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Forewords 
 

During my PhD studies, I have dealt with several aspects of the relationship 

between posture and voluntary movement. In particular, the main subject of my work 

has been to analyze the functional role of the Anticipatory Postural Adjustments 

(APAs) within the motor act and how these are programmed by the central nervous 

system. 

In the past literature, it has been described that APAs are unconscious 

muscular activities aimed to maintain the equilibrium of the whole body (Massion 

1992). The role of the APAs has been first disclosed in movements involving 

relatively large masses, such as an upper-limb flexion (see for a review, Bouisset and 

Do 2008). In this case, the shoulder flexion may displace the projection of the center 

of mass to ground, eventually causing an imbalance of the whole body. Therefore, in 

order to counteract such a perturbation, the recruitment of the prime mover (Anterior 

Deltoid) is normally preceded by a specific pattern of EMG activities, defined as 

APAs, developing in the lower limbs, the hips and the trunk. This inter-limb APA 

chain is thus able to induce a forward displacement which prevents the backward 

perturbation caused by the focal movement.  

More recently, Caronni and Cavallari (2009a) demonstrated that an APA chain 

also develop for very simple movements such as a finger flexion, in which small 

masses are involved and in which the whole-body equilibrium is not threatened. 

Indeed, the index-finger flexion, performed with the hand prone, has been found being 

preceded by an excitatory burst in Triceps Brachii, while Biceps Brachii and Anterior 

Deltoid showed a concomitant inhibition. This APA pattern, shaped in the primary 

motor cortex (Caronni and Cavallari 2009b), contrasts the flexion of elbow and 

shoulder induced by the upward perturbation that the index-finger flexion causes on 

the metacarpo-phalangeal joint.  

Caronni and Cavallari papers (2009a, b) contributed to arise three questions: i) 

do inter-limb and intra-limb APAs share similar control mechanisms? If yes, ii) what 
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is the functional role of intra-limb APAs, since it is hard to keep considering intra-

limb APAs simply as a counter-perturbation aiming to maintain the whole-body 

equilibrium and iii) does the prime mover recruitment and its associated postural 

adjustments result from two different central commands, as classically proposed 

(Babinski 1899; Hess 1943; Cordo and Nashner 1982; Brown and Frank 1987) or are 

they both controlled by a unique motor command, as suggested by more recent 

evidences (Aruin and Latash 1995; Petersen et al. 2009; Caronni and Cavallari 2009b; 

Leonard et al. 2011)?  

Aim of the present thesis is to shed further light on these questions with the 

specific target of investigating a possible role of APAs in refining movement accuracy 

and demonstrating the oneness of the motor command for both anticipatory postural 

adjustments (APAs) and prime mover recruitment. Thus, I will illustrate: i) the key 

role of a properly-tailored APA chain on prime mover recruitment in refining 

movement accuracy, ii) the superposition of the neural network responsible for 

controlling the voluntary movement and the APAs, focusing on Supplementary Motor 

Area and Cerebellum, iii) the disruption of both the postural chain and the prime 

mover recruitment after a period of immobilization and iv) the APAs adaptation to the 

intended movement, i.e. the expected perturbation. These observations have been 

already published or are at this moment submitted to publication.  

The thesis has been divided in four sections: 1) the Introduction, which 

includes a review on the existing literature on inter- and intra-limb APAs, and explains 

my working hypothesis; 2) the Experimental Procedure, which describes how data 

were collected and analyzed.; 3) the collection of the original papers, and finally 4) the 

Conclusion, in which I will explain the interpretation of the present results and 

develop possible conclusions, with special regards on the relationship between 

postural and prime mover command1. 

                                                           
1 The experimental work has been performed at the Human Physiology Section of the DePT 
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Posture and Voluntary Movement 
 

When we perform a voluntary movement our CNS has to deal with different 

variables to perform a correct action, for example: 1) what is the goal of our 

movement, 2) which are the muscles that have to be recruited to achieve the goal, 3) 

what is the functional state of the body (e.g., in equilibrium or in unstable posture) and 

4) which is the environmental context in which we are acting and which are the 

available fixation points. From the success of this analysis, and the appropriateness of 

the solutions stems the correct movement outcome.  

Since the human body is a multi-link structure of different rigid segments 

interacting each other in an articulated chain, every mechanical action on any of these 

body segments is discharged to the adjacent articulated segment. In other words, if a 

muscular contraction provokes a joint movement, for instance an upper limb flexion, 

the rest of the body tends to move in the opposite direction. In the period between 

movement on-set and off-set, this articulated chain is in state of transient 

disequilibrium.  

Therefore, a correct execution of a voluntary movement needs postural 

adjustments able to counterbalance, at the appropriate time, the perturbation induced 

by the primary movement on adjacent segments, and then discharged on all segments 

constituting the postural chain (cfr. Bouisset et Zattara, 1981; Massion 1992).  

 

Historical background of posture and voluntary movement 

To the best of my knowledge, the first to describe the rules that governs postural 

and voluntary movement controls was Leonardo Da Vinci, in his “Libro A, Trattato 

della Pittura”, which is now conserved within the Codex Urbinas Latinus 1270 (1r-

329r: Leonardo da Vinci, 1452-1519, lib. I-VIII. sec. XVI, Biblioteca Apostolica 

Vaticana). Leonardo stated: “I say that if a motionless figure is poised on his feet, and 

his arm is extended in front of the chest, he will throw backward as much natural 
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weight as the natural and accidental weight which he thrusts forward. And I say the 

same of each part that projects more than usual beyond the whole”. Moreover, 

Leonardo continued: “Never will a weight be lifted and carried by a man, without his 

extending outside himself more than as much weight as that which he wishes to lift, 

and he thrust it on the side opposite the one where he lifts the weight”. A couple of 

centuries later, Giovanni Alfonso Borrelli followed the pathway of Leonardo Da Vinci 

in his De Motu Animalium, where he described some principles that govern the 

voluntary movement. In particular, Borelli considered the skeleton as multi-linked 

system of levers, which can maintain per se the body balance as far as the center of 

mass falls within the support base.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Historical artwork of two humans bearing loads. This illustration is taken from De Motu Animalium (On 

Animal Motion, 1680) by Alfonso Borelli (1608-1679). The illustration demonstrates how the leg is a twin-lever 

system controlled by muscles in which the hip (D) and knee (C) are both pivots.  

 

 After the observation of Leonardo da Vinci and Borelli, we had to wait until 

the end of the nineteenth century for having the first clinical observation of the 

importance of a correct tailoring of posture and voluntary movement in order to 

correctly execute a successful motor act. Indeed, Joseph Babinski (1857-1932), in his 

“De l’asynergie cérebelleuse, 1899”, was the first who described the lack of 

harmonious synergies in cerebellar patients; in particular he observed the forward 
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displacement of the knees and hips to compensate for the backward displacement of 

the trunk, neck and head when asking a subject to look upward. Babinski also 

observed that cerebellar patients, who were asked to perform the same “looking 

upward” task, were unable to coordinate the upper part of the body to their hip and 

lower limb, so that they were used to fall. However, Babinski did not analyze the 

temporal relationship between the postural adjustments and the voluntary movement, 

and therefore he lacked to observe that also an anticipatory postural control, adjusted 

in a feed-forward manner, is needed when performing a voluntary movement. 

In the twentieth century all studies about the relationship between posture and 

voluntary movement, as described by Stuart 2005 (Integration of posture and 

movement: Contributions of Sherrington, Hess, and Bernstein), stands on the 

shoulders of three giants, who were trained in several countries and in different fields. 

In particular, Charles Sherrington (1857–1952) was more in favor of the idea of a dual 

coordinated control system: one for movement, and the other for posture. This idea 

was in agreement with the proposals of Walter Hess (1881–1973), who held the view 

that without anticipation of postural adaptations (a component of his ereismatic-

supporting function system), goal-directed movements were doomed to failure. On the 

other hand, the Russian scientist Nikolai Bernstein (1896–1966) was the first to 

propose a unique motor command for both posture and voluntary movement, even if 

 

 

Nikolai Aleksandrovic Bernstein  

http://www.google.it/search?um=1&hl=it&biw=1259&bih=848&rlz=1R2ADFA_itIT356&tbm=isch&sa=X&ei=VQQcTp7ZMcbLsgbdyrnjBg&ved=0CDEQBSgA&q=Nikolai+Aleksandrovic+Bernstein&spell=1
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his ideas were not know to the western scientist till recently. Indeed, despite Bernstein 

received a Stalin Prize Award in 1948, his papers and books were translated into 

English only several years after his death. Bernstein was in favor of the idea of a 

hierarchical control of both posture and movement stating “movements are not chains 

of details but structures which are differentiated into details; they are structurally 

whole’’ (pg. 69, in Bernstein, 1967). 

The organization of posture and movement control 

The question of whether the single or the dual command theory should be 

preferred still remains open. According to the interpretation of Gelfand et al. (1971), 

motor control would include two different components: a "primary or focal" and a 

"postural" one. On these bases, the focal component is relative to the body segment(s) 

that are mobilized in order to perform a voluntary movement; instead, the postural 

component interests the rest of the body, which is involved in the reactions of 

stabilization. Following this idea, the prime mover activity and its associated postural 

adjustments result from two different central commands, which are independently 

dispatched to the prime mover and to the muscles generating the postural chain, 

respectively (Babinski 1899; Cordo and Nasher 1982; Brown and Frank 1987). The 

division between a postural chain and a focal chain is a direct consequence of this 

hypothesis.  

According to this idea, the scheme illustrated in Figure 3 shows how the motor 

programs would be transformed into physical parameters for the regulation of the 

movement from an internal model of body dynamics governed by the central nervous 

system. The motion parameters include the direction and magnitude of the primary 

movement (focal sets), the accompanying postural adjustments (postural set) and the 

temporal relationship between these events. The postural accompaniments may be 

absent, inappropriate or out of time, as it happens when we apprehend novel motor 

tasks, or in case of pathologic dysfunction of the CNS, e.g. cerebellar patients. The 

postural and focal “sets” lead to the selection of specific motor patterns that regulate 

muscle contraction and the following joints displacement, on one hand stabilizing 
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posture, and on the other to allow a correct execution of the movement. 

Proprioceptive, vestibular and visual information, are compared with an internal 

model of sensory dynamics in order to assess the select the pattern of muscular 

activities which permits a successful execution of the movement (Frank et Earl, 1990).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Coordination of the postural and focal sets. The central nervous system (CNS) model of body dynamics 
translates cognitive motor plans into physical parameters which allow the correct execution of the voluntary 

movement. Adapted from Brown and Frank, 1990. 

 

Considering the temporal relationship between the development of the 

focal movement and the associated synergies, postural adjustments may be 

divided in three categories: Anticipatory Postural Adjustments (APAs), which 

precede the onset of the voluntary movement, Synchronous Postural 

Adjustments (SPAs) and Consecutive Postural Adjustments (CPAs), which 

develop after the movement initiation and therefore can be influenced by feed-

back proprioceptive loops such as reflexes.  
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Anticipatory Postural Adjustments 
 

 
 

Figure 4. Feed-forward command for APAs and feed-back control of the outcome The Central Nervous System 

dispatch a fee-forward motor command to the postural muscles, Anticipatory Postural Adjustments, aiming to 

counteract the perturbation induced by the primary movement (limb movement). The postural disturbance following 
the movement act as a feed-back signal, which refine the Synergic Postural Adjustments (SPAs) and Consecutive 

Postural Adjustments (CPAs). 

 

The majority of the literature regarding Anticipatory Postural Adjustments 

(APAs) analyzes the postural chain developing in the lower limbs, hips and trunk 

when performing a shoulder flexion. As we mentioned above, since this movement 

involve a relatively large mass, the perturbation induced by the primary movement 

may displaces the projection on the ground of the whole-body centre of mass (CoM; 

e.g. Bouisset and Zattara, 1987) and cause a whole-body equilibrium disturbance 

(Bouisset and Zattara, 1981; Bouisset and Do, 2008; see also Hess, 1943). Therefore, 

the prime mover activation is preceded by inter-limb anticipatory postural 

adjustments. When we consider a pointing movement, the recruitment of the prime 

mover, the Anterior Deltoid, would provoke an upper limb flexion but, 

contemporarily, a backward displacement of the shoulder, and thus could make the 

subject to miss the target or even to fall down. Recruitment of Anterior Deltoid is thus 

preceded by a specific pattern of EMG activities developing in the lower limbs and 
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trunk, the APA chain, which induce a forward displacement able to counteract the 

backward perturbation caused by the primum movens segment.  

The APA chain starts with an inhibition of the tonically active ipsilateral Soleus, 

between 50 to 100 ms prior the prime mover onset. Then, there is a sequence of 

excitatory and inhibitory EMG activities, beginning with activation of the contra-

lateral Tensor Fasciae Latae and Rectus Femoris. This APA pattern starts with the 

contralateral lower limb and hip, the ipsilateral ones, and ending with the ipsilateral 

shoulder, follows a bottom-up progression, as the postural segment accelerations 

follows a “posture-focal gradient”, starting from the support base (ground, seat, 

etc…), proceeding through the postural chain and then terminating on the prime mover 

(Figure 5). As expressed by Gray: “In order to subject the body to a propulsive force, 

it is necessary to exert an exactly equal but opposite force against his external 

environment. The reaction is equal to the subject's action (action and reaction 

principle)”. APAs are efficient in counteracting the perturbation induced by the 

voluntary movement only if the APA chain encounters resistance originating from the 

environment, usually a physical support (fixation point/s), which offers the appropriate 

reaction to the forces generated by APAs. Therefore, APAs could be considered as a 

fixation chain connecting the moving segment to a firm support (Baldissera et al. 

2008), which follows a “posture-focal gradient”, starting from the available support 

base (ground, seat, etc…), proceeding through the postural chain and then terminating 

on the prime mover (see for a Review Bouisset and Do, 2008). 

The timing and magnitude of APAs are rapidly tailored according to the 

characteristics of the prime mover contraction, i.e. the expected intensity of the 

perturbation induced by the primary movement. Indeed, postural adjustments that 

develop at an inappropriate time or with incorrect amplitude, may themselves be a 

source of destabilization and thus be considered as a perturbation. Therefore, to ensure 

the effectiveness of these postural actions, the central nervous system requires 

information on the motor task to be performed and the likely interaction of the single 

body segments (Mille & Mouchnino 1998). The correct analysis of these information 

within the CNS predispose a correct direction, timing and magnitude of postural 
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adjustments that precede prime mover activation and therefore permits the correct 

execution of the voluntary movement (Frank et Earl , 1990; Dietz and Colombo, 

1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Anticipatory postural adjustments in lower limbs, hips and trunk before the execution of a shoulder 

flexion The prime mover activation (DA) is preceded by an inhibition in the tonically active Soleus (SOL) and by an 
increase of the EMG activity of the muscles which cross the hip joint: Tensor Fasciae Latae (TFL); Gluteus Maximus 

(GM), Semitendinosus (St). Other muscles, such as Vastus Lateralis (VL), Tibialis Anterior (TA) and Rectus Femoris 

(RF), showed occasionally anticipatory activity. Getting closer to the primum movens segment some of the muscles 
showed en EMG onset: syncronysed Trapezius Superior (TS), Serratus Anterior (SA), and Latissimus Dorsi (LD). 

Only two muscles showed an anticipatory postural EMG activity: Sternal portion of the pectoralis maior (PMS) and 
Erectro Spinae (ES) Adapted from Zattara and Bouisset, 1988- 
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It is worth noting that the temporal coupling between the primary movement 

and postural responses does not depend only on the physical requirements of the task. 

Indeed, when the voluntary movement is self-paced, APAs usually precede the EMG 

onset of prime mover by about 50-90 milliseconds (Horak et al., 1984). Instead, if the 

subject is instructed to perform the movement as fast as possible in response to an 

external signal (reaction time movement), the postural response occurs simultaneously 

with the focal response (Lee et al., 1987). These observations support the hypothesis 

that posture and movement are controlled by the nervous system independently, as 

originally proposed Babinski and subsequently endorsed by other researchers such as 

Brown and Frank (1987).  

 

APAs classification 

Considering the fundamental role of the fixation point as the pivot from which the 

APA chain starts, it is apparent that the distance between the available support base(s) 

and the primum movens segment imply the development of inter- or intra-limb APAs. 

As we have mentioned above, a pointing movement performed while standing would 

be preceded by an APA chain starting from the ground, with the EMG activities 

developing from the lower limbs according to the posture-focal gradient. Therefore, 

these muscular activities will create an inter-limb APA chain. Instead, when we 

perform a wrist flexion while sitting on a chair with a backrest, the fixation point 

would be placed at the shoulder level and the Flexor Carpi Radialis activation would 

be then preceded by an inhibition of the tonic EMG of the Braachioradialis (Br) 

coupled to the excitation of the Triceps Brachii (TB), i.e. an intra-limb APA chain.  

The large majority of the studies regarding APAs were devoted to inter-limb 

APAs, while, at the moment, only a few description of intra-limb APAs have been 

performed. For this reason, we will first introduce the basic knowledge about the 

inter-limb APAs, then APAs preserving the whole body equilibrium in a bimanual 

coordination task and we will finally focus on the intra-limb APA chain, i.e. APAs 

developing in the same limb in which the voluntary movement is performed. 
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Inter-limb APAs – These are the most frequently studied APAs. For example, 

when we intend to perform a shoulder flexion and extension (Belenkii et al. 1967; 

Bouisset and Zattara 1981; Lee 1980; Lee et al 1987; Maki 1993), or lateral abduction 

(Aruin and Latash 1995; Vernazza et al. 1996), the CNS develop an anticipatory 

postural command for the muscles in the lower limb, hips and trunk. A variety of 

experimental situations in which the voluntary movement was preceded by an inter-

limb APA chain has been also study studied. In some, it was asked to push or pull a 

handle with the upper limb in normal subjects (Cordo and Nashner 1982; Lee et al 

1987), and in patients with Parknison disease (Dick et al 1986). In a paper of Nouillot 

et al. (1992), it was demonstrated that fast voluntary movements do not require APA 

when the postural equilibrium is unstable (unipedal stance). According to the 

interpretation of these results of Nouillot and collaborators, the absence of APAs when 

flexing the lower limb in unipedal stance, in contrast to the presence of APA in the 

more stable bipedal stance, suggests that the postural command and the voluntary one 

are organized in a parallel process. Inter-limb APAs are known to decrease in size as 

the accuracy demand increases (i.e. when pointing smaller and smaller targets), a 

feature which has been shown both in the upper-limb (Bonnetblanc et al. 2004) and in 

the lower-limb (Bertucco & Cesari 2010). Lower limb pointing was also investigated 

by Duarte and Latash (2007), who have shown that the faster the movement, the larger 

the APAs variability. It is also well described the relation between movement speed 

and scattering of the final position around a target (Fernandez & Bootsma 2004, 

Schmidt et al. 1979). In the other way round, all these observations suggest that small 

and less variable APAs should accompany slow, but precise movements. Berrigan and 

colleagues (2006) reported that when pointing is performed towards small targets (i.e. 

under high accuracy constraints) from an “unstable” position (i.e. standing vs. sitting), 

slowing movement speed actually represent a strategy to reduce the equilibrium 

disturbance and, consequently, the associate APAs. Moreover, other studies on inter-

limb involved a whole body movement, such as locomotion (Breniere et al. 1987), in 

which there is a periodic support base transfer that corresponds to a succession of 

balance losses and recoveries. It should be noted that in both these last experiments the 
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differentiation between APAs and prime mover’s activities is just artificial, 

since in both case APAs created necessary angular momentum of body 

segments for the effective task execution. 

 

APAs in a bimanual task: the barman task - It is well known that APAs are 

associated with movement involving a bimanual load-lifting task, when 

participants hold an object in one hand and then lift it with the other hand. In 

such a task, as shown in Figure 6, the subject is asked to maintain a stable 

posture of the right forearm while a weight is applied to the omo-lateral wrist, a 

procedure that generates a tonic contraction of the right BB.  

The observed motor behavior depend on whether the unloading is 

carried out actively and voluntarily by the same person (active lifting) or by the 

experimenter (passive lifting). In the first case, the prime mover activation on 

one hand is synchronous with an inhibition of BB when the forearm is 

voluntary unloaded (Hugon et al. 1982). The goal of such an anticipatory 

adjustment in this task is to minimize the perturbation of forearm posture that 

occurs during unloading, and thus avoiding an uncontrolled flexion of the 

elbow. The central organization of such a movement is based on two parallel 

commands (Massion 1992). Therefore, when self-unloading, a feed forward 

command is sent in order to preserve the upper limb posture. On the contrary, 

if the experimenter unexpectedly lifted the object, the inhibition of BB is still 

present, but starts only about 50 ms after the unloading. If we consider the 

position of the forearm, as shown in the same figure, the degrees of elbow 

rotation are lower when the subject unloads the forearm by using its own left 

hand. 
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Figure 6. APAs in elbow flexor muscles precede a forearm self-unloading The subject maintains the 

posture of its right forearm while holding a weight applied at the wrist. When the forearm is self-unloaded (unload 

"active" on the left), the weight lift (indicated by the dotted line in the graph below) is preceded by an inhibitory APA 

in the tonically active right biceps brachii (Bi r). Note that the inhibition of the Bi r is synchronous recruitment of the 

left biceps brachii (Bi l, prime mover). If the weight is instead removed by the experimenter ("passive" unloading, on 

the right), Bi r inhibition begins approximately 50 ms after the weight removal. Traces related to the elbow angular 
displacement (Pot.r.) shows that the displacement of the forearm is minor in the self-unloaded (left trace). Adapted 

from Hugon et al., 1982. 

 

 

Considering what has just been observed, the passive and unexpected removal 

of the weight involves an impaired balance for the body segment, and therefore 

constitutes a disturbance that can only be compensated with mechanism that implies a 

sensory feed-back of the unexpected perturbation. On the contrary, when the subject 

was able to actively unload its own forearm, a feed forward command is generated and 

APAs develop in the right Biceps Brachii. This mechanism of feed-forward has 

greater efficacy in the stabilization of balance. The described experiment, known as 

“the barman task” allows us to make two conclusions: First, even a movement that 

does not lead to a whole body imbalance is preceded by APAs, aimed at preserving 

the single segments balance; second, APAs may develop also in muscles that 
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are not usually considered as “postural muscles”, such as muscles in the upper-

limb 

If we consider the position of the forearm, as shown in the same figure, 

the degrees of elbow rotation are lower when the subject unloads the forearm 

by using its own left hand. Considering what has just been observed, the 

passive and unexpected removal of the weight involves an impaired balance for 

the body segment, and therefore constitutes a disturbance that can only be 

compensated with mechanism that implies a sensory feed-back of the 

unexpected perturbation. On the contrary, when the subject was able to actively 

unload its own forearm, a feed forward command is generated and APAs 

develop in the right Biceps Brachii. This mechanism of feed-forward has 

greater efficacy in the stabilization of balance. The described experiment, 

known as “the barman task” allows us to make two conclusions: First, even a 

movement that does not lead to a whole body imbalance is preceded by APAs, 

aimed at preserving the single segments balance; second, APAs may develop 

also in muscles that are not usually considered as “postural muscles”, such as 

muscles in the upper-limb.  

 

Intra-limb APAs - Aoki (1991) reported that wrist movement was preceded by 

anticipatory postural adjustments in muscles acting on the elbow. More 

recently, Caronni and Cavallari (2009a and 2009b) reported that also when the 

sole index-finger is flexed, an APA chain develops in several upper-limb 

muscles to stabilize the segmental equilibrium of the arm. Indeed, these authors 

described that a brisk finger flexion was preceded by an excitatory burst in 

Triceps Brachii (TB), while Biceps Brachii (BB) and Anterior Deltoid (AD) 

showed a concomitant inhibition.  
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Figure 7. Postural adjustments in 

upper-limb muscles preceding an index-

finger tap with the prone or supine 

hand. Each graph displays the APA onset 

(arrow) and its development on the tonic 

EMG from different postural muscles, of a 

single representative subject, with the 

hand resting prone (a) or supine (b). The 

vertical line at 0°ms marks the onset of the 

prime mover activity. Note that in the 

muscles acting at the elbow, the shoulder 

and the trunk APAs reverts in sign when 

hand posture changes from prone to 

supine. EMG is rectified, integrated and 

averaged (75 trials) and its size expressed 

in percentage of the mean EMG level 

recorded 1 s before the go signal. Adapted 

from Caronnni and Cavallari 2009a 

 

 

As shown in Figure 7, this APA pattern was shown to revert in sign 

when hand posture was changed from prone to supine, i.e. when the direction 

of the focal movement was inverted. In fact, when passing from prone hand to 

supine hand, BB and AD were regularly excited and TB inhibited.  
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Such intra-limb APAs not only would guarantee the maintenance of the arm 

posture, but should also be very important in controlling the trajectory and the final 

position of the moving segment, i.e. metria (Figure 8).  

 

 

 

 

 

 

Figure 8. APA and dysmetria. Model simulation of the horizontal fingertip displacement, as function of 

different strokes, when the proximal segments are immobilized (a, fictive APAs, filled circle), and when they are free 

to rotate (a, empty circle). Note that for a vertical displacement of 65 mm, the fingertip hits the table surface (dashed 
line) more proximally with APAs (a) then when no-APAs are involved (d). Dots b and c mark the hitting position 

when the APAs concern the sole shoulder or shoulder plus elbow, respectively. In the planar graph (b), in which also 

lateral segment displacements are considered, the filled circle is the univocal target position resulting from a fully 
correct APA control, a disturbance of the APAs chain would necessarily produce the impact of the fingertip in any 

other point Adapted from Caronni and Cavallari 2009a. 

 

Indeed, when simulating an index-finger flexion using a four-joint software 

mechanical model of the arm, in which only the prime mover was recruited, a clear 

disturbance of both focal movement and upper-limb posture was observed, with 
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relevant changes at wrist and elbow level. This would affect the final position of the 

intentional finger movement. In the model, the only way to prevent these “collateral 

effects” was to block all segments but the finger, preventing the proximal joints from 

rotating (fictive intra-limb APAs). Since this observation derived from a very 

simplified system, Caronni and Cavallari (2009a) also looked for a more realistic 

situation: a finger tap was electrically evoked in a real arm by stimulating the median 

nerve; such an experiment showed recordings comparable in sign and size to those 

predicted by the software mechanical model, including the dysmetric motor output 

(Figure 9). However, both the software simulation and the electrically evoked tap 

paradigms did not faithfully represent the “natural” dysmetric behavior, since in the 

two cases no voluntary command is modelled or generated, respectively.  

 

Figure 9. Angular displacements at 

metacarpo-phalangeal, wrist and 

elbow joints during simulated, evoked 

and voluntary index-finger tap. Time 

course of a simulated finger flexion at 

the MP joint and the related changes at 

wrist (W) and elbow (E) level, all in 

degree of angular rotation, measured 

when segments were free to rotate (a, 

dashed lines) or immobilized (a, fictive 

APA, solid lines). The modeled arm is 

sketched in the bottom left inset. Angular displacements of the three joints were also recorded when an index-finger 

tap was passively evoked in vivo by the median nerve electrical stimulation (b) and when it was voluntary performed 

(c). Rectified FDS activity in the two lower graphs. Note that the mechanical model well predicts the displacements of 

the proximal joints both during passive (solid lines) and during voluntary (dashed lines) index-finger tap. Adapted 

from Caronni and Cavallari 2009a. 

 

Finally, intra-limb and inter-limb APAs seem to share similar control 

mechanisms and, therefore, their division seems to be inappropriate. Indeed, similarly 

to inter-limb APAs (Cordo and Nashner 1982; Brown and Frank 1987; see for a 

review Bouisset and Do, 2008), intra-limb APAs (1) are distributed to several upper-

limb muscles creating a postural chain aiming to prevent the effects of the interaction 

torques generated by the voluntary movement; (2) reverted in sign when movement 
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direction is reverted and (3) changed in amplitude according to the level of postural 

stability (Caronni and Cavallari 2009a).  

However, other experimental data may help to strengthen the argument that 

intra and inter limb APAs are controlled in the same manner.  

 

Neural pathways involved in APA programming 

Studies regarding the neural structures generating the APAs are surprisingly rare. 

From the scarce available data, it is possible to hypothesize a superposition of the 

neural structures for APAs and those for voluntary motor command. This view is 

supported by evidences suggesting an involvement for APAs generation of both the 

basal ganglia-thalamo-cortical network and the cerebellum. 

 

Basal Ganglia – Severe APA impairments in patients with Parkinson’s disease 

suggested a role of the basal ganglia also in the anticipatory postural control in 

movement involving a bimanual coordination task, such as the barman task. (Viallet et 

al. 1987). More recently, anticipatory brain activity before the execution of a bimanual 

load-lifting task was recently localized in basal ganglia, SMA, and thalamus in the 

hemisphere contra lateral to the load-bearing arm (Ng et al. 2012). ). It is worth noting 

that these areas are component nodes of the basal ganglia-thalamo-cortical motor 

network, which is implicated in well-learned finger movements (Boecker et al. 1998), 

thus supporting the idea of a superposition of the neural structures for APAs and those 

for voluntary motor command, and indirectly supporting the view of a oneness of the 

motor command for both posture and primary movement. 

Supplementary Motor Area - Several studies support the idea that Supplementary 

Motor area (SMA) is involved in the neural circuitry that is involved in the APAs 

generation. Severe APA impairments in a barman task, i.e. a bimanual unloading task, 

were observed in patients with a lesion of the SMA (Massion et al, 1989; Viallet et al. 

1992). A 1-Hz repetitive stimulation with the TMS, which is able to induce an 
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inhibitory effect of the SMA, reduces duration of APAs prior to stepping, without 

affecting their peak amplitude (Jacobs et al. 2009).  

Cerebellum - The role of the cerebellum in the genesis or in the transmission of the 

APAs remains an open question. The debate regarding cerebellum role in the postural 

control started about one century ago. Babinski (1989) reported that a cerebellum 

lesion disrupted the coordination between voluntary movement and equilibrium 

stabilization. Using functional magnetic resonance imaging, Schmitz et al. (2005) 

reported that APAs were associated with activation of sensorimotor areas, SMA and 

the cerebellum. On the contrary, Ng et al. (2010) found no evidence of cerebellar 

involvement during APAs using magnetoencephalography in a bimanual coordination 

task. However, several studies on patients positively concluded for a cerebellum role 

Figure 10. Time course of APAs in healthy and cerebellar subjects. The postural forces in a self unloading task in 

the health subjects (Top) starts about 40-50 ms before the lift onset. In cerebellar patients (down) the APA effects 

beginning well in advance, about 100 ms, of the movement onset. Adapted from Diedrichsen et al. 2005. 

http://link.springer.com/article/10.1007%2Fs00221-010-2470-5/fulltext.html#CR70
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in APAs control. Indeed, patients with cerebellar lesions fail to show a normal 

anticipatory adjustment in grip force when lifting or moving an object (Babin-Ratte et 

al. 1999; Muller and Dichgans 1994). It was also found that cerebellar lesions abolish 

APAs plasticity in a bimanual unloading task when participants hold an object in one 

hand and then lift it with the other hand (Figure 10, Diedrichsen J, 2005). 

Congruently, Diener et al. (1990) also reported that cerebellar patients produce a 

normal pattern of APAs, but with abnormalities in their timing relationship with the 

onset of the prime mover. Further support on the role of cerebellum in temporizing 

APAs come from animal studies; Yamaura et al. (2013) showed that during a reaching 

task, WT mice show a clear APA in which the EMG activities of the hind limb 

muscles are synchronized with those of the neck muscles, agonists for the reaching 

movement, while in conditional transgenic mice of spinocerebellar ataxia type 3, the 

onset of hind limb EMG activity occur markedly later than that of neck muscle 

activity, suggesting that mice do not generate the appropriate APA for the reaching 

task. Indirect support for the cerebellum involvement in APAs comes also from the 

study of Boendermaker et al. (2014). These authors applied a pressure on three lumbar 

spinous processes and observed significant activation patterns in the somatosensory 

cortices (S1 and S2), supplementary motor area and anterior cerebellum. The CNS 

should reasonably interpret the pressure as a new fixation point on the back and thus 

trigger a predictive APA adaptation, based on the new postural context. The 

cerebellum activation suggests its involvement into this process. This view also agrees 

with the idea that the cerebellum contains forward internal models that could predict 

the consequences of an action (according to the perceived postural context) and can be 

used to overcome time delays associated with feedback control (Imamizu et al. 2000; 

the Wolpert et al. 1998). 

Motor cortex - The role of the primary motor cortex in generating APAs has been 

suggested by both human and animal studies. The stimulation of the primary motor 

cortex in the intact cats was indeed able to evoke movement in the controlateral side 

and APAs in the supporting limbs (Gaehry and Nieullon, 1978), suggesting that the 

primary motor cortex in cats is able to control for both the voluntary prime mover and 

http://link.springer.com/article/10.1007%2Fs00221-010-2470-5/fulltext.html#CR54


23 
 

the postural control that precede and accompany the primary movement. Moreover, it 

has been illustrated that cat pyramidal neurons (PT) changes their discharge frequency 

with a dynamic that is time locked with the time course of the displacement of the 

centre of vertical pressure (CVP), a parameter that is frequently associated to the 

mechanical effects of APAs in the whole body equilibrium. Also the discharge 

frequency was directly dependent on the amplitude of the CVP displacement, a result 

that strengthens the argument that PT neurons are involved in the APAs production 

(Yakovenko and Drew, 2009). The role of the primary motor cortex in the anticipatory 

postural control was observed also in human studies. Indeed, a stimulation with the 

Transcranic Magnetic Stimulation (TMS) on M1, which is known to induce an initial 

increase of the cortical excitability followed by a period of inhibition, further support 

the role of M1 in generating APAs (Palmer et al 1994). These authors asked to seated 

subjects to abduct their left arm, which is known to be preceded by APAs in the contra 

lateral right latissimus Dorsi muscle. Then they stimulate with the TMS the left motor 

cortex, ipsilateral to the prime mover and contra lateral to the postural muscle, 

recording a delay of the APA onset, while the prime mover was not modified in its 

timing effects. When instead stimulating the right motor cortex, a delay of the prime 

mover EMG onset with only minor changes on the time course of APAs were 

observed.  

These results strongly suggest that the primary motor cortex plays a crucial 

role for both APAs and primary movement production. Other studies also favor the 

view of the key role of the motor cortex in generating APAs. By testing spinal and 

corticospinal excitability in humans performing voluntary movement by measuring the 

change in amplitude of the H-reflex and the amplitude motor evoked potential elicited 

by the TMS over the primary motor cortex, respectively. For both excitatory (Petersen 

et al 2009) and inhibitory APAs (Caronni and Cavallari 2009b) it has been illustrated 

that T-reflexes falling in the APA temporal window were un-modulated, while the 

MEP significantly increase and was inhibited 50 to 70 ms before the APA onset, 

respectively for excitatory and inhibitory APAs. Therefore, also these results suggest a 
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key role of the motor cortex in controlling both primary movement and the associated 

postural control (see Figure 11). 

 

Figure 11. Time course of spinal and cortico-spinal excitability in the resting BB before an index-finger flexion 

(experiments A and B). An inhibitory APA carves the BB EMG in two representative subjects (a, c): in both cases 

rectified (grey trace) and integrated (black trace) EMG activity (average of 40 trials) is strongly reduced well in 
advance to FDS onset (0 ms). The time course of the BB spinal excitability has been tested by means of the T-reflex 

(triangles, b), while that of the BB cortico-spinal excitability by CMEPs (open circles, d). Each symbol marks 

amplitude and latency of one single evoked potential. Note that T-reflexes are un-modulated in size in the iAPA 
window, edged by the iAPA onset (vertical dashed line) and prime mover onset (vertical continuous line), whereas 

CMEPs are strongly inhibited. To better identify the onset of this inhibitory effect, the CMEPs time course has been 

integrated with the same time constant used for the EMG (filled circles). Both EMG and evoked potential amplitude 
are expressed as a percentage of their mean reference amplitude i.e. that measured before the acoustic signal. Adapted 

from Caronni and Cavallari 2009b. 

 

Physiological role of APAs  

The anticipatory postural adjustments aim generate inertial forces that, when 

appropriate, will counterbalance the changes in postural balance due to the voluntary 

movement (Bouisset et Zattara, 1981). According to this hypothesis, the voluntary 

movement is considered as a perturbation and the anticipatory postural adjustments 

would have a stabilizing function. Since the anticipatory postural adjustments 
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originate from a feed forward command and adapt APAs to changes in the postural 

demand of the motor task, such as speed, amplitude and movement direction 

(Belen’kii et al. 1967; Cordo and Nashner 1982; Aruin and Shiratori 2004; Shiratori 

and Aruin 2007), they have to be determined by previous knowledge of its effects of 

disturbance. Anticipatory postural adjustments seem therefore to be programmed in 

relation to intended perturbation, rather than the actual one.  

During locomotion, transient change in the centre of body mass is needed and 

in this situation the anticipatory postural adjustments are related not only to the action 

of contrast of the perturbation linked to the next movement, but also the phenomenon 

of transferring the body weight to the forthcoming stance foot. When walking it is 

recognizable a succession of losses and recoveries of equilibrium, which corresponds 

to the periodic transfer of the support base. Therefore, anticipatory postural 

adjustments induce a postural destabilization that is necessary to starts the locomotion 

(Bouisset and Do, 2008). 

Taking into consideration the two roles of anticipatory postural adjustments 

previously mentioned, it seems that APAs may be involved in both functions, i.e. to 

counteract the primary movement perturbation, e.g. in a shoulder flexion (see Massion 

1992), and/or to directly cause a perturbation which initiate the execution of the 

movement, like in locomotion (Brenière and Dietrich, 1992). The dual role of 

anticipatory postural adjustments is therefore both to facilitate postural stabilization 

and to create propulsive forces. Which of the two roles would be played by the APA 

chain depend on the parameters of the motor task. 

 

Role of Vision 

Vennila and Aruin (2011) studied the effect of visual information on the 

mantainance of the whole-body balance. When exposing subjects to an external 

perturbation induced by an aluminum pendulum attached to the ceiling with or without 

holding onto a walker, no significant differences in the APAs activity was found when 

a full vision was available. These results suggested that vision could overrule the 
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proprioceptive information and/or an additional support in setting the anticipatory 

postural control to counteract an incoming postural perturbation. In a similar 

experimental set-up, APAs were found to be greater when providing dynamic visual 

cues (high- frequencies strobe light) than with static visual cues (low-frequency strobe 

light), supporting the importance of vision in the adaptation of APAs (Mophatra and 

Aruin 2012). Finally, it has been illustrated the importance of visual acuity in a correct 

tailoring of APAs (Mophatra et al. 2012). Indeed, the anticipatory postural control 

changes when asking the subject to wear eye-glasses with negative or positive 

powered lenses. The above described literature suggest that the CNS rely upon vision 

for tailoring a correct APA pattern when it has to counteract an external perturbation 

or when it has to deal with a voluntary movement oriented to a target, thus interacting 

with external objects. 

Role of proprioception 

According to literature, in a well-lit environment with a firm base of support 

healthy individuals, which are asked to maintain a bipedal up-right stance, rely on a 

combination of somatosensory (70%), vestibular (20%) and only 10 % of visual feed-

back (Peterka 2002). For what regard APAs, it has been shown that cutaneous inputs 

provide sufficient information to plan APAs the anticipatory postural adjustments for 

gait initiation (Mouchnino & Blouin 2013). Similar conclusions were obtained by Lin 

and Yang (2011), who showed that insufficiency in plantar afferent inputs strongly 

impair the capability of the CNS in setting a correct APA pattern during the 

anticipatory phase of gait, which could not be compensated by visual inputs. These 

observation support the view that proprioceptive inputs are sufficient to modulate the 

APA pattern that precede gait initiation.  

Modulation of APA in timing and amplitude 

The CNS is able, within few movement repetitions, to adapt APAs to changes in 

the postural demand of the motor task, i.e. the ensemble of mechanical actions 
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required for counteracting the perturbation induced by the primary movement 

(Belen’kii et al. 1967, Cordo & Nashner 1982, Aruin & Shiratori 2004, Shiratori & 

Aruin 2007). Clear signs of this adaptative process have been observed even after the 

very first movement trial (Hall et al. 2010). In this section it will presented an 

overview over the mechanical parameters that are able to induce an APA adaptation. 

 

General postural context - The characteristics of the general postural context 

depend on both the physical properties of the support base and the interface between 

the body and the support. The first depends on the characteristics of the environment 

in which we are moving: properties and geometrical parameters of the available 

fixation points, such as flatness or curvature, inclination and stability of the support 

bases. The second depends on our own body posture, i.e. depend on whether we are 

firmly standing on two feet or in an unstable posture on only one; if we are seated, 

with or without a backrest, or if there are any other reliable fixation points on which 

we could rely on. Indeed, the amplitude of the anticipatory postural adjustments is 

affected by the whole body stability at the time of the movement execution. APAs are 

reduced in size when performing a movement in a stable postural context. A view that 

agrees with the arm-pull experiment in standing subjects by Cordo and Nashner 

(1982) in which the Soleus APAs were strongly reduced when adding a fixation point 

to the trunk. In this situation, the oscillation caused by pulling the handle is prevented 

thanks to the presence of the additional support and, therefore, reduces the importance 

of the intervention of the posterior muscles of the lower limb (Figure 12). 

Furthermore, the length of the APA chain depends on the position of the fixing point 

to which it is anchored. In this experiment the fixation point is located in proximity of 

the moving segment, thus shortening the fixation chain length .If the condition in 

which the subject is unstable, i.e. when reducing the support base area, APAs are 

usually reduced in amplitude. Indeed, since the APA themselves determine movement 

(Bouisset and Do, 2008), when the support base is small the APA themselves could 

cause a CoM displacement, potentially threatening the whole body balance. The 

importance of an adequate support base to ensure a reliable fixation point for the APA 

http://jn.physiology.org/content/103/2/968.long#ref-7
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chain is suggested by Dietz & Colombo (1996), who showed that no APAs in lower 

limbs could be observed when performing push/pull movements when the body fully 

immersed in water. It is thus apparent that moving without any fixation point is not an 

adequate condition for the APA chain to develop. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Anticipatory motor action in response to postural disturbance adapts to the behavioral context. The 

illustrations show the postural activity of the gastrocnemius muscle in four behavioral contexts:A. The subject stands 
on a firm platform and pulls on a fixed handle as soon as possible after an auditory cue. To maintain posture, 

backward-acting contraction of the leg muscle (gastrocnemius) starts before the biceps begin pulling the handle. B. 

When the chest is supported and the handle is suddenly pulled forward, there is a very early reflex response in the 
biceps and the gastrocnemius remains silent. Adapted from Cordo and Nashner 1982. 

 

 

Kinematic properties of voluntary movement - APAs are known to be tuned 

depending on several kinematic aspects of the primary movement. Specifically, they 

augment their amplitude when increasing the amplitude of motor action (Aruin and 

Shiratori 2004), the movement speed (Shiratori and Aruin 2007) and the mass of the 

segmented moved (Friedli et al, 1984). Moreover, an increase of APAs was shown 

when the voluntary movement was performed against resistance (Baldissera et al. 

2008). Instead, when the movement velocity is voluntary lowered, APAs decrease 

their anticipation and some muscles with early activity prior the movement show no 

activity at all (Horak et al 1984). The relationship between latency and amplitude of 
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APAs from one hand and from the other the strength of the prime mover 

contraction is clearly understandable when considering that APAs are tailored 

to the expected perturbation. Since the strength of prime mover activation 

influence the magnitude of the perturbation on the other body segments, and 

would potentially cause a displacement of the CoM, a greater and more 

anticipation generates by the APA chain, which compensates for the disturbing 

forces and presumably provides stability for the ensuing movement  

Movement direction - A modification of APAs could be also observed when 

considering movement with different direction (Aruin et Latash, 1995; Pozzo 

et al. 2002). In the experiment of Aruin and Latash, illustrated in Figure 13, the 

subject was asked to perform a bilateral movement of the shoulders in three 

different directions. In Figure 13 the EMG traces of erector spinae muscles 

(ES) and rectus abdominis (RA) were illustrated in relation to different 

movements directions. When flexing the upper limb an excitatory APA in the 

ES muscle, without any activation in the RA muscle. Instead, when extending 

the shoulder, the APA pattern is inverted with respect to the upper limb 

flexion, with an excitatory APA in the rectus abdominis and no activation for 

the erector spinae muscle. The reversal of the APA sign is the result of the 

inversion of the movement direction, which reflects the different perturbation 

induced by the moving segment. Finally, when synchronously abducting both 

the arm, the whole body perturbation is not threatened since the CoM should 

not virtually change. For this reason, no APAs were needed and indeed no 

EMG activities in any of the two muscles considered were recorded. The APAs 

adaptation to movement direction is also visible in intra-limb APAs. As 

illustrated by Caronni and Cavallari (2009a, see Figure 7), indeed, when 

changing the hand position from prone to supine the APA pattern changes 

accordingly, with inhibitory APAs in TB and excitatory APAs in BB and AD.  
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Figure 13. The reversal of the direction of movement leads to the reversal of the APA sign. Subjects performed 

bilateral shoulder movements in three different directions (flexion, in the upper picture; abduction, in the intermediate 
image and extension, in the image below). Graphs on the right show APA recorded in the erector spinae muscles 

(Erectors Spinae, ER) and rectus abdominis (Rectus Abdominis, RA), two antagonist trunk muscles. The flexion of the 

shoulder (A) was accompanied by an excitatory APA in ES, while no APA was recorded in the rectus abdominis. The 
shoulder extension (C) was preceded by anticipatory activity of the RA, without any APA in ER. It may be noted that 

in the case of bilateral shoulder abduction (B) no APAs were not recorded neither the APA sacrospinalis nor in the 

rectus abdominis. Adapted from Aruin et Latash, 1995. 

 

APAs role in movement accuracy 

According to Soechting and Flanders (1989a, b; see also Massion 1992 for a 

review), when a healthy subject points to a target cross, an eventual error in missing 

the target derive from an incorrect sensorimotor transformation from the visual 

representation of the target to the kinematics representation of the planned trajectory. 

Indeed, these authors showed that when subjects have to reach a position which has 

been previously appreciated kinesthetically (thus after having empirically built up the 



31 
 

exact transformation), pointing errors dramatically reduce. In particular, several 

evidences showed that the parietal cortex play a critical role in integrating visual and 

somatic inputs for building up this sensorimotor transformation (see Kalaska et al. 

1997 for a review).In this context, the sensorimotor transformation is co-adiuvated by 

the skin receptors which detect the torsion forces that act on the skin of the feet in 

contact with the soil. 

Era and co-workers (1996) have reported that top-level rifle shooters stabilize 

their whole body balance better than naive shooters, particularly in the last seconds 

before the shot. This and other studies investigating the same topic (e.g. Aalto et al., 

1990; Mononen et al., 2007) give evidence that shooting accuracy relies on the 

accurate trunk and lower-limb posture control, allowing coordination of these body 

segments with the focal trigger pull. 

On these premises, APAs may represent the earliest part of the motor 

command necessary for proximal and distal body segments coordination. Only in 

recent years, some Authors suggested that APAs function is not limited to ensure the 

whole-body balance, but may as well encompass the ability to provide the most 

appropriate conditions to guarantee an accurate movement execution. APAs decrease 

in size as the accuracy demand increases (i.e. when pointing smaller and smaller 

targets), a feature that has been shown both in the upper-limb (Bonnetblanc et al., 

2004) and in the lower-limb (Bertucco and Cesari, 2010). Lower limb pointing was 

also investigated by Duarte and Latash (2007), which have shown that the faster the 

movement, the larger is the APAs variability. It is also well described the relation 

between movement speed and scattering of the final position around a target 

(Fernandez and Bootsma, 2004; Schmidt et al., 1979). All these observations suggest 

that small and less variable APAs should accompany slow, but precise movements. 

Finally, Berrigan and colleagues (2006) reported that when pointing is performed 

towards small targets (i.e. under high accuracy constraints) from an “unstable” 

position (i.e. standing vs. sitting), slowing movement speed actually represent a 

strategy to reduce the equilibrium disturbance i.e. the associate APAs. Thus, when the 

accuracy demand increases, peak movement velocity decreases, as already described 
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by the Fitts’ law (1954). However, since APAs amplitude is known to be proportional 

to focal movement velocity (Shiratori and Aruin, 2007; Lee et al., 1987), its reduction 

might be not directly related to the increased accuracy demand, but to the associated 

reduction in movement speed.  

Caronni and Cavallari (2009a) proposed that during a brisk index-finger 

flexion, intra-limb APAs play a crucial role in controlling the finger trajectory and 

final position. Indeed, when simulating an index-finger flexion using a four-joint 

software mechanical model of the arm, in which only the prime mover was recruited, a 

clear disturbance of both focal movement and upper-limb posture was observed, with 

relevant changes at wrist and elbow level. This would affect the final position of the 

intentional finger movement. In the model, the only way to prevent these “collateral 

effects” was to block all segments but the finger, preventing the proximal joints from 

rotating (fictive intra-limb APAs). Since this observation derived from a very 

simplified system, Caronni and Cavallari (2009a) also looked for a more realistic 

situation: a finger tap was electrically evoked in a real arm by stimulating the median 

nerve; such an experiment showed recordings comparable in sign and size to those 

predicted by the software mechanical model, including the dysmetric motor output. 

However, both the software simulation and the electrically evoked tap paradigms did 

not faithfully represent the “natural” dysmetric behavior, since in the two cases no 

voluntary command is modelled or generated, respectively. 
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Working Hypothesis 
 

Data illustrated in the present thesis aim to shed further light on the neural 

mechanisms that control APA and the relationship of the APA command with the 

voluntary movement. 

As it has been pointed out above, studies regarding the neural structures 

generating the APA command are surprisingly rare. From the available data, it was 

supposed a key role of supplementary motor area (SMA) and cerebellum in the APA 

control. In the present thesis, it is shown from one hand that a tDCS stimulation over 

the SMA modulates the APAs associated to a finger flexion and, from the other, that 

the cerebellum plays a role in controlling APAs, specifically in temporizing their 

activities with respect to the prime mover activation. Therefore, the superposition of 

the neural structures controlling APAs and the voluntary motor command indirectly 

supports the above described hypothesis of the oneness of the command for both 

posture and primary movement. To prove the SMA involvement in the APA control a 

tDCs was applied over the SMA in order to investigate if this stimulation would 

induce a modification of the well-known intra-limb APA chain that stabilize the arm 

when briskly flexing the index-finger (Caronni and Cavallari 2009a). A change in the 

APA pattern when stimulating with the tDCS would be a further evidence that this 

area is involved in the APAs network. 

Also the involvement of the cerebellum in the APAs generation was still an 

open question. Considering that the cerebellum controls rate, smoothness, and 

coordination of the voluntary movement (Manto MU, Bastian AJ, 2007) and the APAs 

and voluntary movement are part of a unique motor command (Aruin and Latash 

1995; Petersen et al. 2009; Caronni and Cavallari 2009b), it should be expected that 

the cerebellum, especially in its role in distributing and temporizing the motor 

command, plays a role in the organization of APAs and, specifically, in refining 

movement metria. To shed further light on this working hypothesis, we analyzed the 

upper-limb APA chain that stabilize the arm when briskly flexing the index-finger 
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(Caronni and Cavallari 2009a) in a group of dysmetric patients (detected clinically 

using the SARA score) with slowly progressive cerebellar degeneration and on an 

equal number of healthy subjects. A disruption of the organization of the intra-limb 

APA chain in cerebellar dysmetric subjects would support the idea that i) cerebellum 

is involved in the anticipatory postural command and ii) a properly tailored intra-limb 

APA chain plays a key role in refining movement metria, as originally suggested by 

Caronni and Cavallari (2009a). If the above described hypothesis are confirmed, the 

idea of a superposition of the neural networks controlling both APAs and prime mover 

recruitment would be strengthened.  

Consequently, it was also hypothesized that APAs would not only aim to 

counteract the perturbation induced by the primary movement, as often proposed in 

previous literature, but would be the first part of the motor program which start from a 

fixation point, develop through the APA chain and include also the command for the 

focal movement. Indeed, according to the classical view, the prime mover activity and 

its associated postural adjustments result from two different central commands, which 

are independently dispatched to the prime mover and to the muscles generating the 

postural chain, respectively (Babinski 1899; Hess 1943; Cordo and Nasher 1982; 

Brown and Frank 1987). On the other hand, a growing body of recent evidences 

favours the view that APAs and prime mover recruitment are both controlled by a 

unique motor command (Aruin and Latash 1995; Petersen et al. 2009; Caronni and 

Cavallari 2009b). This latter view is also supported by Yakovenko and Drew (2009), 

who studied the discharge properties of cat pyramidal tract neurons (PTN) and their 

temporal linkage with APAs associated with reaching movements. These authors 

found a strong linear relationship between the onset of PTN discharge and the APA 

onset, strengthening the idea that the motor cortex contributes to generate the APAs. 

Moreover, Schepens and colleagues (Schepens and Drew 2004; Schepens et al. 2008) 

emphasized the role of pontomedullary reticular formation (PMRF) in the 

coordination of posture and movement. In particular, they suggested that PMRF is a 

site of integration of signals from both cortical and subcortical structures and that 
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these signals ensure that APAs are appropriately scaled in time and magnitude to the 

intended movement, contributing to integrate the control of posture and movement. 

However, whether the single or the dual command theory should be preferred, it 

remains an open question. 

To verify the working hypothesis of the oneness of postural and movement 

command, we analysed the well-known intra-limb APA chain that stabilise the arm 

during an index-finger flexion (Caronni and Cavallari 2009a) in an experimental 

condition in which the voluntary command was normally dispatched but the prime 

mover was unable to contract. In this aim, subjects were asked to repeatedly flex their 

index-finger under two different conditions: i) before an ischemic block of the 

forearm, ii) when ischemia had suppressed the finger movement and the ensuing 

postural perturbation.  

On this basis, the experimental paradigm may have lead to two alternative 

scenarios. Following the dual command view, one should expect that under ischemia 

APAs are suppressed after few repetitions, since the postural activity on the upper 

limb is useless (no real perturbation on the more proximal segments) and also 

uneconomical. Indeed the CNS is able, within few movement repetitions, to adapt 

APAs to changes in the postural demand of the motor task, i.e. the ensemble of 

mechanical actions required for counteracting the perturbation induced by the primary 

movement (Belen’kii et al. 1967; Cordo and Nashner 1982; Aruin and Shiratori 2004; 

Shiratori and Aruin 2007). Moreover, clear signs of this adaptive process were 

observed even after the very first movement trial (Hall et al. 2010). On the other hand, 

following the idea of the oneness of voluntary and postural commands, APAs would 

have be expected to remain manifest in the proximal arm muscles, and tailored to the 

intended movement (i.e. to the expected perturbation stemming from the voluntary 

command), despite the absence of the real perturbation. The persistence of APAs even 

after several attempts to flex the index finger under forearm ischemia would provide a 

novel indication that, during the execution of a voluntary movement, the recruitment 

of postural and prime mover muscles is driven by a functionally unique motor 
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command. Thus, APAs and prime mover activation could be seen as parts of the same 

muscular chain.  

In this regard, it is a common opinion that APAs are programmed according to 

the velocity of the voluntary movement (Horak et al. 1984, Lee et al. 1987, and also 

appreciable in figure 2a of Shiratori and Aruin 2007). However, in the above cited 

papers, information about the linkage between APAs and speed of voluntary 

movements was obtained by instructing subjects to voluntarily change the movement 

speed; therefore, it is impossible to discern whether the key factor determining the 

modification in APA latency is the change in the movement instruction or the change 

of the actual movement speed. Therefore, the present thesis also aims to distinguish 

between these two factors. To address this issue, it was analysed the well known intra-

limb APA chain that stabilise the arm during a brisk index-finger flexion in two 

groups of subjects: 1) the 29 composing database of previous experiments published 

by my group, who received the same “go-fast” instruction but actually performed the 

movement with different velocities (238 to 1371°/s) and 2) 10 new subjects who 

performed the “go-fast” flexion at more than 500°/s and were then asked to “go-slow” 

at about 50% of their initial speed. Data from the first group allowed testing the 

correlation between APA latency and movement speed, while those from the second 

group the effect of movement instruction on APA latency. Moreover, since the 

velocity range was similar in the two groups, a last comparison was drawn between 

subjects moving at the same speed but obeying to different instructions: go fast or go 

slow. Results from these experiments would thus allow to properly distinguishing if 

APA latency depends on movement velocity, movement instruction or both. 

Therefore, the observed oneness of the motor command for both APAs and 

prime mover recruitment, let my group to hypothesize that a correct tailoring of the 

APA chain on the ensuing voluntary movement might have a role in the enhancement 

of the accuracy of the voluntary movement. Indeed, one of the aims of the present 

thesis is to search for a direct proof of the relationship between the APAs amplitude 

and the endpoint of a target reaching movement. Consequently, it is shown that a 

small pointing error specifically underlies changes in APAs amplitude with no 
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changes in the prime mover activation, thus sustaining the hypothesis that a successful 

and accurate pointing movement relies upon a specific tuning between APAs and 

prime mover activation (see Caronni & Cavallari 2009a). 

Finally, it is illustrated that 12-hours of wrist and fingers immobilization is 

able to provoke changes in the cortical organization of anticipatory postural 

adjustments, developing in the elbow and the shoulder, accompanying a brisk flexion 

of the index finger. Since Moisello et al. (2008) reported that 12h of immobilization 

are sufficient to modify the kinematic variables of a voluntary movement, the results 

illustrated in the present thesis would provide new evidences that the voluntary 

movement and the associated anticipatory postural adjustments are strongly correlated, 

although scaled in different manners.  

In the following section, data and methods of the experiments performed, and the 

results will be compared with the working hypothesis and the available literature in 

the Conclusions section.  

 

 

 

 



38 
 

Experimental Procedure 
 

The experiments of the present thesis share some methodological features, 

which will briefly reviewed here and will be detailed in the article section. 

In all works the electromiographical activity of prime mover and postural muscles 

were recorded with couples of pre-gelled surface electrodes (H124SG, Kendall 

ARBO, Tyco Healthcare, Neustadt/Donau, Germany) carefully positioned on each 

muscle belly. EMG was AC amplified (IP511, Grass Technologies®, West Warwick, 

Rhode Island, USA; gain 2–10 k) and band-pass filtered (30–1000 Hz, to minimize 

both movement artefacts and high frequency noise). In five of these studies, subjects 

was sitting on a chair with the elbow flexed at 90° and the prone hand in axis with the 

forearm. Subjects were asked to flex their index-finger at the metacarpophalangeal 

joint after an acoustic signal. Flexion-extension of metacarpophalangeal and elbow 

joints was recorded by strain-gauge goniometers (mod. F35 and SG110, respectively, 

Biometrics Ltd®, Newport, UK) fixed to the respective joint. Goniometric and EMG 

signals were A/D converted at 2 kHz with 12 bit resolution (PCI-6024E, National 

Instruments®, Austin, Texas, USA), visualized online and stored for further analysis. 

In three works, a control condition in which healthy subjects performed a sequence of 

self paced index-finger flexions was compared to recordings obtained during and/or 

after an experimental condition. Among these: i) a tDCS stimulation, with the active 

electrode placed on the supplementary motor area (SMA), ii) a cast immobilization of 

the metacarpo-phalangeal and radio-carpal joints for 12 hours, and iii) ischemic block 

of the forearm, which abolish the voluntary EMG activity in the prime mover Flexor 

Digitorum Superficialis. In one experiment, recordings from healthy subjects were 

compared with an equal number of ataxic patients with a cerebellar syndrome. In 

Esposti et al. (2014), the effect of movement velocity vs. movement instruction was 

analysed in two groups of subjects: one composed by our database of subjects, who all 

were asked to briskly flex the index-finger (“go-fast” instruction), and the other who 
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were asked to perform the “go-fast” finger flexion and then asked to “go-slow” at 

about 50% of their initial speed.  

Finally, in Caronni et al. (2013) subjects were asked to perform a pointing 

movement with their right arm. The task was performed while wearing and after 

doffing prismatic goggles (Fresnel 3M® Press-On, 20 dioptres) which produced a 

rightward shift of the binocular eye-field of about 11°. This corresponds to a 12cm 

linear shift of the target, placed at 60cm (about one arm length) in front of the subject. 

While wearing prisms, subjects realized the shifting in the binocular eye-field only 

when they performed the first pointing movement. Indeed, only when the finger 

reached the Plexiglas screen they became aware they had missed the target, also 

because the fingertip underwent the same visual position bias as the target itself. 

Electromyographic (EMG) activity, right upper-limb movement, target position and 

the forces exerted onto the ground were synchronously recorded. A 3D motion 

analysis system (SMART-D, BTS®; 6 infrared cameras) was used to record both the 

right upper-limb movement and the target position. A dynamometric platform 

(AMTI® OR6-7) was used to record forces (F) and moments (M) discharged to the 

ground with reference to the above axes. Data acquisition was accomplished by the 

SMART-D workstation. 
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Results 
 

The current thesis aim to shed further light on the neural control of the 

anticipatory postural command and provide experimental evidences that APAs and 

prime mover activation are seemingly part of a unique motor command, which drives 

the muscular chain starting from the fixation point(s) and including the moving 

segment and permits an accurate execution of a voluntary movement. A detailed 

description of the results obtained in each work could be found in the article section. 

In Bolzoni et al. (2012), it has been shown that this procedure interferes in 

parallel with the postural muscles which are recruited to stabilize the limb. Since 

Moisello et al. (2008) showed that 12h of immobilization are able to interfere with the 

kinematic variables of a voluntary movement, this result strengthens the idea of a 

shared command for both the  control of APAs and voluntary movement.  

In Caronni et al. (2013), it has been shown that out-of-target movements were 

associated to changes in the APAs size, not in prime mover recruitment, as it might be 

expected. This observation reinforces the hypothesis that a successful on-target 

pointing movement relies upon a specific tuning between APAs and prime mover 

activation.  

In Bruttini et al. (2014a) it has been illustrated that the intra-limb APAs 

stabilising the arm when producing a brisk index-finger flexion were still present 

under an ischemic block of the forearm that suppressed the prime mover EMG, the 

finger movement and the related mechanical perturbation. Given the well-known 

ability of the CNS to adapt APAs to changes in the postural demand of the motor task 

within few movement repetitions (Cordo and Nashner 1982; Hall et al. 2010), one 

could have expected that in these conditions APAs were suppressed, since 

unnecessary and uneconomical. Intriguingly, even after 60 movement trials, 

accomplished in more than 10 minutes, the CNS did not adapt APAs to the new 

postural demand, failing to properly suppress the postural chain. Instead, in the same 
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work, it was illustrated that that APAs were deeply reduced when adding a new 

fixation point at the wrist, i.e. closer to the voluntary moving segment, witnessing the 

well-known ability of the CNS to adapt APAs to the environment, and in particular 

according to the available fixation points. 

In Bruttini et al. (2014b), it has been demonstrated that when performing a 

brisk index-finger flexion, cerebellar subjects showed a timing-disruption of intra-limb 

APAs, while their pattern (excitation in TB; inhibition in BB and AD) was 

unmodified. These data sustain the hypothesis that the cerebellum is essential in 

tailoring the timing of APAs with respect to the prime mover activation, and open the 

question whether the cerebellar dysmetria may stem from an erroneous timing of 

APAs. 

Finally, in Esposti et al. (2014) it has shown that the key factor which 

determines the modification in APA latency when performing a voluntary movement 

is the change in the movement instruction (“go-fast” vs. “go slow”), not its actual 

velocity. This conclusion stems from three observations: i) there is no correlation 

between APA latency and movement speed when subjects obeyed the same 

instruction, ii) APAs were delayed when subjects reduced their movement velocity 

because they obeyed to a go slow instruction, iii) given a certain speed APA latency 

depend on the instruction since go fast subjects showed earlier APA than go slow. In 

other words, APAs seem to be tailored to the expected perturbation, much more than 

on the real one, strengthening the idea that the postural and prime mover muscles are 

driven by a functionally unique command. 
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Article section 
The studies presented in this thesis have been also exposed in several 

congress, both as short talk posters and as oral presentations. Specifically: 

Short talk posters 

“Changes in “intra-limb” anticipatory postural adjustments after a short-term 

immobilization of both wrist and fingers”, 8 th International Brain Research 

Organization (IBRO) World Congress of Neuroscience, Firenze, 14-18 July, 2011. 

“Immobilization of the hand affects arm and shoulder postural control”, 8 th Fens 

Forum of Neuroscience, Barcelona, Spain, 14 – 18 July, 2012. 

“Disrupt of anticipatory postural adjustments in cerebellar ataxia”, ESF-FENS Forum: 

The Neurobiology of Action, Stresa (VB), 20-24 October 2013. 

“The ischemic block of the forearm abolishes index-finger's movement but not its 

associated APAs”, 9th FENS Forum of Neuroscience, Milan, 5-9 July, 2014. 

Oral presentations 

 “Hand immobilization affects arm and shoulder postural control”, Annual Meeting of 

Young Researchers in Physiology (YRP 2012), Sestri Levante (GE), 1 June, 2012.  

 “Ischemic block of the forearm abolishes finger movements but not their associated 

anticipatory postural adjustments”, Young Researchers Meeting, Anacapri (NA), 21-

24 May, 2013. 

 “Ischemic block of the forearm abolishes finger movements but not their associated 

anticipatory postural adjustments”, 64° Congresso nazionale SIF, Portonovo (AN), 18-

20 September, 2013. 
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Abstract It is a common experience, immediately after

the removal of a cast or a splint, to feel motor awkward-

ness, which is usually attributed to muscular and joint

immobilization. However, the same feeling may also be

perceived after a brief period of immobilization. We pro-

vide evidence that this last effect stems from changes in the

cortical organization of the focal movement as well as in

the associated anticipatory postural adjustments. Indeed,

these two aspects of the motor act are strongly correlated,

although scaled in different manners. In fact, they are both

shaped in the primary motor cortex, they both undergo

similar amplitude and latency modulation and, as we will

show, they are both impaired by the immobilization of the

lone prime mover. Neuromuscular effects of limb immo-

bilization are well known; however, most papers focus on

changes occurring in the pathways projecting to the prime

mover, which acts on the immobilized joint. Conversely,

this study investigates the effect of immobilization on

anticipatory postural adjustments. Indeed, we show that

12 h of wrist and fingers immobilization effectively modify

anticipatory postural adjustments of the elbow and the

shoulder, that is, those joints not immobilized within the

fixation chain. Accordingly, the motor impairment

observed after short-term immobilization most likely stems

from the unbalance between anticipatory postural adjust-

ments and the focal movement.

Keywords Motor control � Posture � APAs �
Immobilization � Human

Introduction

It is well known that joint immobilization leads to signif-

icant modification to the muscular and nervous system.

Over the past few decades, several authors have docu-

mented modifications in skeletal muscle properties such as

atrophy (White et al. 1994; Hather et al. 1992), increasing

in the intramuscular connective tissue (Józsa et al. 1990)

and reduction in the maximal voluntary contraction

strength (Veldhuizen et al. 1993; Hortobàgyi et al. 2000)

after cast immobilization.

In contrast, only a few papers have examined the neural

adaptations to immobilization. Liepert et al. (1995) showed

that immobilization leads to a reduction of the cortical area

of the inactivated muscle, while Facchini et al. (2002)

demonstrated a decrease in the cortical excitability, without

affecting nerve or muscle excitability, after only 4 days of

motor restriction. Huber et al. (2006) found that these

changes may even occur after 12 h of immobilization.

Moisello et al. (2008) demonstrated that short-term

immobilization affects inter-joint coordination by acting on

feed-forward mechanisms, while Avanzino et al. (2011)

showed that a brief period (10 h) of right-hand immobili-

zation decreased the excitability of left primary motor

cortex and reduced interhemispheric inhibition from left-

to-right hemisphere. Finally, Langer et al. (2012) illustrated

that the left cortical thickness of the sensorimotor cortex

changed during right arm immobilization.

We hypothesize that postural control, and especially

anticipatory postural adjustments (APAs), may play a key

role in the process leading to the motor impairment induced

by immobilization. In fact, APAs are considered intimately

coupled to several kinematics aspects of the primary

movement, such as speed and trajectory (Kaminski et al.

1995; Pozzo et al. 2002; Bortolami et al. 2008; Kim et al.
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2009). Recently, it has also been described that APAs may

either be openly manifest or subliminal for motor effects in

resting muscles (Caronni and Cavallari 2009b). Although

in the latter case generation of the APAs command seems

to be uneconomical, it highly simplifies and speeds up the

postural control, which only requires a gain adjustment at

each potential fixation chain (Esposti and Baldissera 2011).

This result also confirms two previous observations in

which cortical excitability of resting hand movers has been

shown to fluctuate under threshold for the motoneuronal

firing when the ipsilateral foot is voluntarily oscillated

(Baldissera et al. 2002) and in which the ‘‘hidden effect’’

develops in an overt APA once the hand is recruited in a

postural act (Baldissera and Esposti 2005).

In the present paper, a simple paradigm of index finger

flexion and the related APAs chain was studied before and

after applying a splint to the metacarpophalangeal and

radiocarpal joints for 12 h. Indeed, we have recently shown

(Caronni and Cavallari 2009a) that even a gentle index

finger flexion is preceded by a complex fixation chain,

which distributes to several upper limb muscles. In that

paper, we predicted that the central activity supporting

APAs might be intimately coupled to voluntary movement,

also when its effect on motoneurons is subliminal. That

expectation has been confirmed by showing that when a

postural muscle is not explicitly recruited, an excitatory or

an inhibitory APAs activity develops along with the pri-

mary motor command (Caronni and Cavallari 2009b).

The aim of this work is to investigate whether a brief

immobilization affects the postural control performance as

well as the primary movement. If so, the hypothesis of the

strict parallelism between APA control and the focal

movement would be confirmed.

Materials and methods

Experiments, carried out in 5 male and 5 female adult

volunteers, were approved by the Ethical Committee of the

University of Milano, School of Medicine, in accordance

with the standards laid down in the 1964 Declaration of

Helsinki. All subjects gave a written consent to the pro-

cedure, after being informed about the nature of the

experiments; none of them had any history of neurological

disease. Their mean (±SD) anthropometric character-

istics were age, 29.4 ± 9.4 years; weight, 64.8 ± 14.2 kg;

height, 169 ± 10 cm; index finger length, 9.2 ± 0.7 cm;

and arm length, 76.9 ± 7.1 cm.

Experimental procedure

The subject was sitting in a chair with his dominant arm

lying along the body, the elbow flexed at 90�, and the prone

hand in axis with the forearm. The index finger was kept

extended and in contact with a proximity switch (CJ10-

30GK-E2, Pepperl and Fuchs�, Mannheim, Germany), so

that the metacarpophalangeal joint angle was about 180�,

all other fingers hanging. Subjects had their eyes open

throughout the whole experiment and were explicitly asked

to keep their back supported, the upper limb still, and both

feet on the ground throughout the experiment. The chair

was height-adjustable and the proximity switch screwed on

an articulated arm (143 MAGIC ARM ? 035 Superclamp

Kit, Manfrotto�, Cassola, Italy); both were adapted to the

different body dimensions of the subjects. A wrist weight

of 0.5 kg (Domyos Gym Weight, Decathlon�, Villeneuve

d’Ascq, France) was then wrapped around the distal end of

the forearm. The subject position was always visually

controlled by the experimenter.

Subjects were asked to flex their index finger at the

metacarpophalangeal joint so as to gently tap and rest on a

flat surface. Each movement was self-paced and performed

after an acoustic signal. The time between the beep and the

movement onset varied according to the subject will. This

procedure was adopted to exclude any reaction time.

In each experiment, index finger flexion was performed

120 times, divided into 4 sequences of 30 movement trials.

The 30 trials were accomplished in a temporal window of

about 2 min, and then the subject had time to rest (about

3 min) before undergo a new sequence. Subjects never

complained about fatigue.

Movement and EMG recordings

The onset of the fingertip movement was monitored by the

proximity switch. Flexion–extension of metacarpophalan-

geal and elbow joints was recorded by strain-gauge goni-

ometers (mod. F35 and SG110, respectively, Biometrics

Ltd�, Newport, UK) fixed to the respective joint. Angular

displacements were DC-amplified (P122, Grass Technolo-

gies�, West Warwick, Rhode Island, USA), A/D converted

at 2 kHz with 12-bit resolution (PCI-6024E, National

Instruments�, Austin, Texas, USA), and stored. Goniom-

eter calibration was undertaken before each experimental

session.

Couples of pre-gelled surface electrodes, 24 mm apart

(H124SG, Kendall ARBO, Tyco Healthcare, Neustadt/

Donau, Germany), were used to record the EMG signal

from the prime mover Flexor Digitorum Superficialis

(FDS) and from the following muscles that had an antici-

patory postural activity: Biceps Brachii (BB), Triceps

Brachii (TB), and Anterior Deltoid (AD). A good selec-

tivity of the EMG recordings was achieved both by a

careful positioning of the electrodes and by checking that

activity from the recorded muscle, during its phasic con-

traction, was not contaminated by signal from other
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sources. FDS activity was selectively recorded by posi-

tioning the electrodes on its course in the distal third of the

forearm. To probe both excitatory and inhibitory APAs, the

subject was requested to maintain a constant level of EMG

activation in the BB muscle against the 0.5 kg weight

suspended to the distal end of the forearm. The EMG was

AC-amplified (IP511, Grass Technologies�, West War-

wick, Rhode Island, USA; gain 2–10 k) and band-pass

filtered (30–1000 Hz, to minimize both movement artifacts

and high-frequency noise), A/D converted at 2 kHz, 12-bit

(PCI-6024E), visualized, and stored for further analysis.

Mmax-wave recording

The amplitude of the surface EMG reflects the impedance

of the structures interposed between the electrodes and the

muscle (skin and fat). To exclude impedance variability

from subject to subject, EMG amplitude was normalized to

the maximal motor response (Mmax) evoked by orthodromic

nerve stimulation (S8800 stimulator ? SIU5 isolation unit,

Grass Technologies�, West Warwick, Rhode Island, USA).

Mmax was recorded at the beginning of each experiment.

The subject was seated with both arms at sides and muscles

relaxed; the experimenter positioned the stimulating anode

dorsal to the clavicle and the cathode in the underarm. The

M-wave was recorded through the same pre-gelled elec-

trodes used during the experiment. The intensity of stimu-

lation (duration 0.8 ms) was gradually increased, by

controlling the resulting M-wave on an oscilloscope. Once

exceeded the intensity necessary to elicit Mmax, the track

was acquired at 10 kHz, 12 bits (PCI-6024E), and stored.

M-waves were measured peak-to-peak in mV.

Immobilization

At the end of the first part of the experiment (session PRE),

performed during the morning hours, the subject was dis-

connected from the instruments, but the pre-gelled elec-

trodes and the electrogoniometers were left on the skin.

In the late afternoon, the metacarpophalangeal and

radio-carpal joints were then immobilized by a splint made

of synthetic plaster (Dynacast, BSN medical�, Hamburg,

Germany), closed by an elastic bandage, whose length was

equal to the distance between the distal ends of the fingers

and the proximal third of the forearm. The splint kept wrist

and fingers in mid-range (neutral) position. Anyway, this

apparatus allowed flexion–extension and pronation–supi-

nation at the elbow level.

The subject was then free to return to his/her normal

daily activities. After 12–14 h, that is, during the succes-

sive morning, the splint was removed and the subject again

performed 4 sequences of 30 finger flexions (session

POST), followed by the evaluation of the Mmax.

Data analysis

In each session, the 120 EMG traces of the prime mover

and those simultaneously recorded from the postural

muscles were digitally rectified and integrated (time con-

stant: 25 ms). Traces collected from each recorded muscle

were then averaged in a fixed temporal window (-2000 to

?300 ms from the onset of index finger flexion, detected

by the proximity switch). The period from -1500 to

-1000 ms, free from APAs, was utilized to calculate a

mean reference level that was subtracted from for each

EMG trace.

In each experiment, latency and amplitude of the pos-

tural activity were measured off-line on the averaged EMG

trace. The onset of an effect in the postural muscle was

identified by a software threshold set at ±2 SD of the

reference signal level and visually validated. Latency of the

APA was referred to the movement onset, thus assuming

negative values. APA amplitude was measured as mean

level of the trace in the temporal window from APA to

movement onset and normalized to Mmax. In the same

temporal window, for each subject, the SD resulting from

averaging the EMG traces was used to estimate their

within-session variability. Pooled within-session variability

for each muscle was then computed as the RMS of the

individual values.

To assess whether APAs well balanced the reaction

forces of the primary movement, the peak-to-peak angular

excursion of the elbow joint was measured from the onset

of finger flexion to the moment when flexion started to be

braked, that is, when its acceleration zeroed.

All comparisons between the two experimental sessions

were performed either by paired t tests (session PRE vs.

session POST) or by a repeated measures ANOVA with

factors muscle (BB vs. TB vs. AD) 9 session (PRE vs.

POST).

Results

The aim of this paper is to assess whether a 12-h immo-

bilization of a segment changes in parallel the circuits

controlling the activation of both the prime mover muscle

(responsible for a given movement) and the postural

muscles, which are recruited to stabilize the limb.

APAs prior to index finger flexion with the hand prone

Figure 1 shows the pattern of APAs, observed in a repre-

sentative subject, when an index finger tap is performed.

The activation of the prime mover FDS was constantly

preceded by APAs at the elbow level: a clear inhibition of

BB EMG was mirrored by a facilitation of TB. These two
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effects were similar for both timing and (normalized)

amplitude. An important anticipatory reduction in the EMG

activity could also be observed in the more proximal AD

muscle. Thus, the reciprocal modulation at the elbow and

the inhibitory effect at the shoulder would in fact coun-

teract both the arm flexion and the scapular elevation,

which is developed when the index finger is flexed, so

that the full APA chain stabilizes the more distal joints

(Caronni and Cavallari 2009a).

APAs after 12-h immobilization: EMG recordings

Figure 1 reports also the comparison of the rectified and

integrated EMG traces recorded before (PRE) and after

(POST) immobilization. It is apparent that in both condi-

tions, activation of the FDS muscle, which starts about

14 ms before the index finger flexion, is clearly preceded

(by about 30 ms) by a major postural inhibitory activity in

BB and AD muscles, which is almost synchronous to an

excitatory postural adjustment in TB muscle. Note, how-

ever, that in the time window between APAs and move-

ment onsets, the inhibition of BB and AD is increased after

immobilization, while the activity remains unchanged in

FDS; on the other hand, TB excitation is reduced. These

data testimony that a short-term immobilization of the

distal joints interferes with the motor program that gener-

ates the proximal components of the postural control.

The effect of immobilization has been regularly

observed, although to varying degree, in all ten subjects.

Figure 2b shows the mean amplitude of the APAs,

expressed as a percentage of the average value of the

maximum motor-evoked potential (Mmax) recorded in the

two sessions. Figure 2a shows that the average level of

FDS muscle activation does not reveal significant changes

(t9 = 1.46, P = 0.18), before and after immobilization.

The average inhibitory effects on BB and AD and excita-

tion on TB are instead compared on the right. A two way,

muscle x session ANOVA with repeated measures showed

a significant main effect for both factors (muscle: F2,18 =

18.65, P \ 0.0001; session: F1,9 = 14.73, P = 0.004) and

the absence of any interaction (F2,18 = 0.23, P = 0.79).

Thus, after immobilization of the wrist, inhibition of BB

and AD significantly increased (?19.4% and ?30.3%,

respectively) and excitation of TB significantly decreased

(-36.0%). The only significant Tukey’s post hoc tests are

those comparing excitation in TB versus inhibition in BB

and AD. Pooled within-PRE and within-POST session

variability (in %Mmax) was 1.64 and 1.40 in FDS, 0.23 and

Fig. 1 Intralimb APAs change

after short-term immobilization.

Average recordings in a

representative subject before

(PRE, white) and after (POST,

black) immobilization. When

rapidly flexing the index finger

(Flexor Digitorum Superficialis,

FDS, prime mover), the arm

equilibrium is preserved thanks

to APAs (shaded area), which

are excitatory in Triceps Brachii

(TB) and inhibitory in Biceps

Brachii (BB) and Anterior

Deltoid (AD). After 12-h

immobilization, FDS activation

preceding the movement onset

and index finger movement was

unchanged. Instead, inhibitory

APAs in BB and AD apparently

increased, while excitatory APA

in TB was marginally

decreased. The changes in the

postural chain lead to a less

effective fixation of the elbow

joint, which showed a larger

displacement during index

finger acceleration
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0.25 in BB, 0.26 and 0.16 in TB, and 0.26 and 0.29 in AD,

respectively.

The time course of the effects was similar in the two

experimental sessions. Figure 3 shows the average latency

of the APA onset in the individual muscles: note that EMG

activation in the prime mover is constantly preceded by the

APA in BB, TB, and AD muscles.

APAs after 12-h immobilization: goniometric

recordings

The clear changes observed in the APAs in response to

immobilization are evidently expected to cause an altered

fixation of the proximal joints, leading to a less accurate

execution of the finger flexion. The kinematics conse-

quences induced by immobilization were easily highlighted

by comparing the angular excursion of the elbow recorded

in two experimental sessions. Figure 2c shows that, after

removing the plaster, the amplitude of elbow excursion was

significantly higher (0.798� ± 0.12� vs. 0.628� ± 0.11�;

t9 = 2.55, P = 0.031).

Control measurements

Table 1 reports the control measurements concerning the

substantial stability of the amplitude and duration of the

index finger flexion; the amplitude of the Mmax waves and

the level of EMG activity in the muscle that receive inhi-

bition. For all parameters, statistics showed no difference

between the PRE- and the POST-immobilization values.

This will exclude changes in the kinematics parameters of

the movement, in the interface between electrodes, skin,

Fig. 2 Amplitude of voluntary activation in FDS, of APAs in BB, TB

and AD, and of elbow displacement, before (PRE, white) and after

(POST, black) immobilization. Mean values ± SEM. Paired t tests

found no PRE versus POST difference in FDS activation, but a

significant increase of APAs in BB and AD. The change in TB did not

reach significance. APAs changes lead to a significant increase of

elbow displacement

Fig. 3 Timing of FDS voluntary activation and of APAs in BB, TB,

and AD before (PRE, white) and after (POST, black) immobilization

Mean values ± SEM. Paired t tests showed no PRE versus POST

differences. Time 0 marks the onset of finger flexion
Table 1 Control measurements

PRE POST t9 P

Finger movement

amplitude (�)

46.6 ± 3.4 45.6 ± 3.2 0.92 0.38

Finger movement

duration (ms)

129.4 ± 15.0 124.4 ± 15.0 1.32 0.22

Mmax in FDS (mV) 1.8 ± 0.3 1.7 ± 0.3 0.51 0.62

Mmax in BB (mV) 3.8 ± 0.9 3.2 ± 0.6 0.72 0.49

Mmax in TB (mV) 2.5 ± 0.4 2.6 ± 0.4 0.57 0.58

Mmax in AD (mV) 2.3 ± 0.3 2.1 ± 0.3 1.12 0.29

Background EMG level

in BB (%Mmax)

0.9 ± 0.2 1.0 ± 0.3 0.88 0.40

Background EMG level

in AD (%Mmax)

1.0 ± 0.3 1.1 ± 0.3 1.03 0.33

Amplitudes and durations of index finger movement, amplitude of

Mmax waves, and reference EMG level in BB and AD (which receive

inhibition). Mean values ± SEM. Paired t tests found no differences

in PRE versus POST values, excluding that the changes in APAs size

could be ascribed to a difference in movement kinematics, a change

in skin impedance or a difference in the number of recruited

motoneurons
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and muscles and in the level of background motoneurons

activity recruited in the two situations.

Discussion

The aim of this study was to determine whether a short-

term immobilization (12 h) interferes in parallel with both

the activation of the prime mover muscle, responsible for a

given movement, and with the postural muscles that are

recruited to stabilize the limb. For this purpose, a known

experimental paradigm was used (Caronni and Cavallari

2009a), in which index finger flexion promoted by the FDS

muscle evokes APAs in BB, TB, and AD. To the best of

our knowledge, this is the first paper that shows that a

short-term immobilization interferes with the control of the

postural muscles. In the past, Moisello et al. (2008) have

demonstrated that short-term immobilization effectively

modifies the focal movement concerning the sole kinematic

variables. Our results, instead, do not show a modification

to the focal movement kinematics (controlled with a

goniometer), simply because subjects were explicitly asked

to perform finger flexion in a way that the movement was

mechanically comparable before and after immobilization.

After wrist immobilization, inhibitory APAs in BB and

AD muscles were increased, while facilitation of the TB

muscle was decreased; this was also paralleled by an

increase of the elbow excursion. The data presented here

are in agreement with those reported by Moisello et al.

(2008) in which immobilization was shown to produce

changes in the coordination of adjacent joints leading to a

decline in the accuracy of the trajectory, and ultimately to a

scarce precision of the voluntary movement, similar to that

already described in patients with proprioceptive deaffer-

entation (Ghez et al. 1995; Gordon et al. 1995; Sainburg

et al. 1995). However, our results disclosed that the tra-

jectory impairment has to be attributed to focal as well as

postural components of the movement. Few days of

immobilization seem to decrease the somatosensory cortex

excitability (Facchini et al. 2002), but according to Huber

et al. (2006) even 12 h of immobilization were already

effective in decreasing the amplitude of both the somato-

sensory and motor evoked potentials, suggesting that a

synaptic depression has developed in the cortex. According

to Huber, the short-term immobilization lessens the ampli-

tude of the P45-wave in median somatosensory evoked

potentials, which represents the processing of the proprio-

ceptive information in the sensory-motor areas (Allison et al.

1992). Moreover, the P45 reduction was closely related with

the inaccuracy of voluntary movement. As a whole, these

authors suggested that short periods of immobilization

trigger a synaptic depression upon the primary sensory-

motor cortical representations of the immobilized segment.

We propose that in a situation of synaptic depression of the

above sited areas, to obtain a quantitatively similar voluntary

movement before and after immobilization (as we got in the

present study) an increase in the central voluntary command

is needed.

Since APAs are scaled to prime mover activation (Aruin

and Shiratori 2004), a parallel change should then occur in

APAs too, but this would lead to a significant increase of

both excitatory APAs in TB and inhibitory APAs in BB.

The unbalanced effect showed in the antagonistic muscles

BB and TB suggests, in agreement with the results of

Facchini et al. (2002), that immobilization triggers a tonic

enhancement of inhibitory drive involving not only the

cortical representation of the immobilized joint but also the

adjacent areas. In BB, in which a tonic voluntary drive

maintains the elbow at the requested 90�, the tonic

enhancement of inhibition that might decrease the EMG

background level and affect the elbow angle is instead

compensated by a comparable increase of the tonic vol-

untary drive. In this condition, the increase in central

commands for the focal movement and for the associated

APAs (required for overcoming the depression of the FDS

representation) would simply lead to an increased inhibi-

tory APA in BB. On the other side in TB, which is at rest

before the movement, the enhancement of inhibition would

not affect the background EMG level but would offset the

increase in the central commands, thus affecting the

excitatory APA. This tonic enhancement of inhibition may

stem from an increased intracortical inhibition, as observed

after immobilization by Clark et al. (2010), but may as well

come from an increased cerebellar activity.

Our results deserve some further brief comments. First,

the reciprocal effect on biceps (more inhibition) and triceps

(less excitation) may be due to the general increase of

descending inhibition distributing upon the two motoneu-

ronal pools, but may as well as be the expression of a

change in spinal reciprocal inhibitory circuits (Katz et al.

1991), which are known to be fed by cortico-spinal pro-

jections (Cavallari et al. 1984; Kudina et al. 1993). How-

ever, the first hypothesis seems to be preferred, taking into

account that AD activity is also more inhibited and spinal

reflexes seems unmodulated during the whole period of

motor preparation (Caronni and Cavallari 2009b). Second,

a series of control measurements allows us to exclude that

other factors may have influenced our results. In particular,

the constancy of Mmax in the PRE and POST sessions

revealed a substantial stability of the recording apparatus

all along the 12-h period, as observed also by Facchini

et al. (2002) after 3 days of immobilization. Moreover,

since movement amplitude and duration may affect the

precision of the movement itself as well as the character-

istics of APAs (Lee et al. 1987; Aruin and Shiratori 2004),

it has also been verified that the kinematics of index finger
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flexion did not change in the two experimental conditions.

Last, the level of the background EMG activity in BB and

AD was found to be analogous in the two sessions, the

sensitivity of the pool to facilitation or to inhibition being

thus comparable in the two situations (Crone et al. 1990).

Seki et al. (2001a, b) reported that, after immobilization,

the properties of the muscle underwent changes in the ratio

between fast and slow muscle fibers, but these changes

took place only after 3–4 weeks. In animal studies,

researchers have also shown that 12 h of decreased muscle

activity produced some disturbances in intracellular levels

of messenger RNAs for members of the aspects of

metabolism and muscle structure, but these changes needed

several weeks to produce changes at the level of the muscle

fiber (Bey et al. 2003). The changes in motor performance

found in our study occur, instead, too early to be related to

changes in muscle structure.

In conclusion, differently from other papers (Brown and

Frank 1987), our work strengthens the argument that APAs

may be organized similar to voluntary movement: in fact,

although they may be scaled in a different manner, both are

shaped in the motor cortex (Caronni and Cavallari 2009b;

Petersen et al. 2009), undergo similar amplitude and time

modulations (Caronni and Cavallari 2009a), and, as shown

here, are affected in parallel by immobilization.

It is worth noting that, although the prime mover acti-

vation remains unchanged after the immobilization, the

trajectory described by the index finger is most likely

changed between the two sessions due to the modification

in the postural control that led to a less effective stabil-

ization of the proximal joint, as was suggested by the

mechanical model designed by Caronni and Cavallari

(2009a).
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Józsa L, Kannus P, Thöring J, Reffy A, Järvinen M, Kvist M (1990)

The effect of tenotomy and immobilisation on intramuscular

connective tissue. A morphometric and microscopic study in rat

calf muscles. J Bone Joint Surg Br 72:293–297

Kaminski TR, Bock C, Gentile AM (1995) The coordination between

trunk and arm motion during pointing movements. Exp Brain

Res 106:457–466

Katz R, Pénicaud A, Rossi A (1991) Reciprocal 1a inhibition between

elbow flexors and extensors in the human. J Physiol 437:269–286

Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2009) Anticipatory

adjustments of multi-finger synergies in preparation for self-

triggered perturbations. Exp Brain Res 174:604–612

Kudina L, Ashby P, Downes L (1993) Effects of cortical stimulation

on reciprocal inhibition in humans. Exp Brain Res 94:533–538

Langer N, Hänggi J, Müller NA, Simmen HP, Jäncke L (2012) Effects

of limb immobilization on brain plasticity. Neurology 78:

182–188

Exp Brain Res (2012) 220:63–70 69

123



Lee WA, Buchanan TS, Rogers MW (1987) Effects of arm

acceleration and behavioral conditions on the organization of

postural adjustments during arm flexion. Exp Brain Res

66:257–270

Liepert J, Tegenthoff M, Malin JP (1995) Changes of cortical motor

area size during immobilization. Electroencephalogr Clin Neu-

rophysiol 97:382–386

Moisello C, Bove M, Huber R, Abbruzzese G, Battaglia F, Tononi G,

Ghilardi MF (2008) Short-term limb immobilization affects

motor performance. J Mot Behav 40:165–176

Petersen TH, Rosenberg K, Petersen NC, Nielsen JB (2009) Cortical

involvement in anticipatory postural reactions in man. Exp Brain

Res 193:161–171

Pozzo T, Stapley PJ, Papaxanthis C (2002) Coordination between

equilibrium and hand trajectories during whole body pointing

movements. Exp Brain Res 144:343–350

Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb

dynamics in normal subjects and patients without propriocep-

tion. J Neurophysiol 73:820–835

Seki K, Taniguchi Y, Narusawa M (2001a) Effects of joint

immobilization on firing rate modulation of human motor units.

J Physiol 530:507–519

Seki K, Taniguchi Y, Narusawa M (2001b) Alterations in contractile

properties of human skeletal muscle induced by joint immobi-

lization. J Physiol 530:521–532

Veldhuizen JW, Verstappen FT, Vroemen JP, Kuipers H, Greep JM

(1993) Functional and morphological adaptations following four

weeks of knee immobilization. Int J Sports Med 14:283–287

White MJ, Davies CT, Brooksby P (1994) The effects of short-term

voluntary immobilization on the contractile properties of the

human triceps surae. J Exp Physiol 69:685–691

70 Exp Brain Res (2012) 220:63–70

123



Accuracy of pointing movements relies upon a specific

tuning between anticipatory postural adjustments and

prime mover activation

A. Caronni, F. Bolzoni, R. Esposti, C. Bruttini and P. Cavallari

Human Physiology Section of the DePT, Universit�a degli Studi di Milano, Milan, Italy

Received 23 October 2012,

revision requested 31 January

2013,

accepted 7 February 2013

Correspondence: P. Cavallari,

Human Physiology Section of the

DePT, Universit�a degli Studi di

Milano, 32, Via Mangiagalli, 20133

Milano, Italy.

E-mail: paolo.cavallari@unimi.it

Abstract

Aim: Equilibrium-perturbing forces associated with a voluntary upper-

limb movement can be strong enough to displace the whole-body centre of

mass. In this condition, anticipatory postural adjustments (APAs), develop-

ing in muscles other than the prime mover, are essential in maintaining the

whole-body balance. Here, we test the hypothesis that APAs preceding an

upper-limb target-reaching movement could play a role also in controlling

the movement accuracy.
Methods: Standing subjects (10) were asked to flex the right shoulder and

touch with the index fingertip the centre of a target positioned in front of

them. The reaching task was also performed while wearing and after dof-

fing prismatic lenses (shifting the eye field rightward). EMGs from differ-

ent upper- and lower-limb muscles and the mechanical actions to the

ground were recorded.
Results: (i) Before wearing prisms, subjects were very accurate in hitting

the target, and the pointing movements were accompanied by APAs in

quadriceps (Q) and tibialis anterior (TA) of both sides, and in right ham-

strings (H) and soleus (SOL). (ii) After donning prisms, rightward pointing

errors occurred, associated with a significant APA increase in right Q and

TA, but without changes in the recruitment of right anterior deltoid (prime

mover) and biceps brachii. (iii) These pointing errors were progressively

compensated in about 10 trials, indicating a sensorimotor adaptation, and

APAs returned to values recorded before wearing prisms. (iv) After doffing

prisms, pointing errors occurred in the opposite direction but changes in

APAs did not reach significance.
Conclusion: We propose that, besides preserving the whole-body balance,

APAs are also tailored to obtain an accurate voluntary movement.

Keywords anticipatory postural adjustment, human, pointing, prismatic

lenses, sensorimotor adaptation, voluntary movement.

Anticipatory postural adjustments (APAs) are known

to be unconscious muscular activities, preceding any

voluntary movement, aiming to prevent the segmental

and whole-body equilibrium disturbances caused by

the movement itself (see Massion 1992).

In a multilink structure as the human body, move-

ment may perturb the equilibrium because (i) the con-

traction of the prime mover exerts forces on both the

distal and the proximal tendon (typically, the former

transmits the intended movement, while the latter acts

on the posture of more proximal segments; Zatsiorsky

2002), (ii) the forces acting on one segment not only

arise from the pertinent muscles but also include the

‘interaction forces’ deriving from movement of other

distal segments (Hollerbach & Flash 1982) and

(iii) by changing the body geometry, movement

Acta Physiologica © 2013 Scandinavian Physiological Society, doi: 10.1111/apha.12081 111
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displaces the projection of the whole-body centre of

mass on the ground (CoM; e.g. Bouisset & Zattara

1987; see also the next paragraph).

The importance of proper whole-body stabilization

is immediately apparent when considering standing

subjects performing voluntary movements that involve

large masses. In such motor acts, the equilibrium-

perturbing forces would cause a whole-body imbalance,

by displacing the trunk and the whole-body CoM

(Bouisset & Zattara 1987, Bouisset & Do 2008, see

also Hess 1943). On the other hand, in those motor

tasks in which the whole-body balance is not threa-

tened, the importance of an accurate segmental stabil-

ization might look less obvious. In our previous

papers (Caronni & Cavallari 2009a,b), it has been

reported that when the index finger is flexed, an APA

chain develops in several upper-limb muscles to stabi-

lize the segmental equilibrium of the arm. According

to a mechanical simulation showing the consequences

of a poor APA control on the movement trajectory

(Caronni & Cavallari 2009a), we proposed that APAs

could be crucial to guarantee movement accuracy by

an appropriate stabilization of the proximal segments.

Further studies showed that a short-term immobiliza-

tion of the wrist and fingers leads to a APAs impair-

ment in proximal arm muscles, resulting into an

impaired fixation of the elbow joint (Bolzoni et al.

2012). Moreover, a growing body of evidence clarifies

the contribution of the proximal segments on both

movement trajectory and speed of distal segments

(e.g. Kaminski et al. 1995, Archambault et al. 1999,

Pigeon et al. 2000, Pozzo et al. 2002, Bortolami et al.

2008, Kim et al. 2009).

At our knowledge, information about the linkage

between APAs and accuracy of voluntary movements

may only be figured out from studies analysing the

pointing to targets of different size (e.g. Bonnetblanc

et al. 2004, Nana-Ibrahim et al. 2008, Bertucco &

Cesari 2010). Indeed, these studies show that Fitts’

law1 (1954) governs both the prime movement speed

and the associated APAs. This observation actually

provides an indirect suggestion that APAs are involved

in attaining the movement precision necessary to

accomplish the imposed accuracy constraint. How-

ever, APAs are known to be scaled according to

movement speed (Lee et al. 1987, Shiratori & Aruin

2007); thus, the linkage between target and APAs size

could then be just an epiphenomenon of the former

relationship.

Aim of the present study is to seek a direct proof of

the relationship between the APAs amplitude and the

endpoint of a target-reaching movement. A reaching

task was thus performed with the upper limb, before

and after donning prismatic lenses, which are known

to shift the binocular eye field and cause the subject to

miss the target (Redding et al. 2005). After some

movement repetitions, subjects adapted to the new

condition, compensating for the prisms effect and hit-

ting the target again. As a novelty, we will show that

the prism-induced pointing error specifically underlies

changes in APAs amplitude with no changes in the

prime mover activation, thus sustaining the hypothesis

that a successful and accurate pointing movement

relies upon a specific tuning between APAs and prime

mover activation (see Caronni & Cavallari 2009a).

Moreover, we also ruled out any bias caused by

changes in movement velocity because prismatic lenses

do not affect the target size, thus leaving the move-

ment speed unchanged.

Materials and methods

Ten right-handed subjects (four women) were engaged

(mean age � SD: 26.9 � 3.28 years). They reported

no history of orthopaedic or neurological disorder;

none of them reported a reduction in the visual acuity.

Each volunteer gave his/her informed consent to the

experiment. This study is conform with Good Publish-

ing Practice in Physiology (Persson & Henriksson

2011).

Motor task

Subjects stood barefoot on a force platform, with the

feet normally apart in a natural upright position, and

both upper limbs lying along the body. After an acous-

tic go signal, delivered every 5 s so as to mark the over-

all temporal cadence, subjects had to perform a self-

paced index-finger pointing movement, using right

shoulder flexion, which was as fast and accurate as

possible. Subjects never anticipated the go signal. A

variation of the ‘Belen’kii et al. (1967) has been adopted:

subjects were asked to point-and-touch a target placed

in front of them, watch the final position they attained

for no more than 1 s, return to the initial position at

their preferred speed and finally relax before starting a

new movement. The task was also performed while

wearing and after doffing prismatic goggles.

By monitoring the EMG traces during the experi-

ment, it was apparent that they returned to their base-

line within 3 s from the movement onset. The target

consisted in two lines drawn on a Plexiglas screen,

1 mm thick 9 2 cm long, one vertical and one hori-

zontal, so that its centre was clearly visible. The ante-

rior–posterior, vertical and lateral position of the

target was regulated for each subject: the target was

1Movement duration increases with movement amplitude and

decrease when the target size increases, i.e. when the accuracy

constraint loosens.
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positioned at the shoulder height on the subject’s mid-

line, one upper-limb length from the subject’s shoul-

der. Care was taken to align the subject’s sagittal

plane to the platform midline; feet position was then

marked on the platform and checked throughout the

experiment. Before starting each exercise, care was

taken that the CoP position (calculated online by the

SMART system) fell on the platform midline.

Experimental design

A couple of prismatic lenses (Fresnel 3M� Press-On,

St. Paul, MN, USA, 20 dioptres) were mounted on

conventional safety goggles to produce a rightward

shift of the binocular eye field of about 11°. This cor-

responds to a 12-cm linear shift of the target, placed

at 60 cm (about one arm length) in front of the subject.

While wearing prisms, subjects realized the shifting in

the binocular eye field only when they performed the

first pointing movement. Indeed, only when the finger

reached the Plexiglas screen, they became aware they

had missed the target, also because the fingertip under-

went the same visual position bias as the target itself.

Subjects were asked to close their eyes when donning

and doffing goggles and not to move their arms before

the new recording session started.

Each experiment was arranged into three sessions

of repeated target reaching: before donning

(BEFORE), while wearing (DURING) and after dof-

fing (AFTER) goggles with prismatic lenses. In each

session, 25 trials of the target-reaching task were per-

formed. Between two subsequent sessions, subjects did

rest for 5–10 min. Subjects donned the goggles just

before starting the DURING session and kept them on

throughout the following rest period. Goggles were

removed only right before starting the AFTER session.

No subject reported fatigue. They were allowed to

familiarize with the motor task by practicing, without

goggles, at least 15 target-reaching movements before

the first experimental session.

Recordings

In each experiment, electromyographic (EMG) activ-

ity, right upper-limb movement, target position and

the forces exerted onto the ground were synchro-

nously recorded.

Electromyographics were recorded from two mus-

cles of the right upper limb (anterior deltoid, AD;

biceps brachii, BB) and four muscles of both the right

and left lower limbs (quadriceps, Q; hamstring, H;

tibialis anterior, TA; soleus, SOL). For each muscle,

conventional disposable bipolar electrodes (1 cm

diameter) were glued 25 mm apart on the skin cover-

ing the muscle belly. Skin was cleaned with abrasive

cotton discs and alcohol. The EMG system was a set

of customized BTS pre-amplified electrodes (gain 910,

pass band 30–500 Hz), followed by GRASS IP511

amplifiers (total gain 1-10k).

A 3D motion analysis system (SMART-D, BTS�,

Garbagnate Milanese, Italy; six infrared cameras) was

used to record both the right upper-limb movement

and the target position. Reflecting spherical markers

(1.5 cm ∅) were taped to the dorsal aspect of the

metacarpophalangeal joint of the second finger, radius

distal end, olecranon and acromion. Reflective tape

was applied directly to the distal phalanx of the index

finger so as to resemble a hemispherical marker. This

avoided placing a marker directly on the fingertip,

which could interfere with the pointing movement.

This method allowed the kinematics acquisition device

to track the centre of the fingertip as all the other

markers, with the same accuracy (�0.5 mm). A posi-

tive deflection on the marker trace indicates a leftward

(x, right–left axis), forward (y, posterior–anterior axis)

or downward (z, up–down axis) displacement. To

identify target position, two hemispherical markers

were glued on the Plexiglas screen, equidistantly above

and below the target cross. Thus, target position was

recognized as the xyz coordinates of the ‘virtual’ mar-

ker placed midway on the line connecting the two.

A dynamometric platform (AMTI� OR6-7, Water-

town, MA, USA) was used to record forces (F) and

moments (M) discharged to the ground with reference

to the above axes.

Data acquisition was accomplished by the SMART-

D workstation. EMG and platform signals were A/D

converted at a sampling frequency of 1120 Hz, while

cameras sampling rate was 70 Hz. EMG, kinematics

and force signals were digitalized with 16-bit resolu-

tion and stored on a PC for offline measurements.

Data analysis

As stated above, subjects were asked to start the tar-

get-reaching movement with a right shoulder flexion.

Thus, AD muscle will be referred to as the pointing

prime mover.

Movement onset (0 ms) was identified as the time

when the y position trace of the elbow marker crossed a

threshold (set at the mean elbow position in the 500 ms

preceding the go signal +2 SDs) for at least 100 consec-

utive ms. Movement end was instead identified, by the

same threshold method, from the y coordinate of

the target ‘virtual’ marker, signalling the impact of the

index finger on the Plexiglas screen. Systematically,

timing measurements were visually checked and inde-

pendently confirmed by two of the authors (AC and

FB). The pointing movement was assumed to terminate

when the finger touched the Plexiglas screen.
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We define pointing error the distance between the

index-fingertip position on the screen and the target

(see, for example, Luaut�e et al. 2009, Chapman et al.

2010, Ronchi et al. 2011). For each trial, the horizon-

tal (x) and vertical (z) components of the pointing

error were measured. Movement onset was chosen as

reference point to leave enough time for APAs to fully

develop. Moreover, this reference allowed us to quan-

tify the amplitude and latency of the premovement

activation of AD and BB. In addition, this analysis

allowed quantifying APAs amplitude in their mechani-

cal actions on the ground, which develop together

with or even after the prime mover activation.

Platform recording analysis was conducted on the

three components of the forces exerted to the ground

(Fx, Fy and Fz), on the displacement of the centre of

pressure (CoPx, CoPy) and on the torque exerted

about the z axis passing through the CoP (Tz). The

position of the CoP and the value of Tz were derived

from the recorded platform signals; Tz was calculated

according to the following formula:

Tz ¼ Mzþ CoPy � Fx� CoPx � Fy ð1Þ
with Mz: moment about the vertical axis passing

through the platform centre; CoPx and CoPy: right–

left and posterior–anterior CoP coordinates in the

platform plane respectively.

CoP coordinates were calculated as CoPx = –My/

FzandCoPy = Mx/Fz; being Mx and My the moments

about the x and y axes passing through the centre of

the platform surface. For each trial, both EMGs and

platform recordings were re-aligned on movement

onset (0 ms). EMGs were rectified and then smoothed

by a running average (time window 35 ms).

In each session, analysis of EMG and platform

recordings was performed on trials 1–5 (1st BLOCK),

in which pointing error resulted to be significantly dif-

ferent among sessions, and trials 11–15 (2nd

BLOCK), in which the pointing error was similar in

the three sessions.

The EMG and the platform traces within each

block were then averaged to obtain a block mean

trace (BMT). For each muscle, BMTs were normalized

on the mean amplitude of the BMT recorded in the

1st BLOCK of the BEFORE session, thus allowing

comparison between EMGs recorded from different

subjects. Background activity (i.e. the mean amplitude

of the BMT from �1000 to �500 ms) was finally sub-

tracted from the EMG and platform BMTs. Voluntary

EMG onset in arm muscles and APA onset in postural

muscles, as well as in force platform traces, were iden-

tified as the time when the BMT crossed �2 SDs of

the mean background activity level and remained

above that threshold for at least 50 ms. All onset

timings were visually checked and independently

confirmed by two of the authors (AC and FB). APAs

amplitude, or amplitude of premovement activation in

AD and BB, was quantified as the mean amplitude of

the BMT in a time window arbitrarily set from �25

to 0 ms (see also Caronni & Cavallari 2009a). It is

also worth to note that in the great majority of

recordings (except for left Q in BEFORE), APAs and

prime mover activation level at the 0 ms corresponded

to the highest premovement amplitude, and that APAs

onset in EMG and platform recordings were, on aver-

age, much earlier than �25 ms. Data were analysed

by a custom-made software.

Statistical analysis

A two-way repeated-measures ANOVA, with prisms

(BEFORE, DURING and AFTER) and trials (1–25) as

factors, was applied to horizontal and vertical point-

ing errors. A similar test prisms (BEFORE, DURING

and AFTER) 9 blocks (1st and 2nd BLOCK) was also

applied to (i) the amplitude and timing of APAs, or of

premovement activation in AD and BB and (ii) the

mean movement duration of trials 1–5 and 11–15.

When ANOVA resulted in a significant main effect and/

or interaction, Tukey’s HSD test was used for post

hoc comparisons. Significance level was set at 0.05.

Results

Prismatic lenses induce pointing errors in a target-

reaching movement

Before wearing prismatic lenses, subjects were very

accurate in reaching the target: in each of them, the

index finger final position scattered within a circle of

15 mm radius from the target centre (white dots in

Fig. 1a,b). When the same movement was performed

while wearing goggles (Fig. 1b, black dots), the index

fingertip hit the Plexiglas screen to the right of the

target. However, within ten trials (prisms adaptation,

see Fig. 1c,d), pointing fell again within the 15-mm

circle. Pointing after goggles removal (Fig. 1b, grey

dots) caused the subject to hit to the left of the tar-

get and, also in this case, the error faded away

(recovery from prisms after-effect) after a few move-

ment repetitions.

The mean time course of the horizontal and vertical

components of the pointing error (H and V respec-

tively) for each of the three experimental conditions

(BEFORE, DURING and AFTER wearing prisms) is

detailed in Figure 1c,d. When subjects performed the

motor task before wearing prismatic lenses, neither

the mean H-error (2.0 � 1.6 mm, mean � SEM) nor

the mean V-error (0.9 � 1.0 mm) was different from

0 (one-sample t-test, P > 0.25 for both variables).
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When subjects performed the first target-reaching trial

while wearing the prismatic lenses, a large rightward

H-error occurred (�100.3 � 16.4 mm; P < 0.001),

while V-error was not different from 0 (�26.7

� 23.9 mm; P > 0.25). Also after doffing goggles, a

considerable H-error occurred (33.5 � 7.3 mm;

P < 0.001), but now all subjects ended the pointing to

the left of the target. Conversely, V-error (5.7

� 5.1 mm; P > 0.25) was again not different from 0.
Two-way ANOVA on H-error showed a significant

effect of both prisms (F2,18 = 26.19, P < 0.001) and

trials (F24,216 = 8.18; P < 0.001), as well as a significant

interaction (F48,432 = 14.92, P < 0.001). Post hoc

comparisons revealed that trials (i.e. time) had no

effect in the BEFORE session, while there was a signif-

icant difference between BEFORE and DURING ses-

sions for trials 1–5 (P always < 0.001) and, only for

trial 1, between BEFORE and AFTER (P < 0.002).

Note also that the adaptation process (trial 1–5 with

prisms) is considerably longer as compared to the

after-effect recovery (trial 1, after prisms). As a two-

way ANOVA showed no significant modification on

the V-error, the following analysis will focus on the

H-error only.

(a) (b)

(c) (d)

Figure 1 (a) Final position of the index finger (average of all subjects) in each of the 25 pointing movement trials performed

BEFORE wearing goggles with prismatic lenses (white dots). All points fell within a circle of 15 mm radius from the target cen-

tre (grey dashed circle). (b) Final position of the index finger (average of all subjects) in the first six pointing trials, performed in

the three successive experimental sessions (BEFORE, DURING and AFTER wearing prismatic goggles). While wearing prisms

(DURING, black dots), the index fingertip missed the target and pointing terminated on its right. After doffing prisms (AFTER,

grey dots), the error reversed and pointing terminated on the target left, signalling an after-effect. (c, d) Average horizontal and

vertical pointing errors (�intersubject SEM) in each movement trial for the three experimental sessions (same labels and symbols

as in b). The rightward horizontal pointing error observed in the DURING session recovered, in about 10 trials, to values com-

parable to those of the BEFORE session. The leftward error in the AFTER session had a lower amplitude than that in the DUR-

ING one and recovered more quickly. A prisms 9 trial ANOVA found that the horizontal pointing error was significantly

different among sessions only in trials 1–5. The same ANOVA design, instead, did not found any significant change in vertical

pointing error. Thus, electromyographic (EMG) and platform data from trials 1–5 (1st BLOCK) were matched to those of other

five trials (11-15, 2nd BLOCK), in which pointing error was comparable among sessions, that is, both adaptation to prisms and

recovery from after-effect were completed.
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Prismatic lenses modify APAs of a target-reaching

movement

As shown above, pointing errors of trials 1–5 were

significantly different among sessions, thus a compari-

son of EMG and platform data from these trials (1st

BLOCK – BEFORE, DURING and AFTER sessions)

was carried out. Similar between-sessions comparisons

were also drawn in a second BLOCK of five trials (11

–15, 2nd BLOCK), in which adaptation to prisms and

after-effect recovery were apparently completed, and

pointing errors were comparable among sessions.

EMG recordings. The EMG activity recorded in the

prime mover AD and in BB muscle when the right

shoulder is flexed and the index finger points to the

target is shown in Figure 2 for a representative sub-

ject. Note that in both muscles, premovement activ-

ity in the 1st BLOCK (before 0 ms) was nearly

indistinguishable in all sessions, thus pointing errors

were not due to changes in the prime mover activa-

tion.

For what concerns lower-limb muscles (Fig. 3),

when the reaching movement was performed without

prisms, so that pointing was accurate, excitatory or

inhibitory APAs developed in all muscles, except left

H and left SOL (1st BLOCK, BEFORE). The latter

two will be then ruled out from analysis, because

EMG amplitude at movement onset was not signifi-

cantly different from the background activity (paired

t-test, P > 0.5 for both muscles). When reaching was

performed immediately after donning prisms and the

subject’s index fingertip hits the Plexiglas screen to the

right of the target (1st BLOCK, DURING), APAs in

Q and TA of both sides increased in amplitude (com-

pare thick to thin black lines). When prisms were

removed and subjects missed the target to the left (1st

BLOCK, AFTER), APAs in Q and TA of both sides

decreased to values similar to those observed in the

BEFORE session. It is worth noting that the leftward

deviation induced by the after-effect recovered much

more quickly than the rightward deviation. To group

together the same number of trials in each BLOCK,

the 1st BLOCKs of the AFTER session had to include

four trials in which the leftward deviation was not sig-

nificant. The absence of significant APAs’ changes in

the AFTER vs. BEFORE session may be seemingly

ascribed to this. In contrast, both when adaptation to

prisms completed and when after-effect recovered

(2nd BLOCK; Figs 2b and 3b,d), premovement EMG

activities in AD and BB, as well as APAs in lower-

limb muscles, were similar in all experimental ses-

sions.

In summary, when prisms induce a pointing error,

the movement seems to be associated with stronger

lower-limb APAs, not paralleled by changes in the

activation of the prime mover.

Quantitative analysis of the EMG recordings. Fig-

ure 4a, c shows the mean amplitudes of the premove-

ment activation in AD and BB and of the APAs in

lower-limb muscles. Two-way ANOVAs (prisms

9 blocks), computed on premovement EMG amplitude

of the two upper-limb muscles, showed no prisms nor

interaction effect, while a significant blocks factor

resulted for both AD (F1,9 = 117.13, P < 0.001) and

BB muscles (F1,9 = 52.74, P < 0.001). Two-way ANO-

VAs (prisms 9 blocks) on the right Q and the right TA

resulted in a non-significant prisms main effect, a signif-

icant blocks main effect (F1,9 = 5.67, P < 0.05 and

F1,9 = 11.72, P < 0.01 respectively) and a significant

interaction (F2,18 = 3.57, P < 0.05 and F2,18 = 4.81,

P < 0.05 respectively). According to the post hoc com-

parisons, prisms affected only the 1st BLOCKS, in

which right Q EMG was larger in the DURING than in

both BEFORE and AFTER sessions, while right TA was

larger in DURING than in BEFORE session only. ANO-

VAs on right H, right SOL and left Q showed neither

main effects nor interactions, while a significant blocks

main effect was found in left TA (F1,9 = 7.6, P < 0.05).

(a) (b)

Figure 2 Rectified and smoothed (see Methods) electromyo-

graphic (EMG) recordings from the prime mover anterior

deltoid (AD) and from the biceps brachii (BB) muscles. Aver-

aged traces of one representative subjects, obtained in trials 1

–5 (a – 1st BLOCK) and in trials 11–15 (b – 2nd BLOCK) of

the three experimental sessions: BEFORE (thin black line),

DURING (thick black line) and AFTER (thick grey line)

wearing prismatic goggles. Note that in each BLOCK, the

premovement (before 0 ms) EMG activity was nearly indis-

tinguishable in all sessions.
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Despite the strong increase in APAs strength in left Q

and left TA, prisms did not produce significant changes.

Figure 4 summarizes also the latencies of the pre-

movement activation and of the APAs. Two-way ANO-

VAs (prisms 9 blocks) resulted in non-significant prisms

main effect nor interaction, while blocks factor was sig-

nificant in AD, BB, right Q, right TA and left TA (in all

cases, F1,9 > 7, P < 0.05), that is, those muscles that

showed blocksmain effect on the EMG amplitude.

Platform recordings. Before wearing prisms, platform

recordings changed prior to the movement onset,

when all of them significantly differed from the corre-

sponding background level (paired t-test, P

always < 0.05). As shown in Figure 5a – 1st BLOCK,

the force vector pointed backward, rightward and

downward; the CoP moved backward and rightward,

and the vertical torque turned clockwise. The largest

prisms effect occurred in the APA revealed by the

(a) (b) (c) (d)

Figure 3 Rectified and smoothed electromyographic (EMG) recordings from the lower-limb muscles quadriceps (Q), hamstring

(H), tibialis anterior (TA) and soleus (SOL) of the right (a, b) and left (c, d) sides. Averages of the traces of one representative

subjects, obtained in trials 1–5 (a, c – 1st BLOCK) and in trials 11–15 (b, d – 2nd BLOCK) of the three experimental sessions:

BEFORE (thin black line), DURING (thick black line) and AFTER (thick grey line) wearing prismatic goggles. BEFORE wearing

prisms, excitatory or inhibitory anticipatory postural adjustments (APAs) developed, prior to the movement onset, in all muscles

except left H and SOL. In the 1st BLOCK of the DURING session, APAs in Q and TA of both sides increased, while when

prisms were doffed (1st BLOCK of AFTER session), APAs decreased to values similar to those of the BEFORE session. In

contrast, in the 2nd BLOCK, when adaptation to prisms and after-effect recovery were completed, APAs in lower-limb muscles

were similar in all experimental sessions.
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CoPy (antero-posterior) displacement. When prisms

were just donned (Fig. 5a – 1st BLOCK), the anticipa-

tory displacement increased, while after doffing them,

it reduced in size. When adaptation to prisms and

after-effect recovery were completed (Fig. 5b – 2nd

BLOCK), the APA size in CoPy was again comparable

among the three sessions.

Quantitative analysis of platform recordings. Fig-

ure 6a shows the mean amplitudes of the APAs in

platform recordings. Two-way ANOVA (prisms x

blocks) on APA amplitude in CoPy resulted in a non-

significant prisms main effect, a significant block main

effect (F1,9 = 4.93, P < 0.05) and a significant interac-

tion (F2,18 = 13.19, P < 0.001). According to the post

hoc comparisons, prisms affected only the 1st

BLOCK, in which the anticipatory displacement was

larger in the DURING than in both BEFORE and

AFTER sessions. Two-way ANOVAs on the remaining

recordings highlighted only a significant block main

effect in all traces (Fx: F1,9 = 21.33, P = 0.0012;

Fy: F1,9 = 12.71, P = 0.0060; Fz: F1,9 = 19.75,

P = 0.0016; CoPx: F1,9 = 20.18, P = 0.0015; Tz:

F1,9 = 26.80, P = 0.0005). The same ANOVA design on

APAs latencies (Fig. 6b) showed no prisms main effect

nor interaction, but a significant block main effect in

(a) (b) (c) (d)

Figure 4 Mean normalized amplitude (a, c) and mean latency with respect to movement onset (b, d) of premovement activation

in right arm muscles and of anticipatory postural adjustments (APAs) in lower-limb muscles (raw traces in Figs 2 and 3). Plotted

values refer to the 1st and 2nd BLOCK (black and white bars respectively) of each experimental session (BEFORE, DURING

and AFTER wearing prismatic goggles). Error bars mark the intersubject SEM. Significant differences (prisms 9 block ANOVA on

each muscle) are marked by asterisks. For each BLOCK, the average of the values recorded among the three sessions is also

reported, after the axis break, so as to illustrate the main effect of the ANOVA block factor. The APAs increase in Q and TA mus-

cles of both legs observed in the 1st BLOCK of the DURING session (Fig. 3) reached significance only in the right limb. More-

over, a significant block factor was observed in the size and latency of premovement activations in AD and BB as well as in the

size and latency of APAs in right Q and in right and left TA. Finally, in the 2nd BLOCK, non-significant effect of prisms was

found on size or latency of premovement activations or of APAs, again in agreement with Figures 2 and 3.
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Fy, Fz and CoPy (Fy: F1,9 = 5.90, P = 0.038; Fz:

F1,9 = 62.38, P < 0.0001; CoPy: F1,9 = 11.89,

P = 0.0072).

Control analysis – duration of the target-reaching

movements

As it is widely reported that APAs are scaled in ampli-

tude to movement duration (faster movements are asso-

ciated with larger APAs, Lee et al. 1987; Shiratori &

Aruin 2007), we carefully verified whether this parame-

ter changed during the experiment. Figure 7 shows the

mean duration of the target-reaching movement in the

two blocks of trials, collected in the three experimental

sessions. Two-way repeated-measures ANOVA

(prisms 9 blocks) highlighted only a significant blocks

main effect (F1,9 = 63.45, P < 0.001). Thus, within

each block, movement duration was similar in the three

sessions, indicating that the APAs’ changes observed in

the EMG and platform recording, within the 1st

BLOCK, should not be ascribed to changes in move-

ment velocity. On the other hand, all the APAs’ changes

between the two blocks (1st BLOCK vs. 2nd BLOCK

comparisons) may be affected as well by the increase in

movement duration observed in the second BLOCK.

Discussion

The novelty of our study is that by using prisms, we

induced out-of-target movements that were found not

to be associated with changes in the prime mover acti-

vation, as it might be expected, but only to changes in

the APAs size. This observation reinforces the hypoth-

esis that a successful on-target pointing movement

relies upon a specific tuning between APAs and prime

mover activation, as that obtained at the end of the

adaptation phase.

In the following, we will first deal with the origin

of the pointing error, then we will recall that accurate

(a) (b) Figure 5 Force platform recordings: components of the force

exerted on the ground along the three Cartesian axes (Fy,

positive when directed forward; Fx, positive leftward; Fz,

positive downward), displacement of the centre of pressure

(CoPy, positive forward; CoPx, positive leftward) and torque

about the body vertical axis passing through the CoP (Tz,

positive clockwise). Averaged traces of one representative

subjects, obtained in trials 1–5 (a – 1st BLOCK) and in trials

11–15 (b – 2nd BLOCK) of the three experimental sessions:

BEFORE (thin black line), DURING (thick black line) and

AFTER (thick grey line) wearing prismatic goggles. BEFORE

wearing prisms, all platform recordings changed prior to the

movement onset, thus showing APAs. Prismatic goggles

induced the largest change in the APA of CoPy, which

increased when prisms were just donned (1st BLOCK, DUR-

ING) and reduced in size after doffing them (1st BLOCK,

AFTER). When adaptation to prisms and after-effect recov-

ery were completed (2nd BLOCK), the size of APA in CoPy

was again comparable among the three sessions.
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motion of a segment (e.g. the hand) requires a proper

coordination between distal (e.g. the upper limb) and

proximal (e.g. the trunk) body parts. Thereafter, we

will examine evidences suggesting a relationship

between APAs and movement accuracy, and finally,

we will discuss specific aspects of our results and their

possible interpretation.

Origin of pointing error

Pointing to a visually displayed target requires a neu-

ral transformation from a visual representation of

target location to an appropriate pattern of arm mus-

cles activity. According to Soechting & Flanders

(1989a,b); see also Soechting & Flanders 1992 for a

(a) (b) Figure 6 Mean amplitude (a) and mean latency with respect

to movement onset (b) of anticipatory postural adjustments

(APAs) in the force platform recordings (raw traces in

Fig. 5). Plotted values refer to the 1st and 2nd BLOCK

(black and white bars respectively) of each experimental ses-

sion (BEFORE, DURING and AFTER wearing prismatic gog-

gles). Error bars mark the intersubject SEM. Significant

differences (prisms 9 block ANOVA on each force platform

recording) are marked by asterisks. For each BLOCK, the

average of the values recorded among the three sessions is

also reported, after the axis break, so as to illustrate the main

effect of the ANOVA block factor. The CoPy APA increase

observed in the 1st BLOCK of the DURING session (Fig. 5)

reached significance. Moreover, a significant block effect was

observed in the size of APAs in all platform variables and

also in the latency of APAs in Fy, Fz and CoPy. Finally, in

the 2nd BLOCK, non-significant effect of prismatic goggles

was found on size or latency of APAs, in agreement with

Figure 5.

Figure 7 Mean duration of the target-reaching movement.

Plotted values refer to the 1st and 2nd BLOCK (black and

white bars respectively) of each experimental session

(BEFORE, DURING and AFTER wearing prismatic goggles).

Error bars mark the intersubject SEM. Significant differences

(prisms x block ANOVA) are marked by asterisks. For each

BLOCK, the average of the values recorded among the three

sessions is reported, after the axis break, so as to illustrate

the main effect of the ANOVA block factor. Note that the only

significant difference was an increase in movement duration

in the 2nd vs. 1st BLOCK, while prisms had no effect in

either BLOCK.
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review), errors in such a movement derive from

errors in the sensorimotor transformation from the

visual representation of the target to the kinematics

representation of the planned trajectory. Indeed, such

transformation is intrinsically nonlinear, but subjects

usually employ a linear approximation when they

have to remember the target location and point to it.

These authors also showed that when subjects have

to reach a position, which has been previously appre-

ciated kinaesthetically (thus after having empirically

built up the exact transformation), pointing errors

dramatically reduce. Several evidences were collected

that the parietal cortex plays a critical role in inte-

grating visual and somatic inputs for building up this

sensorimotor transformation (see Kalaska et al. 1997

for a review).

In our study, pointing errors were apparently due to

the changes in the sensorimotor transformation induced

by prisms. In a few trials, thanks to the visual feedback,

our subjects empirically solved the new sensorimotor

transformation and succeeded in reaching the target.

The same occurred (in the opposite direction) after dof-

fing goggles. An increase in pointing error when requir-

ing to change the sensorimotor transformation, for

instance by asking to reach a target in an horizontal

workspace while looking at the initial position of the

hand and target on a vertical screen, was also observed

by Messier & Kalaska (1997).

Coordination between proximal and distal body

segments

There is growing evidence from the literature showing

that the performance of dexterous motor tasks, such

as pointing and reaching, relies on the exact coordina-

tion between proximal (e.g. trunk) and distal body

segments (e.g. hand).

Several motor control studies (Ma & Feldman

1995, Archambault et al. 1999, Pigeon et al. 2000,

Robertson & Roby-Brami 2011) provide evidence that

motion of the trunk and the upper limb is appropri-

ately scaled each other to ensure the maximal accu-

racy when moving the hand towards a target. In their

seminal paper, Hollerbach & Flash (1982) offer a

model, which describes shoulder–elbow coordination

in hand-reaching movements. The same model also

predicts the modifications of the distal segments tra-

jectory and its final position when the force exerted at

proximal joints is inadequate, a condition in which an

out-of-target movement would result. Similarly, out-

of-target movements are also expected when the Cori-

olis force acting on the arm during the simultaneous

displacement of the upper limb and torso is not

compensated in a feed-forward manner (Bortolami

et al. 2008).

Interestingly, Era et al. (1996) have reported that

top-level rifle shooters stabilize their whole-body bal-

ance better than naive shooters, particularly in the last

seconds before the shot. This and other studies inves-

tigating the same topic (e.g. Aalto et al. 1990,

Mononen et al. 2007) give evidence that shooting

accuracy relies on the accurate trunk and lower-limb

posture control, allowing coordination of these body

segments with the focal trigger pull. In close relation

with the idea that postural stabilization influences

movement performance, other authors showed that

changes in the size of the base of support (Yiou et al.

2007), or the addition of a secondary motor task,

which specific APAs may interfere with those of the

primary motor task (Yiou 2005) might influence the

velocity of the focal arm movement.

On these premises, APAs may represent the earliest

part of the motor command necessary for proximal

and distal body segments coordination, as also sup-

ported by our results.

APAs contribution to movement accuracy

Only in recent years, some authors suggested that

APAs function is not limited to ensure the whole-body

balance, but might also encompass the ability to pro-

vide the most appropriate conditions to guarantee an

accurate movement execution.

Anticipatory postural adjustments decrease in size

as the accuracy demand increases (i.e. when pointing

smaller and smaller targets), a feature that has been

shown both in the upper limb (Bonnetblanc et al.

2004) and in the lower limb (Bertucco & Cesari

2010). Lower-limb pointing was also investigated by

Duarte & Latash (2007), who have shown that the

faster the movement is, the larger the APAs variability

is. It also well described the relationship between

movement speed and scattering of the final position

around a target (Schmidt et al. 1979, Fernandez &

Bootsma 2004). In the other way round, all these

observations suggest that small and less variable APAs

should accompany slow but precise movements.

Berrigan et al. (2006) reported that when pointing is

performed towards small targets (i.e. under high accu-

racy constraints) from an ‘unstable’ position (i.e.

standing vs. sitting), slowing movement speed actually

represents a strategy to reduce the equilibrium distur-

bance and, consequently, the associate APAs.

Conversely, other authors showed that decreasing

the stability of the initial posture (passing from seating

with 100% ischio-femoral contact to 30% contact)

might increase both the amplitude of the APAs and the

overall performance of an arm movement like, for

example, the maximal velocity of a pointing task

(Teyss�edre et al. 2000) or the isometric maximal force
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developed during a pushing task (Le Bozec & Bouisset

2004). Both these effects were ascribed to a greater pos-

tural mobility in the unstable (30% contact) condition.

However, it should be noted that, in both these studies,

subjects were asked to perform as fast as possible

movements/pushes, not to exactly reach a particular

point or a given force level. Thus, the motor task was

quite different from that of Berrigan et al. (2006).

Thus, when the accuracy demand increases, move-

ment velocity decreases, that is, movement time

increases, as already described by the Fitts (1954).

However, as APAs amplitude is known to be propor-

tional to focal movement velocity (Lee et al. 1987,

Shiratori & Aruin 2007), its reduction might be not

directly related to the increased accuracy demand, but

to the associated reduction in movement speed. With

respect to the above studies, our work is novel

because it proves the relationship between APAs and

movement accuracy (i.e. the pointing error), rather

than the accuracy constraint (i.e. the target size), by

ruling out the effect of movement velocity. The latter

was indeed constant among sessions thanks to the fact

that prismatic lenses influenced just movement direc-

tion, as revealed with aiming errors, but did not affect

the target.

Further considerations on present results

As pointed out above, a crucial aspect in APAs modu-

lation is movement velocity. However, our experi-

ments show that when movement velocity remains

constant among sessions (i.e. within each BLOCK),

prism-induced pointing errors are still associated with

changes in APA amplitude, thus supporting a linkage

between APAs and movement accuracy. When moving

fast, stronger prime mover activation is associated

with stronger (Lee et al. 1987, Shiratori & Aruin

2007) and more anticipated APAs (Horak et al. 1984,

Zattara & Bouisset 1988). This is in agreement with

our results, which show that APAs and prime mover

activation in the 1st BLOCK were larger and started

earlier than those recorded in the 2nd BLOCK, when

movements were slower.

Intriguingly, the relationship between movement

speed/prime mover contraction and APAs’ changes

was limited to Q and TA of both sides (although not

significant in left Q), with no modifications in H and

SOL, a pattern which suggests that different muscles

of the APAs chain could have different roles in

equilibrium stabilization. APAs are known to secure

the equilibrium in a twofold way (Massion 1992) (i)

by counterbalancing the segmental equilibrium distur-

bance due to the reaction forces developing with the

ongoing movement (which grow when movement

speed increases) and (ii) by preventing the whole-body

CoM displacement produced by the new configuration

of the body (regardless the speed with which that con-

figuration has been reached). Considering that 1st and

2nd BLOCK trials have different movement speed, but

similar movement amplitude on the sagittal plane, it

can be proposed that anterior lower-limb muscles (Q

and TA) may neutralize the time-changing perturba-

tion due to prime mover contraction, while posterior

muscles (H and SOL) may neutralize the CoM

changes as the movement develops.

Prisms selectively modulate those APAs sensitive to

modification in movement speed. When wearing

prisms, APAs amplitude was significantly increased in

right Q and TA muscles (1st BLOCK – DURING vs.

1st BLOCK – BEFORE); no changes were instead

found in APA latency. Thus, APAs timing and ampli-

tude seem to be independently controllable, as also

suggested by Nana-Ibrahim et al. (2008). Note also

that the TA APA contributes to the backward CoP

change, which in turn counteracts the perturbation

applied by the arm movement on the shoulder.

Indeed, the backward CoP change is responsible for

the generation of forward-oriented inertial forces,

which act to counteract the perturbing force induced

by the arm movement (Bouisset & Zattara 1987).

The backward CoP change is apparently larger

when wearing prisms. To explain this behaviour, one

should consider that (i) to hit the target on the sagittal

plane, the subject has to flex and slightly adduct the

arm, so that the resulting perturbation is directed

backward and slightly rightward; (ii) when commit-

ting rightward pointing errors, the shoulder angle in

the horizontal plane seems to be unchanged, so that

the fingertip endpoint deviation stems from a right-

ward rotation of the shoulder girdle (produced by a

change in the many degrees of freedom along the

body, see next paragraphs). As a consequence, the

vector of the perturbation should undergo the same

rightward rotation. Its projection along the y-axis

should then increase, in agreement with the significant

increase in TA APAs and CoPy change (Figs 4 and 6).

Note also that, in parallel, the projection of the per-

turbation along the x-axis should instead reduce, in

agreement with the slight decrease (although not sig-

nificant) found in CoPx.

A final comment is worthwhile about the invariance

of the upper-limb kinematics during the different ses-

sions. In the absence of whole-body kinematic data,

allowing to trace the relative position of the upper limb

with respect to the trunk, the invariance of the shoulder

angle in the horizontal plane (i.e. adduction/abduction

of the arm) may be inferred by the observed invariance

in the AD and BB activity (see Fig. 2). Indeed, AD and

BB are both involved in shoulder flexion and adduction

(see Kapandji 1982). Thus, any rightward deviation of
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the upper limb in the horizontal plane should have been

either negligible or signalled by a de-recruitment in both

AD and BB activity. For the same reason, a different

recruitment of other muscles acting on the shoulder, or

even of other deltoid portions, should have been accom-

panied by appreciable changes in AD and BB. On this

basis, we are rather confident that the pointing move-

ment, with and without prisms, was performed without

major changes in the shoulder angle in the horizontal

plane.

Therefore, the pointing error should stem from other

muscles acting along the body vertical axis, that is, from

changes in the APAs chain, as those witnessed by our

results. Data provided in this paper are certainly insuffi-

cient to fully appreciate the complex biomechanics of

the postural chain. In this regard, the invariance of Tz

coupled to the asymmetric changes in left and right Q

and TA suggests a mechanical action from the legs to

the pelvis that should have been accompanied by a

counter rotation in one or more of the many degrees of

freedom within the chain. Present data do not allow

any speculation about this aspect, but in any case, this

does not affect the main result of this paper: the accu-

racy of pointing movements relies upon a specific tun-

ing between APAs and prime mover activation.

Conclusions

Data reported here suggest that by securing the position

of the proximal joints, properly tailored APAs contrib-

ute to make the focal movement accurate. Indeed, we

showed that prisms induce pointing errors in the upper

limb by modifying the balance between APAs in lower

limb and prime mover contraction. In other words, ‘A

movement never responds to detailed changes by a

change in its detail; it responds as a whole to changes in

each small part, such changes being particularly promi-

nent in phases and details sometimes considerably dis-

tant both spatially and temporally from those initially

encountered’ (Bernstein 1967).
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command driving both the prime mover and the muscles of 
the APA chain.
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Introduction

Any voluntary motor act exerts forces not only upon the 
external environment but also upon our own body. To com-
pensate for the latter forces, the prime mover activation is 
preceded by anticipatory postural adjustments (APAs): 
Unconscious muscular activities aimed at counterbalanc-
ing the perturbation induced by the primary movement 
(Massion 1992). The importance of a proper whole-body 
stabilization is immediately apparent when considering 
standing subjects performing voluntary movements that 
involve large masses (e.g., Belen’kii et al. 1967; Cordo and 
Gurfinkel 2004; see Bouisset and Do 2008 for a review). 
On the other hand, APAs were shown to develop also in the 
same limb where movement occurred (intra-limb APAs), 
in motor tasks in which the whole-body equilibrium was 
not threatened (Zattara and Bouisset 1988; Chabran et  al. 
2001).

Moreover, Caronni and Cavallari (2009a, b) reported 
that intra-limb APAs developed even when moving a 
very small mass like the index finger. Indeed, a brisk fin-
ger flexion was preceded by an excitatory burst in triceps 
brachii (TB), while biceps brachii (BB) and anterior del-
toid (AD) showed a concomitant inhibition. This pattern 
contrasted the elbow and shoulder flexion induced by the 
upward perturbation that the index finger flexion caused 
on the metacarpophalangeal joint. According to Caronni 
and Cavallari (2009a, b), such APAs not only guarantee the 

Abstract  Voluntary movement is known to induce pos-
tural perturbations that are counteracted by unconscious 
anticipatory postural adjustments (APAs). Thus, for every 
movement, two motor commands are dispatched: a vol-
untary command recruiting the prime mover and a pos-
tural command driving the APAs. These commands are 
classically thought to be separated; this study investigates 
whether they could be instead considered as two elements 
within the same motor program. We analyzed the APAs 
in biceps brachii, triceps brachii and anterior deltoid that 
stabilize the arm when briskly flexing the index finger 
(prime mover flexor digitorum superficialis). APAs and 
prime mover activation were recorded before, under and 
after ischemic block of the forearm. Ischemia paralyzed 
the prime mover, thus suppressing the finger movement 
and the ensuing postural perturbation. If the two com-
mands had been separated, it would have been expected 
that after a few failed attempts to flex the index finger, the 
APAs were suppressed too, being purposeless without pos-
tural perturbation. APAs were still present under ischemia 
even after 60 movement trials. No significant changes were 
found in APA amplitude in biceps and triceps among dif-
ferent conditions, or in the average APA latency. Inhibi-
tory APA in anterior deltoid was reduced but still present 
under ischemia. In addition, the pharmacologic block of 
the sole median nerve produced similar effects. APAs were 
instead almost abolished when applying a fixation point to 
the wrist. The observation that APAs remained tailored to 
the expected perturbation even when that perturbation did 
not occur supports the idea of a functionally unique motor 
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maintenance of the arm posture, but are also very impor-
tant in controlling the trajectory and the final position of 
the moving segment. Indeed, when simulating an index fin-
ger flexion using a four-joint software mechanical model of 
the arm, in which only the prime mover was recruited, a 
clear disturbance of both focal movement and upper limb 
posture was observed, with relevant changes at wrist and 
elbow level. This would affect the final position, i.e., the 
precision, of the intentional finger movement. In the model, 
the only way to prevent these “collateral effects” was to 
block all segments but the finger, preventing the proximal 
joints from rotating (fictive APAs). Since this observation 
derived from a very simplified system, Caronni and Caval-
lari (2009a) also looked for a more realistic model: A finger 
tap was evoked in a real arm by electrical stimulation of the 
median nerve; such an experiment showed recordings com-
parable in sign and size to those predicted by the software 
mechanical model.

According to the classical view, the prime mover activ-
ity and its associated postural adjustments result from two 
different central commands, which are independently dis-
patched to the prime mover and to the muscles generating 
the postural chain, respectively (Babinski 1899; Hess 1943; 
Cordo and Nashner 1982; Brown and Frank 1987). On 
the other hand, a growing body of recent evidences favors 
the view that APAs and prime mover recruitment are both 
controlled by a unique motor command (Aruin and Latash 
1995; Petersen et  al. 2009; Bolzoni et  al. 2012; Caronni 
et  al. 2013). This latter view is also supported by Yako-
venko and Drew (2009), who studied the discharge proper-
ties of cat pyramidal tract neurons (PTN) and their tempo-
ral linkage with APAs associated with reaching movements. 
These authors found a strong linear relationship between 
the onset of PTN discharge and the APA onset, strengthen-
ing the idea that the motor cortex contributes to generate 
the APAs. Moreover, Schepens and colleagues (Schepens 
and Drew 2004; Schepens et al. 2008) emphasized the role 
of pontomedullary reticular formation (PMRF) in the coor-
dination of posture and movement. In particular, they sug-
gested that PMRF is a site of integration of signals from 
both cortical and subcortical structures and that these sig-
nals ensure that APAs are appropriately scaled in time and 
magnitude to the intended movement, contributing to inte-
grate the control of posture and movement.

Whether the single or the dual command theory should 
be preferred, it remains an open question. To verify the 
working hypothesis of the oneness of postural and move-
ment command, we analyzed the well-known intra-limb 
APA chain that stabilizes the arm during an index finger 
flexion (Caronni and Cavallari 2009a) in an experimental 
condition in which the voluntary command was normally 
dispatched, but the prime mover was unable to contract. 
In this aim, subjects were asked to repeatedly flex their 

index finger under two different conditions: (1) before an 
ischemic block of the forearm and (2) when ischemia had 
suppressed the finger movement and the ensuing postural 
perturbation.

On this basis, our experimental paradigm may lead to 
two alternative scenarios. Following the dual command 
view, one should expect that under ischemia, APAs are sup-
pressed after few repetitions, since the postural activity on 
the upper limb is useless (no real perturbation on the more 
proximal segments) and uneconomical. Indeed, the CNS 
is able, within few movement repetitions, to adapt APAs 
to changes in the postural demand of the motor task, i.e., 
the ensemble of mechanical actions required for counter-
acting the perturbation induced by the primary movement 
(Belen’kii et al. 1967; Cordo and Nashner 1982; Aruin and 
Shiratori 2004; Shiratori and Aruin 2007). Moreover, clear 
signs of this adaptive process were observed even after the 
very first movement trial (Hall et  al. 2010). On the other 
hand, following the idea of the oneness of voluntary and 
postural commands, APAs would be expected to remain 
manifest in the proximal arm muscles and tailored to the 
intended movement (i.e., to the expected perturbation stem-
ming from the voluntary command), despite the absence of 
the real perturbation. The persistence of APAs even after 
several attempts to flex the index finger under forearm 
ischemia would provide a novel indication that during the 
execution of a voluntary movement, the recruitment of pos-
tural and prime mover muscles is driven by a functionally 
unique motor command. Thus, APAs and prime mover acti-
vation could be seen as parts of the same muscular chain.

Methods

Experiments were carried out on seven adult volunteers 
(five males and two females). Their mean (±SD) anthro-
pometric characteristics were age 29.4 ± 7.2 years, weight 
72.4  ±  9.3  kg, height 176  ±  11  cm, index finger length 
8.4 ± 0.6 cm and arm length 79.5 ± 4.1 cm. All subjects 
gave written consent to the procedure, after being informed 
about the nature of the experiments. The local ethics com-
mittee approved the procedure in accordance with the 1964 
Declaration of Helsinki; none of the subjects had any his-
tory of orthopedic or neurological disease.

Experimental procedure

Since in one of our experimental conditions (ischemia/
anesthesia of right forearm, see below) no primary volun-
tary movement was produced, in order to have a reliable 
time reference for APA identification, a “work-around” 
was needed. Thus, the experimental paradigm described 
by Caronni and Cavallari (2009a) was modified by asking 
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subjects to perform a simultaneous flexion of both index 
fingers. In this way, the onset of the left index finger flexion 
was used as a time reference for APAs developing in the 
right side.

Subjects were sitting on a chair with both upper arms 
lying along the body and hanging down by their sides, 
elbows flexed at 90° and prone hands aligned with the 
forearm. The left arm was always supported by an armrest 
(see below). Subjects could see both their arms during the 
whole experiment, to be fully aware of their general pos-
tural context and of movement performance.

Index fingers were kept aligned with the hand and in 
contact with two proximity switches (CJ10-30GK-E2, Pep-
perl and Fuchs®, Mannheim, Germany), all other fingers 
hanging. Under forearm ischemia (see below), wrist and 
fingers of the right hand were in mid-range (neutral) posi-
tion and subjects were instructed not to attempt any effort 
to keep the hand and fingers aligned with the forearm. Sub-
jects were explicitly asked to keep their back supported 
and both feet on the ground throughout the experiment. 
The chair was height adjustable and the proximity switches 
screwed on articulated arms (143 MAGIC ARM  +  035 
Super clamp Kit, Manfrotto®, Cassola, Italy); both were 
adapted to the different body dimension of the subjects.

Subjects were asked to produce a simultaneous brisk 
flexion with both index fingers at the metacarpophalangeal 
joint. Each movement was self-paced after an acoustic sig-
nal delivered by the software every 6 s. The time between 
the beep and the movement varied at subject’s will, to 
exclude any reaction time. Amplitude and duration of fin-
ger movements were visually controlled throughout the 
experiment by looking at the index finger movement trace 
on a computer screen.

Each experiment was arranged in three conditions: 
before an ischemic block of the forearm (PRE); when 
ischemia had completely suppressed the prime mover acti-
vation (ISC); and after complete recovery from ischemia 
(REC). On a different day, two of the subjects agreed 
to undergo the same protocol but with a pharmacologic 
block of the median nerve at the elbow (anesthesia), 
instead of ischemia. Subjects always had full view of their 
performance.

In each condition, a sequence of 30 index finger flexions 
was performed. Under ischemia/anesthesia, two sequences 
of 30 movement trials were recorded. The 30 trials were 
accomplished in a temporal window of about 3  min, and 
then, the subject had about 5  min of rest before the next 
sequence.

Ischemia

The ischemic procedure, and its duration, followed the 
approach of McNulty et al. (2002), Ziemann et al. (2001) 

and Vallence et  al. (2012). After the PRE recordings, the 
right forearm rested on a support with the hand and fingers 
aligned with it; a blood pressure cuff, previously placed just 
below the elbow, was inflated at 250 mmHg. The ischemic 
block affected first the larger sensory fibers, inducing a 
clear numbness and anesthesia of the forearm and hand, 
and then abolished the voluntary EMG activity in the prime 
mover after an average time of 51 min (±8 min). After sup-
pression of prime mover EMG, the forearm support was 
removed and the subject performed two ISC sequences 
(ISC1 and ISC2), separated each other by a temporal win-
dow of about 5 min. Throughout both sequences, the sub-
ject kept the upper arm along the body and the elbow at 
90°, so as to exclude any change in posture that could have 
affected the APAs in AD, BB and TB.

Pharmacologic block of the median nerve

Lidocaine 2  % was injected in proximity of the median 
nerve just below the right elbow joint, under guidance of the 
needle’s electrostimulating tip (Echoplex®, REF 6194.35, 
23G-L.35  mm, Vygon; stimulator Plexygon®, 7501.31, 
Vygon). Complete neromuscular block was obtained in 
about 10  min. Activation of flexor digitorum superficialis 
(FDS, prime mover) and voluntary finger movements were 
abolished, as well as the afferences from the median nerve. 
Complete paralysis lasted for about 25 min. It is worth not-
ing that this procedure did not suppress afferences from the 
distal part of the upper limb, thanks to the unaffected func-
tionality of radial and ulnar nerves.

Movement and EMG recordings

The proximity switches monitored the onsets of the fin-
gertips movement. Flexion–extension of the right meta-
carpophalangeal joint was recorded by a strain gauge 
goniometry (mod. F35, Biometrics Ltd®, Newport, UK) 
taped to the joint. Angular displacement was DC-ampli-
fied (P122, Grass Technologies®, West Warwick, Rhode 
Island, USA), and gain was calibrated before each experi-
mental sequence. Pairs of pre-gelled surface electrodes, 
24  mm apart (H124SG, Kendall ARBO, Tyco Health-
care, Neustadt/Donau, Germany) were used to record the 
EMG signal from the right flexor digitorum superficialis 
(FDS) and from some of the ipsilateral postural muscles: 
biceps brachii (BB), triceps brachii (TB) and anterior del-
toid (AD). A good selectivity of the EMG recordings was 
achieved both by a careful positioning of the electrodes and 
by checking that activity from the recorded muscle, dur-
ing its phasic contraction, was not contaminated by signals 
from other sources. EMG was AC-amplified (IP511, Grass 
Technologies®, West Warwick, Rhode Island, USA; gain 
2–10 k) and band-pass-filtered (30–1,000 Hz, to minimize 
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both movement artefacts and high-frequency noise). Goni-
ometric and EMG signals were A/D-converted at 2  kHz 
with 12-bit resolution (PCI-6024E, National Instruments®, 
Austin, Texas, USA), visualized online and stored for fur-
ther analysis.

Median nerve electroneurogram

A stimulating ring electrode was positioned at the right 
index fingertip and two pre-gelled recording electrodes (see 
above) on the surface of the distal third of the forearm, along 
the course of the median nerve. Simulation was applied by 
a Grass S8800 device + SIU5 isolation unit, pulse duration 
0.8 ms, pulse frequency 4 Hz. Stimulation intensity was set 
at three times the perception threshold (PT). Electroneuro-
gram (ENG) was amplified by a Grass IP511 device (gain 
50  k; filters 1–3,000 H z). Recorded signal was A/D-con-
verted at 10  kHz, 12 bit, on a PCI-6024E. Median nerve 
activity was recorded before ischemia, every 10 min during 
it and at different times during the postischemic recovery. 
When the afferent volley had disappeared, the stimulation 
intensity was temporarily raised to 4xPT to check for the 
complete suppression of the neural transmission.

Control experiments

As stated above, the left arm was always supported by an 
armrest. Such a setup was conceived (second part of the 
“work-around”) to provide a distal fixation point for the pos-
tural chain accompanying the left finger flexion and abolish 
(or deeply suppress) the APAs in the upper arm and trunk 
muscles. Thus, the APAs in right arm muscles preceding the 
right finger flexion should be unaffected by the simultane-
ous left finger flexion. To assess this invariance, all subjects 
performed a sequence of unilateral right index finger move-
ments (CTRL), keeping both arms in the same position as in 
PRE, and the outcome was compared (see below) to that of 
the bilateral PRE condition. This procedure was specifically 
chosen to assess whether left finger tapping significantly 
affected those APAs in right arm that normally accompanies 
right finger tapping. Comparison between bilateral and uni-
lateral right finger flexions is reported in the “Control meas-
urements” section of the “Results.”

All subjects also performed a sequence of unilateral 
right index finger movements with the right forearm fixated 
at the wrist (FIXED). Subjects familiarized with the new 
condition for several trials, and then, a sequence of 30 trials 
was recorded.

Data analysis

On each sequence, the 30 EMG traces of the prime mover 
and those simultaneously recorded from the postural 

muscles were digitally rectified and integrated (time con-
stant 25 ms). Traces collected from each muscle were then 
averaged in a fixed temporal window: from −1,000 to 
+300 ms with respect to the onset of the left index finger 
flexion. The mean EMG activity in a time window clearly 
free from APAs (from −1,000 to −500  ms) was utilized 
to calculate the baseline reference level, which was sub-
tracted from each EMG trace. On each experiment, latency 
and amplitude of the postural activity were measured off-
line on the averaged traces. A software threshold set at ±2 
SD of the reference signal level, and visually validated 
identified the onset of an effect in each postural muscle. 
Latency of the APA was referred to the movement onset, 
thus assuming negative values. APA amplitude was meas-
ured as mean level of the trace in the temporal window 
from the APA onset to the movement onset and expressed 
as a percentage of the corresponding amplitude measured 
in the CTRL sequence. This window was chosen to exclude 
any reflex component. The same criteria for onset detec-
tion and amplitude measurement were applied to voluntary 
activity in FDS. All comparisons between PRE, ISC1, ISC2 
and REC experimental sequences were performed by one-
way repeated-measures ANOVA. Whenever significance 
(p < 0.05) was reached, Tukey’s HSD test was used for post 
hoc comparisons. The comparisons CTRL versus PRE and 
CTRL versus FIXED were performed using a paired t test.

Results

Anticipatory postural adjustments before  
and under ischemic block of the forearm

Figure  1 shows the comparison between the right arm 
EMG activity recorded in a representative subject before 
ischemia (PRE) and under ischemic block (ISC2). It is 
apparent that in PRE, the FDS activation was preceded by 
a clear postural inhibitory adjustment in BB and AD, paral-
leled by an excitatory postural activity in TB muscle. Note 
that in ISC2, the postural activities were qualitatively and 
quantitatively similar to those recorded in PRE, although 
the suppression of both the FDS activation and the ensuing 
finger movement.

Results from all subjects are given in Fig. 2, which also 
report values obtained in the first sequence under ischemia 
(ISC1), as well as after complete recovery (REC). Failure 
of ischemia in suppressing the proximal APA chain, despite 
the abolishment of FDS activity and finger movement, 
was systematically observed, although to a various degree 
in different subjects. On average, amplitude of BB inhibi-
tion decreased by ~1 % under ischemia (average PRE and 
REC: 110 % of CTRL vs. average ISC1 and ISC2: 109 %), 
while TB excitation was reduced by ~33 % (average PRE 
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and REC: 106 % vs. average ISC1 and ISC2: 67 %). One-
way ANOVA found no differences in BB inhibition and TB 
excitation among PRE, ISC1, ISC2 and REC sequences 
(F3,18 = 0.055, p = 0.98 for BB; F3,18 = 1.922, p = 0.16 for 
TB). On average, AD inhibition decreased by ~48 % under 
ischemia (average PRE and REC: 87 % vs. average ISC1 
and ISC2: 39  %). One-way ANOVA among sequences 
found significant differences (F3,18 =  9.033, p =  0.0007) 
that clearly indicated the ischemic versus non-ischemic 
conditions; indeed, post hoc tests found no differences PRE 
versus REC (p = 0.38) nor ISC1 versus ISC2 (p = 0.99). 
Nevertheless, AD inhibition remained significantly larger 
than zero under ischemia (CI95  % 14–63  %), attesting the 
persistence of the APA in this muscle too.

Note also that ischemia was very efficient in suppress-
ing both FDS activity and the subsequent index finger flex-
ion. On average, FDS activation decreased by ~86 % under 
ischemia (average PRE and REC: 94 % vs. average ISC1 and 
ISC2: 8 %) and mean finger excursion, which was about 56° 
(average PRE and REC), was annihilated under ischemia. 
One-way ANOVA found significant differences between the 
four sequences for FDS EMG amplitude (F3,18  =  43.121, 
p  <  0.0001) and for finger excursion (F3,18  =  258.4, 
p < 0.0001). The differences indicated the ischemic versus 
non-ischemic conditions: Post hoc tests found no differences 
PRE versus REC (p =  0.81 and p =  0.87, for FDS EMG 
amplitude and finger excursion, respectively) nor ISC1 ver-
sus ISC2 (p = 0.98 and p = 0.99, respectively).

Fig. 1   a Rectified and integrated average recordings of EMG in 
prime mover flexor digitorum superficialis (FDS) and intra-limb 
APAs in a representative subject. Time 0 =  movement onset of the 
left index finger. When rapidly flexing both index fingers before 
ischemia (PRE, white traces, SD in light gray), right FDS muscle was 
activated and the right arm equilibrium was preserved, thanks to an 
excitatory APA in triceps brachii (TB) and inhibitory APAs in biceps 
brachii (BB) and anterior deltoid (AD). Under ischemia of the right 
forearm (ISC2, black traces, SD in dark gray), FDS activation and 
index finger movement were both suppressed, while excitatory APAs 

in TB and inhibitory APAs in BB and AD were still evident and quali-
tatively similar to those recorded in PRE. b Electroneurogram (ENG) 
of the right median nerve of one representative subject, showing the 
effect of ischemia, induced by a pressure cuff, on the afferent volley 
elicited by electrical stimulation of the index finger skin (3 × percep-
tion threshold). Ischemia progressively reduced the volley amplitude 
until reaching complete suppression after 30  min (even increasing 
stimulation to 4xPT, gray trace, does not elicit a response). After 
removing the pressure cuff, the effect of ischemia completely recov-
ered in 30 min
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With regard to the timing of anticipatory effects, they 
were comparable among all sequences (Fig.  2, panels on 
the right), with no effect of forearm ischemia on the aver-
age APA latency in BB, TB and AD muscles (F3,18 = 0.503, 
p  =  0.68; F3,18  =  0.645, p  =  0.60; and F3,18  =  0.800, 
p = 0.51, respectively).

Control measurements

Bilateral versus unilateral right finger flexion

To support the choice of using the left finger flexion as a 
time reference, further control measurements concerned 
the synchronism between the right and the left index 

finger flexions. The mean delay between the signals from 
right and left proximity switches was not significantly dif-
ferent from 0 in both PRE and REC conditions (paired  
t test: t6 = 0.17, p = 0.87; t6 = 1.21, p = 0.27, respectively).  
Moreover, to exclude any effect of the contralateral move-
ment on the right APA chain, we compared right upper 
limb APAs during PRE and CTRL sequences (bilateral 
movement vs. right finger only, respectively), finding no 
differences in amplitude (t6 = −1.39, p = 0.21; t6 = 1.33, 
p = 0.23; t6 = 0.15, p = 0.88 for BB, TB and AD, respec-
tively), nor in latency (t6 = −0.05, p = 0.96; t6 = −1.15, 
p = 0.29; t6 = −1.33, p = 0.23, respectively). Finally, note 
that the APAs in arm muscles during PRE were statisti-
cally significant. Indeed, when expressed in percentage of 

Fig. 2   Mean amplitude of pre-movement EMG activity in prime 
mover FDS (flexor digitorum superficialis) and of APAs in BB 
(biceps brachii), TB (triceps brachii) and AD (anterior deltoid). Val-
ues in  % of the control sequence (CTRL), see “Methods”. Mean 
amplitude of right index finger excursion and mean latency of APAs 
are also reported. Data were recorded in three conditions: before 
an ischemic block of the forearm (PRE sequence, dark gray), when 
ischemia completely suppressed both the sensory feedback and 
prime mover activation (two sequences: ISC1 and ISC2, black) and 
after complete recovery from ischemia (REC, light gray). Mean val-

ues ± SEM. Under ischemia, FDS activation and right index finger 
movement were almost suppressed, but APAs in TB, BB and AD 
were still evident. One-way repeated-measures ANOVA found no 
differences in APA amplitude and latency among sequences, except 
for AD that showed smaller APAs during ISC1 and ISC2 than during 
PRE and REC. However, AD APAs were significantly different from 
0 also during ischemia (CI95 % on pooled ISC1 and ISC2: 14–63 % 
CTRL). The same analysis showed no significant differences in APA 
latencies among sequences
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the baseline reference level, the average size of anticipatory 
BB inhibition was 41 % with a CI95 % of 30–52 %, the size 
of AD inhibition was 43 % with a CI95 % 36–51 %, and the 
size of TB excitation was 83 % with a CI95 % of 42–124 %.

Neurographic control of ischemia

Figure  1b shows an example of the median nerve ENG 
recorded during the whole duration of one experiment (arm 
ischemia) when stimulating the index finger skin at 3xPT. 
A progressive decrease in the evoked potential was evi-
dent during the ischemic period. The ENG-wave increased 
its latency and was completely suppressed after 30 min of 
ischemia, after which even increasing the stimulation to 
4xPT did not elicit a response. Having blocked the tactile 
Aβ fibers, proprioceptive and motor Aα fibers should have 
been blocked too. After the removal of the pressure cuff, 
the ENG-wave recovered and reached the PRE values in 
<30 min. The same control measurements were taken from 
all subjects.

APAs under pharmacologic block of the median nerve

The selective block of the median nerve, induced by lido-
caine, abolished the prime mover EMG and the ensuing 
movement, without affecting the functionality of the radial 
and ulnar nerves. After this procedure, the APA chain was 
still evident in both subjects (see Fig. 3).

APAs in the presence of a distal fixation point

Figure 4 shows that when keeping the dorsal aspect of the 
wrist in contact with a rigid frame, the novel fixation point 
strongly modified the amplitude of APAs: In the illustrated 
subject (Fig. 4a), APAs were deeply reduced in BB and TB 
and completely abolished in AD. Mean APA amplitude in 
the whole population is illustrated in Fig. 4b. Note the APA 
depression in the three postural muscles with respect to its 
CTRL condition (arm unsupported), despite the constancy 
of the FDS recruitment (for statistics, see Fig. 4). It should 
be also underlined that in the FIXED arm condition, APAs 

Fig. 3   Recordings of prime mover EMG (FDS) and intra-limb 
APAs in two subjects (a, b) when trying to move the right index fin-
ger before (PRE, gray traces) and under anesthesia (ANAEST, black 
traces). During PRE, activation of the FDS drove a rapid flexion of 

the index finger. As in Fig. 1, excitatory APAs developed in TB and 
inhibitory APAs in BB and AD. In ANAEST, FDS activation and 
index finger movement were both suppressed, but APAs were still 
evident and qualitatively similar to data recorded in PRE
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changed not only quantitatively but also qualitatively: in 
three subjects, a small excitatory APA replaced the inhibi-
tory one in BB; the same sign reversal occurred in another 
subject in AD muscle.

Discussion

This paper illustrated that the intra-limb APAs stabilizing 
the arm when producing a brisk index finger flexion (cfr. 
Caronni and Cavallari 2009a) were still present under an 
ischemic block of the forearm that suppressed the prime 
mover EMG, the finger movement and the related mechani-
cal perturbation. In this condition, even after 60 move-
ment trials, accomplished in more than 10  min, the CNS 
did not adapt APAs to the new postural demand, failing to 
properly suppress the postural chain; instead, the upper arm 
and shoulder muscles showed EMG activities comparable, 
in amplitude and latency, to those reported by Caronni and 
Cavallari (2009a).

Given the well-known ability of the CNS to adapt APAs 
to changes in the postural demand of the motor task within 
few movement repetitions (Belen’kii et  al. 1967; Cordo 
and Nashner 1982; Aruin and Shiratori 2004; Shiratori 
and Aruin 2007; see also Hall et al. 2010), one could have 
expected that in these conditions, APAs were suppressed, 
since unnecessary and uneconomical. Intriguingly, when 
repeatedly trying to flex the index finger under ischemia, 
significant anticipatory adjustments were still clearly vis-
ible in BB, TB and AD. Note that the subjects were asked 
to generate the same voluntary command in both condi-
tions and any attempt to recruit FDS still resulted in an 
APA chain, without adaptation to the suppression of finger 
movement. The similarity of the motor command in the 
two conditions could not be directly assessed, but it may be 
inferred from the invariance of APA amplitudes and laten-
cies and the simultaneity and constancy of the contralat-
eral index finger flexion, visually controlled by the subject 
during the experiment. In this regard, the absence of any 
significant APA difference between REC and PRE sessions 
also witnesses that these intra-limb APAs are very stable, 
i.e., they remain manifest even after repeated “exposure” to 
index finger flexion.

In this framework, as also suggested by Leonard et  al. 
(2011), it would be difficult to keep strictly divided the con-
trol of posture from the control of the primary movement, 
as instead it was often proposed in previous literature (Hess 
1943; Cordo and Nashner 1982; Brown and Frank 1987). 
Our results seem more in agreement with the proposal by 
Bouisset and Do (2008) that APA’s progression follows a 

Fig. 4   a Recordings of EMG activity in prime mover FDS (flexor 
digitorum superficialis) and intra-limb APAs in a representative sub-
ject with (FIXED, black) or without (CTRL, gray) a wrist fixation 
point. It is evident that both the EMG activity in the prime mover and 
finger movement were comparable in the two conditions, while in the 
FIXED condition, APAs were deeply reduced in BB (biceps brachii) 
and TB (triceps brachii) and completely abolished in AD (anterior 
deltoid). b Mean amplitude of pre-movement FDS EMG and of APAs 
in BB, TB and AD. Values in % of the control sequence (CTRL), see 
“Methods”. A t test showed no CTRL versus FIXED difference in 
FDS activation (t6 = 0.44, p = 0.67). The average inhibitory effects 
on BB and AD and excitation in TB revealed significant reduction in 
the FIXED condition (t6 = 5.01, p = 0.002; t6 = 12.41, p < 0.0001; 
t6 = 7.80, p = 0.0002, respectively)
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“posture–focal gradient,” starting from the support base 
(ground, seat, etc), proceeding through the postural chain 
and then terminating on the prime mover. Indeed, our find-
ing that APAs in the same limb where the voluntary move-
ment occurs (intra-limb APAs) were deeply reduced in the 
FIXED condition favors the above “posture–focal gradient” 
view: The new fixation point at the wrist, i.e., closer to the 
voluntary moving segment (index finger), strongly attenu-
ated APAs in the more proximal muscles. A result that 
agrees with the arm-pull experiment in standing subjects 
by Cordo and Nashner (1982) in which the soleus APAs 
were strongly reduced when adding a fixation point to the 
trunk. The APA adaptation to changes in postural context 
is usually observed since the first trials, as also shown by 
Hall et  al. (2010). Further support to the “posture–focal 
gradient” comes from the results by Dietz and Colombo 
(1996), who showed that no APAs in lower limbs could be 
observed when performing push/pull movements with the 
body fully immersed in water. Presumably, moving with-
out any fixation point was not an adequate condition for the 
APA chain to develop. Sensory information regarding the 
whole-body postural context is indeed known to play a role 
in setting and online modifying the feed-forward APA com-
mand (Mille and Mouchnino 1998).

Our proposal that the APA–prime mover chain is pro-
grammed as a whole fully agrees with the above-described 
“posture–focal gradient” view. In this regard, it is interest-
ing to mention the studies of Gritsenko et  al. (2009) and 
Leonard et al. (2011) that showed that when it is required 
to correct an ongoing arm pointing movement, the CNS 
employs a predictive mode of postural control and consist-
ently adapts the postural muscle activities before correct-
ing the prime mover recruitment. These authors concluded 
that the postural corrections could be described as being a 
component of the voluntary movement, rather than ensur-
ing the maintenance of equilibrium. Similar conclusions 
were reached by Caronni et  al. (2013), who showed that 
small errors in arm pointing movements could be described 
to changes in the APA pattern, not paralleled by changes in 
the prime mover recruitment.

Little is known about the neural subsystems governing 
APAs, but several studies suggested a superposition of the 
neural structures for APAs and those for voluntary motor 
command, thus indirectly supporting the above hypoth-
esis of a “global command.” Severe APA impairments in 
patients with Parkinson’s disease suggested a role of the 
basal ganglia in the anticipatory postural control (Viallet 
et al. 1987). Similar APA impairments were also observed 
in patients with a lesion of the motor cortex or of the sup-
plementary motor area, (SMA) (Viallet et  al. 1992). The 
possible involvement of the SMA in the APA network 
was indicated also by other experiments (Brinkman 1984; 
Yoshida et al. 2008; Jacobs et al. 2009). Anticipatory brain 

activity before the execution of a bimanual load-lifting task 
was recently localized in basal ganglia, SMA and thalamus 
in the hemisphere contralateral to the load-bearing arm (Ng 
et  al. 2012). It is worth noting that these areas are com-
ponent nodes of the basal ganglia-thalamo-cortical motor 
network, which is implicated in well-learned finger move-
ments (Boecker et al. 1998).

Possible criticisms

One possible objection to our interpretation may be that the 
consistent APA presence under ischemia could be a conse-
quence of a lack of time for adapting to the new postural 
demand. According to literature (Cordo and Nashner 1982; 
Hall et al. 2010), adaptation to changes in the postural context 
occurs within few trials. This was not the case since in our 
data no adaptation occurred both inter- and intra-sequences 
(30 trials each, see ISC 1 and ISC 2 in Fig. 1 and 2). It is, 
however, possible that the CNS might adapt to the new pos-
tural demand over longer periods (more than 60 movement 
trials). Ahmed and Wolpert (2009) asked sitting and standing 
subjects to perform a reaching task while a force-generating 
robot was changing the dynamics of their arm, and analyzed 
how subjects adapted their motor and postural commands to 
accomplish the task. Results on standing subjects showed 
that when keeping the same postural context and required 
movement trajectory but changing the arm dynamics, APAs 
adapted to the resulting changes in the movement-induced 
perturbation by following an exponential course with a time 
constant of about 80 trials. If this had been true also in our 
experimental condition, clear APA changes would have been 
observed when comparing ISC1 and ISC2. The absence of 
such changes may be attributed to the fact that in our study, 
subjects had to produce the same motor command both 
before and under ischemia, while in the study by Ahmed and 
Wolpert, subjects had to change their voluntary motor com-
mand to compensate for the altered arm dynamics. In sup-
port of this, literature reports that when amputees were asked 
to voluntarily move their phantom hand, activity in severed 
motor nerve fibers was recorded (Dhillon et al. 2004). This 
suggests that when amputees voluntarily move their phan-
tom, they generate activity in the nerves that previously sup-
plied the missing limb. Moreover, it has been shown that 
the EMG activity in stump muscles followed a pattern cor-
related with the intended phantom movement (Reilly et  al. 
2006). From Reilly’s data, we observed that this activity was 
accompanied by a specific activation of the proximal mus-
cles. Such activity could not be precisely timed with respect 
to the lacking prime mover activity, but from our point of 
view, it might be in fact the expression of an APA chain. If 
this is true, Reilly’s data will prove that the CNS chronically 
produces an APA chain every time it dispatches a voluntary 
command.
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Another consideration is worth regarding the perceived 
hand posture. Throughout the development of the ischemic 
block, the forearm was supported with the hand and fingers 
aligned with it. When subjects readopted the position for 
recording the ISC1 and ISC2 sequences, the hand was in a 
neutral position and subjects were instructed not to attempt 
any effort on the ischemic segments before trying to flex 
the index finger. The hand and fingers were thus perceived 
as slightly flexed (cfr. Gandevia et al. 2006), and this per-
ception was confirmed by the visual feedback. It should be 
noted that such neutral position did not interfere with a nor-
mal finger flexion.

Finally, based on our results on intra-limb APAs, the 
conclusion of a unified command driving the APAs and 
prime mover activity cannot be directly generalized to 
include APAs developing outside the limb involved in the 
voluntary movement (inter-limb APAs). Nevertheless, it 
should be recalled that intra-limb APAs (see Caronni and 
Cavallari 2009a, b) share several properties with inter-
limb APAs. Indeed, the brisk finger flexion produced well-
defined anticipatory natural synergies that (1) were distrib-
uted to several upper limb muscles creating a postural chain 
aiming to prevent the effects of the interaction torques gen-
erated by the voluntary movement; (2) changed in ampli-
tude according to the level of postural stability; (3) reverted 
in sign when movement direction is reverted and, as shown 
in this paper, (4) adapted to changes in the postural context 
within few trials of movement repetition. This actually sup-
ports the view that both intra- and inter-limb APAs share 
similar control mechanisms.

Implications for a predictive model of movement planning 
and APA updating

Davidson and Wolpert (2005) suggested a stronger role of 
feed-forward internal models versus sensory feedback in 
several aspects of human motor control, such as oculomo-
tor and skeletomotor control, perceptual processing, mental 
imagery and also postural control (see also Wolpert et  al. 
1995, 2011). In this framework, the persistence of APAs in 
the absence of a real movement, i.e., without perturbation, 
sheds further light on the importance of internal models in 
APAs, actually limiting the role that the sensory feedback 
from real movement plays in fast APA adaptation. Indeed, 
we observed that APAs rapidly adapted only when sen-
sory afferences signaled a change in the postural context 
(FIXED vs. CTRL results, see next paragraph for further 
considerations on this topic).

More recently, Ahmed and Wolpert (2009) asked sub-
jects to learn to perform a reaching task, while arm dynam-
ics were modified by a force-generating robot and in a sit-
ting position (in which there is no need to produce any APA 
on the ground); thereafter, the authors asked to repeat the 

task while standing and subjects produced the correct APAs 
on the ground since the very first trials. These authors inter-
preted the transfer of information about movement-induced 
perturbation from the control of voluntary movement to 
that of postural actions as a sign that a common dynamic 
encoding underlies both posture and movement control. 
From our perspective, on the one hand Ahmed and Wolp-
ert (2009) showed that when the voluntary command has to 
be changed in order to reach the task goal (because of the 
modified arm dynamics), the change in voluntary command 
drives a change in APAs; on the other hand, we showed 
that when continuing to produce the same voluntary motor 
command, even when the task goal cannot be reached, the 
APAs remain unchanged. These seem to us two faces of the 
same coin: the close linkage between voluntary command 
and APAs.

It might be wondered whether the APA “survival” under 
ischemia might result from the impossibility to update the 
motor program because of the lack of sensory feedback. 
In this regard, we should distinguish between the sensory 
afferences regarding the general postural context and those 
indicating the actual movement outcome.

It should be considered that in this experiment, the gen-
eral postural context did not change and subjects were fully 
aware of it: Proprioception from the proximal segments 
and vision were indeed unaffected. Therefore, those neu-
ral mechanisms (see next paragraph) responsible for APA 
adaptation to the postural context should not be affected by 
ischemia or anesthesia.

For what concerns the absence of proprioception from 
distal segments under ischemia, which signaled the loss of 
actual movement, it can be argued that either the CNS may 
have been engaged in interpreting a fuzzy afferent signal 
generated by the ischemic procedure or it may have been 
completely unaware about the loss of perturbation. How-
ever, also in this case, the vision should have been more 
than enough to inform the CNS that no movement 
occurred.1 One should also take into account that the affer-
ents starting more proximally than the pressure cuff might 
have indirectly signaled the loss of perturbation on the 
more proximal joints. Therefore, subjects were fully aware 
also of the loss of movement. Therefore, the persistence of 
APAs tailored to the expected perturbation suggests that the 
weight of feedback signals due to the real perturbation 
plays a minor role in APA adaptation. This view was also 

1  We chose not to restrain the visual feedback so that subjects were 
always aware about index finger motion; therefore, the persistence of 
APAs under ischemia should have been attributed only to the persis-
tence of postural context and voluntary command, not to the lack of 
information about movement suppression. If APAs had disappeared, 
it would have indicated that they were tailored on the real perturba-
tion, thus being not strictly linked to the voluntary command.
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supported by the observation that in the two subjects who 
underwent median nerve anesthesia, the normal afferent 
traffic in the radial and ulnar nerves (a further signal of the 
movement loss) was still not sufficient to update the motor 
program and suppress APAs. Moreover, in this condition, 
no fuzzy signal was generated, thus excluding its role in 
our results. A similar conclusion may be drawn from the 
work on perceived posture by Gandevia et al. (2006), who 
observed that subject at rest perceived their ischemic hand 
in a neutral position between flexion and extension, show-
ing that even under ischemia, a perception of body position 
persists, even if biased.

Further considerations on APA adaptation

In our experiments, we modified the postural demand 
in two different ways: 1) with the procedure of the nerve 
block and 2) by adding a fixation point to the wrist; in the 
former case, there was a change in the real perturbation, 
while in the latter case, there was a change in postural con-
text. Instead, in both cases, the voluntary command and, 
consequently, the expected perturbation did not change.

If the recruitment of the postural muscles had involved 
a separate neural mechanism with respect to that govern-
ing the prime mover(s), APAs would have been expected 
to be suppressed both when no primary movement pertur-
bation occurred (like under ischemia/anesthesia) and when 
the postural context changed (FIXED condition). Instead, 
our results showed that in contrast to the rapid adaptation 
to changes in the postural context, no adaptation occurred 
to the loss of primary movement perturbation, even after 
60 movement trials; thus, if any adaptation should have had 
occurred, it would have required much longer time than the 
adaptation to changes in postural context. Therefore, the two 
adaptation processes should entail different mechanisms.

With regard to the adaptation to postural context, several 
studies suggested that each voluntary movement is accom-
panied by widespread descending APA commands, which 
are then restricted to the appropriate muscles by actively 
gating at the spinal level the transmission of APAs to the 
other motoneurone (Schepens and Drew 2006). The single 
branches of such an “arborized” APA pattern selectively 
potentiated/suppressed according to the usefulness and 
reliability of the respective support point (Baldissera et al. 
2002; Baldissera and Esposti 2005; Esposti and Baldissera 
2011).

Instead, the much slower adaptation (if any) to changes 
in the real perturbation indicates that its relative weight 
in scaling the APA pattern is much lower than that of the 
expected perturbation. In other words, APAs are tailored to 
the expected perturbation, much more than on the real one, 
strengthening the idea that the postural and prime mover 
muscles are driven by a functionally unique command, 

where “functional” does not imply a unique neuronal cir-
cuit in charge of both voluntary and postural commands 
(actually we did not identify any anatomical substrate). In 
fact, even if more than one control center may be involved, 
the exchange of information between the controllers should 
be so close and strong that they would behave as a func-
tional unit.

Conclusion

The suppression of the prime mover EMG activity, the 
finger movement and the related mechanical perturbation, 
due to ischemia or anesthesia of the forearm, provided a 
novel opportunity to isolate the role of the APAs within a 
voluntary motor act. The observation that APAs remained 
tailored to the intended movement, i.e., to the expected per-
turbation, even after 60 movement trials in which that per-
turbation did not occur, supports the idea that the recruit-
ment of postural and prime mover muscles is driven by a 
functionally unique motor command, according to a well-
acquired pattern. Thus, APAs and prime mover activation 
are seemingly part of a unique motor command, which 
drives the muscular chain starting from the fixation point(s) 
and including the moving segment.
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cerebellar subjects as a model of dysmetria, also supports 
the view that a proper APA chain may play a crucial role in 
refining movement metria.
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Introduction

It is well known that a voluntary movement induces reac-
tive forces that are discharged on various body segments. 
In movements involving large masses, these forces may 
cause a whole-body equilibrium disturbance (Bouisset and 
Zattara 1987; Bouisset and Do 2008; see also Hess 1943) 
which is counteracted by inter-limb anticipatory pos-
tural adjustments (APAs) (see also Massion 1992). More 
recently, it has been demonstrated that an accurate stabi-
lization of the segments is performed also in motor tasks 
which do not involve the whole-body equilibrium. Indeed, 
Caronni and Cavallari (2009) reported that an intra-limb 
APA chain develops in several upper-limb muscles also 
when simply flexing the index finger. In this case, the prime 
mover flexor digitorum superficialis (FDS) is clearly pre-
ceded by a major postural inhibitory activity in biceps bra-
chii (BB) and anterior deltoid (AD) and by an excitatory 
burst in triceps brachii (TB). Such intra-limb APAs would 
not only guarantee the maintenance of the arm posture but 
are also very important in controlling the trajectory and the 
final position of the moving segment, i.e., metria.

Studies regarding the neural structures generating the 
APA command are surprisingly rare. Severe APA impair-
ments in patients with Parkinson’s disease suggested a role 
of the basal ganglia in the anticipatory postural control 
(Viallet et  al. 1987). Similar APA impairments were also 

Abstract  Voluntary movements induce postural pertur-
bations, which are counteracted by anticipatory postural 
adjustments (APAs) that preserve body equilibrium. Little 
is known about the neural structures generating APAs, but 
several studies suggested a role of sensory–motor areas, 
basal ganglia, supplementary motor area and thalamus. 
However, the role of the cerebellum still remains an open 
question. The aim of this present paper is to shed further 
light on the role of cerebellum in APAs organization. Thus, 
APAs that stabilize the arm when the index finger is briskly 
flexed were recorded in 13 ataxic subjects (seven spo-
radic cases, four dominant ataxia type III and two autoso-
mal recessive), presenting a slowly progressive cerebellar 
syndrome with four-limb dysmetria, and compared with 
those obtained in 13 healthy subjects. The pattern of pos-
tural activity was similar in the two groups [excitation in 
triceps and inhibition in biceps and anterior deltoid (AD)], 
but apparent modifications in timing were observed in all 
ataxic subjects in which, on average, triceps brachii excita-
tion lagged the onset of the prime mover flexor digitorum 
superficialis by about 27 ms and biceps and AD inhibition 
were almost synchronous to it. Instead, in normal subjects, 
triceps onset was synchronous to the prime mover and 
biceps and AD anticipated it by about 40 ms. The observed 
disruption of the intra-limb APA organization confirms that 
the cerebellum is involved in APA control and, considering 
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observed in patients with a lesion of the primary motor cor-
tex (M1) or of the supplementary motor area (SMA) (Vial-
let et al. 1992). With regard to pre-movement brain activity 
associated with APAs in healthy subjects, a functional MRI 
study by Schmitz et  al. (2005) reported that APAs were 
associated with activation of sensorimotor areas, SMA and 
the cerebellum, while a magnetoencephalographic study 
by Ng et  al. (2012) found anticipatory brain activity in 
basal ganglia, SMA and thalamus. It is apparent that the 
neural network generating APAs is still debated and, from 
the scarcely available data, it is particularly challenging to 
describe the functional role of each structure taking part in 
the anticipatory postural control.

For this reason, we thought interesting to shed further light 
on the involvement of the cerebellum in the APAs generation, 
also because it is known that the cerebellar circuitries play a 
major role in controlling the movement metria. Indeed, con-
sidering that the cerebellum controls rate, smoothness and 
coordination of the voluntary movement (Manto 2006; Mor-
ton and Bastian 2007) and that APAs and voluntary move-
ment are part of a unique motor command (Bolzoni et  al. 
2012; Bruttini et al. 2014), it should be expected that cerebel-
lum, especially in its role in distributing and temporizing the 
motor command, contributes in organizing APAs and, accord-
ingly, also in refining movement metria.

Thus, we analyzed the well-known intra-limb APA chain 
that stabilizes the arm when the index finger is briskly 
flexed (Caronni and Cavallari 2009) in a group of ataxic 
subjects affected by a slowly progressive cerebellar degen-
eration, as well as in an equal number of healthy subjects. 
In fact, considering cerebellar subjects as a model of dys-
metria, a disruption of the intra-limb APA organization 
would (1) prove the cerebellum involvement in APA con-
trol and (2) support the view that a proper APA chain may 
play a crucial role in refining movement metria (as pro-
posed by Caronni and Cavallari 2009).

Methods

Thirteen adult subjects with cerebellar ataxia (ATAXIA) 
were analyzed in this study. All subjects gave written con-
sent to the procedure, after being informed about the nature 
of the experiments. The local ethical committee approved 
the procedure in accordance with the 1964 Declaration of 
Helsinki.

All ATAXIA subjects (age 48.5  years  ±  13.0 SD, six 
females) suffered from a slowly progressive adult-onset 
cerebellar syndrome, without any other involvement of 
the sensory and motor systems. Seven cases were spo-
radic and four had a positive family history for autosomal 
dominant cerebellar ataxia type III (Fujioka et  al. 2013) 
and two for autosomal recessive ataxia. Mean age at onset 

was 23.2 ± 12.4 years. All subjects presented gait ataxia, 
four-limb dysmetria, mild dysarthria and occasionally mild 
increase in deep tendon reflexes, without spasticity. Cog-
nition was normal. Neurophysiological evaluations showed 
normal sensory and motor conduction velocities and no 
signs of axonal neuropathy. Scale for the Assessment and 
Rating of Ataxia (SARA; Schmitz-Hübsch et al. 2006) was 
applied in all subjects. All patients were ambulatory; the 
mean total SARA score was 8.0 (range 3–20, median 6.0). 
The SARA scores measuring upper-limb dysmetria ranged 
from 0.5 to 2 in all cases.

Brain 1.5-T MRIs imaging showed mild-to-severe cerebel-
lar atrophy, mainly affecting the cerebellar vermis, in all sub-
jects. In the majority of the cases, a mild atrophy of the cer-
ebellar hemispheres was also visible. Cerebral cortex, basal 
ganglia, pons, medulla and cerebral white matter showed no 
focal lesions or pathological signal intensity changes.

Experimental procedure

The experimental arrangement has been fully described in a 
previous paper (Caronni and Cavallari 2009). ATAXIA sub-
jects sat on a chair with both arms along the body, elbow 
flexed at 90°, hand prone in axis with the forearm and the 
index finger extended. All subjects involved in the experi-
ment were tested on the dominant limb. The index finger 
was kept in contact with a proximity switch (Pepperl and 
Fuchs, CJ10-30GK-E2), so that the metacarpophalangeal 
joint angle was about 180°, all other fingers hanging. Sub-
jects were explicitly asked to keep their back supported, 
the upper-limb still and both feet on the ground through-
out the experiment. The chair was height adjustable and the 
proximity switch screwed on an articulated arm (Manfrotto 
143 MAGIC ARM® +  035 Superclamp Kit®); both were 
adapted to the different body dimensions of the subjects. 
The subject position was always visually controlled by the 
experimenter. Subjects were asked to flex their index finger 
at the metacarpophalangeal joint so as to gently tap and rest 
on a flat surface.

Each movement was self-paced and performed after an 
acoustic signal delivered every 7 s. Subjects were instructed 
to wait for the acoustic go-signal and then flex the finger 
at will, within 4 s. This procedure was adopted to exclude 
any reaction time. In each experiment, index finger flexion 
was performed 45 times. Subjects never complained about 
fatigue.

Given the well-known bradykinesia of cerebellar sub-
jects, recordings in ATAXIA subjects were matched to 
those in an equal number of healthy subjects (CTRL), 
selected within our database, who performed the brisk fin-
ger flexion with a comparable speed. Mean speed (±SE) 
was 420 ± 34°/s for CTRL and 412 ± 43°/s for ATAXIA; 
the unpaired t test with common variance estimate led to 
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t24 = 0.14, P = 0.9. Levene’s test showed no difference in 
the variances of movement speed (F1,24 = 0.53, P = 0.47).

Movement and EMG recordings

The onsets of the fingertips movement were monitored by 
the proximity switch. Flexion–extension of right metacar-
pophalangeal joint was recorded by a strain-gauge goniom-
eter (mod. F35, Biometrics Ltd®, Newport, UK), taped to the 
joint. Angular displacement was DC amplified (P122, Grass 
Technologies®, West Warwick, RI, USA), and gain was 
calibrated before each experimental sequence. Pairs of pre-
gelled surface electrodes, 24  mm apart (H124SG, Kendall 
ARBO, Tyco Healthcare, Neustadt/Donau, Germany), were 
used to record the EMG signal from the right FDS, the prime 
mover, and from some of the ipsilateral postural muscles: 
BB, TB and AD. A good selectivity of the EMG recordings 
was achieved both by careful positioning of the electrodes 
and by checking that activity from the recorded muscle, dur-
ing its phasic contraction, was not contaminated by signals 
from other sources. The EMG was amplified (IP511, Grass 
Technologies®, West Warwick, RI, USA; gain 2–10 k) and 
band-pass filtered (30–1,000  Hz, to minimize both move-
ment artefacts and high-frequency noise). Goniometric 
and EMG signals were A/D converted at 2 kHz with 12-bit 
resolution (PCI-6024E, National Instruments®, Austin, TX, 
USA), visualized online and stored for further analysis.

Data analysis

On each sequence, the 45 EMG traces of the prime mover 
and those simultaneously recorded from the postural mus-
cles were digitally rectified and integrated (time constant: 
25 ms).

The onset of FDS activity was detected by a software 
threshold set at ±2 SD of the mean reference signal level, 
calculated from 1,000 to 500  ms prior to the movement 
onset. Traces collected from each muscle were then aver-
aged in the temporal window from 1,000  ms before to 
300  ms after FDS onset. Latency of the postural activity 
was measured off-line on the averaged traces by using the 
same criteria applied to FDS and visually validated.

The latency variances of APAs and movement were 
compared between ATAXIA and CTRL groups by means 
of Levene’s test. Mean latency values were compared by 
unpaired t tests with separate variance estimates. Statistical 
significance was set at P < 0.05.

Results

In the representative CTRL subject illustrated in Fig. 1, the 
FDS muscle activation was (1) preceded by clear inhibitory 

postural adjustments in BB and AD muscles and (2) almost 
synchronous to the excitatory postural adjustment in TB; 
this APA pattern preceded index finger flexion of about 
100 ms. Instead, in the ATAXIA subject, APAs maintained 
their pattern but were clearly delayed: In AD, APA was 
almost synchronous to the prime mover, while in BB and 
TB APAs were so delayed that they even lagged the index 
finger flexion.

The behavior of individual CTRL and ATAXIA subjects 
is shown in Fig. 2. Despite comparable movement latencies, 
ATAXIA subjects overall showed a clearly delayed pattern 
of postural adjustments; indeed, APAs often lagged the FDS 
and, in some cases, occurred close to the movement onset. 
Moreover, some ATAXIA subjects lacked inhibitory APAs. 
In fact two of them did not show APAs in both BB and AD, 
two lacked APA in BB only and other two lacked it solely 
in AD. No case of APAs reversal, from inhibitory to excita-
tory or vice versa, was observed. It is also apparent from the 
same figure a higher variability in TB and BB APAs laten-
cies in the ATAXIA group. Levene’s test found significant 
ATAXIA versus CTRL differences of latency variability in 
TB and BB (F1,24 = 4.67, P = 0.04; F1,20 = 8.13, P = 0.01, 
respectively) but not in AD, nor for movement (F1,20 = 0.04, 
P = 0.84; F1,24 = 1.39, P = 0.25, respectively).

Mean latency for APAs and movement in the two groups 
are plotted in the lowermost panel of Fig.  2. Despite 
movement latency was at all similar in the two groups 
(t21.78 = 1.06, P = 0.3), excitatory APA in TB was almost 
synchronous to FDS in CTRL while it lagged FDS of 
about 27 ms in ATAXIA subjects. Inhibitory APAs in BB 
and AD, which led the FDS of about 40 ms in CTRL, were 
almost synchronous to FDS in ATAXIA subjects. In each 
muscle, APA latency in ATAXIA was significantly differ-
ent from that observed in CTRL (t17.07 = 2.26, P = 0.037; 
t10.81 = 3.53, P = 0.005 and t15.03 = 4.45, P < 0.001, for 
TB, BB and AD, respectively). No significant correla-
tion between changes in APA timing and SARA score was 
found.

Discussion

When performing a brisk index finger flexion, ATAXIA 
subjects showed a timing disruption of intra-limb APAs, 
while their pattern (excitation in TB; inhibition in BB and 
AD) was unmodified. Since APAs are known to be scaled in 
amplitude and latency according to the speed of the motor 
action (Horak et  al. 1984; Shiratori and Aruin 2007), the 
speed effect was excluded by matching ATAXIA to CTRL 
subjects who displayed comparable speeds. Moreover, the 
similarity of speed variability grants that the significant dif-
ference found in the variability of APA latency stems from 
the cerebellar dysfunction.
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Altogether, these data sustain the hypothesis that the 
cerebellum is essential in tailoring the timing of APAs with 
respect to prime mover activation, and open the question 
whether the cerebellar dysmetria may stem from an errone-
ous timing of APAs.

Role of cerebellum in APA control

The cerebellum is fundamental for controlling rate, smooth-
ness and coordination of voluntary movement (Manto 
2006; Ramnani 2006; Morton and Bastian 2007) as well 
as in preparation, initiation and timing of motor acts (Ivry 
and Keele 1989; Ivry 1997; Timmann et  al. 1999; Cerri 
et  al. 2005; D’Angelo 2010). Cerebellar damage appears 
to disrupt different movement features, generally ascribed 
to an altered timing–scaling and amplitude–scaling of ago-
nist and antagonist activity (e.g., Brown et al. 1990; Manto 
et al. 1994; Flament and Hore 1986). Cerebellum may pre-
dictively scale recruitment of different muscles in relation 
to the mechanical demands (Bastian et al. 1996; Massaquoi 
and Hallett 1996; Topka et  al. 1998), and thus, ataxia 
should be more pronounced in those movements requir-
ing coordination of many muscles (Thach et al. 1992). One 
of the typical signs observed in cerebellar patients is dys-
metria, i.e., the inability to properly reach a given target. 
Cerebellar dysmetria occurs both proximally and distally 
in upper and lower limbs and affects single-joint as well 

as multi-joint movements (Blouin et al. 2004; Ullén et al. 
2003).

As stated in the introduction, the role of cerebellum in 
APA control is instead an open question. Indeed, Mummel 
et al. (1998) reported normal APAs in patients with cerebel-
lar pathology, and also Timmann and Horak (2001) found 
that the temporal parameters of APSs were preserved in 
cerebellar subjects performing unperturbed steps. However, 
several other studies positively concluded for a cerebel-
lum role in APAs control. Indeed, patients with cerebellar 
lesions fail to show a normal anticipatory adjustment in 
grip force when lifting or moving an object (Müller and 
Dichgans 1994; Babin-Ratté et al. 1999). Moreover, David-
son and Wolpert (2005) suggested a stronger role of feed-
forward internal models versus sensory feedback in several 
aspects of human motor control. The cerebellum is one of 
the most likely site for storing forward models (Kawato 
et  al. 2003, see also Bastian 2006). Finally, Asaka and 
Wang (2011) found that cerebellar ataxic patients showed 
altered feed-forward muscle synergies and multi-mode 
coordination when compared to healthy subjects, witness-
ing a disorganization of feed-forward muscular control.

Our data agree with the above conclusions, in particular 
supporting that the cerebellum plays a crucial role in setting 
the temporal distribution of APAs while not affecting the 
APA pattern. On the other hand, delayed APAs during fin-
ger flexion seem to contrast with the anticipation of APAs 

Fig. 1   Changes in intra-limb APAs latencies in cerebellar sub-
jects. Recordings from one representative subject of the healthy 
group (CTRL) are compared to recordings of a cerebellar subject 
(ATAXIA). Note that in the healthy subject the prime mover activa-
tion is preceded by inhibitory APAs in biceps brachii (BB) and ante-
rior deltoid (AD) and by an excitatory APA in triceps brachii (TB). In 
the cerebellar patient, a various degree of disruption in APAs timing 

and a delayed finger flexion are observed. In each subject, top panel 
shows the activation of the prime mover flexor digitorum superficialis 
(FDS), matched to the ensuing finger flexion (MOV); bottom panel 
illustrates the APAs in elbow and shoulder muscles. Mean reference 
signal level has been subtracted from each EMG trace. AD amplitude 
in ATAXIA has been scaled by a factor 3
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found by Diedrichsen et al. (2005) in the bimanual barman 
task. However, Diedrichsen interpreted the premature APAs 
in cerebellar subjects as a safety strategy to avoid a violent 
elbow flexion when unloading the hand; such strategy is 
clearly useless in our finger flexion task; hence, there is no 
need to anticipate APAs.

Instead, the delayed APAs described in the present study 
conform to those described by Yamaura et  al. (2013), in 
transgenic spinocerebellar ataxic mice which had to reach 
and drink from a flask while standing. Different from the 
wild type, ataxic mices activated hindlimb postural muscles 
markedly later than neck prime movers, i.e., they showed 
delayed APAs.

A last remark regards the significantly larger inter-sub-
ject variability in APAs timing observed in ATAXIA versus 
CTRL subjects. This finding agrees with previous literature 
(Diener et  al. 1992; Diedrichsen et  al. 2005; Asaka and 
Wang 2011) and may be due to a different clinical expres-
sion of the cerebellar degeneration.

APAs and metria

It has been suggested that APAs may play a crucial role in 
controlling the finger final position during a brisk flexion. 
Indeed, indirect evidences showed that the absence of APAs 
may induce a dysmetria movement (Caronni and Cavallari 
2009). Symmetrically, when inducing dysmetria in healthy 
subjects by means of prismatic lenses, the APA pattern 
was altered, without changes in prime mover recruitment 
(Caronni et al. 2013).

Considering our recent suggestion that APAs and prime 
mover activation are part of a unique motor command 
(Bruttini et al. 2014), one should expect that APAs are pre-
sent also in dysmetria movements, most probably altered 
in timing and/or pattern. Actually, ATAXIA subjects, clini-
cally classified as dysmetria, showed a temporal disrup-
tion in the intra-limb APAs without involvement of the 
prime mover recruitment. This also agrees with the finding 
of Bastian et  al. (2000), who studied cerebellar subjects 
performing elbow flexion, with or without shoulder fixa-
tion. They showed that cerebellar subjects were dysmetria 
without shoulder fixation and became ‘metric’ with it. The 

Fig. 2   Comparison of the APA chain in healthy and in cerebellar 
subjects. Latencies of finger flexion (MOV) and APA onsets in TB, 
BB and AD are plotted with respect to onset of FDS. Each single sub-
ject is represented. Dashed line marks the average movement latency 
for either group of subjects. Note that in ATAXIA APAs are delayed 
and absent in four cases (marked with an X). The lowermost panel 
shows mean latency (±SE) of the onset of finger flexion and APAs. 
Asterisks mark significant differences found by unpaired t test

▸
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impairment in active shoulder stabilization by interaction 
torques, shown by the authors, may be seen as an impair-
ment of APAs in proximal muscles.

Conclusion

The present data confirm the hypothesis that the cerebel-
lum is involved in controlling APAs timing with respect to 
the prime mover activation and also support the view that a 
proper APA chain may play a crucial role in refining move-
ment metria.
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Introduction

About 5  years ago, we started investigating the anticipa-
tory postural adjustments (APAs) that develop in the same 
limb in which the voluntary movement occurs (Caronni and 
Cavallari 2009). In fact, a brisk finger flexion, driven by 
the prime mover Flexor Digitorum Superficialis (FDS), is 
accompanied by an APA chain in the upper limb, consist-
ing of an excitatory burst in triceps brachii (TB) and in an 
almost contemporary inhibition in biceps brachii (BB) and 
anterior deltoid (AD). These anticipatory postural activities 
allow to counteract the elbow and shoulder flexion induced 
by the upward perturbation that the index finger flexion 
causes on the metacarpophalangeal joint (MP). Although 
resulting from the motion of a tiny mass, these intra-limb 
APAs behave similarly (Caronni and Cavallari 2009; Bol-
zoni et al. 2012; Bruttini et al. 2014) to the well-known 
inter-limb APAs of movements involving large masses (see 
Bouisset and Do 2008 for a review).

The APAs originate from a feed-forward command 
(Belen’kii et al. 1967; Friedli et al. 1984; Aruin and Latash 
1995; Massion et al. 1997), and therefore, APAs are tuned 
depending on several kinematic aspects of the primary 
movement. Of particular interest for the understanding of 
APA programming is the dependence of their latency from 
movement velocity, illustrated by Horak et al. (1984), Lee  
et al. (1987), and also appreciable in figure 2a of Shiratori 
and Aruin (2007). In those papers, information about the 
linkage between APAs and speed of voluntary movement 
was obtained within single subjects, by comparing their 
behavior when instructed to change the movement velocity; 

Abstract  The literature reports that anticipatory pos-
tural adjustments (APAs) are programmed according to 
movement velocity. However, the linkage between APAs 
and velocity has been highlighted within single subjects 
who were asked to voluntarily change movement veloc-
ity; therefore, till now, it has been impossible to discern 
whether the key factor determining APA latency was the 
intended movement velocity or the actual one. Aim of 
this study was to distinguish between these two factors. 
We analyzed the APA chain that stabilizes the arm dur-
ing a brisk index finger flexion in two groups of subjects: 
(1) 29 who composed our database from previous experi-
ments and were asked to “go-as-fast-as-possible” (go-fast), 
but actually performed the movement with different speeds 
(238–1,180°/s), and (2) ten new subjects who performed 
the go-fast movement at more than 500°/s and were then 
asked to go-slow at about 50  % of their initial velocity, 
thus moving at 300–800°/s. No correlation between APA 
latency and actual movement speed was observed when 
all subjects had to go-fast (p > 0.50), while delayed APAs 
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slow (p  <  0.001). Moreover, in the speed range between 
300 and 800°/s, the APA latency depended only on move-
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therefore, it was impossible to discern whether the key 
factor determining the modification of APA latency was 
the change of the intended or the actual movement speed. 
The aim of this study was to distinguish between these two 
factors.

To address this issue, we analyzed the well-known intra-
limb APA chain that stabilizes the arm during a brisk index 
finger flexion, in two groups of subjects: 29 composing our 
database of previous experiments, who received the same 
“go-as-fast-as-possible” (go-fast) instruction but actu-
ally performed the movement at different velocities (238–
1,371°/s) and 10 new subjects who performed the go-fast 
flexion at more than 500°/s and were then asked to go-slow 
at about 50 % of their initial speed, so that they moved faster 
than 250°/s. Assuming that all subjects actually obeyed the 
go-fast and go-slow instructions by planning a movement 
at 100 and 50 % of their maximal speed, respectively. The 
change of movement instruction should have been reflected 
into a parallel change of the intended movement speed.

In the go-fast population, we tested the correlation 
between APA latency and actual movement speed, while 
the go-fast versus go-slow behavior of the 10 new subjects 
allowed us to assess the effect of the intended movement 
speed. Moreover, a last comparison was drawn between 
subjects moving at the same speed but obeying the two 
different instructions, i.e., planning two different speeds. 
Results from these experiments allowed us to properly 
distinguish whether APA latency depends on actual or 
intended movement velocity, or on both.

Materials and methods

Two groups of subjects were analyzed. The first group was 
composed by our database of 29 subjects (12 females), 
recorded in previous studies. All of them performed experi-
ments in which they were asked to briskly flex the index 
finger as fast as possible (go-fast instruction). The actual 
velocity of their movements ranged from 238 to 1,180°/s. 
Their mean (±SD) anthropometric characteristics were: 
age 26.2  ±  8.9  years, weight 65.8  ±  11.6  kg, height 
172 ± 16 cm, index finger length 8.7 ± 0.8 cm and upper 
limb length 70.4 ± 6.4 cm.

The second group was obtained by collecting ten new 
subjects (four females) who were able to perform the go-
fast finger flexion at more than 500°/s. These subjects 
were then asked to go-slow, at about 50 % of their initial 
speed. Their mean (±SD) anthropometric characteristics 
were: age 28.1 ± 5.7 years, weight 68.4 ± 13.4 kg, height 
174 ± 13 cm, index finger length 9.2 ± 0.9 cm and upper 
limb length 72.3 ± 5.8 cm.

In both groups, no subject had any history of orthope-
dic or neurological disease and all of them gave written 

consent to the procedure, after being informed about the 
nature of the experiments. The procedure was approved by 
the local Ethics Committee in accordance to the 1964 Dec-
laration of Helsinki.

Experimental procedure

The ten new subjects underwent the same experimental pro-
cedure described in Caronni and Cavallari (2009): they sat 
on a chair with both arms along the body, the right elbow 
flexed at 90°, the right hand prone and in axis with the fore-
arm. The right index finger was kept extended and in contact 
with a proximity switch (Pepperl and Fuchs, CJ10-30GK-
E2), so that the MP joint angle was about 180°, all other fin-
gers hanging. Subjects were explicitly asked to keep their 
back supported, the arm and forearm still and both feet on 
the ground throughout the experiment. The chair was height 
adjustable and the proximity switch screwed on an articu-
lated arm (Manfrotto 143 MAGIC ARM®  +  035 Super-
clamp Kit®); both were adapted to the different body dimen-
sions of the subjects. The position of the subject was always 
visually controlled by the experimenter.

Subjects were asked first to flex their index finger at the 
MP joint. Each movement was self-paced and performed 
after an acoustic signal delivered every 7  s. The time 
interval between the beep and the movement onset varied 
according to the will of the subject. This procedure was 
adopted to exclude any reaction time. Subjects performed 
two sequences of 30 finger flexions in which they were 
instructed to go-fast, followed by two more sequences in 
which they were instructed to go-slow, i.e., to reduce their 
speed to about 50 % of the fast value. A rest time of about 
5  min was allowed between each session. Subjects never 
complained about fatigue. Movement speed was monitored 
by the experimenter, who alerted the subjects to speed-up 
or slow-down when necessary.

Movement and EMG recordings

The onset of the fingertip movement was monitored by 
the proximity switch. Flexion of the right MP joint was 
recorded by a strain-gauge goniometer (mod. F35, Biom-
etrics Ltd®, Newport, UK) taped to the joint. Angular 
displacement was DC amplified (P122, Grass Technolo-
gies®, West Warwick, Rhode Island, USA), and gain was 
calibrated before each experimental sequence. Pairs of pre-
gelled surface electrodes, 24 mm apart, (H124SG, Kendall 
ARBO, Tyco Healthcare, Neustadt/Donau, Germany) were 
used to record the EMG signal from the right prime mover 
FDS and from some of the ipsilateral postural muscles: BB, 
TB and AD. A good selectivity of the EMG recordings was 
achieved both by a careful positioning of the electrodes and 
by checking that the activity from the recorded muscle, 
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during its phasic contraction, was not contaminated by sig-
nals from other sources. EMG was AC amplified (IP511, 
Grass Technologies®, West Warwick, Rhode Island, USA; 
gain 2–10 k) and band-pass filtered (30–1,000 Hz, to mini-
mize both movement artifacts and high-frequency noise). 
Goniometric and EMG signals were A/D converted at 
2 kHz with 12-bit resolution (PCI-6024E, National Instru-
ments®, Austin, Texas, USA), visualized online, and stored 
for further analysis.

Data analysis

On each sequence, the 30 EMG traces of the prime mover 
and those simultaneously recorded from the postural mus-
cles were digitally rectified and integrated (time constant: 
25 ms). Traces collected from each muscle were then aver-
aged in a fixed temporal window: from −1,000 to +300 ms 
with respect to the onset of the FDS EMG, identified by 
a software threshold set at +2 SD of the reference signal 
level (from 1,000 to 500 ms prior to movement onset). On 
each experiment, latency of the postural activity was meas-
ured off-line on the averaged traces. The EMG onset in 
each postural muscle was identified by a software threshold 
set at ±2 SD of the reference signal level, and visually vali-
dated. Latency of the APA was referred to the FDS EMG 
onset, with negative values indicating a time advance.

Statistics

Pearson’s product-moment correlations was used to assess 
the relationship between APA latency and actual movement 
speed in BB, TB and AD muscles, in all subjects who were 
instructed to go-fast or to go-slow.

Two-way repeated measures ANOVA was employed to 
test the effect of instruction (go-fast vs. go-slow) and muscle 
(BB vs. TB vs. AD) on APA latency, in the 10 new subjects.

Two-way mixed ANOVA was used to test the effect of 
instruction (between-groups factor) and muscle (within-
subjects factor) in the 10 new subjects when they had to go-
slow versus those from our database who had to go-fast but 
actually moved in the same speed range. Movement speed 
was compared by an unpaired t test.

For all tests, significance threshold was set at 0.05.

Results

Anticipatory postural adjustments prior to a fast index 
finger flexion

Despite the large range of their actual movement speeds 
(from 238 to 1,371°/s), both the 29 subjects from our 
database and the new 10 subjects, who were instructed to 

go-fast, showed no correlation between APA latency and 
actual movement velocity (BB: r2 = 0.0001, p = 0.95; TB: 
r2 = 0.0122, p = 0.50; and AD: r2 = 0.0030, p = 0.74, see 
Fig. 1). On average, the TB muscle activation was almost 
synchronous (mean ± SE −0.3 ± 2.2 ms) to prime mover 
FDS, while inhibition of BB and AD clearly preceded it 
(−37.5 ± 2.9 and −34.2 ± 3.2 ms, respectively).

Anticipatory postural adjustments prior to a slow index 
finger flexion

The different behavior between the go-fast and go-slow 
instruction is depicted in Fig. 2 for a representative subject. 

Fig. 1   Relation between the APA latency in the three postural mus-
cles (biceps brachii, BB; triceps brachii, TB; and anterior deltoid, 
AD) and the actual movement velocity. Data from subjects from our 
database (white circles) and from the new ten subjects (gray circles) 
are plotted. Time 0 (dashed line) refers to prime mover EMG onset. 
No correlation between APA latency and movement velocity was 
found in the whole population
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The latency lag during go-slow movement may be eas-
ily appreciated by matching the bolded lines in the three 
postural muscles. When going slow, the movement speed 

was reduced from 1,324 to 590°/s, i.e., to about 50 % of its 
maximal value.

The APA latencies obtained in go-fast and go-slow 
movements of the 10 new subjects are shown in Fig. 3. On 
the left, latency is plotted against actual movement speed. 
Note that the range of the go-slow movements (from 309 to 
794°/s) fell within the range of the less fast subjects plotted 
in Fig. 1. In this case too, no correlation was found between 
APA latency and movement velocity (BB: r2  =  0.0063, 
p = 0.83; TB: r2 = 0.00001, p = 0.99; and AD: r2 = 0.013, 
p = 0.75). Mean latencies and individual values are plotted 
in the right panels, showing that when instructed to go-slow 
subjects clearly delayed their postural activities of about 
20–25 ms.

A two-way repeated measures ANOVA showed a sig-
nificant effect of movement instruction (go-fast vs. go-
slow, F1.9 = 38.6, p = 0.0002) and muscle (F2.18 = 33.9, 
p  <  0.0001), while interaction was not significant 
(F2.18 = 1.2, p = 0.32), i.e., the change in latency was simi-
lar in the three muscles.

Finally, the results from the 10 subjects who had to go-
slow were matched with those who performed the go-fast 
task at a similar velocity, i.e., 300–800°/s. The mean APA 
latency was clearly different in the two groups, witnessing 
that movement instruction, not actual movement speed, was 
the most significant factor in determining the APA timing.

Table 1 reports the movement speed and the mean APA 
latencies in the two groups. Despite similar velocities, it 
is apparent that the jump of latency is due to the differ-
ent instruction. Unpaired t test showed no difference in 
movement velocity between the two groups (t29  =  1.05, 
p  =  0.30); instead, a two-way mixed ANOVA showed a 
significant effect of movement instruction (go-fast vs. go-
slow: F1,29 = 18.1, p = 0.0002) and muscle (BB vs. TB vs. 
AD: F2,58 =  35.4, p  <  0.0001), while the interaction was 
not significant (F2,58 = 1.8, p = 0.17).

Discussion

This study showed that the key factor determining the 
modification in APA latency when performing a voluntary 
movement was the change in the movement instruction (go-
fast vs. “go slow”), not the actual movement velocity. This 
conclusion stemmed from three observations: (1) There 
was no correlation between APA latency and movement 
speed when all subjects had to follow a go-fast instruction, 
as shown in Fig. 1, (2) APAs were delayed when subjects 
reduced their movement velocity because they had to fol-
low a go-slow instruction (Fig. 3), and (3) in a large range 
of speeds, the APA latency depended exclusively on move-
ment instruction: subjects going fast showed earlier APAs 
than those going slow (Table  1). Under the assumption 

Fig. 2   Go-fast and go-slow movements in a representative subject. The 
inset depicts the position of the subject in the experimental setup. Goni-
ometric recording of the index finger flexion (top panel) and rectified 
and integrated (25 ms) EMG from the prime mover FDS and from BB, 
TB and AD. Note that when going fast (dashed traces) the prime mover 
onset was preceded by APAs in BB, TB and AD. APAs (embolded) 
were instead clearly delayed when going slow (solid traces). Time 0 
(vertical dashed line) refers to prime mover EMG onset
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that all subjects actually obeyed the go-fast and go-slow 
instructions by planning a movement at 100 and 50 % of 
their maximal speed, respectively, the change in move-
ment instruction was paralleled by a change in the intended 
movement speed; hence, the latter should have been the key 
factor for determining the APA latency.

The previous literature considers APAs as pre-pro-
grammed according to several task parameters, such as 
velocity, load and direction (for a review, see Bouisset and 
Do 2008). In particular, for what concerns the relationship 
between APA latency and movement velocity, several stud-
ies (Horak et al. 1984; Lee et al. 1987; Ito et al. 2003, see 
also in figure 2a of Shiratori and Aruin 2007) found delayed 
APAs when the subjects voluntarily slowed their move-
ment, in agreement with the second of our above observa-
tions. It might appear strange that Ito et al. (2003) found no 
change in APA latency between fast and slow movements. 
However, these authors measured latency with respect 
to movement onset, not to prime mover recruitment, and 
since, in general, the delay between prime mover activation 
(EMG) and movement onset increases when slowing the 
movement, and this could have compensated the reduction 
in APA latency with respect to prime mover onset. Note 
also that in all the above studies, the latency–speed relation 
was observed within single subjects who were explicitly 
compelled to change the speed of their movement. Such 
an approach, i.e., studying subjects who planned different 
movement speeds, did not allow to distinguish whether the 
APA latency changed in function of the intended movement 
velocity or of the actual one. In this regard, the novelty of 
the present paper is to have discerned between these two 
factors.

It may be argued that the lack of inter-subjects corre-
lation between APA latency and actual movement speed 
could have been ascribed to a subject-dependency of APAs, 
like the walking speed in elderly vs. young subjects (cfr. 
Schimpl et al. 2011). This could be true, even if in our sub-
jects neither the APA latencies nor the maximal movement 
speed were correlated with age (in all cases, r2  <  0.044; 
p  >  0.20). However, this would not affect the main mes-
sage of our study: the literature on APAs reports that 
their latency is scaled according to the movement speed, 
our study (1) showed that such relation held only within-
individuals, while no significant correlation was observed 
between-subjects and (2) concluded that the intended 
movement speed is a key factor for determining the APA 
latency because it was the only factor which systematically 
changed within-individuals and not between-subjects.

Given that the CNS is able to adapt APAs to the pos-
tural demand of the forthcoming mechanical perturba-
tion, one may ask whether postural control and voluntary 
recruitment stem from two separates control centers or they 
instead result from a shared motor command. In the former 

Fig. 3   Go-fast and go-slow APA latency in the ten new subjects. 
The left panel illustrates the relation between movement velocity 
and mean latencies of the three postural muscles when subjects were 
asked to go-fast (gray circles) or to go-slow (black circles). Time 0 
(dashed line) refers to prime mover onset. No correlation between 
APA latency and movement velocity was found when subjects were 
asked to go-slow. Right panel compares individual and mean (±SE) 
APA latency in fast and slow movements

Table 1   Effect of movement instructions on APA latency

Mean APA latency  ±  SE in biceps brachii (BB), triceps brachii 
(TB) and anterior deltoid (AD) in two groups of subjects who were 
instructed to go-slow or go-fast, but actually performed index finger 
flexion at 300–800°/s. First column shows that they actually moved 
at similar velocities. Statistics (see text) found no difference in move-
ment speed, but a significant effect of instruction on all muscles

Speed (°/s) BB (ms) TB (ms) AD (ms)

Go-fast 558 ± 30 −39.4 ± 4.5 1.1 ± 2.7 −32.4 ± 5.3

Go-slow 498 ± 53 −8.2 ± 7.8 18.5 ± 2.1 −18.0 ± 5.0



	 Exp Brain Res

1 3

case, it was expected that after few trials, APAs would have 
adapted their latencies according to the actual movement 
velocity, as shown, when changing the postural context 
(Cordo and Nashner 1982; Hall et al. 2010; Bruttini et al. 
2014). In fact, the postural controller would have overcome 
the intended command because of the proprioceptive feed-
back. Instead, in the case of a shared motor command, the 
intention would have prevailed, so that APA latency would 
have always been tailored to it. Present results clearly agree 
with the latter view.

Such view is not new: it had been already forwarded 
for justifying the persistence of APAs even after a forearm 
ischemia, which suppressed (1) the prime mover EMG, (2) 
the ensuing finger movement and (3) the related mechani-
cal perturbation (Bruttini et al. 2014). In that condition, 
the CNS did not adapt APAs to the absence of mechanical 
perturbation, seemingly because the motor command was 
unchanged. A result indirectly suggested that the recruit-
ment of postural and prime mover muscles was driven by 
a shared motor command. The concept of a shared postural 
and voluntary command within the same motor act was 
also envisaged by Caronni et al. (2013), who showed that 
APAs properly tailored to the prime mover activation con-
tribute to make the focal movement accurate by securing 
the position of the proximal joints. Leonard et al. (2011) 
reached similar conclusions showing that the CNS employs 
a predictive mode of postural control and consistently 
adapts the postural muscle activity before correcting the 
prime movers recruitment. These authors concluded that 
the postural corrections could be described as being a com-
ponent of the voluntary movement, rather than being aimed 
to ensure the maintenance of equilibrium. Present results 
are also in agreement with Davidson and Wolpert (2005), 
who illustrated a stronger role of predictive feed-forward 
internal models versus sensory feedback in several aspects 
of human motor control, such as oculomotor and skeleto-
motor control, perceptual processing, mental imagery and 
also postural control (see also Wolpert et al. 1995, 2011).

Little is known about the neural sub-systems govern-
ing APAs, but several studies suggested a superposition 
of the neural structures for APAs and those for voluntary 
recruitment, thus indirectly supporting the above hypoth-
esis of a shared motor command. Severe APA impairments 
in patients with Parkinson’s disease suggested a role of 
the basal ganglia in the anticipatory postural control (Vial-
let et al. 1987). In particular, beyond their role in shaping 
the movement, basal ganglia may be involved in the inten-
tional movement selection, through the pathway involving 
the anterior mid-circulates cortex (see Hoffstaedter et al. 
2013). Anticipatory brain activity before the execution of 
a bimanual load-lifting task was recently localized in basal 
ganglia, supplementary motor area (SMA), and thalamus in 
the hemisphere contralateral to the load-bearing arm (Ng 

et al. 2012). It is worth noting that these areas are compo-
nent nodes of the basal ganglia-thalamo-cortical network 
implicated in well-learned finger movements (Boecker 
et al. 1998). The possible involvement of the SMA in the 
APA network was suggested by several human and primate 
experiments (Brinkman 1984; Viallet et al. 1992; Yoshida 
et al. 2008; Jacobs et al. 2009). A change in firing rate, 
depending on speed instruction, had also been shown in the 
pre-motor cortex of rhesus monkey (Shenoy et al. 2003), 
another area involved in motor program selection (see for 
references Hoffstaedter et al. 2013). This result is of par-
ticular interest for us because the movement paradigm 
closely replicated many aspects of our task, such as the 
delayed movement onset with respect to the go signal, in 
order to avoid a reaction time movement, and the two dif-
ferent speed instructions.

Finally, the hypothesis of a functionally unique motor 
command deserves a brief consideration within the frame-
work proposed by Bouisset and Do (2008) in their review 
on APAs. According to these authors, the voluntary move-
ment is any motor act in which the intention of the sub-
ject is to perform a given task. These authors distinguished 
two aspects of the “task”: First, the task to be performed, 
which depends on the environmental context and the cat-
egory of the intended movement, such as pointing, tapping, 
and throwing. Second, the real task, i.e., the outcome of the 
motor command, which may satisfy the intended move-
ment by a various degree of efficiency. As these authors 
stated: “Efficiency is measured by the actual parameter 
values (speed, precision, etc.) with respect to the intended 
ones and depends on the neural and muscular–skeletal 
properties of each subject. Therefore, a voluntary move-
ment is part of a more general process, called the motor act. 
In other words, a voluntary movement is the mean to com-
plete a motor task”. In this perspective, the present results 
strengthen the idea that APAs belong to the same motor act 
as that of the voluntary recruitment. Indeed, just as vol-
untary movement, APAs may be considered “the mean to 
complete a motor task”, as they provide the proper fixation 
chain.

Conclusion

This study showed: (1) a lack of correlation between 
APA latency and actual movement speed in subjects who 
planned the same movement, i.e., an as-fast-as-possible 
flexion of their index finger, despite a wide range of actual 
movement velocities, and (2) that APAs were delayed when 
10 subjects were asked to repeat the movement at about 
50 % of their maximal speed. These data suggest a stronger 
role of intended versus actual movement speed in modify-
ing the timing of postural muscles recruitment with respect 



Exp Brain Res	

1 3

to prime mover, thus strengthening the idea of a shared pos-
tural and voluntary command within the same motor act.
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Conclusions 
In past literature, it has been often considered that APAs are unconscious 

muscular activities aimed to counteract the perturbation induced by the primary 

movement. This idea was born from several papers (Belenkii et al. 1967, Cordo and 

Nashner 1982, Zattara and Bouisset 1988) and summarized in the review from one of 

the giants of the APAs research, Jean Massion (1992).  

The results of the present thesis do not contrast the Massion’s view, but aim to 

refine his definition. In particular, both the demonstration of the APA role in refining 

movement accuracy (Caronni et al. 2013) and the persistence of the APA chain under 

an ischemic block (Bruttini et al. 2014), challenge Massion’s definition. Indeed, it seems 

now feasible to define APAs as part of a voluntary motor act, or, as defined by Bouisset 

and Do (2008), as the “optimal biomechanical means” to initiate voluntary movement 

and to approach postural programming.  

As pointed out above, this idea is not aligned with part of the previous literature 

that has considered the postural component and the focal movement as controlled by 

two separate motor commands (Hess 1943; Cordo and Nasher 1982; Brown and Frank 

1987). In particular, Brown and Frank (1987) favored the idea of a distinction between 

posture and movement by demonstrating that the time between the activation of postural 

adjustments and that of focal muscles varies according to the predictability of the 

perturbation. In fact, when asking subjects to perform a two-choice task involving 

pushing or pulling on a stiff handle, and allowing them to predict the upcoming direction 

of responding with a 80, 50 or 20% certainty, APAs were delayed when subjects were 

more “confident” of the direction of the perturbation, while more anticipated in the 

opposite case. However, the demonstration that APAs change their latency according to 

the predictability the upcoming direction of the handle does not ascertain that APAs and 

prime mover(s) are recruited by two different motor commands. Indeed, as stressed by 

Andrè-Thomas (1940), the maintenance of the equilibrium against unexpected fall and 

the execution of a voluntary movement without falling down are controlled by different 

mechanisms. Moreover, the change in APA latency could reflect a safety strategy to 
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avoid a violent fall when uncertain about the environmental context in which one is 

moving, i.e. the reliability of the fixation points, since the CNS may develop earlier 

APAs in order to produce a more effective counter-perturbation.  

Similar observations could be drawn with respect to the arm-pull experiment in standing 

subjects performed by Cordo and Nashner in 1982, who also sustained the hypothesis 

of two parallels commands for APAs and focal movement. In their experiments, 

subjects showed reduced APAs in the Soleus when adding a fixation point to the trunk. 

This result let the authors to suggest that APAs and prime mover recruitment are 

controlled by two different motor commands. However, in this situation, it could be 

argued that the oscillation caused by pulling the handle was prevented thanks to the 

presence of the additional support and, therefore, reduced the importance of the 

intervention of the posterior muscles of the lower limb. Furthermore, it is known that 

the length of the APA chain depends on the position of the fixing point to which it is 

anchored (see also Bruttini et al. 2014a). Consequently, in my opinion, the experiments 

performed by Cordo and Nashner in 1982 are not sufficient to demonstrated a parallel 

command for posture and voluntary movement. 

On the other hand, in an unstable condition, i.e. when reducing the support base area, 

APAs are usually reduced in amplitude (Gantchev and Dimitrova 1996). In fact, since 

the APA themselves determine the movement (Bouisset and Do, 2008), when the 

support base is small, the APA themselves could cause a displacement of the CoM, 

potentially threatening the whole body balance. Indeed, the importance of an adequate 

support base to ensure a reliable fixation point for the APA chain was suggested by 

Dietz & Colombo (1996), who showed that no APAs in lower limbs could be observed 

when performing push/pull movements when the body is fully immersed in water. It is 

thus apparent that moving without any fixation point is not an adequate condition for 

the APA chain to develop. Indeed, as expressed by Gray, when the human body is 

considered as a whole, muscular forces are internal to the mechanical system. As such, 

these forces cannot determine the overall movement of the body, being thus able to 

provoke just segmental movements; moreover, the global center of gravity can only 

move if the body encounters resistance originating from the environment, usual a 

http://www.ncbi.nlm.nih.gov/pubmed?term=Gantchev%20GN%5BAuthor%5D&cauthor=true&cauthor_uid=8799774
http://www.ncbi.nlm.nih.gov/pubmed?term=Dimitrova%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=8799774
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support base, which offers the appropriate reaction to the internal muscular forces. This 

view is also in agreement with one of the findings of the present thesis. In Bruttini et al. 

(2014a) it was illustrated that, when performing a sequence of unilateral movements of 

the right index-finger, with the right forearm fixated at the wrist, intra-limb APAs in the 

same limb were deeply reduced. In fact, the new fixation point at the wrist, i.e. closer to 

the voluntary moving segment (index-finger), strongly attenuated APAs in the more 

proximal muscles.  

Boendermaker et al. (2014) have described the neural structures in the CNS, 

which detect the environment in which we are moving and therefore permit to adapt the 

APA chain to the context. In that paper, it was demonstrated that applying a pressure on 

three lumbar spinous processes, a significant activation patterns in the somatosensory 

cortices (S1 and S2), supplementary motor area and anterior cerebellum was observable. 

According to these authors, the CNS should reasonably interpret the pressure as a new 

fixation point on the back and thus trigger a predictive APA adaptation, based on the 

new postural context. In other words, online sensory information about the environment 

in which we are moving are available early enough to tailor the APA chain.  

The analysis of the general postural context in which the body is moving 

obviously examines both the physical properties of the support base and the interface 

between the body and the support. The first depends on the characteristics of the 

environment in which we are moving, the latter on our own body posture. The 

interpretation on the external environment, related to our possibility of interacting with 

it, represent the “support base” that permit a successful APA-voluntary movement 

programming and is probably stored in the sub-cortical and cortical areas described by 

Boendermaker.  

The experiments of Caronni et al. (2013) have illustrated the role of retinal 

afferences and of extra-ocular muscles proprioception in adapting the APA chain to the 

forthcoming voluntary movement. In those experiments, a couple of prismatic lenses 

have produced a rightward shift of the binocular eye-field of about 11°. Therefore, the 

target projection on the retina was moved leftward with respect to the fovea. This 

induced a rightward shift of the eyeball to realign the fovea to the target. Both the initial 
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shift of the projection of the target on the retina and the proprioception of the following 

extra-ocular muscular activities made the subject to miss the target, causing a large 

rightward error. As shown in the paper section, the pointing error was associated to a 

modification of APAs, without any change of the prime mover activities, unveiling the 

role of the vision and the proprioception of the extra ocular muscles in the APA 

programming.  

It should be expected that the information about the environmental physical 

properties should be translated from sensory to motor areas that are involved in the APA 

programming. Little is known about the neural sub-systems governing APAs, but 

several studies suggested a superposition of the neural structures for APAs to those for 

voluntary motor command, thus indirectly supporting the above hypothesis of a “global 

command”. Severe APA impairments in patients with Parkinson’s disease suggested a 

role of the Basal Ganglia in the anticipatory postural control (Viallet et al. 1987). Similar 

APA impairments were also observed in patients with a lesion of the motor cortex or of 

the Supplementary Motor Area, SMA (Viallet et al. 1992). The possible involvement of 

the SMA in the APA network was indicated also by other experiments (Brinkman 1984; 

Yoshida et al. 2008; Jacobs et al. 2009). Anticipatory brain activity before the execution 

of a bimanual load-lifting task was recently localized in basal ganglia, SMA, and 

thalamus in the hemisphere contralateral to the load-bearing arm (Ng et al. 2012). 

Yakovenko and Drew (2009), who studied the discharge properties of cat pyramidal 

tract neurons (PTN) and their temporal linkage with APAs associated to reaching 

movements also support this latter view. These authors found a strong linear relationship 

between the onset of PTNs discharge and the APAs onset, strengthening the idea that 

the motor cortex contributes to generate the APAs. It is worth noting that these areas 

are component nodes of the basal ganglia-thalamo-cortical motor network, which is 

implicated in well-learned finger movements (Boecker et al. 1998). Moreover, Schepens 

and colleagues (Schepens and Drew 2004; Schepens et al. 2008) emphasized the role of 

pontomedullary reticular formation (PMRF) in the coordination of posture and 

movement. In particular, they suggested that PMRF is a site of integration of signals 

from both cortical and subcortical structures, and that these signals ensure that APAs 
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are appropriately scaled in time and in magnitude to the intended movement, 

contributing to integrate the control of posture and movement, as also illustrated by 

Toussaint et al (1998). 

In the present thesis it has been strengthen the idea of an involvement of SMA 

in APA programming (Bolzoni et al. 2014) and it was also proposed, together with other 

previous works (Diedrichsen et al. 2005,  Yamaura et al. 2013), an involvement of 

cerebellum in the neural networks responsible for generating and/or controlling APAs 

(Bruttini et al. 2014b). All these data suggest a superposition of the neural structures for 

both the APAs and the voluntary motor command and indirectly support the hypothesis 

of a global (common) command. 

The oneness of the postural and voluntary commands were suggested 

particularly by other experiments such as Bruttini et al. (2014a), Bolzoni et al. (2012), 

Caronni et al. (2013) and Esposti et al. (2014). In the first paper it was illustrated the 

persistence of the APA chain associated to a voluntary movement in an experimental 

condition in which the voluntary command was normally dispatched but the prime 

mover was not able to contract. Given the well-known ability of the CNS to adapt APAs 

to changes in the postural demand of the motor task within few movement repetitions 

(Belen’kii et al. 1967; Cordo and Nashner 1982; Aruin and Shiratori 2004; Shiratori and 

Aruin 2007; see also Hall et al. 2010), one could have expected that in these conditions 

APAs are suppressed, since unnecessary and uneconomical. Intriguingly enough, when 

repeatedly trying to flex the index-finger under ischemia, significant anticipatory 

adjustments were still clearly visible in BB, TB and AD. In other words, when the 

subject was asked to flex the index-finger, he recruited several upper limb muscles 

which do not act on the focal segment, independently if the actual movement, and 

therefore the ensuing perturbation, develops or not. The question of what is 

“economical” when controlling the voluntary movement, therefore, arise. It could be 

then argued that for the CNS is more economical to use a unique motor command fast 

to be dispatched, according to a well-acquired pattern,  rather than saving energy at the 

muscular level. Note that the subjects were asked to generate the same voluntary 

command in both conditions and any attempt to recruit FDS still resulted in a 
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recruitment of BB, TB and AD, without adaptation to the suppression of finger 

movement. The similarity of the motor command in the two conditions could not be 

directly assessed, but it may be inferred from the invariance of APAs amplitudes and 

latencies and the simultaneity and constancy of the contra-lateral index-finger flexion, 

visually controlled by the subject during the experiment. In this framework, as also 

suggested by Leonard et al. (2011), it would be difficult to keep strictly divided the 

control of posture from the control of the primary movement, as instead it was often 

proposed in previous literature (Hess 1943; Cordo and Nasher 1982; Brown and Frank 

1987). The results of Bruttini et al. (2014a) suggests that the voluntary motor command 

recruit each muscles of the muscular chain starting from the fixation point and 

terminates on the focal (prime) mover. 

In this regard, it is interesting to mention the studies of Gritsenko et al. (2009) 

and Leonard et al. (2011) showing that when correcting an ongoing arm pointing 

movement, the CNS employs a predictive mode of postural control and consistently 

adapts the postural muscles activities before spot on the prime mover recruitment. These 

authors concluded that the postural corrections could be described as being a component 

of the voluntary movement, rather than ensuring the maintenance of equilibrium. The 

observation that APAs remained tailored to the expected perturbation even when that 

perturbation did not occur supports the idea that APAs should be considered as the first 

part of a unique motor act starting from a fixation point, developing with the APA chain 

and including the prime mover activity.  

The oneness of postural and voluntary command was also witnessed by the finding that 

the APA latency depends on the movement instruction (“go-fast” vs. “go slow”), not on 

its actual velocity. This conclusion stems from three observations: i) there is no 

correlation between APA latency and movement speed when subjects obeyed the same 

instruction, ii) APAs were delayed when subjects reduced their movement velocity 

because they obeyed to a go slow instruction, iii) given a certain speed, APA latency 

depend on the instruction since go fast subjects showed earlier APA than go slow. Also 

in this case, if the recruitment of the postural muscles had involved a separate neural 

mechanism with respect to that governing the prime mover(s), APAs would have been 
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expected to change their latencies according to the actual movement velocity. Instead, 

present results shows that, APAs were delayed only when changing the movement 

instruction. In other words, APAs seem to be tailored to the expected perturbation, much 

more than on the real one, strengthening the idea that the postural and prime mover 

muscles are driven by a functionally unique command.  

Similar conclusions were reached in Caronni et al. (2013), who showed that 

prisms-induced pointing error specifically underlies changes in APAs amplitude with 

no changes in the prime mover activation, thus sustaining the hypothesis that a 

successful and accurate pointing movement relies upon a specific tuning between APAs 

and prime mover activation (see Caronni & Cavallari 2009a). In other words, “a 

movement never responds to detailed changes by a change in its detail; it responds as a 

whole to changes in each small part, such changes being particularly prominent in 

phases and details sometimes considerably distant both spatially and temporally from 

those initially encountered” (Bernstein 1967).  

Considering that a disruption of the APA chain led to movement inaccuracy, we thought 

it had been interesting to study the effect of a short-term immobilization on the postural 

control of non-immobilized segments. The effect of a cast immobilization on the prime 

mover are well known. Over the past few decades several authors have documented 

modifications in skeletal muscle properties such as atrophy (White et al. 1994; Hather 

et al. 1992), increasing in the intra-muscular connective tissue (Józsa et al. 1990) and 

reduction of the maximal voluntary contraction strength (Veldhuizen et al. 1993; 

Hortobàgyi et al. 2000) after cast immobilization. Moreover, Liepert et al. (1995) 

showed that immobilization leads to reduction of the cortical area of the inactivated 

muscle, while Facchini et al. (2002) demonstrated a decrease of the cortical excitability, 

without affecting nerve or muscle excitability, after only four days of motor restriction. 

Huber et al. (2006) found that these changes might even occur after twelve hours of 

immobilization. Finally, Moisello et al. (2008) demonstrated that short-term 

immobilization affect inter-joint coordination by acting on feed-forward mechanisms. 

Indeed, besides the well-known effects of this procedure on the pathways projecting to 

the prime mover and deserving inter-joint coordination, it was shown that 12-hours of 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2542985/#R11


128 
 

wrist and fingers immobilization effectively modify anticipatory postural adjustments 

of the elbow and the shoulder, i.e. those joints not immobilized within the fixation chain 

(Bolzoni et al. 2012). It is worth noting that, although the prime mover activation 

remains unchanged after the immobilization, the trajectory described by the index-

finger is most likely changed after short-term immobilization due to the modification in 

the postural control that led to a less effective stabilization of the proximal joint (see 

Caronni et al. 2013). Therefore, these results may shed light on some of the mechanisms 

underlying the feel motor awkwardness and the reduction of the voluntary movement 

precision that are common experiences after the removal of a cast or a splint.  

Eventually, two issues regarding the consideration of posture and voluntary 

movement deserve a few brief comments. First, when talking about posture we often 

refer as a static phenomenon, i.e. the maintenance of stance equilibrium, not dynamic 

and linked to the voluntary movement as we also have shown with the results of the 

present thesis. Moreover, in the neuro-physiological community, it was quite common 

to refer as isolated to movements that were supposed to involve only one muscle, e.g. a 

motor command that was supposed to be able to recruit only the biceps brachii. On the 

other hand, the present thesis look at the voluntary movement as a wider phenomenon, 

in which isolated movements do not exist. According to this view, any motor command 

enclose the motor program for both the postural and the focal component, in an most 

probably inseparable way.  

 

Final summary and future direction 

In conclusion, the ideas discussed in the present thesis could promote a new 

perspective in the APAs function. The characteristics of the environment and the general 

postural context, are able to refine the choice of the correct APA pattern. Indeed, the 

identification of the target position (Caronni et al. 2013) and the available fixation 

points, through the activation of the somatosensory cortices (S1 and S2), supplementary 

motor area and anterior cerebellum, trigger a predictive adaptation of APAs within the 

CNS (Boendermaker et al. 2014). According to the information coming from the 
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somatosensory and motor areas, the network composed by basal ganglia, SMA, and 

thalamus (Ng et al. 2010) keep tailoring the APA pattern to the movement to be made. 

Also other areas, involved in the execution of the voluntary movement, seem to take 

part in the APA programming/controlling, such as the cerebellum (Bruttini et al. 2014b) 

and the SMA (Bolzoni et al. 2014). The dependence of the APA latency to the intended 

movement velocity (Esposti et al. 2014) and the enduring development of APAs when 

trying to flex the index-finger under forearm ischemia (Bruttini et al. 2014a) suggests 

that APAs are tailored to the intended movement characteristics, much more than the 

measure at which they are adjustable by the sensory feed-back of the actually performed 

voluntary movement. Finally, the importance of a correct APA pattern in refining 

voluntary movement accuracy (Caronni et al. 2013) seems to confirm the oneness of 

APAs and primary movement, and that a functionally unique motor command drives 

both the prime mover and the muscles of the APA chain, connecting available support 

base (ground, seat, etc…), proceeding through the postural chain and then terminating 

on the moving segment (Bruttini et al. 2014, see for a Review Bouisset and Do, 2008). 

It can be thus  concluded that APAs adapt to changes i) of the postural context, ii) of the 

intended movement, i.e. the expected perturbation, but do no adapt, despite movement 

repetition, to changes in the actual executed movement, i.e. to the real perturbation. 

Consequently, one may wonder where is the difference between APAs and the 

voluntary movement. In other word, should the anticipatory muscular activities that 

precede the prime mover recruitment be considered as unconscious postural actions, 

aimed to counteract the primary movement perturbation and guarantee the equilibrium 

of the whole-body or the single segment? Or are they actually part of a unique voluntary 

motor command, all of them necessary in order to perform the intended movement? 

According to the results presented in this thesis, the second hypothesis seems the one to 

be preferred, i.e. that APAs and the primary movement should be considered as one 

within the same motor program.  

Nevertheless, there are still many question to be answered. These involve, 

among others, a deeper description of the neural network controlling APAs, especially 

regarding sub-cortical structures, such as the basal ganglia. Since these structures are 
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the “support base” of the basal ganglia-thalamo-cortical motor network, which is 

implicated in well-learned finger movements (Boecker et al. 1998), it is intriguingly to 

imagine that these structures are also strongly correlated with the generation of the APA 

command. Although it is unlikely that the entire mechanism that dispatches APAs and 

prime mover commands would be shortly identified, continual research aimed at 

providing a better understanding of these mechanisms is helping for a better 

comprehension of the motor control and especially the relationship between postural 

and voluntary movement commands. 

Further studies are also needed in regard of the relationship of APAs with other 

aspects of the sensorimotor system. In particular, it would be interesting to study how 

the retinal afferences and the extra ocular muscles proprioception may be able to on-

line adapting the APA chain to the forthcoming intended movement. An impaired 

vision, such as in patients with glaucoma or Age Related Macular Degeneration, which 

threaten the peripheral and central visual field respectively, may cause a disruption of 

APAs within a voluntary movement, causing imbalance. Similarly, as recently done by 

Cesari et al. (2014) regarding the associations between the auditory system and action 

planning, also the role of the utricule and saccule in adapting APAs to the current whole 

body orientation may be investigated.  

Eventually, a possible clinical role on these new findings may be exploited, 

considering the evaluation of new therapeutic approaches to achieve a successful 

rehabilitation of the motor act after a neurological (e.g. TIA and strokes) or orthopedical 

injuries (e.g. joint instabilities or bone fractures). A better knowledge of each 

component of the voluntary movement, and the relationship between each other, may 

indeed be helpful for restoring a physiological motor control in these patients.  
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