile fractions we can easily evince that 

increases in Zn/Cd ratio did not produce fully reciprocal effects on Zn and Cd translocation, whilst 

increases in Cd/Zn ratio resulted in fully reciprocal effects (Fig. 10). Such a finding strongly confirms 

the hypothesis that Cd ions may use at least two distinct pathways to be translocated from roots to 

shoots. The first one – shared with Zn – is probably used for Zn translocation in physiological 

conditions, whilst the second one appears as a Zn-independent route that Cd may preferentially use 

when the first pathway is saturated with Zn. Moreover, the Zn-independent pathway we postulate 

seems to be also independent from Cd stress since the partial inhibitory effect exerted by Zn on Cd 

translocation was also observed in short-term PETIS experiments performed with unstressed rice 

plants (Fig. 7, 8, 9). In fact, time-course analysis of Cd systemic movement in the plants revealed that: i) 

the rate of Cd translocation was significantly reduced moving the external Zn concentration from 0.1 to 

1 μM and then remained unaffected following a further increase in Zn availability (Fig. 7d, 9d); ii) the 

rates of Cd translocation measured in the presence of different Zn external concentrations significantly 
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differed just starting from the first hour of exposure (Fig. 7d, 9d), suggesting that the hypothetical Zn-

independent pathway was constitutively expressed in rice plants. It is also noteworthy that rates of Cd 

translocation measured in the presence of 1 and 10 μM Zn2+ did not significantly differ even if the 

highest Zn concentration we tested strongly reduced the rate of Cd accumulation in the roots (Fig. 7, 

9). Such a finding clearly confirms that the gradual saturation of the Zn-dependent pathway with Zn 

may force Cd ions to move through the second pathway, suggesting that the two translocation routes 

normally compete for free Cd ions into the root. Finally, our main conclusion seems to be further 

supported by the paper of Satoh-Nagasawa et al. (2012) which showed that rice mutants defective for 

OsHMA2 – the main transport system so far described in rice as involved in Zn2+/Cd2+ translocation 

(Nocito et al., 2011; Satoh-Nagasawa et al., 2012, 2013; Takahashi et al., 2012; Yamaji et al., 2013) – had a 

residual capacity to translocate Cd to the shoots. 
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FIGURES AND TABLES 

 

Figure 1. Zn and Cd accumulation in shoot and root. 

 

 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external concentrations (from 0.1 to 10 μM), in the absence or presence of 0.1 

μM Cd2+ (a-d), or to different Cd concentrations (from 0 to 1 μM) in the presence of 1 μM Zn2+ (e-h). (a,b) Zn concentration in shoot and root in the absence (white bars) and in the 

presence (grey bars) of a steady amount of Cd. (c,d) Cd concentration in shoot and root in the presence of a steady amount of Cd. (e,f) Zn concentration in shoot and root in the 

presence of a steady amount of Zn. (g,h) Cd concentration in shoot and root in the presence of a steady amount of Zn. Bars and error bars are means and SE of three experiments run 

in triplicate (n = 9). Different letters indicate significant differences between treatments (P < 0.05). Asterisks indicate significant differences between plants exposed or not to 0.1 μM 

Cd2+ (P ≤ 0.001). ND, not detectable; DW, dry weight.  
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Figure 2. Zn and Cd translocation. 

 

 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external concentrations (from 0.1 to 10 μM), in the absence or presence of 0.1 

μM Cd2+ (a,b), or to different Cd concentrations (from 0 to 1 μM) in the presence of 1 μM Zn2+ (c,d). At the end of the exposure period, shoots were separated from roots and the 

xylem sap exuded from the cut (root side) surface were collected over a 45 min period. (a) Zn ions loaded and transported in the xylem sap in the absence (white circles) and in the 

presence (grey circles) of a steady amount of Cd. (b) Cd ions loaded and transported in the xylem sap in the presence of a steady amount of Cd. (c,d) Zn and Cd ions loaded and 

transported in the xylem sap in the presence of a steady amount of Zn. Data are means and SE of three experiments run in triplicate (n = 9). 
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Figure 3. Relationship between Zn and Cd ions loaded in the xylem sap and Zn and Cd concentration in shoots. 

 

 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external concentrations (from 0.1 to 10 μM), in the absence or presence of 0.1 

μM Cd2+ (a,b), or to different Cd concentrations (from 0 to 1 μM) in the presence of 1 μM Zn2+ (c,d). (a) Zn translocation vs Zn shoot concentration in the absence (white circles) and 

in the presence (grey circles) of a steady amount of Cd. (b) Cd translocation vs Cd shoot concentration in the presence of a steady amount of Cd. (c) Zn translocation vs Zn shoot 

concentration in the presence of a steady amount of Zn. (d) Cd translocation vs Cd shoot concentration in the presence of a steady amount of Zn. Data are means and SE of three 

experiments run in triplicate (n = 9). DW, dry weight. 
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Figure 4. Total non-protein thiols (NPTs). 

 

 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external 

concentrations (from 0.1 to 10 μM), in the absence (white bars) or presence (grey bars) of 0.1 μM Cd2+ (a), or to different 

Cd concentrations (from 0 to 1 μM) in the presence of 1 μM Zn2+ (b). NPT levels are expressed as GSH equivalents. Bars 

and error bars are means and SE of three experiments run in triplicate (n = 9). Different letters indicate significant 

differences between treatments (P < 0.05). Asterisks indicate significant differences between plants exposed or not to 0.1 

μM Cd2+ (P ≤ 0.001). DW, dry weight. 
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Table 1. Fractioning of Zn ions retained in root. 

 

Metal concentration  Zn content 

Zn Cd  Buffer soluble (1-6)  Acid soluble (7-9)  Ash  Total 

   Anionic Cationic       

μM  nmol g-1 DW 

0.1 0  42.05 ± 1.39 (a) 143.03 ± 3.86 (a)  240.95 ± 7.71 (a)  51.78 ± 1.91 (a)  477.81 ± 14.88 (a) 

1 0  60.00 ± 1.56 (a) 420.00 ± 14.70 (a)  746.00 ± 22.38 (a)  121.00 ± 4.60 (a)  1347.00 ± 43.24 (b) 

10 0  384.04 ± 13.44 (b) 3136.82 ± 128.61 (b)  13634.40 ± 545.38 (b)  618.49 ± 25.36 (b)  17773.74 ± 712.78 (c) 

           

0.1 0.1  45.37 ± 1.72 (a) 206.02 ± 6.59 (a)  200.67 ± 7.22 (a)  46.79 ± 1.50 (a)  498.85 ± 17.04 (a) 

1 0.1  110.00 ± 3.85 (b) 632.25 ± 22.13 (a)  475.01 ± 19.95 (a)  92.21 ± 3.13 (a)  1309.46 ± 49.06 (b) 

10 0.1  534.96 ± 21.93 (c) 4541.08 ± 177.10 (b)  11546.99 ± 288.67 (b)  587.44 ± 25.26 (b)  17210.47 ± 512.97 (c) 

           

1 0  60.00 ± 1.56 (a) 420.00 ± 14.70 (a)  746.00 ± 22.38 (a)  121.00 ± 4.60 (a)  1347.00 ± 43.24 (a) 

1 0.01  95.59 ± 2.87 (b) 486.91 ± 17.04 (a)  620.59 ± 21.10 (b)  113.54 ± 3.29 (a)  1316.63 ± 44.30 (a) 

1 0.1  110.00 ± 3.85 (b) 632.25 ± 22.13 (b)  475.01 ± 19.95 (c)  92.21 ± 3.13 (b)  1309.46 ± 49.06 (a) 

1 1  145.12 ± 4.50 (c) 696.00 ± 24.36 (b)  364.00 ± 10.56 (d)  82.03 ± 3.12 (b)  1287.16 ± 42.53 (a) 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external concentrations (from 0.1 to 10 μM), in the absence or presence of 0.1 

μM Cd2+, or to different Cd concentrations (from 0 to 1 μM) in the presence of 1 μM Zn2+. Zn retained by root was extracted with buffer and acid using the sequential procedure 

described in Materials and Methods section. Data are means and SE of three experiments, each performed with eight plants (n = 3). Different letters indicate significant differences 

between treatments (P < 0.05). 
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Table 2. Fractioning of Cd ions retained in root. 

 

Metal concentration  Cd content 

Zn Cd  Buffer soluble (1-6)  Acid soluble (7-9)  Ash  Total 

   Anionic Cationic       

μM  nmol g-1 DW 

0.1 0.1  140.10 ± 5.04 (a) 81.66 ± 2.61 (a)  608.83 ± 21.31 (a)  149.79 ± 5.69 (a)  980.36 ± 34.66 (a) 

1 0.1  84.57 ± 3.55 (b) 83.00 ± 2.82 (a)  444.00 ± 14.21 (b)  84.00 ± 2.94 (b)  695.57 ± 23.52 (b) 

10 0.1  72.76 ± 1.82 (b) 82.00 ± 3.53 (a)  397.07 ± 15.88 (b)  83.03 ± 3.40 (b)  634.86 ± 24.63 (b) 

           

1 0  ND ND  ND  ND  ND 

1 0.01  5.85 ± 0.20 (a) 11.056 ± 0.32 (a)  62.79 ± 2.20 (a)  11.99 ± 0.36 (a)  91.69 ± 3.08 (a) 

1 0.1  84.57 ± 3.55 (b) 83.00 ± 2.82 (b)  444.00 ± 14.21 (b)  84.00 ± 2.94 (b)  695.57 ± 23.52 (b) 

1 1  624.33 ± 18.11 (c) 349.49 ± 13.28 (c)  3442.60 ± 92.95 (c)  845.28 ± 26.20 (c)  5261.71 ± 150.54 (c) 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external concentrations (from 0.1 to 10 μM) in the  presence of 0.1 μM Cd2+, or 

to different Cd concentrations (from 0 to 1 μM) in the presence of 1 μM Zn2+. Cd retained by root was extracted with buffer and acid using the sequential procedure described in 

Materials and methods section. Data are means and SE of three experiments, each performed with eight plants (n = 3). Different letters indicate significant differences between 

treatments (P < 0.05). 
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Figure 5. Partitioning of Zn and Cd ions between potentially mobile and non-mobile fractions. 

 

 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external concentrations (from 0.1 to 10 μM), in the absence or presence of 0.1 

μM Cd2+ (a,b), or to different Cd concentrations (from 0 to 1 μM) in the presence of 1 μM Zn2+ (c,d). (a) Total (square), mobile (triangle) and non-mobile (circle) Zn in the absence 

(white symbols) and  in the presence (grey symbols) of a steady amount of Cd. (b) Total (square), mobile (triangle) and non-mobile (circle) Cd in the presence of a steady amount of Cd. 

(c) Total (square), mobile (triangle) and non-mobile (circle) Zn in the presence of a steady amount of Zn. (d) Total (square), mobile (triangle) and non-mobile (circle) Cd in the presence 

of a steady amount of Zn. Non-mobile (anionic + acid soluble + ash) metal ion fractions are calculated using data reported in Tab. 1 and 2. Data are means and SE of three 

experiments, each performed with eight plants (n = 3). DW, dry weight. 
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Figure 6. Zn- and Cd-binding complexes resolved by gel filtration chromatography. 

 

 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external concentrations (from 0.1 to 10 μM), in the absence (a,b,c) or presence of 

0.1 μM Cd2+ (e,f,g), or to different Cd concentrations (from 0 to 1 μM) in the presence of 1 μM Zn2+ (b,d,f,h). The anionic fraction from buffer extracts 1-6 was chromatographed on a 

Sephadex G-50 column. Zn and Cd eluted were measured by ICP-MS. Void and total volume peaks are centred at Kav = 0 and Kav = 1, respectively. Peaks I, II and III are highlighted 

with different colors. Data are representative of one typical experiment repeated three times with similar results. 
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Table 3. Zn ions retained in the root in complexes with thiols. 

 

Metal concentration  Zn 

Zn Cd  HMW  LMW  Complexed with thiols 

μM  nmol g-1 DW 

0.1 0  ND  21.74 ± 0.70 (a)  21.74 ± 0.70 (a) 

1 0  ND  47.62 ± 1.76 (a)  47.62 ± 1.76 (a) 

10 0  ND  343.45 ± 14.42 (b)  343.45 ± 14.42 (b) 

        

0.1 0.1  ND  24.36 ± 0.83 (a)  24.36 ± 0.83 (a) 

1 0.1  ND  84.75 ± 2.97 (b)  84.75 ± 2.97 (b) 

10 0.1  ND  507.87 ± 19.61 (c)  507.87 ± 19.61 (c) 

        

1 0  ND  47.62 ± 1.76 (a)  47.62 ± 1.76 (a) 

1 0.01  ND  72.89 ± 2.70 (b)  72.89 ± 2.70 (b) 

1 0.1  ND  84.75 ± 2.97 (b)  84.75 ± 2.97 (b) 

1 1  ND  121.21 ± 4.97 (c)  121.21 ± 4.97 (c) 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external 

concentrations (from 0.1 to 10 μM), in the absence or presence of 0.1 μM Cd2+, or to different Cd concentrations (from 0 

to 1 μM) in the presence of 1 μM Zn2+. The anionic fraction from buffer extracts 1-6 was chromatographed on a Sephadex 

G-50 column. Zn eluted was measured by ICP-MS. Data are means and SE of three experiments, each performed with eight 

plants (n = 3). Different letters indicate significant differences between treatments (P < 0.05). LMW, low molecular weight 

Zn-binding complexes; HMW, high molecular weight Zn-binding complexes. ND, not detectable; DW, dry weight.  
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Table 4. Cd ions retained in the root in complexes with thiols. 

 

Metal concentration  Cd 

Zn Cd  HMW  LMW  Complexed with thiols 

μM  nmol g-1 DW 

0.1 0.1  96.89 ± 3.00 (a)  34.18 ± 1.13 (a)  131.07 ± 4.13 (a) 

1 0.1  45.78 ± 1.51 (b)  31.83 ± 1.18 (a)  77.61 ± 2.69 (b) 

10 0.1  33.82 ± 1.29 (c)  33.19 ± 1.33 (a)  67.00 ± 2.61 (b) 

        

1 0  ND  ND  ND 

1 0.01  ND  5.00 ± 0.17 (a)  5.00 ± 0.17 (a) 

1 0.1  45.78 ± 1.51 (a)  31.83 ± 1.18 (b)  77.61 ± 2.69 (b) 

1 1  473.66 ± 17.05 (b)  134.35 ± 5.24 (c)  608.01 ± 22.29 (c) 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external 

concentrations (from 0.1 to 10 μM) in the  presence of 0.1 μM Cd2+, or to different Cd concentrations (from 0 to 1 μM) in 

the presence of 1 μM Zn2+. The anionic fraction from buffer extracts 1-6 was chromatographed on a Sephadex G-50 

column. Cd eluted was measured by ICP-MS. Data are means and SE of three experiments, each performed with eight 

plants (n = 3). Different letters indicate significant differences between treatments (P < 0.05). LMW, low molecular weight 

Cd-binding complexes; HMW, high molecular weight Cd-binding complexes. ND, not detectable; DW, dry weight. 
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Figure 7. Time-course analysis of Cd systemic movement. 

 

 

 

Rice plants were differentially exposed for a 24-h period to different Zn concentrations (from 0.1 to 10 μM), in the presence 

of 0.1 μM Cd2+ enriched with 107Cd. (a) Image of rice plants used in a typical PETIS experiment. The field of view of 

PETIS is bordered by the white continuous line. ROIs used for time-course analysis are indicated with arrows in the 

adjacent panel. ROI-A, background; ROI-B, culture solution; ROI-C, distal root; ROI-D, proximal root; ROI-E, shoot base; 

ROI-F, proximal shoot. (b,c,d) Time-course analysis of Cd dynamics in the culture solution (b), whole root apparatus (c), 

and shoot base + proximal shoot (d). White circles, black triangles, and thin x refer to the experiments performed in the 

presence of 0.1 (No. 4), 1 (No. 5) and 10 μM Zn2+ (No. 6), respectively. A representative set of data from two independent 

experiments performed with two plants for each Zn exposure condition is given. 
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Figure 8. Autoradiography and time-course analysis of Cd accumulation in the shoot base. 

 

 

 

Rice plants were differentially exposed for a 24-h period to different Zn concentrations (from 0.1 to 10 μM), in the presence 

of 0.1 μM Cd2+ enriched with 107Cd. (a,c) Optical observation of plants at the end of the PETIS experiments (left) and the 

corresponding autoradiography of 109Cd after three days of exposure (right). Red triangles indicate the shoot bases. (b,d) 

Time-course analysis of Cd accumulation in the shoot bases. White circles, black triangles, and thin x refer to the 

experiments performed in the presence of 0.1, 1 and 10 μM Zn2+, respectively. Two representative set of data from two 

independent experiments performed with two plants for each Zn exposure condition are given. 
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Figure 9. Another set of time-course analysis of Cd systemic movement. 

 

 

 

Rice plants were differentially exposed for a 24-h period to different Zn concentrations (from 0.1 to 10 μM), in the presence 

of 0.1 μM Cd2+ enriched with 107Cd. (a) Image of rice plants used in a typical PETIS experiment. The field of view of 

PETIS is bordered by the white continuous line. ROIs used for time-course analysis are indicated with arrows in the 

adjacent panel. ROI-A, background; ROI-B, culture solution; ROI-C, distal root; ROI-D, proximal root; ROI-E, shoot base; 

ROI-F, proximal shoot. (b,c,d) Time-course analysis of Cd dynamics in the culture solution (b), whole root apparatus (c), 

and shoot base + proximal shoot (d). White circles, black triangles, and thin x refer to the experiments performed in the 

presence of 0.1 (No. 1), 1 (No. 2) and 10 μM Zn2+ (No. 3), respectively. A representative set of data from two independent 

experiments performed with two plants for each Zn exposure condition is given. 
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Figure 10. Analysis of metal translocation as a function of Zn and Cd concentration in the mobile fractions. 

 

 

 

Rice plants were hydroponically grown and differentially exposed for a 10-day period to increasing Zn external concentrations (from 0.1 to 10 μM), in the presence of 0.1 μM Cd2+ (a), 

or to different Cd concentrations (from 0.01 to 1 μM) in the presence of 1 μM Zn2+ (b). (a) Zn (circles) and Cd (square) translocation in plants exposed to 0.1 (white), 1 (grey) and 10 

(black) μM Zn2+, in the presence of 0.1 μM Cd2+. (b) Zn (circles) and Cd (square) translocation in plants exposed to 0.01 (white), 0.1 (grey) and 1 (black) μM Cd2+, in the presence of 1 

μM Zn2+. Data reported in figures derived from Fig. 2 and Tab. 1, 2. 
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SECTION II 

Functional characterization of OsHMA genes in yeast 

RESULTS AND DISCUSSION 
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RESULTS AND DISCUSSION 

 

Some members of the P1B-type ATPase subfamily, which present several functions in the cell, ranging 

from metal delivery to cellular compartment to detoxification processes (Williams and Mills, 2005; 

Colangelo and Guerinot, 2006), have been identified as responsible for Zn and Cd xylem loading and 

thus particularly relevant in the determination of Zn and Cd accumulation in the shoots. In particular, 

AtHMA2 and AtHMA4 were found to be responsible for root-to-shoot Zn translocation in A. thaliana 

(Hussain et al., 2004) and several reports also suggest their involvement in Cd transport (Mills et al., 

2003, 2005; Eren and Argüello, 2004; Verret et al., 2005; Wong and Cobbett, 2009; Wong et al., 2009). 

Moreover, they appeared predominantly expressed in the roots in correspondence of the vascular 

bundles and the encoded proteins localized on the plasma membrane, suggesting their function as 

efflux pumps extruding excess of metals into the apoplast (Mills et al., 2003, 2005; Hussain et al., 2004; 

Verret et al., 2005). Acknowledging the importance of such transporters in the control of Zn and Cd 

translocation, the identification of the orthologs of AtHMA2 and AtHMA4 in rice would be of great 

concern in understanding and characterizing the root-to-shoot Cd translocation pathways, also in 

relation to possible competitions with Zn. Recently, HMA2 has been suggested as responsible for Zn 

and Cd xylem loading also in rice (Nocito et al., 2011; Satoh-Nagasawa et al., 2012; Takahashi et al., 

2012), barley (Mills et al., 2012) and Triticum aestivum (Tan et al., 2013). However, the transport activity of 

OsHMA2 for Zn and Cd has been controversially described in a number of papers (Nocito et al., 2011; 

Satoh-Nagasawa et al., 2012; Takahashi et al., 2012; Yamaji et al., 2013) in which the transporter was 

indirectly studied by in heterologous expression systems (Saccharomyces cerevisiae). A careful analysis of 

published studies reveals that both activity and function of OsHMA2 has not been unambiguously 

characterized, since three independent papers described this transporter as able to mediate Zn2+ and/or 

Cd2+ efflux for xylem loading (Nocito et al., 2011; Satoh-Nagasawa et al., 2012; Takahashi et al., 2012), 

whilst Yamaji et al. (2013) proposed OsHMA2 as an influx transporter for both Cd and Zn, involved in 

the preferential distribution of the two metal ions through the phloem to the developing tissues. 

Moreover, also the OsHMA2 tissue localization seems to be a controversial issue, since Takahashi et al. 

(2012) indicated the vascular bundle of the root as the main expression domain of the transporter, 

whilst Yamaji et al. (2013) localized OsHMA2 in the root pericycle and in the phloem regions of 

vascular bundles of the uppermost node connecting to panicle and flag leaf.  

The results obtained in the first part of this work pointed out the existence of at least one 

additional Cd root-to-shoot translocation pathway that is Zn-independent and that finally contributes 

to Cd accumulation in the shoot. Thus, the specific aim of the second part of the work was to better 

characterize the transport activity and selectivity of OsHMA2 and try to find out the protein(s) 

responsible for the Zn-independent Cd translocation pathway. 
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Lee and coworkers (2007) provided a useful insight on the response to Cd exposure of some 

P1B-type ATPases, i.e. OsHMA4 up to OsHMA9. In this study, OsHMA5, OsHMA6 and OsHMA9 

were found to be upregulated by Cd both in shoots and roots, whereas OsHMA4 showed an induction 

only in roots. The in silico analysis conducted on the rice P1B-type ATPase subfamily aimed at searching 

for proteins functionally related to AtHMA2 returned that, apart from OsHMA2 and OsHMA3 that 

have already been partially characterized, OsHMA7 and OsHMA4 share the highest identity with 

AtHMA2 (21 and 20%, respectively). However, OsHMA7 did not seem involved in Cd movement 

since any response whatsoever was detected, even at high Cd concentrations (Lee et al., 2007). The 

same analysis revealed that OsHMA4 falls in the same cluster as OsHMA5, OsHMA6 and OsHMA9 

which, as mentioned earlier on, showed a clear induction upon Cd treatment. In addition, OsHMA4 is 

very close to OsHMA5 (58% of identity) (see the dendrogram adopted from Nocito et al., 2011, and 

shown in the introduction as fig. 3). Interestingly, such transporter belongs to the same cluster of 

AtHMA5 and AtHMA7, which are classified as Cu/Ag ATPases (Hirayama et al., 1999; Woeste and 

Kieber, 2000; Mandal et al., 2004; Williams and Mills, 2005; Andrés-Colás et al., 2006). According to 

these premises, OsHMA4 and OsHMA5 are likely to take part in the transport of Cd and/or Zn and 

could be good candidates to explain their xylem loading.  

Thus, in order to identify the possible Zn-insensitive pathway involved in Cd translocation the 

transport activity of OsHMA2, OsHMA4 and OsHMA5 for Zn and Cd was better characterized. In 

particular, the full length genes were amplified by RT-PCR from total RNA isolated from rice roots and 

the relative cDNAs were heterologously expressed in wild type (INVSc1) and mutant (zrt1zrt2) strains 

of S. cerevisiae. In particular, we performed drop tests and growth analysis of the yeast strains expressing 

OsHMA2, OsHMA4 and OsHMA5 under the control of the GAL1 or GAL10 promoters. 

The membrane topology prediction analysis of the three codified polypeptides performed by 

software MEMSAT3 confirmed OsHMA2 (Fig. 1), OsHMA4 (Fig. 2) and OsHMA5 (Fig. 3) as 

transporters belonging to the P1B-type ATPase family, due to the presence of: (a) eight predicted 

transmembrane domains (TMs); (b) the CPC motif in TM6; (c) the signature sequences found in all P-

type ATPases, i.e. DKTGT, GDGxNDxP and PxxK motifs, the first being particularly relevant for the 

ATPase activity since it contains the phosphorylatable aspartic residue.     

 

OsHMA2  

The amplified OsHMA2 cDNA from the cultivar Roma encodes a polypeptide of 1067 amino acids, 

with a predicted mass of 116 kDa, is identical to OsHMA2 cv. Volano (OsHMA2v, accession 

HQ646362) submitted to GenBank by Nocito and coworkers (2011). In particular, it shares 95% 

identity with the 1060 amino acid-long protein reported in PlantsT. The membrane topology prediction 

analysis (Fig. 1) also revealed signature sequences corresponding to Zn2+/Cd2+/Pb2+/Co2+ ATPases in 
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TM6 [CPC(x)4SxP], TM7 [N(x)7K] and TM8 [DxG] (Williams and Mills, 2005). Sequence analysis 

revealed OsHMA2 as a member of cluster 2 in the phylogenetic tree of the P1B-ATPase subfamily; such 

a group is thought to include all Zn2+/Cd2+/Pb2+/Co2+ ATPases (Williams and Mills, 2005). Moreover, 

OsHMA2 has a relatively short N-terminal end (89 amino acids) with significant homology to the heavy 

metal-associated domain (Pfam: PF00403), containing the variant of the core consensus domain, 

GxCCxxE (17GICCTSE23), found in the Arabidopsis HMA2, HMA3 and HMA4 Zn2+-ATPases (Eren et 

al., 2007). Finally, OsHMA2 has a relatively long C-terminal end (373 amino acids) which contains 

numerous Cys-Cys repeat sequences and His residues that may be involved in heavy metal binding.  

 

OsHMA4 AND OsHMA5 

The resulting amplicons codify a polypeptide of 978 and 1002 amino acids for OsHMA4 and OsHMA5, 

respectively. They are characterized by a predicted mass of 105 and 108 kDa. Moreover, the 

aminoacidic sequence of OsHMA4 shares 99% identity with the protein predicted for OsHMA4 cv. 

Nipponbare, while those of OsHMA5 is identical to the protein predicted for OsHMA5 cv. 

Nipponbare. The membrane topology prediction analysis of the two proteins (Fig. 2 and 3) revealed 

signature sequences characteristic of the Cu+/Ag+ ATPase, i.e. CPC(x6)P in TM6, N(x6)YN(x4)P in TM7 

and P(x6)M(x2)SS in TM8 (Williams and Mills, 2005), in both OsHMA4 and OsHMA5. The amino 

acidic sequence also revealed the presence of short C-terminal ends, which are 26 and 16 amino acids 

long in OsHMA4 and OsHMA5, respectively. In this region, contrary to OsHMA2, neither Cys-Cys 

repeated sequences nor His stretches could be identified. By contrast, OsHMA4 and OsHMA5 

presented relatively long N-terminal ends (275 and 376 amino acids, respectively), where two 

repetitions of the highly conserved GxxCxxC (OsHMA4: 45GISCASC51 and 119GMACTSC125; 

OsHMA5: 83GMTCAAC89 and 161GMTCTSC167) metal binding sequence (Lutsenko et al., 2003) were 

found. The length of the N-term of OsHMA4 and OsHMA5, as well as the presence and the positions 

of the GxxCxxC conserved motifs, resembles very much to the structure of AtHMA5, which is the 

Arabidopsis P-type ATPase with which both OsHMA4 and OsHMA5 share the highest identity with 

(59% and 71%, respectively). In addition, both proteins are also highly similar (49% identity) to 

AtHMA7. Both AtHMA5 and AtHMA7 present the same pattern in tandem of the conserved 

GxxCxxC motifs (AtHMA5: 59GMTCSAC65, 137GMTCTSC143; AtHMA7: 64GMTCAAC70, 

141GMTCAAC147) of OsHMA4 and OsHMA5 (in bold the conserved amino acids).  
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FUCNTIONAL CHARACTERIZATION OF OsHMA2, OsHMA4 AND OsHMA5 IN 

YEAST 

DROP TEST 

To determine whether OsHMA2, OsHMA4 and OsHMA5 play a role in Cd transport, we performed 

classic functional assay (drop test) in yeast as shown in figure 4, in which two representative drop tests 

are reported. The yeast strains carrying OsHMA2, OsHMA4, OsHMA5 or empty vector were grown 

on SG media supplemented or not with different CdCl2 concentrations (from 10 to 200 μM). In the 

drop test made using pYES2.1 vector (Fig. 4a), in the presence of Cd, both the yeast harboring the 

empty vector and those expressing the OsHMA proteins showed a slower growth with respect to the 

control plate without Cd2+. Nevertheless, yeast strains expressing the three OsHMA proteins showed a 

stronger tolerance to Cd than the control, suggesting that OsHMA2 but also OsHMA4 and OsHMA5 

are able to transport Cd, even though the in silico analysis indicated them as putative Cu/Ag ATPases 

(Williams and Mills, 2005) and recently Deng and coworkers (2013) characterized the OsHMA5 as a Cu 

transporter responsible for Cu xylem loading. Such a finding suggests that these proteins could 

function as detoxification systems in yeast by pumping excess of cytosolic Cd ions into the apoplast, as 

already reported for OsHMA2 by some authors (Nocito et al., 2011; Satoh-Nagasawa et al., 2012). 

However, other drop tests we performed, like the one showed in figure 4b, in which yeast strains 

carrying the chimeric OsHMA2-pESC-URA, OsHMA4-pESC-URA, OsHMA5-pESC-URA were 

compared to the yeast harboring the pESC-URA empty vector, did not show repeatable results. For 

instance, in this case, only OsHMA2 and OsHMA5 showed stronger tolerance to Cd than the yeast 

strain carrying the empty vector, whereas no evidence for enhanced tolerance to Cd was found for 

OsHMA4. Yamaji et al. (2013) reported that these inconsistencies may be attributed to many different 

factors, such as different expression vectors.  

Moreover, to determine whether OsHMA4 and OsHMA5 play a role also in Zn transport, we 

performed drop tests using the yeast mutant strain ZHY3 (zrt1zrt2) (Zhao and Eide, 1996), sensitive to 

low Zn concentrations, using the pESC-TRP vector (Song et al., 2010). The yeast strains carrying 

OsHMA2, OsHMA4, OsHMA5 or empty vector were grown on SG media supplemented or not with 

0.2 mM ZnCl2 and 0.2 mM EDTA (2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid) that chelates Zn 

creating a Zn-limiting condition. As reported in figure 5, this test did not reveal any significant 

difference between the empty vector and OsHMA4 or OsHMA5, suggesting that neither OsHMA4 nor 

OsHMA5 are able to transport Zn.  

 

GROWTH ANALYSIS 

In order to understand the reason why we did not obtain repeatable results with the drop tests, we 

analyzed the growth rates of the yeast strain carrying OsHMA2, OsHMA4, OsHMA5 or empty vector 
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(control) incubated in SD (no gene induction) or SG (gene induction) liquid media and the growth 

curves we obtained and the relative duplication times are reported in figure 6. The yeast strains carrying 

OsHMAs and empty vector did not significantly differ in their duplication times when grown in the 

presence of glucose (Fig. 5a). By contrast, the addition of galactose significantly enhanced the 

duplication time, which however resulted higher in the yeast expressing all the OsHMA proteins 

analyzed than in the control (Fig. 5b). Such a finding – reasonably due to an interfering effect of the 

OsHMA proteins induction on yeast growth – precluded the direct comparison of yeast growths in 

traditional functional assays performed with media containing excess of Zn or Cd.  

 

GROWTH INHIBITION ANALYSIS 

To solve this impasse, we grew the yeast strains carrying OsHMA2, OsHMA4, OsHMA5 or empty 

vector in liquid synthetic minimal media containing or not different excess of Zn2+ (from 1.5 to 16.5 

mM) or Cd2+ (from 15 to 165 μM) in the presence of Gal (SG media). The preliminary tests we 

performed with the yeast harboring the empty vector (Fig. 7a,b) showed similar results, suggesting that 

this kind of test is quite repeatable. Moreover, in such a way, we were able to measure the inhibitory 

effect exerted by each metal concentration on the growth of each strain (control, OsHMA2, OsHMA4 

and OsHMA5), in a comparison functional test independent from possible differences in the 

duplication time. Results indicated that both Zn and Cd significantly affected yeast growth, since the 

percentages of growth inhibition increased as the metal concentration in the medium did (Fig. 7c,d). 

Non-linear regression analysis of the growth inhibition curves allowed to calculate the metal 

concentrations required to inhibit the growth of each yeast strain by 50% (IC50). The estimated IC50 

values were significantly different between the yeast strains. In particular, for Zn the IC50 values of 

OsHMA2 and OsHMA5 were higher than those of the control; on the other hand, for Cd only the IC50 

value of OsHMA2 was different from that of the control (Fig. 7). These findings are in agreement with 

the most part of the previous studies on the transport activity of OsHMA2 (Nocito et al., 2011; Satoh-

Nagasawa et al., 2012, 2013; Takahashi et al., 2012), confirming that OsHMA2 removes Zn and Cd 

from the cytoplasm conferring a tolerance to excess Zn and Cd in yeast. A similar role was recently 

described for HMA2 in barley (Mills et al., 2012) and Triticum aestivum (Tan et al., 2013). In addition, 

AtHMA2 has been thoroughly studied and its role in Cd and Zn xylem loading is widely accepted (Eren 

and Argüello, 2004; Hussain et al., 2004; Eren et al., 2006, 2007; Wong and Cobbett, 2009; Wong et al., 

2009). For what concern OsHMA5, even if recently it has been characterized as a Cu2+ transporter, 

responsible for Cu xylem loading (Deng et al., 2013), and the membrane topology prediction analysis 

(Fig. 3) also revealed signature sequences characteristic of the Cu+/Ag+ ATPase (Williams and Mills, 

2005), the growth inhibition test revealed the OsHMA5 is also able to transport Zn2+, as shown by the 

growth inhibition curves and the IC50 values (Fig. 7c), disproving the result of the drop test for Zn 
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tolerance (Fig. 5). At the same time, the findings of the growth inhibition analysis refuted the results of 

both the drop tests for Cd tolerance indicating OsHMA5 as not able to mediate the transport of Cd2+ 

(Fig. 7d, 4). In the case of OsHMA4 the growth inhibition analysis excluded the hypothesis that 

OsHMA4 could mediate the transport of Zn2+ or Cd2+ (Fig. 7c,d), refuting the results we previously 

obtained in the drop tests which suggested OsHMA4 as able to mediate the Cd2+ transport (Fig. 4a). 

Unfortunately, the functional analysis of OsHMA4 and OsHMA5 in yeast we provided in this study 

excluded the involvement of these proteins in mediating Cd efflux from yeast cells leaving opened the 

question of which is (are) the protein(s) responsible for the Zn-independent root-to-shoot Cd 

translocation pathway(s). 

 

The different growth analyses we performed clearly pointed out that great inconsistencies may 

be obtained using not only different yeast strains, experimental conditions, expression vector or 

medium components as reported by Yamaji and coworkers (2013), but also using different methods of 

analysis. Looking at the growth rate analysis (Fig. 6), the induction of the OsHMA proteins reasonably 

affect the yeast growth increasing the duplication times with respect to the control. Based on these 

findings, the drop test is not the correct method to study the transport activity of a protein because the 

direct comparison of yeast growths performed with media containing excess of Zn or Cd is precluded. 

In fact, results could be strongly affected by different duplication times of the yeast expressing the 

target proteins. In addition, the result is dependent from the inoculum, even though optical densities of 

cell suspensions of the different strains appear similar. Finally, the results, when different yeast colonies 

are compared, are strongly dependent from subjectivity and observer variability. To overcome these 

limits, we performed a growth inhibition analysis that enabled us to measure the inhibitory effect 

exerted by each metal concentration on the growth of each strain. This kind of functional test resulted 

independent from possible differences in the duplication time. A similar method was developed by 

Galgiani and Stevens (1976 and 1978) for studying yeast susceptibility to antimicrobial substances. 

Their evidences showed that this turbidimetric technique is reproducible, inoculums independent, 

rapid, free from subjectivity and observer variability. They also calculated the IC50 as the drug 

concentrations required to inhibit the yeast growth by 50%. Although the turbidimetric technique is 

known since a long time in clinical studies on yeast, concerning plant gene functional characterization 

in yeast the drop test has been largely used as functional assay so far (e.g. Gravot et al., 2004; Southron 

et al., 2004; Kobayashi et al., 2008; Ueno et al., 2010; Nocito et al., 2011; Satoh-Nagasawa et al., 2012; 

Takahashi et al., 2012; Deng et al., 2013; Yamaji et al., 2013), even though the abovementioned limits. 

Other researchers only grew yeast in liquid culture and compared the growth rates of different 

transformants (Ramesh et al., 2003; Gravot et al., 2004; Nocito et al., 2011), but only few related the 

yeast growth to different metal (Cd or Al) concentrations (Clemens et al., 1999; Li et al., 2014). All these 
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methods, however, still could depend on possible differences in the duplication time of the different 

transformants. Only in a recent paper on the characterization of Nramp aluminum transporter 

(NRAT1) the growth of the different yeast transformants was expressed as a ‘relative growth’, which is 

independent from the inoculums and the growth rate (Li et al., 2014). Thus, probably, our study 

represents one of the first examples of growth inhibition analysis applied to plant gene functional 

characterization. 
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FIGURES AND TABLES 

 

Figure 1. Membrane topology of OsHMA2. 

 

 

 

The OsHMA2 (cv. Roma) sequence has 100% identity to OsHMA2 cv. Volano submitted by Nocito and coworkers (2011). 

Eight TM helices are predicted in OsHMA2r using MEMSAT3. Numbers in bold indicate the position of TM segments 

within the OsHMA2 sequence. Signature sequences in TM6 [351CPC353], TM7 [652N(x)7K660] and TM8 [681DxG683] are 

conserved in all Zn2+/Cd2+/Pb2+/Co2+ ATPases.  
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Figure 2. Membrane topology of OsHMA4. 

 

 

 

Eight TM helices are predicted in OsHMA4 using MEMSAT3. Numbers in bold indicate the position of TM segments 

within the OsHMA4 sequence. Signature sequences in TM6 [597CPC599], TM7 [905N(x)6YN(x)4P918] and TM8 

[934P(x)6M(x)2SS945] are conserved in all Cu+/Ag+ ATPases.  
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Figure 3. Membrane topology of OsHMA5. 

 

 

 

The OsHMA5 (cv. Roma) sequence has 100% identity to OsHMA5 cv. Nipponbare. Eight TM helices are predicted in 

OsHMA5 using MEMSAT3. Numbers in bold indicate the position of TM segments within the OsHMA5 sequence. 

Signature sequences in TM6 [637CPC639], TM7 [942N(x)6YN(x)4P955] and TM8 [971P(x)6M(x)2SS982] are conserved in all 

Cu+/Ag+ ATPases.  
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Figure 4. Drop test of yeast testing Cd tolerance. 

 

 

 

Cells of the wild type yeast strain INVSc1 expressing OsHMA2 (2), OsHMA4 (4) and OsHMA5 (5) under the control of 

the inducible GAL1 or GAL10 promoter or harboring the empty (E) pYES2.1 (a) or pESC-URA (b) vector were grown at 

30 °C on SG media supplemented (picture taken after 5 days) or not (picture taken after 3 day) with 100 μM CdCl2. 
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Figure 5. Drop test of yeast testing Zn tolerance. 

 

 

 

Cells of the mutant yeast strain ZHY3 (zrt1zrt2) expressing OsHMA4 (4) and OsHMA5 (5) under the control of the 

inducible GAL1 or GAL10 promoter or harboring the empty (E) pESC-TRP vector were grown at 30 °C for 3 days on SG 

media with normal (control) or limiting levels of Zn (obtained adding 0.2 mM EDTA and 0.2 mM ZnCl2). 
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Figure 6. Kinetic analysis of yeast growth. 

 

 

 

 Duplication time (h) 

 SD SG 

EMPTY       2.79 ± 0.09                                   5.37 ± 0.29 

OsHMA2 2.68 ± 0.09 n.s. 7.70 ± 0.17 * 

OsHMA4 2.69 ± 0.09 n.s. 10.66 ± 0.33 * 

OsHMA5 2.75 ± 0.04 n.s. 8.15 ± 0.19 * 

 

Growth of yeast cells of the wild type strain INVSc1 expressing OsHMA2 (red circles), OsHMA4 (blue circles) and 

OsHMA5 (green circles) or harboring the empty pESC-URA (control) vector (black circles) in liquid synthetic minimal 

media containing 2% (w:v) glucose (SD) (a) or 2% (w:v) galactose (SG) (b). The table reports the duplication times calculate 

for each strain. Data are means and SE of three experiments performed in triplicate (n = 3). Asterisks indicate significant 

differences between the control and yeast expressing one OsHMA protein (P ≤ 0.001); n.s. indicates that there is not 

significant difference.    
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Figure 7. Yeast growth inhibition. 

 

 

 

 IC50 

 Zn2+ (mM) Cd2+ (μM) 

EMPTY         5.5 ± 0.2           52 ± 1 

OsHMA2         8.3 ± 0.8 *           69 ± 4 * 

OsHMA4 5.7 ± 0.3 n.s. 56 ± 3 n.s. 

OsHMA5         7.9 ± 0.4 * 52 ± 4 n.s. 

 

Growth inhibition curves of yeast cells of the wild type strain INVSc1 were incubated in SG media containing different 

concentrations of Zn (a,c) or Cd (b,d). (a,b) Preliminary tests with yeast harboring the empty pESC-URA (control) vector. 

The black circles are means of the means and the black curve is the result of the non linear regression analysis of that data. 

(c,d) Comparison functional tests of yeast cells expressing OsHMA2 (red circles), OsHMA4 (blue circles) and OsHMA5 

(green circles) or harboring the empty vector (black circles). For each data point the percentage of growth inhibition was 

calculated with respect to the growth of the yeast cells in the absence of any excess of Zn and Cd. The table reports the 

duplication times calculate for each strain. Data are means and SE of three experiments performed in triplicate (n = 3). 

Asterisks indicate significant differences between the control and yeast expressing one OsHMA protein (P ≤ 0.001); n.s. 

indicates that there is not significant difference.   
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CONCLUDING REMARKS 
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Several studies have shown that Cd, a non-essential and toxic metal, is taken up from soil and 

translocated in a root-to-shoot direction through transporters of essential elements such as Zn, 

suggesting that the two metal ions may compete for the same transporter protein on a membrane. This 

means that increasing the concentration of Zn will decrease the movement of Cd through the 

transporter, and vice versa. However, the movement of the two metal ions across several biological 

membranes may involve a wide range of transport systems, each characterized by a specific selectivity, 

not leading to a necessary “strong reciprocity” between the systemic fluxes of Zn and Cd in the whole 

plant. Finally, Zn and Cd ions are subjected to complex equilibria influencing their relative mobility 

inside the plant. Although divergent results have been obtained, they suggest that also Zn-independent 

pathways for Cd translocation in plants could be possible. 

 The proteins belonging to the HMA (Heavy-Metal ATPases) family have been partially 

characterized as the main actors of the process of translocation of trace elements (essential or non-

essential) to all organs of the plant. In particular, OsHMA2 is the main transport system so far 

described in rice as involved in the xylem loading of Zn and Cd, even though both its activity and 

function has not been unambiguously characterized.  

 

In such a contest took place the studies carried out in this PhD project. Indeed, the activity was 

focused at analyze possible interactions between Zn and Cd and reciprocal effects at the translocation 

level in rice plants, since these processes have been seen to be crucial in determining Cd accumulation 

in the shoots. The main results clearly indicate the lack of a fully reciprocity considering the effect of 

Cd on Zn accumulation, and vice versa, since the accumulation of Zn in the shoot was significantly 

inhibited by Cd increases in all the analyzed conditions, whereas those of Cd was only partially impaired 

by Zn increases. Such a finding suggests that Cd ions may use at least two distinct pathways to be 

translocated from the root to the shoot. The first one – shared with Zn – is probably used for Zn 

translocation in physiological conditions, whilst the second one appears as a Zn-independent route that 

Cd may preferentially use when the first pathway is saturated with Zn. Moreover, the Zn-independent 

pathway seems constitutively expressed in rice plants since the partial inhibitory effect exerted by Zn on 

Cd translocation was also observed in short-term PETIS experiments performed with unstressed 

plants. Since OsHMA2 appears to play an important role in Zn/Cd root-to-shoot translocation, in this 

work we also contributed to elucidate some aspects related to the OsHMA2 transport activity and 

selectivity by comparing the inhibitory effects exerted by Zn or Cd on the growth of yeast cells 

expressing, or not, OsHMA2. The results indicate that OsHMA2 enhances Zn and Cd tolerance in 

yeast, so we can reasonably conclude that OsHMA2 may pump excess of cytosolic Zn or Cd into the 

apoplast and thus has all the requisites to be considered the xylem loading system potentially involved 

in mediating the translocation of Cd through the Zn-dependent pathway. In addition, probably, this 
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study represents one of the first examples of growth inhibition analysis applied to plant gene functional 

characterization.  

In conclusion our data provide several evidence to support the hypothesis that at least two 

competing pathways may be interested in mediating root-to-shoot Cd translocation in rice. The first 

one, prevailing at relatively low Zn concentrations, could involve OsHMA2 as Zn2+/Cd2+ xylem 

loading system, while the second one appears to involve a Zn-independent system that still needs to be 

identified among the plethora of transporters involved in the metal homeostasis. The possible future 

identification of the transporter(s) responsible for the Zn-independent Cd translocation pathway(s) 

could allow the development of markers to select rice genotypes able to exclude Cd from the shoots. 

Furthermore, these activities could have important technological implications in the fields of food 

safety, especially in cases where the strategies used for containing Cd accumulation in the crops be 

founded on Zn fertilization. 
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