
C
O

M
PU

TER
SC

IEN
C

E
D

EPA
R

TM
EN

T
•

A
D

A
PT-LA

B

Programming Languages
à la Carte

Edoardo Vacchi
Id. Number: R09518

Scuola di Dottorato in Informatica
PhD in Computer Science
Advisor: Prof. Walter Cazzola

UNIVERSITÀ DEGLI STUDI DI MILANO
Computer Science Department
ADAPT-Lab

Ciclo XXVII
Academic Year 2013–2014

Contents

1. Introduction 1

2. Background 7

3. Feature-Oriented Language Composition 11
3.1. Conceptual Model . 12

3.1.1. Language Components . 13

3.1.2. Dependencies Between Components 15

3.1.3. Globally-Scoped Components . 17

3.1.4. Composition Model . 18

4. Neverlang 21
4.1. The Neverlang Framework . 22

4.1.1. Defining Syntax and Semantics: Modules 23

4.1.2. Mapping Semantics onto Syntax: Slices 30

4.1.3. Combining Slices Together: Generating a Language 35

4.2. Runtime Deployment of Semantic Actions and Tree Rewriting DSL . . . 38

4.3. Tools and Utilities . 39

4.4. Implementation . 43

4.4.1. Architecture . 44

4.4.2. Runtime and Execution . 49

4.4.3. DEXTER . 53

5. Case Study: Evolution of a DSL through Composition 55
5.1. A Simple State Machine DSL . 56

5.2. A Simple Imperative Language . 59

5.3. Guards and Actions: Composing the DSLs 61

6. Evaluation 67
6.1. Feature-Oriented Language Implementation Across Tools 67

6.1.1. LISA . 68

6.1.2. Silver . 70

6.1.3. Spoofax . 72

6.1.4. Xtext . 74

6.1.5. Summary . 76

i

Contents

6.2. Extending a Real-World Language: neverlang.js 80

6.2.1. Runtime Evolution for Dynamic Optimization 83

6.3. The DESK Language . 84

6.4. Tracking Dependencies Through Variability Management 89

7. Related Work 93
7.1. Extensible Parser Generators . 96

7.2. Variability Modeling of Language Families 97

8. Conclusions 99

A. Formal Composition Model 101
A.1. Decomposition of Syntax Definitions . 101

A.2. Decomposition of Language Semantics . 103

B. On The Relation Between LR Goto-Graphs 107
B.1. Goto-Graphs and Growing Grammars . 109

B.1.1. Construction of ϕ and ∆V . 112

B.1.2. Construction of ψ and ∆E . 115

B.1.3. Construction of ΓG� from ΓG . 118

B.2. Goto-Graphs and Shrinking Grammars . 121

C. Variability Model Inference 123
C.1. Tag Generation . 123

C.2. Hierarchical Clustering . 124

C.3. Refinement Procedure . 125

C.4. Heuristics for Mining Constraints . 127

ii

1
Introduction

In Nineteen Eighty-Four, the IngSoc party imposes on the population an artificial language
called Newspeak «not only to provide a medium of expression for the world-view and
mental habits proper to the devotees of IngSoc, but to make all other modes of thought
impossible»1.

Fiction aside, a highly-debated, fascinating hypothesis in linguistics is that the
language we speak shapes the way we think. Since the 1930s, the notion that different
languages may influence the cognition skills of the speakers has become associated to
Edward Sapir and Benjamin Whorf, American linguists who studied how languages
vary and conjectured the ways different tongues would affect their speakers. These
ideas were initially met with enthusiasm and excitement, yet they were finally stroked
by a substantial lack of evidence. But recently, a solid body of new empirical evidence
has emerged [10], showing that language has influence even in the most fundamental
dimensions of human experience, such as space, time, causality and relationships to
others, affecting even memory and learning abilities.

Programming languages are quite different from natural languages. Natural languages
can be ambiguous, informal and vague; they leave room for creativity and imagination.
On the other hand, programming languages are a form of communication between
humans and machines: they are necessarily unambiguous, formal and precise. Because of
this inherent rigidity, not only do these artificial languages enforce strict rules on the
way a program should be written, but also impose a mental model on the programmers.
And, as programmers, we often feel like choosing a programming language over
another frees our mind from cognitive burden. Edsger W. Dijkstra despised FORTRAN
«for as a vehicle of thought it is no longer adequate: it wastes our brainpower, is too
risky and therefore too expensive to use» [24]; Paul Graham, Eric S. Raymond and

1Orwell G., from the appendix “The Principles of Newspeak”

1

1. Introduction

val fixedIncomeTrade =
200 discount_bonds IBM for_client NOMURA on NYSE at 72.ccy(USD)

val equityTrade =
200 equities GOOGLE for_client NOMURA on TKY at 10000.ccy(JPY)

Listing 1.1: A trading DSL in Scala (from [38]).

many others have defined learning Lisp «an enlightment experience» [79, 41]. But
even if languages influence our thought, the influence goes the other way, too. In fact,
we are constantly looking for ways to extend and enrich our programming languages
with new constructs and powerful abstractions, trying to close the gap between the
way we are accustomed to think as human beings and the way machines have to be
instructed. Modern general purpose languages are striving to provide more abstraction
to programmers; mainstream design is progressively converging towards a hybrid
between object-orientation and functional programming. Languages from both the
communities cross-pollinate each other with features. Languages that were born as
purely object-orientated, nowadays tend to include functional constructs.

However, even though the tendency to contamination is strong, programming lan-
guage implementations hardly share any code. Even close relatives, with similar syntax
and semantics are usually developed from scratch, using techniques that we would
barely call modern; after all, modular programming dates back to the 1970s [75]. Yet,
programming language development is often still a top-down, monolithic activity, where
extensibility of the compiler, although desirable, is only an afterthought. Nevertheless,
the rising trend of developing programming languages to target a particular application
domain, to solve a particular problem of that domain, has been cause for a shift in the
way computer languages are designed and implemented. The model of development
where the software system is built from the ground up using a little language [7] has
been dubbed language-oriented programming [107]. In language-oriented programming,
domain-specific languages (DSLs) are developed to write programs of the application
domain in a concise, problem-oriented way. Contrasting this trend to the traditional
language development process, in this model language implementation is quite a
bottom-up activity, where the specification rises from the problem that the developers
need to solve. As a matter of fact, domain-specific languages are a natural part of our
everyday workflow, because they are designed to simplify interaction with specific
software systems; at the same time, a well-crafted DSL brings interaction with software
even within the reach of domain experts, who may not be necessarily professional pro-
grammers. Mathematicians may write MATLAB programs; statisticians may use the
SAS programming language; a hardware engineer could write in Verilog.

Different DSLs targeting different domains may be used to implement different
concerns of the same software system. Therefore, language composition, extension and
reuse are highly-researched topics. For instance, in electronic automation and communi-
cation protocols, the transitions between states are usually represented through state
machine languages; it is not uncommon to combine these languages with a restricted

2

List<Person> persons = query.from(person)
.where(
person.firstName.eq("John"),
person.lastName.eq("Doe"))

.list(person);

Listing 1.2: A query using Spring Data’s Query DSL [78] in Java.

imperative programming language to model actions that are performed when a transition
fires. General purpose programming languages often embed other domain-specific
languages to perform a number of tasks, such as querying databases (using SQL),
sending marshaled data over the wire (using JSON) or pattern matching over a string
(using regular expressions).

Language composition and extension can be achieved through embedding of a guest
language in a host programming language or by implementing the language to be
stand-alone through specific tooling. In the first case, the simplest form of embedding
is through quoting: the foreign programming language is typically represented as a
string; this has several downsides, the most obvious of which is the lack of a support for
static verification from the host language tooling. A more advanced and modern form
of embedding is the fluent interface [35]. A fluent interface is a particular API design
style that makes syntactically valid lines of code of the host programming language
read like a foreign language. Fluent APIs are often used to embed query languages
within the body of a general purpose programming language (cf., Spring Data’s Query
DSL [78], Listing 1.2) or to describe graphical user interfaces (cf. JavaFX’s APIs [23]).
DSL embedding through fluent interfaces has become part of the idiom in many modern
programming languages such as Scala, Ruby and Groovy (e.g., Listing 1.1). Because
of this, embedding is generally the most convenient and widely adopted technique
to implement a DSL. Recent research has also shown the benefits of employing the
same technique to produce high-performance, code-generating DSLs [82]. However,
this technique has its limits. First of all, the syntax of the embedded DSL is inevitably
dictated by the host programming language. Second, since it may not be possible to
sandbox the guest language environment, final users may inadvertently end up outside
the boundaries of the DSL and in direct contact with the host language.

External languages, on the other hand, are usually implemented using dedicated toolsets,
but they give a much finer-grained level of control to the language developer. There is
no more hard limit on the way the syntax is defined, and the language implementation
works stand-alone, without a host. The traditional route to this kind of language
development is to first implement the front-end either by hand or through parser
generators such as yacc, ANTLR [76] or, more recently, parser combinators [93, 66].
Then, the semantics of the language can be implemented using a variety of techniques,
ranging from syntax-directed translation [2] and attribute grammars [58, 74] to term-
rewriting [104], to model-based engineering [59, 47]. The downside with traditional
toolsets is that they do not focus on code reuse.

Modular language development is the research branch that investigates tools and tech-

3

1. Introduction

niques to develop languages in a componentized way. Frameworks for modular language
development are toolsets that enforce a modular implementation strategy on the lan-
guage developers, enabling a high degree of code reuse even in the implementation
of stand-alone programming languages. Many frameworks for modular language
development have been proposed during the years (e.g., [59, 63, 101, 56, 105, 98]), with
different models for code reuse, usually inspired by the primitives provided by general-
purpose programming languages, like inheritance [63] and superimposition [60]. An open
research problem [43, 110, 60, 71, 98] is to apply feature-oriented programming to language
development. Feature-oriented programming is a vision of programming in which
individual features can be defined separately and then composed to build a variety of
software products. In language development, feature-orientation means developing the
features of a programming language in isolation, and then being able to transform an
arbitrary set of said features into a consistent language implementation. Although
most modular language development frameworks deal with the problem of language
extensibility and componentization, the idea of realizing a programming language
starting from its features is usually not a primary objective.

The Neverlang framework was originally born [16, 15, 14] to explore feature-oriented
modularization in language design and implementation. In the last three years the
Neverlang framework has been object of a large design overhaul [17, 18, 99, 19, 98]
that shifted the implementation from a largely static, Java-oriented, code-generating
toolset, to a highly-dynamic componentized language-agnostic framework for language
processing. The object of our research has been geared towards realizing techniques and
tools to implement componentized language implementations with the final “grand vision”
of a world where general-purpose and domain-specific programming languages can be
realized by composing together linguistic features the same way we combine together
the pieces of a puzzle. And, just like each piece of a puzzle lives and exists on its
own, each linguistic feature should be something that we can describe and implement
in isolation and separately. The ultimate goal is to maximize reuse of syntactic and
semantic definitions across different language implementations. To the point where
end users may be even able to generate a language implementation by picking features
from a curated list. Programming languages à la carte.

Contribution Most of our experience in feature-oriented definition of programming
languages have been carried out using Neverlang. Our contribution with this work is

1. an abstract model for feature-oriented language implementation,
2. a description of our implementation of this model in Neverlang
3. showing that it can be supported by most of the existing tools for modular

language implementation,
4. showing that the native implementation of this model strengthens the benefits of

a modular language implementation.

Organization Chapter 2 gives a brief overview of the background information. Chap-
ter 3 presents the abstract model. Chapter 4 introduces the Neverlang implementation

4

of this model. Chapter 5 presents a full example (a state machine language). Chapter 6

is devoted to evaluate the model in a variety of contexts: the state machine language is
re-implemented in other frameworks to show how the model can be reproduced; the
benefits of using this model are then showed by describing the experience of extending
Neverlang’s JavaScript implementation neverlang.js; a DESK language implementation
is briefly given to exemplify the expressive power of the Neverlang framework; finally,
this section describes the experience of modeling variability in programming language
family, by automatically mining data from a collection of pre-implemented features.
Finally, Chapter 7 briefly discusses related work and Chapter 8 draws the conclusions
and describes the future work.

Appendix A is a more formal description of the Neverlang model, that puts in relation
the Neverlang implementation with the conceptual model of Chapter 3. Appendix B
reproduces part of the formal proofs [19] related to Neverlang’s dynamically extensible
parser generator, DEXTER. Appendix C is an excerpt from [98] where we give more
detail on the variability modeling experience described in Chapter 6.

5

2
Background

A context-free grammar is a tuple G � `Σ, N, P, Se, where Σ is an alphabet of terminal
symbols, N is an alphabet of nonterminal symbols, P is a set of production rules and S > N is
the start symbol. A production rule (or simply a production, or a rule) is written as A � ω
where A > N, and ω > �Σ 8 N��, with �Σ 8 N�� being the transitive closure of set Σ 8 N
with respect to symbol juxtaposition. The generated language L�G� of a grammar is the
set of all the words that can be derived from a grammar G. A language for a grammar G
is said to be empty if L�G� � g and, conversely, non-empty when it contains at least one
sentence. In other word, there exists at least one sentence, (or word, or program) that can
be expressed using the language represented by G. In the following, we will assume
grammars that generate non-empty languages, and, for simplicity, we will make the
assumption that our grammars do not contain the empty word ε.

A syntax-directed definition [2] (SDD) is a technique to implement the semantics
of context-free languages, in terms of their grammar. Attribute grammars [58] are a
formalism introduced by Knuth to represent SDDs by associating information with
a language construct by attaching attributes to the grammar symbols representing
the construct. Attribute grammars specify the values of the attributes by associating
semantic rules with the grammar productions. Syntax-directed translation schemes (SDTs)
are sometimes described as complementary notation to attribute grammars. A syntax-
directed translation scheme is a context-free grammar with program fragments embedded
within production bodies, called semantic actions, with the purpose of translating a input
program written in a given language into a target language; that is, SDTs are usually
employed to implement compilers. Any SDT can be implemented by first building the
parse tree that represents the input program, and then performing the actions in a
left-to-right depth-first order, that is, during a preorder traversal [2]. Typically, SDTs are
implemented during parsing, without building a parse tree. In this case, two important
classes of grammars are

7

2. Background

– L-Attributed Grammars, a class of attribute grammars that can be incorporated in
top-down parsing.

– S-Attributed Grammars, a class of attribute grammars that can be incorporated in
both top-down parsing and bottom-up parsing. Any S-attributed grammar is also an
L-attributed grammar.

However, L-attributed and S-attributed grammars are rather limited classes, and many
interesting although simple languages cannot be defined using this translation scheme.
The main benefit of implementing L-attributed and S-attributed grammars is that the
evaluation order of the semantic rules is known a priori, because they impose constraints
on the way semantic rules are defined. In fact, in attribute grammars we distinguish
between the set of synthesized attributes, expressed only in terms of the attributes of
the children of a nonterminal symbol, and inherited attributes, expressed in terms of
the attributes of their ancestors or siblings. The S in S-Attributed grammars stands for
synthesized: this class allows only synthesized attributes to be defined. It is the class
that traditional parser generators such as yacc support. In L-attributed grammars, the
inherited attributes can be evaluated in one single left-to-right pass.

By relaxing the constraints on attribute evaluation, the attribute grammar formalism
becomes more general but also it leaves space for computations that may not terminate.
In order to give guarantees on the evaluation of the attributes, attribute grammar
implementations compute different kinds ofdependency graphs [58, 74] between attributes
and impose different sets of constraints; at the very least, each attribute should be
well-defined: that is, for each node, an attribute should either be a constant expression or
it should be defined in terms of other well-defined attributes on its parent or its siblings.
Further constraints may be imposed to give more guarantees. For instance, one notable
class is that of Absolutely Noncircular Grammars, which includes both L-Attributed and
S-Attributed grammars and it has been shown to be powerful enough to represent
many nontrivial programming languages [74]. It is therefore advisable that an attribute
grammar implementation supports at least absolutely noncircular grammars.

A strict implementation of an attribute grammar is usually pure: that is, attributes
should be defined in terms of other attributes, and the evaluation of such attributes
should not produce side-effects. This gives a greater deal of flexibility to attribute
grammar implementations, that may employ a number of techniques to optimize
attribute evaluation such as memoization (cf. [83]). However, many implementations
allow side-effects with varying degrees of control. When arbitrary, possibly side-effectful
computations are allowed to take place within semantic definitions, then we speak more
broadly of semantic actions. In such cases, automatic caching and memoization of
attributes may not be supported, but implementations may overcome this limitation by
giving users more control on which attributes are evaluated at a time (as we will see in
Chapter 4 this is the case for Neverlang).

Syntax-directed translation through attribute definition is not the only technique
to implement languages, though; for instance, languages can be also described in
terms of program transformations; the Stratego [12] language implements this technique,
rewriting terms that initially represent the parse tree up until the final representation of

8

a compiled program is reached.
In order to stress the generality of the approach, Chapter 3 describes a conceptual

model of feature-oriented language definition without making explicit references to
a particular model of language processing. In this model, evaluation phases of the
language are modularized in terms of language constructs, in order to represent a
language implementation in terms of its constructs. In Chapter 4 we will then delve
into the details of our own implementation of this model; in our case the processing
model can be modeled after SDDs, as a modular rendition of the visitor pattern.

9

3
Feature-Oriented Language Composition

Frameworks for modular language implementation (e.g., [18, 100, 63, 101, 12]) make
componentized development front and center, by providing facilities to simplify the
implementation of a language in modules that can be shared and reused. But the
modularization of a language is not merely a matter of convenience: modular software
implementation has been known to be good from the dawn of computer science
(e.g., [75]) for a number of reasons; among the others, component isolation, which
also enables work to be carried out in parallel by different teams of programmers;
modular reasoning, which make it possible to concentrate on the implementation of
the component of a system to be developed independently from the others. To a
certain extent this is possible for language implementation as well, and it is very
apparent in the development of domain-specific languages, where it is easier to map
features of the language onto concepts of the problem domain. Our final objective aims
at representing a language as a collection of independent features that can be easily
used in conjunction, but that should be possible to implement without knowledge of
one another (cf. composable extensions in Van Wyk et al. [101]). As seen in Chapter 2,
The earliest literature already established that languages can be described in terms of
their syntax. It has also been shown (e.g., [1, 32]) that such definitions can be logically
partitioned into distinct processing or evaluation phases. During each phase the input
program is subsequently analyzed and transformed up to the final phase, when it is
finally executed, in the case of an interpreter, or code is generated, in the case of a
compiler. For instance, at the time of writing, Scala 2.11’s compiler scalac performs
25 compilation phases on each input program. This section gives an overview of the
concepts behind modular language development, in order to stress the generality of
the approach.

11

3. Feature-Oriented Language Composition

syntax code-gentype-checking . . .

syntax code-gentype-checking . . .

syntax code-gentype-checking . . .
. . .

Figure 3.1.: A language implementation can be broken down over two dimensions: the dimension of
syntactic constructs, and the dimension of evaluation phases. Dependencies are represented
as arrows from required to provided features. Dependencies may go beyond their phase and
depend on other phases.

3.1. Conceptual Model

A syntax definition of a language may be broken down with respect to language constructs.
For instance, a looping construct may be defined and reasoned upon independently from
a conditional branch, even though they still depend on a notion of truth value. All of
these parts of a language together form a complete language implementation; thus,
the modularization of both syntax and semantics is pivotal in the componentization
of a language implementation. Therefore, there are at least two dimensions over which
a language implementation can be broken down: the dimension of the processing
phases, which, more broadly, includes the syntax analysis of the input program, and the
dimension of the syntactic constructs (Fig. 3.1), which logically partitions a language
implementation with respect to the constructs that it contains. We call feature of a
language an abstract concept or construct, with its semantics; in some sense, then, the
feature of a language the points at the intersections between the two dimensions. The
implementation of a feature is what we call a language component [99, 98].

12

3.1. Conceptual Model

3.1.1. Language Components

Modular language implementation approaches enforce separation between processing phases
and concepts. The dimension of processing phases represents the separation between
linguistic concerns [103] that may crosscut or tangle, such as type-checking, code-
generation, and so on. This kind of modularization suggests that componentization
may be achieved by grouping together, as a self-contained bundle:

1. the syntax definition of a construct, such as the keywords that introduce it, and
2. the sections of the evaluation phases that relate to the syntax definition, implementing

only the semantics that is relevant to that construct, in terms of properties of the
feature. For instance, the concept of truth value may be seen as a property of the
looping construct feature.

By creating a bundle of these smaller bricks, the syntax definition and the sequence of
the relevant parts of the processing phases, we obtain a language component (Fig. 3.1): a
higher-level unit of composition that represents the implementation of a concrete feature
of our language. These components can be shared across language implementations,
and substituted to define variants of the same language: for instance, a different
implementation of the semantics may be given for the same syntactic construct. For
example, let us now consider a simple imperative language with a Java-like while loop
construct1:

syntax:
while (` loop-condition e) {

` loop-body e
}

The placeholders in angle brackets represent parts of the syntax that are not defined
locally, because they represent concepts that are logically distinct, albeit related.

Definition 1. A placeholder is a part of a syntax definition that is not defined in place.

Now, a language usually has to be processed through several phases. In this case,
suppose these phases are type checking to verify the correctness of the construct and
code generation to output compiled code; since we made the initial assumption that it
is possible to modularize phases by breaking them down with respect to the syntax
definitions that pertain to a given language construct, we can componentize these
phases, with respect to the given looping constructs:

1The canonical syntax definition for a Java-like while loop would not include braces, and it would be
in terms of a ` statement e which might possibly be a block. For the sake of conciseness and clarity we
chose to imagine that a while loop is always followed by a braced block

13

3. Feature-Oriented Language Composition

type-checking:
the type-of ` loop-condition e should evaluate to a boolean value
otherwise raise error: " ` loop-condition e : bad type "

...
code-gen:

cond := compiled-code-for ` loop-condition e
body := compiled-code-for ` loop-body e)
compiled-code-for this := generate-object-code(cond, body)

In the example, the phase contains some bold-face words; these represent proper-
ties of the language that are being evaluated during that phase. For instance, the
type-checking phase evaluates a property (in bold face in the code) named type-of.
This property is bound to placeholder named ` loop-condition e. The code-gen phase
compiles the input language to object code; thus it expects to evaluate a property named
compiled-code-for. The semantics of a phase can be therefore given in terms of such
properties.

Definition 2. A property is a facet of a feature in an evaluation phase.

Definition 3. An evaluation phase is a definition of a linguistic concern in terms of the
properties of a feature.

A bundle of the implementation of all such phases together with the syntax definition
of the while loop, yields a language component for this construct. A descriptor for one
such component may be:

define component while-loop:
use syntax while
use phase type-checking
use phase code-gen

Such a bundle can be shared across different language implementation with similar
requirements in terms of features and processing phases, thereby maximizing reuse of
the feature, and minimizing code duplication. For instance, a different bundle, reusing
the same syntax, but variated semantics, may be reused in an alternate version of the
same language to produce a change in the way the language construct are processed
and evaluated. Different bundles may still share the implementation of some phases.
New phases can be deployed by just extending or repackaging the bundle. For instance,
the language component for the interpreter of the while loop may reuse the syntax and
the type-checking phases, but it would trade the code-gen phase for an evaluation

phase, where the program would be actually executed. Moreover, the same semantics
may apply even if the introducing keywords were different. For instance, in a Pascal-like
language they would be «while ` loop-condition e do begin ` loop-body e end».

Definition 4. A language component is a self-contained bundle that implements a feature
of a language by putting in relation a syntax definition with the related parts of a series
of evaluation phases. A language component may be shared across different language

14

3.1. Conceptual Model

Linguistic Feature A concept or an abstract construct of the language
Syntax Definition Definition of the syntax for a language construct. A

syntax definition may be defined in terms of other syntax
definitions using placeholders

Syntactic Placeholder A part of a syntax definition that is not defined in place.
It constitutes a reference to a class of syntax definitions.

Evaluation Phase Definition of the semantics of the language with respect to
a particular concern (e.g., type-checking, code-generation,
etc.) in terms of properties of a feature

Semantic Property A facet of an evaluation phase that is bound to the imple-
mentation of a feature

Language Component A self-contained component that implements a feature
of the language by putting in relation a syntax definition
with the relevant parts of the evaluation phases. In this
sense, we can say that a language component provides the
implementation of a feature. The language component
may also require other language features to work.

Dependency A feature that is required by a component, and that it is not
defined within that same component. A dependency in a
language is unsatisfied if there is a component that requires
a feature that no components provide. A dependency may
be syntactic if it is expressed within a syntax definition by
placeholders, or semantic if it is expressed in an evaluation
phase by properties

Globally-Scoped Component A component that implements a concern that should be
available to any language component

Language Implementation A collection of language components where every depen-
dency is satisfied

Table 3.1.: Summary of the informal definitions in this section.

implementations. Syntax definitions and evaluation phases may be shared across
different language components.

Now that we have defined language components, we can say that a language imple-
mentation is a set of said components, and the evaluation of a program written in this
language corresponds to the ordered execution of the evaluation phases. This realizes a
model of language implementation à la carte.

One important detail must be still discussed to complete the description of the model,
though; in order for the set of language components to qualify as a true language
implementation, it is necessary that all the dependencies between these components are
satisfied.

3.1.2. Dependencies Between Components

In the previous example, the while loop syntax definition includes placeholders, and
processing phases includes properties. Placeholders represent in some sense features that
the component requires, but it does not provide in itself. Similarly, properties represent

15

3. Feature-Oriented Language Composition

facets of the feature that the language processor should be able to evaluate. The while

component provides syntax and semantics for the looping construct, but it implicitly
relies on the definition of some parts of the syntax to be available (presumably in other
components). The semantic phases implicitly expected that some properties were defined
with respect to a given feature. For instance, the type-checking phase was trying to
query a type-of property that was expected to be defined on the feature represented
by the ` loop-condition e placeholder.

The fact that a component may not contain all of the logic that is needed to process
the language is the very essence of modularization: each component is defined in such
a way that some concern will be eventually implemented by some other component.
This implicitly introduces a notion of required and provided feature in a language
implementation.

Definition 5. A component requires a feature if it contains a placeholder in its syntax
definition, or it relies on the definition of a property that relates to a different feature. A
component provides the feature it implements.

For instance, in the previous example the while-loop component provided an im-
plementation for a looping construct (the while loop), and required the concepts of
loop condition and loop body (Fig. 3.2). The type-checking phase required that the loop
condition could be evaluated to a boolean type, and the code-gen phase required that
the condition and the body were compilable down to machine code, so that the result
of their compilation could be combined into the compilation of the loop construct
itself. In a certain sense, the set of provided and required properties and placeholders
define the interface (in a OOP-sense) of the language component. A complete language
implementation should satisfy each requirement with the implementation of a feature.

Definition 6. A language implementation is a collection of language components where all
the dependencies are satisfied.

Definition 7. The dependencies of a language component are satisfied in a language imple-
mentation, if, for all the required features of the component, there exist a component in
the language implementation that provides that feature.

It is worth noticing that more than one component may satisfy the same requirement: if
this does not introduce a contradiction, that is, two components provide a feature that
is logically contradicting the other, then the two components represent an alternative
choice in the language implementation. Therefore, imposing that a complete language
implementation requires all of its requirements to be satisfied, does not prevent further
language extensions. Again, for the case of the while loop, a language implementation
must include the language component that satisfies all the requirements that the
while loop has on the loop condition and loop body (e.g., the property type-of and
compiled-code-for that the component expects to be able to query). Of course, the
loop body may be implemented by several kinds of statements (e.g., function invocation,
variable assignment, variable increment, etc.): each statement is not logically in conflict
with the other, although they may appear in the same position in a program written

16

3.1. Conceptual Model

WhileLoop

Expressionloop-condition

Block
loop-body

Figure 3.2.: Dependencies between syntax definitions of the language components in the while loop
example.

using our language. On the other hand, different, alternative implementation for the
loop condition may or may not be acceptable, depending on the language designer’s
choice; for instance, the C programming language expects the loop condition to be a
numeric value, treating it as true if non-zero, and false otherwise. Another programming
language (e.g., Java) may have similar syntax but enforce the existence of a boolean type.

Dependencies may occur within the same evaluation phase, or across different evalu-
ation phases. In the first case, a language component depends on another because the
implementation of an evaluation phase is distributed across different language compo-
nents. In the second case, an evaluation phase depends on a value that is computed
within a different evaluation phase: this is reflected in a dependency between compo-
nents, because evaluation phases are distributed across them. Depending on the way
phases are evaluated, dependencies across phases may also impose an ordering relation
on the evaluation phases (cf. [1] on attribute grammars), because a property in a phase
may be only referred to within the same phase or a subsequent phase.

3.1.3. Globally-Scoped Components

In a language implementation components may also need to invoke support functions
(e.g., I/O, math or graphic libraries) and ancillary data-structures (e.g., symbol tables,
function tables, etc.). These implement features of the language that do not have a direct
representation in the syntax of the language; thus a modular language framework
should include a form of component that encapsulates and provides support code to
other language components. Similarly to the other language components, globally-scoped
components should be easy to swap with alternate implementations, provided that the
substitute component implements the same functions and structures (in OOP-terms, it
implements the same interface). For instance, a thread-based model of tasks execution
could be swapped with a distributed execution model without changing the syntax of
the language (cf. the Linda-Python language in [14]), by swapping the component that
implements the task execution model.

17

3. Feature-Oriented Language Composition

3.1.4. Composition Model

Each component provides and (optionally) requires the implementation of a feature.
Composition between components is therefore consequence of satisfying the constraints
that are implied by such dependencies. Let us now see which forms of language
composition apply to the model that we have described so far. In order to better discuss
languages and language implementation frameworks, Erdweg et al. [29] have isolated
and described five forms of language composition.

– Language Extension is the property of a framework to define reusable components
that may extend a base language, independently from the choice of this base
language.

– Language Restriction is the property of a framework to restrict a language imple-
mentation to a subset of its features.

– Language Unification is the property of a framework to merge together the imple-
mentation of two languages by the (optional) help of glue code only.

– Extension Composition describes the ability of a framework to compose together
extensions (which may only implement subsets of a language).

– Self-Extension is the property of a programming language that make it possible to
extend itself reflectively.

A language extension may be a new syntactic feature for a base programming language.
For instance, Java 8 introduced lambda expressions; these were mapped onto the more
general case of functional interfaces (single-member interfaces) [40, Sect. 9.8]. Language
extensions are often defined in terms of desugaring towards the base language. Language
restriction may be useful in education: Erdwed et al. suggest to forbidding monads and
type classes in a beginner’s course on Haskell. In language unification, as opposed to
restriction and extension, where a dominant language exists, the composed languages
are composed in an «unbiased manner» [29], and the two languages can interact: one
example of this kind of composition may be HTML and JavaScript. Finally, self-extensible
programming languages are those where a language may be embedded within a host
language, through support from the host language itself. Lisp may be regarded as one
such language.

Our model supports the following forms of composition:

3 Language Extension. In our model a language implementation corresponds to
a collection of language components such that all their requirements are satisfied.
An extension to one such language is a collection of language components that
provides additional implementation that other components require (e.g., in the
while example, additional implementations of the ` loop-body e place-holder).

3 Language Restriction. Erdweg et al. [29] present language restriction as a useful
functionality (e.g., in the education area) that can be easily simulated using
language extension alone, by deploying an extension to the validation phase of the
language that rejects any program using “restricted” constructs. Even though the
model that we present may very well implement language restriction in the same

18

3.1. Conceptual Model

way, by redefining phases of the existing components, our model supports “real”
language restriction by unplugging components from the language: in fact, being a
language a set of components, in our model a restriction is a subset of the original
collection where the restricted feature is not present.

3 Language Unification. In general, because a language is a set of components,
language unification would be the union of two sets of such components, plus, if
needed, glue code, that is, code that “bridges” components that otherwise would
not go well together. For instance, in our example, the while loop required a
` loop-condition e. Another language (e.g., an expression language) may provide
a component for a ` boolean-expression e. The name of the placeholders does not
match: glue code would be that code that adapts a ` boolean-expression e to satisfy
the requirements of a ` loop-condition e in the while loop. These requirements may
be purely syntactic, for instance the placeholders may have different names; but
these requirements may be also semantic, for instance the semantic properties
of ` boolean-expression e may be different from those required by the while loop
component. The language framework should provide ways to adapt language
components to suit these situations. The glue code might be implemented as
additional components, or as directives that developers would configure.

3 Extension Composition. In our model, the unit of reuse is the language component,
which may implement language extensions or parts of a base language, depending
on the point of view. It follows that extensions may compose. Erdweg et al.
themselves do notice that if a framework supports language unification, then it also
supports extension composition, which is the case.

7 Self-Extension. This property does not apply here but only because this is a
property of the programming language and not of the framework with which the
language is being implemented. As noticed by Mernik in [63], the model itself
does not prevent from implementing a self-extensible programming language.

19

4
Neverlang

In Chapter 3 we presented a general model to represent language features as language
components. The objective of such a model is to describe a language in terms of its
features, by modularizing the implementation over both the axis of evaluation phases and
the axis of language constructs. The result is a self-contained unit of composition, called
the language component, that can be reused, shared or substituted in different language
implementations. The final goal is to be able to implement a language by combining
such components, making it easy to extend the language implementation by adding new
features, restricting it for DSL purposes, vary it to accommodate different requirements
in the application domain, and, in general, evolving the language implementation over
time.

The problem of evolving a language implementation is known. In a typical inter-
preter or compiler implementation, each construct of the language is mapped onto
an abstract representation often called an abstract syntax tree (AST), over which different
language processors or evaluators dispatch the execution of procedures that implement
the semantics of that construct. During the visit of this tree, a language evaluator or
language processor maps each of its nodes onto the semantics of the constructs that
the node represents, depending on its type. In the case of an interpreter the input
program will then be executed, while, in the case of a compiler, the input program will
be translated into a target language. As we saw in the previous sections, the semantics
of a construct may be implemented as several separate phases; multiple phases enable to
better modularize the implementation of the semantics of each construct. Nevertheless,
for better modularity, even the definition of each construct would better be isolated
from the definition of other constructs.

However, the evolution of a language implementation involves both the dimension
of constructs (that may be represented by distinct data types) and the dimension of
evaluation phases (data type processor): neither functional nor object-oriented program-

21

4. Neverlang

ming languages can fully address the problem. In functional programming it is easy to
vary the set of phase evaluators that pattern match on the different cases of a data type
(e.g., all the types of loops, or all the types of statement). On the other hand, it is harder
to variate the number of cases in a data type definition. The situation is known as the
expression problem, after the term coined by Philip Wadler [106].

In object-oriented programming it is easy to extend a class, defining a new subtype, but,
on the other hand, it is harder to add new language processors on the data type, because
an idiomatic object-oriented program would implement such processors using the inter-
preter pattern, where the super-class define an abstract method eval(), implemented
by the concrete subclasses. This problem can be partially addressed by implementing
the so-called visitor pattern where an extra-level of indirection is introduced (through a
visitor object) to make the semantics of each construct independent from the class that
represents that construct; on the other hand, the visitor pattern make it, again, easier to
add new operations and harder to add new types: it is effectively the object-oriented
implementation of pattern matching [37].

It has been shown that a modular implementation of the visitor and interpreter
patterns [71, 70, 112] can be achieved using constructs such as traits [84] to decouple the
data type representation from the logic that implements the semantics of a construct,
while still retaining all the good properties of object oriented programming, that is,
the ability to extend the data type with new sub-types. Our rendition of the model in
Chapter 3 can be seen as an implementation of a modular visitor pattern, which is the
underlying execution model of the Neverlang framework.

4.1. The Neverlang Framework

In Chapter 3, high-level descriptions for syntax definitions and evaluation phases were
discussed. In Neverlang, the syntax of the language is given as a formal grammar,
and the semantics of the language is given as a syntax-directed definition (Chapter 2),
in terms of attributes attached to the nonterminals of this grammar. In Neverlang,
an evaluation phase is called a role; a role implements the semantics of the language
with respect to the syntax definition of the language constructs. Both roles and syntax
definitions are declared inside modules. Language components (Chapter 3) are defined
by a construct called slice, which relates syntax definitions to roles imported from
modules; globally-scoped components are called endemic slices; endemic slices may
provide libraries or globally-accessible data-structures such as symbol tables. A construct
called language declares the collection of slices that composes a language and the order
in which roles should be executed. The syntactic definitions generate a syntax tree,
which is then visited. Each visit constitutes an evaluation phase. Contrary to a traditional
visitor pattern implementation, though, Neverlang’s visitor is extensible both on the
dimension of processing phases and on the dimension of new language constructs. In
fact, slices compose semantics from different modules, making it possible to define
new roles (processing phases) for the same linguistic construct; but slices can be added,
removed or replaced to a language implementation at any time: therefore, the language

22

4.1. The Neverlang Framework

can evolve in any direction.
In the following paragraphs we will present modules, roles and slices using the Nev-

erlang language syntax: a domain-specific language that simplifies the implementation
of these constructs in a convenient, uniform way. The Neverlang language is a DSL that
compiles down Neverlang source files to Java and JVM-compatible source-code. The
nlgc compiler is self-hosted and will be described in Sect. 4.3. The generated source
code will be described in Sect 4.4, where the framework and its APIs are described in
detail. These APIs have been designed to be easy to use even using a general-purpose
JVM-supported programming language. The Neverlang language is just one of the
possible front-ends to this API. For completeness, Listing 4.1 is the full grammar of the
Neverlang language (EBNF operators were used for conciseness). For a more formal
description of the Neverlang framework, see Appendix A.

4.1.1. Defining Syntax and Semantics: Modules

A module is a basic container unit that groups different roles together, defined in terms
of a reference syntax declaration. A module may hold any number of roles, but each
module must at least include a reference syntax declaration.

Reference Syntax. The reference syntax section is the section of a module to define
the syntax of a construct (Chapter 3). The reference syntax section either defines or refers
to a set of production rules of a BNF grammar. When it defines production rules, it is a
bracket-delimited block that contains a list of production rules; when it refers to another
syntax, it is substituted by the clause from <modulename>, where modulename is the
name of the module that contains the list of productions that is being referred.

In a production, unquoted identifiers represent nonterminals and quoted identifiers
represent terminals. Special syntax for patterns is also provided, to represent classes of
terminals such as identifiers or numbers. In this case, instead of quotes the traditional
Perl-like syntax for regular expression literals is used. For instance the literal /[a-z]+/
matches one or more alphabetic characters. Neverlang provides full support to Java’s
Pattern library.

The set of production rules in the reference syntax section represents the concrete
syntax of a construct the semantic roles will be coded against. It is a reference syntax,
though, because the roles that are defined in terms of this syntax are not required to
be always bundled with this same syntax. The framework makes it possible to code
against one reference syntax and then ship with a different concrete syntax, provided that
a mapping between the two is possible. In Chapter 3 the while loop could have been
defined with a Java-like syntax, using braced blocks (Listing 4.2), or using a Pascal-like
syntax (Listing 4.3). Because one syntax definition is basically isomorphic to the other,
modulo the terminal symbols, they can be easily swapped: coding against Java-like
syntax really makes little difference compared to coding against Pascal-like syntax. In
this sense, Neverlang’s reference syntax can be seen as a sort of «abstract syntax with
defaults». For instance, the production in Listing 4.2 can be thought of as representing
a tree node WhileLoop(LoopCondition, LoopBody). We will see more on the mapping
between syntax and semantics later, when we will describe slices.

23

4. Neverlang

CodeUnit^ Unit* ;
Unit^ Module | Slice | EndemicSlice | Language | Bundle;

// module
Module^ LangAnnot? "module" QualifiedId "{" ReferenceSyntax Role+ "}";

// module: reference syntax
ReferenceSyntax^ "reference" "syntax" (SynFrom | SynDef);
SynFrom^ "from" QualifiedId;
SynDef ^ "{" Provides? Requires? Production+ "}";
Provides^ "provides" TaggedNonterminals;
Requires^ "requires" TaggedNonterminals:
TaggedNonterminals^ "{" (Nonterminal ":" Tag*)+ "}" ;
Production^ Nonterminal "^ " (Nonterminal|Terminal)+ ";" ;

// module: roles
Role^ "role" "(" Id ")" LangAnnot? "{" SemanticActionDef* "}";
SemanticActionDef^ (Integer | Label ":") <LangAnnot> CodeSection;
CodeSection^ ".{" CodeBlock "}." | "@{" CodeBlock "}." ;
LangAnnot^ "<" Id ">";

// slice
Slice^ "slice" QualifiedId "{" ConcreteSyntax ModuleImport+ "}";
ConcreteSyntax^ "concrete" "syntax" "from" QualifiedId;
ModuleImport^ "module" QualifiedId "with" "role" Id+ Remap?;
Mapping^ "mapping" "{" (MappingDef ("," MappingDef)*) "}"
MappingDef^ Integer "� " Integer;

//endemic slice
EndemicSlice^ "endemic" "slice" QualifiedId "{" Declare "}";
Declare^ "declare" "{" Declaration+ "}";
Declaration^ "static"? Id (":" LongId | ".{" CodeBlock "}.");

// language
Language^ "language" QualifiedId "{"

LangSlices LangEndemic LangRoles LangRenames "}" ;
LangSlices^ "slices" (QualifiedId | "bundle" "(" QualifiedId ")")+ ;
LangEndemic^ "endemic" "slices" QualifiedId+ ;
LangRoles^ "roles" "syntax" ("<" Id (LangVisitOp Id)*)? ;
LangVisitOp^ "<" | "<" "+" | ":" ;
LangRenames^ "rename" "{"
Nonterminal "_ " Nonterminal ("," Nonterminal)* ";" "}" ;

// bundle
Bundle^ "bundle" QualifiedId "{" LangSlices LangEndemic LangRenames "}" ;

// common lexemes
QualifiedId^ Id ("." Id)* ;
Nonterminal^ Id ;
Tag^ Id ;
Terminal <- SimpleTerminal | RegexTerminal ;
Id^ <unquoted identifier> ;
SimpleTerminal^ <quoted string> ;
RegexTerminal^ <perl-like regex literal> ;
Integer^ <integer number> ;
CodeBlock^ <parsing delegated to translator plugins> ;

Listing 4.1: Complete EBNF grammar of the Neverlang language.

24

4.1. The Neverlang Framework

module javalang.WhileLoop {
reference syntax {
While:
WhileLoop^ "while" "(" LoopCondition ")" "{" LoopBody "}" ;

}
role (type-checking) {
0 .{ // opt.: ’While:’ or ’While[0]:’ instead of ’0’
eval $1;
if ($1.type != Boolean.class) // opt.: $While[1] instead of $1
throw new Error("The type of LoopCondition should be a boolean value");

}.
}

}

Listing 4.2: reference syntax for the while statement and the type-checking. The name of the
module and the left-hand nonterminal are generally not required to match.

module pascallang.WhileLoop {
reference syntax {

WhileLoop^ "while" LoopCondition "do" "begin" LoopBody "end";
}

}

Listing 4.3: reference syntax for a Pascal-style while statement.

The reference syntax section contains a list of production rules between braces (see
Listing 4.2). Each production may be optionally introduced by a label, that may be used
in role definitions. Roles may also be defined in different modules, but new processing
phases can be still described in terms of the same piece of syntax. In this case, the
programmer should indicate that the roles in the module refer to a syntax definition
that has been defined in a different model, using the reference syntax from clause.
For instance, Listing 4.4, declares that the reference syntax definition is the one in
module javalang.WhileLoop (Listing 4.2).

Concerns about readability could be raised: using the reference syntax from clause,
the syntactic definition may not be present locally to a module where semantics is given.
Nonetheless, the same could be said for any OOP language, where subclasses do not
show the members that they are inheriting, unless these are overridden. The solution to
this problem may be better tooling; we are currently working on IDE technologies that
may assist users by providing visual clues about the syntax definition that has been
referenced.

Additionally, this section can be decorated with optional metadata about the intended
meaning of the syntax, using tags. The provides and requires sections may be the
first statements in a reference syntax. Each line of the section is constituted by a
provided nonterminal (on the left-hand side of a production) or a required nonterminal
(on the right-hand side of a production), followed by a list of tags. Listing 4.5 shows an

25

4. Neverlang

module javalang.WhileLoopCodeGen {
reference syntax from clang.WhileLoop
role (code-gen) {
0 .{
String labelLoop = Utils.genUniqueLabelName();
String labelExitWhile = Utils.genUniqueLabelName();

eval $1;
String comparatorCode = $1.code; // if* <labelExitWhile>

eval $2;
String bodyCode = $2.code; // body of the loop

// output
$0.code = ’’’
${labelLoop}:
${bodyCode}
${comparatorCode} ${labelExitWhile}
goto ${labelLoop}

${labelExitWhile}:
nop

’’’;
}.

}
}

Listing 4.4: An example code generation role, generating Java bytecode in Jasmin1 syntax.

reference syntax {
provides {
WhileLoop^ loop, statement;

}
requires {
LoopCondition^ truth-value, boolean-expression, expression;
LoopBody^ statement, statement-list;

}
WhileLoop^ "while" "(" LoopCondition ")" "{" LoopBody "}" ;

}

Listing 4.5: provides and requires sections..

example for the while loop. A use case for tags will be discussed in Sect 6.4.
Roles. A role section defines the part of a processing phase that pertains to the reference

syntax. A processing phase is implemented as a tree traversal of the syntax tree that
represents the input program. Each role in a module is identified by a name. The name
of the role is user-defined, and names do not have a special meaning. Obviously it is
advisable to choose meaningful names and follow general conventions; type checking
phases may be usually called type-checking; code generating phases might be called
compilation, or code-gen; evaluation phases that actually execute the program shall be

26

4.1. The Neverlang Framework

called evaluation, execution and so on. As seen for SDT (Chapter 2), the semantics is
specified by semantic actions, a snippet of code that should be executed when a node of
the syntax tree is being evaluated (visited). A role is therefore a collection of semantic
actions pertaining to a given reference syntax. Thus, a visit of the tree is described
by the collection of all the semantic actions of a role in all the slices that constitute a
language.

A semantic action is represented by a code block enclosed within the delimiters .{ and
}. and introduced by a number. The mapping between nodes of the tree and semantic
actions is given through these numbers: each nonterminal can be referred from a role
using its ordinal position inside the reference syntax section, starting from 0. Thus, action
number 0 will be executed when the 0-th nonterminal of the reference syntax will be
visited, action number 1 when the visit will move to the 1-st nonterminal, etc. For
instance, in Listing 4.2 WhileLoop is 0, LoopCondition is 1, and LoopBody is 2; thus the
action from role type-checking is being attached to the root node WhileStatement2.
Because of the reference/concrete syntax duality, terminals are excluded for this count.
First, because, being a leaf, it does not make sense to descend into a terminal node,
second, this scheme makes it easier to remap semantic actions onto different syntactic
definitions, because it is independent from the naming of the nonterminals.

Inside actions, it is possible to access any other nonterminal within the same rule3

using the same numbering scheme; in this case nodes are referred through their
identifying number preceded by a dollar sign; it is possible to read and attach attributes
to nonterminals using a familiar dot notation (Listing 4.2 and 4.4). The type of the
attribute is defined implicitly at each use-site. For instance, $0.foo = "hello" defines
foo as a String attribute with value "hello". Similarly, String foo= $0.foo; is pulling
a String value from the foo attribute. Invalid attribute uses (e.g., mismatched types or
undefined values) will cause the system to raise an exception.

Attributes that are attached to nonterminals are similar to instance fields of a class.
Each nonterminal may hold as many attributes as desired, and each attribute may be of
any JVM type. Attributes are implicitly defined after the first assignment and, once
they have been defined, they can be referred from any semantic action associated to
any of the nonterminals in the same production.

Actions are written using a JVM language. The default is Java (with some minor
syntactic extensions), but programmers may opt-in to use a different JVM language
using language annotations. Each section of a module that contains code may be
annotated to switch to an alternative language; this can be done on a per-module,
per-role, or even per-action basis (Listing 4.6). We will see more on how actions are
compiled in Sect. 4.4.

Labels. The reasons for the choice of a numbering scheme instead of a naming
convention to indicate syntax definitions is mostly a matter of history. Neverlang’s
original implementation [16, 15] followed the same convention, which was inspired

2In this example we assume that identifiers are collected into a symbol table during the type-checking
phase; in real language implementations, a separate phase may be introduced

3e.g., consider grammar A^ B; C^ D: rules 0, 1 may refer either 0, 1, but not 2; etc.

27

4. Neverlang

<scala> // switches to the scala language on the whole module
module com.example.MultiLang {
reference syntax from javalang.WhileLoop
role(type-checking) {
0 .{
eval $1
// if we use Scala, then we could model $1.type with Either
val t: Either[Class[_],Error] = $1.type
t match {
case Right(type) if type == classOf[Boolean]� ...
case Left(err) � ... // an error occurred...

}
}.
1 <java> .{ /* switch back to Java here */ }

}
// in the template language, everything is a string, unless
// it is inside {{ ... }}; the result is attached to $0.Text
role(code-gen) <template> {
0 @{ // pre-evaluates the child nodes, see paragraph "Driving the Visit"

loop:
{{ $1.code }}
{{ $2.code }} exit
goto loop

exit:
nop

}.
}

}

Listing 4.6: Using multiple languages in a module.

from venerable tools such as YACC. Since those days, Neverlang has undergone a
major rewrite, but the basic principles and syntax remained faithful to the original
implementation. The current incarnation of the Neverlang framework provides a way
to label production rules in the reference syntax section.

Listing 4.2 shows that the rule could be defined for label While:, which would
then be resolved by the Neverlang compiler nlgc (Sect. 4.3) as 0. Labels can also be
used to refer to every nonterminal of a labeled production using the offset notation
While[n], counting from 0. However, since syntax sections are supposed to pertain
to one single construct, they usually should not contain more than 2-3 productions at
a time; this is the reason why sometimes it might be still more convenient to use the
legacy numbering scheme, rather than labels. Of course, labels support should not
be seen as an invite to write longer syntax sections, but rather, as a convenience to
enhance code readability. Our guidelines for syntax definitions is to keep them short
and small, so that they can be shared more easily across language implementations.
In fact, as a syntactic definition gets large, it may become more specific to a particular

28

4.1. The Neverlang Framework

// code-gen, using the post-order shorthand
0 @{
// eval $1, eval $2 are implied
String labelLoop = Utils.genUniqueLabelName();
String labelExitWhile = Utils.genUniqueLabelName();
String comparatorCode = $1.code;
String bodyCode = $2.code;
$0.code = ...

}.
// using the eval-and-get shorthand
0 .{
...
String comparatorCode = $1:code; // eval $1; then return $1.code
String bodyCode = $2:code; // eval $2; then return $2.code
$0.code = ...

}.

Listing 4.7: Syntactic sugar to execute a post-order visit.

language implementation, hampering its reusability.
In any case, the planned work on IDE technologies should help in ruling out all the

typical shortcomings of the numbering scheme (e.g., rule insertion, refactoring, etc.).
Moreover, as we will see in Chapter 4.4.1, the Neverlang API is powerful enough that
users may even define custom semantic action loading strategies for modules.

Driving the Visit. Users may explicitly descend into child nodes of the tree using
the eval $N statement —where N is the identifier of a child of the root node of the
production that is currently being evaluated, or the root node itself. For instance,
consider Listing 4.2, when the type-checking phase will be evaluated for the while

loop, at some point, the visitor will descend into the node WhileLoop(LoopCondition,

LoopBody): this will trigger the execution of action 0. The first statement of this action
is eval $1, which triggers the visit of node 1 (LoopCondition). This will execute any
action attached to the node of type LoopCondition to be executed. Once the visit
terminates, control is returned to action 0, which then proceeds to test if the attribute
type does not equal to Boolean.class, and so on. Similarly, action 0 in code-gen

role (Listing 4.4) first visits nodes LoopCondition ($1) and LoopBody ($2), and then it
pulls the attributes $1.code and $2.code, which are then used to generate the attribute
$0.code of the WhileLoop node, which represents the compiled bytecode (in Jasmin
format) of the while loop.

Because the pattern of descending into the child nodes and then evaluating the root
node might be frequent —in compilers it is often the norm— Neverlang supports some
syntactic sugar to shorten the code in such situations (Listing 4.7). It is possible to mark
a rule with the @ modifier, which means “first descend, then execute”, that is, it makes
the visit effectively “post-order” [2]. It is also possible to refer a nonterminal using the
eval-and-get shorthand $1:attribute which is compiled to an eval $1 statement and
an attribute access $1.attribute. It is also possible to mark an entire role as post-order

29

4. Neverlang

slice javalang.WhileLoopSlice {
concrete syntax from javalang.WhileLoop // alt.: pascallang.WhileLoop
module javalang.WhileLoop with role type-checking
module javalang.WhileLoopCodeGen with role code-gen

}

Listing 4.8: Slice implementing a bytecode-generating while loop feature for the Java language.

in the language descriptor (see Listing 4.1.3). You may also have noticed (Listing 4.4)
that Neverlang’s Java code blocks provide a special extended syntax for multi-line
strings, deliberately reminiscent of Xtend’s template expressions [8] (see also Sect 6.1.4).

Visits can also be terminated abruptly by raising errors or using a special Neverlang
signal, useful to return from a procedure or break out of a loop: the command that
terminates a visit abruptly is $terminate. To raise an error, a Java RuntimeException

or an Error can be thrown as usual (e.g., see Listing 4.2). For more information on the
implementation of the $terminate command see Sect. 4.4.2.

Finally, Neverlang has experimental support for suspending and resuming the execu-
tion phase. In this case the statement $suspend interrupts the execution of the current
visit, proceeds to the following (possibly, up to the last), and then automatically, when
all the remaining visits are terminated, or —typically— programmatically, using the
$resume; statement, it resumes execution from the suspended phase. The idea with
the $suspend; and $resume; commands is to be able to untangle evaluation phases: for
instance an interpreter may require type-related information that is only known at
runtime. The type-checking phase could be partially executed statically, before evaluation
and then suspended up to when this information is available at runtime (for a use case,
cf. Linda-Python in [14]).

4.1.2. Mapping Semantics onto Syntax: Slices

A slice contains the definition of a single, individually implemented component of
the language. A component is defined in terms of the modules that contains the
syntax definition that represents the language construct and the roles that implement
its semantics. Each slice must import a reference syntax from a module, and may
import as many roles as desired. Once used in a slice, the reference syntax is called
a concrete syntax. For instance in Listing 4.8, the javalang.WhileLoopSlice is being
defined. The reference syntax from the javalang.WhileLoop module (Listing 4.2) is used
as the concrete syntax for the language component; the semantics that will be used are
the type-checking role in javalang.WhileLoopTCheck (Listing 4.2) and the code-gen

role in the javalang.WhileLoopCodeGen module (Listing 4.4). Nonetheless, the same
roles could still apply to the reference syntax in module pascallang.WhileLoop (List-
ing 4.3), because the nonterminals for the C-like syntax are trivially mapped onto the
nonterminals for the Pascal-like syntax.

Another interesting use case has been described in [18]; the Recipe DSL is a language

30

4.1. The Neverlang Framework

module javalang.DoWhileLoop {
reference syntax {
DoWhileLoop^ "do" "{" LoopBody "}" "(" LoopCondition ")" "while" ";"

}
}
slice javalang.DoWhileLoopSlice {
concrete syntax from javalang.DoWhileLoop
module javalang.WhileLoopTCheck with role type-checking mapping {
1� 2, 2� 1

}
module javalang.DoWhileLoop with role code-gen
}

Listing 4.9: Remapping part of the while implementation onto the do-while syntax.

inspired by Microsoft’s on{X}4, an application to control Android smartphones so
that they can react to particular events with user-defined actions. These actions are
developed through a JavaScript API, but pre-defined recipes can be shared, selected
and deployed to the user’s phone through the application website. Recipe brings the
idea further: it is a DSL whose syntax resemble natural language, to define rules of
the form “when X happens, then do Y”. A different syntax definition may be used to
translate the English keywords into other languages. For instance, the paper shows
Italian. Using the remapping feature it would be even possible to support languages
where the structure of the sentence is not subject-verb-object.

Remapping. When the mapping between two slices is non-trivial, there is still the
chance to reuse (part of) the code without changes, by using the mapping feature. In
this case the module statement is qualified with the optional mapping clause and a
mapping between the nonterminals of the reference syntax and the nonterminals of the
concrete syntax is given; the mapping is between the ordinal numbers that correspond
to the nonterminals, following the same scheme that has been described for modules
(Listing 4.9). For instance, although the compiled code for a do-while loop slightly
differs from the generated code for a while loop because the LoopBody shall be evaluated
at least once, type-checking can be reused verbatim, by remapping nonterminal 1 of
WhileLoop onto nonterminal 2 of DoWhileLoop, and nonterminal 2 of WhileLoop onto
nonterminal 1 of DoWhileLoop. The mapping is local to the role, and does not ‘stick’
between roles, unless explicitly declared: this means that in role code-gen the order
of the nodes for DoWhileLoop will be the one that has been originally declared in the
concrete syntax. A new code-gen role must be still written, but the type-checking

phase will be reused.
Although named —and effectively implemented, as we will see in Sect. 4.4— in

a different way, this operation has in practice the same effect of rewriting the tree
node DoWhileLoop(LoopBody, LoopCondition) to a node WhileLoop(LoopCondition,

LoopBody). Nonetheless, the rewrite operation is available in Neverlang as well, in the

4http://onx.ms

31

http://onx.ms

4. Neverlang

// without remapping
module Expr {
reference syntax {
UnaryExpr^ PostfixExpr;
CastExpr ^ UnaryExpr;
MulExpr ^ CastExpr;
AddExpr ^ MulExpr;
ShiftExpr^ AddExpr;
RelExpr ^ ShiftExpr;
...

}
role(evaluation) {

0.{ $0.value = $1.value; }.
2.{ $2.value = $3.value; }.
4.{ $4.value = $5.value; }.
6.{ $6.value = $7.value; }.
8.{ $8.value = $9.value; }.
10.{ $10.value = $11.value; }.
...

}
}
slice ExprSlice {
concrete syntax from Expr
module Expr with role evaluation

}

// same code, with remapping
module Expr {
reference syntax {
UnaryExpr^ PostfixExpr;
CastExpr ^ UnaryExpr;
MulExpr ^ CastExpr;
AddExpr ^ MulExpr;
ShiftExpr^ AddExpr;
RelExpr ^ ShiftExpr;
...

}
role(evaluation) {
0.{ $0.value = $1.value; }.

}
}
slice ExprSlice {
concrete syntax from Expr
module Expr with role evaluation

mapping {
2� 0, 3� 1, 4� 0, 5� 1, ...

}
}

Listing 4.10: Usage of the remapping feature to reuse code within the same module. On the left, the
full, explicit version; on the right, the repetition has been replaced by remapping the same
semantic action.

form of an experimental semantic action DSL; we will return on this later in Sect. 4.2.
The remapping feature is also useful to repeat an action over several productions,

even within the same slice; for instance, consider the chain of expressions for C-
like languages UnaryExpr^ PostfixExpr; CastExpr^ UnaryExpr; ... (Listing 4.10):
where many actions involve passing over values throughout the chain. Instead of
rewriting the same semantic action assigning attributes along the chain over and over
(on the left of Listing 4.10), you can use the mapping construct to do it for you (on the
right). In general, consider some module M with reference syntax:

A^ B; B^ C; C^ D;

And suppose you want to pass on the attribute value from D to C; then, in some role r

of M you may write:

role(r) { 0 .{ $0.value = $1.value; }. }

And, then, assuming A maps to 0, B maps to 1, the second B maps to 2, etc. the slice
would read:

32

4.1. The Neverlang Framework

module M with role r mapping { 2� 0, 3� 1, 4� 0, 5� 1 }

which would mean to apply on rule B^ C action 0, with B as A, and C as B; similarly,
on rule C^ D the action 0, will be executed with C instead of A and D in place of C.

On the one hand, the usage of this feature may hamper the reusability of a component,
because it would depend on the way the syntactic module was originally written. Any
change to that grammar production would cause any module that depend on the
other to break. On the other hand, this may be true during the first phases of the
development, when iterations on a definition may be frequent. But, in the case of a
stable module, this should not occur often. In fact, it is good programming habit that
a radical change in a code unit should correspond to releasing a new version of the
code unit, so that backwards compatibility can be preserved. This is especially true for
Neverlang, since components can be released even in their binary form. During the
development phase, refactoring tools could limit the impact of this problem on user
code.

Endemic Slices. In Chapter 3 the concept of globally-scoped components was intro-
duced. Neverlang implements such components through endemic slice. The declare

block of an endemic slice defines ancillary fields and methods that should be globally
accessible from the code of any semantic action. Endemic slices are used to imple-
ment features in a language that do not have a direct syntactic counterpart. A typical
example of this is the symbol table (see Listing 4.11 for an example). Although every
compiler might manage its symbol table in its own particular way, this is a construct
that is generally always present in some form. The information that we store in a
symbol table must be consistent and accessible from all the components of the compiler.
Therefore, in Neverlang, this component should be accessible from all slices that are
used in the language, even if there is no syntactic construct inside the language to
refer to it. An endemic slice declares the interface and the constructor of the imple-
mentation of a globally-accessible object that implements this concern. An endemic
slice only declares an interface and a constructor, so that the programmer is free to
use his favorite programming language and tools to implement the globally-accessible
object. The endemic slice imports the implementation inside Neverlang, so that it is
available to every component that may require it. The endemic slice can be substituted
at will, by any compatible object that implements the same interface (for a use case, see
Linda-Python [14], where a threaded execution model is substituted with a distributed,
RMI-based execution model). Objects declared in an endemic slice are destroyed and
recreated at each execution of the interpreter, that is, for each new input program,
but its state, if any, “sticks” between evaluation phases. It is also possible to make an
endemic slice “stick” across evaluations using the static modifier, before the name
of the object in the declare section; in this case Neverlang will instantiate the object
only once during the execution of the interpreter, so that the state may be preserved
across the evaluation of different input programs. This may be useful in the creation of
interactive interpreters using the nlgi tool (Sect. 4.4).

33

4. Neverlang

// javalang/SymbolTable.nl
endemic slice javalang.SymbolTable {
declare {
// invoke the empty constructor, put it in the $$SymbolTable object
SymbolTable: javalang.utils.SimpleSymbolTable ;
// alt. syntax: the block may contain an arbitrary Java expression
// SymbolTable: .{ SymbolTableFactory.create() }.

}
}

// SymbolTable.java
package clang.utils;
public interface SymbolTable {
Object getValue(String name);
Object getType(String type);
void put(String name, String type, Object value);
...

}

// SimpleSymbolTable.java
package javalang.utils.
public class SimpleSymbolTable implements SymbolTable { ...}

// VarLookup.nl
module javalang.VarLookup {
import { javalang.utils.*;}
reference syntax {
VarLookup^ Identifier;

}
role(type-checking) {
0 @{
String ident = $0.identifier;
$0.type = $$SymbolTable.getType(ident);

}.
}

}

Listing 4.11: Endemic slice providing a SymbolTable interface with an implementation.

34

4.1. The Neverlang Framework

language javalang.Lang {
slices

...
javalang.WhileLoopSlice
javalang.DoWhileLoopSlice
javalang.Expression
javalang.StatementList

endemic slices
...
javalang.SymbolTable

roles syntax <+ type-checking <+ code-gen
rename {
...
LoopCondition_ Expression;
LoopBody_ StatementList;

}
}

Listing 4.12: Extract of the language descriptor for a Java compiler.

Figure 4.1.: Role execution order: the grayed node does not have semantic actions attached. For the sake
of the example, we assume that all roles are evaluated in the same way (semi-automated or
post-order).

4.1.3. Combining Slices Together: Generating a Language

Neverlang’s language descriptor lists all the slices that form the complete language
implementation, including endemic slices. It also defines the sequence in which roles will
be evaluated (Listing 4.12).

Role Execution Order. The order of execution is specified by the roles clause. The
first role is always syntax, indicating that the first phase is parsing, followed by the
sequence in which every role in the slices should be processed, separated by a delimiter.

35

4. Neverlang

Figure 4.1 shows an example with the while loop. In the picture we are using the
notation node.role-name to indicate the order of execution.

There are three kinds of pre-defined visiting strategies (all depth-first):

Semi-automated indicated by “<+”; the visitor automatically descends from the root
into the children until a semantic action is attached; then the control is left to the
action, which might or might not opt-in to use the eval statement (or one of the
shorthands described in the previous paragraphs) to proceed with the visit. The
eval statement can be used to perform arbitrary visiting strategies, where nodes
may be even re-evaluated more than once. When eval is used, the execution of
the child nodes is nested; that is, once the execution of the action for the child
nodes has terminated, control is given back to the parent, which may eventually
use eval again.

Post-order indicated with “<”, this strategy visits the tree depth-first, and executes the
actions after the children have been evaluated (left-to-right). It is well-suited for
L-attributed and S-attributed grammars (Chapter 2).

Juxtaposition indicated by “:”, when two roles are juxtaposed, the execution of roles
is interleaved; that is, instead of executing one role per tree visit, all the roles that
are juxtaposed will be executed “at once”: in other words, for each node all the
actions of all the juxtaposed roles will be executed in sequence, as opposed to
simple semi-automated and post-order, where each role corresponds to one visit
of the tree. When two (or more) roles are juxtaposed, the execution strategy is
the one indicated by the first left-hand non-juxtaposing role; e.g., with the roles

clause:

roles syntax < ... < foo : bar < ...

then the execution is post-order, and bar is juxtaposed to foo; with the roles

clause:

roles syntax < ... <+ foo : bar < ...

then the execution is semi-automated, and bar is juxtaposed to foo. Juxtaposition
in combination with semi-automated at the time of writing is experimental.

For a use case of juxtaposition, see for instance the Log Language in [15, 14, 100], a
language for log rotating, similar to the UNIX logrotate utility. In this language,
each line is a log management operation (e.g, rename, backup, etc.). The utility, besides
the execution phase where the log management operations are performed on the file
system, includes two more evaluation phases, logging and permissions. The logging

phase produces itself a log of the operations that are being executed, the permissions

phase checks the file permissions of the files that are being modified. The default is
a post-order execution, which causes each phase to be executed in sequence: first it
logs all the operations that are going to be executed, then, for all the commands the
permissions are verified, then all the commands are executed at once; by switching to
the interleaved execution strategy, for each command in the input file the operation is
first logged, then permissions are evaluated, and finally the operation is executed.

36

4.1. The Neverlang Framework

Dependencies Between Slices. As we saw in Chapter 3, each language component
has dependencies. These dependencies should be satisfied when the components are
combined together (Chapter 3). In particular, we saw that the syntax definitions provide
and require other syntactic definitions, by way of nonterminals (syntactic dependencies),
and attribute definitions provide and require other attribute definitions (semantic depen-
dencies). In order for a language implementation to be consistent, both syntactic and
semantic dependencies shall be satisfied. In a slice, syntactic dependencies are implied
by the concrete syntax, while semantic dependencies derive from the roles. For instance,
in the case of the while loop (Listings 4.2 and 4.4):

– the concrete syntax provides the WhileLoop nonterminal, and it requires at least
one definition for the LoopBody and LoopCondition nonterminals. Because of the
semantics of grammars, each nonterminal may admit more than one definition,
but at least one is required.

– the type-checking role requires the Class<?> attribute type to be defined on
nonterminal $1, which, in this case, resolves to LoopCondition

– the code-gen role requires the String attribute code to be defined on nonterminals
LoopCondition and LoopBody, respectively, and provides a String attribute code

on nonterminal $0, which in this case resolves to WhileLoop.
Chapter 3 also stated that these dependencies must be satisfied in a language imple-
mentation. Thus, the framework must enforce the resolution of such dependencies at
composition time. In Neverlang, when one such dependency is left unsatisfied, the
runtime throws an error. In [99, 98] we explored ways to track and resolve dependencies
automatically, and present them to end users in a convenient way (see also Sect. 6.4 for
further details): the objective is to enable end users to compose a working language
implementation, where all the dependencies are satsfied, for any given set of slices,
without writing code.

The starting symbol or axiom of the language, in Neverlang is always called Program by
convention. In order to produce a meaningful language (that is, a non-empty language,
see Chapter 2) at least one slice should provide the Program nonterminal. This can be
done explicitly, by introducing a production of the form “Program^ ...”, or implicitly,
by using the rename feature, that has also a number of other uses.

Rename. A language descriptor may optionally include a rename section. This
section declares a list of nonterminals that should be consistently renamed to other non-
terminals. For instance, in our example, we always used the LoopCondition nonterminal
to represent the condition of the while and do-while loops. This condition is usually
represented by an Expression. Now, let us suppose that a slice javalang.Expression is
available and that it provides the nonterminal Expression. We may introduce a slice with
the production LoopCondition^ Expression, but this slice would serve no meaningful
purposes beside satisfying the requirements of the slice javalang.WhileSlice. There is
a better mechanism to achieve the same result, which is providing a rename mapping.
In Listing 4.12, the LoopCondition is renamed to Expression in every production in
which it occurs, causing, for instance, the production

While^ "while" "(" LoopCondition ")" "{" LoopBody "}"

37

4. Neverlang

language javalang.alt.Lang {
slices

...
bundle (javalang.bundles.Loops)
...

}
bundle javalang.bundles.Loops {
slices

...
javalang.WhileLoopSlice
javalang.DoWhileLoopSlice
...

}

Listing 4.13: javalang.Lang using bundles.

in javalang.WhileSlice to become

While^ "while" "(" Expression ")" "{" LoopBody "}".

The same can be done with LoopBody, that could be renamed into StatementList,
assuming that there exist a slice that provides such nonterminal. The rename feature can
be also used to declare the starting symbol of the language, by renaming it to Program.

Bundles. A bundle is a collection of slices that together implement a sort of macro-
feature. For instance, one might bundle together all the slices that implement the looping
constructs for a language, all the slices that implement the conditional branches, etc.
The role of the bundle construct is only one of convenience. A bundle is automatically
expanded into the collection of slices that it contains; thus using a bundle in a language
is completely equivalent to spell out its contents in the language descriptor. For in-
stance (Listing 4.13), consider a bundle javalang.bundles.Loops containing the slices
javalang.WhileLoopSlice and javalang.DoWhileLoopSlice, and suppose this bundle
is added to a language javalang.Lang; this language is identical to the language that in-
cluded directly the slices javalang.WhileLoopSlice and javalang.DoWhileLoopSlice.

4.2. Runtime Deployment of Semantic Actions and Tree
Rewriting DSL

It is worth spending a few words of the runtime capabilities of the Neverlang system.
The mapping between tree nodes and slices is maintained in a dynamic data structure,
that is filled and looked up at runtime. This, for instance, makes it possible to deploy new
concerns of the language, not only without having to rebuild the interpreter, but also with
no need for shutting it down in the first place. For instance, the Log Language [15, 14, 100]
is a use case for juxtaposition (Sect. 4.1.3). The logging the behavior of the utility is a
classic example of a cross-cutting concern that users may want to deploy and undeploy
at runtime [4]. The dynamic loading capabilities of Neverlang make it possible to

38

4.3. Tools and Utilities

deploy such aspects of a language natively, at runtime, thereby allowing features to be
enabled and disabled at will during program execution.

The same feature can be useful to specialize the semantics of the role that is being
executed with optimized versions of the same semantic rule. The feature is currently
being exploited in our JavaScript implementation (Sect. 6.2) to realize a feature-oriented
rendition of the Truffle [111, 50] runtime system for Java-based AST interpreters. In this
case, though, multiple semantic actions may be executed depending on guards. Each
guard is an assertion that may trigger execution of a different action on a particular
node, depending on a runtime-evaluated expression. For instance, the result of an
integer expression may use ints internally up until an overflow exception is raised [111];
in this case a guard would activate and cause a different rule to be executed (for instance,
a standard-compliant ECMAScript implementation would promote the Number value
from an int to a double). The goal in Neverlang is to make it possible to implement such
rules in different modules, so that programmers may develop different optimization
strategies and choose which to include in their own language implementation. The
Truffle system, among other things, rewrites the tree with specialized version of the
nodes. The same feature is being developed for Neverlang. An API will be made
available to rewrite nodes of the syntax tree, and a DSL will be integrated using
Neverlang’s native language plugin system, to simplify its use.

All of these features are currently being implemented and further investigated; we
reserve to describe them in more depth in a future work.

4.3. Tools and Utilities

At the beginning of this section we recalled that the Neverlang language is only one of
the ways developers can exploit the Neverlang APIs. The Neverlang compiler nlgc

translates the Neverlang language into JVM-compatible source code, so that this API is
exposed to a more concise interface. Other tools are also bundled with the Neverlang
framework: the simple Neverlang launcher nlg, and the interactive read-eval loop
nlgi. A small library of utility functions and classes is also provided. The reason this
library is small, is that users are free to use standard libraries from the Java ecosystem.
Table 4.1 shows a list of methods of this library. The GenericMain is used to implement
custom launchers (instead of the default nlg), to collect attributes from subtrees into a
List<T> (AttributeList) and to dump an AST to a Graphviz [28] picture.

The Neverlang Compiler nlgc In Sect. 4.4 we will show that it is easy to map the
Neverlang language onto the Neverlang API, but the framework comes with a compiler
called nlgc which automates the process. In most cases, nlgc generates Java source files.
For instance, assuming that the source code presented in Chapter 4 were in a directory
called nlg-src, a user would type:

$ nlgc -s src nlg-src/*.nl && javac -d bin src/**/*.java

39

4. Neverlang

Launcher
GenericMain
GenericMain()

Implements a generic custom launcher (to implement a custom nlg command.)

public void parseArgs()

Parse CLI arguments

public void readFiles() throws IOException

Read files to the internal buffer.

abstract List<String> processFiles()

Process files through language implementation

Neverlang Runtime Library
AttributeList
static <T> java.util.List<T> collectFrom(ASTNode t, String attributeName)

Collects a typed List of T-valued attributes, implementing the bucket brigade opera-
tor [52]. Usage: List<String> attributes = AttributeList.collectFrom($n,
"attributeName"). For an example see Chapter 5.

FileUtils
String fileToString(String path) throws IOException

Loads a file into a String.

void stringToFile(String contents, String path) throws IOException

writes a String to file

GraphvizAST
GraphvizAST(ASTNode root)

Generates a Graphviz [28] representation of the given tree.

String toString()

Returns a String representation of the tree in dot format.

Table 4.1.: A summary of support library functions in Neverlang.

The command nlgc generates all the source files in the src directory, then javac

compiles the source code into class files in the bin directory. For instance, in Sect. 4.1,
we described how to write a while loop in Neverlang, and we have shown how to
write a module (Listing 4.2, p.25), a slice (Listing 4.8, p.30) and a language descriptor
(Listing 4.12, p.30). By invoking nlgc over these files the result would be a collection of
Java source files. An example of what the generated source code looks like can be seen
in the next section, in Listing 4.15 (p.47).

One core goal for the Neverlang runtime was to have as few dependencies as possible.
Thus, the Neverlang runtime has been written in pure Java 6, and the default language
for semantic actions of the Neverlang language is Java as well. In Sect. 4.4 we will
see that the Neverlang API is a JVM API, therefore, it is possible to use it from any
programming language of the JVM, and, consequently, even semantic actions can be
written using the JVM language of choice. The Neverlang language allows semantic
actions to be written using a custom language as well, while still providing useful

40

4.3. Tools and Utilities

public class JavaTranslatorPlugin extends TranslatorPlugin {
public JavaTranslatorPlugin() {
language = "java";
fileExtension = "java";
fileTemplate = "public class {0} implements SemanticAction ’{’\n"+

" public void apply(Context $ctx) ’{’\n{1}\n ’}’\n’}’";
attributeRead = "$ctx.node({1}).getValue(\"{1}\")";
attributeWrite = "$ctx.node({1}}.setValue(\"{2}\", {3});";
...

}
}

Listing 4.14: Translator Plugin for Java.

syntactic sugar to drive the visit and access the attributes (the eval keyword, the
dot-notation for accessing attributes, etc.). This is provided by way of translator plugins.
When multiple programming languages are used, nlgc generates source files for each
given target language. Each file can be then compiled using the native platform tools.
For instance, scala source files would be compiled using the scalac compiler.

A translator plugin hooks into the code-generation process of the Neverlang compiler
to analyze and manipulate the input source of a semantic action, and desugar the
Neverlang language shorthands into the regular API calls that we presented in this
section. The developer can then hint at the system that semantic actions are being
written in a different language. Listing 4.6 (p.28) showed how to switch between
language plugins in a module written using the Neverlang language.

Translator plugins in their simplest form describe how the occurrences of each short-
hand should be rewritten into API calls, and in their extended form, they may parse and
verify (e.g, type check) the entire code block. Listing 4.14 shows how the simple Java
translator plugin is defined using Java itself to implement it. Code for the Scala plugin
is similar. The plugin itself, again, can be written using any JVM-supported language.

Currently we have implemented simple support for Java and Scala, plus the template

plugin, which is suitable for code generation. These plugins do not actually parse the
code block, which is rather reproduced verbatim; desugaring occurs through simple
source code transformations (pattern matching). Although this is a very simplistic
approach, it is also very convenient, because translator plugins never become outdated:
new language releases can be supported from the day one. Compare this to the
alternative solution of fully-parsing the entire block of code, and how, for instance,
it made instantly obsolete all the tools that were written in the pre-generics age of
Java. With this approach, the Neverlang language supports all the most recent Java
features, including Java 7’s lambdas. Besides, type checking and other verifications will
be executed at the time the generated source files will be compiled using the target
language compiler (e.g., for java javac).

Nevertheless, exended plugins can be implemented as well; this is especially preferable
when the code block hosts a custom DSL. In this case, the code block can be passed into

41

4. Neverlang

Figure 4.2.: nlg executing a JavaScript program with neverlang.js (Section 6).

a separate Neverlang instance, which will parse and possibly generate the source code
in a target language. For instance, the experimental tree rewriting DSL (Sect. 4.2) is
implemented as an extended plugin.

The Neverlang Launcher nlg In the next section, we will see that in Neverlang, a
language implementation is a subclass of the Language class of the Neverlang API. In
order to use the language implementation you should instantiate this class (e.g., see
Listing 4.16, p.50). Because this is routine, Neverlang comes bundled with a convenient
predefined launcher called nlg. The nlg tool expects the canonical name of the language
class to be given on the command line, and at least one input source file name (if no
file name is given, the launcher will enter the interactive mode, that we will describe in
the next paragraph). The launcher will automatically instantiate the given language
and invoke the Language.eval(String) API (Sect. 4.4) on each of the given files. This
is particularly useful during the first phases of the development of a language, or to
quickly test if the language loads as expected. It is still recommended to roll your
own custom launcher, by subclassing the bundled GenericMain class. For instance, we
implemented a JavaScript interpreter that we dubbed neverlang.js (Sect. 6.2). Figure 4.2
shows the JavaScript interpreter invoked through nlg, with

$ nlg neverlang.js.JSLang <input-program>

with an input program that computes the factorial 10!. We will see more on neverlang.js
in Chapter 6.

The Neverlang Interactive Read-Eval Loop nlgi Neverlang comes bundled with
an read-eval loop utility to interactively input programs at a prompt. The utility can

42

4.4. Implementation

Figure 4.3.: nlgi executing a JavaScript program with neverlang.js (Chapter 6).

be started by invoking it at command line with the language name as a parameter.
The nlgi tool provides commands to interact with the language; it is possible to
dump the contents of the endemic slices, show the complete grammar, print the
attributes of the tree, and dump the AST and the goto-graph of the parser to the screen
using Graphviz [28]. Figure 4.3 shows neverlang.js launched as an interactive console,
evaluating an interactively-defined factorial function, as you can see, the input source
code is also automatically colorized, depending on the grammar of the language.

4.4. Implementation

The Neverlang framework runs on the Java Virtual Machine. Core data structures,
support and utility classes are written in Java, bearing as few dependencies as possible.
In fact, Neverlang depends on no other library or technology besides pure JDK 1.6,
which makes it even compile and run on Android’s Dalvik VM (see also [18]). It is also
fully forward-compatible with Java 7 and Java 8, and, for what concerns semantics spec-

43

4. Neverlang

ification, it is virtually compatible with any JVM programming language. Section 4.1
presented how the Neverlang framework represents the concepts that we described in
Chapter 3 using the syntax of the Neverlang language, a convenient DSL that is used
to describe the Neverlang components, and that can be automatically translated into
JVM-source files using the compiler tool nlgc (Sect. 4.3). Nevertheless, the framework
is designed so that its APIs are easy to use. Thus, the Neverlang language is only
one of the possible front-ends to the Neverlang core. The Neverlang APIs can be used
directly, exploiting the multi-language features of the JVM platform. Therefore, it is
possible to interface with Neverlang using any programming language that runs on
the JVM, such as Java, Scala, Groovy, JavaScript, JRuby, Jython only to name a few.
This make it possible to easily extend the ways programmers may interact with the
foundations of Neverlang. For instance, even though the main, suggested way to write
Neverlang components is still the Neverlang language, developers may write slices
and modules directly, using Java or their favorite JVM programming language. In fact,
the only assumption in the Neverlang framework is that language components have
been compiled down to JVM class files that implement particular interfaces. As long
as this contract is respected, the Neverlang framework will happily load the language
components, regardless of the way they were generated.

This kind of flexibility makes it possible to build interesting interfaces on top. Future
directions may involve interactive development environments that hook directly into
Neverlang’s core. A first example of these capabilities is the Neverlang read-eval-
loop nlgi (Sect. 4.3), which gives the language developer an interactive console for
debugging and playing with language implementations. Further developments involve
the implementation of a GUI for automatic variability management (see Sect. 6.4) and a
full assisted development environment.

For simplicity, the code examples in this section will always use Java, as it is the
lingua franca of the JVM, and because it is the language the Neverlang API is written
in. Nevertheless, there is no limitation on the choice of languages that may use the
Neverlang API, as long as a suitable JVM implementation is available. A summary of
the complete API is given in Table 4.2 for reference. Details on how thus API is used
will be given in the next section.

4.4.1. Architecture

The Neverlang framework API is conceptually very simple; modules, slices and the
language descriptor are mapped onto regular Java classes. Therefore, they can be loaded
by a Java ClassLoader through their canonical class name. The canonical class name
reflects the dotted identifier that is conventinally used in given module, slice, bundle
and language declarations in the Neverlang language. For instance, the declaration

slice com.example.MySlice { ... }

would generate a class MySlice in package com.example. Class loading is internally
used by all the APIs (Table 4.2) that load components by name, such as importSlice().

44

4.4. Implementation

Core
Language
importSlice(String sliceName)

Imports the slice with the given canonical class name

importSlices(String... sliceNames)

Imports the given list of slices

importEndemicSlice(String sliceName)

Imports an endemic slice with the given canonical class name

importEndemicSlices(String... sliceNames)

Imports the given list of endemic slices

declare(Role rs, Role... rs)

Declares the given role definitions

interface SemanticAction
apply(Context $ctx)

Executes the semantic action on the given Context

interface Component (implemented by Module and Slice)
SemanticAction getAction(String role, int pos)

Returns the semantic action at the given position. Slices delegate to the imported modules.

Syntax getSyntaxDef()

Returns the syntax definition associated to this component

Syntax
TaggedNonterminal[] getProvides()

Returns an array of the provided nonterminal, along with their (optional) tags (Sect. 6.4)

TaggedNonterminal[] getRequires()

Returns an array of the required nonterminal, along with their (optional) tags (Sect. 6.4)

Module
protected declareSyntax()

Declares that the modules define a syntax section

protected syntaxFrom(String fromModule)

Declares from which module the reference syntax is imported from

protected declareRole(String roleName, int... ids)

Declares a role and the number identifiers (nonterminals) for which semantic actions have been
defined

Slice
protected importSyntax(String fromModule)

Declares from which module the concrete syntax is imported from

protected importRoles(String fromModule, String role, int... ids)

Declares from which module the role role is imported, and which actions are being imported

Table 4.2.: A summary of the Neverlang Runtime API.

45

4. Neverlang

API clients extend these classes and initialize their fields in their constructors using
the provided methods. The runtime system, using the public API of these classes, loads
into memory all the required components, instantiating the language implementation.
Thus, a language implementation in Neverlang is not an opaque executable, but a
collection of components that JVM languages can interact with, by querying a rich API.
This API does not only drive the execution of the language processor, but also it may be
employed to retrieve information on the loaded components, making it even possible
to substitute and unload components at runtime.

The presentation of the API that follows represents the default implementation of
the Neverlang framework. However, nothing prevents users from defining their own
alternative implementations of the given interfaces, choosing different strategies for
class loading and decomposition: as we will see, modules are decomposed in such a
way that different language targets are possible for semantic actions. Implementations
are free to bring this further: for instance, it may be possible to adopt the scripting
API of the JVM, and define components with JavaScript (using the Rhino or Nashorn
interpreter), Groovy, JRuby, Jython, Clojure, etc.; in this case not only the components
could be loaded at runtime, but they could be even defined dynamically at runtime.

Language A language descriptor is a class that extends the Language class. A Language

subclass must declare in its constructor (using the importSlice() method) which slices
it imports, the order in which roles are executed, and the renames. The importSlice()

directive expects the canonical name of an implementor of the Component interface
to be given; both Slice and Module implement this interface, thus a language may
import both slices and modules; if a module name is given, then the module also
represents the slice that declares the syntax and the roles that it contains. For instance,
if a module com.example.MyModule declares a reference syntax and some role (e.g.,
type-checking), then it also represents a slice with the same name that contains its
reference syntax as a concrete syntax, and the corresponding implementation for role
type-checking. This is a convenience that is generally used during the first stages of
the development; as new roles will require to be introduced, slices may be a better fit
(e.g., see [100]). Incidentally, the Language class inherits from Bundle, since Language is
a slice container as well (it follows that languages can be used as bundles).

Slices Slices are subclasses of Slice and implement the Component interface; in their
constructors they declare the modules from which they import their syntax and se-
mantic roles, using the importSyntax(String moduleName) and importRole(String

roleName) API. Endemic slices, do not extend the Slice class because they behave in
a different way: they do not import roles or syntax from modules, but rather they
declare a singleton object. Nonetheless, they extend the EndemicSlice class and invoke
a different API to instantiate the globally accessible resource that they implement.

Modules A module is a complex component made of several classes: one class inherits
from the Module class, and it declares whether it is referencing a syntax definition from

46

4.4. Implementation

package javalang;
public class WhileLoop extends Module {
public WhileLoop() {
declareSyntax();
declareRole("type_check", 0);

}
public class WhileSlice extends Slice {
public WhileSlice() {
importSyntax("clang.WhileLoop");
importRoles("clang.WhileLoop", "type_checking", 0);

}
}
public class WhileLoop$role$syntax extends Syntax {
public WhileLoop$role$syntax() {
declareProductions(
p(nt("WhileLoop"), "while", "(", nt("LoopCondition"), ")", nt("LoopBody"))
);

}
}
public class WhileLoop$role$type_check$0 implements SemanticAction {
public void apply(Context $ctx) {
$ctx.eval($ctx.node(1));
if ($ctx.node(1).getValue("type") != Boolean.class)
throw new Error("The type of LoopCondition should be a boolean value");

}
}
public class Lang extends Language {
public Lang() {
importSlices(
...
"javalang.WhileLoopSlice",
...

);
importEndemicSlices(
"javalang.SymbolTable"

);
declare(// syntax is implied
role(PREORDER, "type_checking"),
role(PREORDER, "code_gen")

);
}

}

Listing 4.15: Components in Chapter 4 as represented using Neverlang’s APIs.

47

4. Neverlang

Figure 4.4.: How a module is broken down into several classes.

a different module, or if the syntax is being defined within the module itself; then it
declares which roles are being defined, and which nonterminals will be hooked into,
using the numbering scheme described in Chapter 4. Then:

– if the module comes with a syntax definition, another class, extending the Syntax

class should be implemented; by convention this class shall be named

<module-name>$role$syntax.

For instance, the syntax for module javalang.WhileLoop in Listing 4.2 would be
named javalang.WhileLoop$role$syntax.

– for each role, and for each nonterminal being hooked into, a new class, extending
the SemanticAction interface should be defined. By convention, such classes
would be named by convention this class shall be named

<module-name>$role$<role-name>$<N>

where <N> is the number of the nonterminal that is being hooked and <role-name>

is the role identifier; any “-” in the role identifier is replaced with “_” to make it
a valid Java identifier (e.g., type-checking becomes type_checking). For instance,
rule 0 for the type-checking role of javalang.WhileLoop would be mapped onto

javalang.WhileLoop$role$type_checking$0.

The reason for this complex decomposition is to allow each semantic action to be
written using a different language of the JVM. When the method Module.getAction()

will be invoked, at runtime, the required action is loaded from disk and returned. The
class javalang.WhileLoop must invoke in its constructors the APIs to declare all its
sub-components (the class defining the syntax, and the classes defining the semantic
actions for each role). Figure 4.4 shows a summary of all the classes that must be
generated; Listing 4.15 shows a complete example of how the Neverlang language relates

48

4.4. Implementation

Component

Module

Slice

Language

Role SemanticAction
0..*

1..*

11..*

1..*

1..*

Syntax
1

1

1..*1..*

1..*

1..*

Figure 4.5.: Relations between classes and interfaces in Neverlang (interface names are in italics).

to the Neverlang API. Figure 4.5 shows the relations between classes and interfaces.
Because each semantic action is compiled as a different class file, a different pro-

gramming language can be used, provided that it can compile to a JVM class file. This
fine-grained decomposition of the compiled modules makes it possible to achieve a
finer-grained compilation model, that

1. reduces compile times
2. simplifies separate compilations
3. enables to ship, distribute and share language components as pre-compiled

binaries.
In fact, a change in one module requires to recompile only that module from source

(specifically, it would actually require recompilation only for those sections that have
been modified). Compare this to conventional compiler generation techniques, that,
being usually based on source generation, often require a large part (if not all) of the
source code to be recompiled anew. This approach streamlines the compiler-generation
process by making it possible to compile only those components that really need to
be rebuilt. Of course, this possibility becomes particularly useful when the language
implementation becomes large and complex (for instance, compare the experience we
conducted with neverlang.js Sect. 6.2). Moreover, pre-compiled Neverlang components
can be bundled together in jars to distribute them conveniently, and they can also be
shared and imported by different languages independently.

Finally, please recall that users are free to write alternative Module implementations,
with different loading strategies for semantic actions. For instance, a scripting language
would make it possible to define custom behavior even at runtime.

4.4.2. Runtime and Execution

The Neverlang runtime is made of two main parts: the DEXTER [17, 19] incremen-
tal parser generator and the component manager [18]. The component manager is
responsible for loading languages, slices and modules, and for dispatching the correct
semantic action to the node of the syntax tree that is being visited in the correct phase
(described in a role).

49

4. Neverlang

import neverlang.runtime.*;
public class Launcher {
public static void main(String[] args) {
Language lang = new javalang.Lang();
lang.eval(neverlang.utils.FileUtils.fileToString(args[0]));

}
}

Listing 4.16: The easiest way to write a launcher for a neverlang language processor. The quickest way
to launch it is using the nlgi tool (Sect. 4.3).

Figure 4.6.: Method Dispatching.

Once all the components have been defined and compiled into class files using the reg-
ular platform tools (javac, scalac, etc.), and a Language subclass has been implemented,
it is possible to execute the language processor, by invoking its Language.eval(String)
method (Listing 4.16). This is when the component manager kicks in.

The Component Manager The component manager is Neverlang’s core. It implements
the componentized visitor pattern and it loads and unloads the language components
into memory. When the Language subclass is instantiated, the component manager
loads the slices from disk, then it queries them for the modules they require. For
each production in each syntax definition, an inverted index is populated to map each
grammar production into the components that implement its semantics. For a given
triplet �p, r, i�, where p is a production, r is a role, and i > N is an integer number,
there is at most one semantic action that may be executed at a time. In particular, for a
language L with a grammar G, consider the mapping

m � P �R �N� SA� (4.1)

where P is the set of productions for a grammar G, R � �R0, R1, . . . , Rn� is the set of all
the roles for language L, and N � �0, 1, . . . , n, . . . � is the set of natural numbers, and

50

4.4. Implementation

public interface SemanticAction { void apply(Context $ctx); }

Listing 4.17: Semantic Action interface.

SA� is the set of all the semantic actions, in all the roles of R, plus the undefined action
�. Let us also indicate with Sr,i the action hooked to the i-th nonterminal in role r of
the slice S. Then, for all p > P, r > R, i > N the mapping m is defined as:

m�p, r, i� �
¢̈
¦̈̈
¤̈

Sr,i if Sr,i exists
� otherwise

(4.2)

The reason why p is needed in the definition is that each slice contains (imports) a
syntax definition, and the index i refers to a nonterminal in the syntax definition; then
the triplet �p, r, i� maps to at most one slice, which is the slice that contains production
p, role r and the semantic action hooked at index i. Currently, only one rule can be
hooked at the same i. This is reasonable because, for each role, we want to execute only
one semantic action per node5. Because the index is populated dynamically during the
bootstrap phase, it is possible to grow it and shrink it at runtime, by removing, adding and
updating its contents.

Action Dispatching When an input program must be processed, the eval() method in
the Language class passes the input text to the parser. If the parsing process terminates
unsuccessfully (the input program is syntactically incorrect), a ParsingException is
raised. Otherwise, a syntax tree is generated. Each node of the tree is an instance of
the ASTNode class. Each node is given a tag, which is the grammar production that it
represents.

Once the parsing has terminated successfully, the component manager begins the
visiting process, starting from the first semantic role. For instance, in the case of the
example language javalang.Lang (Listing 4.12), the first role would be type-checking.
For each node, the component manager reads the tag and it queries the inverted index
m. Back to our example, Fig. 4.6 represents the tree for the production WhileLoop

(Listing 4.2), during the execution of the type-checking role. Because nonterminal
WhileLoop is number 0 in slice javalang.WhileLoop, then:

m�p,type-checking, 0� � javalang.WhileLoop$role$type_checking$0

where p is rule WhileLoop^ "while""("LoopCondition ")""{"LoopBody "}". If the
value m�p, r, i� x �, then the semantic action Sr,i is executed.

Action Execution Each semantic action implements the single-method interface
named SemanticAction (Listing 4.17); this is what Java 8 now calls a functional interface6

5the m function may be allowed to return a set of semantic actions: but then the system should be able to
choose among them; we are using this idea to implement the Truffle-inspired dispatching mechanism
(Sect. 6.2.1)

6http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

51

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

4. Neverlang

and it is often called a single-abstract method (or SAM) type. When the semantic action
Sr,i must execute, its apply(Context) method is invoked. Context is a data class that
contains a reference to the node that is being visited, a reference to the current Language
instance, a reference to the role that is being executed. Executing Sr,i means invoking
the SemanticAction.apply(Context) method of the corresponding class with a valid
Context instance. In the case of Fig. 4.6, the Context instance would contain node 0,
role type-checking and a reference to the current javalang.Lang instance. The body
of the action supposedly interacts with the Context instance:

– it drives the visit of the tree (and the consequent evaluation of its children
or siblings), using the eval(ASTNode) to descend into a given child node, and
also evalAndReturn(ASTNode, String) to descend into a child node, and return
the value of one of its attributes. It also provides the suspend() and resume()

methods to suspend and resume the role that is currently executing. Invoking
these methods correspond, in the Neverlang language, to the syntactic sugar:
eval $N, $N:attribute, $suspend, $resume;

– it accesses nodes by nonterminal id using Context.node(int); e.g., ctx.node(0)
returns the node for WhileLoop, ctx.node(1) returns the node for LoopCondition,
ctx.node(2) returns the node for LoopBody, etc. In the Neverlang language these
correspond to the short form $N;

– it reads and writes attributes using the idioms

T value = ctx.node(i).getValue("attrName")

where T is the expected type for $i.attrName and

ctx.node(i).setValue("attrName", value).

In the Neverlang language, they correspond to the attribute access $N.attribute.
– it provides access endemic slices: ctx.singleton("EndemicName") corresponds

to $$EndemicName.

Listing 4.15 shows how the semantic action 0 for the type-checking phase in module
javalang.WhileLoop (Listing 4.2) may be written in Java by only using Neverlang’s
native APIs.

A Short Note on Signaling Termination The visit of a language processor may require
sometimes to be terminated abruptly, for instance to make an interpreter return from a
procedure or to break out of a loop. In Chapter 4 we showed that Neverlang provides
special keywords to support these situations. The $terminate command signals to the
system that a visit should immediately terminate. These special control-flow operations
require to unwind the call stack up to a given point (e.g., in the case of function call, up
until to the point where the function has been invoked, and in the case of a loop, up to
its root node). Neverlang implements such signals using a well-known technique that
involves using “fast” JVM exceptions to signal termination, and try/catch statements to
capture the signal: the technique consists in overriding the fillInStackTrack() method
with a NOP, and preallocating such exceptions as singletons, which makes throwing

52

4.4. Implementation

exceptions up to 400% times faster7, the technique is most notably used in the Scala
compiler8, in the Ruby interpreter [87], in the Truffle [111] interpreter implementation
system for Java, and in the Truffle-based interpreter for the R programming language
FastR [53]. In Neverlang, JVM exceptions have been exploited to implement control-
flow statements such as break, return; literature has also shown that JVM exceptions
can be even useful to implement even more powerful control flow abstractions, such as
forms of continuations [90].

For instance, consider Listing 4.18: suppose that we are implementing an interpreter
for the language of our running example, and suppose we want to introduce support for
the break statement inside the while loop. The interpreter may define an evaluation

role, where the input program is executed. The module BreakStatement implements
the syntax and semantics (role evaluation), for the break statement: that is, it throws
a singleton instance of the class CFlowSignal, called Break. The semantics of the
evaluation role of the while loop is to iterate up until the attribute booleanCondition

evaluates to false (notice the usage of Context.evalAndReturn()); the try/catch

blocks handle the signaling and break out of the loop or continue, depending on
which signal (if any) is thrown during the evaluation of LoopBody. This technique (or a
variation thereof) is used in the JavaScript interpreter (Sect. 6.2) to implement break,
continue, to return from function calls and to handle exceptions.

4.4.3. DEXTER

In order to support componentization and runtime composability, we also developed
DEXTER: the Dynamically EXTEnsible Recognizer [17, 19]. In the bootstrap phase,
productions are read from the Syntax subclasses, and they are fed to the DEXTER
parser generator. DEXTER implements an in-memory LR parser generator. The
generated parsers can be incrementally extended (grown) or restricted (shrunk) by
adding and removing grammar productions on-the-fly. In fact, the syntax role of a
module is a straight translation from the Neverlang DSL to a series of Java API calls
to the DEXTER component (compare Listing 4.2 to Listing 4.15). The DEXTER parser
generator implements an algorithm that bears some resemblance to those described
in [48] and [46]. The algorithm updates the LR(0) DFA, which is the basis for many
interesting parsers of the LR family, such as GLR and LALR. The DEXTER component
includes an extensible regex-based lexer that allows to define lexemes at runtime. This
subcomponent is called LEXTER. Lexemes are defined inline in a production both when
they are constant keywords and when they are patterns. In the Neverlang language
(Sect. 4.1), patterns are delimited by slashes, while keywords are delimited by quotes; in
the Java API the distinction is made by using different classes. Further information on
DEXTER and the underlying formal model that proves the correctness of the updated
parsers can be found in [19]. An excerpt from this paper is reproduced in Appendix B.

7See http://blogs.atlassian.com/2011/05/if_you_use_exceptions_for_path_control_dont_fill_

in_the_stac/ and http://www.javaspecialists.eu/archive/Issue129.html.
8see http://www.scala-lang.org/files/archive/api/2.11.x/#scala.util.control.Breaks, http://
www.tzavellas.com/techblog/2010/09/20/catching-throwable-in-scala/

53

http://blogs.atlassian.com/2011/05/if_you_use_exceptions_for_path_control_dont_fill_in_the_stac/
http://blogs.atlassian.com/2011/05/if_you_use_exceptions_for_path_control_dont_fill_in_the_stac/
http://www.javaspecialists.eu/archive/Issue129.html
http://www.scala-lang.org/files/archive/api/2.11.x/#scala.util.control.Breaks
http://www.tzavellas.com/techblog/2010/09/20/catching-throwable-in-scala/
http://www.tzavellas.com/techblog/2010/09/20/catching-throwable-in-scala/

4. Neverlang

public enum CFlowSignal extends neverlang.runtime.BaseCFlowSignal {
public static final CFlowSignal Break = new CFlowSignal();
public static final CFlowSignal Continue = new CFlowSignal();
private BreakSignal(){}

}
// semantic action for Break statement:
// BreakStatement <-- "break";
public class BreakStatement$role$syntax extends Syntax {
public void apply(Context ctx) { throw CFlowSignal.Break; }

}
// semantic action for WhileLoop role evaluation:
public class WhileLoop$role$evaluation$0 implements SemanticAction {
public void apply(Context ctx) {
// eval LoopCondition
// and return attribute LoopCondition.booleanCondition
while(ctx.eval(ctx.evalAndReturn(1, "booleanCondition"))) {
try {
ctx.eval(ctx.node(2)); // evaluate body
ctx.eval(ctx.node(1)); // re-evaluate condition

} catch (CFlowSignal sig) {
if (sig == Break) break;
if (sig == Continue) continue;

}
}

}
}

Listing 4.18: Example CFlow Signals Handling through Exceptions.

54

5
Case Study: Evolution of a DSL through

Composition

Domain-specific languages are computer languages designed to tackle problems that
are tied to a particular problem-domain. Studies pointed out [62] that up to 80% of a
software system lifetime is spent on maintenance and evolution activities, and DSLs
are no exception: continual evolution of DSL implementations is often difficult because
it is generally unplanned and unanticipated. Componentized language development
leads to language implementations that can be easily extended and evolved.

This section is devoted to show a simple but complete usage example of Neverlang.
The example is the same state machine domain-specific language in [97]. Just like
in Tratt’s paper, the DSL will be evolved through extension; but, in our case, we will
show that the same kind of language extension can be achieved in Neverlang using
language components. In Sect. 6.1 the same experience will be discussed, comparing
other language frameworks. The source code listings in this section may have been
edited for readability, the full working example with source code can be downloaded at

http://neverlang.di.unimi.it/vacchi/examples.tgz.

Auxiliary Classes

Transition A data class of three fields: to, from, and event
GuardedTransition A subclass of Transition that supports guards and actions
TransitionTable Maps a state into the transitions that leaves that state

Table 5.1.: Auxiliary Classes for the State Machine DSL.

55

http://neverlang.di.unimi.it/vacchi/examples.tgz

5. Case Study: Evolution of a DSL through Composition

opened closed

close

open

// door.sm
state machine Door {
state opened state closed
transition from opened to closed:

close
transition from closed to opened:

open
}

Figure 5.1.: Door State Machine.

// sm.Program
Program^ "state" "machine" Identifier "{" StateList TransitionList "}";
// module sm.State
State^ "state" Identifier;
// sm.Transition
Transition^ "transition" "from" Identifier "to" Identifier ":" Identifier;
// sm.StateList
StateList^ State StateList;
StateList^ State;
// sm.TransitionList
TransitionList^ Transition TransitionList ;
TransitionList^ Transition;

Listing 5.1: Grammar of the State Machine DSL.

5.1. A Simple State Machine DSL

Although often represented graphically, state machines are also conveniently repre-
sented in the form of text using a DSL. In this example, the DSL translates the state
machine defined in the input program into compilable source code. The first ver-
sion of the language only supports defining a list of states and a list of transitions
between states. Each state is indicated through its Identifier; a transition is a triplet
of Identifiers that represent, respectively, the name of the state from which the
transitions leave, the name of the one where the transition goes, and a name for the
transition itself. The first declared state is by convention also the initial state of the
machine. Figure 5.1 shows the state machine for a door, along with the code that
describes it; this machine loops indefinitely.

Listing 5.1 shows the grammar of the language as broken down into the reference
syntax section of 6 modules, each of which represents a syntactic feature of the DSL (the
Neverlang syntax has been omitted for conciseness). Three evaluation phases, in Never-
lang, roles, (Sect. 4) have been defined: collect-states, validation, code-gen. Each
role represents a different concern in the domain-specific language. The collect-states

role collects the list of states in a Java Set<State>; the validation verifies that no un-
defined states were used in transitions, that are put in their own TransitionTable:

56

5.1. A Simple State Machine DSL

module sm.base.Program {
reference syntax form sm.Program
role(collect-states) {
2 .{
// pulls a List<State> of attributes called "state"
// defined on each nonterminal "State"
// in StateList^ State StateList; StateList^ State;
// notice that generics are supported
List<State> states = AttributeList.collectFrom($2, "state");
$0.initialState = states.get(0);
$2.stateSet = new java.util.HashSet<State>(states);

}.
}
role(validate) {
3 .{
// same for attribute "transition" of nonterminal "Transition"
List<Transition> transitions = AttributeList.collectFrom($3,"transition");
Set<State> states = $2.stateSet;
// validate each transition
for (Transition t: transitions) {
if (!states.contains(t.from()) || !states.contains(t.to()))
throw new Error(’’’Undefined states in transition ${t.name()}’’’);

}
// all transitions are valid, proceed to fill the table
// usage of a stateful table here is for instructional purposes;
// an attribute $3.transitionTable would have worked as well.
$$TransitionTable.addAll(transitions);

}.
}
role (code-gen) { ... }

}

Listing 5.2: A snippet from module sm.base.Program..

it may raise an error if an undefined state is encountered; the code-gen role gen-
erates compilable (Java) source code implementing the state machine. Listing 5.2
shows a few lines of code from the collect-states and validation phases for mod-
ule sm.base.Program, which implements the semantics for the syntax defined in
sm.Program. Notice that attributes are pulled from StateList and TransitionList us-
ing a Neverlang API (AttributeList.collectFrom()), which basically implements the
bucket brigade operator [52]. This frees users from defining specific, repetitive semantics
for rules of the form XList^ X XList; XList^ X. Thus, the modules sm.StateList

and sm.TransitionList can be used as they are in the language implementation, with-
out additional semantic definitions. The usage of this API is the preferred way to deal
with such cases. Please notice that pulling up states and doing the analysis here is not
idiomatic in attribute grammars, where you would rather pass the list of states down
the tree so that each transition would perform the validation. Of course, this is possible

57

5. Case Study: Evolution of a DSL through Composition

module sm.base.Program {
// ...
role(code-gen) {
0.{
String className = "StateMachine_" + $1.identifier;

StringBuilder sb = new StringBuilder();
Set<State> states = $2.stateSet;

// for each state, construct a "case" clause
for (State s: states) {
String caseStr = ’’’
case ("${ s.name() }"):
System.out.println("${s.name()}");

’’’;

// there will be only one transition per state
// otherwise the automaton would be non-deterministic!
for (Transition t: $$TransitionTable.values()) {
if (t.from().equals(s)) {
String nextStateString = ’’’nextState = "${ t.to().name() }";’’’;
caseStr += nextStateString;

}
}

caseStr += "break;";
sb.append(caseStr);

}

State initialState = $0.initialState;

String code = /* ... generate the class body ... */;

$0.Text = code;
$0.className = className;

System.out.println(code);

}.
}

}

Listing 5.3: A snippet from the code-gen role in sm.base.Program.

in Neverlang as well.
The TransitionTable implementation may be provided to the language using an

endemic slice. The TransitionTable may be defined as a map between states and a list of
states between which a transition exists. For instance, in the door state machine (Fig. 5.1)
the opened state should return the set �closed�. Obviously in a deterministic state
machine only one transition should leave from each state; thus, the validation role may
also check that, for each declared state, the size of its entry in the table is less or equal
to 1. A Transition may be implemented as a custom Java data class, that modules
would import. Similarly, the TransitionTable and StateSet companion classes for the
corresponding endemic slices should be written, as described in Sect. 4.1.2; we will
omit the source code for these components, since they are trivial to write. A summary
of the support classes is shown in Table 5.1.

The semantic action for the Program nonterminal in the code-gen phase (Listing 5.3)
produces compilable code for the state machine (Listing 5.4). In this case, the generated
source code is a simple Java program with a while loop that switches over the possible
states of the machine, setting the variable nextState when a transition exists.

58

5.2. A Simple Imperative Language

String nextState = "opened"; // initial state
while (true) {
switch (nextState) {
case "opened" :
System.out.println("transition close");
nextState = "closed";
break;

...
}

}

Listing 5.4: Compiled code for the Door state machine.

In order to use the code-generating language processor for this language, a language

descriptor (Sect. 4.1) sm.base.Lang will be defined. Then it is possible to invoke the
nlgc tool (Sect. 4.3) on the implemented modules and slices to produce the source
code interfacing with the Neverlang API (Sect. 4.4. The code will be compiled using
javac1. At this point, the generated class files will be executable as a self-contained
language implementation using nlg or nlgi (Sect. 4.3), callable from a regular JVM
program (Sect. 4.4.2), and reusable across different language implementations without
any change. For instance, to execute the input program in Fig. 5.1, one would simply
write at a prompt:

$ nlg sm.base.Lang door.sm

producing the compilable source code in Listing 5.4 (support APIs are provided to
automatically generate an output file on disk).

5.2. A Simple Imperative Language

Executable UML models include the specification of an action language [61] that can
be used for many purposes, such as expressing actions and guards in a state ma-
chine model. For instance the ALF specification2, describes a stand-alone, imperative
programming language with a Java-like syntax. In this example, let us suppose that
we already have an implementation of a suitable language for this purpose, that is a
simple, imperative programming language with support for variables and expressions
like the javalang.Lang language that we used as our running example in Sect. 4. For
instance, it is easy to see that by combining the syntax definitions in Listing 5.5 with the
WhileLoop definition that we have seen in the previous sections, we would have enough
components to define a simple Turing-complete programming language. As you can
guess from the grammar, al (Action Language) supports only two types: numbers

1of course, as seen in Sect. 4, if any other language is used in the semantic actions, users will have to
invoke the language-specific compiler as well; e.g., for Scala, it would be scalac

2see http://www.omg.org/spec/ALF/1.0.1/

59

http://www.omg.org/spec/ALF/1.0.1/

5. Case Study: Evolution of a DSL through Composition

// module al.BoolExpr
BoolExpr^ BoolOperand;
BoolExpr^ BoolExpr "&&" BoolOperand;
BoolExpr^ BoolExpr "||" BoolOperand;
// module al.RelExpr
RelExpr^ RelOperand ;
RelExpr^ RelExpr "<" RelOperand;
RelExpr^ RelExpr ">" RelOperand ;
...
RelExpr^ RelExpr "==" RelOperand ;
// module al.VarDef
VarDef^ Identifier ":=" Expr;

// module al.Sum
SumExpr^ Term;
SumExpr^ SumExpr "+" Term;
SumExpr^ SumExpr "-" Term;
// al.Term
Term^ Const;
Term^ VarLookup;
// module al.VarLookup
VarLookup^ Identifier;
// module al.Const
Const^ /[0-9]+/;
// omissis: al.Statement
// omissis: al.StatementList

Listing 5.5: Relevant parts of the grammar for the Action Language.

module al.Sum {
reference syntax {
[st] SumExpr^ Term;
[sp] SumExpr^ SumExpr "+" Term;
[sm] SumExpr^ SumExpr "-" Term;
}
role (code-gen) <template> {
[st] .{ {{ $st[1].Text }} }.
[sp] .{ {{ $sp[1].Text }} + {{ $sp[2].Text }} }.
[sm] .{ {{ $sm[1].Text }} - {{ $sm[2].Text }} }.

}
}

Listing 5.6: Example code for Sum in the Action Language. Code generation uses the template syntax.

(integers) and booleans. For simplicity, variables can be only assigned integer values,
and undeclared variables are assigned the default value �1.

Two roles are defined: validate and code-gen. The code-gen role generates Java
source code, thus it is compatible with the code-gen role of the state machine DSL.
Listing 5.6 shows the module for the Sum definition. The code-gen phase uses the
template syntax (see Sect. 4.3). For instance, compare the valid al program to compute
the factorial of n in Listing 5.7 (on the left) with the Java/C source code (on the right)
that the code-gen phase produces. The validate role keeps track of the used variables,
so that the code-gen role may declare them at the top of the listing. You may also be
able to see that it would be easy to extend the language with a module VarDecl to
declare variables: the validate role of the VarLookup module could then raise an error
when users attempt to use an undeclared identifier. In this case a VarTable would
keep track of the defined variables, thus one should include an endemic slice for this
purpose.

60

5.3. Guards and Actions: Composing the DSLs

// al program to compute n!
n := 4; i := n; acc := 1;
while (i > 0) {
acc := acc * i;
i := i - 1;

}

int n = -1, i = -1, acc = -1;
n = 4; i = n; acc = 1;
while (i > 0) {
acc = acc * i;
i = i - 1;

}

Listing 5.7: al language and the result of the code-gen role.

start waiting

vend candy

vend drink

empty

startup
[choice := 1]

select candy
[choice = 1, candies > 0]
candies := candies − 1

candy restart
[candies > 0 ∨ drinks > 0]

choice := 0

select drink
[choice = 2, drinks > 0]
drinks := drinks − 1

drink restart
[candies > 0 ∨ drinks > 0]

choice := 0

drink empty
[candies = 0, drinks = 0]

choice := 0

candy empty
[candies = 0, drinks = 0]

choice := 0

Figure 5.2.: Vending Machine.

5.3. Guards and Actions: Composing the DSLs

The al language would be useful to introduce an interesting feature in our original DSL:
guards and actions. Figure 5.2 and Listing 5.8 show the state chart of a vending machine.
The machine vends drinks and candies, depending on an initial choice, which is an
integer value—that is, 1 for candies, 2 for drinks, and 0 for neither. Once a candy or
a drink has been vended, the machine resets the choice to 0, and it goes back to the
initial waiting state, unless both candies and drinks are unavailable, in which case the
machine goes to the empty state. The example requires us to introduce the concepts of
variable, guard and action to transitions: the guard is a boolean expression that causes a
transition to fire only when it evaluates to true, an action is a sequence of statements
of the action language that are executed when a transition fires, and a variable is an
identifier that is associated with an integer value. All these concepts can be described
in terms of components of the al language.

A guarded transition is almost the same as a simple Transition of the base implemen-

61

5. Case Study: Evolution of a DSL through Composition

state machine VendingMachine {
state start state waiting state vend_candy state vend_drink state empty
transition from start to waiting : startup { choice := 1; }
transition from waiting to vend_candy :
select_candy [choice = 1 && candies > 0] { candies := candies - 1; }

transition from vend_candy to waiting :
candy_restart [candies > 0 || drinks > 0] { choice := 0; }

transition from vend_candy to empty :
candy_empty [candies = 0 && drinks = 0] { choice := 0; }

...
}

Listing 5.8: Code for the Vending Machine in Fig. 5.2. Code for drinks is omitted, since it mirrors
the candies side..

module sm.ext.GuardedTransition {
reference syntax {
Transition^ "transition" "from" Identifier "to" Identifier ":"

Identifier GuardAction;

[ga] GuardAction^ Guard Action;
[g] GuardAction^ Guard;
[a] GuardAction^ Action;

[gg] Guard^ "[" BoolExpr "]";
[aa] Action^ "{" SMActionList "}" ;
...

}
role (code-gen) {
0.{
String from = $1.identifier;
String to = $2.identifier;
String identifier = $3.identifier;
String guard = $4.guard;
String action = $4.action;

$$TransitionTable.addTransition(from, to,
GuardedEvent.of(identifier, guard, action));

}.
[ga] .{
$ga[0].guard = $ga[1].Text;
$ga[0].action = $ga[2].Text;

}.
[g] .{
$g[0].guard = $g[1].Text;
$g[0].action = null;

}.
...

}

}

Listing 5.9: Implementation of the GuardedTransition..

tation, but it is followed by a guard—a boolean expression between brackets—and/or
by an action—a sequence of assignments. In a state machine with guards, a transition
fires only when its guard evaluates to true; therefore, now multiple transitions may

62

5.3. Guards and Actions: Composing the DSLs

int choice = -1, candies = -1, drinks = -1;
String nextState = "waiting"; // initial state
while (true) {
switch (nextState) {
...
case "vend_candy" :
// transition from vend_candy to waiting: candy_restart
if (candies > 0 || drinks > 0) {
choice = 0;

System.out.println("transition candy_restart");
nextState = "waiting";
break;

}
// transition from vend_candy to empty: candy_empty
if (candies == 0 || drinks == 0) {
choice = 0;

System.out.println("transition candy_empty");
nextState = "empty";
break;

}
...

}
}

Listing 5.10: Compiled code for the Vending Machine..

leave the same state. This extension can be realized 1) by adding a new component to
the language that implements a transition with a guard and an action, alongside the
original “simple” transition, and 2) modifying the code-gen phase so that multiple
transitions leaving the same state can be accounted for.

The new module is called sm.ext.GuardedTransition (Listing 5.9) and it uses a
companion Java class GuardedEvent. As you can see, the syntactic definition is similar
to the one in Transition.nl (Listing 5.1, p.56), this does not introduce conflicts because
of the new GuardAction nonterminal, that appears only when the transition statement
is followed by a guard, an action or both. During the code-gen phase the new transition
is added to the TransitionTable. This transition contains the generated code for the
guard expression and the assignment statements in the action body: the code-gen role
from the al.BoolExpr slice and the al.StatementList would pass on the generated
code through the code attribute defined on their nonterminals. Listing 5.10 shows a
part of the generated source code for the vending machine in Listing 5.8.

The new slices can be introduced alongside the old ones; only one substitution is
required: the code-gen phase in the Program slice must now be aware that more than
one transition may leave a state, and that guards and actions should be printed out
(Listing 5.11).

Finally, Listing 5.12 shows all the slices that have been included in the complete

63

5. Case Study: Evolution of a DSL through Composition

0.{
...
for (State s: states) {
...
for (Transition t: localTs) {
String nextStateString =

’’’nextState = "${ t.to().name() }";’’’;
Event evt = t.event();
if (evt instanceof GuardedEvent) {

GuardedEvent ge = (GuardedEvent) evt;
if (ge.guardText() != null) {

caseStr += ’’’if (${ge.guardText()}) ’’’;
}
if (ge.actionText() != null) {

caseStr += ’’’{
${ge.actionText()}
${nextStateString}

}’’’;
} else {
caseStr += nextStateString;

}
} else {
caseStr += nextStateString;

}
}
...

}
...

}.

Listing 5.11: A snippet from the code-gen role in sm.ext.Program..

language implementation:
– the sm.* package contains sm.StateList and sm.TransitionList, simple syntac-

tic definitions where no additional semantics has been defined.
– the sm.base.* package denotes slices defined for the basic state machine language
– the al.* package denotes slices defined by the imperative language, that were

used in the guard/action language
– the sm.ext.* package denotes the slices that were explicitly (re)defined for the

extended state machine language with guards and actions.

Observations This example showed how to implement a DSL as a collection of com-
ponents, each representing a concept or feature of the language. The component-based
model, however, shows that it is possible to improve code reuse of pre-defined fea-
tures, possibly coming from different languages. The model makes it possible to reuse
pre-packaged bundles of syntax and evaluation phases across different language imple-

64

5.3. Guards and Actions: Composing the DSLs

language sm.ext.Lang {
slices
sm.base.State al.Term sm.ext.ProgramSlice
sm.base.Transition al.VarLookup sm.ext.GuardedTransition
sm.StateList al.SumExpr
sm.TransitionList al.RelExpr
sm.base.Identifier al.BoolExpr

endemic slices
sm.base.SMBuilder al.VarTable

roles syntax < collect-states < validate < translate
}

Listing 5.12: Slices included in the state machine language with guards and transitions.

mentations, using language components; nevertheless, it makes it possible to easily reuse
syntax and evaluation phases in different language components, both making it easier
to produce variants of the same DSL or to reuse the same components into language
implementations that have different requirements. For instance, in this example we
produced a state machine that generated compilable Java source code. The code-gen

phase could be easily traded with a different implementation, generating code for an
alternative target language; for instance, Sect. 4.1 showed how to generate bytecode
using Jasmin and the template translator plugin. Another alternative processing
phase may generate a graphic representation using Graphviz’s dot syntax [28]; finally
the state machine could be interpreted. Each of these changes do not require any editing
on the existing source code, but they rather consist in the creation of new modules and
then wiring together the desired roles by defining new slices. The original, pre-compiled
implementations can be left untouched on disk. This development model has further
implications: independent aspects of the language could be deployed separately in dis-
tinct implementations of the same language. For instance, logging and tracing concerns
may be packaged only with the development version of a DSL; or they could be packaged
together and deployed dynamically on demand. They could even be loaded dynamically
at runtime.

65

6
Evaluation

We will now present a series of experiences directed towards the evaluation of our
model of language implementation. First, we will once again use the implementation of
the componentized state machine DSL of Sect. 5 to compare a selection of other modular
language implementation frameworks, to show that the model is general enough to be
reproducible using different tools. Then, by the help of the experiences that we carried
out through Neverlang, we will show the benefits that a native implementation of this
model would carry. We show that language extension is simplified by a feature-oriented
language implementation; this experience has been carried out by first implementing an
interpreter for a real-world programming language (JavaScript). Language components
can be compiled separately, they can be redistributed as pre-compiled artifacts, and they
can be loaded dynamically; not only is it possible to reuse code, but extensions can
be implemented in isolation and loaded on demand; making it possible to evolve a
language implementation even atruntime. In the last subsection we will discuss the
expressive power of Neverlang through the implementation of the DESK language [74].

6.1. Feature-Oriented Language Implementation Across Tools

In Chapter 3 we presented a model of feature-oriented language composition. The
basic idea is to be able to encode features of a language as self-contained language
components, that can be reused across different language implementations. In Chapter 5

we presented a simple, but full example of the model in action, using Neverlang.
In order to evaluate this model, we tried to reproduce the same experience in other
frameworks for modular language development. We will not go into the details of
implementing the state machine DSL itself, but we will use this language as a way to
discuss the features of each framework and the way the model fits in their design. The

67

6. Evaluation

language StateMachine {
lexicon {
keyword state | machine
identifier [a-zA-Z_][a-zA-Z0-9_]*
...

}

attributes sm.model.StateMachine STATEMACHINE.sm;
...

rule statemachine {
STATEMACHINE ::= state machine #identifier

#lbrace STATE_LIST TRANSITION_LIST #rbrace
compute {
STATEMACHINE.sm = newStateMachine(#identifier.value(),
STATE_LIST.states, TRANSITION_LIST.transitions);

};
}

method StateMachineFactory {
import sm.model.*;
import java.util.List;
public StateMachine newStateMachine(String id, List states, List

transitions) {
return new StateMachine(id, states, transitions);

}
...

}
}

language GuardedStateMachine extends StateMachine, ActionLang {...}

Listing 6.1: A snippet from the State Machine language implementation in LISA.

experience were conducted using LISA 2.2, Silver r1230 (hg), Spoofax 1.2.0.0-s41399,
Xtext 2.5.3. Full source code of the examples can be found at

http://neverlang.di.unimi.it/vacchi/examples.tgz.

At the end of this section we will summarize the results of this experience.

6.1.1. LISA

The LISA [63, 65] modular language development framework achieves language composi-
tion through an extension to attribute grammars (Sect. 2), supporting multiple inheritance
of language specifications. It is possible to inherit language definitions from several
specifications and to compose them into one language. For instance, the state machine
language with guards and actions can be seen as the composition of two language spec-
ifications: StateMachine and ActionLanguage, with the code for guarded transitions
being the glue between the two.

68

http://neverlang.di.unimi.it/vacchi/examples.tgz

6.1. Feature-Oriented Language Implementation Across Tools

// StateMachine
rule StateMachine
rule State
rule Transition
rule StateList
rule TransitionList

// ActionLanguage
rule Term
rule VarLookup
rule SumExpr
rule RelExpr
rule BoolExpr

// GuardedStateMachine
rule START
rule GuardedTransition

Listing 6.2: Rules sections defined for the State Machine DSL.

In Lisa, syntax definitions are represented in the rule section of a language speci-
fication (Listing 6.1). LISA’s rule section can be seen as a combination of a syntax
definition with its semantics (Sect. 3). A rule section may contain one or more produc-
tions and programmers may refer attributes on the nonterminals of such productions;
such sections are usually small and define semantically-related portions of the language.
As such, we may say that they concisely encode language components (Chapter 3). In fact,
they can be substituted (overridden) and composed (by way of language inheritance).
The implementation of the state machine language with guards and transition followed
approximately the partitioning scheme used for Neverlang in Sect. 5 (see Listing 6.2).
Dependencies between such components are implicitly given by the syntax definitions
(relations between productions) and the attributes that are defined and used between
portions of attribute grammars, that is, rule sections.

LISA does not provide a first-class construct to partition rules into evaluation phases
(Neverlang’s roles); however, it is possible to achieve this kind of separation of concerns
by logically partitioning the attributes with respect to the concerns they pertain to. For
instance, the most simplistic approach may be to resort to a naming convention, such as
prefixing with a phase “identifier” those attributes that relate to a particular phase (e.g„
validation_attribName), which is perfectly fine for simple languages like the State
Machine DSL. In this case, one attribute may be used to validate the state machine, or
an error could be thrown; another attribute could be used to accumulate the generated
source code (for the equivalent of a code-gen role in Neverlang), which in LISA is done
through concatenation of strings; since there is no dedicated syntax for this purpose,
we moved the bulk of the code generation to the toString() method of the support
classes (Sect. 5) for convenience.

A better way to factorize the evaluation phases would be to exploit LISA’s multiple
inheritance, and define evaluation phases as separate languages that inherit from a base
language, which would define the syntax. Because multiple inheritance is allowed, it
is conceptually possible to partition attribute definitions into phases. Then, for each
phase, one would define a different language specification.

LISA’s model is able to achieve a similar degree of componentization of the conceptual
model of Sect. 3, although using a different strategy, which is to be ascribed to the use
of inheritance. Because of this model, code reuse may be harder in some situations,
and easier in others. For instance, inheritance natively supports language extension;
thus rule sections in a language specification cannot be “cherry-picked” in a way
self-contained language components would allow, but only inherited in bulk. Suppose

69

6. Evaluation

grammar sm:statemachine;

import sm:transition;
import sm:transitionlist;
...

terminal State_t ’state’ ;
terminal Machine_t ’machine’ ;
...

synthesized attribute name :: String;
nonterminal StateMachine_c with sname, stateList, transitionList;

concrete production statemachine_c
s::StateMachine_c ::= State_t Machine_t

id::Identifier_t LBrace_t
sl::StateList
tl::TransitionList RBrace_t

{
s.stateList = sl.stateList;
s.sname = id.lexeme;
s.transitionList = tl.transitionList;

}

Listing 6.3: A portion of the Silver grammars for the State Machine DSL..

that a rule section of language La S1 requires nonterminal X in rule section S2, and
suppose that Lb inherits from La, but only wants to use S1 and not S2; the only way
to disallow rules in S2 is semantically through the technique described by Erdweg et
al. [29] to implement language restrictions through extension. Thus, the language
processor would grow in size and complexity without any real benefit. The solution
in this case would be to factor a language as a collection of smaller “sub-languages”
only containing one rule section each. The only limit to this model would be that it
is still not possible to separate the definition of the syntax from the definition of the
semantics.

In Sect. 3 we also assumed that languages may have visibility on globally-accessible
resources, declare new data structures, support libraries, etc. This role is played by
LISA’s method section. In this section a language may define data structures and
operation on said data structures that should be globally available throughout all the
rule sections of the input source.

6.1.2. Silver

Silver [101] is a statically-typed domain-specific language for the implementation of
modular attribute grammars. A module in Silver is simply called a grammar. Grammars
define both the (abstract or concrete) syntax and the semantics of a part of a language.
The framework encourages the development of self-contained language extensions
called composable extensions, which are those extensions that can be used in conjunction
with other language extensions typically designed without knowledge of one another.

70

6.1. Feature-Oriented Language Implementation Across Tools

// base state machine // action language // extended state machine
sm:base:statemachine al:term sm:guards:main
sm:base:state al:varlookup sm:guards:guardedtransitions
sm:base:transition al:sumexpr
sm:base:statelist al:relexpr
sm:base:transitionlist al:boolexpr

Listing 6.4: Silver grammars for the State Machine DSL.

In Silver a language component may be implemented through a collection of grammars.
A grammar in Silver is equivalent to a module in a general purpose programming
language. A language is the composition of several grammars: a grammar, usually
named Main contains a parser section that specifies the grammars that should compose
into the full language implementation, yielding the language processor.

Grammars define production rules, terminal and nonterminal symbols, and the
attributes that may occur on said nonterminals. Each production declaration introduces
a code section which contains the attribute definitions of the nonterminals. For instance,
Listing 6.3 is a detail from the implementation of the state machine DSL.

Even though it seems like Silver’s grammars are supposed to be self-contained, in
that the syntax of a construct and its semantics (as attributes) form a single code section
(similarly to LISA) it is still possible to inject extra-attributes, and therefore extra-
semantics onto the same production using aspect productions. Aspect productions
may be defined in separate modules. Therefore, although there is no formal support
for a concept of compilation phase, it is certainly possible to use aspect productions to
factorize the semantics in such a way. In Silver, it is also possible to define abstract

productions as opposed to concrete productions. A concrete production is the concrete
syntax definition of a language construct; abstract productions represent an abstract
data structure, that can be constructed during the processing of the parse tree to map the
concrete syntax onto an abstract representation, or to implement a data structure. For
instance, in our state machine DSL, abstract productions would be used to implement
the equivalent of the Transition class in Table 5.1.

Extra support code can be declared in functions. In a certain sense, functions and
abstract productions may play the role of the globally-scoped components that a language
may refer; that is, ancillary data structures or code routines that are used throughout
the entire language implementation. However, while in the model the idea is that these
components may be easily swapped with alternative implementations, in Silver these
components must be imported, thus creating a dependency between the two modules.
This is required in order for the Silver compiler to be able to type-check correctly: in
fact, as we said at the beginning, one of Silver’s peculiar features is static typing. On
the other hand, this means that you cannot easily substitute the imported module with
a different implementation, unless you provide another module with the same exact
name. In Neverlang this is in part possible thanks to its architecture, based on module
and slice composition; on the other hand, in Neverlang static checking is not currently
performed, even though it could be implemented on top of the current framework.
Silver performs this kind of checks, but because it currently does not support type

71

6. Evaluation

Start.StateMachine =
< state machine <ID> { <State*> <Transition*> } >

State.State = < state <ID> >

Transition.Transition = < transition from <ID> to <ID> : <ID> >

Listing 6.5: Syntax definitions in SDF3.

classes or a construct alike1 it is unfortunately not possible to abstract away from the
actual implementation of the module. Nevertheless, the issue can be overcome by
resorting to abstract syntax definitions, and remapping the concrete syntax onto an
abstract representation.

The state machine example in Silver, from the syntactic point of view, can be factored
out similarly to the base example in Chapter 5. Yielding the grammars in Listing 6.4.
From the semantic point of view, similarly to the LISA example, we resorted to simple
naming conventions on attributes to separate validation and code generation. The
validation phase can be implemented using an attribute to report validity of the input
program, or raising an error using the error(msg) built-in function. Code generation
can be done through string concatenation of an attribute (in Silver, conventionally pp for
pretty printing), but Silver makes available utility functions to pretty print and generate
output code; for instance it supports string interpolation through the template string
syntax. The separation could be also made more flexible through aspect productions:
in this case, one would define one module for the syntax of each construct, and then, for
each one of them, a module implementing each evaluation phase (validation and code
generation). It is worth noticing, though, that, since Silver is a purely functional language,
stateful data structures would not actually fit within the system’s programming model:
so, although support libraries are supported, this limit is by design.

Finally, Silver also supports attribute forwarding, this feature make it possible to define
attributes on a node in terms of the attributes of another subtree. For instance, the
GuardedTransition could be partially defined in this way (see the Sect. 6.1.5 for more
details.)

6.1.3. Spoofax

Spoofax [56] is an Eclipse-based language workbench that implements a complete
tool suite to implement DSLs and code generators. The Spoofax workbench, besides
compilers for an input DSL, also generates the platform tooling for language editing, i.e.,
an Eclipse plugin with syntax highlighting, auto-completion, integrated error reporting,
etc.

In the implementation of the state machine language the syntax was defined using
the SDF3 syntax specification language; SDF3 make it possible to define the syntax of a
language, and the tree the concrete syntax should map to, by way of a template language

1«When Silver begins to support type classes (it doesn’t yet, but probably will)» https://code.google.
com/p/silver/wiki/Reference_Function

72

https://code.google.com/p/silver/wiki/Reference_Function
https://code.google.com/p/silver/wiki/Reference_Function

6.1. Feature-Oriented Language Implementation Across Tools

to-java:
GuardedTransition(s1,s2,t, Guard(guard), Action(action)) -> $<
if (<guard’>) {
<action’’>
nextState = "<s2>";
break;

}
>
with
guard’ := <to-java> guard

; action’ := <map(stmt-to-java)> action
; action’’ := <concat-strings> action’

Listing 6.6: to-java rule for term GuardedTransition(state, state, id, guard, action).

(Listing 6.5). SDF2, which uses a variant of a BNF-like syntax, is also available. In
this template language, instead of using grammar productions, the syntax is specified
by way of syntax snippets, where placeholders act as nonterminals (similarly to the
examples in Chapter 3). Syntax definitions written in SDF map the concrete syntax
onto an abstract representation called term, which are then analyzed and manipulated
throughout the evaluation phases. Because Spoofax is a Workbench, each evaluation
phase may be triggered by specific user actions; in particular syntax checking and
coloring is performed as you type, program analysis (name resolution etc.) is done on
save; code generation is performed by clicking a button.

Spoofax provides DSLs for simplifying the description of common language pro-
cessing tasks (or concerns [103]). For instance, the state machine DSL’s validation phase
can be written using the built-in name binding language, NaBL. This domain-specific
language does actually more than just error reporting, though; it highlights incorrect
references in an input program (see Fig. 6.1), it makes it possible to jump from the
use-site of an identifier to its corresponding declaration site, etc. Other DSLs currently
under development are TS for type analysis and DynSem for specification of executable
operational semantics to generate interpreters [103]. Nevertheless, it is possible to
specify custom processing phases using the Stratego/XT [12] program transformation
language and platform, which is the core of the platform itself, although the underlying
runtime system is the JVM2. For instance, the editor provides predefined hooks for
source code generation, but the code generation phase is written using Stratego.

The Stratego language is itself a declarative, dynamically-typed programming language
for term rewriting. In the case of languages, a term can be seen as a node in an abstract
syntax tree. For instance the node State(ID("Initial")) may be generated from the
syntax definition of State in Listing 6.5, and the input program in Listing 5.8, and it
would denote the state called Initial.

Stratego programs are made of rules and strategies. A rule defines a transformation,
that is, a partial function that maps terms into terms; rules are defined by way of

2The original implementation was in C

73

6. Evaluation

grammar ex.StateMachines with org.eclipse.xtext.common.Terminals

generate stateMachines "http://www.StateMachines.ex"

Model:
statemachine=StateMachine;

StateMachine:
’state’ ’machine’ name=ID ’{’

states+=State+ transitions+=Transition+ ’}’;

State: ’state’ name=ID;

Transition:
’transition’ ’from’ from=[State] ’to’ to=[State] event=Event;

Listing 6.7: State Machine grammar in Xtext.

pattern matching over the form of a term. In a language implementation, a strategy
can be seen as a way to describe the order of a visit on a syntax tree; rules are the
transformations that are iteratively applied over matching nodes of the tree up until
the visit has completed. For instance, in Listing 6.6 strategy map is being applied to rule
stmt-to-java (not shown here) with action as input term. In this case, action is a list
of statements of the action language, that the stmt-to-java rule transforms into strings.

Although feature-orientation is not the main purpose of Spoofax, it has been
shown [60] that it may be used to model a feature-oriented language implementa-
tion. However, this experience has been carried out by refactoring an existing language
implementation into components after it had been already implemented. In any case,
a high-level of reuse can be easily achieved by writing smaller modules, that describe
single linguistic features. This may require some discipline on the developer’s behalf,
but there is no technological limitation that would prevent it.

6.1.4. Xtext

The Eclipse foundation has endorsed for long the Xtext language workbench [27, 9].
Xtext is a framework that covers all the aspects of a complete language infrastructure,

Figure 6.1.: Spoofax highlighting a reference error in the Vending Machine example.

74

6.1. Feature-Oriented Language Implementation Across Tools

class StateMachinesGenerator implements IGenerator {
...

def compile(StateMachine sm) {
val tm = sm.transitionsToMap.compile
val vars = if (vardefs.empty) ""

else "int " + vardefs.join(" = -1, ") + " = -1;"
return ’’’
public class «sm.fullyQualifiedName» {
public static void main(String[] args) {
«vars»
String nextState = "«sm.states.get(0).name»";
while(true) {
switch (nextState) {
«tm»

}
}

}
}

’’’;
}
...

}

Listing 6.8: State Machine body code generation in Xtend.

starting from the parser, up to a full Eclipse IDE integration (syntax highlighting, error
reporting). Xtext is included here mostly because it is widely known among researchers
and practitioners as the go-to tool to implement domain-specific languages in Java.
In particular, Xtext comes with a fully-featured reusable expression language called
Xbase, complete even of lambda expressions, that programmers can use as the basis to
implement their own domain-specific Java-compatible domain-specific language. Using
Xbase, programmers may easily map domain-specific language constructs onto a Java
model, and enable interoperability between the custom DSL and a real Java codebase,
which is the main objective of the Xtext platform. The Xbase expression language is
not stand-alone (it cannot be run in its own interpreter or compiler) but it comes as a
single, large grammar that can be reused in other language by using Xtext’s inheritance
mechanism.

The syntax of the state machine language is indicated through an ANTLR-like syntax
(this is not by chance, since ANTLR [76] is the underlying parser generator), with
extensions. For instance, a nonterminal between square brackets actually indicates a
reference by name to a concept defined by another production rule. You can see an
example in Listing 6.7: the [State] nonterminal in the rule for definition of Transition
points to the State nonterminal; but what this really means is that users may write
transition from a to b: t and then a and b will automatically “point to” declara-
tions of the form state a and state b; in other words, clicking the identifier would

75

6. Evaluation

Framework N.Rules N. Components LOC Support Code Total Size

Neverlang 276K 784K

LISA 6 Java classes 256K 1584K

Silver 9 grammars 232 lines 221K 1020K

Spoofax 221 lines (auto generated)

Xtext 178 lines (auto generated)

Runtime
Lib

37 rules
(grammar+terminal defs)

12 slices
2 endemic slices

412 lines
(including section declarations;
~150 lines of Java 7 code)

7 Java classes
 (6 support

+ 1 endemic impl.)

26 rules
(+ lexeme defs)

4 languages (12 rule sections)
3 method sects.

202 lines
(externalized in classes for
convenience)

34 rules
(+ terminal defs)

(functions, included
in LOC count)

21 rules
+ library lexemes

1 SDF module,
1 NaBL module (name resolution/validation),
1 stratego module (code-gen)

1400K
(uncompressed)

(Size of the
Plugin)

16 rules (EBNF)
 + library terminals

1 Xtext module
(grammar+name resolution/validation)
1 Xtend source file (code-gen)

736K
(uncompressed)

(Size of the
Plugin)

Table 6.1.: Summary of the sizes of the different implementations.

make the editor jump to the reference, and using an undeclared reference would make
the editor highlight the error. This is similar to what Spoofax does with the name
binding DSL, but embedded within the grammar specification. This feature was used
to implement the validation phase of the state machine language.

Further language processing can be done using Java or the Xtend language, editing
the classes that Xtext automatically generates based on the grammar specification.
The Xtend language is an Xtext-implemented superset of Java that enhances the Java
language with a lot of syntactic sugar: for instance it supports higher-order functions,
filtering, folding and mapping over collections before Java 8 was even released. The
Xtend language is particularly suitable for code generation, as it comes with a conve-
nient string interpolation syntax (Listing 6.8). We used this feature to implement the
code generation phase of the state machine DSL.

Unfortunately, from a language composition perspective, the Xtext platform is limited to
single-inheritance. Programmers have long realized that, in object-oriented programming,
single inheritance is not expressive enough to factor out common features: such features
must either be forced into a common parent (where they do not belong), or they must be
duplicated in the components that should share them [85, 25]. This Xtext limit restricts
severely the way grammars can be reused and shared. It is possible for different
languages to interoperate, usually by defining a mapping over common data structures
(cf. [9]), but not to easily combine the syntax of many different grammars, because
only one can be inherited at a time. It is therefore easy to see that, although Xtext
is perfectly capable of implementing a simple example like the state machine DSL,
it will quickly not scale on larger examples, where many components are involved.
For instance, because of single-inheritance it is not possible to inherit from both the
basic state machine DSL and the action language grammars and introduce the he
GuardedTransition construct (Chapter 5). Trying to achieve a finer-grained composition
model, factorizing grammars into language components would be even more complicated.

6.1.5. Summary

Feature-oriented language composition can be achieved if the language framework of
choice provides facilities to modularize the language implementation both on the

76

6.1. Feature-Oriented Language Implementation Across Tools

Neverlang LISA Silver Spoofax Xtext

Lexical Definition Yes, In Productions Yes Yes Yes Yes

Syntax Rules BNF-like BNF BNF SDF2, SDF3 EBNF

Abstract Syntax Support Yes Yes (Terms)

Attribute Definition Implicit in Semantic Actions Explicit clause Explicit clause Tree-rewriting based

Higher-Order Attributes Production-valued N/A

Supported Languages for Semantic Actions

Special Syntax for Code Generation No String Templates Xtend

Multiple Rule Evaluation Strategies Yes Yes, attribute-driven N/A

Language Composition Model

Composition Model Modules

Reference Syntax / Roles Model mapping

Separation Between Evaluation Phases Roles

Self-Contained Language Components Slices

Reuse of Semantics through Syntax Rewriting N/A Tree-rewriting based N/A

Language Extension Yes Yes Yes Yes Yes

Language Restriction Yes

Language Unification Yes Yes Yes No

Extension Composition Yes Yes Yes Yes No

Self-Extension No No No No No

Platform/APIs

Yes No No No

Java, JVM languages Silver, Java Java, Stratego

Generated Artifacts

Parsing Backends Copper LR, JSGLR ANTLR

Separate/Incremental Compilations Yes No Yes No Only for semantics

Pre-Compiled Language Components Yes No Yes No Only for semantics

IDE Generation No No No Yes, Eclipse-based Yes, Eclipse-based

Utilities

Interactive Interpreter Nlgi No No No

Language Workbench Yes, Eclipse-based Yes, Eclipse-based

Debugging Tools N/A

Reference/Concrete Syntax,
Rewriting DSL under
development

Support for
Expression and
Priority-based
conflict resolution
during parsing

Yes (Mapping onto
Model)

Mapping onto
Model

Attributes can be of any
arbitrary JVM type

Attributes can be of
any JVM type

Attributes can be of
any JVM type

Java (up to 8+), Scala,
Template, Tree Rewriting
DSL, support for custom DSLs
and other JVM languages
supported through language
plugins

Java, but currrently
no support for
generics

Silver, Java through
foreign keyword

Stratego, Custom
DSLs for predefined
phases, Java through
extensions

Xtend, Java, JVM
languages

Template, Java String
interpolation

Stratego String
Quotations

Yes, pre-order (with eval,
allowing abritrary visits),
post-order

Yes; custom
strategies may be
user-defined

Language Components
(slices, modules, roles)

Multiple Inheritance
 of Language Specs

Grammars
(Modules)

Single Inheritance of
Grammars

Separation Between Syntax Definition and
Semantics Specification

Inheritance and
overriding

Selective imports,
abstract and aspect
productions

Selective imports
and abstract syntax
definitions

Inheritance or
naming conventions
(no formal notion of
phase)

Selective imports
and naming
conventions; aspect
productions may be
used

Selective imports
and predefined
DSLs (name
resolution, etc.)

References for name
binding; hooks for
code generation . No
formal notion of
evaluation phase

Inheritance +
Factorization

Imports +
Factorization

Imports +
Factorization

N/A (single inheritance)

Remapping, Renaming, Tree
Rewriting DSL

Attribute
Forwarding

Through Extension
or Refactoring

Through Extension
or Refactoring

Through Extension
or Refactoring

Through Extension
or Refactoring

Yes (modulo refactoring)

Runtime Loading of Components / Evaluation
Phases / Actions

Yes, dynamic
loading of strategies

Supported Languages for Interacting with the
Platform

Any JVM language,
Neverlang language

Xtend, Java, JVM
languages

DEXTER, custom drop-in
replacement can be written

Yes, several: LR, LL,
LALR, etc.

Stratego Shell,
Eclipse tools

Support for Sublime Text, Vim
and other text editors

Custom editor with
support tools

Support for Emacs
and other text
editors

Interactive interpreter, or
regular Java tooling

Yes, through support
tools in the editor

Yes, through Eclipse
support tools

Yes, through
Java/Eclipse

Table 6.2.: Summary of the differences between the tools.

77

6. Evaluation

grammar simple:abstractsyntax;
nonterminal Stmt with errors;

abstract production while
s::Stmt ::= c::Expr b::Stmt
{

s.errors <- if isBoolean(c.type) then []
else [err(locUnknown(), "Expression \""

++ show(100,c.pp) ++
"\" must be of type Boolean.\n")];

}
abstract production dowhile
s::Stmt ::= body::Stmt cond::Expr
{
forwards to while(cond, body);

}
abstract production repeatuntil
s::Stmt ::= body::Stmt cond::Expr
{
forwards to dowhile(body, not(cond));

}
abstract production not ...

Listing 6.9: Type checking and attribute forwarding in Silver.

dimension of language constructs and on the dimension of semantic concerns of the
language implementation. This capability requires the framework to support non-trivial
modularization capabilities. With the notable exception of Xtext, all the surveyed
tools are capable of achieving a feature-oriented componentization of a language,
although they are generally focused on code-reuse rather than providing a mechanism to
specifically implement languages in a feature-oriented way. For instance, in all the tools,
to a different extent, it is possible to separate the implementation of the semantics from
the definition of the syntax. Every tool makes it possible to provide libraries of functions
that can be shared among components. The degree of freedom in separating language
concerns changes for each tool. For instance, in LISA, multiple inheritance can be used
to separate syntax definitions from multiple evaluation phases (Sect. 6.1.1), but this
obviously imposes a strict parent-child relation between components. Silver’s grammars
(Sect. 6.1.2), together with its concept of aspect productions (not to be confused with
LISA’s, which provides a similarly-named concept, with a different meaning) may
be used to achieve the same kind of componentization. Silver also supports attribute
forwarding: with this feature the attributes of a node may be defined in terms of the
attributes of another node. This feature bears some similarity to Neverlang’s remapping
feature (Sect. 4.1.2), but it is in fact more powerful, because it supports rewriting the
tree3. In Listing 6.9 we show how type-checking for the do-while loop can be described
in terms of the while loop. Notice that the repeat-until loop can be also described

3Neverlang is currently adding support to a tree-rewrite DSL, though (Sect. 4.2)

78

6.1. Feature-Oriented Language Implementation Across Tools

in terms of the do-while loop, where the additional node not decorates the condition:
this is not really necessary for type checking, but it may be useful in other situations,
(e.g., code generation).

Spoofax (Sect. 6.1.3) is designed to separate concerns to the extent that each of the
major evaluation phases (name binding, code generation, etc.) can be implemented using
a different DSL.

Considering the taxonomy in Erdweg et al. [29], all the surveyed modular tools are
able to support language extension, restriction, unification and extension composition.
It is worth noticing that Neverlang is the only tool that supports by design real language
restriction, through slice removal. Nevertheless, this can be achieved in the other
cases through extension or, if necessary, through refactoring. Language unification
is also possible, because all of the tools are able to compose language specifications;
in particular, even though according to [29] Spoofax would not be able to perform
semantics unification, we argue that the Stratego language’s module system allows
to define rules and strategies across different modules4, and therefore, such a kind of
composition is indeed possible.

On the one hand, one might raise the concern that the finer-grained componentization
described in this section, inspired by the Neverlang model, may not be idiomatic in each
framework. But, on the other hand, even if this were true, it would not disprove that
the surveyed tools are powerful enough to achieve these results.

As we already mentioned in Sect. 3.1.4, Mernik [63] have observed that self-extension
is a property of a language, rather than a property of a language framework. For instance,
SugarJ [30] is an extension to the Java language on top of Java, SDF and Stratego which
supports syntactic self-extensibility.

A comparison of the examples in terms of code size is shown in Table 6.1, we used the
usual metrics of lines-of-code (LOC) (as found e.g., in [60]) and number of components.
In terms of lines of code, size is comparable. The Neverlang implementation may
appear bigger because of the way Neverlang language definition introduces module

and slice declarations. With respect to number of productions, number of modules
and roles, the size is comparable to the other implementations; moreover, it is worth
recalling that Neverlang supports alternate JVM languages for the semantics, in which
case line count might drop considerably (e.g., consider the boilerplate needed to iterate
over a collection in Java 7 compared to Scala or Java 8: in this implementation we used
Java 7). A full comparison of the features of the tools is also shown in Table 6.2.

The conclusion of this experience is that none of these tools really centers around the
idea of feature-oriented language implementation, but most of them can be retargeted
for this purpose through design patterns. This proves that the model (Sect. 3) is general
enough to be supported by other tools. In the next section we will show the particular
benefits that a native implementation of this model provides.

4http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-chapter/
rules-and-strategies.html#id3317807

79

http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-chapter/rules-and-strategies.html#id3317807
http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-chapter/rules-and-strategies.html#id3317807

6. Evaluation

6.2. Extending a Real-World Language: neverlang.js

JavaScript is a dynamic, general-purpose programming language that has been recently
gaining wider and wider consideration. In order to evaluate the capabilities of the
Neverlang framework, we decided to realize a feature-oriented implementation for this
language. In our JavaScript interpreter it is possible to plug and unplug features to
realize multi-purpose dialects of the original language. The main goal of this experience
was not to compete with state-of-the-art JS interpreter implementations. We chose to
implement JavaScript because it is a rather simple programming language, and, lately,
there has been a lot of buzz around it. We believe that implementing the JavaScript
programming language represents evidence that Neverlang is powerful enough to
implement not only toy languages, but also real-world general purpose programming
languages.

A breakdown of the ECMAScript 3 coverage is in Fig. 6.2: the titles on the left
represent the section of the ECMAScript 3 specification, the percentages represent
the passed test cases of the Sputnik test suite5. Our implementation covers about
the 70% of the specification. This result deserves an explanation. The ECMAScript
specification is very large, but the largest part of the spec does not revolve around
the syntax and the semantics of the programming language; rather, it concentrates on
specifying the behavior of the built-in libraries that should be found in a fully-compliant
implementation. Implementing these libraries is possible, but it constitutes a time-
consuming activity, that we plan to complete in a later phase. Unfortunately, the
Sputnik test suite assumes that all of the built-in libraries are available, causing some
tests to fail. However, our implementation of the semantics of the language is complete:
the interesting parts of the language are supported (e.g, closures, higher-order functions,
the prototype chain, etc.), to the point that many of the built-in libraries may be even
implemented within the language. Still, with the subset of the built-in libraries that is
currently available we were able to run browser-unrelated benchmarks in the Google
Octane suite6 without modifications7.

Performance-wise, preliminary tests have shown that we were able to make never-
lang.js up to only one order of magnitude slower than the Rhino JavaScript implementation8.
Considering that the implementation’s main goal was modularity and not performance,
this result is quite promising. Moreover, we are already trying to address this issue
through specific efforts (e.g., Truffle-like optimizations, see Sect. 6.2.1).

A breakdown of the slices that constitute the neverlang.js implementation is presented
in Table 6.3.

Extending JavaScript: a Classroom Experience Our JavaScript implementation con-
sists of 73 slices (Table 6.3) that correspond roughly to the same number of modules,

5http://test262.ecmascript.org/
6https://developers.google.com/octane/benchmark
7in order to keep the grammar simple, semi-colon insertion was disregarded
8preliminary tests, mainly conduced on Octane’s crypto.js, showed a 30 second execution time for

neverlang.js, while Rhino takes about 6 seconds.

80

http://test262.ecmascript.org/
https://developers.google.com/octane/benchmark

6.2. Extending a Real-World Language: neverlang.js

Figure 6.2.: Coverage of the ECMAScript 3 standard in neverlang.js.

for a total number of 3043 lines of code, plus around 64 Java classes of support code
(mostly, related to the supported parts of the built-in objects). Because we intended
the language to be used in a short course on modular language implementation, we
intentionally kept it simple. For instance, only one role (evaluation) has been currently
implemented. This short course consisted of only three 4-hours lessons. At the end
of the short course, students were handed a full pre-compiled, pre-packaged imple-
mentation of the JavaScript interpreter, and were required to implement a different
language extension. Each extension consisted of a new language construct, with varying
levels of complexity. Each student would have provided the implementation of his/her
extension as i) a collection of Neverlang source files ii) a pre-compiled jar with the
extension as a bundle and iii) a collection of test cases for the developed extension. A
summary of the implemented extensions can be found in Table 6.4. Each extension has
been developed in isolation from the others. Students were provided with a copy of
the source code, exclusively for reference and documentation purposes. Students were not
allowed to modify the source code of the reference implementation directly, but rather
to realize new components. The objective was to see the effectiveness of Neverlang as a
tool to develop separate language extensions. Grading consisted in first verifying that
the provided source code was actually compiling. Then, an automated script loaded
each student-provided jar file, introducing the new components in the base interpreter.

As seen in Sect. 4.4.1, in Neverlang a language implementation is a JVM object
instance. The public method importSlice(sliceName) can be invoked at any time
during the life-time of a language, making it possible to introduce and substitute slices
at runtime. The students’ extensions were tested using this Neverlang feature. In
order to verify the correct execution, each language extension was first introduced
independently from the other, and tested in isolation; then we proceeded to verify the
interactions between the extensions by testing all the possible 214 combinations of such

81

6. Evaluation

Bundle Slices LOC Rules Bundle Slices LOC Rules

Core Statements

Language core 11 277 24 Block Statement 1 32 4

Expressions Cflow

Arithmetic 3 128 9 If Statement 1 45 3

Boolean 3 92 5 Switch Statement 1 102 12

Relational 2 137 10 (Loop Statements) 1 19 1

Conditional 1 32 2 While Statement 1 50 2

Bitwise 5 216 17 For loop 1 57 7

Typing (typeof, instanceof) 2 65 2 For-each loop 1 113 10

Function call 2 113 9 (NoIn expressions integration) 11 305 26

Construct call 1 56 3 Interrupt: break 1 22 2

Types Interrupt: continue 1 22 2

String 1 21 2 Interrupt: return 1 30 3

Number 1 24 3 Exception throwing + handling 2 122 8

Boolean 1 23 3 Variables

RegExp 1 23 2 Variable assignment 5 226 21

Object 4 189 13 Variable resolution 1 24 2

Array 3 131 9 Endemic Slices

Function (definition) 2 100 11 Symbol Table 230

This resolution 1 17 1

Total Slices 73

Total LOC 3043

Total Rules 228

Italicized features depend on other features: loop statements require

at least one actual loop implementation (e.g., while, for, etc.),

No-In expressions are part of the ECMAScript spec

and depend on the definition of for-each.

Table 6.3.: Summary of neverlang.js by feature bundle.

extensions. Because of the didactic nature of the experiment, only a few extensions
actually conflicted: in particular the students that implemented tuples and pattern
matching chose a similar syntax for the same feature, causing the parser generator to
generate an error if such extensions were introduced at the same time.

The relevance of this experiment is to show that Neverlang’s rendition of our feature-
based model of language implementation emphasizes its good properties, when they
are brought to their natural extreme:

1. language components can be developed separately, by different programmers,
thereby allowing multiple teams to realize new features for a language implemen-
tation in parallel

2. features can be shipped as pre-compiled components
3. pre-compiled components can be composed onto the core language implementa-

tion at any time, possibly at runtime
4. independently-developed features can be tested together without touching the

core language implementation in an automated fashion

82

6.2. Extending a Real-World Language: neverlang.js

Extension Name LOCs
Function Type Annotations 225

Catch Guards 80

Class-Based Single Inheritance 314

Dictionary Comprehension 79

Destructuring Assignment 73

Tuple Literal 91

List concat operator 91

Lambda Expressions 76

Named Arguments in Functions 78

List Sum Operator (Vector Sum) 41

Pipe Forward Operator 92

Immutable References 31

List Comprehension 81

Syntax for Pattern Matching 191

Table 6.4.: List of JavaScript Extensions.

6.2.1. Runtime Evolution for Dynamic Optimization

In Sect. 4.2 we saw that slices and roles are pre-compiled components that can be
deployed and undeployed at runtime. One simple consequence is that, as we saw in the
previous paragraph, testing of extra-features for a base language implementation is
as simple as invoking the method of a class. The importSlice() method (Sect. 4.4)
makes it possible to load new slices, and makes the feature immediately available to the
complete language implementation. However, we are currently investigating how to
exploit this feature to bring it one step further. Inspired by the Truffle [111, 50] runtime
system, we saw an occasion to exploit this capability to perform modular runtime-
optimizations on our JavaScript interpreter. The Truffle JavaScript implementation,
among other things, optimizes code paths by rewriting tree nodes using specialized
versions. Guards are installed on the code bodies that implement the semantics of
AST-based hand-written interpreters, and the rewriting occurs when a guard fires.
It has been shown [50] that a Truffle-based JavaScript interpreter implementation is
close performance-wise to highly-optimized interpreters such as Google’s V8. The
Truffle project uses Java and Java annotations to achieve this impressive results. We
are currently trying to reproduce similar techniques in Neverlang by introducing tree
rewriting capabilities and guards. In Sect. 4.4.2 we described how actions are resolved.
The function m maps the triplet �p, r, i�, where p is a production, r a role, and i a
numeric index, onto one slice Sr,i. The key idea was to allow m to return a set of
semantic actions; then the runtime system chooses which rules should be executed,
depending on the guards. Although the work is still in is infancy, the results are
promising: in an initial implementation of this technique, we measured that avoiding
boxing of primitive values through rewriting resulted in a (up to) 20� speedup. Further
results on this matter will be reported in a separate work.

83

6. Evaluation

6.3. The DESK Language

DESK is a simple desk calculation language described in [74] to show an example of
an absolutely non-circular attribute grammar (Chapter 2). Obviously, we are aware that
implementing the DESK language does not constitute proof that Neverlang is able to
handle any non-circular attribute grammar; nonetheless, we believe that showing that
Neverlang is able to implement DESK constitutes at least evidence that the framework is
able to handle non-trivial cases (see Chapter 2). Full source code is available at

http://neverlang.di.unimi.it/vacchi/examples.tgz

In DESK, programs are of the form

PRINT ` expression e WHERE ` definitions e

where ` expression e is an arithmetic expressions and defined constants, and ` definitions e
is a sequence of constant definitions of the form

` constant-name e � ` number e

Each constant occurring in ` expression e must be defined in ` definitions e and, for each
constant, only one definition may be given. A valid DESK program may be

PRINT x + y + 1 WHERE x = 1, y = 2

The original DESK definition only includes addition as a valid expression; nevertheless,
the DESK language includes many central features of a real programming language:

– declaration of named entities (constants)
– use of declared entities
– conditions on the declaration and use of such entities

– an entity cannot be redeclared
– only declared entities can be referenced by name

In Paakki’s work, DESK is compiled into an assembly code for a simple one-register
machine:

LOAD n load value n into the register
ADD n add value n to the register
PRINT 0 prints the contents the register
HALT 0 halts the machine

The execution of a valid DESK program evaluates the expression and prints its value.
For instance, the code generated for the previous DESK program would be:

LOAD 1 (x)
ADD 2 (y)
ADD 1

PRINT 0

HALT 0

84

http://neverlang.di.unimi.it/vacchi/examples.tgz

6.3. The DESK Language

// desk.Program
Program^ "PRINT" Expression ConstPart;
// desk.Expression
Expression^ Expression "+" Factor;
Expression^ Factor;
//desk.Factor
Factor ^ ConstName;
Factor ^ Number;
// desk.ConstPart
ConstPart^ "";
ConstPart^ "WHERE" ConstDefList;

// ConstDef
ConstDefList^ ConstDefList ","

ConstDef;
ConstDefList^ ConstDef;
ConstDef ^ ConstName "=" Number;
//desk.Tokens (not shown in Pakki)
ConstName^ /[a-zA-Z_]+/;
Number ^ /[0-9]+/;

Listing 6.10: DESK grammar.

language desk.Lang {
slices desk.Program desk.Expression desk.ConstPart

desk.ConstDef desk.Factor desk.Tokens
roles
syntax // parse input
< collect-constants // map constants into values (numbers (ints)
<+ evaluation // prepare envs and evaluate the expression with env
< code-gen // generate and output code

}

Listing 6.11: Neverlang descriptor for the DESK language.

The attribute grammar in [74] has been converted into a Neverlang compiler. In
Listing 6.10 we show the DESK grammar with respect to the way we have defined lan-
guage components. In our implementation we chose to define 5 modules, plus the one
for defining lexer tokens for constants, ConstName and numbers, Number; Paakki makes
no distinction between evaluation phases; in Neverlang it is easier to reason in terms
of roles. Our implementation (Listing 6.11) defines three roles: collect-constants,
evaluation, code-gen. The first role has post-order semantics (Chapter 4) because it
maps lexer tokens into their corresponding values (e.g., it maps into an int value the
token for the token for Number): the relevant actions are attached to the leaves of the
syntax tree, thus it makes sense to evaluate these first. The evaluation role performs
the majority of the work. In Listing 6.12 the Program module is shown. This module
contains the starting symbol of the grammar, as defined in [74]. The evaluation role
uses the semi-automated evaluation strategy (Sect. 4.1.3), thus, the developer is given
full control on how and when the child nodes should be evaluated. In particular, in
the DESK language, the visit should start from the ConstPart nonterminal, and then
proceed to the Expression. Neverlang is able to do this, because it is possible to eval

the second left-hand side nonterminal before the first left-hand side nonterminal, using
the command eval command. In this case, the label P was assigned to the production
in the reference syntax section . So, we can write:

85

6. Evaluation

module desk.Program {
reference syntax {
P: Program^ "PRINT" Expression ConstPart;

}

role (evaluation) {
P: .{
eval $P[2];
// pull ConstPart.envs and push it into Expression.envi
// notice that attributes "stick" between phases
$P[1].envi = $P[2].envs;

// print out the environment (not in Pakki)
eval $P[1];
System.out.println($P[1].envi);

}.
}
role (code-gen) {
P: .{
Boolean constPartOk = $P[2].ok;
String code = $P[1].code;
code += constPartOk? "PRINT 0\nHALT 0\n" : "HALT 0\n";
$P.code = code;

// print out the generated code
System.out.println(code);

}.
}

}

Listing 6.12: Program.

eval $p[2];

to proceed to evaluate the ConstPart nonterminal. Once control is returned to this
semantic action (that is, the recursive visit of the ConstPart subtree has terminated), it
is possible to proceed to the Expression subtree. It is possible to pass down a value
(a inherited attribute) by assigning it before eval is invoked. Then, we can proceed to
evaluate Expression using:

eval $P[1];

Finally, the code-gen role generates the assembly code using the attributes that
were computed during the execution of the evaluation role, and the code attribute in
Expression and its descendants, computed during the code-gen phase: code generation
is a role that is, again, a good candidate for simple post-order visit.

Listing 6.13 shows the full DESK source code, excluding the less interesting Tokens

module (about 30 lines of code), for the sole sake of space (of course, this is available in
the online version of the code).

86

6.3. The DESK Language

module desk.Expression {
reference syntax {
e1: Expression^ Expression "+" Factor;
e2: Expression^ Factor;
}
role (evaluation) {
e1:.{
// Expression_2.envi =
// Expression_1.envi
$e1[1].envi = $e1.envi;
eval $e1[1];
// Factor.envi = Expression_1.envi
$e1[2].envi = $e1.envi;
eval $e1[2];
}.
e2:.{
// Factor
$e2[1].envi = $e2.envi;
eval $e2[1];
}.
}
role (code-gen) {
e1:.{
Boolean factorOk = $e1[2].ok;
String code = $e1[1].code;
code += factorOk?
"ADD " + $e1[2].value : "HALT 0";
$e1.code = code +"\n";
}.
e2:.{
Boolean factorOk = $e2[1].ok;
String code = (factorOk?
"LOAD " + $e2[1].value
: "HALT 0") + "\n";
$e2.code = code;
}.

}
}
module desk.Factor {
reference syntax {
F: Factor ^ ConstName;
NF: Factor ^ Number;
}
role (evaluation) {
F: @{
String name = $F[1].name;
java.util.Map<String,Integer> e = $F.envi;
$F.ok = e.containsKey(name);
$F.value = e.get(name);
}.
NF: @{
$NF.ok = true;
$NF.value = $NF[1].value;
}.

}
}

module desk.ConstPart {
reference syntax {
Empty:ConstPart^ "";
Const:ConstPart^ "WHERE" ConstDefList;
}
role(evaluation) {
Empty : .{
$Empty.ok = true;
$Empty.envs = new java.util

.HashMap<String,Integer>();
}.
Const: @{
$Const.ok = $Const[1].ok;
$Const.envs = $Const[1].envs;
}.
}
}
module desk.ConstDef {
reference syntax {
CDL1: ConstDefList^ ConstDefList ","

ConstDef;
CDL2: ConstDefList^ ConstDef;
CD: ConstDef^ ConstName "=" Number;
}
role(evaluation) {
// In idiomatic Neverlang you call
// AttributeList.collectFrom();
CDL1: .{
eval $CDL1[2]; // eval ConstDef
String name = $CDL1[2].name;
Integer value = $CDL1[2].value;
// eval ConstDefList_2
eval $CDL1[1];
java.util.Map<String, Integer> e =
$CDL1[1].envs;
Boolean cdlOk = $CDL1[1].ok;
$CDL1.ok = cdlOk && !e.containsKey(name);
e.put(name, value);
// ConstDefList_1.envs =
// ConstDefList_2+(name, value)
$CDL1.envs = e;
}.
CDL2: .{
eval $CDL2[1]; // eval ConstDef
$CDL2.ok = true;
String name = $CDL2[1].name;
Integer value = $CDL2[1].value;
java.util.Map<String, Integer> e =
new java.util.HashMap<>();
e.put(name, value);
$CDL2.envs = e;
}.
CD: @{
$CD.name = $CD[1].name;
$CD.value = $CD[2].value;
}.
}
}

Listing 6.13: DESK: Expression, Factor, ConstPart and ConstDef.

87

6. Evaluation

The size of the full DESK implementation is less than 180 lines of code. The apparent
verbosity is due to our choice of employing built-in Java data structures to keep the
code base small, and without external dependencies. For instance, a java.util.Map

is used here for the environment. But java.util.Map is a stateful data structure. Nev-
ertheless, because of the way the language is defined (the environment is first filled,
and then read), this does not introduce unintended side-effects. Of course, it is always
possible to rely on third-party libraries: for instance Google’s Guava library9 provides
ImmutableMap. Another point that is worth mentioning is that the DESK implementa-
tion in Listing 6.13 is a pedantic translation of Paakki’s original. However, in Neverlang,
at least two things are usually done in a different way:

1. the environment would be probably implemented using a stateful endemic slice
(Sect. 4.1.2)

2. collecting attributes on the ConstDef nonterminal would be done through the
library function AttributeList.collectFrom() (Table 4.1, p.40).

If the DESK language were rewritten using these techniques, the code base would result
even tighter.

Observations The implementation of the DESK language in Neverlang certainly does
not represent a formal proof for Neverlang’s expressive power. However, we believe that
it constitutes strong evidence that Neverlang should be practical enough to implement
non-trivial attribute grammars. If anything, it shows that Neverlang is more powerful
than simpler tools such as Yacc and ANTLR, which are limited to L-attributed or
S-attributed grammars [2, 76].

This power comes in some cases at the cost of being explicit about how the visit
of the tree is conducted (using the eval command) and about the way attributes are
partitioned into roles. Tools that implement proper attribute grammars do not require
attribute evaluation to be triggered explicitly; in the most simplistic case, attribute
evaluation is triggered at their use-site. For instance, the rule A.val = B.val + C.val

for a production A � BC would cause the evaluation of attributes B.val, C.val which
would, in turn, cause the evaluation of any other attribute they may be defined in term
of. In fact, one strategy to implement an attribute grammar is to map attributes onto
functions; attribute grammar frameworks may then employ caching and memoization
techniques (Chapter 2) to avoid recomputing attributes more than once, when they
produce the same results. However, memoization may be hindered if the language
framework admits impure computations. This is sometimes unavoidable, for instance
when I/O has to be performed. Neverlang’s approach is more explicit, in that (unless
the visit is post-order—Sect. 4) it requires users to explicitly signal where attributes are
being evaluated.

On the one hand, being explicit may feel a little inconvenient, because it places the
burden of choice on the end users. In Neverlang this is addressed by providing syntactic
sugar (Sect. 4) to explicitly require attribute evaluation, while retaining conciseness. On

9https://github.com/google/guava

88

https://github.com/google/guava

6.4. Tracking Dependencies Through Variability Management

the other hand, this gives users more control over what is being evaluated: attributes may
be explicitly re-evaluated if the programmer knows that the value of an attribute should
have changed; likewise, the programmer may choose not to do so when a pre-computed
attribute retains a valid value. This may be a plus for developers that need this kind
of finer-grained control. For instance, Lex Spoon, co-author of the book Programming
in Scala [69] with Martin Odersky, has observed10 that in attribute grammar systems
performance may be harder to predict.

The biggest downside is that components coming from different sources may not play
well together because they expect different evaluation orders. In fact, delegating the
computation of the evaluation order to automatic machinery (as it usually happens with
more traditional attribute grammar evaluation systems) would relieve the developers
from needing to think of this aspect in the first place, and, in the end simplify the
combination of components coming from different authors.

All in all, choosing one strategy over the other is a matter of trade-offs. Neverlang’s
choice was to trade a bit of convenience in favor of giving users control; in AG evaluation
systems users are relieved from the burden of choice, but, on the other hand, they have
less power over the way the language is evaluated.

6.4. Tracking Dependencies Through Variability Management

We already discussed the way language components represent features of a language. A
language implementation is a collection of language components, but, as we saw in
Chapter 3, an arbitrary collection of language components is not necessarily a language
implementation. Each language component in itself represents a feature of a language
(Chapter 3), which, by itself, does not constitute a self-contained language definition.
This is why each component may have dependencies. Dependency-tracking is a concern
that is not directly related to the composition model of a language framework, but
it is nonetheless induced by the way the language framework conceives components.
In our model, we defined provided and required features: these dependencies may be
represented in the syntax (placeholders or nonterminals) or in the semantics (properties
or attributes). In a language implementation we want that every dependency, of both
these kinds, to be satisfied, otherwise we would end up with an incomplete, inconsistent
language implementation. These dependencies are usually not tracked automatically:
the framework may warn the user that a dependency has not been satisfied and raise a
compile-time or run-time error. However, the framework usually does not provide users
with suggestions about how these missing dependencies may be satisfied to complete
the language implementation.

In previous work [98, 99], we have researched a way to mine data from pre-compiled
language components that not only allowed to represent the relationships between com-
ponents, but also could be employed to provide users with a readable representation
of these dependencies, thereby allowing even end users to compose a language imple-
mentation from an arbitrary selection of pre-compiled language components. Language
10http://blog.lexspoon.org/2011/04/practical-challenges-for-attribute.html

89

http://blog.lexspoon.org/2011/04/practical-challenges-for-attribute.html

6. Evaluation

Bundle Language Variants

Core Calc.JS Functional.JS No Functions

Language core ✓ ✓ ✓ ✓ ✓ ✓ ✓
Expressions

Arithmetic ✓ ✓ ✓ ✓ ✓ ✓
Boolean ✓ ✓ ✓ ✓ ✓

Relational ✓ ✓ ✓ ✓
Conditional ✓ ✓ ✓ ✓ ✓

Bitwise ✓ ✓ ✓ ✓
Typing (typeof, instanceof) ✓ ✓

Function call ✓ ✓* ✓*
Construct call ✓**

Types

String ✓ ✓ ✓ ✓ ✓
Number ✓ ✓ ✓ ✓ ✓
Boolean ✓ ✓ ✓ ✓ ✓
RegExp ✓ ✓ ✓ ✓

Object ✓ ✓
Array ✓ ✓ ✓

Function (definition) ✓
This resolution ✓

Statements

Block Statement ✓ ✓
Cflow

If Statement ✓ ✓ ✓
Switch Statement ✓ ✓
(Loop Statements) ✓ ✓ ✓
While Statement ✓ ✓ ✓

For loop ✓ ✓ ✓
For-each loop ✓ ✓

(NoIn expressions integration) ✓ ✓
Interrupt: break ✓ ✓

Interrupt: continue ✓ ✓
Interrupt: return ✓

Exception throwing + handling ✓ ✓ ✓
Variables

Variable resolution ✓ ✓ ✓ ✓ ✓ ✓ ✓
Variable assignment ✓ ✓ ✓ ✓

Endemic Slices

Symbol Table ✓ ✓ ✓ ✓ ✓ ✓ ✓

 * Allow Only Built-in Functions

** Allow Only Built-in Constructors

Imperative
Only (no obj)

Simple string
manipulation

Logical
calculator

Single
command

Table 6.5.: Summary of a few possible neverlang.js language variants.

components could be grouped by language families: by collecting all the components
that belong to a particular domain, users would be allowed to pick the features of a
domain-specific language, realizing a variant that is member of that family. For instance,
it would be possible to represent a family of state machine languages in terms of the
possible feature that a state machine language could include. End users may select
the features they want from a variability model [77, 49, 21] and generate the language
implementation automatically. Mixing domains would be also allowed: for instance state
machine features may be combined with an action language, as described in Chapter 5.

Part of the information is inferred directly from the dependency graphs that can
be constructed from internal properties of the language components (Chapter 3). We
have then tried to infer automatically a variability model by further mining information
from our language components. For instance, language components may be tagged by

90

6.4. Tracking Dependencies Through Variability Management

Figure 6.3.: Selecting the neverlang.js variants through an interactive GUI.

language developers with keywords. The while loop implementation may be tagged
with the keywords loop, statement; transition with guards may be tagged with the
keywords transition, guard, action, etc. These tags may be bundled with the language
component. In the Neverlang case, these would be stored as fields of the objects that
represent slices and modules (see Chapter 4). This metadata can be later extracted for
further processing. In the Neverlang implementation this metadata can be extracted
from the pre-compiled components through the framework’s APIs (Sect. 4.4). Tags are
then fed into a hierarchical clustering algorithm. By manipulating the dendogram resulting
from the clustering procedure, we are then able to present the features and their
relationships through a tree-like structure that is a snapshot of the given set of language
components. End users are then able to pick features by selecting components of this
tree (the variability model), and the engine automatically resolves the dependencies
and combines the components into the language implementation.

The experiment has been carried out using different languages. One experiment
mined data from a family of state machine languages, similar to the one described in
Chapter 5. This language family included different kind of states, and extra transition

91

6. Evaluation

types. Other experiments involved a simple imperative language. A similar experiment
is now being conducted on neverlang.js (Sect. 6.2). Table 6.5 shows possible language
variants that can be constructed using the slices of the full neverlang.js interpreter. The
features are grouped by bundles (on the left); the columns identify a language variant.
In a working prototype, it is now possible to select features of neverlang.js and test
live the resulting language variant through the embedded nlgi console (Fig 6.3). An
excerpt from the experience conducted in [99, 98] can be found in Appendix C.

92

7
Related Work

Chapter 6 gave a brief overview of three of the most relevant modular language
implementation frameworks, with respect to a running example. These frameworks,
however, provide further functionalities to simplify language implementation.

LISA’s extension AspectLISA [80] supports AOP-like constructs to hook into pro-
ductions through pattern-maching and inject attributes at multiple sites at once. The
template construct makes it possible to perform a sort of macro-expansion of repetitive
rules (e.g., the bucket brigade pattern, to collect lists of attributes, which Neverlang
implements through library functions 4). However, in LISA there is no way to separate
attribute definition from grammar definitions, and, in particular, it is not possible to
define an abstract syntax to code against, creating a tighter coupling between syntax
definitions and language semantics, which may hinder reuse of semantics over different
language implementations. It is possible to rely on external libraries to create an
internal representation, as we did in the state machine example, but then this internal
representation is completely unaware of the surrounding framework. LISA’s main
target language is Java and it uses Java for attribute definition, although it does not
currently support generics; this is clearly only a limit with the way the tool parses
input files, which could be extended in the future. LISA generates Java source files
which are in turn compiled into class files; the generated files are mostly meant to be
run standalone, but it is possible to invoke user-provided code; in this case, there is
no limit on the Java language version users may write support code into (or the usage
of the Java language itself, for that matter: class files may be written using any JVM
language); in the implementation of the example, it was possible to reuse many of the
support classes that were developed for the Neverlang example. Unfortunately, there is
no support for separate compilations, nor does the tool support language extension to
be performed from pre-compiled binaries; the language input files have to be provided
as source code. LISA supports the most extensive number of techniques to parse and

93

7. Related Work

evaluate attribute grammars, with several choices on the kind of parser generator to use
(e.g., LL, LR, LALR, etc.) and the evaluation strategy for the attribute grammar (among
the others, Lenic Tree Walk Evaluator, Katayama Evaluator, L-Attributed Evaluator,
Visit Pattern Evaluator, etc.).

Silver [54, 86] supports a way to define abstract productions that programmers may em-
ploy to define new data structures; in fact, the way Silver defines and uses productions
make them feel like cases of algebraic data structures; to the point that Silver supports
pattern matching on productions: all features that reveal the authors’ intentions to make
Silver feel as much as possible as a functional programming language, while keeping it
close to the grammar metaphor. Even the concept of attribute can be roughly equated to
that of function and let-binding. Silver supports both higher-order attributes and reference
attributes. Higher-order attributes are trees that have not yet been given any inherited
attributes and thus their synthesized attributes are not yet defined; such trees can be
constructed and passed around. Reference attributes are references to another tree that
is already decorated and attributes can be read off of it. Silver’s most important feature
to support language extension is, however, attribute forwarding. With forwarding it is
possible to describe the attributes of a node in terms of the attributes of another, known
subtree. In Sect. 6.1.5, for instance, we have shown how to describe the do-while and
repeat-until loop constructs in terms of the while loop. Silver supports verifiable
composition of modules, raising errors if a language extension is not well-defined [54]. It
also includes aspect productions, which, in spite of the name, indicate a different feature
from LISA’s (see Section 6.1.2). The generated parser uses a variant of LALR with
context-aware scanning [102], and it implements an algorithm for verifiable composition
of deterministic parsers [86]. These features together make it easier to compose LALR
grammars and give stricter guarantees on the generation of a deterministic parser.
Silver source files are compiled down to Java and it is possible to reuse Java libraries,
but while the interfacing between Neverlang and Java/JVM code is nearly seamless,
the Silver system is meant to be self-contained; thus, although it is possible to interface
with Java code, the endorsed way to define extra support code is to use Silver itself. In
fact, the choice of a purely-functional programming language with a peculiar syntax
could be an obstacle to bring Silver within the reach of a broader audience.

Spoofax [56] language workbench uses Stratego [12] as its main programming lan-
guage, but provides different DSLs to deal with different concerns [103] of a program-
ming language. This rather radical approach on the one hand make it possible for
the Spoofax workbench to generate not only a compiler for the language that is being
implemented, but also to use the DSLs as a means to plug language analysis processes
directly in the generated IDE plugin. The usage of these DSLs is not mandatory, but
highly-recommended; otherwise using Stratego directly would often require program-
mers to resort to design patterns to obtain the same results. After all, elevating design
patterns and APIs to first-class constructs of a domain-oriented language is really one
of the primary reasons for implementing a DSL [64, 36, 38]. The danger with this
approach is to put too much cognitive burden on the language developer, who is then
required to understand several languages instead of one. On the other hand, the Stratego
language is a dynamically-typed declarative domain-specific language for term rewriting,

94

with a unique syntax. The JVM implementation compiles the DSLs into Stratego source
files and Stratego files into an internal high-level format interpreted by the Stratego/J
execution engine1; interoperability with Java code is possible, but it is not within the
main objectives of the project. Separate compilations are unfortunately not supported
yet [31].

The JastAdd [44] compiler construction system follows a completely different ap-
proach. It is in fact an attribute grammar system, but it has chosen to completely
embrace the Java programming language. JastAdd programmers define a grammar
and the attributes that should decorate such grammar, and then the system scaffolds
pre-built AST Java classes that programmers may then complete with the implementa-
tion. Aspects can be used to statically inject semantics into attributes. Attributes are
implemented as Java methods, and they support parameters. JastAdd also includes
reference attributes. Aspects can be used to separate concerns such as evaluation phases.
Aspects can be factorized in such a way that it is possible to define pre-compiled
language components, but JastAdd is a code-generating tool, thus it is not possible to
further extend components without editing the original source code.

It is also worth mentioning MontiCore [59] a framework for language composition and
extension that provides grammar inheritance and rewriting mechanisms additionally to
modularization features. MontiCore uses a combined grammar format for concrete and
abstract syntax and it supports grammar inheritance and rule inheritance. In the case of
grammar inheritance, similarly to LISA, all the rules of a parent grammar are inherited;
overriding of rules is also possible. UML-like associations describe semantics.

We also want to mention Jetbrains’ Meta-Programming System (MPS) [105], a language
workbench for DSL implementation; MPS stands out because, unlike the others, it is a
projectional editor, which means users are actually editing an AST through context menus,
autocompletion and keyboard shortcuts instead of just typing in text. The authors claim
that, after a training period, users become much faster at writing code. The system
supports language modularization and inheritance-based code reuse.

Lightweight Modular Staging (LMS) [82] uses Scala’s embedded DSL idiom to
implement compilers. LMS indeed provides the means to modularize the syntax of a
program to generate code, and therefore it can be used to implement the work that we
described. Moreover, syntactic composition in this case would be easier than in Silver
because in LMS merging language components only consists in using APIs coming
from different libraries instead of merging parse tables. The downside is that syntax of
programs is limited to the constraints imposed by Scala’s compiler.

Xtext [27] is a framework and language workbench for model-based development of
DSLs that tightly integrates with EMF [92]. The framework makes possible to reuse
existing grammars and existing meta-models to implement other languages. It uses
ANTLR to generate the parser, and it may compile to source code or bytecode. It
supports single inheritance between grammars; therefore, although it is not possible
to just “plug” a feature inside another language, it is possible to extend an existent
language with the feature. The downside is that the reuse of the feature is limited to

1https://strategoxt.org/Stratego/StrategoJ

95

https://strategoxt.org/Stratego/StrategoJ

7. Related Work

inheritors of the base grammar. Xsemantics [9] is a DSL that can be used in combination
with Xtext to formally define and verify the semantics of compilation phases such as
type-checking. We want also to cite EMFText [47], another EMF-based tool that supports
modular language implementation using syntax imports.

Computer language implementaiton can be also achieved through self-extensible pro-
gramming languages, where self-extension is intended here with the meaning in [29]. For
instance the SugarJ language [30] is an extension to Java that supports syntactic exten-
sions, and it is implemented using SDF and Stratego. Compile-time meta-programming
systems such as Template Haskell [89] and Converge [96] use quasi-quoting to denote
constructs that must be evaluated at compile-time. DSLs can be embedded by directly
manipulating the AST of the host language. The Wyvern programming language [72]
uses type-specific languages to allow language embedding (parsing and elaboration) in a
type-safe way. An in-depth comparison of language embedding through macro-systems
and source-to-source translators can be found in [96].

7.1. Extensible Parser Generators

The DEXTER parser generator (Sect. 4.4.3) is an LR parser generator that we developed
for Neverlang. The DEXTER generator generates and maintains the LR(0) goto-graph
in memory and updates it on-the-fly as new rules are added, or old rules are removed
from the grammar.

Several authors have dealt with the problem of evolving the parser of a language
from different perspectives. The problem of performing syntax extensions is known to
be nontrivial. Traditionally, the problem of parsing a context-free language is a matter
of choosing between the LL and the LR family [57], but these techniques alone do not
deal with the problem of evolution and extension.

Modern programming languages such as Scala [66] contributed to a new wave of
interest in parser combinator (e.g., [51]) libraries. Parser combinators are higher order
functions that can be composed together to form a parser for a complete language.
Parser combinators, PEGs [34], and in general any technique based on recursive descent
(e.g., [108, 81]) are known not to be trouble-free. For instance, a naïve implementation
of an ambiguous context-free grammar requires exponential time and space. Other
authors investigated alternative parsing algorithms, to allow more flexibility in grammar
definitions. The metafront tool [11] uses a novel parsing algorithm called specificity
parsing; the main problem with this algorithm is that the class of recognized languages
is not fully characterized. On the other hand, Earley’s parsing algorithm [26] is
well-known, and it is able to handle any (possibly ambiguous) context-free grammar,
although at the cost of a non-linear computational complexity [42]. The dynamic
nature of the algorithm makes possible to implement reflective grammars [91], that is
grammars that allow language extension at parse time. The algorithm is also being
employed in the SPARK toolkit for DSLs generation in Python [5], but the author
reports concerns in term of speed. A proposed solution to this problem (e.g., [6])
involves a pre-computation phase similar to those for LL and LR parsers, but the cost

96

7.2. Variability Modeling of Language Families

is losing the dynamic properties that make evolution easier.
LR parsers are known to be an efficient family of bottom-up parsers that is guar-

anteed to run in linear time for any deterministic context-free language. The main
arguments against this family are that LR parsers are not easy to write by hand, and
that many notable subclasses of LR, such as LALR, are in general not closed under
composition [86]. The first problem can be addressed using an LR parser generator,
such as YACC, that takes (E)BNF grammars as their input. There are also parsers in the
LR family that are known to be able to parse any context-free grammar, such as GLR.
Scannerless Generalized LR parsers (GLR) [95] have been showed to be closed under
composition, they are able to parse any context-free grammar, and are generally more
efficient than Earley for programming languages that are close to LR [13]. However,
for nondeterministic grammars, they may generate multiple different parse trees, and
therefore execute different actions for the same input text. Another notable class of the
LR family, LALR(1), has been showed to be practical and efficient with respect both to
parsing and to composition, by introducing context-aware scanning [102]. Both LALR
and GLR parsers are based off the same formalism, that is, LR(0) goto-graphs. The
conclusion is that studying a method to extend and restrict LR(0) goto-graph leads to a
working foundation for reasoning about the other classes. [13] describe an algorithm to
compose together different grammar portions and obtain an LR(0) goto-graph. First, the
input grammars are translated into ε-NFAs, then they are compose together, and then
the result is converted into the LR(0) goto-graph. The algorithm has been implemented
in MetaBorg and in the OCaML project dypgen [73]. This intermediate representation,
however, can be avoided, by applying the updating procedure directly on the LR(0)
goto-graph. Early literature on incremental extension of LR(0) goto-graphs [46, 48]
showed promising results. However, these work did not really provide formal proofs
of their results, favoring a largely empirical explanation of the software tools that
the authors implemented. In [19] we filled the void by completing these works with
a formal proof of the existence of a relation between extended and restricted LR(0)
goto-graphs using the technique of reduction over path lengths. An excerpt of the main
matter of this paper can be found in Appendix B.

7.2. Variability Modeling of Language Families

In Sect. 6.4 we discussed how variability management can be employed to represent
and resolve dependencies between language components in Neverlang. The variability
model is automatically inferred from tags on the slices, and refined through information
from the structural dependencies between components (Chapter 3 and Appendix A). A
detailed discussion of the experience can be found in [99, 98]. An excerpt from [98] can
be found in Appendix C.

Many authors have addressed the problem of recovering a feature model from
various kinds of artifacts. She et al. [88] showed how to reverse engineer a feature
model starting from feature descriptions (written in natural language) and static analysis
of source code. Davril et al. [22] presented a fully automated approach for constructing

97

7. Related Work

feature models from publicly available product descriptions (e.g., as found in SoftPedia
and CNET). Alves et al. [3] and Niu et al. [67] use clustering techniques to infer a tree
structure. Ferrari et al. [33] considered natural language documents. Weston et al. [109]
extract feature models from the requirements description in natural language.

In [99] the domain knowledge necessary to build the variability model was provided
by a domain expert, while in [98] we used a semantic network. In general tags can be
employed to describe a feature, although additional knowledge may be required to infer
further constraints (such as conflicting features). Some work has applied variability
management to language implementation. Although we used Neverlang, other modular
language implementation frameworks can be employed to implement a similar kind
of approach. Cengarle et al. [20] use MontiCore [59] to describe variations of a base
language. Haugen et al. [43] have used CVL to model possible DSL variations. White
et al. [110] use feature modeling to improve reusability of features among a language
family. Liebig et al. [60] have used Spoofax to generate a family of languages from
the Mobl DSL. The authors do not start from a set of pre-defined components, but
rather they componentize an already existing language and develop the variability
model to support it. Therefore, relations between language components are imposed
by the developers as they implement them. In our approach we have discovered the
relations between the components using information that we extract directly from the
implemented language components. Thus, our objectives were quite different: we
wanted to help users finding implicit or explicit relations between existing components.
The result makes it possible for end-users to configure their own DSL.

98

8
Conclusions

Modular language implementation is the first step towards bringing language imple-
mentation to a wider audience. The model we presented can be easily implemented
using many of the already existing tools. However, we showed that a native imple-
mentation of this model gives a greater range of possibilities. For instance, separate
compilations not only do enable users to distribute reusable components without
bundling the original source code, but also to extend and build upon the original
language implementation leaving it untouched. The neverlang.js experience (Sect. 6.2)
showed that it is possible to develop language extensions in parallel and in isolation,
and test and integrate them with the core implementation. The variability management
experience (Sect. 6.4) has shown that multiple language components can be mined to
simplify the definition of language variants from pre-built artifacts.

The Neverlang framework has been successfully employed in real-world projects.
TheMatrix [39] is a Java framework to query and manipulate Italian’s national healthcare
databases to produce statistics on the prevalence of chronic diseases and estimate the
standards of care across the country. The Tyl Language is an experimental business-
oriented DSL for the development of ERP software1. The same implementation of
Neverlang’s compiler nlgc (Sect. 4.3) and of the interpreter for a complete, modern pro-
gramming language (neverlang.js, Sect. 6.2) are a testament to the strengths of Neverlang
and its underlying model. We have also realized a modular Java language pre-processor,
in the style of Polyglot [68], SugarJ [30], and ableJ [86]. Other experiments involved
experimenting with a simple implementation of the Logo programming language.
Because the core API is entirely Java 6 compatible, we were also able to successfully
port the entire Neverlang implementation onto Android (an example use case would
be the Recipe language described in [18]), where its dynamic loading capabilities could
be useful to separately distribute plug-ins for a core language implementation.

1http://www.mate.it/index.php/en/tyl

99

http://www.mate.it/index.php/en/tyl

8. Conclusions

Nevertheless, in Neverlang there is still much room for improvement. Future work
will concentrate both on its expressive power and ease of use. In Sect. 4.2 and Sect. 6.2
we mentioned runtime evolution and a DSL for tree rewriting. These extensions are
already in development, and thanks to the architecture of the framework they should
be ready soon. The language plugin system makes it possible to easily support new
programming languages for semantic actions, and the dynamic mapping between
parse trees and semantic actions should make easy to support dynamic dispatching of
alternative actions.

From a methodological point of view, future efforts should be also geared towards
establishing a set of guidelines so that users may define language components (slices)
that are easy to combine. In Sect. 3 we gave an overview of the principle of dependency
between language components, and in the following sections a few examples were
given where reliable language composition was an effect of naming conventions. Even
though Neverlang provides renaming and remapping capabilities (Sect. 4), guidelines on
naming and factorization of language components are still an open problem that affects
any modular language implementation tool. State-of-the-art static analysis techniques
(e.g., [55]) may be also employed to further simplify component development. Our plan
is to explore this problem in more depth through field studies and further experiences.

100

A
Formal Composition Model

In Chapter 3 high-level description of the model of a feature-oriented, componentized
language implementation framework were given. Many existing frameworks may fit
this model. In the following we will try and give a formal description of the Neverlang
implementation using formal grammars for syntax definition and attribute grammars
for semantics specification, because they are the models that this implementation fits
better. Not all the frameworks may implement this abstract model to the letter: for
instance, they may not use BNF grammars for syntax or they may not implement the
semantics using attribute grammars (e.g., Spoofax uses SDF [45] for grammars and tree
rewriting for semantics).

A.1. Decomposition of Syntax Definitions

Let us consider a grammar G � `Σ, N, P, Se. Then P can be partitioned in n A 0 sets
P0, P1, . . . , Pn�1. A syntax definition of a language component can be seen in fact as the set
of a partition of the grammar G of the entire language implementation. For instance, if
G were the grammar for a Java-like programming language, there would be a partition
Pi (i > 0, 1, . . . , n � 1) describing the syntax of the while loop (Sect. 3), one for the if

branch and so on. It follows that for any choice of a number k B n of partitions of P, it
is always possible to define a subset of such language by a grammar

G�
� `Σ, N, Pj0 8 Pj1 8�8 Pjk , Se,

where, for all t, Pjt > �P0, P1, ..., Pn�1�. It also follows that any language can be represented
as the union of sets of productions over the alphabets of symbols Σ and N with an
axiom S. Any syntax definition in a language component may be seen as one such set of
productions.

101

A. Formal Composition Model

Non-empty Languages In Chapter 3 one form of dependency between components
is implied by the syntax definitions, because placeholders represent a feature that is
required; these dependencies must be satisfied so that the resulting language is meaningful,
that is, non-empty Chapter 2; thus, although the set P of productions in the tuple
G � `Σ, N, P, Se can be seen as the union of an arbitrary collection of k production sets
P � �P0, P1, . . . , Pk�, we are interested only in those grammars that generate a non-empty
languages (Chapter 2). For instance, let be PB c �A � B� one set in P. Then there must
be some set PA c �X � ω1 A ω2� of P, that is a set that contains a production where A
occurs in its left-hand part, and it must be possible to derive A from S; that is, S��

G A
Similarly, there must be PB c �B � β� in P, such that A��

G w, with w > L�G�; and thus,
S��

G w. In other words, for each set Pk of productions, we can define a set r�Pk� b N of
required nonterminals and a set p�Pk� b N of provided nonterminals [99].

Definition 8 (Provide and Require Sets). Let be P a set of productions consisting of m
productions and let the j-th production be

Xj0 � Xj1Xj2�Xjnj

– The provide set p�P� is the set of all the left-hand nonterminals of the rules in P:

p�P� � �Xj0 S j � 0, 1, . . . , m�

– The require set is the set of all the right-hand nonterminals of all the rules in P:

r�P� � �Xji S j � 0, 1, . . . , SPS, 0 @ i B nj�

– The restricted require set is the set of all the right-hand nonterminals that are not in
the provide set of P

r̄�P� � r�P�� p�P�

Then, given a set of productions Pk with a production A � B, we can say that Pk is
providing A, and it requires B.

Definition 9 (Sat Relation). Let be P a collection of disjoint sets of productions, over
the alphabets Σ of terminal symbols and N of nonterminal symbols. Let be Pk, Pj > P,
X > N, the satisfies relation is the set Sat b P�P�N and it is �Pk, Pj, X� > Sat (“Pk satisfies
Pj with X”) if and only if p�Pk�9 r�Pj� c �X�, that is if Pk provides at least a nonterminal
X that Pj requires.

The satisfies relation induces the definition of an edge-labeled directed graph where the
vertex set is the set of all the grammar partitions, the edge set is the set of pairs �Pk, Pj�
in a triple in Sat, and the labels of the edges are the nonterminals in the same triple.

Definition 10 (Dependency Graph). The dependency graph for P is the tuple D � `P, Ee,
where E � ��Pk, Pj� S �Pk, Pj, X� > Sat�, with a function ` � E � N such that `�d� � X for
each d � �Pk, Pj� > D, such that �Pk, Pj, X� > Sat.

102

A.2. Decomposition of Language Semantics

A.2. Decomposition of Language Semantics

Attribute grammars (see Chapter 2) describe the relations between attributes that are
attached to nonterminal symbols in the tree representation of a program written in
some given language. The semantics of a programming language can be described
by as a sequence of compilation phases; with respect to attribute grammars, Adams [1],
has shown that, if a temporal ordering exist, compilation phases can be implemented
as a sequence of attribute grammars. Each attribute grammar implementing a phase
would then communicate with other phases through attributes. As see in the formal
model, a type checking phase may define a type attribute that would be used in the code
generation phase. Attribute that are reused across phases realize what we called inter-
phase dependencies in Chapter 3. In Chapter 3 we also gave a definition for intra-phase
dependencies: these dependencies rise from the modularization of a processing phase
along the axis of language constructs.

Let us consider some attribute grammar AG � `G, As, Ai, V, σe for a given grammar
G � `Σ, N, P, Se:

– As�X� and Ai�X� are the attribute sets for any nonterminal X of G,
– V is a function assigning to each attribute X.α a domain V�X.α�, which may be

written alternatively as VX.α, and
– σ is the mapping assigning each production p � Xp0 � Xp1Xp2�Xpnp a finite set

σ�p� of semantic rules, and each semantic rule maps values of certain attributes of
Xp0, Xp1, . . . , Xpnp into the value of some attribute Xpj, 0 B j B pnp .

Suppose that the productions P of a grammar G � `Σ, N, P, Se has been partitioned into
a set P of n production sets. Then, for each partition Pk > P, let us denote with Nk b N
the subset of the nonterminal alphabet N that contains only the nonterminals that occur
in productions of Pk, and consider the tuple Rk � `Pk, As

k, Ai
k, V, σke:

– As
k � �As�X� S X > Nk�; thus As

k is, the subset of synthesized attributes of only those
nonterminals that occur in Pk

– Ai
k � �Ai�X� S X > Nk�; that is, the subset of the inherited attributes of only those

nonterminals that occur in Pk

– σk is the restriction of σ to the sole productions in Pk (undefined otherwise).

Then, it is easy to see that, for all k � 0, 1, . . . , n�1 the original attribute grammar AG can
be obtained by the respective union of all the components in each tuple Rk. The tuple Rk
is the part of the evaluation phase R that pertains to the syntax definition in Pk. Because a
language implementation consists of many phases, and thus, many attribute grammars,
let us consider then a collection of attribute grammars AG � �AG1, AG2, . . . , AGr�, each
representing a phase for the language specified by the grammar G. Then for each Pk,
for each AGj, 0 B j B r there is a role Rkj. Finally, consider the tuple Sk � `Pk, Rke where
Rk � �Rk0, Rk1, . . . , Rkr�, in other words, Rk is a collection of roles for the production
set Pk. This is a language component.

103

A. Formal Composition Model

Abstract and Concrete Syntax Now, consider some role Rkj with syntax Pk. Now
let be Sk � `P̄k, Rke a slice, with Rkj > Rk. The definition of role does not mandate that
P̄k � Pk. In fact, it is assumed that it may be P̄k x Pk. However, in this case, it is
expected that there exist one mapping ϕ � P̄k � Pk such that ¦p > P̄k � ϕ�p� � q, q > Pk.
In particular, let be X0, X1, . . . , Xn the nonterminals in production p, then ϕ will map
each Xi onto nonterminals Y0, Y1, . . . , Yn in production q. In other words, roles may be
defined in terms of a set of productions that differs from the set of productions in the
slice, provided that a mapping between the set of productions of the slices and the set
of productions for the roles exists.

Relations Between Evaluation Phases In Chapter 3 we saw that dependencies be-
tween language components are also introduced by properties of the features. In the case
of attribute grammar, these properties are represented by attributes of the nonterminals.
In the previous sections we gave the definition for Sat relation between two sets of
productions Pk and Pj and the set of nonterminals N (Def. 9). We might now be tempted
to formalize a relation RSat between roles Rk � �Pk, As

k, Ai
k, V, σk�, Rj � �Pj, As

j , Ai
j, V, σj�,

and the attributes that are defined and used within the semantic actions of these roles.
Let us assume, without loss of generality, that the production sets are singletons defined
as follows: Pk � �X0 � X1X2�Xn� and Pj � �Y0 � Y1Y2�Ym�. Now, let us assume that
Pk satisfies Pj with X0, and thus it is �Pk, Pj, X0� > Sat. By definition it is then Yt � X0 for
some 0 B t B m.

In this case we cannot define one-sided provides and requires sets as we did for
production sets: in fact Rk may provide synthesized attributes to Rj, and Rj may provide
inherited attributes to Rk, and similarly they may both require attributes to be present.
Of course, the relation is satisfied when the attributes required by one role are provided
by the other. Now, consider Knuth’s dependency graph [58, p.134], where there is an
edge �Y.β, X.α� if and only if the semantic rule for the value of attribute Y.β depends
directly on (requires) the value of attribute X.α (the attribute that X provides). In these
cases we can say that X.α satisfies Y.β. We can then define the set ASat � ��X, Y, α� S
§Y.β > A�Y� � X.α satisfies Y.β�. As the reader may have realized, the formal definition
for the relation RSat is somewhat more complicated than the one for Sat. We will just
give an informal definition of the RSat relation between roles Rk, Rj as the collection of
all the pairs �Rk, Rj� such that:

– �Pk, Pj, X� > Sat
– �X, Y, α� > ASat, Y > Nj, X.α ~> Aj�X� Ô� X.α > As

k�X� that is, whenever an
attribute X.α satisfies some attribute of a nonterminal Y found in the productions
of Pj and that attribute is not already in Aj�X�, then X.α must be a synthesized
attribute of X in Rk.

– �X�, X, β� > ASat, X�
> Nk, X�.β ~> Ak�X�� Ô� X�.β > Ai

j�X�
that is, whenever an attribute Y.β satisfies some attribute of a nonterminal X found
in the productions of Pk, and that attribute is not already in Ak�X��, then Y.β
must be an inherited attribute of Y in Rj.

104

A.2. Decomposition of Language Semantics

This definition only captures part of the problem; in particular, with attribute grammars
not only do we require for these properties to be satisfied, but also that computations
of the attributes terminate correctly (non-circularity—e.g., see [74]). A more extensive
discussion of modularity and verifiability of language extensions in attribute grammars
would go beyond the extent of this work, where AGs are only used as a possible model
of the idea; for further details on AG-based verifiable language extensions we refer
to [55]. It follows that, in order to realize a working language implementation, not
only should the language be non-empty, but also both dependencies within phases and
across phases (Sect. 3.1.2) should be satisfied, that is, there should be no references to
undefined attributes.

Language Implementation We can finally give a definition of a language implementation
as a collection of m slices S0, S1, . . . , Sm, where the generated language is non-empty for
a given axiom, where all the syntactic and semantic dependencies are satisfied, and
for which the roles defined in each Sk are executed in a given sequence; in particular,
for any permutation of roles, their evaluation in sequence should be equivalent to
evaluate in the same order the corresponding attribute grammars. In other words, if
Rk � �Rk0, Rk1, . . . , Rkr� are the roles for Sk, and AG0, AG1, . . . , AGk are the respective
attribute grammars of which each Rki is a portion, if the roles are evaluated in the order
�Rk0, Rk1, . . . , Rkr�, then the evaluation should be equivalent to evaluating the sequence
of attribute grammars �AG0, AG1, . . . , AGk�.

105

B
On The Relation Between LR Goto-Graphs

The DEXTER parser generator is the component that performs the syntax analysis in
Neverlang. DEXTER generates LR parse tables on the fly using an algorithm described
in [19]. This algorithm transforms the LR goto-graph [2] of a given grammar G into the
goto-graph of a grammar G�, if G� can be described in terms of G, plus a set of new
productions Q. In this appendix we have reproduced, for reference, the relevant section
of the full journal paper. The proofs assume knowledge of formal grammars and the
LR parsing technique.

The Goto-Graph. The augmented grammar of a given grammar G0 � `Σ, N, S, Pe is the
tuple

G � `Σ 8 �$�, N 8 �S��, S�, P 8 �S� � S$�e

with $ ~> Σ. We will call S� � S$, where S� ~> N, the starting production.
An LR(0) item (item for short) is a dotted production rule, e.g., A � α �Xβ. A generic

item will be denoted by ξ, ξ�, ξ��, etc. In the following, we may say that symbol X is
“dotted in ξ” if it is preceded by � in the item ξ. We say the dot “�” to be leftmost in ξ
if ξ � A � �ω (for some A, ω) and we say the dot to be rightmost if ξ � A � ω�. A rule
with a rightmost “�” is said to be a reduction candidate or more simply a candidate. The
item S� � �S$ will be called “initial item”. For convenience we also define the following
expressions:

next�A � α �Xβ� < A � αX � β and prev�A � αX � β� < A � α �Xβ

with next�ξ� � ξ when ξ is candidate, and prev�ξ� � ξ when the dot in ξ is leftmost.
Now, let G � `Σ, N, S, Pe be a grammar and let I be a set of items. The closure of I (with
respect to G) is defined as the smallest set ClosureG�I� such that:

1. I b ClosureG�I�

107

B. On The Relation Between LR Goto-Graphs

2. B � α � Aβ > ClosureG�I�, A � γ > G Ô� A � �γ > ClosureG�I�

In other words, for all productions B � α � Aβ > I, then ClosureG�I� is the set
obtained by first enriching I with all the items A � �γ (provided A � γ > G), and then
enriching iteratively the obtained set until no more items can be added.

A kernel item is either the initial item S� � �S$ of an augmented grammar or an item
whose dot is non-leftmost. Any other item is called nonkernel. For each set of items I
we denote with K�I� the subset of I that contains all of its kernel items. Notice that it is
always ClosureG�K�I�� � I, thus, for each pair of sets I, J it is K�I� � K�J� if and only
if I � J.

The particular collection of sets of LR(0) items of a given grammar that is be used to
drive the pushdown automaton of an LR parser is called the canonical LR(0) collection;
we will indicate this collection with the symbol I . The set I is the result of the iterative
application of the Closure function. We call a set of items I state when I > I. The
algorithm to generate the LR(0) set of states I from an augmented grammar is described
in [2]. the procedure uses the Goto function, defined as follows: let I be the set of
LR(0) states for grammar G, and let I > I and X > �Σ 8 N 8 �ε�� then

GotoG�I, X� < ClosureG��A � αX � β S A � α �Xβ > I��. (B.1)

Because of the algorithm definition, we call the closure of set I � �S� � �S$� the initial
state of the canonical LR(0) collection of states, and we usually indicate it with I0.

It is quite common to represent the canonical LR(0) set of states I as a graph.
Informally, the set of vertices of this graph corresponds to I , and the set of edges is the
set of pairs �I, J�, with I, J > I and such that GotoG�I, X� � J for some symbol X.

Definition 11 (Goto-Graph). Let I be the LR(0) set of states for a grammar G, then the
goto-graph is a tuple ΓG � `V, Ee where V is the set of vertices and E is the set of edges.
Each vertex q corresponds to one and only one state I > I. For each q > V, we denote
with `G�q� the kernel K�I� of the corresponding state. Then E is the subset of V �V
such that for all pairs �p, q� > E:

1. `G�p� � K�I�, `G�q� � K�J� and I, J > I
2. GotoG�I, X� � J with the symbol X > �Σ 8 N 8 �ε��.

We may also write `G�p, q� to refer to the label of the edge �p, q�; if this label is X then
`G�p, q� � X; if �p, q� ~> E then we might write `G�p, q� � �. For simplicity, we may also
write δ�p, X� � q when GotoG�I, X� � J and δ�p, X� � � when GotoG�I, X� � g. To

denote the edge �p, q� with label X we will also use the notation p
X
� q. A sequence

`G�p, q� � X, `G�q, r� � Y could be also written p
X
� q

Y
� r.

As you may have noticed, because I � ClosureG�K�I��, each vertex q > V can be
labeled with the kernel K�I� of some state I. It follows from the definition of LR(0)
states that `G�q� � `G�p� if and only if q � p. Finally, since the LR(0) collection of states
admits a notion of initial state, we can also define a notion of starting vertex for the
goto-graph.

108

B.1. Goto-Graphs and Growing Grammars

Definition 12 (Starting Vertex). Let be ΓG � `V, Ee the goto-graph for G and let be
q0 > V the vertex such that the starting production S� � S$ > `G�q0�; then q0 is the
starting vertex of the goto-graph.

Let us now define two operations over grammars called growth and shrinkage. The
result of these operations applied to an input grammar G and a production A � ω is a
new (possibly identical) grammar G�.

Definition 13 (Growth). Let G � `Σ, N, S, Pe be a grammar and A � ω a production,
and let us denote with σ�A � ω� the set of terminal symbols and with ν�A � ω� the
set of non-terminal symbols of the new rule; then grammar

G�
� `Σ 8 σ�A � ω�, N 8 ν�A � ω�, S, P 8 �A � ω�, e.

is the growing grammar for G, and we will denote it with G` �A � ω�.

Definition 14 (Shrinkage). Let G � `Σ, N, S, Pe be a grammar and A � ω a production;
then

G�
� `Σ, N, P � �A � ω�, Se.

is the shrinking grammar for G, and we will denote it with G\ �A � ω�.

Finally, we make the following generalizations: let Q be a non-empty set of produc-
tions such that Q � �A1 � ω1, A1 � ω2, . . . , An � ωn� then we define

G`Q < G` �A1 � ω1�` �A1 � ω2�` . . .` �An � ωn�. (B.2)

If Q b P we can define G\Q similarly.

B.1. Goto-Graphs and Growing Grammars

In this section we will find a relation between the graph of a given grammar G and the
graph of a corresponding growing grammar G�

� G`Q. This relation will help us to
define a procedure to augment the graph of G in such a way that the result is equivalent
to the graph of the growing grammar G�. We will then describe the opposite procedure,
to obtain the graph of a shrinking grammar G\Q, starting from a given G. Before we
carry on with the details, it is useful to introduce a notion of path.

Definition 15 (Path). Let ΓG � `V, Ee; we call path a string α � X0X1�Xk of symbols of
�Σ 8 N 8 �ε�� such that:

q0
X0
� q1

X1
� q2

X2
� �

Xk�2
� qk�1

Xk�1
� qk

where q0 is the starting vertex by convention, and q1, q2, . . . qk is any sequence of vertices
of V for which the condition holds. We can say that path α reaches qk or that qk is
reachable through α.

109

B. On The Relation Between LR Goto-Graphs

The length of a path is generally the length of the word α, unless the last symbol
Xk�1 � ε; in that case (and only in that case) the length of the path is SαS � 1. In fact,
because of the way LR(0) states are constructed, if there is one ε on a path, it is always
the last symbol of the path: if p

ε
� q, it is not possible that there is some X̄ such that

p
ε
� q

X̄
� r, as it is generally assumed that rules containing ε are always of the form

Z � ε, with Z being a nonterminal. Thus, `�q� � �Z � �ε�, which implies that there

cannot be any X̄ such that q
X̄
� r: in fact, the case p

ε
� q

X̄
� r would only be possible if

the grammar contained a rule of the form Z � ωεX̄ω� with ω, ω�
> Σ 8 N; but then the

rule would be written as Z � ωX̄ω�.
The degenerate 0-length path is admissible only in those graphs ΓG where V � �q0�.

For instance, this is the case for a grammar with one sole production of the form S � A,
that is a grammar where A is a useless nonterminal. It is easy to see that in these cases
the language generated by G is empty: this is not to be confused with those grammars
G whose generated language is the sole word ε: in this case there will be at least one
path q0

ε
� q1, for some q1 > V.

For the sake of simplicity, in the following we will assume grammars not to include
productions of the form Z � ε, therefore, for all paths α the length of a path will be the
length of the word SαS.

We shall now consider a grammar G � `Σ, N, P, Se and its growing grammar G�
�

G`Q. For the sake of simplicity, we will suppose that the production set Q is always a
singleton1; the results can be easily generalized to the case when the cardinality m of Q
(denoted by SQS) is greater than 1 by considering the m singleton sets (one set for each
rule of Q) and the chain seen in (B.2).

The Graph of G� as an Augmented ΓG. Earlier work e.g. [48] has proven by coun-
terexamples that given the goto-graph ΓG for G and a growing grammar G�

� G`Q it
is not always true that ΓG is a subgraph of ΓG� . In fact, due to what has been called a
splitting phenomenon [48], one vertex in ΓG might correspond to more than one vertex in
ΓG� . Consider the next example.

Example 1 (Splitting). The following is the grammar G presented in [48].

S � C S D S f D f , C � aAb, D � aec, B � ec (B.3)

We are showing the relevant vertices and edges of this goto-graph in Fig. B.1. Please
notice that B is an unreachable nonterminal and A is useless. If we consider G�

� G`Q,
with Q � �A � B�, here B becomes reachable and A is no longer useless. In the new
graph ΓG� (Fig. B.2) that we can obtain by applying the canonical algorithm [2], we
could informally say that some vertices have split. In particular, while it is easy to
find a bijection between q0, q1, q2, q3 and p0, p1, p2, p3, respectively, it is harder to decide
whether q4 is related to p�4 or p��4 . In fact, in a certain sense we could even say that q4 is
related to both p�4 and p��4 .

1We disregard the case when Q is empty since it is explicitly excluded by our definition of growing
grammar (Def. 13).

110

B.1. Goto-Graphs and Growing Grammars

S′ → ·S$

S → ·C
S → ·D
S → ·fDf
C → ·aAb
D → ·aec

q0

S → f ·Df

D → ·aec

q1

D → a · ec
q2

C → a ·Ab
D → a · ec

q3

D → ae · c
q4

D → aec·
q5

f e ca

ea

Figure B.1.: Representation of a portion of ΓG for the grammar G in Example 1..

S′ → ·S$

S → ·C
S → ·D
S → ·fDf
C → ·aAb
D → ·aec

p0

S → f ·Df

D → ·aec

p1

D → a · ec
p2

C → a ·Ab
D → a · ec
A→ ·B
B → ·ec

p3

D → ae · c
B → e · c

p′′4
D → aec·
B → ec·

p′′5

D → ae · c
p′4

D → aec·
p′5f a e c

e c
a

Figure B.2.: Representation of a portion of ΓG for the grammar G� in Example 1..

The conclusion is that the relation between ΓG and ΓG� is nontrivial, and that, in
general, we cannot say that, for any set of productions Q and for any grammar G, ΓG is
just a subgraph of ΓG`Q. Thus, it is not possible to find a simple mapping ϕ � V � V�,
but, more precisely, because of the splitting phenomenon that we just observed it might
be possible to find some

ϕ � V � ´�V�� (B.4)

In general, if q > V we will expect ϕ�q� to be a singleton. In other words we usually
expect q to correspond to one and only one vertex p of ΓG� . For instance, in our example,
q0 corresponds to p0 and q1 corresponds to p1, therefore we could pose ϕ�q0� < �p0�
and ϕ�q1� < �p1�. Then, by visually comparing Fig. B.1 and B.2, it is tempting to
conjecture that there might be a way to map q4 onto the set of �p�4, p��4 �, and similarly
map q5 onto �p�5, p��5 �. If this were possible, then, these would be the cases when a
vertex has split. In Sect. B.1.1 we will find the mapping ϕ and give a formal definition
of split vertex.

Our final goal is to find some graph Γ̂ isomorphic to ΓG, so that, given ΓG and the
set Q of new productions, it is possible to define ΓG� in terms of Γ̂, a set of new vertices
and a set of new edges. Now, let be Γ̂ � `V̂, Êe: we can define the sets V̂ and Ê in
terms of the mapping ϕ; because for each q > V the image ϕ�q� is a set of vertices of
V, then the set of vertices for Γ̂ can be defined as a collection of sets of vertices in V;
the set of edges Ê would be then a set of pairs of elements of V̂. Thus, it would be
natural to pose V̂ b ´�V� and Ê b V̂ � V̂; in particular, we want V̂ � ϕ�V� and therefore

111

B. On The Relation Between LR Goto-Graphs

{p0} {p1} {p2} {p′4, p′′4}

{p3}

{p′5, p′′5}
e

e

c

Figure B.3.: The portion of graph Γ̂ that relates the portion of ΓG� in Fig. B.2 to the portion of ΓG in
Fig. B.1..

Ê b ϕ�V�� ϕ�V�; that is, Ê would contain edges between images of V through ϕ. For
instance, let us impose ϕ�p4� < �p�4, p��4 � and ϕ�p5� < �p�5, p��5 � and let them be vertices
in Γ̂ (Fig. B.3). In ΓG� we have p�4

c
� p�5 and p��4

c
� p��5 . Therefore we would like Γ̂ to

contain edge ϕ�p4�
c
� ϕ�p5�, because this edge is easy to trace back to edge p4

c
� p5 in

ΓG; moreover, edge �ϕ�p4�, ϕ�p5�� should be in Γ̂ because we know that p�4
c
� p�5 and

p��4
c
� p��5 in ΓG� . This could be expressed by a function

ψ � E � ´�E�� (B.5)

that maps edges in E onto collection of edges in E�, in such a way that edges between
vertices like p4 and p5 are mapped into the set of edges between p�4, p�5 and p��4 , p��5 ; in
other words, we want that ψ� ϕ�p4�, ϕ�p5� � � ��p�4, p�5�, �p��4 , p��5 ��. In Sect. B.1.2 we will
find this mapping ψ and we will describe the construction for Γ̂.

Finally, in Sect. B.1.3, we will describe a construction to obtain ΓG� (modulo one
isomorphism) by augmenting ΓG. In particular we will find a set V̄ b V and a set Ē b E
such that for some sets ∆V̄ and ∆Ē, the graph GG:

GG � `V̄ 8∆V̄, Ē 8∆Ēe

is isomorphic to ΓG� .

B.1.1. Construction of ϕ and ∆V

The mapping ϕ can be constructed inductively.
– First, we define a family of functions ϕn: each of these functions maps any vertex

on a r-length path (r B n) in ΓG into a collection of vertices of ΓG� ;
– we then define ϕ in terms of this family of functions

Let us define a family of sets Vn b V. Each Vn contains each vertex of V that is reachable
in ΓG through every path with length at most n (see Def. 15). For instance, in Fig. B.1,
V0 � �q0�, V1 � �q1, q3�, V2 � �q2, q4�, etc. If the graph is acyclic, then there exists a

112

B.1. Goto-Graphs and Growing Grammars

longest finite path of length k in ΓG, and we can write:

V �

k
�
n�0

Vn (B.6)

where V0 < �q0� (by the definition of paths). However, if ΓG is cyclic, then there are
infinite possible paths; therefore (B.6) becomes:

V � lim
k�ª

k
�
n�0

Vn (B.7)

We can now define the family of applications:

ϕn �
n
�
r�0

Vr � ´�V��

Each of these functions maps any vertex q on any r-length path, with r B n to a collection
of vertices of ΓG� . Let us now suppose that q, q�, q0 > V and p, p�, p0 > V�, where q0 is
the starting vertex for ΓG, and p0 is the starting vertex for ΓG� � `V�, E�e. We can then
proceed to construct ϕ inductively as follows:

ϕ0�q0� < �p0�

ϕn�q� < �p S §p� > V�, q� > V � p� > ϕn�1�q��, p�
X
� p, q�

X
� q, for some X�

(B.8)

In other words, we impose q0 to map to the singleton set �p0�; in fact, since q0, is the
starting vertex, it can never split. Then, the image of q > V on a r-length path (r B n) is
defined in terms of ϕn�1 as the collection of all those vertices p such that:

– there is an edge p�
X
� p in ΓG�

– p� was in the image of a vertex q� on a path not longer than n � 1

– there is an edge q�
X
� q in ΓG

For instance, with reference to Fig. B.1, ϕ1�q1� � �p1� because q1 can be reached from q0
through an r-length path, where r B 1, that is, the 1-length path f , and p1 can be reached
through the same 1-length path f from p0 (with p1 in Fig. B.1). Also, ϕ3�q4� � �p�4, p��4 �
(p�4, p��4 in Fig. B.1); in fact, q4 can be reached from q0 through two r-length paths from
q0, with r B 3, and said paths are ae and f ae; p�4 and p��4 can be reached through those
same paths, respectively.

Now, let us consider ϕk for some k A 0. By definition, it is:

ϕk �
k
�
r�0

Vr � ´�V��.

If the graph is acyclic, then there exist some finite k̄ such that V � V0 8V1 8 � � � 8Vk̄; thus,
we can write:

ϕk̄ � V � ´�V�� (B.9)

113

B. On The Relation Between LR Goto-Graphs

and pose
ϕ < ϕk̄ (B.10)

When the graph is cyclic, paths are infinite in number, but set V is still finite; so, there
will still be a finite k̄ such that (B.10) holds. Consequently, even in this case ϕ < ϕk̄.
Example 2. Consider a generic grammar G and its goto-graph ΓG, of which Fig. B.1 is a
partial representation. Now consider a growing grammar G� and its goto-graph ΓG� , for
which the splitting phenomenon described by Horspool [48] takes place. Suppose that
the resulting ΓG� is portrayed in Fig. B.2. We want to find a mapping between the set
V � �q0, q1, q2, q3, q4, q5� of vertices of ΓG and the set V�

� �p0, p1, p2, p3, p�4, p��4 , p�5, p��5 � of
vertices of ΓG� . If we consider the construction in this section, the mapping ϕ is defined
as follows: ϕ�qi� � �pi� for i � 1, 2, 3; moreover ϕ�q4� � �p�4, p��4 � and ϕ�q5� � �p�5, p��5 �.

We shall now prove that the definition of ϕ is well-posed. This would hold true only if
we could guarantee that no vertex of ΓG is ever mapped onto an empty set. Otherwise,
there would some vertices of ΓG that could not be put in relation with any vertex of
ΓG� . This can only occur when there is a path in ΓG that is not also in ΓG� . We shall now
prove (Theorem B.1.1) that this can never happen. We will see that ϕ is well-posed as a
simple consequence (Corollary B.1.1).

Theorem B.1.1. Let be G�
� G`Q; then every path in ΓG is also in ΓG� .

Proof. The theorem can be proven by induction over the length n of a path. The 0-length
path (Def. 15) is the one where the starting vertex coincides with the last vertex. By
definition, it is q0 > V and p0 > V�.

Now, by contradiction, suppose for n � 1 that there is one path X in ΓG that is not

also in ΓG� . Then for some q, q0
X
� q but there is no p such that p0

X
� p. But then

δ�p0, X� � �, which would mean that some rule A � Xα is in G but not in G�: but this
is impossible, because G�

� G`Q.
Now consider any n-length path, with n A 1. By the inductive hypothesis path

α � X1X2�Xn�1 is both in ΓG and ΓG� and

p0
X1
� p1

X2
� �

Xn�1
� pn�1

Xn
� p.

Then again, by contradiction, let us suppose that there is no p such that pn�1
Xn
� p. But

then there is an edge qn�1
Xn
� q in ΓG that is not in ΓG� , which can only happen if some

rule Z � ω1Xnω2 is in ΓG, but not in ΓG� , which is a contradiction since G�
� G`Q.

Corollary B.1.1. The image of any vertex of ΓG is non-empty.

Proof. Because of the inductive definition of ϕ, the corollary is in turn proven by
induction. We posed ϕ0�q0� � �p0� by definition (B.8); then obviously ϕ�q0� is non-
empty.

Now, for n A 0, consider a �n � 1�-length path, and let q be the last vertex of this path.
By the inductive hypothesis there is at least one p > V� such that p > ϕ�q�. Now suppose

that q
X
� q�. If ϕ�q�� were empty, then there would be no p� > V� such that p� > ϕ�q��. But

this would contradict Theorem B.1.1, and therefore ϕ�q�� must be non-empty, too.

114

B.1. Goto-Graphs and Growing Grammars

The concept of split vertex that we introduced in Sect. B.1 will be now described more
formally with the following definition.

Definition 16 (Split vertices). If q > V and Sϕ�q�S A 1 we say that q has split (in ΓG�) or
that q is a split vertex.

The set of the split vertices (Def. 16) will be:

VS < �q > V T Sϕ�q�S A 1� (B.11)

We can also define the set

V�

S < �p > V� T §qs > Vs � p > ϕ�qs�� � �
qs>VS

ϕ�qs�. (B.12)

The collection ∆V of vertices is the collection of all those vertices of ΓG� that are not an
image of any vertex in ΓG. In symbols:

∆V < �p > V� S ¦q > V � p ~> ϕ�q�� � V�
� �

q>V
ϕ�q� (B.13)

Since our initial objective was to define a graph Γ̂ � `V̂, Êe that relates ΓG to ΓG� , we can
now pose the set of vertices V̂ < ϕ�V�. The relation ϕ�V� b ´�V� holds as expected at
the beginning.

B.1.2. Construction of ψ and ∆E

In this section we will define the set of edges Ê for Γ̂.

– We will define the function ψ to relate each edge in ΓG to a (possibly non-singleton)
collection of edges of ΓG� ;

– we will define a set Ê b V̂ � V̂ using ψ

– we will finally prove this definition to be well-posed.

Let us define ψ � E � ´�E�� by:

ψ�e � �q, q��� < ��p, p�� > E� S p > ϕ�q�, p� > ϕ�q��� (B.14)

In other words, the image of �q, q�� > E is the collection of all those edges in E� between
a vertex in the image of q and a vertex in the image of q�; that is, that particular subset
of ϕ�q�� ϕ�q�� that is contained in E�. Please notice that because of Theorem B.1.1, it is
always ψ�e� x g, when e > E.

Example 3. With respect to Example 2, ϕ�q4� � �p�4, p��4 �. In ΓG there is one edge �q4, q5�,
while in ΓG� there are two edges �p�4, p�5� and �p��4 , p��5 �. The mapping ψ defines a relation
between them all. In fact you can easily verify:

ψ� �q4, q5� � � ��p�4, p�5�, �p��4 , p��5 ��.

We would like now Ê to be such that when �q, q�� > E also �ϕ�q�, ϕ�q��� > Ê. For instance,
we would like �ϕ�q4�, ϕ�q5�� > Ê.

115

B. On The Relation Between LR Goto-Graphs

p

p′1

p′2

p1

p2

p′1

p′2

Figure B.4.: Possible inconsistencies in the definition of `�ϕ�q�, ϕ�q���. On the left, ��p, p�

1�, �p, p�

2��;
on the right, ��p1, p�

1�, �p2, p�

2��.

Let us pose Ê as follows:

Ê < ��ϕ�q�, ϕ�q��� S §p > ϕ�q�, §p� > ϕ�q��, �p, p�� > ψ� �q, q�� �� (B.15)

That is, for each edge �ϕ�q�, ϕ�q��� > Ê there is at least one edge between an element
p > ϕ�q� and an element p� > ϕ�q��, and that edge �p, p�� > ψ��q, q���.

Now we have potentially all the elements to define Γ̂ � `V̂, Êe. However, we still need
to guarantee that every path in ΓG is also in Γ̂ (Theorem B.1.3). In order to prove this,
we need to give define properly the labels of the edges in Ê. In particular, we want:

`�ϕ�q�, ϕ�q��� � X when q
X
� q�, and p

X
� p�, ¦�p, p�� > ψ��q, q���.

However, given our definition of ψ, we might be concerned that in some situations the
choice of that label X is not unique. In particular, if �q, q�� is an edge, then the choice
for `�ϕ�q�, ϕ�q��� might not be unique (Fig. B.4):

– when ψ��q, q��� c ��p, p�1�, �p, p�2��; in fact it should be `G��p, p�1� x `G��p, p�2�.

Otherwise the choice between p
X
� p�

1 and p
X
� p�

2 would be nondeterministic.

– when ψ��q, q��� c ��p1, p�1�, �p2, p�2��; in fact, it might be `G��p1, p�1� x `G��p2, p�2�.
Let us see that neither of these can ever occur by proving the following theorem.

Theorem B.1.2. If q
X
� q� is in ΓG, then, for all p� > ϕ�q��, it is always p

X
� p�, for any

edge �p, p�� of ΓG� , with p > ϕ�q�

Proof. Let us call e the generic edge �q, q�� > E. Consider the set ψ�e� and the collection

`�ψ�e�� � �X S p
X
� p�, �p, p�� > ψ�e��.

If any edge to a vertex p� > ϕ�q�� had always the same label X, then `�ψ�e�� would be
the singleton set �X�. Now, consider a vertex q� of ΓG; then, for some X > �Σ 8 N 8 �ε��,
and because of the definition of the goto-graph (Def. 11):

¦q s.t. �q, q�� > E � `G�q, q�� � X. (�)

116

B.1. Goto-Graphs and Growing Grammars

That is, any edge to q� of ΓG has the same label X. But then `�ψ�e�� � �X�, because of
the definition of ϕ.

In the proof, (�) follows from the definition of goto-graph. In fact, in the goto-graph

we have that q
X
� q� (which can also be written as δ�q, X� � q�) if and only if there are

two states I, J > I such that GotoG�I, X� � J (Def. 11). Because Goto is defined in
terms of Closure, if there is some state K > I such that GotoG�K, Y� � J then it must
be Y � X. Therefore, if there is some some other edge �r, q��, for some r > V, then it is
always δ�r, X� � q, that is, `G�r, q� � X; but then (�) holds. For a concrete example of
this, consider vertices q2, q3, q4 in Fig. B.1; the label of the edges between this nodes is
always e.

From Theorem B.1.2, it follows that we can always assign some single label X to
`�ϕ�q�, ϕ�q���, so we can now legitimately write:

ϕ�q�
X
� ϕ�q��.

We can finally prove that the definition of Ê is well-posed.

Theorem B.1.3. A path is in Γ̂ if and only if it is in ΓG.

Proof. Every path is in Γ̂ is also in ΓG by construction. Let us then prove that when a
path is in ΓG it is also in Γ̂, by induction on the length of the paths. For the 0-length
path, the property is trivially true. Now, consider a path of length n A 0 in ΓG and Γ̂,

such that q and ϕ�q� is the last vertex on these paths, respectively; then for each q
X
� q�

there must also be ϕ�q�
X
� ϕ�q��: in fact, let us suppose by contradiction that there is

one edge q
X
� q� but there is no edge ϕ�q�

X
� ϕ�q��. Then, because of (B.14) and (B.15),

ψ��q, q��� � g; in other words, ¦p > ϕ�q� and ¦p� > ϕ�q�� it is �p, p�� ~> E�. But then there
would be paths in ΓG that are not also in ΓG� , which would contradict Theorem B.1.1.

We can now define split edges and describe another notable set of edges, similarly to
what we did previously for vertex sets.

Definition 17 (Split edges). If e > E and Sψ�e�S A 1 we say that e has split (in ΓG�) or that
e is a split edge.

The split edges (Def. 17) will be the set:

ES < �e > E T Sψ�e�S A 1� (B.16)

Finally, the collection ∆E of new edges is the set of all those edges in E� that are not the
image of edges in E:

∆E < �e� > E� S ¦e > E � e ~> ψ�e��� � E� ��
e>E

ψ�e� (B.17)

117

B. On The Relation Between LR Goto-Graphs

B.1.3. Construction of ΓG� from ΓG

We will now describe how to obtain a graph G � `VG, EGe that is isomorphic to ΓG� ,
starting from the given ΓG.

Theorem B.1.4. Let ΓG � `V, Ee and ΓG� � `V�, E�e, with G�
� G`Q, for some Q. Then,

there is a graph
G � `VG � �V �VS�8∆V̄, EG � �E � ES�8∆Ēe

where ∆V̄ b V�, ∆Ē b E�, and there is an isomorphism ϕG � VG � V� such that

�r, r�� > EG
� �ϕG�r�, ϕG�r��� > E� (B.18)

Proof. We first pose V̄ < V � VS and Ē < E � ES. We also introduce the mapping
ϕ̄ � V̄ � V� as a restricted version of ϕ (B.10):

ϕ̄�q� � p
� ϕ�q� � �p�

Please notice that when VS, ES (see (B.11) and (B.16)) are empty, then V̄ � V and Ē � E.
Now, let us call ∆V̄ < V�

S 8∆V. Similarly, when V�

S is empty ∆V̄ � ∆V. We can then
write:

VG < �V �VS�8 �V�

S 8∆V� � V̄ 8∆V̄ (B.19)

Now, we want to express similarly EG, that is:

EG < Ē 8∆Ē

Ē has been defined as the set of all those edges of ΓG that are not split. Now, let us
describe ∆Ē. The description of this set is not as simple as the one for ∆V̄, since it is
supposed to be a collection of pairs that relate vertices of V̄ with new vertices in ∆V̄, in
a way that makes G isomorphic to ΓG� . Let us define ∆Ē as follows:

∆Ē < Eold 8 Ebdg 8 Enew (B.20)

– Eold is the set of all those edges that were not in ΓG but are between vertices that
were already in ΓG (modulo ϕ);

– Ebdg is the set of the bridging edges; that is, all those edges between vertices of ΓG
(modulo ϕ) and new vertices of ΓG� (including split vertices), and vice versa;

– Enew is the set of the edges between vertices that are completely new to ΓG�

(including split vertices)2

In symbols:

Eold < ��q, q�� ~> E S q, q� > V̄, �ϕ̄�q�, ϕ̄�q��� > ∆E�
Ebdg < ��q, p� S q > V̄, p > ∆V̄, �ϕ̄�q�, p� > E��8 ��p, q� S p > ∆V̄, q > V̄, �p, ϕ̄�q�� > E��

Enew < ��p, p�� S p, p� > ∆V̄, �p, p�� > E�� b E�

2therefore V�

S b �Ebdg 8 Enew�

118

B.1. Goto-Graphs and Growing Grammars

We then pose the following isomorphism ϕG � VG � V�:

ϕG�r� <
¢̈
¦̈̈
¤̈

ϕ̄�r�, r > V̄
r, otherwise

– If �r, r�� > Ē then �ϕG�r�, ϕG�r��� � �ϕ̄�r�, ϕ̄�r��� > E�;
– If �r, r�� > Eold then �ϕG�r�, ϕG�r��� � �ϕ̄�r�, ϕ̄�r��� > ∆E;
– If �r, r�� > Ebdg then either:

�ϕG�r�, ϕG�r��� � �ϕ̄�r�, r�� > ∆E or �ϕG�r�, ϕG�r��� � �r, ϕ̄�r��� > ∆E;

– If �r, r�� > Enew then �ϕG�r�, ϕG�r��� � �r, r�� > ∆E;

Then, by construction, the (B.18) holds.

The previous theorem describes the structure of a graph that isomorphic to ΓG� �

`V�, E�e starting from elements of ΓG � `V, Ee. We called this graph G � `VG, EGe, but,
from now on, we will assume the following:

Remark B.1.1. Because of Theorem B.1.4, without loss of generality, we can always
assume that it is always V̄ � V 9V�, Ē � E 9 E�. That is, from now on, we will always
assume that V�

� VG, E� � EG. In light of this, we can also assume:

ΓG� � G (B.21)

Until now, we put aside any consideration about the labels of the vertices on purpose.
We will now see how labels change between a goto-graph ΓG and the graph of its
growing grammar ΓG� . Heering [46] made similar observations in their early work on
lazy construction of LR parsers. We can now restate these observations in light of the
previous proofs. Intuitively, with the growth of the graph, labels grow as well. We will
proceed by cases, first considering vertices that do not split, and then the case of split
vertices.

Theorem B.1.5 (Labels in V̄). Let G � `Σ, N, S, Pe and G�
� `Σ�, N�, S, P�e two grammars

such that G�
� G ` Q where Q � �A � ω�; let ΓG � `V, Ee be the subgraph of ΓG� �

`V�, E�e, with V̄ � V 9V�, Ē � E 9 E�; then, for all q > V̄, it is always `G�q� b `G��q�.

Proof. Let us again proceed by induction on the length of a path. On the zero-length
path, we consider the starting vertex q0 (Def. 12): because of the definition of ` as the
kernel of an LR(0) set of items, it is easy to see that `G�q0� � `G��q0�, as it will only
contain the initial item S� � �S$. Therefore, it is also true that `G�q0� b `G��q0�.

Now, for all q� > V̄ on a �n � 1�-length path, with n A 0, let us assume that the
inductive hypothesis holds, and consider q such that �q�, q� > Ē. Now, because of the
ways goto-graphs are constructed (Def. 11):

¦ξ > `G�q� � prev�ξ� > ClosureG�`G�q���

¦ξ� > `G��q� � prev�ξ�� > ClosureG��`G��q���;

but, for the inductive hypothesis `G�q�� b `G��q��: then it is also `G�q� b `G��q�.

119

B. On The Relation Between LR Goto-Graphs

The theorem above formally proves a simple intuitive observation: if the grammar
has grown, then the label of a vertex can only grow; in particular it will grow if the
closure changes. Split vertices are a special case, that we treat separately in this remark.

Remark B.1.2 (Labels of the Split Vertices). If q > VS, for each p > ϕ�q�, `G��p� is at least
the same as `G�q�; in particular:

`G�q� b �
p>ϕ�q�

`G��p� and `G�q� ` �
p>ϕ�q�

`G��p�. (�)

Proof. Let us first consider all those non-split vertices that lead to the split vertex q for

some symbol X; that is, all those qi such that qi
X
� q for i � 0, 1, . . . , n, for some n. Then,

because of the definition of Goto and Closure (at the beginning of the appendix):

K�GotoG�`G�qi�, X�� � `G�q�, for all i � 0, 1, . . . , n

But, then this also means that there is a set of items L that is common to all labels
`G�qi�, or, in symbols:

L b �
i�0,1,...,n

`G�qi�

and this set L is such that K�GotoG�L, X�� � `G�q�. Because every qi is non-split, we
already know that `G�qi� b `G��qi�, then it is also:

L b �
i�0,1,...,n

`G��qi�.

But then, by definition of ϕ�q�, for each p > ϕ�q� there is at least one qi such that qi
X
� p,

and it is `G��p� c K�GotoG��L, X��. This proves the first inequality in (�) for the case
when every qi is non-split. It is easy to see that the second inequality holds as well: in
fact, if the relation did not hold true, then the labels of each p > ϕ�q� would all coincide,
but then, by definition of goto-graph ϕ�q� � �p� which would mean q ~> VS.

Now, let us consider some edge p
X
� p�, where p > ϕ�q� and p� > ϕ�q�� such that

q
X
� q�, where q, q� are both split vertices. By induction, for all p > ϕ�q� there is a set L

such that L b `G��p� and such that L b `G�q�: then, for all p� > ϕ�q�� there is a set L�

such that L� b `G��p�� and such that L� b `G�q��, and this set is L� � GotoG��L, X�. This
proves the left-hand inequality in (�); the right-hand inequality, again, holds as well,
otherwise q� would not be a split vertex.

We can finally enunciate the following theorem.

Theorem B.1.6 (Relation between labels). Let be q > V, then ¦p > ϕ�q� it is `G�q� b

`G��p�.

The proof follows from Theorem B.1.5 and Remark B.1.2.

120

B.2. Goto-Graphs and Shrinking Grammars

B.2. Goto-Graphs and Shrinking Grammars

IThe theorem that follows will prove that the operation of growth can be inverted. The
graph of a shrinking grammar can be obtained from the initial grammar by removing
vertices and edges. Even in this case, split vertices require a special treatment. In the
case of the growth operation, we were removing the set VS and added in the set V�

S,
that contained all the edges ϕ�q� such that q > VS. In this case, we will remove all those
vertices p > V�

S that are split in ΓG and then we will add all the vertices in VS. These
operations can always be done, because any grammar G� can be seen as the growing
grammar of some G � G� \Q, for some Q. In light of Theorem B.1.4 and Remark B.1.1,
we can then enunciate the theorem as follows.

Theorem B.2.1. Let ΓG� � `V�, E�e, then there are ∆V̄, VS, ∆Ē, ES such that

ΓG � `V�
�∆V̄ 8VS, E� �∆Ē 8 ESe. (B.22)

Proof. Let be ΓG� � `V�, E�e. Because of Theorem B.1.4, we know that there are V̄ ` V
and Ē ` E such that

`�V �VS�8∆V̄, �E � ES�8∆Ēe � ΓG`Q � ΓG�\Q`Q � ΓG�

for some sets ∆V̄,∆Ē. The construction of these sets has been described in the corre-
spondent proof. It is obviously V�

� �V �VS� 8∆V̄, E� � �E � ES� 8∆Ē. We can then
derive the following expressions:

V � V�
�∆V̄ 8VS, E � E� �∆Ē 8 ES

The (B.22) follows.

For the sake of completeness, we enunciate the following corollary, about the the vertex
labels: in this case they shrink.

Corollary B.2.1. If q is a vertex of ΓG\Q, then `G�q� c `G\Q�q�.

The proof of the corollary follows trivially from theorems B.1.6 and B.2.1.

121

C
Variability Model Inference

Appendix A gave formal definitions for the dependencies between language components,
that were described in Chapter 3. Each dependency can be seen as a logical constraint.
For instance, when we write A^ BCD, this can be read as A requires B and C and D; in
other words, A � B , A � C , A � D. Similarly, when we write X^ A, what we really
mean is that X requires at least one feature that provides a valid A definition; thus, if
we had two components, respectively providing A^ B and A^ C, what we logically
mean, is that A may be rewritten either to B or C, that is A � B - A � C. Besides these
simple observations, Neverlang makes it possible to tag (Sect. 4.1 and 6.4) language
components with additional metadata describing their purpose. In Sect. 6.4 we briefly
mentioned that this additional pieces of information can be mined to automatically
infer a variability model. In this section we give a summary of the experience, that is
fully described in [98]; in this paper, the tags are automatically inferred from a semantic
network, but the algorithm works also for user-provided tags. The running example that
we use is, again, a family of state machine languages; the implemented components are
indicated in Table C.1.

C.1. Tag Generation

We already have logical information (implies constraints) between slices, coming from
the dependency graph. The implications can be exploited to organize slices into a
hierarchy, but are not sufficient: slices are merely symbols. Intuitively user intervention
is needed to further refine the meaning of each slice and to hierarchically organize
slices. The semantics is what is still missing, i.e., the relations that occur between the
domain concept that each slice represents.

Slices are lexically mapped onto domain concepts: each slice is associated to a set
of terms, or tags that describe what it represents conceptually. These sets of tags are

123

C. Variability Model Inference

StateChartDef Outer container of the state machine body
StateChartBody Body of the state machine
StateDefList List of states

SimpleState Syntax for simple state
StartState Syntax for pseudostate start
FinalState Syntax for pseudostate final

InnerCompositeStates Specific definitions for Inner semantics
OuterCompositeStates Specific definitions for Outer semantics
MultiTriggerForkDef Syntax for Fork with Multi Trigger

SingleTriggerForkDef Syntax for Fork with Single Trigger

Transition Definition of a transition
TransitionDefList List of transitions
TransitionAction Body of a transition

Trigger Trigger of a transition
Guard Guard of a transition
Effect Effect of a transition
Join Join pseudostate implementation
Fork Fork pseudostate implementation

ForkTransition Fork Transition in the Single Trigger case
ForkLeftTransition Left Transition in the Multi Trigger case
ForkRightTransition Right Transition in the Multi Trigger case

Table C.1.: Slices for the SM language family.

automatically generated from an initial set of words. This initial set of words T0 is
given in the modules (Sect. 4.1). These tags can be then enriched with additional words
coming from a dictionary or a semantic network [98]. Now, let be W a set of words.
Then, if slice S > S (where S is an arbitrary set of slices), provides nonterminal X, we
can define the initial set T0�S� � �w0, w1, ..., wn�. By way of a dictionary or a semantic
network, we can enrich T0 to a set of tags T�S� c T0�S�.

C.2. Hierarchical Clustering

Once tags have been generated for each language component, a relevant tree structure
—that will serve as the basis for the variability model— should be derived. The idea
is to clusterize our language components by applying an agglomerative hierarchical
clustering algorithm [94]. The algorithm generates a binary tree (called dendogram).

Specifically, we reasoned by analogy with documental collections where each docu-
ment can be seen as a set of words. Each word is associated with a frequency f , i.e., the
number of occurrences of the word in the document. Our set of words T�S� for slice S
can be seen as a document where each word only occurs once. The clustering algorithm
works by comparing clusters using a similarity measure. A reasonable measure for
similarity between slices is the Jaccard similarity [94]:

J�S1, S2� �
ST�S1�9 T�S2�S
ST�S1�8 T�S2�S

(C.1)

For instance, consider Fig. C.1 (the tagged language components are the leaves of

124

C.3. Refinement Procedure

StateMachineLanguage

StateDef
StateMachineLanguage

SimpleState
StateDef

StateMachineLanguage

CompositeState
StateDef

StateMachineLanguage

InnerCompositeStates
CompositeState

StateDef
StateMachineLanguage

OuterCompositeStates
CompositeState

StateDef
StateMachineLanguage

StateMachineLanguage

StateDefList
StateMachineLanguage

StateMachineLanguage

StateChartBody
StateMachineLanguage

StateChart
StateMachineLanguage

Legenda

inner nodes

leaves

nodes to merge

Figure C.1.: (Part of) Dendogram for the State Machines..

the tree): the Jaccard similarity between S and S�, with T�S� � �InnerComposite-
States, CompositeState, StateDef, StateMachineLanguage} and T�S�� � �OuterCompo-
siteStates, CompositeState, StateDef, StateMachineLanguage} would be J�S, S�� � .6,
and the distance can be defined as d�S, S�� � 1� J�S, S�� � 0.4, that is the complement of
the similarity measure. Within this framework, we can recursively define a cluster as:

1. the singleton set �T�S��, with S being a slice
2. the set �c1, c2� where c1 and c2 are clusters
The output of this process is a dendogram where all the leaves are clusters on one

element of the form �T�S��, that are therefore easily mapped to single slices. Each
cluster contains the slices that are closer to each other, with respect to the Jaccard
similarity measure. In some sense, then, each cluster contains the slices that are closer
to each other semantically: in fact, the more two sets T�S�, T�S�� overlap, the closer the
measure will be to 1. Figure C.1 shows the result of the hierarchical clustering on a
small subset of slices for the state machine language example.

C.3. Refinement Procedure

In this first approximation, the tree (Fig. C.1) has many nodes labeled in the same way
and, as a variability model, it is poorly structured. We now described how to merge
nodes and compute labels.

Merging nodes. To reduce the number of choices, we merge nodes according to the
chosen distance measure d. If the distance between a pair of nodes is zero, then they
must be merged. Once the nodes have been merged, they can be labeled with the
tags contained in the clusters. The result of the clustering procedure is a binary tree

125

C. Variability Model Inference

StateMachineLanguage

StateDef

SimpleState CompositeState

InnerCompositeStates OuterCompositeStates

StateDefList

Legenda

nodes

nodes with 1:1 map on slides

logical constraints

Figure C.2.: Structure of the tree with respect to the features that represent states..

H � `C, Ee, where C is a set of clusters and the set of edges is E � ��c, c�� S c� > c�.
In particular, there is a subset CS ` C that is the collection of 1-element clusters, i.e.,
CS � ��T�S�� S S > S�; CS is the set of the tree leaves. For each cluster c we define:

τ�c� �
¢̈
¦̈̈
¤̈

T�s� c > CS

τ�c1�9 τ�c2� c � �c1, c2�
(C.2)

Intuitively, the τ function flattens the word sets found in each cluster, and computes their
intersection. E.g., consider a cluster c̄ � ��StateChart, StateMachineLanguage�,�State-
ChartBody, StateMachineLanguage��, then τ�c̄� � �StateMachineLanguage� (cf. Fig. C.1).
The τ function and the Jaccard similarity are used to find parent/child pairs that can
be merged. For each parent/child pair �c, c�� > E we compute the similarity value:

J �τ�c�, τ�c���

where J is still the Jaccard similarity. When the similarity value is 1 (the distance is
0), then parent and child can be merged, i.e., children of c� may become children of c,
and node c� may be removed from the tree.

Labeling nodes. The result of the merging procedure is a non-binary tree where nodes
are still unlabeled. Using again the τ function we can now define a labeling strategy `,
i.e., the labeling where parent and child labels do not overlap:

`�c� �
¢̈
¦̈̈
¤̈

`�c� c is root
τ�c�� `�c�� �c�, c� > E.

(C.3)

The result of the entire procedure applied to Fig. C.1 can be seen in Fig. C.2. Red,
dashed edges are implies constraints that can be inferred from the dependency graph
(Appendix A.)

126

C.4. Heuristics for Mining Constraints

SimpleState

StateChartDef
StateChartBodyStateChartBody

InnerCompositeStates
StateChartBody

OuterCompositeStates StateChartBody

CompositeStates

StateChartBody

StateDefList

StateDef

StateDef

StateDef

Figure C.3.: The dependency graph for a subset of the state machine language family.

C.4. Heuristics for Mining Constraints

The dependency graph D � `P, Ee (Def. 10) represents implication relations that we can
extract from the syntax in the language components. Let us now consider an alternate
definition of dependency graph, and let us call it DG.

Definition 18 (Dependency Graph (alternate)). Let be D � `P, Ee the dependency graph
between syntactic definition of a language component. Then D induces a dependency
graph DG � `S, ESe between language components, and S is a set of language components,

ES � ��S, S�� S �P, P�� > E, P is syntax for S , P� is syntax for S’ �.

Figure C.3 shows the dependency graph for a subset of the slices that we are
considering for the state machine example. There are two additional opportunities for
mining other kinds of constraints (beyond binary implications).

Implication and disjunctions. For each vertex S in the dependency graph DG there
exist a pair �S, S�� > DG if and only if S� satisfies a dependencies of S (Appendix A).
In particular, S� satisfies a dependency of S when there is some production B � β in
the syntax definition S� and S contains some production A � ωBω�. In this case, we
can say that S� provides B and that S requires A. The relation between slices S, S� can be
therefore interpreted as the logic constraint:

s � s� (C.4)

However, consider the case when there are multiple slices S�i satisfying S, for i �

0, 1, . . . , n. For instance, each slice might contain a production of the form B � βi, where
β0 x β1 x � � � x βn. Although one might then be tempted to write the set of formulas:

S � S�0, S � S�1, . . . , S � S�n

127

C. Variability Model Inference

StateMachineLanguage

StateDefTransitionDef

PseudoStateSimpleState CompositeState

StartState SynchronizationPseudoStatesFinalState

ForkJoin

ForkTransition ForkTrigger

SingleTriggerFork MultiTriggerFork

InnerCompositeStates OuterCompositeStates

Trigger TransitionOption

Guard Effect

Optional

Mandatory

Or

Alternative

Figure C.4.: Final generated variability model. In grey, features that are mapped 1:1 to a slice..

this would be incorrect. In fact, in a grammar, rules of the form B � βi represent choices
between possible rewritings, rather than constraints that shall hold at the same time.1

Consequently, in this case we can infer the constraint:

S � �S�0 - S�1 - � � � - S�n� (C.5)

For instance, in Fig. C.3, the collection of equally-labeled outbound edges can be
expressed using the formula:

StateDefList� (C.6)
�SimpleState - InnerCompositeStates - OuterCompositeStates�.

As a general rule, if there is one and only one slice S� that satisfies S, then the logic
constraint in (C.4) encodes the mandatory requirement that, when S is in the language,
then also S� shall be included; otherwise, if there are n slices S�i that satisfy S, then the
logic constraint (C.5) encodes the requirement that, when S is in the language, at least
one slice S�i shall be included. By reasoning in the same way for each slice in set S and
for each pair in set ES, we obtain a collection of crosscutting constraints that we can pair
with the tree that we have as a result of the clustering procedure.

Conflicting components. Another kind of constraints can be inferred by looking at
conflicts between components. So far we did not consider logical exclusion between
features; we may say that two language features are in conflict if introducing both
of them leads to an incorrect language implementation. In particular, two language
components that define different semantics for the same keyword cannot coexist at
the same time in the same language implementation; in this case, the conflict can be

1Recall that each production expresses a rewriting of the symbol on the left with all the symbols on the
right; the logic constraints above would mean that B must be rewritten to every βi at the same time,
which clearly does not make sense.

128

C.4. Heuristics for Mining Constraints

detected at the level of the language framework. In the case of Neverlang, we consider
that two slices are in conflict when they define the same syntax with different semantics.
For further details, see [98].

129

Bibliography

[1] Stephen Robert Adams. Modular Grammars for Programming Language Prototyping.
Ph.d. thesis, University of Southampton, Southampton, UK, 1991.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison Wesley, Reading, Massachusetts, 1986.

[3] Vander Alves, Christa Schwanninger, Luciano Barbosa, Awais Rashid, Peter
Sawyer, Paul Rayson, Christoph Pohl, and Andreas Rummler. An Exploratory
Study of Information Retrieval Techniques in Domain Analysis. In Klaus Pohl
and Birgit Geppert, editors, Proceedings of the 12th International Software Product
Line Conference (SPLC’08), pages 67–76, Limerick, Ireland, September 2008. IEEE.

[4] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An Overview
of CaesarJ. Transaction on Aspect-Oriented Software Development, 1(1):135–173,
March 2006.

[5] John Aycock. The Design and Implementation of SPARK, a Toolkit for Implement-
ing Domain-Specific Languages. Journal of Computing and Information Technology,
10(1):55–66, 2004. Special Issue on Domain Specific Languages.

[6] John Aycock and R. Nigel Horspool. Directly-Executable Earley Parsing. In
Reinhard Wilhelm, editor, Proceedings of the 10th International Conference on Com-
piler Construction (CC’01), LNCS 2027, pages 229–243, Genova, Italy, April 2001.
Springer.

[7] Jon Bentley. Programming Pearls: Little Languages. Communications of the ACM,
29(8):711–721, August 1986.

[8] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
PACKT Publishing Ltd, August 2013.

[9] Lorenzo Bettini. Implementing Java-like Languages in Xtext with Xsemantics.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC’13),
pages 1559–1564, Coimbra, Portugal, March 2013. ACM.

[10] Lera Boroditsky. How language shapes thought. Scientific American, 304(2):62–65,
2011.

131

Bibliography

[11] Claus Brabrand and Michael I. Schwartzbach. The Metafront System: Safe and
Extensible Parsing and Transformation. Science of Computer Programming, 68:2–20,
August 2007.

[12] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strate-
go/XT 0.17. A Language and Toolset for Program Transformation. Journal Science
of Computer Programming, 72(1-2):52–70, June 2008.

[13] Martin Bravenboer and Eelco Visser. Parse Table Composition: Separate Compi-
lation and Binary Extensibility of Grammars. In Software Language Engineering,
LNCS 5452, pages 74–94. Springer, 2009.

[14] Walter Cazzola. Domain-Specific Languages in Few Steps: The Neverlang Ap-
proach. In Thomas Gschwind, Flavio De Paoli, Volker Gruhn, and Matthias
Book, editors, Proceedings of the 11th International Conference on Software Composition
(SC’12), Lecture Notes in Computer Science 7306, pages 162–177, Prague, Czech
Republic, 31st of May-1st of June 2012. Springer.

[15] Walter Cazzola and Davide Poletti. DSL Evolution through Composition. In
Proceedings of the 7th ECOOP Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE’10), Maribor, Slovenia, on 23rd of June 2010. ACM.

[16] Walter Cazzola and Ivan Speziale. Sectional Domain Specific Languages. In
Proceedings of the 4th Domain Specific Aspect-Oriented Languages (DSAL’09), pages
11–14, Charlottesville, Virginia, USA, on 3rd of March 2009. ACM.

[17] Walter Cazzola and Edoardo Vacchi. DEXTER and Neverlang: A Union Towards
Dynamicity. In Eric Jul, Ian Rogers, and Olivier Zendra, editors, Proceedings of
the 7th Workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS’12), Beijing, China, 11th of June 2012.
ACM.

[18] Walter Cazzola and Edoardo Vacchi. Neverlang 2: Componentised Language
Development for the JVM. In Walter Binder, Eric Bodden, and Welf Löwe, editors,
Proceedings of the 12th International Conference on Software Composition (SC’13),
Lecture Notes in Computer Science 8088, pages 17–32, Budapest, Hungary, 19th
of June 2013. Springer.

[19] Walter Cazzola and Edoardo Vacchi. On the Incremental Growth and Shrinkage
of LR Goto-Graphs. ACTA Informatica, 51(7):419–447, June 2014.

[20] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability
within Modeling Language Definitions. In Andy Schürr and Bran Selic, editors,
Proceedings of the 12th International Conference on Model Driven Engineering Languages
and Systems (MoDELS’09), LNCS 5795, pages 670–684, Denver, CO, USA, October
2009. Springer.

132

Bibliography

[21] Lianping Chen and Muhammad Ali Babar. A Systematic Review of Evaluation
of Variability Management Approaches in Software Product Lines. Journal of
Information and Software Technology, 53(4):344–362, April 2011.

[22] Jean-Marc Davril, Edouard Delfosse, Negaar Hariri, Mathieu Acher, Jane Cleland-
Huang, and Patrick Heymans. Feature Model Extraction from Large Collections
of Informal Product Descriptions. In Luciano Baresi and Mira Mezini, edi-
tors, Proceedings of the 9th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE’13), pages 290–300, Saint Petersburg, Russia, August 2013. ACM.

[23] Carl Dea, Mark Heckler, Gerrit Grunwald, José Pereda, and Sean Phillips. JavaFX
8: Introduction by Example. Apress, June 2014.

[24] Edsger Wybe Dijkstra. The Humble Programmer. Communications of the ACM,
15(10):859–866, October 1972.

[25] Stéphanne Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and An-
drew P. Black. Traits: A Mechanism for Fine-Grained Reuse. ACM Transactions on
Programming Languages and Systems, 28(2):331–388, March 2006.

[26] Jay Earley. An Efficient Context-Free Parsing Algorithm. Communications of the
ACM, 13(2):94–102, February 1970.

[27] Sven Efftinge and Markus Völter. oAW xText: A Framework for Textual DSLs. In
Proceedings of the EclipseCon Summit Europe 2006 (ESE’06), volume 32, Esslingen,
Germany, November 2006.

[28] John Ellson, Emden Gansner, Lefteris Koutsofios, StephenC. North, and Gordon
Woodhull. Graphviz— open source graph drawing tools. In Petra Mutzel, Michael
Jünger, and Sebastian Leipert, editors, Graph Drawing, volume 2265 of Lecture
Notes in Computer Science, pages 483–484. Springer Berlin Heidelberg, 2002.

[29] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. Language Composi-
tion Untangled. In Anthony Sloane and Suzana Andova, editors, Proceedings of the
12th Workshop on Language Description, Tools, and Applications (LDTA’12), Tallinn,
Estonia, March 2012. ACM.

[30] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann.
SugarJ: Library-Based Syntactic Language extensibility. In Proceedings of the 26th
ACM SIGPLAN Conference on Object-Oriented Programming (OOPSLA’11), pages
391–406, Portland, Oregon, USA, October 2011. ACM.

[31] Sebastian Erdweg and Felix Rieger. A Framework for Extensible Languages. In
Christian Kästner, editor, Proceedigns of the 12th International Conference on Genera-
tive Programming: Concepts & Experiences (GPCE’13), pages 3–12, Indianapolis, IN,
USA, October 2013. ACM.

133

Bibliography

[32] Rodney Farrow, Thomas J. Marlowe, and Daniel M. Yellin. Composable Attribute
Grammars: Support for Modularity in Translator Design and Implementation. In
Ravi Sethi, editor, Proceedings of the 19th ACM Symposium on Principles of Program-
ming Languages (POPL’92), pages 223–234, Albuquerque, NM, USA, January 1992.
ACM.

[33] Alessio Ferrari, Giorgio O. Spagnolo, and Felice Dell’Orletta. Mining Commonal-
ities and Variabilities from Natural Language Documents. In Proceedings of the
17th International Software Product Line Conference (SPLC’13), pages 116–120, Tokyo,
Japan, September 2013. ACM.

[34] Bryan Ford. Parsing Expression Grammars: a Recognition-Based Syntactic Foun-
dation. In Neil D. Jones and Xavier Leroy, editors, Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’04),
pages 111–122, Venice, Italy, January 2004. ACM.

[35] Martin Fowler. Fluent Interface. Martin Fowler’s Blog, May 2005.

[36] Martin Fowler. Language Workbenches: The Killer-App for Domain Specific
Languages? Martin Fowler’s Blog, May 2005.

[37] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Professional Computing Series.
Addison-Wesley, Reading, Ma, USA, 1995.

[38] Debasish Ghosh. DSLs in Action. Manning Publications Co., December 2010.

[39] Rosa Gini, Massimo Coppola, Patrick B. Ryan, Giacomo Righetti, Iacopo Peri,
Roberto Berni, Paul Avillach, Preciosa M. Coloma, Gianluca Trifirò, Gayo Di-
allo, Johan van der Lei, Miriam C.J.M. Sturkenboom, and Martijn J. Schuemie.
Frameworks for Data Extraction and Management from Electronic Healthcare
Databases for Multi-Center Epidemiologic Studies: a Comparison among EU-
ADR, MATRICE, and OMOP Strategies. In Proceedings of the 24th European Medical
Informatics Conference (MIE’12), Pisa, Italy, August 2012.

[40] James Gosling, Bill Joy, Guy L. Steele, Jr, Gilad Bracha, and Alex Buckley. The Java
Language Specification, Java SE 8 Edition. Pearson Education, June 2014.

[41] Paul Graham. Beating the averages, April 2003.

[42] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques. Monographs in Computer
Science. Springer, second edition, 2008.

[43] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen, and An-
dreas Svendsen. Adding Standardized Variability to Domain Specific Languages.
In Klaus Pohl and Birgit Geppert, editors, Proceedings of the 12th International
Software Product Line Conference (SPLC’08), pages 139–148, Limerick, Ireland,
September 2008. IEEE.

134

Bibliography

[44] Görel Hedin and Eva Magnusson. JastAdd — An Aspect-Oriented Compiler
Construction System. Science of Computer Programming, 47(1):37–58, April 2003.

[45] Jan Heering, Paul R. H. Hendricks, Paul Klint, and Jan Rekers. The Syntax
Definition Formalism SDF —Reference Manual—. SIGPLAN Notices, 24(11):43–75,
November 1989.

[46] Jan Heering, Paul Klint, and Jan Rekers. Incremental Generation of Parsers. IEEE
Transactions on Software Engineering, 16(12):1344–1351, 1990.

[47] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian
Wende. Model-Based Language Engineering with EMFText. In Ralf Lammel, João
Saraiva, and Joost Visser, editors, Proceedings of the International Summer School
on Generative and Transformational Techniques in Software Engineering (GTTSE’11),
LNCS 7680, pages 322–345, Braga, Portugal, July 2011. Springer.

[48] R. Nigel Horspool. Incremental Generation of LR Parsers. Journal of Computer
Languages, 15(4):205–223, 1990.

[49] Arnaud Hubaux, Andreas Classen, Marcílio Mendonça, and Patrick Heymans.
A Preliminary Review on the Application of Feature Diagrams in Practice. In
David Benavides, Don S. Batory, and Paul Grünbacher, editors, Proceedings of
the 4th International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS’10), pages 53–59, Linz, Austria, January 2010.

[50] Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß, and Thomas
Würthinger. A domain-specific language for building self-optimizing ast inter-
preters. In Proceedings of the 2014 International Conference on Generative Programming:
Concepts and Experiences, GPCE 2014, pages 123–132, New York, NY, USA, 2014.
ACM.

[51] Graham Hutton. High-Order Functions for Parsing. Journal of Functional Program-
ming, 2(3):323–343, 1992.

[52] Richard K. Jullig and Frank DeRemer. Regular right-part attribute grammars.
SIGPLAN Not., 19(6):171–178, June 1984.

[53] Tomas Kalibera, Petr Maj, Floreal Morandat, and Jan Vitek. A Fast Abstract
Syntax Tree Interpreter for R. In Erez Petrank and Dan Tsafrir, editors, Proceedings
of the 10th International Conference on Virtual Execution Environments (VEE’14),
pages 89–102, Salt Lake City, UT, USA, March 2014. ACM.

[54] Ted Kaminski and Eric Van Wyk. Creating and Using Domain-Specific Language
Features. In Benoît Combemale, Walter Cazzola, and Robert B. France, editors,
Proceedings of the 1st Workshop on the Globalization of Domain Specific Languages
(GlobalDSL’13), pages 18–21, Montpellier, France, July 2013. ACM.

135

Bibliography

[55] Ted Kaminski and Eric Van Wyk. Modular Well-Definedness Analysis for At-
tribute Grammars. In Krzysztof Czarnecki and Görel Hedin, editors, Proceedings
of the 5th International Conference on Software Language Engineering (SLE’13), Lecture
Notes in Computer Science 7745, pages 352–371, Dresden, Germany, September
2013. Springer.

[56] Lennart C. L. Kats and Eelco Visser. The Spoofax Language Workbench: Rules
for Declarative Specification of Languages and IDEs. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA’10), pages 444–463, Reno, Nevada, USA, October 2010.
ACM.

[57] Donald E. Knuth. On the Translation of Languages from Left to Right. Information
and Control, 8(6):607–639, December 1965.

[58] Donald E. Knuth. Semantics of Context-Free Languages. Mathematical Systems
Theory, 2(2):127–145, 1968.

[59] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: A Framework
for Compositional Development of Domain Specific Languages. International
Journal on Software Tools for Technology Transfer, 12(5):353–372, September 2010.

[60] Jörg Liebig, Rolf Daniel, and Sven Apel. Feature-Oriented Language Families:
A Case Study. In Philippe Collet and Klaus Schmid, editors, Proceedings of
the 7th International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS’13), Pisa, Italy, January 2013. ACM.

[61] Stephen J. Mellor, Stephen Tockey, Rodolphe Arthaud, and Philippe Leblanc. An
Action Language for UML: Proposal for a Precise Execution Semantics. In Jean
Bézivin and Pierre-Alain Muller, editors, Proceedings of the first Workshop on The
Unified Modeling Language («UML»’98), LNCS 1618, pages 307–318, Mulhouse,
France, June 1998. Springer.

[62] Tom Mens and Michael Wermelinger. Separation of Concerns for Software
Evolution. Journal of Maintenance and Evolution, 14(5):311–315, 2002.

[63] Marjan Mernik. An Object-Oriented Approach to Language Compositions for
Software Language Engineering. Journal of Systems and Software, 86(9):2451–2464,
September 2013.

[64] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain Specific Languages. ACM Computing Surveys, 37(4):316–344, December
2005.

[65] Marjan Mernik and Viljem Z̆umer. Incremental Programming Language Devel-
opment. Computer Languages, Systems and Structures, 31(1):1–16, April 2005.

136

Bibliography

[66] Adriaan Moors, Frank Piessens, and Martin Odersky. Parser Combinators in Scala.
CW Report 491, Katholieke Universiteit Leuven, Leuven, Belgium, February 2008.

[67] Nan Niu and Steve Easterbrook. On-Demand Cluster Analysis for Product Line
Functional Requirements. In Klaus Pohl and Birgit Geppert, editors, Proceedings
of the 12th International Software Product Line Conference (SPLC’08), pages 87–96,
Limerick, Ireland, September 2008. IEEE.

[68] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
Extensible Compiler Framework for Java. In Proceedings of the 12th International
Conference on Compiler Construction (CC’03), LNCS 2622, pages 138–152, Warsaw,
Poland, April 2003. Springer.

[69] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Aritma Press,
2008.

[70] Bruno C. d. S. Oliveira. Modular Visitor Components: A Practical Solution to
the Expression Families Problem. In Sophia Drossopoulou, editor, Proceedings of
the 23rd European Conference on Object-Oriented Programming (ECOOP’09), Lecture
Notes in Computer Science 5653, pages 269–293, Genoa, Italy, July 2009. Springer.

[71] Bruno C. d. S. Oliveira, Tijs van der Storm, Alex Loh, and William R. Cook.
Feature-Oriented Programming with Object Algebras. In Giuseppe Castagna,
editor, Proceedings of the 27th European Conference on Object-Oriented Programming
(ECOOP’13), Lecture Notes in Computer Science 7920, pages 27–51, Montpellier,
France, July 2013. Springer.

[72] Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin, and
Jonathan Aldrich. Safely composable type-specific languages. In Richard Jones,
editor, ECOOP 2014 – Object-Oriented Programming, volume 8586 of Lecture Notes
in Computer Science, pages 105–130. Springer Berlin Heidelberg, 2014.

[73] Emmanuel Onzon. dypgen User’s Manual, March 2012.

[74] Jukka Paakki. Attribute Grammar Paradigms: A High-Level Methodology in
Language Implementation. ACM Computer Survey, 27(2):196–255, June 1995.

[75] David L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12):1053–1058, December 1972.

[76] Terence J. Parr and Russell W. Quong. ANTLR: A Predicated-LL(k) Parser
Generator. Software—Practice and Experience, 25(7):789–810, July 1995.

[77] Klaus Pohl and Andreas Metzger. Variability Management in Software Product
Line Engineering. In Leon J. Osterwell, H. Dieter Rombach, and Mary Lou
Soffa, editors, Proceedings of the 28th International Conference on Software Engineering
(ICSE’06), pages 1049–1050, Shanghai, China, May 2006. ACM.

137

Bibliography

[78] Mark Pollack, Oliver Gierke, Thomas Risberg, Jon Brisbin, and Michael Hunger.
Spring Data. O’Reilly Media, Incorporated, October 2012.

[79] Eric S Raymond. How to become a hacker. Database and Network Journal, 33(2):8–9,
2003.

[80] Damijan Rebernak, Marjan Mernik, Hui Wu, and Jeff G. Gray. Domain-Specific
Aspect Languages for Modularising Crosscutting Concerns in Grammars. IET
Software, 3(3):184–200, June 2009.

[81] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, and Oscar Nierstrasz. Practical
Dynamic Grammars for Dynamic Languages. In Proceedings of the 4th Workshop on
Dynamic Languages and Applications (DYLA’10), Málaga, Spain, June 2010.

[82] Tiark Rompf and Martin Odersky. Lightweight Modular Staging: A Pragmatic
Approach to Runtime Code Generation and Compiled DSLs. In Proceedings of the
9th International Conference on Generative Programming and Component Engineering
(GPCE’10), pages 127–136, Eindhoven, The Netherlands, October 2010. ACM
Press.

[83] João Saraiva, S. Doaitse Swierstra, and Matthijs Kuiper. Functional Incremental
Attribute Evaluation. In David A. Watt, editor, Proceedings of the 9th International
Conference on Compiler Construction (CC’00), Lecture Notes in Computer Science
1781, pages 279–294, Berlin, Germany, March 2000. Springer.

[84] Nathanael Schärli. Traits — Composing Classes from Behavioral Building Blocks. Phd
thesis, Universität Bern, Bern, Switzerland, February 2005.

[85] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black.
Traits: Composable Units of Behaviour. In Luca Cardelli, editor, Proceedings of
the 17th European Conference on Object-Oriented Programming (ECOOP’03), Lecture
Notes in Computer Science 2743, pages 248–274, Darmstadt, Germany, July 2003.
Springer.

[86] August C. Schwerdfeger and Eric R. Van Wyk. Verifiable Parse Table Composition
for Deterministic Parsing. In Mark G. J. van den Brand, Dragan Gasevic, and
Jeffrey G. Gray, editors, Proceedings of the 2nd International Conference on Software
Language Engineering (SLE’09), LNCS 5969, pages 184–203, Dublin, Ireland, June
2009. Springer.

[87] Pat Shaughnessy. Ruby under a Microscope: An Illustrated Guide to Ruby Internals.
No Starch Press, Incorporated, November 2013.

[88] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof
Czarnecki. Reverse Engineering Feature Models. In Harald Gall and Nenad
Medvidović, editors, Proceedings of the 33rd International Conference on Software
Engineering (ICSE’11), pages 461–470, Waikiki, Honolulu, Hawaii, May 2011. IEEE.

138

Bibliography

[89] Tim Sheard and Simon Peyton Jones. Template Meta-Programming for Haskell.
ACM Sigplan Notices, 37(12):60–75, December 2002.

[90] Lukas Stadler, Christian Wimmer, Thomas Würthinger, Haspeter Mössenböck,
and John Rose. Lazy Continuations for Java Virtual Machines. In Christian W.
Probst, editor, Proceedings of the 7th International Symposium on Principles and
Practice of Programming in Java (PPPJ’09), pages 143–152, Calgary, Alberta, Canada,
August 2009. ACM.

[91] Paul Stansifer and Mitchell Wand. Parsing Reflective Grammars. In Claus
Brabrand and Eric Van Wyk, editors, Proceedings of the 11th Workshop on Lan-
guage Descriptions, Tools and Applications (LDTA’11), pages 10:1–10:7, Saarbrucken,
Germany, March 2011. ACM.

[92] Dave Steinberg, Dave Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley, December 2008.

[93] S. Doaitse Swierstra. Combinator Parsers: From Toys to Tools. Electronic Notes in
Theoretical Computer Science, 41(1):38–59, January 2000.

[94] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.
Addison-Wesley, Reading, MA, USA, March 2006.

[95] Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, 1985.

[96] Laurence Tratt. Domain Specific Language Implementation Via Compile-Time
Meta-Programming. ACM Transaction on Programming Languages and Systems,
30(6):31:1–31:40, October 2008.

[97] Laurence Tratt. Evolving a DSL Implementation. In Ralf Lämmel, Joost Visser, and
João Saraiva, editors, Proceedings of the International Summer School on Generative
and Transformational Techniques in Software Engineering II (GTTSE’07), LNCS 5235,
pages 425–441, Braga, Portugal, April 2008. Springer.

[98] Edoardo Vacchi, Walter Cazzola, Benoît Combemale, and Mathieu Acher. Au-
tomating Variability Model Inference for Component-Based Language Imple-
mentations. In Patrick Heymans and Julia Rubin, editors, Proceedings of the 18th
International Software Product Line Conference (SPLC’14), pages 167–176, Florence,
Italy, 15th-19th of September 2014. ACM.

[99] Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and Benoît Combemale. Variability
Support in Domain-Specific Language Development. In Martin Erwig, Richard F.
Paige, and Eric van Wyk, editors, Proceedings of 6th International Conference on
Software Language Engineering (SLE’13), Lecture Notes on Computer Science 8225,
pages 76–95, Indianapolis, USA, 27th-28th of October 2013. Springer.

139

Bibliography

[100] Edoardo Vacchi, Diego Mathias Olivares, Albert Shaqiri, and Walter Cazzola.
Neverlang 2: A Framework for Modular Language Implementation. In Proceedings
of the 13th International Conference on Modularity (Modularity’14), pages 23–26,
Lugano, Switzerland, 22nd-25th of April 2014. ACM.

[101] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an Extensible
Attribute Grammar System. Science of Computer Programming, 75(1-2):39–54,
January 2010.

[102] Eric Van Wyk and August Schwerdfeger. Context-Aware Scanning for Parsing
Extensible Languages. In Charles Consel and Julia L. Lawall, editors, Proceed-
ings of the 6th International Conference on Generative Programming and Component
Engineering (GPCE’07), pages 63–72, Salzburg, Austria, October 2007. ACM.

[103] Eelco Visser. Separation of concerns in language definition. In Proceedings
of the Companion Publication of the 13th International Conference on Modularity,
MODULARITY ’14, pages 1–2, New York, NY, USA, 2014. ACM.

[104] Eelco Visser and Zine-el-Abidine Benaissa. A Core Language for Rewriting.
Electronic Notes in Theroretical Computer Science, 15:422–441, September 1998.

[105] Markus Völter and Vaclav Pech. Language Modularity with the MPS Language
Workbench. In Proceedings of the 34th International Conference on Software Engineer-
ing (ICSE’12), pages 1449–1450, Zürich, Switzerland, June 2012. IEEE.

[106] Philip Wadler. The Expression Problem. Java Genericity Mailing List, November
1998.

[107] Martin P. Ward. Language Oriented Programming. Software - Concept and Tools,
15(4):147–161, 1994.

[108] Alessandro Warth. Experimenting with Programming Languages. PhD thesis, Uni-
versity of California at Los Angeles, Los Angeles, CA, USA, 2009.

[109] Nathan Weston, Ruzanna Chitchyan, and Awais Rashid. A Framework for
Constructing Semantically Composable Feature Models from Natural Language
Requirements. In John mc Gregor and Dirk Muthig, editors, Proceedings of the
13th International Software Product Line Conference (SPLC’09), pages 211–220, San
Francisco, CA, USA, August 2009. ACM.

[110] Jules White, James H. Hill, Jeff Gray, Sumant Tambe, Aniruddha Gokhale, and
Douglas C. Schmidt. Improving Domain-specific Language Reuse with Software
Product-line Configuration Techniques. IEEE Software, 26(4):47–53, July-August
2009.

[111] Thomas Würthinger, Christian Wimmer, Andreas Woß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
One VM to Rule Them All. In Robert Hirschfeld, editor, Proceedings of the 2013

140

Bibliography

ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward!’13), pages 187–204, Indianapolis, IN, USA,
October 2013. ACM.

[112] Mathias Zenger and Martin Odersky. Independently Extensible Solutions to the
Expression Problem. In Proceedings of the 12th International Workshop on Foundations
of Object-Oriented Languages (FOOL’12), Long Beach, CA, USA, January 2005.

141

	1 Introduction
	2 Background
	3 Feature-Oriented Language Composition
	3.1 Conceptual Model
	3.1.1 Language Components
	3.1.2 Dependencies Between Components
	3.1.3 Globally-Scoped Components
	3.1.4 Composition Model

	4 Neverlang
	4.1 The Neverlang Framework
	4.1.1 Defining Syntax and Semantics: Modules
	4.1.2 Mapping Semantics onto Syntax: Slices
	4.1.3 Combining Slices Together: Generating a Language

	4.2 Runtime Deployment of Semantic Actions and Tree Rewriting DSL
	4.3 Tools and Utilities
	4.4 Implementation
	4.4.1 Architecture
	4.4.2 Runtime and Execution
	4.4.3 DEXTER

	5 Case Study: Evolution of a DSL through Composition
	5.1 A Simple State Machine DSL
	5.2 A Simple Imperative Language
	5.3 Guards and Actions: Composing the DSLs

	6 Evaluation
	6.1 Feature-Oriented Language Implementation Across Tools
	6.1.1 LISA
	6.1.2 Silver
	6.1.3 Spoofax
	6.1.4 Xtext
	6.1.5 Summary

	6.2 Extending a Real-World Language: neverlang.js
	6.2.1 Runtime Evolution for Dynamic Optimization

	6.3 The DESK Language
	6.4 Tracking Dependencies Through Variability Management

	7 Related Work
	7.1 Extensible Parser Generators
	7.2 Variability Modeling of Language Families

	8 Conclusions
	A Formal Composition Model
	A.1 Decomposition of Syntax Definitions
	A.2 Decomposition of Language Semantics

	B On The Relation Between LR Goto-Graphs
	B.1 Goto-Graphs and Growing Grammars
	B.1.1 Construction of and V
	B.1.2 Construction of and E
	B.1.3 Construction of ['] from

	B.2 Goto-Graphs and Shrinking Grammars

	C Variability Model Inference
	C.1 Tag Generation
	C.2 Hierarchical Clustering
	C.3 Refinement Procedure
	C.4 Heuristics for Mining Constraints

