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Abstract. Spatial and temporal generalization emerged in the literature as a common approach to
preserve location privacy. However, existing solutions have two main shortcomings. First, spatio-
temporal generalization can be used with different objectives: for example, to guarantee anonymity
or to decrease the sensitivity of the location information. Hence, the strategy used to compute the
generalization can follow different semantics often depending on the privacy threat, while most of
the existing solutions are specifically designed for a single semantics. Second, existing techniques
prevent the so-called inversion attack by adopting a top-down strategy that needs to acquire a large
amount of information. This may not be feasible when this information is dynamic (e.g., position or
properties of objects) and needs to be acquired from external services (e.g., Google Maps).

In this contribution we present a formal model of the problem that is compatible with most of the
semantics proposed so far in the literature, and that supports new semantics as well. Our BottomUp
algorithm for spatio-temporal generalization is compatible with the use of online services, it sup-
ports generalizations based on arbitrary semantics, and it is safe with respect to the inversion attack.
By considering two datasets and two examples of semantics, we experimentally compare BottomUp
with a more classical top-down algorithm, showing that BottomUp is efficient and guarantees better
performance in terms of the average size (space and time) of the generalized regions.

1 Introduction

Emerging applications in the area of mobile and pervasive computing have significantly
increased the risk of privacy threats by the uncontrolled release of information about the
whereabouts of individuals. This information is not only released by the individuals them-
selves while using their mobile phones or wearable sensing technology, but in some cases
it is published by other users in social applications or transferred by providers to third par-
ties. The collection of information about the presence of individuals in certain places at
given times can lead to information about their movements, behavioral habits, and can po-
tentially be used for unsolicited advertisement, discrimination and even stalking attacks.
This risk is not only theoretical: for example, the work of Fattori et al. shows how it is
possible (and relatively easy) to violate users’ privacy in existing real-world friend-finder
services [7].

An extensive literature exists about location privacy and protection techniques [5, 17].
Spatial and temporal generalization is a common approach that has also been implemented
in prototypes and applications. Spatial generalization decreases the precision of location
information, hence introducing uncertainty about the actual position of the user within
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the reported geographical area. Temporal generalization introduces uncertainty about the
precise time of presence of the user in the reported area, and is usually implemented by
delaying the release of the spatio-temporal information and providing a temporal interval
or using a coarser granularity instead of a precise timestamp. In this paper we call SafeBox
the spatio-temporal region used to generalize a source point representing the user’s exact
location and time of presence.

The Problem
A crucial issue for this approach is deciding how large the SafeBox should be in order to
avoid a privacy breach. This decision is not only important for privacy protection, but it
also has an impact on the performance and precision of the service being used. The min-
imum size of the SafeBox is actually dependent on the context, including the individual’s
privacy preference, the application being considered, the time and place of service requests,
the adversary model and other parameters. For example, solutions aimed at protecting
identity privacy in LBS and adopting techniques inspired by k-anonymity (e.g., [8, 12, 11] ),
have the goal to identify the smallest SafeBoxes that contain at least k other users in addition
to the issuer of a LBS request that may potentially use the same service; by releasing the
SafeBox instead of the exact position, a form of anonymity is enforced, since the released
information by itself cannot be used to re-identify the individual, even in the case in which
the adversary knows the identity of all the users in the reported area. Other generalization
solutions, not focused on identity privacy but more on hiding the presence of an individ-
ual in a potentially sensitive place (e.g., [6]) have a different optimization criteria for the
dimension of their SafeBoxes. In some cases they want the smallest regions that include at
least k other venues, as pubs, shops, offices, in order to enforce uncertainty about the actual
venue where the user is/was located. Increasing the temporal size helps keeping the spa-
tial size small but it should satisfy the real-time constraints that the considered application
may have.

Each of the proposed techniques is somehow specialized to optimize the generalization
with respect to the specific semantics of privacy preservation (counting users, venues, cat-
egories of venues, . . . ). Hence, one problem we would like to address in this paper is to
have a generalization scheme solution that is parametric with respect to a counting function,
and hence independent from the actual semantics of privacy preservation.

A second problem with current solutions is related to the method to actually compute the
SafeBox. In order to avoid the so called “inversion” or “reciprocity” attack [12, 11], most
of the proposed techniques for spatial generalization, compute the SafeBox by partition-
ing the whole space and explore it with a top-down strategy. The whole spatial domain
is recursively partitioned evaluating at each step if the area containing the user’s location
satisfies the counting function, and returning that area if further partitioning violates the
constraints. It is somehow assumed that there is no cost in the access to the location infor-
mation about the objects to be counted. It is also assumed that counting for large regions
is feasible and does not incur in significant overhead. This assumption may be reasonable
if the generalization is done, for example, by a service provider that has access to contin-
uously updated user location information and the objects to be counted are indeed users,
but in general, computing the counting function may result in a costly operation to an
external server that has to be frequently repeated when the objects to be counted are not
static, or change their properties in time. Indeed, a natural solution is to use online services
that, given an area and a category, return objects of that category with their location and
properties. For example, the Google Places API provides two methods for searching for
places on a map given a source point. However, each call can return at most 200 results
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and separate calls are needed to get details (e.g., the opening hours). Each call can require
up to 2 seconds to have a response, depending on the connection, and, moreover, only 1000
calls can be performed daily without special permissions. In this scenario, evaluating pri-
vacy conditions based on counting may become impractical with generalization strategies
that operate top-down, because counting for large areas may be very time-consuming, if
possible at all.

Hence, the second problem we are addressing in this paper is devising a new method to
compute the SafeBox, compatible with the typical constraints involved in querying external
services to obtain updated information on geo-referenced objects.

Contribution
Our solution to the second problem described above is a generalization algorithm that
operates bottom-up: It builds the SafeBox starting from the actual position and timestamp of
the user, and, by adopting a specific data structure, recursively enlarges the spatio-temporal
region until the counting constraints are satisfied, while maintaining protection against the
“inversion” attack.

The main contributions of this paper are the following:

• By providing a general notion of object counting function supporting different se-
mantics we capture in a single problem formalization several location privacy prob-
lems previously considered in the literature and enable capturing privacy preferences
not considered in previous generalization approaches.

• We design a generalization algorithm supporting arbitrary counting functions that
operates bottom-up, enabling the verification of privacy conditions through public
online services. To our knowledge this is the first safe generalization algorithm adopt-
ing a bottom-up strategy.

• We implemented the BottomUp algorithm and applied it to two different datasets,
presenting a detailed comparison in terms of precision and performance, both with
its top-down counterpart and with algorithms proposed in related work. The results
confirm that our algorithm is effective, superior, and possibly the only alternative
when access to updated external data is limited.

The rest of the paper is structured as follows. In Section 2 we discuss related work. In Sec-
tion 3 we formalize the privacy problem and we define the two semantics of the counting
function that we use in our experimental evaluation. Section 4 presents the new BottomUp
algorithm and compares it with one following the more traditional top-down approach.
The experimental evaluation is reported in Section 5, and Section 6 concludes the paper.

2 Related Work

Some contributions in the literature adopted spatio-temporal generalization to enforce users’
anonymity while others used this technique to decrease the sensitivity of location informa-
tion. One of the first techniques aimed at guaranteeing anonymity through spatial and
temporal cloaking was proposed by Gruteser and Grunwald [10]. The idea is to guarantee
a form of k-anonymity in such a way that the issuer of a location-based service request
cannot be identified.

One problem of the solution proposed by Gruteser and Grunwald is that the technique
is unsafe if the generalization function is known to the adversary. This problem, called
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“inversion” or “reciprocity”, has been addressed in [12, 11]. These two papers propose
two analogous formal properties of the generalization function. Intuitively, a generaliza-
tion function G meets these properties if each point contained in any generalized region
r computed by G is generalized to r itself. The two papers prove that, if a generalization
algorithm meets this property, then it is safe with respect to the inversion problem. In this
contribution we propose a different property (see Section 3) that intuitively states that a
generalized region r computed by a generalization function G should contain at least k
objects that, if used as source points, are generalized to r itself. The difference is that, in
this new property, we only require that some points of r (i.e., not necessarily all of them)
generalize to r itself. Hence this is clearly a looser property to meet but, as we prove in
this contribution, it still guarantees the safety of the generalization algorithms with respect
to the inversion problem. This new definition is required by our BottomUp algorithm that
does not meet the properties defined in [12, 11] but instead meets the new property de-
fined in this contribution and hence it is safe with respect to the inversion problem. The
main problem with the generalization algorithms proposed in [12, 11] is that both require
the knowledge of all the objects to be counted and hence are impractical when retrieving
this information is costly, like, for example, in one of our experimental settings (see Sec-
tion 5.3.4).

Other solutions proposed in the literature present the problem above. Among the others
we can mention the technique proposed by Gedik et al. that has the advantage of allowing
each user to choose a personalized value of k [8], the solution by Abul et al. that makes it
possible to anonymize a dataset of trajectories [1] and the solution by Mascetti et al. that
addresses the issue of anonymity in location based services when different requests can be
associated to the same user [13].

In the contribution by Ghinita et al. the objective of the spatial generalization is not to
provide anonymity rather to decrease the sensitivity of the location information [9]. The
technical problem is that, given two generalized spatio-temporal regions representing the
location of a user, an adversary can be able to exclude part of them as possible user position
if the maximum velocity for that user is known. The solution by Ghinita et al. does not
investigate how the generalized spatio-temporal regions should be created, which instead
is the focus of our contribution. We believe that extending our solution with a technique
like the one presented in [9] is an interesting future work.

Other contributions share the same objective of decreasing the sensitivity of the location
information. Some of them are specifically designed for the so-called friend-finder services
[14, 16, 18] while others focus on how to let the user specify the desired level of privacy pro-
tection [2]. None of these contribution focus on how to create generalized spatio-temporal
regions that contains a minimum number of objects.

Some of the solutions proposed in the literature are aimed, at the same time, at guaran-
teeing anonymity and at decreasing the sensitivity of the location information [15, 3, 4].
In particular Bamba et al. suggest two generalization techniques (called “Top-Down grid
cloaking” and “Bottom-Up grid cloaking”) that enforce k-anonymity, l-diversity and a min-
imum size of the generalized area [3]. Unfortunately both techniques suffer from the in-
version problem and hence are safe only if the generalization technique is not known to
the adversary. Our previous work has the same problem [4]. Indeed in [4] we define three
spatial granularities to support privacy preservation. In particular the Incognitus granu-
larity is constructed with a bottom-up approach in such a way that each granule contains at
least k objects. The solution can be applied to users (hence providing k-anonymity) and to
points of interests (hence guaranteeing a decrease in the sensitivity of the location informa-
tion). Unfortunately, as we detail in Section 4, also this technique is subject to the inversion

TRANSACTIONS ON DATA PRIVACY 7 (2014)



SafeBox: adaptable spatio-temporal generalization for location privacy protection 135

problem.
Finally, the solution by Damiani et al., takes into account the “semantic location” i.e.,

specific locations where the user does not want to be reported [6]. This is an innovative
approach and it has two main differences with respect to ours. First, the generalization ap-
plies to the entire map and is computed off-line. Vice versa, in our solution we generalize
the location of the user on-the-fly, so the generalization function can use dynamic infor-
mation. The second difference is that in the solution by Damiani et al. a user’s location is
generalized only if it falls into an “obfuscated location” i.e., a sensitive location or its sur-
roundings. This can lead to disclose which are the sensitive locations of a user, which we
believe should be considered private information. To avoid this problem, in our solution
we propose generalization functions that can be used to generalize requests from every
location.

3 Problem Formalization

We address the problem of generalizing the information about a specific location and times-
tamp into a geographical area and a time interval so that the resulting spatio-temporal
information is still useful to obtain geo-referenced and timely services but not sensible any-
more in terms of privacy. Since privacy is a subjective matter, the way generalization occurs
not only has to be safe but should also be adapted to the user preferences. Our framework
captures all preferences that can be expressed as a guarantee of presence in the released
area of enough elements to sufficiently decrease the sensitivity of the spatio-temporal in-
formation being released.

In the following of this section we first formally describe the general problem and then
discuss the properties of the SafeBoxes that our techniques can return, depending on the
different semantics associated to the function used to count the elements they contain.

3.1 Adversary model

The generalization techniques proposed in this contribution can be used to protect users’
privacy in different system architectures. Indeed, the generalization function can be com-
puted either by the user’s mobile client or by a trusted generalization server. In both cases,
the source point (i.e., the exact user’s position at a certain time) is not disclosed to any non
trusted entity. Instead, the generalized location is disclosed.

The “adversary” is any entity that can potentially have access to the generalized spatio-
temporal location. It can be, for example, a provider of a Location Based Service (LBS),
an eavesdropper that intercepts the communication towards the LBS service provider, a
hacker that violates the service provider system hence acquiring its stored data or even a
govern entity that forces the service provider to disclose its stored information.

Given this general definition, a central aspect to correctly model the problem is to define
which knowledge the adversary can use to violate user’s privacy (this is sometime referred
to as “background knowledge” in the literature). In this paper we assume that the adver-
sary has the knowledge to do the inversion attack that, as we formalize in the following
of this section, requires the knowledge of the generalization algorithm, its input param-
eters (with the exception of the source point) and the counting function. In a real-world
generalization service the generalization algorithm would probably be known because the
“security-by-obscurity” paradigm has proved to be not effective. For what concerns the
input parameters (e.g., the value of k representing the minimum number of objects in each
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SafeBox), they can either be system parameters (hence easily discovered by an adversary)
or, more likely, user-defined parameters. In the latter case it is still possible for an adver-
sary to infer their value, possibly with some form of approximation (consider Example 1).
Finally, for what concerns the knowledge of the counting function, in some case this can
be public information (as in Example 1) and, if not, it can be inferred, possibly introducing
some approximation in the computation, like in Example 1.

Example 1. Alice uses a privacy-aware LBS. Before issuing any service request, the client
generalizes Alice’s spatio-temporal location so that it contains at least k open shops where
k is a user-defined parameter having values in [2, 20].

Suppose that an adversary can observe a request issued by Alice from a generalized
spatio-temporal region A. Since in A there are 6 open shops, the adversary can exclude
that the parameter k chosen by Alice is larger than 6. The adversary can also compute
that, for any value of k in [2, 4], any request issued from a source point p ∈ A would be
generalized to region smaller than A. Hence the value of k is either 5 or 6.

Now, suppose that the generalization algorithm used to generate A is not safe. It could
happen that, for a given point p ∈ A, a request issued from p with value of k equals to 5
returns an area different from A and that the same holds for a request issued from p with
k = 6. In this case the adversary can exclude p from I(A) even without knowing the exact
value of k.

It is important to note that in this paper we consider the spatio-temporal generalization
of single requests and we do not address the problems arising when correlation among
different requests is possible. Consequently, the direct application of our techniques is
subject to two attacks known in the literature.

The first is the “velocity attack” that can lead the adversary to exclude the presence of
the user in a given area at a given time, hence possibly restricting the generalized spatio-
temporal region [9]. Since at the moment our generalization algorithms do not provide
protection with respect to the velocity attacks, they should not be used in case of continu-
ous disclosure of location information. Indeed velocity attack is ineffective if the location
information is sporadically disclosed.

The second attack is aimed at violating “historical k-anonymity” and takes place when
the counting function is used to count the users and is aimed at guaranteeing the issuer’s
anonymity [13]. In this case, if it is possible to “link” different generalized regions to the
same (anonymous) user, the adversary can intersect the “anonymity sets” hence possibly
restricting the possible identity of the user to a set with cardinality smaller than k. Since our
generalization algorithms do not take this attack into consideration, if the counting function
is used to count users with the aim of providing anonymity, it should be guaranteed that
no set of generalized regions can be associated to the same user for example by artificially
changing the IP address used in the corresponding service requests.

3.2 Basic definitions

We assume that users and (possibly moving) objects are located in a finite bi-dimensional
spatial domain S and we consider their positions in a finite interval of time T . We denote
with S1 and S2 the two dimensions of S and with p a spatio-temporal point (or “point”,
when no confusion arises). Formally, p ∈ S × T = S1 × S2 × T .

Our goal is generalizing any point p (called “source point”) into a three-dimensional area
with certain properties. Formally, a generalization function G is a partial function that, given
a source point p returns a three dimensional area A such that p ∈ A.
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One of the required properties for the generalization is to guarantee that the resulting
area “contains” at least k objects. We use the function Ω to count the number of objects
contained in a given area. Formally, given a set of (possibly moving) objects and a spatio-
temporal area A, Ω(A) is a non-negative integer value representing the number of spatio-
temporal points corresponding to positions and associated timestamps of the objects in A.
The counting function Ω(A) can also be applied when A is a set of possibly non-contiguous
spatio-temporal points. The specification of Ω includes the set of objects to be considered
(e.g., users, shops, taxis, etc.) as well as the actual semantics of the counting operator.
In Section 3.3 we report two examples of its semantics. Note that the source point being
generalized can be the position of one of the objects (as in the case of the source point is the
position of a user and the objects are all users) but can also be an unrelated point (as in the
case of objects being pubs and the user not being positioned in any of them). Note also that
the results we present in this paper assume only that the counting function is monotonic
with respect to the areas.

Definition 2. A counting function Ω is monotonic if, for each pair of spatio-temporal areas
A and A′ such that A ⊆ A′ it holds that Ω(A) ≤ Ω(A′).

Monotonicity captures an intuitive property. For example, if in the main square of a city
there are 100 people at given moment, by considering at the same moment a larger area
that includes the square, we will count 100 or more people.

When a spatio-temporal area contains at least k objects, we say it is a “SafeBox”. Intu-
itively, the user considers herself to be “safe” by releasing this spatio-temporal information
because the source point p can be confused with the positions and timestamps associated
to at least k objects.

Definition 3. Given a non-negative integer k and a counting function Ω, a spatio-temporal
area A is a SafeBox if Ω(A) ≥ k.

As observed in the literature [11, 12], even if a generalization function returns a SafeBox
according to Definition 3, an adversary may still be able to rule out some of the objects
considered in the counting if he knows the generalization function itself, since he may re-
apply the generalization function to each candidate source point and compare the result
with the area that has been released. In principle, by knowing the generalization function
the adversary may also be able to identify the source point p though the so called inversion
attack [12]. Consider Example 4.

Example 4. Let’s consider Figure 1: the spatial and temporal domain is partitioned into
four areas. The number in the top right of each area represents the value of Ω(). The
objective of the generalization is to have a SafeBox with at least 8 objects. Let’s consider
a naive generalization function that, given any source point in A2, generalizes it to A2.
Similar for A3. Since Ω(A1) is less than 8, A1 is not a SafeBox and hence the algorithm
generalizes any source point in A1 to the SafeBox A1 ∪ A2. Similarly, any source point in
A4 is generalized to A3 ∪A4.
Now, consider an adversary that knows the generalization function and the values of Ω for

each area. If this adversary observes the SafeBoxA1∪A2 than he can exclude that the source
point is in A2, because in this case the generalization would be A2 itself. Consequently the
adversary infers that the source point is in A1 that, however, is not a SafeBox.

In order to contrast this inversion attack we first define the inversion function that, intu-
itively, given a generalized area G(p), identifies all potential source points.
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A1 A2

A3 A4

20 5

205

Figure 1: Spatio temporal domain partitioned into four areas.

Definition 5. Given an area A and a generalization function G, the inversion function I is
defined as:

IG(A) = {p ∈ A|G(p) = A}

When no confusion arises, we simply denote I(A) omitting the generalization function.
We can now define the notion of safety for generalization functions.

Definition 6. Given a non-negative integer k and a counting function Ω, a generalization
function G is safe if, for each spatio-temporal point p such that G(p) is defined, it holds that:

Ω(I(G(p))) ≥ k

Example 7. Let’s continue with Example 4. We show that the generalization function is not
safe according to our model. Indeed, for any point p in A1, the generalization of that point
is A1 ∪ A2. The inversion of A1 ∪ A2 is A1 (indeed the generalization of any point in A2 is
A2 itself). Consequently, Ω(I(G(p))) = Ω(A1) = 5 < 8. Consequently, by applying Defini-
tion 6, the generalization function is not safe, in accordance with the intuition presented in
Example 4.

Let’s now consider a different generalization function that generalizes any source point
of A2 in A2 and similar for A3. Also, the generalization of any source point in A1 or A4 is
the entire spatio-temporal domain (i.e., A). This is actually a safe generalization function.
Indeed, for any source point p in A2 it holds that its generalization is A2 and also that
I(A2) = A2. Consequently Ω(I(A2)) ≥ 8. Similar for A3. Vice versa, for any point p in
A1 and A4, the generalization yields A. In this case I(A) = A1 ∪ A4. Hence we have that
Ω(I(G(p))) = Ω(A1∪A4) = 10 ≥ 8. Note that in this last case (i.e., any source point in A1 or
A4), it is actually possible to use the inversion attack to restrict the area (from A to A1∪A4),
but this does not affect the safety of the technique, since A1 ∪A4 still contains a sufficiently
large number of objects.

Property 1. Any safe generalization function G returns a SafeBox for any source point p
such that G(p) is defined.

Proofs of formal results are reported in Appendix A.

3.3 Supporting different semantics for the counting function Ω

As specified in Section 3.2, our formal framework only requires the counting function to be
monotonic. This weak requirement makes it possible to express most of the semantics pro-
posed in the literature within this model. For example, by counting the users it is possible
to enforce a form of k-anonymity while, by counting the shops, it is possible to decrease
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the sensitivity of the location information. Also, by counting different types of shops, it is
possible to enforce a property similar to l-diversity.

In the following we first specify the appearance semantics (that can be used for example to
guarantee k-anonymity) and then we specify the persistence that is original, to the best of
our knowledge.

3.3.1 Appearance semantics

This semantic captures the counting of distinct objects that happen to be within a spatial
area AS in any time instant during a temporal interval AT . Each object is “counted” if
it happens to be located within AS at least during one time instant of AT . Each object is
counted at most once, independently from how much time it spends within AS and even
if the object enters and exits several times from AS during AT .

In order to define this semantic, we first introduce the function loc() that we use to model
the position of an object at a given time instant.

Definition 8. Given the set O of objects we define a partial function loc : O × T → S such
that, loc(o, t) is the spatial position of object o at time t.

We are now ready to define the appearance counting semantics.

Definition 9. Given the set of objects O, an area A and its projections AS , AT on the spa-
tial and temporal domain, respectively, the counting function Ω with appearance semantics is
defined as follows:

Ω(A) = |{o ∈ O s.t. ∃t ∈ AT with loc(o, t) ∈ AS}|

Example 10. Suppose thatAS is a city’s park andAT is from 2 pm until 2.30 pm. Given that
O is the set of users of a location based service, the Ω() counting function with appearance
semantics counts how many of these users report their location in the park at least once
between 2 pm until 2.30 pm.

Any specification of the Ω() counting function should be shown to be monotonic for our
algorithms to be sound.

Property 2. The counting function Ω() with appearance semantics is monotonic.

3.3.2 Persistence semantics

According to the appearance semantics each object is counted once independently on how
long it has been located within the spatial area AS during the time interval AT . In some
applications it can be desirable to count more than once those objects that are located in
AS for a “sufficiently long time” during AT . This semantics captures the intuition that
a spatio-temporal area containing some shops for a period of 2 hours provides more pri-
vacy protection than a spatio-temporal region that contains the same shops but that has a
duration of 10 minutes.

To formalize this semantics we adopt the concept of a persistence interval defined as a span
of time obtained by partitioning the time domain into intervals with a fixed time dura-
tion. For example, if we take 1 hour as the persistence interval duration and we start the
persistence intervals at the beginning of a day, the span of time [2014-01-01:08:00, 2014-01-
01:09:00) is one of these persistence intervals.
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Given a persistence interval duration D, the intuition of the persistence semantics is to
count, for each object, for how many persistence intervals during AT that object is located
in AS .

Definition 11. Given the set of objects O, an area A with its projections AS , AT on the spa-
tial and temporal domain, respectively, and I the set of persistence intervals with duration
D, the counting function Ω with persistence semantics is defined as follows:

Ω(A) =
∑
o∈O
|{i ∈ I s. t. ∃t ∈ (i ∩AT ) and loc(o, t) ∈ AS}|

Example 12. Suppose we are computing Ω() for the center of Milan, for the interval from
7pm to 11pm of a given day, counting the number of open pubs. A pub that is always open
in this time interval is counted 4 times if the persistence interval duration D is 1 hour. If D
is 15min it will be counted 16 times, but it will be counted 14 times if D is 15 minutes and
it closes at 10:30. Intuitively, the pub may be a possible location for the user in each of the
persistence intervals contained in the considered temporal interval if it is actually open at
that time. The condition on the opening time is captured in Definition 11 by the predicate
loc(o, t) ∈ AS . The number of persistence intervals intuitively gives a value for a “temporal
obfuscation” metrics.

Property 3. The counting function Ω() with persistence semantic is monotonic.

4 SafeBox computation

In this section we present two safe generalization algorithms that share the main data struc-
ture, that we call generalization tree, but have a different conceptual approach to the gener-
alization process.

The TopDown algorithm starts by considering the entire space and time (the “top”) and
then “moves down” from the root of the generalization tree searching for a node corre-
sponding to the “smallest” spatio-temporal region that guarantees the safety property of
the algorithm. In contrast, the BottomUp algorithm starts from the leafs of the generaliza-
tion tree, which intuitively correspond to small spatio-temporal regions, and then “moves
up” in the tree with the same goal.

The TopDown algorithm is conceptually more intuitive and, as we will see later, it also has
a lower worst-case complexity. The spatio-temporal generalization algorithms proposed
so far for location privacy follow this approach. As we detail in this section, guaranteeing
the safety property by following the BottomUp approach is more challenging. However,
considering that the counting function must be computed for any candidate region, the
BottomUp algorithm has the advantage of being a “local” algorithm, in the sense that in
many cases it terminates after processing data located in a small spatio-temporal area. Vice
versa, TopDown always starts from the entire spatio-temporal domain and hence it requires
information on all the objects.

In the following of this section we first formalize the generalization tree in Section 4.1, and
then we present the TopDown and BottomUp algorithms in Sections 4.2 and 4.3, respectively.

4.1 Data structure: the generalization tree

A generalization tree is a binary tree whose nodes represent cuboidal spatio-temporal areas
that we call “spatio-temporal cells” (or “ST-cell”, for short). The height of the tree is a
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system parameter and the ST-cell associated with the root is the entire spatial and temporal
domain (i.e., S × T ). The ST-cell of each non-leaf node is partitioned by the ST-cells of its
two children as detailed in the following. Given this construction, it is easily seen that the
nodes at a given level partition S × T .

We now specify how to construct the two children {c1, c2} of any internal node c in the
generalization tree. Intuitively, we split c along one of the three dimensions, dividing it in
two even parts. Since the two resulting cells c1 and c2 partition c, their projection on the
other two dimensions is the same as in c, as shown in Figure 2.

S1

S2T

400m

150m

50s C

(a) The ST-cell c

S1

S2T

200m

150m

50s C1 C2

200m

(b) The two children of c

Figure 2: A ST-cell c and its two children c1 and c2

In order to decide along which dimension a cell should be divided, we follow the intu-
itive goal of preferring squared ST-cells over stretched ones. We explain this intuition with
Example 13.

Example 13. Alice is using a fiend-finder service to be notified when one of her friends is
closer than 1km. The service is “privacy-aware” and it is designed to receive generalized
locations from the users.

To protect Alice’s privacy, her client always generalizes Alice’s location to a region R con-
taining 10 shops. The server replies with the set of friends closer than 1km to any point of
R. Finally the client filters out those friends whose position is not actually closer than 1km
from the exact Alice’s location.

Suppose that, for a give source position p, there are two different generalization algo-
rithms: one returns a squared region R1, the other the stretched region R2 (see Figures 3(a)
and 3(b)). Note that the two regions have the same area of 1km2. Upon receiving R1 and
R2, the service provider would return the friends in the regions R′1 and R′2, respectively,
with R′2 being more than 3 times larger than R′1. Consequently we can expect, on average,
that the generalization to R2 incurs into larger communication costs and larger computa-
tional costs both on the client and on the server.

According to the above intuition (i.e., to prefer squared ST-cells), considering the two spa-
tial dimensions we prefer to divide the cell along the dimension for which the cell has a
larger size, as done in Figure 2. More application-oriented criteria are needed to decide
when to generalize along the temporal dimension as opposed to the spatial ones. For this
purpose, we introduce a system parameter α, called time influence parameter, whose value
will impact the splitting decision between temporal and spatial dimensions. Intuitively, a
lower value of α will privilege splitting along the spatial dimensions, while a larger value
will privilege splitting along the temporal dimension. The proper value is tuned experi-
mentally based on specific application requirements.
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p

1 km

1 km

R1

R'1

(a) Squared.

p

10 km

100m

1 km R2

R'2

(b) Stretched.

Figure 3: Comparison between a squared generalized region and a stretched one.

In the following definition, we use the notation |c|D to denote the projection of a ST-cell c
along dimension D.

Definition 14. The split dimension of an ST-cell c with time influence parameter α ∈
[0; +∞), denoted with splitα(c) is defined as:

splitα(c) =


S1 if |c|S1

≥ |c|S2
and |c|S1

≥ α · |c|T
S2 if |c|S2

> |c|S1
and |c|S2

≥ α · |c|T
T otherwise

Finally, we formalize how children are constructed.

Definition 15. Let c be an ST-cell, D1 = splitα(c) be the split dimension of c, D2 and D3

the other two dimensions, |c|D1
= [min,max) and med = max+min

2 . Then, the function
childrenα(c) returns the two children c1 and c2 of c defined as follows:

|c1|D1
= [min,med)

|c2|D1
= [med,max)

|c1|D2
= |c2|D2

= |c|D2

|c1|D3
= |c2|D3

= |c|D3

In the following, to shorten the notations, given a ST-cell c we denote with sibα(c) its
sibling, and with parα(c) its parent. In these notations we omit αwhen no confusion arises.

4.2 The TopDown algorithm

The intuitive idea behind the TopDown algorithm is to traverse the generalization tree from
the root towards the leaf node that contains the source point. The algorithm terminates
when it reaches that leaf node or an internal node c such that the counting function of one
the children of c yields a value smaller than k. As shown in the proof of Theorem 20, this
termination condition makes this generalization function safe. The basic version of the
algorithm is shown in Algorithm 1.

Example 16. Consider a generalization tree like the one in Figure 4. The number reported
in each leaf ST-cell indicates the value of Ω for that ST-cell. Also, consider a source point p
in ST-cell C7 (shaded in grey) and the parameter k = 5.
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Algorithm 1 TopDownBasic(p, α,Ω(), k)

Input: a source point p ∈ S × T , the time influence parameter α, the Ω() function, the
integer value k.
Output: a SafeBox containing p or fail
Procedure:

1: c = S × T
2: if (Ω(c) < k) then return fail
3: {c1, c2} = childrenα(c)
4: while (Ω(c1) ≥ k and Ω(c2) ≥ k) do
5: if (p ∈ c1) then c = c1 else c = c2
6: if (c ∈ ⊥) return c
7: {c1, c2} = childrenα(c)
8: end while
9: return c

TopDownBasic first considers the root C. Since the value of Ω(c) for the whole domain is
equal to 12 (the sum of the counting function among all leaf ST-cells), the algorithm does
not terminates here with failure (see Line 2) but instead computes the two children of C
(Line 3). The condition for entering in the loop (see Line 4) is then considered: since ST-cell
C2 is such that Ω(C2) < 4, then the algorithm does not enter the loop and C is returned in
Line 9 as the SafeBox.

0 1
C7 C8 C9 C10 C11 C12 C13 C14

C3 C4 C5 C6

C1 C2

C

3 4 2 1 1 1

Figure 4: Example of generalization tree

Note that TopDownBasic returns fail only when k is larger than the total number of objects
to count in the entire spatio-temporal domain. Indeed, in this case it is impossible to find a
SafeBox, independently from the generalization function. Vice versa, in all other cases (i.e.,
when Ω(S × T ) ≥ k), TopDownBasic can always find a SafeBox.

Algorithm 1 has a computational issue: each time the algorithm moves one level down in
the generalization tree from a ST-cell c, it needs to recompute Ω over the two children of
c. While the burden of this operation can be limited by using some caching technique, we
propose the optimized version TopDown that returns the same result of TopDownBasic (see
Theorem 21) but that avoids computing Ω for two overlapping regions.
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Algorithm 2 shows the pseudocode for TopDown. Variable c represent the current ST-
cell being processed that is set to the entire spatio-temporal domain in Line 1. Then the
algorithms enters in a while loop that traverses the generalization tree towards the leaf
ST-cell containing the source point p. At each iteration, unless the algorithm terminates
at that iteration, it only evaluates Ω for the child c2 of c that does not contain p (Line 9).
Indeed, if Ω(c2) ≥ k, the algorithm does not directly check if Ω(c1) ≥ k, where c1 is the
child of c containing p. Instead, the algorithm processes c1 in the following iteration. If
the Ω function applied to a child of c1 yields a value not smaller than k, then, due to the
monotonic property of Ω (see Definition 2) Ω(c1) ≥ k. In practice, with this approach in
most of the cases (i.e., all the cases in which the algorithm continues in the iteration) we
have an indirect evaluation of the condition Ω(c1) ≥ k.

When Ω(c2) < k we cannot indirectly infer if Ω(c) ≥ k and the algorithm explicitly needs
to compute this condition (see Lines 11 to 15). If Ω(c) ≥ k then the result is c itself. Other-
wise, due to the termination condition of TopDownBasic, the result is the parent of c. In case c
is the entire spatio-temporal domain (i.e., the root of the generalization tree), the algorithm
returns fail. This happens only when the Ω function applied to the entire spatio-temporal
domain yields a values smaller than k.

Finally, there is another termination condition: when the algorithm reaches a leaf ST-cell c
(see Lines 3 to 6). Also in this case it is not possible to indirectly evaluate if Ω(c) ≥ k, hence
the algorithm explicitly compute this condition and it returns c if the condition is met, the
parent of c otherwise.

Algorithm 2 TopDown
Input: a source point p ∈ S × T , the time influence parameter α, the Ω() function, the
integer value k.
Output: a SafeBox containing p or fail
Procedure TopDown(p, α,Ω, k)

1: c = S × T ;
2: while true do
3: if (c ∈ ⊥) then
4: if (Ω(c) ≥ k) then return c
5: else then return parentα(c)
6: end if
7: c1 is the ST-cell in childrenα(c) such that p ∈ c1
8: c2 is the ST-cell in childrenα(c) such that p 6∈ c2
9: if (Ω(c2) ≥ k) then

10: c = c1
11: else
12: if(Ω(c) ≥ k) then return c
13: else if (c = S × T ) then return fail
14: else return parentα(c)
15: end if
16: end while
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4.3 The BottomUp algorithm

The BottomUp algorithm processes the generalization tree from the leaf node containing the
source point towards the root.

An intuitive procedure would first identify the leaf node containing the source point p and
recursively move to the parent ST-cell in case the value of Ω for that ST-cell is less than k,
and returning the current node as the SafeBox when Ω is at least k. We proposed a similar
algorithm, called Incognitus, in a preliminary investigation on this problem [4]. Unfortu-
nately, the result obtained with this approach is indeed a SafeBox, but the generalization
function is not safe according to our definition, as shown in Example 17.

Example 17. Consider the generalization tree reported in Figure 5, a value of k equal to 4
and a bottom up generalization algorithm that, starting from the leaf ST-cell containing the
source point, continues to generalize if the value of Ω for the current ST-cell is less than k.

C11 C12 C21 C22

C1 C2

C

1 1 5 1

p1p2

Figure 5: Unsafety of an intuitive bottom-up strategy

The generalization of p1 is C21, since Ω(C21) = 5 ≥ k. If the source point is p2, the
algorithm first processes C11 but discards this as a SafeBox, because Ω(C11) = 1 < k. Then
the algorithm moves up in the tree, processing ST-cell C1. This is not a suitable SafeBox
neither, since Ω(C1) = 2 < k. Then the algorithm moves up to c that is a SafeBox since
Ω(C) = 8 ≥ k.

This algorithm has the same problem illustrated in Example 4. Intuitively, by observing
a generalization to C, an adversary may exclude as a candidate source point any point in
C21 (since it would be generalized only to C21). Hence the privacy preference of having at
least k objects around the source point would be violated. Technically this is captured by
the fact that I(C0) = C11 ∪ C12 ∪ C22. Since Ω(C11 ∪ C12 ∪ C22) < k, this algorithm is not
safe.

The BottomUp algorithm we propose in this paper fixes the above problem by adopting
a more involved strategy and a different termination condition. The general idea is that,
instead of counting the number of objects in the current node c, we count the number of
objects in the inversion of c, i.e., in the ST-area defined as the set of all potential source
points. The algorithm returns c only if the counting function Ω applied to this area returns
a value not less than k. While the idea is quite simple, the computation of the inversion is
not, as we will illustrate below.
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We first formally describe the BottomUp algorithm, and then we provide an example of its
application. Algorithm 3 starts from the leaf ST-cell containing the source point p (Line 1)
that is also assigned to variable c used in the main loop. If Ω for that ST-cell is greater than
or equal to k, the algorithm returns that ST-cell, since for leaf nodes I(c) = c if Ω(c) ≥ k
(Line 8). If this is not the case, the algorithm enters in the while loop that traverses the
generalization tree towards the root. If the algorithm actually reaches the root without
finding a node that satisfies the termination condition, then it fails since it is not possible to
obtain a SafeBox for the given source point with the considered procedure (Line 4). Note
that this implies that in some cases BottomUp could not be able to find a SafeBox while a
different algorithm (e.g., TopDown) actually could. However, this a very rare situation (see
Section 5).

Vice versa, if the considered ST-cell (currentSTcell) is an internal node, its value is up-
dated with the one of its parent node in the generalization tree (Line 5), and the count-
ing function is evaluated on the inversion of this new ST-cell, computed through the Bot-
tomUpInversion function (presented in the following).

Algorithm 3 BottomUp
Input: a source point p, a time influence parameter α, the Ω() function, the integer value k.
Output: a SafeBox containing p or fail
Procedure:

1: currentSTcell is the leaf ST-cell such that p ∈ currentSTcell
2: c = currentSTcell
3: while (Ω(c) < k) do
4: if (currentSTcell = S × T ) then return fail
5: currentSTcell = parα(currentSTcell)
6: c = BottomUpInversion(currentSTcell, α,Ω, k)
7: end while
8: return currentSTcell

Example 18. Let’s consider again the generalization tree in Figure 4. As in Example 16
the goal is to find the SafeBox containing at least 4 objects. The BottomUp algorithm starts
computing the leaf ST-cell containing p in Line 1 (identifying the ST-cell C7 shaded in grey
in Figure 4). Then it computes the value Ω(C7) = 3; since the requirement of having at least
4 objects is not fulfilled, the algorithm enters the while loop (Line 3). Since C7 6= S × T ,
the algorithm computes the parent of C7 in Line 5, considering as candidate SafeBox the
ST-cell C3 in Figure 4. The inversion of C3, computed by the BottomUpInversion procedure
(Line 6), is the empty set: indeed, C3 is the union of C7 and C8, and any point in C8 would
have as SafeBox C8 itself because its Ω() is equal to 4. Furthermore any point in C7 will
have as SafeBox an area greater than the one represented by C3, because otherwise the only
candidate source points for the generalization to C3 will be the one in C7 and the counting
in that area is insufficient to guarantee the user privacy preferences. Since the counting for
an empty set is zero, the algorithm enters again in the loop. Since C3 6= S × T the parent
of C3 is computed as C1. The inversion of C1 is the union of C7, C9, and C10 since both the
Ω value of C9 and C10 and the Ω of their union C4 are smaller than 4, and hence, any point
in those ST-cells would have as SafeBox the region corresponding to the node C1 or to an
ancestor of C1. It is indeed C1 because the counting function gives a value higher than 4
for the region corresponding to the union of C7, C9, and C10. In the evaluation of the loop
condition we have Ω({C7, C9, C10}) = 6 and hence the comparison with k = 4 leads the
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algorithm to exit the loop, returning C1 as the SafeBox.

Note that in Example 18 we just gave an intuitive motivation for the result of the inversion
computation. Two problems arise when trying to directly apply Definition 5 to compute
I(c) for a ST-cell c when the generalization function is BottomUp. First, according to the
definition, it would be necessary to compute BottomUp for each point in c, which is impos-
sible if we consider a continuous spatio-temporal domain and impractical even assuming
a discrete domain. Second, this would generate a non-terminating procedure. Indeed, ac-
cording to Definition 5, for any p ∈ cwe need to compute BottomUp with p as a source point.
However, the computation of BottomUp requires computing the inversion for an area that
contains p, which is clearly an endless recursion.

The first problem can be easily fixed. Indeed, in BottomUp all points belonging to the
same leaf node are generalized to the same SafeBox. So, instead of checking the inversion
property for each point in the current candidate SafeBox, we can choose a representative
point for each leaf ST-cell in the candidate SafeBox and check the condition for these points
only.

To solve the second problem (non termination), we adopt Procedure 4. The idea is that,
instead of directly computing Definition 5, which applies to any generalization function,
we adopt Procedure 4 that is specific for BottomUp and that, in the computation, does not
require to recursively call BottomUp itself.

Procedure 4 BottomUpInversion
Input: a ST-cell c, a time influence parameter α, the Ω() function, the integer value k.
Output: IBottomUp(c)
Procedure BottomUpInversion(c, α,Ω, k)

1: res = Residuals(c, α,Ω, k);
2: if(Ω(res) ≥ k) then return res
3: else return ∅

Procedure Residuals(c, α,Ω, k)
1: if (c is leaf) then return c
2: result = ∅
3: for each c′ in childrenα(c) do
4: A = Residuals(c′, α,Ω, k)
5: if (Ω(A) < k) then result = result ∪A
6: end for
7: return result

Our solution to compute I(c) consists in the BottomUpInversion procedure (see Proce-
dure 4) that uses Residuals, a recursive procedure that computes the set of all points whose
generalization is not smaller than c. If the counting function applied to this set is larger
than or equal to k, then this set is returned (Line 2). Indeed, all of these points (res) gener-
alize to c. Otherwise, (i.e., Ω(res) < k), the counting condition in BottomUp for the points
in res is not satisfied and hence the generalization of each of these points is larger than c.
In this case, ∅ is returned as required by the definition of I(c).

Procedure Residuals processes every node of the subtree with root in c. Recursion termi-
nates when Residuals is called on a leaf node c. In this case, the leaf node itself is returned.
Indeed, for each point in c, the result of the generalization is at least as large as c itself. For
an internal node c, Residuals recursively calls itself on the two children of c. For each child
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c′ of c, Residuals checks if the counting function applied to Residuals(c′, α,Ω, k) is less than
k. If this is the case, then every point in the result of Residuals(c′, α,Ω, k) is added to the
result that is being computed for c (Line 5). Otherwise, (i.e., Ω(Residuals(c′, α,Ω, k)) ≥ k)
every point in c′ generalizes to a ST-cell smaller than c, hence no point of c′ contributes to
the result.

Example 19. Let’s consider Example 18 that illustrates the application of the BottomUp
algorithm to the generalization tree in Figure 4, and in particular to a source point p in
the ST-cell C7. The algorithm requires the computation of BottomUpInversion(C3) and of
BottomUpInversion(C1) that we intuitively motivated as equal to ∅ and to C7 ∪ C9 ∪ C10,
respectively. Consider first BottomUpInversion(C3) 1. The BottomUpInversion procedure,
first computes the set res through the Residuals procedure. Since C3 is not a leaf, the inner
iteration of Residuals considers first c′ = C7 and then c′ = C8. For c′ = C7, A = {C7}, and
since Ω(A) is less than 4, C7 is added to result. For c′ = C8, A = {C8}, and since Ω(A) is
greater than 4, result is not modified. The Residuals procedure returns the set containing
only C7, so we have that res = {C7}. Since Ω(res) < 4, the BottomUpInversion procedure
terminates returning the empty set.

Consider now the computation of BottomUpInversion(C1). Since C1 is not a leaf, the inner
iteration of Residuals considers first c′ = C3 and then c′ = C4. When Residuals considers
C3, as we have seen before, it returns result = {C7}. Then it considers C4 and computes
A = C9 ∪ C10 because both of these cells are leaves and the counting function applied
to each of them is less than 4. Since Ω(A) = 3 is less than 4, the procedure returns C9 ∪
C10. Consequently, Residuals applied to C1 returns result = C7 ∪ C9 ∪ C10. Hence in
BottomUpInversion(C1) we have res = C7 ∪ C9 ∪ C10 and since Ω(res) = 6, the procedure
returns C7 ∪ C9 ∪ C10, as expected from our intuitive reasoning in Example 18.

4.4 Properties of the TopDown and BottomUp algorithms

In this subsection we consider the formal properties of the two algorithms that we have
presented and we compare their worst-case time complexity.

4.4.1 Safety

In order to show the correctness of the algorithms we have to prove that both TopDown
and BottomUp compute a safe generalization function. For TopDown, we first show that
TopDownBasic is a safe generalization function and then we show that TopDown computes
the same result as TopDownBasic (hence TopDownis a safe generalization function). This is
formally stated in Theorems 20, 21.

Theorem 20. The TopDownBasic algorithm computes a safe generalization function.

Theorem 21. For any source point p, any time influence parameter α, any Ω() function, and any
the integer value k it holds that TopDownBasic(p, α,Ω, k) = TopDown(p, α,Ω, k).

Before presenting the formal result for BottomUp in Theorem 22, we first present Property 4
that formally states that BottomUpInversion actually computes the inversion for BottomUp.

Property 4. Let G be the generalization function computed by BottomUp with time influence
parameter α, counting function Ω(), and integer value k. For each ST-cell c, BottomUpInver-
sion(c, α, Ω(), k) computes IG(c).

1For simplicity, we omit the other parameters of the procedure.
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Theorem 22. The BottomUp algorithm computes a safe generalization function.

The formal proofs of the above theorems are reported in Appendix A. Intuitively, the idea
of both proofs is the following: we first show that if the algorithm does not return fail,
it returns a ST-cell c that contains the source point p (this guarantees that the algorithm
actually computes a generalization function) and then, according to Definition 6, we prove
that Ω(I(c)) is not smaller than k.

4.4.2 Analysis of computational complexity

We first consider the worst-case time complexity. For each iteration of the main loop, the
only operation in TopDown that does not require a constant time is the computation of Ω().
In the worst-case (i.e., when the algorithm returns a leaf node) TopDown computes Ω() once
for each level of the tree. Hence the worst-case time complexity of TopDown is linear in the
height of the generalization tree times the complexity of computing Ω.

Before analyzing the complexity of BottomUp, we first introduce a simple but effective
optimization. In principle the computation of BottomUpInversion(c), as described in Proce-
dure 4, would require to compute Ω for each node in the subtree with root c. However, by
definition of BottomUp, if c is an internal node, we compute BottomUpInversion(c) only if we
have already computed BottomUpInversion(c′) for one child c′ of c. By storing the result of
BottomUpInversion(c′), we avoid to re-process the subtree with root in c′ when computing
BottomUpInversion(c). With this optimization, we never compute Ω(c) twice for the same
ST-cell c. Consequently, in the worst-case (i.e., when BottomUp traverses the generalization
tree up to the root), we need to compute Ω for each node in the tree.

Comparing the two algorithms, given a generalization tree of height h, TopDown requires
computing Ω a number of times linear in h, since TopDown “moves down” in the general-
ization tree at each iteration. Vice versa, in the worst case BottomUp needs to process all
nodes of the generalization tree, hence it is linear in the number of nodes (i.e., 2h) and,
consequently, exponential in h. We recall that, by definition of the generalization tree (see
Section 4.1), the height of the tree (and hence the number of its node) is a system parameter.
The choice of a value for h is subject to a trade-off. On one side, for higher generalization
trees we get smaller bottom ST-cell and this positively impacts on the average size of the
generalization regions (this strongly affects BottomUp and, minimally TopDown). On the
other side, for larger values of h we have a higher computation time (again, this affects
BottomUp significantly and and TopDown only minimally). In Section 5 we show the impact
of this parameter in our experimental setting.

Let’s now consider the worst-case time complexity of the two algorithms by also taking
into account the complexity of computing Ω. Clearly, the complexity of Ω depends on
the data structure used to store the objects. In our experiments we use two different data
structures. As we illustrate in Section 5, by using one of them we have a worst-case time
complexity of Ω linear in the number of leaf ST-cells contained in the considered area. With
this data structure, we can evaluate the complexity of the two algorithms in terms of total
number of leaf ST-cells that each algorithm needs to process in all the computations of
Ω. According to this metric, given h the height of the generalization tree, the worst-case
time complexity of TopDown is O(2h+1). Indeed, in the first iteration TopDown computes
Ω on the entire spatio-temporal domain (i.e., 2h leaf ST-cells), in the second iteration it
computes omega on half of the spatio-temporal domain (i.e., 2h−1 leaf ST-cells) and so on.
Consequently, in the worst-case, the number of processed ST-cells is

∑h
i=0 2h = 2h+1 − 1.

The worst-case time complexity of BottomUp isO(h·2h). Indeed, in the worst-case BottomUp
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computes omega for each node of the generalization tree. Since, the union of all the nodes
at the same height yields the entire spatio-temporal domain (i.e., 2h leaf ST-cells), the total
number of ST-cells to process is equal to h · 2h. As a result, comparing the worst-case time
complexity of the two algorithms, BottomUp is expected to be only h/2 times slower than
TopDown.

5 Experimental evaluation

In this section we evaluate the SafeBox computation algorithms described in Section 4.
Using two different datasets, we first evaluate the effectiveness of TopDown and BottomUp
algorithms by showing how parameter k impacts on the data quality, i.e., the spatial size
and temporal duration of SafeBoxes. Intuitively, as long as a spatio-temporal region is
a SafeBox, it should be as small as possible so as the approximation involved in its use
is reduced. Secondly, we empirically evaluate the performance of the two algorithms in
terms of computation time. Finally we compare TopDown and BottomUp with our previous
solution Grid [12].

5.1 Experimental setting

The spatial area in which the experiments have been conducted is the city of Milano and
the total size of the map is 325 km2. In our experiments we use two datasets: the first
represents the movement of a set of users, as described in Section 5.1.1, while the second
dataset includes all the shops in Milano with opening hours (see Section 5.1.2). Hence
the “objects” counted by Ω() will be users and shops, respectively. The choice of using
different datasets is aimed at testing our algorithms with both dynamic and relatively static
data. The results are computed as the average, as well as minimum and maximum, out of
1000 runs. In each run, a random source point is chosen. The parameter k represents the
minimum number of objects that each SafeBox returned by the algorithms should contain.

The α value, as described in Section 4.2, determines different ratios between the spatial
and temporal sizes of the SafeBox. The choice of α is strictly related to the application we
are using: if we are in a real time environment we need to keep the temporal size, and hence
temporal obfuscation, as small as possible, while in other contexts it could be useful to have
smaller spatial areas or balance the space and time components. In all the experiments
presented in this section we use a value of α = 1.6× 10−5 such that α · 60s = 0.787km: this
value, chosen empirically, produces SafeBoxes with a duration that is, on average, under
15 minutes. This is a reasonable length if, for instance, we think about a service that uses
the position for sharing purposes.

Other parameters that should be taken into account are the subdivisions along the two
spatial dimensions and the temporal dimension. The finer is the subdivision, the smaller
are the resulting leaf ST-cells: this implies that the height of the corresponding general-
ization tree is higher, which negatively impacts on the computation time. The number of
leaf ST-cells affects both the computational complexity, as pointed out in Section 4, and the
precision of the algorithms. We vary the number of leaf ST-cells from 2, 048 to 8, 388, 608.
This yields to a spatial subdivision that varies from about 1.1km to 70m and a temporal
one from 75 minutes to 2 minutes. Details of the subdivisions are shown in Table 1 with
default values, as used in some experiments, written in bold. The spatial projection of each
leaf ST-cell is square-shaped.
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The two algorithms have been implemented in Java. Geographical positions are repre-
sented as latitude and longitude values in decimal degrees. The experiments have been
conducted is on computer with 2.5GHz Intel i5 CPU with 4GB of main memory.

Subdivision Area (Km2) Duration (min)
MilanoByNight Google Shops

Coarsest 1.28 45 75
Coarse 0.32 22 37
Mid 0.08 11 18
Fine 0.02 5 9
Finest 0.005 2 4

Table 1: Spatial and temporal leaf ST-cell size

5.1.1 MilanoByNight

MilanoByNight is an artificial dataset of user movements obtained using a simulation that
reflects a typical scenario of a weekend night in the city of Milano. It includes 100, 000
potential users, moving to one or more entertainment places in a period of 6 hours2.

The average density of the users within this area is 465 users/km2. In this scenario, given
a ST-cell c, Ω counts the number of users within c, according to the appearance semantics
described in Section 3.3. In Table 2 the values of k are summarized.

Parameter Values
k 20, 40, 60, 80, 100, 120, 140, 160

Table 2: MilanoByNight k values

5.1.2 Google Shops

This dataset considers the same spatial area of MilanoByNight, but instead of considering
users as the set of objects, it considers shops. The dataset includes 12, 958 shops whose
position and properties were retrieved through Google Places API. An opening timetable is
assigned to each shop, using real values when available (about 2, 000 shops) and assigning
default opening times in the other cases. The considered temporal domain is 10 hours long,
from 9.00AM until 19.00PM of a given day.

The Ω() function counts the open shops in candidate SafeBoxes. We test our algorithms
with both the semantics described in Section 3.3: appearance and persistence. Important
parameters for the experiments on this dataset are the number k of shops and the persis-
tence interval duration D. Their considered values are reported in Table 3.

5.2 Computation of the counting function

The efficiency of both algorithms depends on how Ω is computed. Several techniques can
be used to implement Ω and optimizations are possible depending on the application con-

2http://everywarelab.di.unimi.it/lbs-datasim

TRANSACTIONS ON DATA PRIVACY 7 (2014)

http://everywarelab.di.unimi.it/lbs-datasim


152 Sergio Mascetti, Letizia Bertolaja, Claudio Bettini

Parameter Values
k 2, 4, 6, 8, 10, 12, 14, 16

D (minutes) 5, 15, 30

Table 3: GoogleShops parameters values

text. If the objects that the application needs to count are relatively static in both time and
space, as for example in the case of train stations, then the value of Ω for each ST-cell in the
whole generalization tree can be pre-computed. This implies that given a ST-cell c, Ω(c) can
be obtained in constant time, independently from c being the whole spatial and temporal
domain S × T or a leaf ST-cell.

In contrast, in this experimental evaluation, we assume that the data to be counted is not
static and cannot be precomputed. This assumption is reasonable for both datasets we
use in our experiments. In the MilanoByNight dataset, Ω() counts users considering their
location at given time instants and, hence, it cannot be precomputed because movements
are unpredictable. The other dataset includes more than 10, 000 shops with their opening
hours, and in a big city like Milano shops can frequently change their presence, location,
and opening times, specially in the city center. Hence, for both datasets we assume that
counting is performed by accessing an external service as opposed to querying a static
internal database and we do not perform any pre-computation of Ω() for larger areas like
the ones corresponding to internal nodes of the generalization tree. Indeed, for the Google
shops dataset, we also test the algorithm with online retrieval of data from Google servers.

In the MilanoByNight dataset, we store, for each leaf ST-cell, the set of users reported to
be in that ST-cell (both in space and time). Consequently in order to compute Ω on an area
A, it is necessary to process all the leaf ST-cell contained in A.

In the Google shops dataset we use two different approaches. In the first approach (see
Sections 5.3.2 and 5.3.3), we store objects in a data structure build as the spatial projection
of the leaf ST-cells (we recall that objects in this dataset are not moving). In each cell of
this spatial grid we store the shops whose position is within the cell, each one paired with
its corresponding opening hours (stored as a list of intervals). In the second approach (see
Section 5.3.4) we compute Ω by actually retrieving shops information with online queries
to Google servers.

5.3 Evaluation

In this section we analyze and discuss the experimental results. In Section 5.3.1 we present
the MilanoByNight results, and in Section 5.3.2 we show the results with the Google shop
dataset, both adopting appearance semantics. Experimental results with persistence se-
mantics using the Google shop dataset are shown in Section 5.3.3. In Section 5.3.4 we show
the results with the online retrieval of the Google Shops dataset, while in the last set of
experiments in Section 5.3.5 we compare the TopDown and BottomUp with the Grid algo-
rithm [12].

In all the test we conducted, the percentage of fail result returned by BottomUp is less than
0.05% (i.e., 54/112, 000) while TopDown never returned fail, as expected (see Section 4.2).
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5.3.1 Evaluation with MilanoByNight dataset

The first set of experiments tests the two algorithms’ precision and performance with the
MilanoByNight dataset adopting the appearance semantics.
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Figure 6: Results with MilanoByNight dataset

In Figure 6(a) we compare the average size of the spatial areas of the SafeBoxes returned
by TopDown and BottomUp for different values of k. As expected, by increasing the value of
k, slightly larger areas are returned by both algorithms. The comparison between the two
algorithms shows that on average the BottomUp algorithm produces much smaller areas
(up to an order of magnitude) with respect to the TopDown algorithm. A similar result is
shown in Figure 6(b), in which the duration of the SafeBoxes is compared.

In Figure 6(a), the bars represent the maximum and the minimum size of the areas re-
turned by BottomUp. The area’s variance for the TopDown algorithm is not reported since
it is small compared to BottomUp one. The reason of a high variance for BottomUp can
find an explanation in the generalization strategy used by the algorithm. Indeed, the algo-
rithm takes decisions based on local conditions starting from the leaf nodes. A non-uniform
distribution of objects in the considered space leads to significantly different decisions de-
pending on the position of the source point leading to significantly different generaliza-
tions.

The overall precision, in both time and space, is summarized in Figure 6(c) that compares
TopDown and BottomUp in terms of the “size” of the returned SafeBoxes: technically the size
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of a SafeBox is the level of the SafeBox in the generalization tree described in Section 4.1.
This implies that lower is the value, the smaller is the SafeBox in both time and space, and
hence the higher is the precision. Figure 6(c) confirms the experimental results of area and
duration comparisons: the BottomUp algorithm produces smaller SafeBoxes up to 3 levels
in the generalization tree, meaning that a TopDown SafeBox can be 23 = 8 times bigger than
a BottomUp SafeBox.

Figure 6(d) shows how the subdivision impacts on the performance of both algorithms.
We can observe that the execution time of BottomUp algorithm is only slightly affected by
the increase of the number of leaf ST-cells, while the TopDown performance is quite related
with it. The execution time is under 100 milliseconds in the coarsest subdivision and more
than 700 milliseconds in the finest subdivision: this last value can be incompatible with a
service that needs to return SafeBoxes in real time.

5.3.2 Evaluation with Google shop dataset with appearance semantics

The second set of experiments tests the two algorithms precision and performance with the
Google shops dataset with appearance semantics.
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Figure 7: Results with Google Shops dataset - Appearance semantics

Figure 7(a) shows the size of the SafeBoxes returned by TopDown and BottomUp. By in-
creasing the value of k, larger areas are returned by both algorithms. The SafeBox returned
by BottomUp is on average smaller in size than the one returned by TopDown, as shown in
Figure 7(a). Therefore, we can conclude that the BottomUp algorithm is preferable since it
produces on average smaller SafeBox.

Comparing this result with the one of the MilanoByNight dataset we can observe that the
average size of SafeBoxes returned by TopDown with the Google shops dataset is smaller
in comparison with the one returned with MilanoByNight; conversely the average size of
SafeBoxes returned by BottomUp is quite the same. The reason is that the distribution of
users is less uniform than the distribution of the shops and this negatively affects the per-
formance of TopDown. Vice versa BottomUp is not significantly affected by the distribution
of the objects in the space.

The execution times are shown in Figure 7(b): we can observe an opposite trend with re-
spect to the MilanoByNight dataset. The computation time of TopDown is always less than
one millisecond while the execution time of the BottomUp algorithm is slightly affected by
the increase of the number of leaf ST-cells. Indeed we can observe that with the finest
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subdivision BottomUp takes up to 30 milliseconds. The difference with respect to the Mi-
lanoByNight dataset is due to the different implementation of the Ω function. In the Google
shops setting, TopDown performs better since the computation of Ω() is very efficient, while
in BottomUp the computation time is affected by the computation of the Residuals function.
In any case, the computation time, even with the BottomUp algorithm, is less than 30 mil-
liseconds, hence granting a quick response time.

5.3.3 Evaluation with Google shop dataset with persistence semantics
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Figure 8: Results with Google Shops dataset - Persistence semantics

This set of experiments evaluates the two algorithms precision and performance with the
Google shops dataset adopting the persistence semantics. Figure 8(a) shows the average
SafeBox size of TopDown and BottomUp algorithms when varying the persistence interval
duration D from 5 minutes to 30 minutes. As expected, for shorter intervals the SafeBoxes
are smaller, on average. This is due to the fact that, for a given ST-cell c, if D is short, the
objects spatially contained in c are more likely to be counted more times in the computation
of Ω(c). Clearly larger values of Ω result, for both algorithms, in smaller SafeBoxes.

Figure 8(b) shows the computation time of the algorithms varying the persistence interval
duration. As also shown in Figure 7(b), the computation time of TopDown is not affected by
the increase of the persistence interval duration. Conversely, BottomUp algorithm shows a
small increase of the computation with the 30 minutes persistence interval duration. This
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is due to the fact that longer persistence interval duration leads to larger SafeBoxes whose
computation with BottomUp requires more iterations of the algorithm and hence an increase
in the computation time (affected in particular by the Residuals execution time).

Figure 8(c) shows the SafeBox size by varying k with different value of persistence interval
durationD for the TopDown algorithm. The average size of the SafeBoxes grows with larger
value of k and longer persistence interval durations, confirming both the results shown in
Figure 7(a) and in Figure 8(a). Figure 8(d) shows a similar result for BottomUp.

5.3.4 Evaluation with Google shop dataset, appearance semantics and online retrieval
of data

Similarly to Section 5.3.2, in this set of experiments we evaluate the performance of Top-
Down and BottomUp algorithms with the Google Shops dataset adopting the appearance
semantics and varying k. In this set of experiments when data is needed to compute Ω we
retrieve it from Google servers through the Google Places API. Clearly, in this set of exper-
iments the generalization algorithms need to issue a (possibly large) number of requests
and this leads, in some cases, to much longer computations. In this set of experiments we
give a limit of one minute for each generalization. If the generalization algorithm does not
terminate within this time, the generalization procedure is interrupted and it is considered
“timed-out”.
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Figure 9: Results with online retrieval of Google Shops dataset
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Figure 9(a) shows the percentage of runs that were timed-out for our proposed algorithms.
We can observe that for k = 2 this percentage is of about 2% and 6%, for BottomUp and Top-
Down, respectively. When increasing the value of k up to 16 the percentage grows, since
both algorithms need to retrieve more points (see Figure 9(c)). However, while with Top-
Down more than 60% of the generalization runs are timed out with k = 16, with BottomUp
the percentage is much smaller (i.e., less than 10%).

Figure 9(b) shows the average computation time computed among the runs that were
not timed-out. We can observe that TopDown has a much larger computation time than
BottomUp for different values of k. The main reason for this result is that BottomUp requires
to retrieve less points. Indeed in Figure 9(c) we can observe that, for all considered values
of k, BottomUp requires about one fifth of the points that are needed by TopDown.

5.3.5 Comparison with Grid algorithm
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Figure 10: Comparison with existing solutions

In this last set of experiments we compare the TopDown and BottomUp algorithms with
the Grid spatial generalization algorithm, presented in [12]. These experiments have been
run with the MilanoByNight dataset adopting the appearance semantics. As in the previ-
ous experiments, the spatial domain S is Milano’s area, but the temporal domain consists
in only a screenshot of MilanoByNight’s temporal duration, since the Grid algorithm pro-
vides only a spatial generalization. We briefly recall that Grid algorithm adopts a top-down
strategy, in which a total order on the data (e.g., users’ locations) needs to be established
for computing the generalized area.

In Figure 10(a) we can observe, for different values of k, that Grid returns, on average,
smaller areas and hence can provide a higher data utility. However Figure 10(b) shows
that Grid has a much higher computation time.

In our previous work [12] we compared Grid with the Hilbert Cloak algorithm presented
in [11]. From the evaluation it emerges that Hilbert Cloak is faster than Grid but returns, on
average, larger areas. Consequently, we can derive that Hilbert Cloak has about the same
performance as TopDown and BottomUp for the computation time and the quality of the
result. However, both Grid and Hilbert Cloak suffer from a major problem: they require to
know all the points in the spatial domain. This means that, if the test were conducted with
the online retrieving of data (like in Section 5.3.4), both Grid and Hilbert Cloak would always
be timed-out.
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6 Conclusions and future work

In this paper we addressed the problem of privacy preservation through spatio-temporal
generalization, and we presented a new problem formalization that makes the generaliza-
tion technique independent from the semantics of the generalized region. This approach
makes it possible to define generalization algorithms that can be easily adapted to different
applications and privacy preferences by simply changing the counting function Ω that de-
fines the semantics of the generalized regions. We showed examples of application of our
algorithm with two Ω functions counting different types of objects, and with two different
semantics, but its application can be easily extended to capture other types of objects and
different semantics. Another innovative aspect of the proposed model is that it re-defines
a formal property that generalization functions should satisfy in order to be safe with re-
spect to the inversion attack. The BottomUp algorithm satisfies this property and also has
the advantage of being applicable also when the generalization algorithm needs to process
dynamic data possibly collected from third parties (e.g., Google Maps). We experimentally
showed that this algorithm is efficient and effective.

This contribution may be extended along two directions. First, it may be interesting to
explore the “historical” case, in which the private information to be generalized is a “source
trajectory” instead of a “source point”. This applies, for example, to location-based services
in which different requests can be linked to the same user. Second, we believe that a general
purpose publicly available library for spatio-temporal cloaking may be designed along the
lines of our approach. The library may include a set of predefined counting functions
with different semantics, and support the extension with new ones. It may be designed
to compute the generalization directly on a mobile device with connection to predefined
services or on a “generalization (trusted) server”.

A Proofs

A.1 Proof of Property 1

Proof. By Definition 5, for any spatio-temporal area A, I(A) ≤ A. Hence, I(G(p)) ≤ G(p).
Consequently, due to Definition 2, Ω(G(p)) ≥ Ω(I(G(p))). Since, by Definition 6, for any
source point p such that G(p) is defined, Ω(I(G(p))) ≥ k, then Ω(G(p)) ≥ Ω(I(G(p))) ≥ k.
Hence, by Definition 3, G(p) is a SafeBox.

A.2 Proof of Property 2

In this proof we use |A|T and |A|S to denote the temporal and spatial projections, respec-
tively, of a spatio-temporal area A.

Proof. By Definition 2 we show that, for each pair of spatio-temporal areas A, A′, if A ⊆ A′,
then Ω(A) ≤ Ω(A′). Since A ⊆ A′, then |A|T ⊆ |A′|T and |A|S ⊆ |A′|S . Consequently, for
each object o such that ∃t ∈ |A|T and loc(o, t) = p ∈ |A|S , it also holds that t ∈ |A′|T and
p ∈ |A′|S . Consequently,

{o ∈ O s.t. ∃t ∈ |A|T with loc(o, t) ∈ |A|S} ⊆ {o ∈ O s.t. ∃t ∈ |A′|T with loc(o, t) ∈ |A′|S}

Hence, by Definition 9, Ω(A) ≤ Ω(A′).
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A.3 Proof of Property 3

In this proof we use |A|T and |A|S to denote the temporal and spatial projections, respec-
tively, of a spatio-temporal area A.

Proof. By Definition 2 we show that, for each pair of spatio-temporal areas A, A′, if A ⊆ A′,
then Ω(A) ≤ Ω(A′). Since A ⊆ A′, then |A|T ⊆ |A′|T and |A|S ⊆ |A′|S . Consequently, for
each object o, if

∃i ∈ I s. t. ∃t ∈ (i ∩ |A|T ) and loc(o, t) = p ∈ |A|S
then it also holds that t ∈ (i ∩ |A′|T ) and p ∈ |A′|S .

Consequently, for each object o ∈ O, it holds that:

{i ∈ I s. t. ∃t ∈ (i ∩ |A|T ) and loc(o, t) = p ∈ |A|S} ⊆
{i ∈ I s. t. ∃t ∈ (i ∩ |A′|T ) and loc(o, t) = p ∈ |A′|S}

Hence, by Definition 11, Ω(A) ≤ Ω(A′).

A.4 Proof of Theorem 20

Proof. We first prove that TopDownBasic computes a generalization function and then we
show that it computes a safe generalization function.

We prove that TopDownBasic computes a generalization function by showing that, for any
source point p, time influence parameter α, Ω() function and integer value k, if TopDown-
Basic(p, α,Ω(), k) does not return fail, then p ∈ TopDownBasic(p, α,Ω(), k). We prove by
showing that variable c (that is eventually returned by the algorithm) contains p at each
iteration of the algorithm. In the first iteration variable c is set to S × T , so p ∈ c. In any
iteration such that p ∈ c, either c is returned or c is updated to a new value c′ such that
p ∈ c′. Indeed, if c is not returned, it is partitioned in c1 and c2. Since p ∈ c, then either
p ∈ c1 or p ∈ c2 and the value of c is updated to c1, if p ∈ c1 or to c2, if p ∈ c2.

We now show that TopDownBasic is a safe generalization function according to Defini-
tion 6. Indeed we show that for any source point p, time influence parameter α, Ω() func-
tion and integer value k, if TopDownBasic(p, α,Ω(), k) does not return fail, then, given A =
TopDownBasic(p, α,Ω(), k), it holds that Ω(I(A)) ≥ k.
To show this result, we first show that, if TopDownBasic(p, α,Ω(), k) does not return fail,

then, givenA = TopDownBasic(p, α,Ω(), k), it holds that I(A) = A. By Definition 5, we show
that, for each point p′ ∈ A, TopDownBasic(p′, α,Ω(), k) = A. We prove this by showing that,
at each iteration of the algorithm, variable c contains both p and p′. The result follows since
the termination condition (Ω(c1) ≥ k ∧ Ω(c2) ≥ k) does not depend on the source point. In
the first iteration, c = S × T , so p, p′ ∈ c. In any iteration such that p, p′ ∈ c, then either c is
returned or c is updated to a new value c′ such that p, p′ ∈ c′. Indeed, if c is not returned, it
is partitioned in c1 and c2 and, if p ∈ c1, then also p′ ∈ c1 and analogous for c2. So the new
value of c′ contains both p and p′.
Since I(A) = A, it is now easy to show that Ω(I(A)) ≥ k by showing that Ω(A) ≥ k.

Indeed, if the algorithm does not return fail, then it returns a ST-cell c such that Ω(c) ≥ k.
At the first iteration, c = S × T and Ω(c) ≥ k (otherwise the algorithm would return fail).
When any children c′ of c is such that Ω(c′) < k the algorithm terminates returning c so the
algorithm, when not returning fail, always returns a ST-cell c such that Ω(c) ≥ k. Hence,
as proved, Ω(I(c)) = Ω(c) ≥ k and consequently TopDownBasic is a safe generalization
function.
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A.5 Proof of Theorem 21

Proof. By definition of TopDownBasic and TopDown(Algorithms 1 and 2) it is easily seen that
both algorithms return fail only if Ω(S × T ) < k. Hence, given a source point p, a time
influence parameter α, function Ω() and an integer value k, TopDownBasic(p, α,Ω(), k)=fail
if and only if TopDown(p, α,Ω(), k) = fail.

If TopDown(p, α,Ω(), k) does not return fail, then it returns a ST-cell c′. We now show that
(1) p ∈ c′, (2) for each ST-cell ĉ ⊃ c′, for each child ĉ1 of ĉ it holds that Ω(ĉ1) ≥ k and (3) if c′

is not a leaf, for at least one child c̄ of c′ it holds that Ω(c̄) < k. Consequently, by definition
of Algorithm 1 if follows that c′ is the result of TopDownBasic(p, α,Ω(), k).
(1) In the first iteration of the while loop of TopDown, p ∈ c since c = S×T . In the following
iterations p ∈ c, because, when iteration continues, variable c is set to c1 that is the child of
c containing p. When iteration terminates the algorithm returns either c or its parent, hence
the result contains p.
(2) We first prove that Ω(c′) ≥ k. If the algorithm terminates at Line 4 or Line 12, then it
returns variable c and it holds that Ω(c) ≥ k. Otherwise, if the algorithm returns at Line 5
of Line 14, it returns the parent pc of current cell c. Since the child c2 of pc is such that
Ω(c2) ≥ k (otherwise the Algorithm would have returned at the previous iteration), then,
due to monotonic property, Ω(pc) ≥ k. Hence, in all cases, Ω(c′) ≥ k.
Now, consider a generic ST-cell ĉ ⊃ c′. ĉ has two children: ĉ1 that contains p and ĉ2 that

does not contain p. Since ĉ1 ⊇ c′, due to monotonic property, it holds that Ω(c1) ≥ k (we just
proved that Ω(c′) ≥ k). For what concerns ĉ2, let’s assume, by contradiction, that Ω(ĉ2) < k.
By definition of TopDown, the algorithm would return ĉ or its parent, which is in contrast
with the fact that the algorithm actually returns c′ ⊂ ĉ.

(3) A non leaf cell can be returned at Lines 5, 12 and 14. If the algorithm returns at Line 5,
then the result c′ has a leaf child c̄ such that Ω(c̄) < k. The same holds for termination at
Line 14. When the algorithm terminates at Line 12, then it returns the current ST-cell c, and
its child c2 is such that Ω(c2) < k.

A.6 Proof of Theorem 22

Proof of Theorem 22 easily follows from the proof of Property 4 and is detailed in Sec-
tion A.6.2.

A.6.1 Proof of Property 4

Proof. We show that, for each ST-cell c, if BottomUpInversion(c) = ∅, then I(c) = ∅ otherwise
BottomUpInversion(c) = I(c) = Residuals(c).

Let’s consider the set res(c) of points of c such that, for each point p ∈ res(c), BottomUp(p)
⊇ (p). Clearly, for each point p ∈ (c \ res(c)) it holds, by Definition 5, that p 6∈ I(c).

If BottomUpInversion(c) = ∅, then, by definition of BottomUp, for each p ∈ res(c), at the
iteration of BottomUp in which variable currentSTcell is set to the value c at Line 5, it
holds that variable count is set to zero in the following line. Hence, none of these points is
generalized to c. It follows that I(c) = ∅.
Now, consider the case BottomUpInversion(c) 6= ∅. By definition of BottomUpInversion,

BottomUpInversion 6= ∅ only if Ω(Residuals(c)) ≥ k. In this case BottomUpInversion(c) =
Residuals(c). By definition of BottomUp, for each point p in res(c) then BottomUp(p) = c,
since Ω(BottomUpInversion(c)) ≥ k. Consequently, by Definition 5, I(c) = res(c). We now

TRANSACTIONS ON DATA PRIVACY 7 (2014)



SafeBox: adaptable spatio-temporal generalization for location privacy protection 161

show that, for each ST-cell c, Residuals(c) = res(c). We prove by induction on the height h
of c.

Base case. If h = 0, then c is a leaf, hence, by definition of res, res(c) = c. By definition of
Residuals, Residuals(c) = c.

Induction case. If h > 0 then we assume that for each ST-cell c′ at height h − 1 it holds
that res(c′) = Residuals(c′). In particular, let c1, c2 be the two children of c.

By definition of BottomUpInversion, if Ω(Residuals(c1)) ≥ k, then Ω(BottomUpInversion(c1))
≥ k and hence, for every point p in res(c1) it holds that BottomUp(p) = c1 (by definition of
BottomUp), consequently p 6∈ res(c). Analogous for c2.

Vice versa, if Ω(Residuals(c1)) < k, then BottomUpInversion(c) = ∅ and hence for each point
p ∈ res(c1) it holds that p ∈ res(c). Analogous for c2.

Overall:

res(c) =


res(c1) ∪ res(c2) if Ω(res(c1)) < k and Ω(res(c2)) < k

res(c1) if Ω(res(c1)) < k and Ω(res(c2)) ≥ k
res(c2) if Ω(res(c1)) ≥ k and Ω(res(c2)) < k

∅ otherwise

By definition of Residuals, Residuals(c1) ⊆ Residuals(c) if Ω(Residuals(c1)) ≥ k, otherwise
Residuals(c1) ∩ Residuals(c) = ∅. Analogous for c2. Consequently Residuals(c) equals to:


Residuals(c1) ∪ Residuals(c2) if Ω(Residuals(c1)) < k and Ω(Residuals(c2)) < k

Residuals(c1) if Ω(Residuals(c1)) < k and Ω(Residuals(c2)) ≥ k
Residuals(c2) if Ω(Residuals(c1)) ≥ k and Ω(Residuals(c2)) < k

∅ otherwise

The thesis follows since, by induction assumption, Residuals(c1) = res(c1)) and, analo-
gously, Residuals(c2) = res(c2)).

A.6.2 Proof of Theorem 22

Proof. We first prove that BottomUpcomputes a generalization function and then we show
that it computes a safe generalization function.

We prove that BottomUpcomputes a generalization function by showing that, for any
source point p, time influence parameter α, Ω() function and integer value k then p ∈
BottomUp(p, α,Ω(), k), if BottomUp(p, α,Ω(), k) does not return fail. In Line 1 of the al-
gorithm, variable currentSTcell is set to the leaf ST cell that contains p, hence, clearly
p ∈ currentSTcell. In the while loop, variable currentSTcell is updated with the parent of
the previous value, hence at any iteration, p ∈ currentSTcell.

We now show that BottomUpis a safe generalization function according to Definition 6.
Indeed we show that for any source point p, time influence parameter α, Ω() function
and integer value k, then, given A = BottomUp(p, α,Ω(), k), it holds that Ω(I(A)) ≥ k,
if BottomUp(p, α,Ω(), k) does not return fail.
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The thesis easily follows by the fact that, if BottomUp does not returns fail, then it returns
a ST-cell c such that Ω(BottomUpInversion(c)) ≥ k. Since BottomUpInversion(c) = I(c) (by
Property 4), it holds that Ω(I(c)) ≥ k.
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