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SUMMARY 
 

  Amyotrophic Lateral Sclerosis (ALS) is an adult-onset neurodegenerative disease 

characterized by selective and progressive loss of motor neurons in the spinal cord, brain 

stem and motor cortex. Approximately 12% of familial and 1% of sporadic cases of ALS 

are associated to mutations in the gene coding for the antioxidant enzyme Cu-Zn 

Superoxide Dismutase type 1 (SOD1).  

The scope of this project was to precisely investigate the typical hallmarks of ALS in 

the transgenic zebrafish models expressing the Sod1 mutation G93R and wild-type Sod1, 

in order to propose zebrafish as an animal model for the study of the disease. In this 

study, we have performed the detailed characterization of ALS features occurring in the 

adult transgenic zebrafish and we have exploited the great advantages given by zebrafish 

embryos and larvae as in vivo models to study the presymptomatic course of the disease. 

 

Adult Sod1 G93R zebrafish recapitulate major ALS hallmarks 
  

 We characterized two stable transgenic zebrafish lines overexpressing the 

zebrafish Sod1 gene and regulatory sequences: a line expressing the wild-type form of 

Sod1 (wtSod1) and a mutant line (mSod1) where the Sod1 gene was mutated by changing 

the glycine 93 to arginine (G93R): a mutation that has been identified in human familial 

form of ALS. The two lines selected express the transgene at similar moderate levels in all 

tissues especially in the brain, in the spinal cord and in the muscle.  

 Although 12 months old mSod1 and wtSod1 zebrafish do not present alterations in 

the body weight and macroscopic anatomy in comparison with non-transgenic fish (Ctrl), 

the monitoring of the spontaneous locomotor activity reveals a significant reduction in the 

distance travelled and a significant increase in the time spent at resting by mSod1 fish 

compared to Ctrl zebrafish. 

 The evaluation of the presence of the typical ALS phenotype in the spinal cord and 

in the lateral muscle of adult zebrafish trunk was performed with histological analyses. 

Twelve months old fish were divided into segments using fins as standard anatomical 

references in order to study the disease features along the entire body of the animals. The 

comparative histological examination reveals a significant reduction in the number of 

motor neurons and in the area of the spinal cord in mSod1 zebrafish compared to wtSod1 
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and Ctrl fish. Furthermore, it shows a significant reduction of the white muscle fiber caliber 

in the corresponding segments of the body wall, particularly severe in the most caudal 

portion of the trunk in mSod1 zebrafish respect to Ctrl zebrafish. Immunofluorescence 

staining with antibodies against synaptic vesicle glycoprotein 2A (SV2A) and fluorophore 

conjugated !-Bungarotoxin (!-Btx) allowed the visualization of presynaptic vesicle clusters 

and postsynaptic acetylcholine receptors (AChRs) clusters, respectively, of neuromuscular 

junctions (NMJs) on white muscle fibers. Twelve months old mSod1 zebrafish present a 

significant reduction in the degree of innervation of white muscle fibers, particularly, they 

show a significant reduction in the density of presynaptic vesicle clusters without a 

significant reduction in AChRs clusterization or changes in the size of both postsynaptic 

and residual presynaptic clusters. The ultrastructural analyses of adult zebrafish NMJs do 

not reveal any alteration in the fine structure of remaining presynaptic terminals but, reveal 

a significant reduction in muscular mitochondria area in mSod1 adult zebrafish.

 Immunohistochemical stainings for glial fibrillary acidic protein (Gfap), an astrocyte 

marker, and for allograft inflammatory factor 1 (Aif1), a microglial marker in the spinal cord 

and of activated neutrophils and macrophages at the periphery, show the presence of 

reactive astrogliosis but not of microgliosis in the spinal cord of both mSod1 and wtSod1 

zebrafish and highlights a significant enrichment of activated inflammatory cells in the 

muscles of the trunk of mSod1 zebrafish. 

 Our data show that adult zebrafish expressing the mutant form of Sod1 recapitulate 

most of the major hallmarks of ALS: motor impairment, motor neurons loss, spinal cord 

and muscular atrophy, NMJs loss, astrogliosis in the spinal cord and the presence of 

activated inflammatory cells in the denervated muscle validating zebrafish as useful model 

for the study of ALS. We also observed that the zebrafish model overexpressing of the 

wild-type form of Sod1 develops mild alterations similarly to wtSOD1 overexpressing mice.  

 

Since embryonic and larval zebrafish spinal cord is functionally and anatomically 

similar to that of mammals, and shares principles of locomotor network organization and 

development with them, they represent an ideal model for the study of diseases 

characterized by alterations affecting locomotor system functionality.  
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Sod1 G93R zebrafish present precocious alterations of the 
locomotor network 
  

 We performed whole-mount fluorescence staining against acetylated tubulin 

(AcTub), SV2A and AChR to visualize the processes of spinal motor nerves and 

neuromuscular junctions development at 24, 48 and 96 hours post fertilization (hpf), to 

asses if mSod1 expression precociously affects motor neurons outgrowth and their 

capability to establish functional connections with muscles. Our studies show that Sod1 

G93R expressing embryos display a significant reduction in the motor axons length and in 

the unbranched axonal length and show a significant increase in the number of motor 

nerves axonal branches compared to Ctrl embryos, along the entire trunk already at 24 

hpf. We performed a 3D colocalization analysis between pre- and post-synaptic clusters at 

48 hpf and 96 hpf to evaluate if mSod1 expression impairs NMJs development. At 48 hpf, 

mSod1 larvae do not show differences in the density of developing presynaptic vesicle 

clusters and AChRs postsynaptic clusters, and in the density of pre and postsynaptic 

superimposing (colocalizing) clusters compared to Ctrl and wtSod1 embryos. However, we 

measured a significant increase in the dimension of synaptic vesicle clusters in mSod1 

embryos compared to Ctrl and wtSod1, without alterations in the dimension of AChRs 

clusters. At 96 hpf, this precocious impairment in neuromuscular contacts maturation gets 

worse, in fact, while the dimension of synaptic vesicles and AChRs clusters result similar 

among transgenic and non-transgenic larvae, we measured a significant reduction in the 

density of presynaptic clusters in mSod1 larvae musculature compared to both Ctrl and 

wtSod1 larvae without alterations in the density of AChRs postsynaptic clusters. Moreover, 

in mSod1 larvae, we detected also a significant reduction in the association of presynaptic 

and postsynaptic clusters compared to both wtSod1 and Ctrl fish highlighting a severe 

impairment in neuromuscular junctions maturation at the very early stages of zebrafish 

development. The ultrastructural analyses, however, do not show alterations in the newly 

formed NMJs of mSod1 larvae, in fact, we did not measure any differences in NMJs area, 

density and morphology of synaptic vesicles, and in the number and shape of 

mitochondria in the presynaptic terminal among larvae of the three genotypes. 

Furthermore, in mSod1 larvae we observed a significant reduction in muscle fibers caliber 

and muscular mitochondrial area and a preservation of the ultrastructure of the contractile 

apparatus similarly to what observed in adults mSod1 fish. 
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 To evaluate if morphological alterations in the developing motor system of zebrafish 

embryos and larvae were associated to defects in the motor response, we performed 

behavioral tests with zebrafish at 20 hpf, 48 hpf and 96 hpf. At 20 hpf, zebrafish embryos 

expressing mutant Sod1 show a significant increase in the frequency of spontaneous 

coilings, embryonic movements consisting in a full body contraction that brings the tip of 

the tail to the head and, in particular, a significant increase in the percentage of multiple 

consecutive tail coilings. Alterations in mSod1 zebrafish motor responses persist at 48 hpf 

when they display a significant increase in the duration of the touch evoked tail coilings 

response and a significant decrease in the maximum angle of tail flexion and at 96 hpf 

when they show a significant increase in the duration and in the distance travelled during 

the touch evoked swimming response compared to wtSod1 and Ctrl fish. 

 These results in behavioral tests addressed to the study of spinal neurons electrical 

properties in zebrafish embryos. At 20 hpf, only four types of spinal neurons are active: 

three types of interneurons and motor neurons. At this developmental stage, zebrafish 

offers the unique situation to study the electrical properties of a small subset of spinal 

neurons synchronized in a spinal network solely by electrical coupling. These neurons 

undergo to periodic depolarizations that originate from a combination of pacemaker 

currents and particularly depend upon persistent sodium current (INaP). To test if at the 

basis of the abnormal coiling activity there was an alteration in the periodic depolarizations 

of spinal neurons we used a FRET-based voltage biosensor called Mermaid. This 

biosensor, expressed under the control of a pan-neuronal specific promoter (HuC), was 

microinjected into one-cell fertilized zebrafish eggs. In this way we obtained the expression 

of the biosensor in the plasmamembrane of a limited identifiable subpopulation of neurons 

and thanks to the measurement of the FRET Ratio we manage to study membrane 

voltage changes in different neuronal subtypes.  We recorded periodic depolarizations in 

motor neurons and in the active population of interneurons and we detected a significant 

increase in the frequency of the periodic depolarizations in motor neurons and 

interneurons of mSod1 embryos compared to those recorded in Control fish, without 

differences in their amplitude, duration and basal membrane FRET Ratio. 

 Since it has been demonstrated that, at the basis of periodic depolarizations there is 

the pacemaker sodium current INaP and that this current is selectively inhibited by 5 µM 

concentration of riluzole, we tested whether the increase in periodic depolarization and 

ultimately, the spontaneous coiling phenotype in mSod1 embryos, were caused by INaP 

current. To this aim we measured periodic depolarizations and spontaneous coiling in Ctrl 
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and mSod1 embryos at 20 hpf before and after the administration of 5 µM riluzole. These 

experiments show that riluzole treatment affects both spontaneous periodic depolarization 

and coiling activity; in fact, it reduces the frequency of periodic depolarization and 

spontaneous coiling not only in control embryos but also in those expressing the mutant 

form of Sod1 bringing them to values comparable to those of Ctrl fish before riluzole 

administration.  

Our results suggest that mSod1 expression, in the zebrafish model, is associated to 

precocious impairments in neuromuscular junctions maturation and alterations in spinal 

neurons electrical properties. Spinal neurons hyperexcitability is associated to INaP current 

altered activity that also causes aberrant spontaneous coiling behavior in mSod1 embryos. 

Furthermore we demonstrated the possibility to pharmacologically modify spinal neurons 

electrical activity and the behavioral phenotype by administering riluzole directly into the 

embryo water.  

 

 Our study reveals that the Sod1 G93R zebrafish model represents a very powerful 

tool in ALS research.  

Adult zebrafish expressing mutant Sod1 develop most of the main pathological 

features occurring in ALS that have already been well identified and documented in 

humans and other animal models of the disease.  

Mutant embryos and larvae show easily detectable precocious morphological 

alterations affecting the locomotor network: defective motor nerves outgrowth and 

neuromuscular junctions maturation, impairment that could be used to set up high-

throughput drugs screening platforms to identify potential drugs for ALS treatment. 

Moreover, they represent a unique system to investigate the role of neuronal 

hyperexcitability in an intact developing neuronal network, taking advantage of the unique 

condition of exclusive electrical coupling among neurons in such a precocious form of 

spinal locomotor circuit  
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1. AMYOTROPHIC LATERAL SCLEROSIS 
 
 Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a fatal, 

highly debilitating disease caused by the progressive degeneration of lower motor neurons 

in the brainstem and spinal cord and of upper motor neurons in the motor cortex. The term 

“amyotrophic” refers to the muscle atrophy, weakness and fasciculations that indicate 

disease of the lower motor neurons, while “lateral sclerosis” refers to the hardening of 

lateral columns, where gliosis follows the degeneration of corticospinal tracts.  

 First described in 1869 by the French neurologist Jean-Martin Charcot, ALS belongs 

to the group of disorders classified as motor neuron diseases (MNDs) and is the most 

frequent adult-onset motor neuron disorder.  

 The annual worldwide incidence of new cases of approximately 1 to 2.5 per 100,000 

individuals is fairly uniform, except for a few high-incidence foci, such as the Kii Peninsula 

in Japan and Guam. The global prevalence of ALS is 3 to 6 per 100,000. The mean age of 

onset is 55–60 years and the disease more commonly affects men than women.  

 The progressive failure of the neuromuscular system results in weakness and 

atrophy of the limb musculature, progressive paralysis and eventually death from 

respiratory failure typically within 2 to 3 years of symptoms onset, with 7 - 20% of patients 

surviving for more than 5 years from the time of diagnosis (Renton et al., 2014; Ferraiuolo 

et al., 2011; Habib & Mitsumotu, 2011).  

 As of yet, there are no effective cures for ALS, although riluzole (2-amino-6-tri 

fluoromethoxy benzothiazole, RP-54274, RilutekTM) the only drug currently approved (by 

the Food and Drug Administration (FDA) in the United States, by the Committee for 

Proprietary Medicinal Products (CPMP) in Europe and the Ministry of Health, Labor and 

Welfare (MHLW) in Japan) for ALS treatment, slows the rate of progression and may 

prolong survival times by as much as three months (Bensimon et al., 1994; Bellingham, 

2011). 

 

1.1  Clinical features and diagnosis 
 

 ALS exhibits a diverse and complex clinical phenotype that complicates the 

understanding of its pathophysiology and makes it difficult to diagnose. The diagnosis of 

ALS has been standardized by the El Escorial criteria for clinical research, is based on the 

history and physical examination of patients showing progressive upper and lower motor 
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neurons dysfunction and is usually supported by electrophysiological and neuroimaging 

investigations and laboratory tests (Kiernan et al., 2011).  

 Generally speaking, the disease is characterized by the coexistence of signs of 

degeneration in the upper and lower motor neurons encompassing the progressive 

deterioration of multiple body regions. The disease starts with limb weakness in about two-

thirds of patients, often preceded by cramps, while in the remaining one-third bulbar 

weakness begins, eventually causing dysarthria and dysphagia. Although fasciculations 

are a cardinal feature of ALS, they are not necessarily the presenting symptom.  

 The characteristic combination of upper and lower motor neuron dysfunction is 

usually evident on neurological examination: it is characterized by the presence of 

weakness, atrophy and fasciculations together with hyperreflexia and increased tone in the 

same motor segment and, frequently, an extensor response to plantar stimulation 

(Babinski sign). The disease spreads contiguously to other parts of the body, generally 

sparing sensory functions. In many patients the disease begins with limb-onset typically 

associated with preferential wasting and weakness of the thenar muscles. In other cases, 

bulbar-onset symptoms include flaccid or spastic dysarthria, dysphagia, hoarseness, 

tongue wasting, weakness, and fasciculations, as well as emotional lability and 

pathological brisk jaw reflexes. In addition, subtle cognitive abnormalities such as 

executive dysfunction, language and memory impairment, together with behavioral 

abnormalities may be evident in up to 50% of ALS patients and may precede the onset of 

motor symptoms. Dysphagia may result in aspiration pneumonia, malnutrition, and weight 

loss, leading to a more rapid deterioration of afflicted individuals. Eventually, the disease 

spreads to respiratory muscles leading to death from respiratory failure within 30 months 

on the average. Respiratory dysfunction, although in some aggressive cases could be the 

presenting symptom, usually develops in the latter advanced stages of ALS, ultimately 

resulting in terminal respiratory failure and death (Vucic et al., 2014 and references 

therein; Ajroud-Driss & Siddique, 2014).  

 

1.2  Pathological changes 
 

 Peculiar gross and microscopic pathological changes, beside specific clinical 

symptoms, characterize the disease. Individuals affected by ALS show gross anatomical 

changes: like atrophy of the precentral gyrus, shrinkage, sclerosis and pallor of the 

corticospinal tracts, thinning of the spinal ventral roots and hypoglossal nerves, and 
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atrophy of the somatic and bulbar muscles.  

 Typical microscopic changes can be observed in the depletion of about 50% of the 

spinal cord motor neurons, atrophy and basophilic changes in surviving motor neurons, 

presence in surviving lower motor neurons of ubiquitinated inclusion bodies, depletion of 

giant pyramidal neurons (Betz cells) in the motor cortex, diffusion of astrocytic gliosis in 

spinal gray matter and in the gray matter of the motor cortex and in the underlying 

subcortical white matter, evidence of microglial activation in pathologically affected areas 

and cytoplasmic aggregate inclusions within glial cells (Ferraiuolo et al., 2011). 

 

1.3  Pathogenetic mechanisms 
 

 The pathogenic processes underlying ALS are multi-factorial and not fully understood 

(Vucic et al., 2014). Newly identified genes associated with ALS suggest that, at the base 

of the pathology, a complex interplay between multiple mechanisms exists, including: 

genetic factors, impairments in RNA processing and axonal transport, mitochondrial 

dysfunction, protein aggregation, excitotoxicity and oxidative stress (Figure 1).  
 

  Figure 1 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1: Pathogenetic mechanisms of ALS. Motor neuron degeneration in ALS results from a 
complex interplay between molecular and genetic pathways. Mutations in C9orf72, TDP-43 and 
FUS cause the deregulation in RNA metabolism leading to the formation of harmful intracellular 
aggregates. Astrocytic excitatory amino acid transporter 2 (EAAT2) dysfunction causes the 
reduction of glutamate uptake from the synaptic cleft and glutamate-induced excitotoxicity that 
causes an increase of Na+ and Ca2+ ions influx and ultimately neurodegeneration through 
activation of Ca2+-dependent enzymatic pathways. Mutant SOD1 enzymes increase oxidative 
stress, induce mitochondrial dysfunction, form intracellular aggregates and adversely affect 
neurofilament and axonal transport processes. Microglial activation results in proinflammatory 
cytokines secretion contributing to further toxicity (modified from Vucic et al., 2014). 
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1.4  Genetic factors 
 

 The majority of ALS cases, about 90%, occurs randomly throughout the population 

and is termed sporadic (SALS), while about 10% of ALS cases have a family history of the 

disease and are classified as familial (FALS). From the clinical point of view, FALS and 

SALS are indistinguishable, however, patients with familial disease may be younger at 

onset. Moreover, while men have a higher incidence of sporadic disease, in FALS, caused 

by genes with autosomal dominant inheritance, men and women are equally affected 

(Habib & Mitsumotu, 2011). 

  A genetic etiology has been identified in up to 20% of apparently sporadic ALS 

cases and 60% of familial ALS cases, with at least 21 genes and genetic loci being 

implicated in ALS pathogenesis, usually of autosomal dominant inheritance (Figure 2) 

(Renton et al., 2104). Although the mechanisms underlying ALS pathogenesis remain 

elusive, the progress made in unraveling the genetic etiology of ALS has provided 

fundamental insights into the cellular mechanisms underlying neuron degeneration, not 

only in the minority of cases that carry familial ALS mutations, but also in sporadic ALS 

cases. 

 

  Figure 2 
 

 
 
Figure 2: Genes carrying ALS-causing mutations and genes implicated in ALS pathogenesis.  
Values represent the percentage of ALS explained by each gene in population of European 
ancestry. Abbreviations are: AR, autosomal recessive; AD, autosomal dominant; XD, X-linked 
dominant; DENN, differentially expressed in normal and neoplasia; CMT, Charcot-Marie-Tooth 
disease; HSP, hereditary spastic paraplegia; PLS, primary lateral sclerosis; PMA, progressive 
muscular atrophy (modified from Renton et al., 2014). 
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1.5  Deregulated transcription and RNA processing 
 

 One of the most recent and important advances in unraveling the genetic etiology of 

ALS occurred with the discovery of the dominantly inherited C9orf72 gene expansion, 

which appears to underlie more than 40% of familial and 20% of sporadic ALS cases 

(Renton et al., 2011). This monumental discovery has radically altered the understanding 

of ALS pathogenesis, implying that ALS is a multisystem neurodegenerative disorder 

rather than a pure neuromuscular disease.  

 In 2011 Renton and colleagues demonstrated that a large intronic repeat expansion 

(increased GGGGCC hexanucleotide repeat expansion) has been implicated in ALS; 

however, the precise mechanism by which the C9orf72 gene expansion leads to 

neurodegeneration in ALS, is not fully comprehended. Given that repeat expansions are 

known to disrupt RNA metabolism in other neurodegenerative diseases, the involvement 

of disrupted RNA metabolism in the occurrence of ALS seems to be important in the 

survival of motor and frontal cortex neurons. 

The potential pathogenic mechanism proposed for this mutation is gene haploinsufficiency 

because it has been reported a reduction in the levels of both short and long isoforms of 

C9orf72 mRNA in ALS patients (Renton et al., 2011; Ciura et al., 2013). Moreover, 

blocking the translation of the zebrafish c9orf72 orthologue using antisense morpholinos 

results in motor neurons axonal defects in 48 hpf zebrafish larvae and locomotion deficits 

(Ciura et al., 2013). The second mechanism proposed for the C9orf72 repeat expansion is 

RNA-mediated toxicity. Intranuclear RNA foci containing C9orf72 hexanucleotide repeats 

and specific RNA-binding proteins associated with the C9orf72 expansion have been 

identified as causing the formation of intranuclear and cytoplasmic inclusions and the 

formation of r(GGGGCC) RNA G-quadruplex structures, that could sequester transcription 

factors like ASF/SF2 and HNRNPA1, that are crucial in DNA/RNA metabolism, with a toxic 

effect on cells survival (Mori et al., 2013). 

  The crucial role of DNA/RNA metabolism in causing ALS is further supported by the 

identification of mutations in transactive-region DNA-binding protein gene (TARDBP) and 

fused in sarcoma (FUS) that encode DNA/RNA processing peptides. Mutations in 

TARDBP and FUS proteins represent 4–6% of familial and 0.7–2% of sporadic ALS; to 

date, approximately 50 mutations have been identified in each protein, and most mutations 

are dominantly inherited (Andersen & Al-Chalabi, 2011).  
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  TDP-43/TARDBP and FUS are ubiquitously expressed as RNA-DNA binding 

proteins involved in DNA repair, regulation of RNA transport, translation, splicing, 

microRNA biogenesis, and the formation of stress granules (Ling et al., 2013). In both 

cases, the expression of mutant TDP-43 and FUS in cultured cells and pathological brain 

and spinal cord tissues leads to a predominant cytoplasmatic localization of the protein, 

particularly in cytoplasmic stress granules, both in neuronal and glial cells. Whether motor 

neuron injury is caused by loss of normal nuclear functions of TDP-43 and FUS in RNA 

processing, or by toxic gains of function, or both is unknown. TDP-43 and FUS contain two 

RNA recognition domains, structures that are common to many RNA-interacting proteins, 

including those that are involved in mRNA transport. TDP-43 and FUS may form part of 

such RNA transport complexes and, when mutated, could thereby contribute to motor 

neuron injury through loss of axonal mRNA transport (Mackenzie et al., 2010). The recent 

discovery that the TDP-43 interactor Matrin 3 (MTR3), a nuclear matrix protein that binds 

DNA and RNA, is mutated in FALS, further support the crucial role of RNA processing 

disruption in the disease pathogenesis (Johnson et al., 2014). 

  Further evidence of dysfunctional RNA metabolism in ALS emerges from the 

presence of mutations in angiogenin (ANG) and the DNA–RNA helicase senataxin 

(SETX). Angiogenin, whose expression is increased during hypoxia to promote 

angiogenesis, acts as a transfer RNA-specific ribonuclease and regulates ribosomal RNA 

transcription. Senataxin is a component of large ribonucleoprotein complexes, with roles in 

maintaining DNA repair in response to oxidative stress, and RNA processing (Ferraiulo et 

al., 2011 and references therein). 

 

1.6  Impaired endosomal trafficking and axonal transport 
 
 The dysregulation of the endosomal network, the system at the basis of the delivery 

of cargoes to their specific destination via a complex system of organelles, and 

endocytosis, the process by which extracellular molecules are captured at the cell surface 

membrane and taken into the cell, are crucial cellular mechanisms underlying motor 

neuron degeneration, that have been implicated in several genetic subtypes of ALS 

(Ajroud-Driss & Siddique, 2014). 

 Mutations in Alsin, a guanine nucleotide exchange factor for the small GTPase 

protein Rab5, involved in endosomal fusion and trafficking, as well as neurites outgrowth, 

are associated with a form of autosomal recessive juvenile-onset ALS. In neurons, loss of 
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Alsin function alters AMPAR trafficking and reduces AMPAR subunit 2 (GluR2) at the 

synapse and at the cell surface (Lai et al., 2006). Also mutations in Vesicle-associated 

membrane protein-Associated Protein B (VAPB), Optineurin (OPTN): a component of the 

endosomal sorting complex required for transport (ESCRT-III), Charged multivesicular 

protein 2B (CHMP2B), Valosin-containing protein (VCP) which forms a complex with the 

endocytotic protein clathrin and the Polyphosphoinositide phosphatase (FIG4), seem to 

disrupt the endosomal network. This disruption is particularly toxic for motor neurons 

because of their high demand for a continuous turnover of the membrane components of 

their long axonal processes (Ferraiuolo et al, 2011 and references therein).  

  Axonal pathology is another key feature of ALS, and might therefore play a 

crucial role in the pathophysiology of the disease. Motor neurons are highly polarized cells 

with long axons, and axonal transport is required for the delivery of essential components 

(RNA, proteins and organelles) to the axonal compartment, which includes synaptic 

structures at the neuromuscular junction (NMJ). The principal machinery for axonal 

transport uses microtubule-dependent kinesin and cytoplasmic dynein molecular motors, 

which mediate transport towards the NMJ (anterograde transport) and towards the cell 

body (retrograde transport), respectively. In mSOD1 mice, defective axonal transport 

occurs early in the disease process; supporting the hypothesis that deregulation of axonal 

transport plays a part in the pathophysiology of ALS. Mutant SOD1 impairs both 

anterograde and retrograde transport of several cargoes and the defects seem to be 

cargo-specific, as only anterograde transport of mitochondria is disrupted. The decreased 

axonal mitochondrial transport, in turn, could result in defective transport of other cargoes 

because of the lack of energy required for axonal transport (De Vos et al., 2007). Axonal 

transport defects are likely to contribute to the “dying-back” process, and in particular 

defects in anterograde axonal transport and mitochondrial dysfunction may combine to 

cause energy depletion specifically in the distal axon, ultimately resulting in motor neuron 

degeneration typical of ALS (Kiernan et al., 2011).  

 The role of cytoskeletal defects in ALS has been recently emphasized by the 

discovery of TUBA4A mutations in familial ALS. The pathology associated variants 

discovered, proved to be inefficient in the formation of !-/$-tubulin dimers in vitro and their 

incorporation into microtubules was decreased in cultured cells; moreover, they inhibited 

microtubule assembly and reduced microtubule network structural stability probably 

through a dominant negative mechanism (Smith et al., 2014). 
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1.7  Excitotoxicity 
  

  Glutamate-mediated excitotoxicity is a crucial pathogenetic process, found in both 

animal and human studies, occurring in familial and sporadic forms of ALS. Glutamate is 

the main excitatory neurotransmitter in the central nervous system (CNS) and exerts its 

effects through an array of ionotropic (including N-methyl-D-aspartate (NMDA) and !-

amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors) and metabotropic 

postsynaptic receptors. The removal of glutamate from the synaptic cleft by glutamate 

reuptake transporters, the most abundant of which is the astrocytic excitatory amino acid 

transporter 2 (EAAT2; also known as SLC1A2 or GLT1 in rodents), is fundamental in the 

termination of the excitatory signal. The excitotoxicity, that is the neuronal injury resulting 

from excessive activation of glutamate receptors, may be caused either by increased 

synaptic levels of glutamate or by the higher sensitivity of the postsynaptic neuron to 

glutamate. It could be due to alterations in neuronal energy homeostasis or glutamate 

receptors expression. This phenomenon causes an increase of Na+ and Ca2+ ions influx 

leading to: the disruption of intracellular calcium homeostasis, the activation of Ca2+-

dependent proteolytic enzymes and ROS-generating enzymes, the perturbation of 

mitochondrial function and ATP production and, ultimately, neurodegeneration (Vucic et 

al., 2014; Ferraiuolo et al., 2011). 

  Evidence from neural cultures seem to highlight that motor neurons are especially 

vulnerable to AMPAR-mediated excitotoxicity; in fact, motor neurons express lower levels 

of GluR2 AMPAR subunit in comparison with other subunits and respect to other neuronal 

cell types. This subunit determines the calcium permeability of the AMPAR complex 

because, thanks to its post-transcriptional editing at the Gln/Arg site 586 in the second 

transmembrane domain, it contributes to the Ca2+ impermeability of the receptor complex 

(Williams et al., 1997). ALS patients showed specific GluR2 AMPAR subunits editing 

defects and reduced expression of proteins with Ca2+-buffering capacity; both mechanisms 

increase motor neurons vulnerability to degeneration and susceptibility to glutamate 

excitotoxicity (Van Damme et al., 2005). Moreover, in some patients with ALS, the 

glutamate levels in the cerebrospinal fluid are more elevated than either in healthy 

subjects or subjects affected by other neurological diseases (Shaw et al., 1995). A lower 

expression and reduction in the high-affinity sodium-dependent glutamate transport were 

identified in synaptosomes obtained from motor cortex and spinal cord of ALS patients 

(Rothstein et al., 1992). In addition, the overexpression of the astrocytic glutamate 
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transporter EAAT2 was demonstrated to be neuroprotective (Guo et al., 2003), whereas 

downregulation of EAAT2 accelerated disease progression (Pardo et al., 2006) in ALS 

mouse models. 

 

1.8  Oxidative stress 
  

 Reactive oxygen species (ROS) such as superoxide anion (O2-) and hydrogen 

peroxide (H2O2) are products of normal oxygen metabolism in cells. They serve as 

signaling molecules but, when present in excess, can alter the structure and functions of 

the cell (Vehviläinen et al., 2014). Oxidative stress arises from an imbalance between the 

generation and removal of reactive oxygen species and/or from a reduction in the ability of 

the biological system to remove or repair ROS-induced damage. The accumulation of 

oxidative stress in non-replicating neurons during the aging process due to the presence 

of a disease-causing mutation in a protein involved in the protection from toxic insult could 

culminate in neuronal death and onset of neurodegeneration in middle or later life.  

 The role of oxidative stress in ALS pathogenesis became of particular interest after 

the identification of ALS associated mutation in the protein Cu-Zn Superoxide Dismutase 

(SOD1): a major antioxidant protein (Rosen et al., 1993).  

 Since most information regarding ALS pathogenetic mechanisms and 

pathophysiology have been collected through the study of animal models carrying mutated 

forms of SOD1; in the following sections, we will expand our discussion of the typical 

phenotype of ALS in humans and animal models associated to SOD1 mutations. 
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2. THE DISCOVERY OF CU-ZN SUPEROXIDE DISMUTASE 1 
MUTATIONS: A MILESTONE IN THE STUDY OF ALS PATHOLOGY 

 
 In 1993, a landmark discovery of 11 missense mutations in the SOD1 gene, in 13 

FALS families (Rosen et al., 1993), heralded the genetic age for ALS.  

 

2.1  Copper-Zinc Superoxide Dismutase 1 
 

 SOD1 is a ubiquitously expressed homodimeric metalloenzyme of 153 amino acids 

with a stabilizing zinc ion and two catalytic copper ions in each subunit. The two subunits 

are tightly packed and held together by strong hydrophobic interactions between the $-

strands, making the dimer extremely stable (Figure 3). Mainly enriched in the cytoplasm, it 

localizes also in the mitochondrial intermembrane space and in the nucleus. Both, in the 

cytoplasm and in the intermembrane space, SOD1 functions by detoxifying intracellular 

superoxide anions (O2-) catalyzing the dismutation of superoxide anion radical to 

molecular oxygen (O2) and hydrogen peroxide (H2O2) that is further reduced to water 

(H2O) by catalase, glutathione peroxidases or peroxiredoxins. SOD1 is found in all cells in 

almost all organisms above the bacteria and the aminoacidic sequence is evolutionarily 

highly conserved, suggesting that SOD1 plays a crucial function in cellular homeostasis 

(Andersen, 2006).  

 

 Figure 3 

 

 

 

 

 

 

 
 
Figure 3: Structure of wild-type SOD1.  
X-ray crystallographic structure of wild-type SOD1. The zinc and copper atoms are shown in cyan 
and orange, respectively. Wild-type SOD1 residues G93 in exon 2 are highlighted and labeled in 
purple (modified from Bosco et al., 2010). 
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 The SOD1 gene is a small gene of five exons separated by four introns positioned on 

chromosome 21. To date 166 SOD1 mutations have been reported, underlying 14–23% of 

familial and 1–7% of sporadic ALS cases (Vucic et al., 2014).  

 The mutations discovered encompass all coding regions of the gene with 

preponderance for exons 4 and 5. Only few mutations have been found in the 24 codons 

of exon 3 that encode the amino acids forming the catalytic site and the zinc loop. 

Interestingly, no mutations have been identified between Q22 and G37 in exons 1 and 2, 

all truncating mutations lie in exons 4 and 5 and no null mutations have been found 

suggesting that at least the amino terminus of the SOD1 polypeptide is essential for the 

cytotoxic effect. Moreover, glycine-93 appears particularly vulnerable, since it is point 

mutated to all 6 possible residues in FALS. The mutations include missense, nonsense, 

sense and in-frame deletions in the coding sequence but also mutations occurring in 

noncoding sequence predicting aberrant mRNA splicing (Andersen, 2006). Thus, the 

majority of SOD1 mutations encode polypeptides with single amino acid substitutions and 

a subset with C-terminal truncation (Orrell et al., 1999). All SOD1 mutations associate with 

dominant ALS, with the exception of N86S and D90A substitutions, which behave as 

recessive traits (Turner & Talbot, 2008). The D90A mutation is the globally most frequent 

SOD1 mutation also in the sporadic population. It has been found in most European 

countries, North America and Russia and it is present in 0.5% to 5% of healthy population, 

usually in heterozygous form, in the Kola Peninsula in Finland, northern Sweden and 

Norway. This substitution correlates with a non-penetrant or slowly progressive disease. 

The A4V mutation is the second most frequent mutation. Widely spread in the United 

States, it is associated with a dramatic phenotype with sudden low motor neurons signs in 

the limbs, trunk or bulbar innervated muscles leading to dead in 1 to 2 years after 

diagnosis (Andersen, 2006).  

 Most SOD1 mutations are characterized by intra- and interfamilial variability in 

penetrance, age and site of disease onset, rate of disease progression, and survival, with 

approximately 50% of patients expressing the disease by age 43 and more than 90% by 

70 years (Vucic et al., 2014; Orrell et al., 1999). 

 In the genetic subgroup of ALS associated with SOD1 mutations, the common clinical 

features are asymmetrical onset distally in a limb (usually a leg), proximal onset in the 

pelvic-girdle musculature or in the upper limbs and rarely a bulbar onset. A common 

denominator for all mutations is the predominance of lower motor neurons features (Orrell 

et al., 1999), but upper motor neurons manifestations may be present. For several 
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mutations non-motor signs have been also reported (Andersen, 2006). 

 

2.2  Pathogenetic mechanisms associated with SOD1 
 
 The pathophysiological mechanisms by which SOD1 gene mutations lead to 

neurodegeneration are still unclear. SOD1 mutations that cause amino acid substitutions 

at metal-binding ligands (H46R, H48Q, H48R, and H80R) or at residues in the electrostatic 

loop (S134N and D125H) might affect protein metal-binding affinity or enzymatic activity. 

Likewise, mutations at the disulfide bond (C146R) or at residues near the dimer interface 

(V148G, I149T, A4V, and I113T) might be expected to influence the protein stability and 

structure (further considering that C-terminal truncations remove substantial portions of the 

protein involved in catalysis, metal binding, and dimerization). Ultimately, SOD1 mutations 

can be partitioned into two groups with distinctly different biophysical characteristics with 

respect to metal content, SOD activity, and spectroscopy: the metal-binding region (MBR) 

and the wild-type-like (WTL) FALS mutant SOD1. The MBR subset of SOD1 proteins have 

mutations that are localized in and around the metal-binding sites, including the 

electrostatic and zinc loops, and were found to have a significant reduction in the 

enzymatic activity in comparison with wild-type SOD1; while, the WTL subset of SOD1 

proteins was found to be remarkably similar to wild-type SOD1 in most of their properties 

(Valentine et al., 2005).  

 Since the lack of SOD1 does not lead to the development of ALS in mice (Reaume et 

al., 1996) and SOD1 mutations causing ALS are associated either with a wild-type-like or a 

markedly reduced enzymatic activity (Valentine et al., 2005); it has been suggested that 

the potential pathogenetic mechanisms are those mediated by a specific protein 

cytotoxicity (Vehviläinen et al., 2014; Turner & Talbot, 2008) or protein aggregation 

(Durazo et al., 2009; Bosco et al., 2010). The first toxic mechanism proposed is that 

mediated by the increased production of hydroxyl and free radicals (Vehviläinen et al., 

2014), as well as nitration of tyrosine residues on proteins (Turner & Talbot, 2008). 

Evidence for oxidative damage has been inferred from pathological studies in ALS patients 

and transgenic SOD1 mouse models (Turner & Talbot 2008 and references therein). 

Although oxidative damage seems to be an attractive pathogenic mechanism, findings of 

normal SOD1 activity in patients harboring particular SOD1 mutations, the absence of 

correlation between dismutase activity and disease severity and the lack of beneficial 

effects of anti-oxidants in ALS patients all suggest a minor role for oxidative stress in 

SOD1-related ALS pathogenesis (Vucic et al., 2014 and references therein). The second 
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pathogenetic mechanism proposed is that due to the conformational instability of the 

mutated SOD1 peptide, resulting in the formation of intracellular aggregates (Durazo et al., 

2009; Bosco et al., 2010); in fact, the severity of the disease in patients with SOD1 

mutations appears to be correlated with the instability of the mutant SOD1 protein 

(Valentine et al., 2005; Andersen, 2006). Also in this case, the way by which 

conformational changes in SOD1 protein lead to neurodegeneration remain to be 

determined, although co-aggregation of essential cellular components or induction of 

aberrant catalysis by misfolded SOD1 mutant proteins have been proposed as potential 

toxic processes (Vucic et al., 2014 and references therein; Turner & Talbot 2008; 

Valentine et al., 2005). 

 All these hypotheses are further complicated by the findings that mutant SOD1 

mediated toxicity is non-cell autonomous, because lower motor neurons degeneration 

requires the expression of mutant SOD1 protein within other types of spinal cord cells 

(Pramatarova et al., 2001; Lino et al., 2002; Clement et al., 2003).  

 

2.3  Transgenic animal models expressing mutant SOD1 
 

  For human neurodegenerative diseases, like ALS, human pathologists completely 

depend on human autopsy samples to gain information regarding the etiology and 

pathogenesis of motor neurons death. Since it is impossible to safely and repeatedly 

remove tissues for analyses from patients in real time, and almost all ALS autopsy 

samples are obtained from affected individuals at the terminal stage, it is difficult to clarify 

how, why and when ALS motor neurons are damaged in each clinical stage from disease 

onset to death studying pathology exclusively in humans. Moreover, analyses of ALS 

autopsy samples alone cannot contribute to the development of possible therapies for the 

disease. Given all these reasons, the ability to study cellular and molecular processes, 

identify key pathways for intervention, and assess multiple candidate therapies over short 

periods of time, depends on the development of disease animal models (Kato, 2008). 

  

  Mouse models 

 
  Most of our current knowledge of ALS pathogenic mechanisms comes from 

transgenic mice expressing various forms of mutant SOD1. The proof that SOD1 

mutations cause ALS is based on the generation of transgenic mice models, expressing 

mutant SOD1, capable to recapitulate the disease. To date, studies with these animals 



! "(!

highlighted most of the targets of damage in the disease (Turner & Talbot, 2008 and 

references therein).  

  SOD1 knockout mice allowed to exclude that the disease was due to SOD1 loss-of 

function. Although the global distribution of SOD1 mutations across all exons intuitively 

suggested a loss-of-function mechanism at the basis of ALS pathogenesis and early 

observations of reduced dismutase activity in erythrocytes of patients heterozygous for 

SOD1 mutations led to support this hypothesis; mice deficient for SOD1, generated by 

targeted gene deletion, were viable and appeared to develop without obvious motor 

abnormalities (Reaume et al., 1996).  

  Transgenic lines overexpressing the wild-type form of SOD1 were also generated. 

Although these aged animals undergo to subclinical motor neurons degeneration, 

hypotonia, hind limb neuromuscular pathology, vacuolar pathology and axonal loss (Dal 

Canto & Gurney, 1995) no lines of transgenic wild type SOD1 mice have succumbed to 

ALS symptoms to date (Turner & Talbot, 2008).  

  The discovery of SOD1 mutations in FALS was promptly followed by the generation 

of transgenic mice constitutively expressing mutant SOD1. These animals were generated 

with vectors containing 12–15 kb of human genomic fragments encoding SOD1 driven by 

the endogenous promoter and regulatory sequences. The first animal model that 

recapitulated many of the ALS-like phenotypes was created expressing the human SOD1 

gene, encoding a mutation found in FALS cases that converts glycine residue 93 to an 

alanine (G93A) in mouse under the control of the human SOD1 promoter (Gurney et al. 

1994). Subsequently several other models have been generated: 12 different SOD1 

human ALS mutations, as well as artificially induced SOD1 mutant transgenes that either 

prevent copper binding (H46R/H48Q and H46R/H48Q/H63G/H120G) or truncate SOD1 

protein at threonine residue 116 (T116X) have been expressed in the mouse. Interestingly, 

the transgenic expression of a mutated mouse Sod1 G86R transgene also causes ALS-

like phenotypes in mice. Despite vast differences in transgene copy number, steady-state 

transcript and protein levels, dismutase activity and neuropathology, the mutations induce 

fatal symptoms strongly indicative of ALS with different disease latencies and progression 

rates. Crucially, the disease phenotype of transgenic mice expressing SOD1 mutants on a 

background of endogenous enzyme argued for a dominant gain-of-function mechanism in 

toxicity (Joyce et al., 2011; Turner & Talbot 2008).  

  In most cases, mice overexpressing the wild-type form SOD1 are used as a control 

model for mutant SOD1 transgenic models since they overexpress exogenous protein and 
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do not develop overt motor phenotypes; however, as it was described before, it is 

important to highlight that these mice exhibit a subclinical neuromuscular pathology, 

suggesting that SOD1 overexpression causes neuronal defects even without a pathogenic 

mutation (Rotunno & Bosco 2013; Jaarsma, 2006). 

 

  Rat models 

 
 Although most of the work on rodents has been focused on SOD1 transgenic mice, 

two human SOD1 mutations are modeled in rats: SOD1 H46R and SOD1 G93A. Similarly 

to mice, these transgenic animals have progressive degeneration of both upper and lower 

motor neurons and disease severity is directly proportional to mutant SOD1 expression 

levels. The SOD1 G93A mutation causes a more aggressive disease in rats than the 

SOD1 H46R mutation, and differently from mouse models, onset of muscle weakness 

occurs in either the forelimbs or the hind limbs. These rat models offer the advantage of 

increased size of organs and tissues, facilitating surgical interventions and preclinical trials 

(Joyce et al., 2011). 

 

 Dog expressing SOD1 mutation 

 
 A SOD1 mutation has been recently identified at the basis of a canine degenerative 

myelopathy. This mutation consists in the aminoacidic substitution E40K, a change that 

has also been identified in human ALS cases. The SOD1 E40K mutation identified in dogs 

is the first example of a spontaneous disease-causing mutation in SOD1 outside of 

humans. Differently from human patients, where this mutation is transmitted with an 

autosomal dominant pattern, in the dog is predominantly recessive with incomplete 

penetrance. The degenerative myelopathy in the dog has a midlife onset, always begins 

with the loss of upper motor neurons functions showing spastic paralysis and progress to 

lower motor neurons dysfunction resulting in hind limbs and subsequently forelimbs 

paralysis. Certain heterozygous animals display a subclinical pathology with appearance 

of cytoplasmic SOD1 aggregates in the spinal cord. Since SOD1 expression in these 

animals is at endogenous levels, dogs suffering from this disease present a rare 

opportunity to study a naturally occurring ALS-like disorder (Joyce et al., 2011 and 

references therein). 
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 Zebrafish models 
 

 Human wild-type SOD1, SOD1 G93A, SOD1 G37R, and SOD1 A4V mRNAs were 

each injected into zebrafish embryos to study the effects of the transient overexpression of 

mutant SOD1 in zebrafish. Mutant SOD1, but not wild-type SOD1, caused an axonopathy 

phenotype 30 hours post-fertilization (hpf) characterized by decreased axonal length and 

aberrant branching (Kabashi et al., 2011; Lemmens et al., 2007). While these results 

reflect a toxic effect of mutant ALS proteins on developing motor neurons axons, the 

transient expression in these models limits the amount of insight that can be gained 

regarding the mechanisms of progressive neurodegeneration that is characteristic of ALS.  

 Two stable transgenic zebrafish lines overexpressing mutant zebrafish Sod1 G93R 

(Ramesh et al., 2010) and human SOD1 G93A (Sakowski et al., 2012) have been 

generated so far. In both cases, the overexpression of the mutant protein causes slow-

progressing ALS-like defects: defective motor performance, motor neurons loss, reduced 

survival and in the first case increased heat shock stress response in spinal neurons and a 

reduction in glycine release (McGown et al., 2013). In both models, NMJ defects such as 

shorter and more punctate NMJ presynaptic boutons have also seen (Ramesh et al., 

2010; Sakowski et al., 2012).  

 Recently, it has been reported the generation of a zebrafish model expressing the 

mutant zebrafish T70I Sod1 at physiological levels. These fish show an altered NMJ 

morphology, an increased susceptibility to oxidative stress and an adult onset motor 

impairment that recapitulated the key features of ALS (Da Costa et al., 2014).  
 

 Invertebrate models 
 
 
 Given that many disease genes are conserved across evolution, invertebrate 

organisms can be an ideal system to investigate, at the cellular level, not only pathogenic 

mechanisms linked to causative mutations, but also to uncover potential genetic 

interactions that may point to new therapeutic targets among these genes (Casci & 

Pandey, 2014; Therrien & Parker, 2014).  

 In recent years, transgenic Drosophila melanogaster overexpressing either 

Drosophila SOD1 (dSOD1), wild-type human SOD1 (hSOD1), or mutant human SOD1 

(A4V or G85R) have been generated (Watson et al., 2008). Flies expressing wild-type 

human SOD1 or either mutant proteins had a reduced climbing ability compared to dSOD1 

flies, suggesting a motor neuron dysfunction due to expression of either wild-type or 
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mutant versions of human SOD1. The differences in climbing did not become apparent 

until day 14, an observation that suggests a progressive loss of motor function in the wild-

type and mutant human SOD1 expressing flies. In addition, these flies exhibited reduced 

synaptic transmission in dorsal longitudinal muscles of the giant fiber motor pathway and, 

consistently with SOD1-associated ALS pathogenesis in mouse models, the motor 

neurons developed aggregates of human SOD1 proteins (Watson et al., 2008). The 

ubiquitous expression of a zinc-deficient human SOD1 (harboring the D83S mutation in 

the zinc-binding domain) led to age-dependent locomotor dysfunction, a sever alteration in 

muscular mitochondria ultrastructure and a decreased ATP production in the brain not 

present in control flies; even though these flies exhibited normal lifespans and showed no 

brain degeneration (Bahadorani et al., 2013). Since ALS is thought to be a non-cell 

autonomous neurodegenerative disease non-neuronal cells have been studied also in 

Drosophila models of ALS. Interestingly, it has been demonstrated that a severe 

impairment in climbing activity at 60 days occurs in flies expressing wild-type and mutated 

human SOD1 A4V or SOD1 G85R only in glial cells (Islam et al., 2012).  

 Several groups have used Caenorhabditis elegans to model SOD1 toxicity. The 

ubiquitous expression of human mutant SOD1 A4V, G37R and G93A impairs the worm’s 

response to oxidative stress and causes protein aggregates (Oeda et al., 2001). The 

expression of human mutant SOD1 G85R throughout the worm’s entire nervous system 

resulted in locomotor defects and impaired neuromuscular transmission with the formation 

of aggregates in certain types of mechanosensory neurons despite the pan neuronal 

expression of SOD1 (Wang et al., 2009). More recently, a C. elegans model expressing 

human SOD1 G93A in motor neurons was generated; it shows an age-dependent 

paralysis and neurodegeneration in the absence of caspases, an intriguing finding since 

the motor neuron loss observed in mouse models is associated with caspase activation. 

Whether this reflects a difference between invertebrate and vertebrate systems, or reflects 

a novel mechanism of neurodegeneration remains to be determined (Li et al., 2014). 

 It is worth noting that both in the case of D. melanogaster and C. elegans expressing 

mutant forms of SOD1 they do not display motor neuron loss or reduction in the life span 

probably because of their short life cycle (Watson et al., 2008; Bahadorani et al., 2013; 

Therrien & Parker, 2014 and references therein; Casci & Pandey, 2014 and references 

therein).  
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3. THE STUDY OF SOD1 MUTANT ANIMAL MODELS GIVES US 
INSIGHT INTO PATHOLOGICAL EVENTS OCCURING IN ALS 

 
  Pathological events occurring in ALS have been mainly characterized in the mutant 

SOD1 mice models but have similarly recapitulated in other animal models. They involve 

locomotion, spinal cord, peripheral axons, neuromuscular junctions and muscles. 

 

3.1  Clinical phenotype of mutant SOD1 expressing models 
 
  Clinical disease in transgenic mice expressing mutant human SOD1 develops and 

progress in a stereotypic fashion (Figure 4). The high-expressing SOD1 G93A mutant 

mice (precisely the G1H line, a line derived from the original G1 line generated by Gurney 

and colleagues in 1994) are the most frequently used for the study of clinical and 

pathological endpoints because of their short survival and the strong synchrony of disease 

among mice from the transgenic line. In this line the first consistent sign of disease is a 

fine shaking or tremor that occurs in one or more limbs around 80-90 postnatal days.  With 

time, the tremor becomes more pronounced and involves all the limbs. These mice 

present overactive reflexes when lightly tapped on the knee or ankle. As the disease 

progresses, proximal muscle weakness with marked atrophy develops, usually more 

evident in the hind limbs than in the forelimbs. As paresis becomes more pronounced, 

spasticity and hyperreflexia become less, probably because of increasing weakness. The 

onset of clinical weakness occurs around 125 days of age. At the end-stage disease, 

around 130 days, mice are severely paralyzed and lie on their side (Chiu et al., 1995; 

Turner & Talbot, 2008). Although the timing and severity of clinical disease in multiple lines 

of mice expressing a particular mutant form of human SOD1 correlates with the type of 

mutation and transgene copy number, the clinical phenotype develops in a stereotypic 

fashion (Gurney et al., 1994; Chiu et al., 1995; Pun et al., 2006). Later studies, performed 

on the same mouse model, identified more precocious indication of locomotor impairment: 

a decreased performance on the accelerating Rotarod already at day 78 and on the 

constant Rotarod at 85 postnatal days (Fisher at al., 2004) and a significant reduction in 

the maximum isometric twitch and tetanic contractile force at P60 (Hegedus et al., 2008). It 

has also been observed that motor functions deficits begin with the initial denervation, in 

fact, muscle strength tested with the loaded grid test and treadmill gait was impaired in 

mutant SOD1 G93A mice around 30-40 post natal days (Vinsant et al., 2014a-b). 
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  Regarding the size of mice expressing mutant SOD1, it has been reported that G1H 

mutant SOD1 mice show a slowing of growth roughly two weeks preceding the onset of 

tremor, however their weight is within the normal range for non transgenic littermates up to 

roughly 75 days and then stabilizes hereafter. Only within the last 2 weeks of their illness 

they loose up to 10% of their body weight (Chiu et al., 1995; Fischer et al., 2004). 

  Interestingly, clinical disease in mice is observed only in mice expressing mutant 

human SOD1 while mice expressing wild-type human SOD1 at comparable levels remain 

free of clinical disease at 1 year of age (Gurney et a., 1994; Chiu et al., 1995). 

  Motor impairments have been observed also in zebrafish models: Sod1 G93R 

expressing fish display endurance impairment at 12 months of age (Ramesh et al., 2010) 

while SOD1 G93A and Sod1 T70I zebrafish spend more time resting than age-matched 

control AB zebrafish (Sakowski et al., 2012; Da Costa et al., 2013). Drosophila models 

expressing human mutant SOD1 have a reduced climbing ability (Watson et al., 2008; 

Bahadorani et al., 2013) and human mutant SOD1 G85R and G93A C. elegans models 

display an age-dependent paralysis (Wang et al., 2009; Li et al., 2014). 

 

3.2  Motor neurons degeneration and spinal cord atrophy 
 
  Motor neurons death in the SOD1 G93A mouse model is a late stage event (Figure 

4). Chiu and colleagues observed a significant loss of somatic motor neurons from the 

cervical (C7) and lumbar (L7) segments of the spinal cord by 90 days of age, at the onset 

of clinical symptoms, in the G1H line. Motor neurons degeneration (not detectable at P69) 

worsened with age and at disease end-stage, motor neurons loss was up to 50% in the 

same spinal cord levels. Interestingly, not all cholinergic motor neurons were equally 

affected; in fact the reduction of cholinergic neurons was restricted to the ventral horn of 

cervical and lumbar spinal cord while no significant reduction in somatic motor neurons 

innervating axial muscle located at the thoracic (T1-T2) level was recorded (Chiu et al., 

1995). Also Fischer and colleagues detected a significant reduction of large motor neurons 

only at 100 days, although vacuolation of their cell bodies was already observed at 80 

days. By day 80, they observed a marked reduction in the density of intact motor axons in 

the ventral roots with a progressive increase in the proportion of small regenerating caliber 

axons at 120 days (Fischer et al., 2004). Vinsant and colleagues studied in detail when the 

loss of motor neurons innervating tibialis anterior and soleus starts in the third, fourth and 

fifth lumbar region of the spinal cord (L3-L5) in the same SOD1 G93A mouse model. They 
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observed that at postnatal day 30 (P30) mutant SOD1 motor neurons have a smaller soma 

area as compared with those in wild-type animals but no differences where found in the 

size of both soleus and tibialis anterior motor neurons pool between wild-type and mutant 

SOD1 spinal cords. At P60, although in the SOD1 G93A mouse spinal cord most motor 

neurons are healthy, a subset of motor neurons contained numerous cytoplasmic vacuoles 

without a significant loss in the number of cells also at this age. However, SOD1 G93A 

mice show a higher percentage of vacuolated motor neurons at P60 and at P75 in the 

spinal cord. By P115–140, there were few remaining vacuolated motor neurons in mutant 

mice and the number of surviving motor neurons is significantly reduced by approximately 

50%. Taken together, these data indicate that cell death begins between P60 and P75, 

that is heralded by cytoplasmic vacuolization beginning between P44 and P60 and that the 

total motor neurons loss by end stage is approximately 50% in lumbar spinal cord of 

mutant mice (Vinsant et al., 2014b). Ventral roots were counted at P75 and no significant 

differences in the absolute number of ventral root axons in L3, L4, and L5 spinal cord 

regions were identified between SOD1 G93A and wild-type mice; however, many axons in 

the SOD1 G93A mouse exhibited alterations indicative of ongoing or impending 

demyelination and degeneration (Vinsant et al., 2014b). 

  Motor neurons loss has been evidenced also in stable transgenic zebrafish models: 

at the end stage of disease in Sod1 G93R model (Ramesh et al., 2010), at 3 years of age 

in Sod1 T70I fish (Da Costa et al., 2014) and already at 40 days of age in SOD1 G93A 

zebrafish (Sakowski et al., 2012).  

  Although invertebrate models expressing human SOD1 mutations present signs of 

neurons degeneration, they never display a significant loss of these cells (Therrien & 

Parker, 2014; Casci & Pandey, 2014). 

 

3.3  Muscle denervation long precedes motor neurons death 
 
  Many neuromuscular junctions are lost in tibialis anterior and gastrocnemius 

muscles in mice expressing high levels of human SOD1 G93A from 47 postnatal days on; 

before any detectable loss of motor axons in ventral roots exiting the spinal cord and long 

before any clinical sign of the disease, suggesting that ALS is a “dying-back” axonopathy 

(Frey et al., 2000; Fischer et al., 2004; Gould et al., 2006; Hegedus et al., 2008). However, 

great variability in muscle denervation appears in different types of muscles; for instance, 
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initial denervation of the medial gastrocnemius muscle has been reported already by 

postnatal day 25 (Gould et al., 2006).  

  Pun and colleagues elegantly demonstrated that the characteristic pattern of 

selective denervation in FALS reflects the selective vulnerability of different subtypes of 

motor neurons. In G93A SOD1 mice hind limb muscles, fast fatigable (FF) motor neurons 

(specifically innervating type-IIb muscle fibers) disconnect their peripheral synapses at 

P48-52 and lose their intramuscular nerve branches at P50-55. Fatigue-resistant (FR) 

motor neurons (specifically innervating type-IIa muscle fibers), innervating the same 

muscle sub compartment, initially sprout to partially reinnervate muscle fibers but are less 

and less capable of maintaining additional neuromuscular junctions and prune their 

intramuscular nerve branches at P80-90; in contrast, slow motor neurons (S) (specifically 

innervating type-I muscle fibers) compensate efficiently through sprouting and continue to 

maintain greatly expanded motor units to the time when the mice die (Pun et al., 2006). 

  Neuromuscular junctions defects and loss have been reported as a precocious 

event in ALS pathogenesis also in zebrafish models; in fact, they have been observed 

before evident motor impairments (Sakowski et al., 2012) and as soon as 11 days post 

fertilization (Ramesh et al. 2010).  

  Synaptic transmission becomes progressively defective even in flies expressing 

human mutant SOD1 (Watson et al., 2008) and in SOD1 G85R expressing C.elegans 

where, in synaptic puncta that demarcate neuromuscular junctions, a significant reduction 

of synaptic vesicles and an alteration of their dynamic behavior were observed (Wang et 

al., 2009). 

 

3.4  Ultrastructural alterations of nerve terminals 
 
 Several studies pointed out that nerve terminals represent one of the primary sites of 

motor neurons degeneration and therefore a site of precocious damage (Frey et al., 2000; 

Fischer et al., 2004; Gould et al., 2006; Pun et al., 2006; Hegedus et al., 2008). 

 Mitochondria represent one of the primary targets of the damage induced by mutant 

SOD1 expression both in motor neurons somata and proximal neurites (Dal Canto & 

Gurney, 1995; Cappello et al., 2012; Vinsant et al., 2014a-b). The presence of 

mitochondrial abnormalities in the cell body of SOD1 G93A mice motor neurons is a very 

precocious alteration, already observed at P7 that worsens while the disease progress 

(Vinsant et al., 2014a-b). These alterations mainly consist in cristae swelling or swollen 
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mitochondria with fragmented cristae and split outer double membranes that can be 

detected also in motor neurons dendrites (Dal Canto & Gurney, 1995; Vinsant et al., 

2014b). In the diaphragm of SOD1 G93A mice at symptoms onset, the majority of 

presynaptic boutons contained mitochondria similar in dimension and morphology to those 

of wild-type animals; however, in the 40% of presynaptic terminals all the mitochondria 

were vacuolated, with a pale, empty matrix, disorganized cristae and with a higher size 

and circularity index compared to the intact ones (Cappello et al., 2012). In tibialis anterior 

and soleus, larger and more vacuolated mitochondria were observed in the SOD1 G93A 

expressing mice already at P30 and P14 suggesting that mitochondrial changes precede 

the onset of denervation; moreover, in both muscles, the number of mitochondria was 

reduced in SOD1 G93A mice and at P30, 50% of tibialis anterior neuromuscular junctions 

have mitochondrial aberrations and degenerative inclusions (Vinsant et al., 2014b). 

 Several other features of nerve terminals present ultrastructural alterations in mutant 

SOD1 expressing mice. The quantitative analysis of synaptic vesicles at symptoms onset 

(P85-95) revealed a significant reduction of the total synaptic vesicle density in the nerve 

endings of mutant SOD1 G93A expressing mice compared to wild-type one without 

significant alterations in the diameter and morphology of synaptic vesicles and in their 

distribution in the presynaptic terminal (Cappello et al., 2012). A significant reduction in the 

junctional fold length was identified in tibialis anterior of mutant SOD1 expressing mice at 

P30 compared to wild-type but, in this case, no differences in the vesicle density and in the 

number of docked vesicles was identified in the presynaptic terminal between wild-type 

and SOD1 mice. At P53, when denervation is progressing, individual neuromuscular 

junctions with both normal and abnormal nerve-muscle contacts, including some with an 

absence of synaptic vesicles were identified (Vinsant et al., 2014b). 

 Ultrastructural alterations in the ventral nerve cord were also identified in the C. 

elegans model expressing human mutant SOD1 G85R. In 4 days old G85R worms, the 

number and diameter of neuronal processes (mostly axons) were slightly reduced 

compared with wild-type animals. These neurons presented a significant reduction in the 

numbers of organelles, including both mitochondria and vesicles, within them. Electron 

microscopy studies, after high pressure freezing, showed a reduction of synaptic vesicles, 

more pronounced in the region closest to the presynaptic density, in mutant worms as 

compared with wild-type animals, where vesicles were densely packed in the presynaptic 

region including the active zone and periactive zone (Wang et al., 2009). 
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3.5  Muscle defects 
 

 Skeletal muscle is one of the tissues affected, both in sporadic and familial human 

ALS, outside the central nervous system. Both patients and mouse models expressing 

mutant SOD1 present functional aberrations and skeletal muscle pathology (Boyer et al., 

2013 and references therein).  

 Several investigators have reported skeletal muscle dysfunction and motor unit 

dropout in patients and mice expressing mutant SOD1 long before motor neurons death 

and the onset of clinical symptoms. Most of them show gross atrophy of the skeletal 

muscle (Gurney et al., 1994; Chiu et al., 1995; Fischer et al., 2004; Cappello et al., 2012) 

and mutant SOD1 aggregates have been observed in hind limb skeletal muscles of SOD1 

G93A mice at 90 days (Turner et al., 2003).  Both in a mouse model of ALS (SOD1 G86R 

transgenic mouse) and in muscular biopsies of human sporadic ALS it has been 

evidenced signs of precocious mitochondrial dysfunction consisting in the upregulation of 

mitochondrial uncoupling proteins, key regulators of mitochondrial functions, the depletion 

of ATP levels one month before disease onset and the reduction of the respiratory control 

ratio of isolated mitochondria selectively in the muscle but not in neuronal tissues (Dupuis 

et al., 2003). Moreover, SOD1 G93A overexpression in skeletal muscle leads to ROS 

overproduction and to an increase in oxidative damage to cellular macromolecules before 

motor neurons death and clinical onset (Mahoney et al., 2006). 

  Fast trunk muscle ultrastructural analyses revealed myofibrillar and mitochondrial 

degeneration, and extensive collagen deposition in G93R zebrafish model (Ramesh et al., 

2010) and the ubiquitous expression of zinc-deficient SOD1 in Drosophila deteriorates 

mitochondrial structure causing cristae rearrangement (Bahadorani et al., 2013). 

  Recent findings suggest that multiple cells participate in ALS pathogenesis because 

the restricted overexpression of human FALS-causing mutations (SOD1 G93A, SOD1 

G85R and SOD1 G37R) in neurons alone is not sufficient to cause an ALS phenotype 

(Pramatarova et al., 2001; Lino et al., 2002; Clement et al., 2003). In this context, the role 

of mutant SOD1 expression in skeletal muscle is still debated. Dobrowolny and colleagues 

selectively expressed mutant SOD1 G93A in mouse skeletal muscle using the myosin light 

chain promoter and observed the development of an ALS-like muscle pathology in mice: 

muscular atrophy, reduced muscle strength, impaired contractility, ultrastructural 

disorganization of myofibrils and mitochondrial morphological alterations (they appear 

swollen, abnormally shaped, and larger in size, sometimes containing vacuolizations and 
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disrupted outer membrane) and dysfunction without triggering the degeneration of motor 

neurons (Dobrowolny et al., 2008). These findings contrast with a similar study from Wong 

and Martin, where human wild-type and mutated SOD1 G93A and SOD1 G37R, 

selectively expressed in skeletal muscle, resulted in pathologic phenotypes, in all the three 

transgenic animals, both in muscles and motor neurons. Transgenic mice showed limb 

weakness and paresis with motor deficits; skeletal muscles presented oxidative damage to 

proteins in the mitochondria enriched fraction, protein nitration, myofiber cells death, 

neuromuscular junctions defects, signs of distal axonopathy and a significant loss and 

degeneration of motor neurons in the spinal cord (Wong & Martin, 2010). The reasons for 

this discrepancy are still unclear, it might be due to the fact that the animals used were of 

a different age, being significantly younger in the work of Dobrowolny and colleagues (1-4 

months old) compared to those used by Wong and Martin (10-15 months). Regardless of 

this, together these studies provide strong evidence that mutant SOD1 is toxic to skeletal 

muscle and challenged the accepted dogma that motor neuron degeneration, caused by 

the overexpression of mutant SOD1, is the principal driver of muscle atrophy, on the 

contrary, it appears that skeletal muscle may be a precocious and active partner in 

disease pathogenesis. 

 

3.6  Glial cells in ALS 
 

  Studies based on animal models showed that ALS is a non-cell autonomous 

multifactorial disease where a whole range of other cell types could contribute to the 

maintenance of motor neurons well being. Among them, glial cells, which surround motor 

neurons and provide nutritional and trophic support to them, could play a crucial role in 

disease pathogenesis (Philips & Rothstein, 2014). 

 

  Astrocytes are ectodermal cells involved in ion homeostasis, neurotransmitter 

recycling and metabolic support to surrounding neurons. One of the most important and 

extensively studied supportive functions of astrocytes is their involvement in the 

glutamate-glutamine cycle. Glutamate is one of the most important neurotransmitter in the 

central nervous system where it mediates excitatory synaptic communication between 

neurons. Uptake of glutamate from the synaptic cleft between presynaptic and 

postsynaptic neurons through glutamate transporters EAAT2 (GLT1 in rodents) and 

EAAT1 (GLAST in rodents) expressed by astrocytes will prevent excessive postsynaptic 



! #)!

stimulation of glutamate receptors and motor neuron cell death, a process which is called 

glutamate mediated excitotoxicity. Another important function of astrocytes is their 

involvement in the metabolic support of neurons. Astrocytes are tightly coupled to the 

bloodstream and strongly interconnected through gap-junctions through which they 

provide metabolic substrates over long distances. Under conditions of increased neuronal 

activity and metabolic substrate demand, astrocytes increase their glycolytic activity, 

converting glucose to lactate. Both glucose and lactate are distributed by astrocytes 

throughout the parenchyma and used as an energy substrate by neurons. When 

astrocytes encounter any biological hazard in their immediate surroundings, they become 

reactive and increase the expression of specific markers (e.g., glial fibrillary acidic protein: 

GFAP) in a process called astrogliosis. Astrogliosis is not mediated by resident astroglial 

cells proliferation but rather by activation of pre-existing resident astrocytes and by a 

change in their expression of proteins (e.g., increased GFAP, decreased GLT1) and 

altered morphology of their fine processes. In ALS patients, astrogliosis is seen both in the 

gray as well as the white matter of the brain; it is not limited to the motor cortex and to the 

ventral and dorsal horns of the spinal cord but spreads to the regions where the 

corticospinal tract fibers enter the gray matter in the spinal cord (Philips & Rothstein, 2014 

and references therein).  

  The use of double transgenic GFAP-luc/SOD1 G93A mice carrying the non-

pathogenic reporter transgene luciferase driven by murine GFAP promoter allowed the in 

vivo observation of astrogliosis establishment during ALS pathogenesis. The disease in 

mice is initiated simultaneously at the level of peripheral nerves and the spinal cord, and is 

characterized by several cycles of GFAP up-regulation. The first pathological increase in 

GFAP signals takes place around 25–35 days, when animals are asymptomatic, and is 

detectable both at the level of lumbar spinal cord projections and at the periphery. These 

early events are followed by several increases in GFAP promoter inductions, which is 

sharply activated at disease onset (85–90 days) (Keller et al., 2009). It has been shown 

that astrogliosis gradually increases with disease progression and differs in time course 

according to the SOD1 transgenic line under investigation and the expression levels of the 

transgene. Interestingly, the presence of reactive astrocytes increases not only in mutant 

SOD1 expressing mice but also in those expressing wild-type SOD1 at comparable levels 

at 40, 80 and 120 days despite disease progression (Alexianu et al., 2001).  

  Several studies have demonstrated that astrocytes expressing mutant SOD1 play 

an active role in ALS pathogenesis. In particular, it has been demonstrated that the 



! $+!

selective reduction of mutant SOD1 expression in astrocytes in SOD1 G37R (Yamanaka 

et al., 2008) or SOD1 G85R (Wang et al., 2011) transgenic mice or the transplantation of 

wild-type glial progenitor cells into the spinal cord of SOD1 G93A transgenic rats (Lepore 

et al., 2008) delays disease progression and extends survival.  

 

  Microglial cells are the resident immune cells of the central nervous system, of 

mesodermal origin, they represent the main immune-competent cells and the primary 

mediator of neuroinflammation of the central nervous system. In the normal adult nervous 

system, these cells exist in a resting state and are characterized by a small cell body and 

fine ramified processes. However, neuronal damage can rapidly activate the release of 

cytotoxic and inflammatory mediators. They closely interact with T-cells and astrocytes to 

mediate and regulate the inflammatory response; particularly, they release a whole range 

of pro-inflammatory or anti-inflammatory cytokines and chemokines when encountering 

any damaging hazard. They respond releasing pro-inflammatory factors (tumor necrosis 

factor alpha (TNF!), interferon-1$ (IL-1$), nitric oxide (NO), O2, and interferon-" (IFN-")) to 

clear and/or limit biological hazards and subsequently they release anti-inflammatory 

factors (interleukin 4 (IL-4), IL-10, and insulin growth factor 1 (IGF1)) with the aim to repair 

the damage. In ALS patients as well as in ALS rodent models, there is a clear microglial 

reaction characterized by the upregulation of a whole range of microglial markers (CD11b, 

Iba1) and by the release of pro-inflammatory cytokines and chemokines (Philips & 

Rothstein, 2014 and references therein).  

  The analysis of microgliosis in the central nervous system of ALS patients largely 

depends on studies of postmortem tissues, which demonstrate increased microgliosis in 

the motor cortex, in the motor nuclei of the brain stem, in the corticospinal tract and the 

ventral horn of the spinal cord (Kawamata et al., 1992). Live in vivo PET scanning with 

11C-PK11195, a ligand that highly binds to microglia, as well as other cells to a lesser 

extent, in the central nervous system revealed for the first time diffuse microgliosis in living 

ALS patients, and the results suggest a correlation between the extent of microgliosis and 

damage to upper motor neurons, but not lower motor neurons (Turner et al., 2004).  

  In either mutant SOD1 G93A or wild-type SOD1 transgenic mice, it has been shown 

that there is no increase in activated microglia in the spinal cord at 40 days of age. 

However, at 80 days, when mutant mice have minimal motor neurons loss and no clinical 

symptoms, extensive staining for microglia was observed in the ventral horn and proximal 

part of the anterior roots. Positive microglial staining, marked by the presence of round cell 
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bodies and thickened short ramified processes and multiple microglial processes, created 

a network around the motor neurons in the ventral horn gray matter. Interestingly, the 

expansion of the immune reaction correlates with disease progression in SOD1 mutant 

mice. In spinal cord sections, at all levels (sacral, lumbar, thoracic, or cervical), of 

transgenic mice expressing wild-type SOD1, microglial staining was minimal at all ages 

examined (40, 80, and 130 days) (Alexianu et al., 2001; Chiu et al., 2009).  

  To test the impact of microglia on ALS, mice expressing Cre driven by the myeloid 

CD11b promoter were generated and bred with floxed SOD1 G37R mice. The mutant 

Sod1 gene inactivation and mutant protein reduction in CD11b-positive cells prolonged 

survival by 99 days, slowing disease progression after onset, in Cre excised mice without 

affecting spinal cord microgliosis. This study sustains a role for activated microglia in the 

late stages of disease progression pointing out a role of these cells in motor neurons 

death. However, it is important to remember that CD11b is not specific to microglia in the 

central nervous system but it is also expresses by peripheral inflammatory myeloid cells 

and the Cre activation reduced mutant SOD1 expression also in these cells. Therefore it is 

possible to speculate that the slowing of later disease may derive in part from gene 

inactivation not just in microglia but also in peripheral macrophages or their progenitors 

and/or from the migration of those cells into the central nervous system after initial 

damage to motor neurons (Boillée et al., 2006). In fact, in mice expressing either mutant 

SOD1 G93A or SOD1 G37R a wide infiltration of macrophages in the peripheral nervous 

system accompanies axon degeneration in ventral roots, sciatic nerves, and muscle 

tissues. While in the spinal cord, the loss of motor neurons cell bodies induces the 

activation of resident microglia and infiltration of T cells, the peripheral nervous system 

denervation and degeneration of motor axons leads to significant peripheral macrophage 

activation. While microglia, in mutant SOD1 mice, are primarily tissue resident cells in the 

central nervous system, where they acquire dendritic cell surface receptors during disease 

progression, mainly acting as antigen-presenting cells to interact and activate T cells 

infiltrating the spinal cord; peripheral nervous system macrophages in ALS transgenic 

mice are mainly derived from the blood flow and their primary role in peripheral nerves 

may be the phagocytic removal of debris following axonal degeneration. Despite these 

functional differences, the immune activation in the central and peripheral nervous system 

follows similar kinetics. Interestingly, activated macrophages form cellular strands along 

the nerve, localized to spaces adjacent to axons and few macrophages were observed in 

the vicinity of end-plate neuromuscular synapses, at pre-symptomatic time points in 
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mutant SOD1 expressing mice but not in non transgenic and wild-ype SOD1 expressing 

ones. Following symptom onset, macrophage activation occupies a majority of the 

parenchyma. In the spinal cord, microglia is discretely activated in ventral horns at 

presymptomatic time points; following onset, glial activation becomes widespread and T 

cells infiltrate from the periphery (Chiu et al., 2009). 
 

   Figure 4 

 
 
Figure 4: Summary of pathogenetic features identified in transgenic SOD1 G93A mice.  
Mice develop evident locomotor deficits (hind limb tremor and weakness) around 3 months, and 
further progress to paralysis and premature death after 4 months.  
Neuromuscular junctions degeneration appears around 47 days and is selective for fast-fatigable 
axons. Proximal axonal loss is prominent by 80 days coinciding with motor impairment and a 
severe 50% dropout of lower motor neurons is evident at 100 days. Spinal cords are also 
characterized by substantial astrocytosis and microgliosis around disease onset. 
Hallmark pathologic features of spinal motor neurons also include mitochondrial vacuolization, 
Golgi apparatus fragmentation, neurofilament-positive inclusions and cytoplasmic SOD1-
immunoreactive aggregates (modified from Turner & Talbot, 2008). 
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3.7  Altered neuronal excitability in ALS 
 
  Several studies, based on transcranial magnetic stimulation and cortical and 

peripheral neurophysiological investigations, demonstrated that ALS patients exhibit 

cortical hyperexcitability before any clinical sign of ALS or pathophysiological evidence of 

lower motor neurons dysfunction (Vucic et al., 2008; Vucic et al., 2013,b; Menon et al., 

2014). Moreover, motor nerve excitability properties are strong predictors of survival in 

patients with ALS (Kanai et al., 2012). All these findings suggest that cortical dysfunction 

may precede the development of lower motor neurons dysfunction and lead to 

hypothesize that motor neurons degeneration in ALS may be mediated by cortical motor 

neurons hyperexcitability through an anterograde glutamate-mediated excitotoxic process: 

the so-called “dying-forward” hypothesis (Kiernan et al., 2011). At the basis of the neuronal 

hyperexcitability recorded in patients with suspected ALS and that subsequently 

developed the disease, it has been hypothesized that there could be both the 

degeneration of inhibitory cortical circuits (Thielsen et al., 2013) along with the release of 

high levels of extracellular glutamate (Vucic et al., 2013,b; Menon et al., 2014). However, it 

has been recently demonstrated that even motor neurons, differentiated from iPSCs 

generated from cells obtained in human ALS patients harboring SOD1, C9orf72 and FUS 

mutations, show signs of hyperexcitability. Interestingly, these neurons display a 

significantly higher action potential firing compared to those recorded in motor neurons 

differentiated from healthy subjects and in neurons where SOD1 A4V mutation was 

genetically corrected in the iPSC line, this phenotype was abrogated (Wainger et al., 

2014). 

  Markedly elevated intrinsic electrical excitability was identified in cultured mice 

embryonic and neonatal dissociated spinal motor neurons expressing mutant SOD1 

G93A. In particular, these motor neurons did not show any differences in the resting 

potential, in the input conductance, in the action potential shape and in the after 

hyperpolarization amplitude, between G93A and control motor neurons. However, the 

maximal firing rate of those expressing SOD1 G93A was much greater than in the control 

ones in presence of ionotropic receptors blockers; assuring that these differences were not 

due to alterations in spontaneous synaptic inputs (Kuo et al., 2004; Kuo et al., 2005; Pieri 

et al., 2009; Schuster et al., 2012; Martin et al., 2013). Similar results were obtained 

comparing hypoglossal motor neurons and spinal cord interneurons electrical properties of 

mutant human SOD1 G93A expressing mice with those recorded in wild-type human 
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SOD1 expressing mice and non transgenic mice in acutely prepared slice at P4-P10 or 

P10-P12. In this way, it was demonstrated that neuronal hyperexcitability was specifically 

due to the expression of the mutated SOD1 G93A protein but not of wild-type SOD1 and 

that even interneurons present hyperexcitability, which may contribute to neuronal loss at 

later stages in the pathology (Van Zundert et al., 2008). Evidence that neuronal 

hyperexcitability is not a peculiar feature of ALS pathology associated to SOD1 mutations, 

were obtained not only by Wainger and colleagues in iPSCs derived from patients with 

ALS associated to different mutated genes (Wainger et al., 2014) but also by the studies 

conducted in the wobbler mouse, an ALS model carrying a point mutation in the Vps54 

gene. This gene encodes a protein involved in retrograde transport from both early and 

late endosomes to the trans Golgi network. These animals exhibit signs of cortical and 

hippocampal excitability already in the presymptomatic phase of the disease with a 

concomitant reduction in inhibitory paravalbumin positive interneurons in the symptomatic 

stage of the disease (Thielsen et al., 2013).  

  Beyond the excitation/inhibition unbalance hypothesized to be at the basis of 

neuronal hyperexcitability (Vucic et al., 2009) several authors observed the increased 

activity of the persistent (non-inactivating) sodium current INaP in acute brain slice and 

cultured neurons obtained form mice expressing human SOD1 G93A mice (Kuo et al., 

2005; Van Zundert et al., 2008; Pieri et al., 2009). The voltage-dependent activation 

threshold and the peak potential of the INaP result to be similar in wild-type and G93A 

neurons; however, INaP amplitude measured at the peak of Current/Voltage relationship 

and the current density is significantly higher in G93A neurons (Pieri et al., 2009). 

Although INaP represents a small fraction of the total neuronal current (0.8-1%), it can 

profoundly affect neurons and network behavior. This current, in fact, enhances neuronal 

excitability near firing threshold and is essential for spikes generation during sustained 

inputs (Urbani & Belluzzi, 2000). Since INaP can be activated close to the cell’s resting 

potential, small increases in this current can enhance cell intrinsic excitability, alter spike 

initiation and amplify the firing rate. In addition, the excitatory synaptic inputs received by a 

given neuron can be greatly amplified and prolonged by INaP thereby impacting the 

neuron’s output by increasing its firing rates in response to synaptic modulation (Urbani & 

Belluzzi, 2000; Van Zundert et al., 2012) 

  Interestingly, riluzole, the only drug approved for the treatment of ALS patients as 

capable to slow disease progression (Bensimon et al., 1994), has been demonstrated to 

be a selective blocker of INaP at low concentrations (Urbani & Belluzzi, 2000) and proved to 
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be able to markedly block INaP and rapidly decrease firing frequency both in wild-type and 

mutant SOD1 expressing neurons (Kuo et al., 2005; Pieri et al., 2009). These evidence are 

of the outmost importance because the mechanism of action by which riluzole exerts its 

therapeutic effects is complex and still not completely understood; it involves the inhibition 

of the voltage-dependent sodium channels and also a reduction of glutamate release 

although, the correlation of the two mechanisms remains to be elucidated because 

tetrodotoxin, a sodium channel blocker, fails to mediate the same effect on glutamate 

release (Urbani & Belluzzi, 2000). 

  Several studies also show that altered neuronal electrical properties are associated 

with morphological defects (Van Zundert et al., 2008; Amendola & Durand, 2008; Martin et 

al., 2013). It has been observed that human SOD1 G93A expressing mice embryonic 

spinal motor neurons (Martin et al., 2013) and P6 hypoglossal motor neurons (Van 

Zundert et al., 2008), in addition to hyperexcitability, show a significant reduction in the 

terminal dendritic arborization. In the latter case, significantly fewer dendrites cross the 

midline into the territory of contralateral hypoglossal motor neurons compared to control 

littermates and these abnormalities are accompanied by a transient delay in the 

development of the gross locomotor ability of the forelimbs (Van Zundert et al., 2008). On 

the contrary, lumbar motor neurons expressing SOD1 G85R, showing hyperexcitability, 

present a significant increase in the total dendritic length, in the dendritic arborization 

surface area and in the total number of axonal branches (Amendola & Durand, 2008). 

However, it is still unknown whether the morphological alterations are the cause or the 

consequence of changes in neuronal excitability. 
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4. ZEBRAFISH MODELS OF HUMAN MOTOR NEURON DISEASES 
 
 Motor neuron diseases constitute an expanding, heterogeneous group of 

developmental and neurodegenerative disorders anatomically subdivided according to 

their involvement of upper motor neurons or lower motor neurons or both. The upper 

motor neurons of the central nervous systems originate in the motor cortex and deliver 

motor information to the lower motor neurons. Lower motor neurons are located in the 

cranial motor nuclei in the brainstem and spinal cord and drive impulses from the upper 

motor neurons to the skeletal muscles at neuromuscular synapses. Symptoms associated 

to upper motor neurons dysfunction generally include weakness, speech problems, 

overactive tendon reflexes, spasticity, Babinski sign, clonus, and inappropriate 

emotionality while lower motor neurons degeneration causes weakness, attenuated 

reflexes, cramps, twitching, and muscle wasting. Unfortunately, considerable overlaps of 

clinical and pathophysiological features complicate the precise diagnosis of these 

diseases in patients and raises controversies about the disorders classification. Animal 

models of human motor neurons diseases, mostly rodents, but also the fruit fly (Drosophila 

melanogaster) and the nematode worm (Caenorhabditis elegans), have been used in the 

attempt to understand the neurobiological basis of these pathologies and to predict 

successful treatment strategies (Babin et al., 2014).  

 The zebrafish (Danio rerio) is a vertebrate species, with a nervous system 

organization similar to humans, increasingly used to model human diseases. It represents 

a powerful experimental model for the study of disorders affecting the nervous system and 

of physiological processes involved in nervous system morphogenesis and maintenance 

due to the high conservation of genes implicated in neurodegenerative diseases. The 

zebrafish model presents many methodological advantages and extensive collections of 

useful resources (zfin.org web site). These include tools applicable in vivo, like whole-

mount imaging thanks to the optical transparency of zebrafish embryos and early larval 

stages, methodologies for modulating gene expression, behavioral tests to examine 

changes in motor activity and simplified simultaneous chemical/drug testing on large 

number of animals. The fully sequenced genome is available, together with molecular 

anatomical atlases and collections of transgenic lines expressing fluorescent proteins 

under neuron-specific promoters. Numerous gene knockout lines and their short-term 

associated phenotypes are now complementary to antisense morpholino oligonucleotides 

(AMO) transitory knockdown and other genome editing methods like transcription 
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activator-like effector nucleases (TALEN) and the CRISPR/Cas system and transgenic 

techniques for conditional gene activation or inactivation. In addition to the many genetic 

tools available, behavioral genetics are easily accessible in zebrafish: its stereotyped 

movement patterns and tactile response abilities may be used to model some of the 

molecular, electrophysiological, and behavioral aspects of neural diseases. Moreover, the 

zebrafish model has become an attractive alternative to rodents, in the attempt to develop 

high-throughput screenings to identify genetic interactions or small molecules with toxic or 

therapeutic effects, thanks to lower costs and less time-consuming experiments (Kabashi 

et al., 2010,a; Babin et al., 2014). 

 

4.1  Comparative neuroanatomy of human and zebrafish motor 
systems 

 

 Vertebrate motor system is hierarchically organized in three levels of control: motor 

cortex, brainstem, and spinal cord. Zebrafish share this organizational structure and have 

at least twenty different neuronal populations in the brain involved in the control of 

locomotion, mostly located in the brainstem and projecting to the spinal cord. While the 

brainstem organization of neurons with descending axons is highly conserved among 

other vertebrates, including zebrafish, an important difference between teleost fish and 

mammals is that they do not have direct telencephalic projections to the spinal cord, 

probably because the corticospinal tract in mammals is an adaptation for the fine motor 

control of the limbs (Babin et al., 2014 and references therein). Therefore, the zebrafish 

model represents a valuable system to investigate pathologies affecting spinal circuits but 

less suitable to study disease mechanisms involving the motor cortex. 

 

 Spinal cord 
 

 The human motor nuclei in the spinal cord are arranged along a medial-lateral axis 

according to their function. The ventral medial motor column projects to the axial muscles 

in the neck and back, the hypaxial (ventral) motor column projects to the hypaxial muscles 

in the ventral body wall, and the dorsal lateral motor columns project to the limb muscles. 

This topographic map of spinal cord motor nuclei, arranged in different motor columns 

innervating different groups of muscles is present in mammals, reptiles and birds, but not 

in other vertebrates like fish. Spinal motor neurons can be distinguished in alpha motor 
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neurons (!-MNs) innervating extrafusal muscle fibers and driving muscle contraction and 

gamma motor neurons ("-MNs) innervating intrafusal muscle fibers of the muscle spindle 

and involved in proprioception. !-MNs, the most abundant class of spinal motor neurons, 

can in turn be classified in three subtypes, according to the contractile properties of the 

motor units that they form with target muscle fibers: slow-twitch, fatigue resistant (S); fast-

twitch, fatigue resistant (FR); fast-twitch, fatigable (FF) (Babin et al., 2014). Motor neurons 

of the FF-subtype have large cell bodies and large-diameter, fast-conducting axons and 

seem to be the most sensitive to degenerative disorders and aging, while the S-subtype 

has the smallest cell bodies and axons and are more resistant to degeneration (Pun et al., 

2006). 

 Zebrafish spinal motor neurons are located in the motor columns in ventral horns of 

the spinal cord and may be divided into primary and secondary classes, according to when 

they differentiate and innervate their target musculature. Primary motor neurons (PMNs) 

are larger, appear during gastrulation and undergo axonogenesis during the first day of 

development. Three to four individual PMNs may be identified in each spinal hemisegment 

by their head-tail positions, axonal trajectories, and electrical membrane properties. 

Caudal primary motor neurons (CaP) innervate the ventral trunk musculature, middle 

primary motor neurons (MiP) innervate dorsal trunk musculature, and rostral primary motor 

neurons (RoP) innervate muscle fibers in between. A fourth class, variable primary motor 

neurons (VaP) innervating muscle fibers located between the territory of rostral and middle 

primary motor neurons can be identified, although they typically undergo apoptosis by 36 

hours post fertilization (hpf). Secondary motor neurons (SMNs), located more ventrally in 

the motor column, are smaller, more numerous, appear later in development, and typically 

have thinner axons than PMNs (Figure 5). PMNs have not been described in amniotes, 

thus human !-MNs may be more similar to SMNs. No "-MNs have been described in 

zebrafish, which do not have intrafusal muscle fibers (Babin et al., 2014 and references 

therein; Drapeau et al., 2002). 

 

 Skeletal muscle 
 
 Axial motor structures form the primitive motor apparatus of vertebrates and consist 

of a rostro-caudal series of myomeres. This myomeric musculature is also present in most 

anamniotic vertebrates, including zebrafish (Babin et al., 2014). In adult zebrafish, slow 

and fast muscle fibers occupy distinct regions of the axial muscle. Fast muscle fibers 
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represent the deep and large portion of the ventral and dorsal myotomes, while slow 

muscle fibers are segregated into a lateral wedge-shaped region of the myotomes at the 

level of the horizontal septum, which separates the ventral (hypaxial) and dorsal (epaxial) 

muscles. In addition, there are intermediate muscle fibers located between the slow and 

fast muscle fibers (Ampatzis et al., 2013). Slow fibers, forming the superficial monolayer 

on the surface of the myotome, are well-equipped for oxidative phosphorylation and are 

resistant to fatigue, while fast fibers, in the deep portion of the myotome, are more 

fatigable as they rely on anaerobic glycolysis for ATP generation (Drapeau et al., 2002; 

Brustein et al., 2003). Each fast fiber is innervated by a single PMN and up to 4 SMNs, 

whereas each slow fiber is innervated by several SMNs. The two groups of fibers can be 

differentially controlled and perform different functions: slow fibers are activated during 

slow sustained swimming, whereas fast fibers only become active during rapid swimming 

or escape movements. Electrophysiological evidence indicate that slow fibers are tonic 

fibers, homologous to the tonic fibers described in the mammalian extra-ocular muscle 

and, therefore, they cannot be considered the homologs of mammalian slow twitch 

muscle, while fast fibers are a twitch-fiber type. Skeletal muscle fibers in zebrafish share 

many molecular and histological features with mammalian muscle fibers, including 

preservation of the components of the dystrophin-associated glycoprotein complex, the 

excitation-contraction coupling machinery and the contractile apparatus (Babin et al., 2014 

and references therein). 

 

4.2  From cells to circuits: development of the locomotor network in 
zebrafish spinal cord  

 

  As a result of the many similarities of the locomotor network organization, that have 

been described from invertebrates to vertebrates, including mammals; the zebrafish is a 

useful system for gaining new insights into the development of the neural control of 

vertebrate locomotion. The attractiveness of the zebrafish as a model for developmental 

studies stems from the ease of obtaining large numbers of embryos that are transparent 

for microscopic observations: a pair of zebrafish simultaneously lays and externally 

fertilizes 100–200 eggs, and the small embryos (1 mm in length) develop rapidly with 

stereotyped stages and hatch after only 2 days (52 hpf) (Kimmel et al., 1995).  

  The stereotypic motor activity of the developing zebrafish includes three 

sequentially appearing behaviors: a transient period of alternating tail coilings followed by 
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responses to touch and the appearance of organized swimming (Drapeau et al., 2002; 

Brustein et al. 2003).  

 

 Spontaneous coiling 
 

 The nervous and muscular systems must develop and function in concert to bring 

about proper locomotion. Zebrafish neurogenesis in the spinal cord starts 6 hpf, during 

gastrulation, when sensory neurons, interneurons and primary motor neurons differentiate 

from precursors located respectively in the dorsal, medial and ventral longitudinal columns 

of the spinal cord (Drapeau et al., 2002; Lewis et al., 2003). 

 Muscle development starts 11 hpf in rostral somites, when medial paraxial 

mesodermal cells differentiate into adaxial muscle precursor cells. One population of 

adaxial cells maintains its medial location and develops into the first contractile myotomal 

fibers: the “muscle pioneers” while a second population of adaxial cells migrates laterally 

where they elongate and form the mononucleate superficial embryonic slow red muscle 

(ER) fibers. Lateral paraxial mesodermal cells later differentiate into lateral presomitic 

muscle precursor cells, ultimately forming the multinucleate embryonic fast white (EW) 

fibers that constitute the bulk of the myotomal muscle. When embryonic myotomal 

segments first form, they are block shaped with ER and EW fibers running parallel to the 

notochord. Within a few hours, the deeper EW fibers take on their characteristic oblique 

chevron-shaped (<) orientation and ER fibers retain their parallel orientation forming a 

blanketing layer of approximately 30 fibers per segment. At the time of the first 

contractions, only two fiber types are present: the ER and EW fibers and the anatomical 

organization of the myotomes of developing embryos and larvae is much simpler than that 

of the adult. Primary motor neurons start transmitting inputs to muscle pioneers and soon 

afterwards EW fibers are innervated. At this stage of development, ER and EW fibers have 

an extensive electrical coupling (ER–ER and EW–EW but not ER–EW), forming a 

contractile syncytium in the embryo that decreases greatly by hatching at 52 hpf. At the 

onset of motor neurons axon outgrowth, the trunk of zebrafish embryos contains 

approximately 16 myotomes. Each side of the spinal cord segment, within each myotomal 

division, usually contains three individually identifiable primary motor neurons (PMNs). The 

first PMN to send an axon out of the spinal cord (pioneering the ventral root) after 17 hpf is 

the caudal primary motor neuron (CaP). In the next 1–2 hours the CaP axon is followed in 

sequence by the axons of the middle primary neuron (MiP) and the rostral primary neuron 
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(RoP). The CaP, RoP, and MiP axons, respectively innervate the ventral, lateral, and 

dorsal muscle of the overlying myotome. This innervation pattern is exclusive to each 

region and the different growth cones follow stereotypical pathways. All three primary 

motor neurons axons follow a common pathway on the medial surface of the myotome 

until they reach adaxial muscle pioneers at the developing horizontal myoseptum. These 

muscle pioneers seem to act as choice points as the axons pause at their contact and 

then diverge to follow their final innervation patterns. In taking this common path, the 

primary motor neurons pioneer the peripheral motor nerve. Ten hours after this initial 

axonogenesis (26 hpf), a new wave of outgrowth by secondary motor neurons begins, with 

about two dozen secondary motor neurons per segment sending axons out of the spinal 

cord through the common ventral root and branching into the muscle mass (Drapeau et 

al., 2002; Lewis et al., 2003).  

 Spontaneous alternating side-to-side contractions of the trunk (coils) appear 17 hpf. 

These movements are not myogenic and originate from the spinal cord, since they depend 

on functional motor neurons innervation and persist in the isolated trunk independently of 

supraspinal inputs (Saint-Amant & Drapeau, 2000; Saint-Amant & Drapeau, 2001; 

Drapeau et al., 2002). At onset of spontaneous coiling only four types of spinal neurons 

are active: three types of interneurons: ipsilateral caudal (IC), ventrolateral descending 

(VeLD), and commissural primary ascending (CoPA) interneurons and motor neurons. 

Around 17 hpf, these neurons show ‘‘periodic depolarizations’’, rhythmic membrane 

oscillations (with a frequency around 0.6 Hz) that are resistant to block of neurotransmitter 

receptors (Saint-Amant & Drapeau, 2000). By 20-21 hpf, periodic depolarizations become 

interspersed with ‘‘synaptic bursts’’ that comprise periodic depolarization-bursts evoked by 

glycine released from newly integrated neurons (Saint-Amant & Drapeau, 2000; Saint-

Amant & Drapeau 2001; Tong & McDearmid, 2012). The periodic depolarizations appear 

early in development, 17–20 hpf, and are slow, sustained depolarizations that trigger 

action potentials and presumably generate the coils, while bursts of glycinergic inputs 

arise later, after 21 hpf, and consist of rapid synaptic events. Surprisingly, during the 

period of spontaneous coiling the neural activity is exclusively based on electrical coupling 

among cells, in fact, the blockade of receptor channels commonly found in the larval spinal 

cord (Glycine receptors, AMPAR, NMDAR, AChR, GABA receptors) does not impair coils 

and persists when all chemical synaptic transmission is abolished with botulinum toxin. 

However, uncouplers of gap junctions suppress the activity, indicating that a different 

mechanism of network activation is at play at this stage of development (Saint-Amant & 
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Drapeau, 2001). In vivo electrophysiology experiments allowed to determine that periodic 

depolarizations depend upon a persistent sodium current (INaP). This current, often 

implicated in pacemaking, mediates spontaneous depolarizations in the subset of 

zebrafish active interneurons and motor neurons and promotes the generation of slow 

membrane voltage oscillations during spontaneous coiling. The administration of 5 µM 

riluzole inhibits INaP and, without affecting spike amplitude or rheobase, gradually 

abolished periodic depolarizations. Since 5 µM riluzole similarly blocks coiling behavior in 

freely moving embryos, it suggests that INaP drives coiling activity (Tong & McDearmid, 

2012). The role of the glycinergic bursts at 21 hpf is still not clear since blocking glycinergic 

synapses with strychnine had little effect on the coiling behavior. However, it was 

observed that periodic depolarizations on one side of the trunk occurred simultaneously 

with glycinergic bursts on the other side (Saint-Amant & Drapeau, 2001). 

 An important role for electrical coupling, in developing central networks, has been 

suggested for many vertebrates where it is implicated in the formation of chemical 

synapses. Interestingly, electrical coupling is a fundamental mechanism of synchronization 

in central program generators of invertebrate nervous systems and precedes the 

appearance of chemical transmission. It has been therefore suggested that the electrically 

coupled network of the zebrafish embryo could be a fundamental, phylogenetically 

conserved, scaffold for synchronizing early rhythmic networks (Drapeau et al., 2002). 

 

 Touch response 
 
 At the peak of the spontaneous tail coilings (19 hpf) the zebrafish embryos do not 

respond to touch. Starting from 21 hpf the embryos could respond to touch with an over-

the-head, fast coiling of the trunk; however, a mature response to touch behavior appears 

only 27 hpf when touching the head results in a full coiling response whereas, touching the 

tail now results in a partial coil that, for the first time, elicits brief swimming episodes in 

dechorionated embryos. At this developmental stage, touching the head presumably 

activates trigeminal sensory neurons whereas, touching the tail activates spinal Rohon–

Beard sensory neurons, which both project to the hindbrain and innervate reticulospinal 

Mauthner neurons that send projections to the spinal cord. These responses require an 

intact hindbrain in addition to the spinal cord and suggest that the new behaviors are 

related to a functional rearrangement in the hindbrain or spinal cord circuitry, or perhaps 

both. While an electrically coupled network of a subset of spinal neurons generates coiling 
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contractions, a chemical (glutamatergic and glycinergic) synaptic drive underlies touch 

responses and swimming. Because the hindbrain is required for the touch response and 

most reticulospinal neurons are glutamatergic, part of the newly functional glutamatergic 

synapses are likely to be descending projections from the hindbrain reticulospinal neurons 

(Brustein et al., 2003; Knogler et al., 2014). 

 The appearance of the touch evoked motor response is characterized by the 

development of neuromuscular synaptogenesis. Neuromuscular synapses are first formed 

on “muscle pioneer” at the choice point and on muscle fibers that are dorsally and ventrally 

adjacent to them, on the medial surface of the myotome, between 20-28 hpf. AChRs are 

clustered beneath outgrowing motor axons but they are still not precisely associated with 

presynaptic vesicles clusters in nascent presynaptic terminals. By 48 hpf, motor axons 

extend branches into the myotomes, form synapses with laterally located muscle fibers, 

turn laterally at the edge of the myotome and grow along and innervate the myosepta. In 

contrast to earlier developmental stages, now presynaptic terminals are almost always 

apposed to AChR clusters. By 120 hpf, the number of synapses further increases and 

synapses become distributed throughout the entire myotome (Panzer et al., 2005).  

 

 Swimming 
 
 At early larval stages, 3 days post fertilization (dpf), zebrafish are generally inactive 

and display only occasional episodes of spontaneous “burst” swimming and, only by 4 dpf, 

a more directed “beat-and-glide” swimming pattern appears. At this stage, only embryonic 

muscle fiber types are developed and a primary myotome is formed by fast muscles fibers 

(EW) and by only a superficial monolayer of slow muscle fibers (ER). As the zebrafish 

matures to the juvenile and the adult stages, the swimming activity increases and now the 

locomotor pattern changes to “slow-continuous” swimming. This change in the motor 

pattern is accompanied by the development of intermediate and adult slow red fibers 

(Ampatzis et al., 2013). The myotome morphology changes dramatically from the simple 

chevron (V) shape of the embryo to the complicated (W) shape of the adult myotome that 

is optimized for power production during undulatory swimming (Drapeau et al., 2002). The 

trunk musculature in the adult zebrafish thus contains three types of muscle fibers with a 

specific arrangement into three discrete compartments: superficial slow fibers, an adjacent 

area of intermediate fibers, and more medially, the larger part of the myotomes with fast 

fibers (Figure 5). The developmental changes in the muscle organization are associated 
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with a refinement of motor neurons organization. In larval zebrafish, only fast muscles are 

developed and they are innervated by early-developed fast primary motor neurons and 

fast secondary motor neurons to produce motion geared for fast swimming and escape. At 

these early stages of development, the motor column extends only dorsoventrally in the 

spinal cord, is only 1–2 cell bodies thick and there are no motor neurons segregation into 

distinct pools as they innervate only fast muscles. The picture changes in the adult 

zebrafish, where the intermediate and slow muscles are fully developed and the motor 

column extends laterally and more ventrally in the spinal cord. The organization of motor 

neurons switches from the larval continuous pattern into segregated pools of motor 

neurons displaying distinct anatomical and physiological properties with a clear 

somatotopic organization pattern related to the type of muscle they innervate. Specifically, 

fast secondary motor neurons are shared between the escape and swimming circuits, slow 

and intermediate secondary motor neurons are only used for swimming, and fast primary 

motor neurons are used only for escape (Figure 5) (Ampatzis et al., 2013). The study of 

the neurotransmitters involved in the development of swimming behavior shows that a 

rhythmic glutamatergic synaptic drive to motor neurons during locomotion in combination 

with reciprocal glycinergic inhibition plays a major role in the generation of rhythmic 

locomotor alternations; however, swimming becomes sustained in larvae once the 

neuromodulatory serotonergic system develops (Brustein et al., 2003 and references 

therein).  

 

 Figure 5 

 

 

 

 

 

 

 
Figure 5:  Schematic representation of adult zebrafish motor neurons pools in the spinal cord and 
muscle types organization in lateral body wall. Motor neurons innervating slow (red), intermediate 
(green), and fast (blue) muscles are organized somatotopically in different parts of the spinal motor 
column. Swimming activity is mediated by the recruitment of the late-developed slow (red) and 
intermediate (green) secondary motor neurons, the early-developed primary (cyan) motor neurons 
do not participate in swimming and are only active during escape while early-developed (fast) 
secondary motor neurons (purple) contribute to both motor responses (modified from Ampatzis et 
al., 2013). 
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4.3  Zebrafish Sod1 G93R: a genetic model of ALS 
 

  The first stable transgenic zebrafish lines expressing either a wild-type (wtSod1) 

or a mutant form of Sod1 (mSod1) were generated in the laboratory of Dr. Christine E. 

Beattie. Because zebrafish live at a lower temperature (28°C) than mammals (37°C), the 

zebrafish sod1 gene and regulatory regions were used to generate the transgenic animals, 

in order to avoid any adverse effect of temperature on the enzyme functionality. Both 

transgenic zebrafish lines were generated injecting into one-cell fertilized embryos a DNA 

construct composed by a 21-kb zebrafish genomic region containing the endogenous sod1 

gene (5.06 kb) and sod1 promoter and flanking sequences (11.7 kb upstream and 4.5 kb 

downstream) followed by the zebrafish heat shock protein 70 (hsp70) promoter driving the 

expression of the fluorescent protein DsRed, for the identification of the transgenic fish. 

They characterized a wtSod1 line containing ~42 copies of the wild-type form of the sod1 

gene and a mSod1 line that integrated a higher number (~165 copies) of mutated sod1 

gene (348 G>C; NCBI Reference Sequence NP_571369.1), overexpressing a mutated 

form of the Sod1 protein where the glycine 93 is changed to arginine (G93R) (Ramesh et 

al., 2010).  

 This mutation affects an evolutionarily conserved amino acid that is mutated in FALS 

and that is associated to a disease with a precocious onset in humans (Elshafey et al., 

1994; Orrell et al., 1999). The substitution of the glycine in position 93 with an arginine in 

the human SOD1 aminoacidic sequence generates a wild-type like protein. Since this 

substitution occurs distally to the dimer interface, it is believed that this mutation critically 

impairs the capability of the protein to maintain the native structure (Durazo et al., 2009). 

 Both transgenic zebrafish lines are characterized by an ubiquitous overexpression of 

Sod1, consistent with the expression profile of the endogenous sod1 gene and, in 

particular, by a threefold increase in the steady-state Sod1 protein levels in the brain and a 

fourfold increase in the spinal cord, at one year of age, compared with non-transgenic 

siblings. At 18 months of age, Sod1 G93R zebrafish exhibit a short survival in comparison 

with wtSod1 and non-transgenic zebrafish. At the end-stage of the pathology, adult 

zebrafish overexpressing Sod1 G93R present spinal cord motor neurons loss and show 

shrunken spinal motor neurons containing vacuolated mitochondria with disorganized 

cristae and myofibrillar degeneration and extensive collagen deposition in fast trunk 

muscle at the ultrastructural analyses. At 12 months of age, Sod1 G93R expressing 

zebrafish display endurance impairment in swimming against an increasing current over 
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time in the tunnel-swimming test, and neuromuscular junctions defects, already present 11 

days post fertilization (Ramesh et al., 2010).  

 This zebrafish model harbors a fluorescent heat shock stress response (HSR) 

reporter gene: the fluorescent protein DsRed under the control of hsp70 promoter. The 

HSR is an endogenous cellular pathway that attempts to refold the damaged proteins in 

stressed cells through the activation of genes capable to assist protein folding. One of the 

gene expressed in this response is that encoding for Hsp70. Since protein misfolding is 

one of the contributing mechanisms to neuronal toxicity in ALS, Sod1 G93R protein 

misfolding in vulnerable cell populations would cause cellular stress and activate HSR 

allowing the identification of potentially dysfunctional neurons thanks to DsRed expression. 

The HSR, in Sod1 G93R zebrafish, was first observed 24 hpf in inhibitory glycinergic 

interneurons and in vivo patch clamp recordings revealed that HSR was followed by a 

reduction in glycine release 96 hpf. The loss of inhibitory inputs contributes to the onset of 

motor neurons stress, which is observed in Sod1 G93R zebrafish at 6 months of age and 

interestingly, motor neurons showing the HSR are those mainly associated with a 

significant reduction in neuromuscular junctions volume. Riluzole treatment of 24 hpf 

mutant transgenic embryos for 4 days caused a dose-dependent reduction in DsRed 

fluorescence in embryos (McGown et al., 2012).  

 These evidence show that the Sod1 G93R zebrafish represent a powerful tool to 

study ALS since it develops hallmark features of the disease commonly associated with 

both murine models and human disease. Zebrafish experimental accessibility, small size, 

and the possibility to implement drug or genetic screening platforms, based on zebrafish 

embryos and larvae, make this animal a good complement to other vertebrate models of 

the disease and therefore we need to deepen our knowledge on Sod1 G93R zebrafish 

ALS pathophysiology.  
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AIMS OF THE WORK 
 

  Sod1 G93R zebrafish is a very promising animal model for the study of 

pathogenetic mechanisms and therapies related to ALS, even if the characterization of this 

model is still in its early stages. In previous research zebrafish Sod1 G93R has been used 

to study such disease aspects as motor neurons degeneration and locomotor 

impairments, although Sod1 G93R zebrafish awaits further exploration for the realization 

of its full potential as an animal model in the development of drugs and genetic 

screenings. 

  The first aim of this work is to precisely characterize the disease phenotype in adult 

zebrafish overexpressing both mutant Sod1 (mSod1) and wild-type Sod1 (wtSod1) in 

order to identify alterations associated with the overexpression of Sod1 in both mutant and 

wild-type as compared to control zebrafish.  

  We have studied all the main pathological events occurring in ALS, that have 

already been well identified and documented in humans and other models of the disease, 

in the adult zebrafish model: locomotor impairments, motor neurons degeneration and 

spinal cord atrophy, neuromuscular junctions loss, muscle fibers atrophy, ultrastructural 

alterations at the nerves terminals and muscles. Moreover, we have assessed the 

involvement of astrocytes, microglia and peripheral inflammatory cells. We have 

characterized these events along the entire body of the animal in order to evaluate the 

alterations associated with the disease and how these alterations affect the entire trunk of 

the animal and/or specific areas. 

  Following our completion of the adult pictures of the disease, we have searched for 

precocious ALS hallmark features in zebrafish embryos and larvae. Exploiting the optical 

transparency of zebrafish embryos at early larval stages has allowed us to perform whole-

mount immunofluorescence staining from which we were able to study the overexpression 

of the wild-type or mutant Sod1 effects on spinal motor neurons development and 

neuromuscular junctions maturation, already at precocious developmental stages. 

Furthermore, we have performed behavioral tests in order to examine changes in motor 

activity on zebrafish embryos and larvae: in particular we have evaluated whether the 

expression of mutant Sod1 impairs spontaneous coiling 20 hpf, touched evoked tail coiling 

response 48 hpf and the burst swimming response 96 hpf.  
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  We have investigated spinal neurons electrical properties of mSod1 expressing 

zebrafish embryos, thanks to a genetically encoded FRET-based voltage biosensor.  

  By administering riluzole directly into the embryo water we tested for the possibility 

of pharmacological modulation of precocious alterations associated to the mutant Sod1 

expression. 

  This series of experiments have allowed us to understand how zebrafish embryos 

and larvae expressing mutant Sod1 G93R are powerful models for the development of 

high-throughput screenings to study genetic interactions and identify small molecules with 

toxic or therapeutic effects.  

  We conclude that the zebrafish Sod1 G93R is a valuable complement to other 

animal models and is potentially a powerful model on its own in the study of ALS due 

mainly to its advantages as an imaging tool, particularly in early developmental stages, 

and its rapid maturation rate, not to mention other economic advantages related to cost, 

maintenance and study duration. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


