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Characterizing the genetic basis of methylome
diversity in histologically normal human lung tissue
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The genetic regulation of the human epigenome is not fully appreciated. Here we describe the

effects of genetic variants on the DNA methylome in human lung based on methylation-

quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a

genetic–epigenetic interaction of surprising magnitude, including a regulatory hotspot. These

findings are replicated in both breast and kidney tissues and show distinct patterns:

cis-meQTLs mostly localize to CpG sites outside of genes, promoters and CpG islands (CGIs),

while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in

CTCF-binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, four of

the five established lung cancer risk loci in European ancestry are cis-meQTLs and, in

aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587

subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the

human methylome.
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D
NA methylation plays a central role in epigenetic
regulation. Twin studies have suggested that DNA
methylation at specific CpG sites can be heritable1,2;

however, the genetic effects on DNA methylation have been
investigated only in brain tissues3,4, adipose tissues5,6 and
lymphoblastoid cell lines7. Most studies were based on the
Illumina HumanMethylation27 array, which has a low density
and mainly focuses on CpG sites mapping to gene promoter
regions. While the functional role of DNA methylation in non-
promoter or non-CpG Island (CGI) regions remains largely
unknown, evidence shows roles in regulating gene splicing8 and
alternative promoters9, silencing of intragenic repetitive DNA
sequences10, and predisposing to germline and somatic mutations
that could contribute to cancer development11,12. Notably, a
recent study13 suggests that most DNA methylation alterations in
colon cancer occur outside of promoters or CGIs, in so called
CpG island shores and shelves, and the Cancer Genome Project
has reported high mutation rates in CpG regions outside CGI in
multiple cancers14. Although expression QTLs (eQTLs) have
been extensively studied in different cell lines and tissues15, the
minimal overlap observed between cis-acting meQTLs and eQTLs
(E5–10%)3,4,7 emphasizes the necessity of mapping meQTLs
that may function independently of nearby gene expression. This
might reveal novel mechanisms for genetic effects on cancer risk,
particularly since many of the established cancer susceptibility
SNPs map to non-genic regions.

Lung diseases constitute a significant public health burden.
About 10 million Americans had chronic obstructive pulmonary
disease in 2012 (ref. 16) and lung cancer continues to be the
leading cancer-related cause of mortality worldwide17. To provide

functional annotation of SNPs, particularly those relevant
to lung diseases and traits, we systematically mapped
meQTLs in 210 histologically normal human lung tissues using
Illumina Infinium HumanMethylation450 BeadChip arrays,
which provide a comprehensive platform to interrogate the
DNA methylation status of 485,512 cytosine targets with excellent
coverage in both promoter and non-promoter regions (Fig. 1a),
CGI and non-CGI regions (Fig. 1b) and gene and non-gene
regions. Thus, our study enables the characterization of genetic
effects across the methylome in unprecedented detail. Moreover,
since DNA methylation exhibits tissue-specific features18, we
investigated whether similar meQTLs could be identified in other
tissues.

Results
Identification of cis-acting meQTLs. We profiled DNA methy-
lation for 244 fresh-frozen histologically normal lung samples
from non-small cell lung cancer (NSCLC) patients from the
Environment and Genetics in Lung cancer Etiology (EAGLE)
study19. A subset of 210 tissue samples that passed quality control
and had germline genotype data from blood samples20 was used
for meQTL analysis. The analysis was restricted to 338,456
autosomal CpG probes after excluding those annotated in
repetitive genomic regions or that harboured genetic variants.
The distribution of methylation levels differed strongly across
distinct types of genomic regions (Supplementary Fig. 1a,b).
Consistent with previous studies21, CpG sites in promoter or CGI
regions were largely unmethylated while those in other regions
were largely methylated (Supplementary Fig. 1a,b).
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Figure 1 | cis-meQTL structural characteristics. (a) Distribution of CpG probes and corresponding cis-meQTL numbers and proportions in gene and

non-gene regions. meQTLs were detected based on EAGLE lung normal tissue samples (n¼ 210). (b) Distribution of CpG probes and corresponding

cis-meQTL numbers and proportions in CpG islands (CGIs), shores (o2 kb from the boundary of CGI), shelves (2–4 kb from the boundary of CGI) and

the remaining region or ‘open sea’. (c) The strongest cis-association is between SNP rs10090179 and CpG probe cg19504605. P¼ 1.5� 10� 73, t-test.

The SNP explains 79.8% of the phenotypic variance. The box plots show the distribution of the methylation levels in each genotype category with error

bars representing the 25 and 75% quantiles. (d,e) The x coordinate is the average s.d. of methylation levels for CpG probes in each category. The

y coordinate is the proportion of CpG probes detected with cis-meQTLs. The proportion of methylation probes detected with cis-meQTLs varied across

categories, ranging from 4.0% for CGIs in 1st exons to 15.7% for south shores in non-gene regions.
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We performed cis-meQTL analysis for each methylation trait
by searching for SNPs within 500 kb of the target CpG-site in
each direction (1 Mb overall). The genetic association was tested
under an additive model between each SNP and each normalized
methylation probe, adjusting for sex, age, plate, population
stratification and methylation-based principal component analy-
sis (PCA) scores. Controlling FDR at 5% (P¼ 4.0� 10� 5), we
detected cis-meQTLs for 34,304 (10.1% of 338,456) CpG probes
(Supplementary Table 1), mapping to 9,330 genes. A more
stringent threshold (P¼ 6.0� 10� 6) at FDR¼ 1% detected
cis-meQTLs for 27,043 CpG probes, mapping to 8,479 genes.
Moreover, with a 200-kb window (100 kb from both sides)
instead of a 1-Mb window we detected 40,650 cis-meQTLs
(P¼ 2.0� 10� 4), controlling for FDR¼ 5%. The methylation
distribution in CpG sites detected with meQTLs differed
substantially from those without meQTLs (Supplementary
Fig. 1a,b). The peak SNPs were equally distributed on either side
of the target CpG sites with a median distance (D) of 11.8 kb.
The proportion of explained phenotypic variance (h2) ranged
from 7.7 to 79.8% (Supplementary Fig. 1c) and inversely
depended on D (Supplementary Fig. 1d). We detected strong
cis-meQTLs for DNMT1, a gene known for establishment and
regulation of tissue-specific patterns of methylated cytosine
residues, and for DNMT3A/B, two genes involved in de novo
methylation in mammals, but not for MTHFR, which affects
global methylation (Supplementary Fig. 1e).

The likelihood of detecting cis-meQTLs varied across CpG
regions and strongly depended on the variability of the
methylation levels (Fig. 1d,e). CpG probes in non-CGI regions
were twice as likely to harbour cis-meQTLs than CpG probes in
CGI regions (11.5 versus 4.8%, t-test Po10� 100); similarly, CpG
probes located in CGI of non-gene regions were twice as likely to
harbour cis meQTL than those in gene regions (14.6 versus 6.6%,
t-test Po10� 100).

To verify the cis-meQTLs, we analysed data from The Cancer
Genome Atlas (TCGA)22 NSCLC patients (n¼ 65) for whom
both DNA methylation data from llumina HumanMethylation450
BeadChip of histologically normal lung tissue and germline
genotypes from Affymetrix Genome-Wide Human SNP Array 6.0
were available. Genetic associations were tested using the imputed
genotypic dosages. EAGLE findings were strongly replicated in
TCGA lung data: for the 34,304 associations detected in EAGLE,
32,128 (93.7%) had the same direction and 22,441 (65.4%) had
FDRo0.05 based on single-sided P-values (Table 1).

For 34,304 CpG probes detected with cis-meQTLs, we searched
for secondary independently associated SNPs in cis regions by
conditioning on the primary cis-meQTL SNPs. We detected
secondary cis-meQTL SNPs for 3,546 CpG probes (FDR¼ 5%,
P¼ 4� 10� 5), 61.5% of which were replicated in TCGA lung data.

Identification of trans-acting meQTLs. Identification of trans-
meQTLs was performed by searching for SNPs that were on
different chromosomes from the target CpG sites or on the

same chromosome but 4500 kb away. We detected 615 CpG
probes with trans-meQTLs (FDR¼ 5%, P¼ 2.5� 10� 10),
including 438 interchromosomal and 177 intrachromosomal
trans-meQTLs. Among 177 intrachromosomal trans associations,
30 lost significance after conditioning on the corresponding cis-
regulating SNPs, suggesting that these trans associations were
caused by cis-acting regulations through long-range linkage
disequilibrium (LD). Thus, we detected 585 traits with ‘true’
trans-meQTLs (Fig. 2a), mapping to 373 genes. The number of
trans-meQTLs was reduced to 500 if controlling for FDR¼ 1%
(P¼ 4.0� 10� 11). We replicated 79.8% of the 585 trans associ-
ations in TCGA lung data. Interestingly, trans-meQTLs were
strongly enriched in CGI sites, in contrast to the observation that
cis-meQTLs were strongly enriched in non-CGI sites (Fig. 2b).
CpG dinucleotides in 30 UTR regions, where microRNA target
sites are typically located, showed an opposite trend in both
cis- and trans-meQTLs (Fig. 2b).

In 62.8% of the trans associations, the SNPs involved were also
detected to have cis-acting effects. We investigated whether trans
associations were mediated by these cis-regulated proximal CpG
sites (Fig. 2c,d). We found that 30 and 166 trans associations
had full and partial mediation, respectively, while 389 had no
significant mediation. The trans associations involving SNPs in
gene desert regions are less likely to be mediated by proximal
CpG probes (15.7 versus 34.3%; P¼ 0.0067, Fisher’s exact test).
To obtain mechanistic insight into the trans associations showing
mediation effects (n¼ 196), we used the DAVID tool23 to
characterize the function of genes harbouring the mediating cis-
CpG probes. The analysis was performed for 115 genes after
excluding the major histocompatibility complex (MHC) region
because of long-range complex LD patterns. The GO analysis
revealed three top gene categories with nominal significance
involved in DNA methylation regulation, including GTPase-
activity related genes (P¼ 0.004, Fisher’s exact test), genes
regulating transcription (P¼ 0.02) and genetic imprinting
(P¼ 0.04, Fisher’s exact test, Supplementary Table 2).

Notably, 106 trans SNPs with Po2.5� 10� 10 were associated
with multiple distal CpG probes, suggesting that they are multi-
CpG regulators. In particular, we detected one master regulatory
SNP, rs12933229 located at 16p11.2, in a very large intron of the
NPIPL1 gene, which was associated with the methylation of CpG
sites annotated to five genes on different chromosomes (Fig. 2a,
Supplementary Fig. 2 and Supplementary Table 3). These
associations were partially mediated by a proximal CpG probe
cg06871736. All five trans associations were replicated in TCGA.
The trans associations show a consistent direction, with the ‘C’
allele associated with higher methylation levels. All five regulated
target sites are in CGIs, and three are in gene promoter regions.
We evaluated the association with gene expression for these three
CpG probes, using 28 TCGA histologically normal lung tissue
samples with RNA sequencing data. Based on this limited sample
size, two of the target genes, PABPC4 and STARD3, showed
decreased expression with increased methylation (FDR¼ 10%).

Table 1 | Replication of EAGLE lung meQTLs in TCGA histologically normal tissue samples.

Tissue N All cis associations in EAGLE (34,304
associations, Po4.0� 10� 5)

Strong cis associations in EAGLE (12,083
associations, Po1.0� 10� 10)

All trans associations in EAGLE (585
associations, Po2.5� 10� 10)

Consistent direction FDRo0.05 Consistent direction FDRo0.05 Consistent direction FDRo0.05

Lung 65 32,128 (93.7%) 22,441 (65.4%) 11,250 (99.3%) 11,229 (92.9%) 556 (95.2%) 467 (79.8%)
Breast 87 30,391 (88.6%) 18,762 (54.7%) 11,640 (96.3%) 9,987 (82.7%) 561 (96.1%) 488 (83.4%)
Kidney 142 30,975 (90.3%) 23,984 (70.0%) 11,634 (96.3%) 10,783 (89.2%) 558 (95.5%) 506 (86.4%)

N is the sample size in replication studies.
FDR was calculated based on single-sided P-values.
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Enrichment of meQTLs in DNA regulatory regions. SNPs
associated with complex diseases in genome-wide association
studies (GWAS) or with eQTLs have been reported to be enriched
in ENCODE-annotated regulatory regions24,25. These include
DNaseI hypersensitivity sites, CCTC-binding factor (CTCF)
binding sites and regions enriched in active and repressive
histone modification marks. The large number of meQTLs
detected in our study, both cis and trans, enabled us to
systematically investigate their enrichment in regulatory
regions. We performed enrichment analysis using Chip-Seq
data in small airway epithelial cells (SAEC) from the ENCODE
project for histone marks26, CTCF occupancy27 and DNaseI
hypersensitivity sites28, and histone marks in primary human
alveolar epithelial cells (hAEC) from our own laboratory29.
Compared with the ‘control’ SNP set not associated with the
methylation of CpG sites (with minor allele frequency (MAF) and
CpG probe density matched with meQTL SNPs), the meQTL
SNPs were strongly enriched for sites of CTCF, DNaseI
hypersensitivity and histone marks (H3K4me3, H3K9-14Ac and

H3K36me3) associated with active promoters, enhancers and
active transcription, and to a lesser extent for the repressive mark
H3K27me3 (Table 2). Enrichment of all regulatory regions
became stronger with increasing significance of association, with
the exception of the H3K27me3 repressive mark (Fig. 3). Using
SAEC CTCF ChIP data, we found that meQTL SNPs or
associated SNPs in high LD located within CTCF consensus
sequences can affect allele-specific binding of CTCF (see two
examples in Supplementary Figs 3 and 4).

Lung cancer risk SNPs affect methylation in human lung
tissue. To determine whether the identified meQTLs might
provide functional annotation to the established genetic associ-
ations with lung cancer risks, we examined SNPs in five genomic
regions reported to be associated with lung cancer risk in
GWAS of populations of European ancestry: 15q25.1 (refs 30–32)
(CHRNA5–CHRNA3–CHRNB4), 5p15.33 (refs 20,33,34), 6p21.33
(ref. 33) (BAT3, most strongly associated with squamous cell

SNP Proximal
CpG

G
Full mediation
N=30 

Partial mediation
N=166 

No mediation
N=172 

No cis-meQTL
N=217

0.0%

5.0%

10.0%

15.0%

0.00%

0.20%

0.40%

CGI Non-CGI

T
ra
ns

C
is

T
S

S
1500

T
S

S
200

5′ U
T

R

1st exon

B
ody

3′ U
T

R

A
ll

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Marginal correlation between G and B

P
ar

tia
l c

or
re

la
tio

n 
be

tw
ee

n 
G

 a
nd

 B
co

nd
iti

on
in

g 
on

 p
ro

xi
m

al
 C

pG
−

si
te

 A

Independent association
Partial mediation
Full mediation

STARD3

RBF1

AGA

rs12933229

PABPC4

22212019

18

17

16

15

14

13

12

11

10

9 8

7

6

5

4

3

2

1

SLC35A3

*********************

Distal
CpG

BA

**************

Figure 2 | trans-meQTL structural characteristics. (a) Circos plot for trans-meQTLs. The outer rim shows the log10 P-values Manhattan plots of trans-

meQTL associations. The innermost network depicts spokes between all trans-meQTL SNPs and their target CpG sites. The red spikes show a master

regulatory SNP rs12933229 located at 16p11.2 associated with methylation of CpG sites located in CGIs annotated to five genes. (b) Proportion of CpG

probes detected with cis-meQTLs and trans-meQTLs across gene regions. The asterisks ‘*, **, ***’ indicate t-test Po0.05, 0.01 and 0.0001, respectively, for

the comparison between CGI and non-CGI regions. CGI regions are strongly enriched with trans-meQTLs, while non-CGI regions are enriched with cis-

meQTLs. CpG sites in 30 UTR regions show an opposite trend. (c) The association between a SNP denoted as G and a distal CpG-site B may be mediated

through a proximal CpG-site A. (d) For each trans-association (G, B) pair, the dots show their marginal versus partial correlation coefficients upon

conditioning on the proximal A CpG probes. Analysis was based on 210 samples. Reduction of correlation coefficients by conditioning on A suggests the

magnitude of the mediation effect.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4365

4 NATURE COMMUNICATIONS | 5:3365 | DOI: 10.1038/ncomms4365 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


carcinoma or SQ), 12p13.3 (ref. 35) (RAD52 for SQ) and 9p21.3
(ref. 36) (CDKN2A/CDKN2B, particularly for SQ). The GWAS
SNPs at 15q25.1 were reported to be associated with total
expression levels and multiple isoforms of CHRNA5 in normal
lung tissue samples37,38. The GWAS SNPs at the other four loci
have not been reported to be associated with the total expression
of nearby genes. Consistently, we did not observe an association
in RNA-seq data from TCGA lung normal tissue samples
(n¼ 59), although a detailed investigation of alternative
promoters, splice sites and allele-specific gene expression in
larger studies is warranted. Here we investigated whether these
SNPs contributed to lung cancer risk with epigenetic regulation
by examining their associations with DNA methylation levels.

The top GWAS SNPs located at 15q25.1, 5p15.33, 6p21.33 and
12p13.3 were all strongly associated with the methylation of the
nearby CpG probes and the associations were replicated in TCGA
lung data (Fig. 4). Importantly, five of the six GWAS SNPs at
these loci, excluding the RAD52 locus, were also the SNPs with
the strongest association with the corresponding CpG probes. For
the cg22937753 probe located in the RAD52 locus, another SNP,
rs724709, with weak correlation with the GWAS SNP (r2¼ 0.1)
had the strongest association with meQTL. All involved CpG sites
are located within gene bodies (which may affect gene splicing39)
or the 30UTR regions. No meQTL was detected for 9p21.3
(Supplementary Fig. 5), possibly because of fewer CpG
dinucleotide probes available in this gene region on the
Illumina platform. The location of these lung cancer GWAS-
associated CpG sites might identify which genes within the
relevant regions are more likely associated with the risk SNPs,
something that is particularly important for regions with complex
LD structure, as the MHC region on 6p21. In MHC, two GWAS

SNPs in complete LD (r2¼ 1), rs3117582 (BAT3) and rs3131379
(MSH5), were most strongly associated with the methylation of
CpG sites located nearby of MSH5 (involved in DNA mismatch
repair and meiotic recombination process), suggesting that MSH5
(P¼ 5.4� 10� 13, t-test) is more likely to be involved in lung
carcinogenesis than BAT3 (P¼ 8.8� 10� 5, t-test) or that the
SNP closer to MSH5 (rs3131379) is more likely to be the SNP
most responsible of the GWAS association with lung cancer risk
(Fig. 4b). Our meQTL data also show that rs3131379 trans-
regulated the methylation level of CpG probe cg12093005, located
in the body of FBRSL1 at 12q24 (PEAGLE¼ 4.0� 10� 9,
PTCGA¼ 7.2� 10� 4 and Pcombined¼ 5. 4� 10� 11, t-test). Thus,
this known GWAS locus might affect lung cancer risk through a
gene located on a different chromosome.

Of note, on the 15q25.1 locus, two independent lung cancer
risk SNPs, rs2036534 and rs1051730, were associated with CpG
probes not linked with CHRNA5 expression. In Supplementary
Fig. 6, we show that the two SNPs jointly regulated another
methylation probe cg22563815 within the CHRNA5 promoter,
which is associated with CHRNA5 expression. This extends and
further confirms the complex regulatory pattern with multiple
SNPs previously observed for this locus35.

Most subjects in the analyses were smokers (n¼ 206).
Adjustment for smoking status (former and current) or intensity
(pack/years) did not change the results.

cis-meQTLs are enriched in lung SQ risk. We investigated
whether the identified cis-meQTL SNPs were enriched in the
National Cancer Institute (NCI) lung cancer GWAS including
5,739 cases and 5,848 controls of European ancestry19. To focus

Table 2 | Chromatin marks are enriched on meQTL SNPs.

Cell line Mark Control proportion (%) cis only trans only cisþ trans

Proportion (%) Fold change Proportion (%) Fold change Proportion (%) Fold change

SAEC CTCF 11.8 35.3 3.0 29.6 2.5 45.4 3.8
DnaseI 25.4 54.0 2.1 45.8 1.8 59.6 2.3
H3K27me3 20.4 34.1 1.7 25.4 1.2 42.9 2.1
H3K4me3 4.8 29.7 6.2 18.0 3.8 39.9 8.3
H3K36m3 13.4 36.8 2.7 22.8 1.7 45.4 3.4

hAEC H3K27me3 17.5 25.3 1.4 15.6 0.9 33.2 1.9
H3K4me3 7.6 37.0 4.9 25.0 3.3 54.9 7.2
H3K9-14Ac 17.3 47.6 2.8 32.3 1.9 65.3 3.8

meQTL SNPs were enriched in chromatin marks, including CTCF binding sites, DNaseI hypersensitive sites and histone marks from SAEC from ENCODE and hAEC from our laboratory. A SNP is
determined to be related with a regulatory region if the SNP or any LD-related SNP (r2

Z0.8) resides in the ChIP-Seq peaks of the regulatory regions. Enrichment for cis-meQTL SNPs without trans effects
(‘cis only’), trans-meQTL SNPs without cis effects (‘trans only’) and SNPs with both trans and cis effects (‘cisþ trans’). The baseline proportion (control set) was calculated based on SNPs not associated
with meQTLs and with minor allele frequencies and local CpG probe-density matching to the meQTL SNPs. The fold changes were calculated using the control set as baseline.
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Figure 3 | Chromatin marks are increasingly enriched on meQTL SNPs with larger effect sizes. (a) We split cis-meQTL SNPs into five categories

according to the meQTL association strength (P410� 7, 10� 74P410� 10, 10� 104P410� 15, 10� 154P410� 20 and Po10� 20). A SNP is determined

to be related with a regulatory region if the SNP or any LD-related SNP (r2
Z0.8) resides in the ChIP-Seq peaks of the regulatory regions. Regulatory

elements include CTCF-binding sites, DNaseI hypersensitive sites and histone marks from SAEC from ENCODE and hAEC from our laboratory. For

each P-value category, we calculated the proportions of cis-meQTL SNPs related with regulatory regions. The figures show that the proportions of

cis-meQTL SNPs related with regulatory regions increase with the significance of meQTL associations except for the repressive mark H3K27me3.
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on potentially new genetic risk associations, we excluded the top
lung cancer GWAS SNPs mentioned above and their surrounding
regions. We tested the enrichment by examining whether the
GWAS P-values for the LD-pruned cis-meQTL SNPs deviated
from the uniform distribution, that is, no enrichment. When all
cis-meQTL SNPs were analysed together, we detected a strong
enrichment for overall lung cancer risk (Po10� 4, based on
10,000 permutations), which was primarily driven by the
enrichment in SQ (Po10� 4, based on 10,000 permutations)
(Fig. 5a). The genomic control l values based on genome-wide
SNPs showed that the type-I error rates of our enrichment test
were not inflated (l¼ 1.01 and 1.00, for overall lung cancer
and SQ, respectively). Stratified analyses further refined the
enrichment to the cis-meQTL SNPs regulating CpG sites
mapping to north shore (Fig. 5b) and gene body (Fig. 5c)
regions (see Supplementary Fig. 7 for the quantile–quantile plot).
These gene bodies and north shores were enriched for genes
involved in cancer pathways (P¼ 2.5� 10� 4, Fisher’s exact test),
and particularly those in NSCLC pathway (for example, AKT1,
MAPK1, RASSF5, and so on, Supplementary Table 4). In contrast,
cis-meQTLs related with CGI regions or promoters were not
enriched with the risk of overall lung cancer or any lung cancer
subtype, further emphasizing the need to comprehensively study
the methylome to identify functional mechanisms for GWAS
findings and identify new genetic loci.

As the meQTL SNPs affecting CpG sites in gene body/non-
CGI regions were mostly enriched for SQ risk (Fig. 5d), we
performed further analysis in this category by integrating the
ENCODE SAEC data. We chose SAEC data because this cell type
may be involved in SQ development. We restricted enrichment
analysis to the ‘regulatory’ meQTL SNPs, which localized in the
CTCF binding regions, DNaseI hypersensitive sites or histone
marks (H3K27me3, H3K4me3 and H3K36me3) or had at least
one LD SNP (r2

Z0.95) residing in these regions. The strong
enrichment in SQ was driven by SNPs overlapping with CTCF

binding sites (Po10� 4, based on 10,000 permutations) or the
repressive mark H3K27me3 (Po10� 4, based on 10,000 per-
mutations) (Fig. 5e). The enrichment test was not significant after
excluding the SNPs overlapping with these regulatory regions
(P¼ 0.14, based on 10,000 permutations).

Replication of meQTLs in TCGA breast and kidney tissues. To
explore the tissue specificity of the genetic effects on DNA
methylation, we examined whether the meQTLs detected in
EAGLE lung tissue data could be replicated in TCGA breast
(n¼ 87) or kidney (n¼ 142) histologically normal tissue samples,
the only two organs to date with data available for a large number
of normal tissues of European ancestry. Results are provided in
Table 1 and Supplementary Fig. 8. For both cis- and trans-
meQTLs, a large proportion of associations had the same direc-
tion of EAGLE meQTLs in both breast and kidney samples. For
cis associations, 54.7 and 70.0% were replicated with FDR¼ 5%
based on single-sided P-values in two data sets, respectively. For
the strong cis associations with Po10� 10 in EAGLE, the repli-
cation rates increased to 82.7 and 89.2% in the two data sets.
For trans associations, 83.4 and 86.4% were replicated in breast
and kidney samples, respectively. The detected master regulator
(Fig. 2a) was strongly replicated in both data sets (Supplementary
Table 3). Interestingly, some cis-meQTLs, but not trans-meQTLs,
had an opposite but very strong association (Po10� 6) in breast
(n¼ 7) or kidney (n¼ 58) compared with the EAGLE lung data, a
phenomenon previously reported in a cell type-specific eQTL
study40.

Discussion
We found that inherited genetic variation profoundly and
extensively impacts DNA methylation in target organs. Based
on high-density methylation arrays in a large sample size, we
identified 34,304 cis-meQTLs and 585 trans-meQTLs, one to two
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orders of magnitude larger compared with previous studies3–5,7.
meQTLs involved nearly half of the autosomal genes, of which
9,330 in cis and 373 in trans, with 9,525 unique genes in total. We
show that B10% of the cis-meQTLs were affected by at least two
SNPs independently. Moreover, we detected a master regulator
SNP associated with the methylation levels of five CpG probes on
different chromosomes, demonstrating the existence of regulatory
hotspots for DNA methylation, as previously shown for
eQTL41,42. Most meQTLs were replicated in independent
histologically normal lung tissue samples from TCGA. We also
showed a high similarity of genetic control on DNA methylation
across different tissues. Our findings show that genetic effects on
DNA methylation are extensive in scale and complex in structure
across the whole genome and suggest a series of important
biological implications.

First, our results show that the genomic architecture surround-
ing cis- and trans-meQTLs is distinct. cis-meQTLs are very large
in number, impact predominantly the CpG sites mapping to
non-gene regions, and when they occur in genes, are mostly in
non-promoter and non-CpG island regions. In contrast, trans-
meQTLs are rarer, mainly affect promoter CGI regions, and may
be associated with distal CpG sites through the mediation effect of
proximal CpG sites.

We found preliminary evidence that the cis-CpG sites
mediating the trans-meQTL associations were enriched for genes
involved in methylation regulation, such as genes encoding for

GTPase or proteins involved in genetic imprinting. GTPase-
related gene pathways appear to modulate expression of DNA
methyltransferases43. Methylation-induced expression changes of
these genes may result in further methylation changes of other
genes (that is, in trans). Moreover, a noncoding RNA within the
intron of KCNQ1, a key gene regulating genetic imprinting, can
influence chromatin three-dimensional (3D) structure via a
protein complex including DNA methyltransferase proteins44,45.
These findings suggest intricate mechanisms for trans-regulating
effects through proximal methylation.

cis-meQTLs may affect cancer risk. To understand the
functional consequences of GWAS loci is challenging and
multiple principles for post-GWAS’ functional characterization
of genetic loci have been proposed, including the exploration of
epigenetic mechanisms46. In our study, the top GWAS lung
cancer loci were strongly associated with methylation levels of
CpG sites in nearby gene bodies through cis-regulation, and
adjusting for smoking status or intensity did not change the
results. Furthermore, SNPs affecting the DNA methylation of
gene bodies (which are typically methylated) were also collectively
associated with the risk for SQ after excluding the established
GWAS loci, and were enriched for genes in cancer pathways.
In contrast, no enrichment was observed for SNPs affecting the
methylation of gene promoters or CGI regions, which are
typically not methylated in normal tissues. This suggests a
potential novel mechanism for genetic effects on cancer risk.
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Figure 5 | Enrichment of cis-meQTL SNPs for lung cancer risk. Analysis based on NCI lung cancer GWAS data (5,739 cases and 5,848 controls).

P-values were produced based on 10,000 permutations. AD, SQ and SC represent adenocarcinoma, squamous cell carcinoma and small cell carcinoma.

(a) Enrichment was tested using all cis-meQTL SNPs after LD pruning. (b,c) Strong enrichments were observed for cis-meQTL SNP associated with

CpG probes annotated to north shores (b) and gene body (c) regions for SQ. (d) The enrichment in (c) was driven by the cis-meQTLs SNPs impacting

CpG probes in non-CpG islands. (e) The enrichment in (d) is driven by the SNPs (or their LD SNPs with r240.95) overlapping with CTCF binding sites

or H3K27me3 mark regions.
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In fact, gene body-enriched cis-meQTLs outside CGI regions may
increase the risk for germline and somatic mutations due to their
increased propensity to become mutated11,12. Upon spontaneous
hydrolytic deamination, methylated cytosine residues turn into
thymine, which are less likely to be efficiently repaired than the
uracils that result from deamination of unmethylated cytosine
residues. For example, B25% of mutations in TP53 in cancers are
thought to be due to epigenetic effects47. Indeed, analyses of
comprehensive human catalogues of lung tumours have identified
frequent G4T mutations enriched for CpG dinucleotides outside
CGI regions, suggesting a role for methylated cytosine since CGI,
as we confirmed, are usually unmethylated48. A similar signature
was recently observed in other tumours14. Thus, inherited genetic
variation may have a profound impact on carcinogenesis by
regulating the human methylome.

We observed a high similarity of genetic control on DNA
methylation across tissues. Since tissue of origin determines
cancer-associated CpG island promoter hypermethylation
patterns49, a natural question is whether the genetic regulation
of methylation is tissue-specific. While the tissue specificity of
eQTLs has been investigated for a few tissues50, for cis-meQTL
only a recent investigation was conducted6, showing that 35.7% of
88,751 cis-meQTLs detected in 662 adipose samples were
replicated in B200 whole-blood samples. We found that a
large proportion of meQTLs in EAGLE lung samples, particularly
those with large effect sizes, were robustly replicated in breast and
kidney tissue samples from TCGA, suggesting a high similarity of
genetic regulation of methylation across these tissues and related
impact on somatic mutation rates14,48. The lower replication rate
of adipose meQTLs in whole-blood samples6 might be explained
by the heterogeneity of different cell types in whole blood and by
their more liberal P-value threshold (8.6� 10� 4), which led to
the identification of a large number of weak cis-meQTLs.

Compared with cis-regulation, trans-eQTL regulation is
typically considered to be more complex, has smaller effect sizes
and is more difficult to be replicated even in the same tissue.
However, in our study the lung trans-meQTLs are highly
reproducible in TCGA lung, breast and kidney tissues. Notably,
this similarity allows mapping meQTLs with substantially
improved power by borrowing strength across tissues51.

meQTL SNPs are strongly associated with multiple epigenetic
marks. Chromatin regulators play a role in maintaining genomic
integrity and organization52. We found that meQTL SNPs were
strongly enriched for DNase hypersensitive sites, and sequences
bound by CTCF or modified histones. SNPs could affect these
epigenetic marks by several mechanisms, such as by affecting
the core recognition sequences (exemplified for rs2816057 on
chromosome 1 for CTCF), causing loss or gain of a CpG within a
binding region, which, when methylated, could affect binding27,
or altering the binding sequence for interacting factors53.

CTCF could cause changes in epigenetic marks through its
multiple key roles, including genome organization through
mediating intra- and inter-chromosomal contacts54,55, the
regulation of transcription by binding between enhancers and
promoters54,56, and the regulation of splicing, which may impact
tissue specificity during tissue development39. These changes can
impact regulation of distant genes, and not the genes proximal to
the SNPs that would be typically investigated in eQTL studies.
This may be one reason for the previously observed lack of
correlation between eQTLs and meQTLs3,4,7. Future large studies
integrating SNP profiles, the DNA methylome and transcriptome
data through tissue developmental stages will hopefully shed light
on this possibility.

There may be a myriad of other DNA-binding factors whose
binding is directly or indirectly affected by SNPs. For example,
among the histone marks, the strongest enrichment of meQTLs

in our study was for H3K4me3 in both SAEC and hAEC cell
types. As H3K4me3 is the chromatin mark primarily associated
with regulatory elements at promoters, this suggests a strong
influence of meQTLs on regulating gene activity. Unfortunately,
transcription factor binding data in SAEC or hAEC are not
available, so we could not test whether SNPs in their core
sequence could affect the deposition of epigenetic marks, for
example, by recruiting DNA methyltransferases57. It will be
important to obtain ChIP data from relevant primary cells for
numerous DNA-binding regulatory factors to further elucidate
the mechanisms whereby meQTLs and other SNP-affected
epigenetic marks arise.

In conclusion, we show here that genetic variation has a
profound impact on the DNA methylome with implications for
cancer risk, tissue specificity, and chromatin structure and
organization. The meQTL data (Supplementary Data 1 and 2)
attached to this manuscript provide an important resource for
studying genetic–DNA methylation interactions in lung tissue.

Methods
Sample collection. We assayed 244 fresh-frozen paired tumour and non-involved
lung tissue samples from Stage I to IIIA non-small cell lung cancer (NSCLC) cases
from the EAGLE study18. EAGLE includes 2,100 incident lung cancer cases and
2,120 population controls enrolled in 2002–2005 within 216 municipalities of the
Lombardy region of Italy. Cases were newly diagnosed primary cancers of lung,
trachea and bronchus, verified by tissue pathology (67.0%), cytology (28.0%) or
review of clinical records (5.0%). They were 35–79 years of age at diagnosis and
were recruited from 13 hospitals that cover 480% of the lung cancer cases from
the study area. The study was approved by local and NCI Institutional Review
Boards, and all participants signed an informed consent form. Lung tissue samples
were snap-frozen in liquid nitrogen within 20 min of surgical resection. Surgeons
and pathologists were together in the surgery room at the time of resection and
sample collection to ensure correct sampling of tissue from the tumour, the area
adjacent to the tumour and an additional area distant from the tumour (1–5 cm).
The precise site of tissue sampling was indicated on a lung drawing and the
pathologists classified the samples as tumour, adjacent lung tissue and distant
non-involved lung tissue. For the current study, we used lung tissue sampled
from an area distant from the tumour to reduce the potential effects of field
cancerization.

DNA methylation profiling and data quality control. Fresh-frozen lung tissue
samples remained frozen while B30 mg was subsampled for DNA extraction
into pre-chilled 2.0 ml microcentrifuge tubes. Lysates for DNA extraction were
generated by incubating 30 mg of tissue in 1 ml of 0.2 mg ml� 1 Proteinase K
(Ambion) in DNA Lysis Buffer (10 mM Tris–Cl (pH 8.0), 0.1 M EDTA (pH 8.0)
and 0.5% (w/v) SDS) for 24 h at 56 �C with shaking at 850 r.p.m. in Thermomixer R
(Eppendorf). DNA was extracted from the generated lysate using the QIAamp
DNA Blood Maxi Kit (Qiagen) according to the manufacturer’s protocol.
Bisulphite treatment and Illumina Infinium HumanMethylation450 BeadChip
assays were performed by the Southern California Genotyping Consortium at
the University of California Los Angeles (UCLA) following Illumina’s protocols.

This assay generates DNA methylation data for 485,512 cytosine targets
(482,421 CpG and 3091 CpH) and 65 SNP probes for the purpose of data quality
control. Raw methylated and unmethylated intensities were background-corrected,
and dye-bias-equalized, to correct for technical variation in signal between arrays.
For background correction, we applied a normal-exponential convolution, using
the intensity of the Infinium I probes in the channel opposite their design to
measure non-specific signal58. Dye-bias equalization used a global scaling factor
computed from the ratio of the average red and green fluorescing normalization
control probes. Both methods were conducted using the methylumi package in
Bioconductor version 2.11.

For each probe, DNA methylation level is summarized as a b value, estimated as
the fraction of signal intensity obtained from the methylated beads over the total
signal intensity. Probes with detection P-values of 40.05 were considered not
significantly different from background noise and were labelled as missing.
Methylation probes were excluded from meQTL analysis if any of the following
criteria was met: on X/Y chromosome, annotated in repetitive genomic regions,
annotated to harbour SNPs and missing rate 45%. As the b values for the 65 SNP
probes are expected to be similar in matched pair of normal and tumour tissues, we
performed PCA using these 65 SNP probes to confirm the labelled pairs. We then
performed PCA using the 5000 most variable methylation probes with var 40.02
and found that the normal tissues were clustered together and well separated from
the tumour tissues. We further excluded five normal tissues that were relatively
close to the tumour cluster. From the remaining 239 normal tissue samples, we
analysed 210 with genotype data from a previous GWAS of lung cancer20.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4365

8 NATURE COMMUNICATIONS | 5:3365 | DOI: 10.1038/ncomms4365 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Genotype data and genetic association analysis. The blood samples were
genotyped using the Illumina HumanHap550K SNP arrays in EAGLE GWAS20.
The SNPs with call rate 499%, MAF 43% and Hardy–Weinberg equilibrium
P-value 410� 5 were included for analysis. Prior to meQTL analysis, each
methylation trait was regressed against sex, age, batches and PCA scores based on
methylation profiles. The regression residues were then quantile-normalized to the
standard normal distribution N(0,1) as traits. The genetic association testing was
performed using PLINK and R, adjusted for the top three PCA scores based on
GWAS SNPs to control for potential population stratification.

Identification of cis-meQTLs. For each CpG methylation probe, the cis region was
defined as being o500 kb upstream and downstream from the target CpG-site
(1 Mb total). A methylation trait was detected to harbour a cis-meQTL if any SNP
in the cis region had a SNP–CpG nominal association P-value less than P0, where
P0 was chosen to control FDR at 5% by permutations. Here we describe a per-
mutation procedure to choose P0 to control FDR at 5%. For a given P0, let N(P0) be
the total number of CpG probes with detected cis-meQTLs and N0(P0) the expected
number of CpG probes falsely determined to have cis-meQTLs. FDR is defined as
N0(P0)/N(P0). The key is to estimate N0(P0) under the global null hypothesis that
no CpG probe has cis-meQTLs. We randomly permuted the genotypes across
subjects for 100 times, keeping the correlation structure of the 338,456 methylation
traits in each permutation. Then, N0(P0) was estimated as the average number of
methylation traits that were detected to harbour cis-meQTL SNPs with nominal
PoP0. Control FDR at 5% requires P0¼ 4.0� 10� 5. The same procedure was
applied to detect secondary independently associated cis-meQTL SNPs. With our
sample size, h240.12 is required to detect cis-meQTLs with power 40.8.

We note that, although we excluded all CpG probes annotated with SNPs, there
is still the possibility that rare, not annotated variants could be associated with the
cis-meQTL SNPs. However, since common variants and rare variants are known to
be poorly correlated, and rare variants are uncommon by definition, we do not
expect this event to be frequent.

Identification of trans-meQTLs. For each CpG probe, the trans region was
defined as being more than 500 kb from the target CpG site in the same
chromosome or on different chromosomes. For the kth methylation trait with
m SNPs in the trans region, let (qk1,?,qkm) be the P-values for testing the marginal
association between the trait and the m SNPs. Let pk¼min(qk1,?,qkm) be the
minimum P-value for m SNPs and converted pk into genome-wide P-value Pk by
performing one million permutations for SNPs in the trans region. As a cis region
is very short (B1 M) compared with the whole genome (B3,000 M), Pk computed
based on SNPs in trans regions is very close to that based on permutations using
genome-wide SNPs. Thus, we use the genome-wide P-value computed based on all
SNPs to approximate Pk. Furthermore, all quantile-normalized traits follow
the same standard normal distribution N(0,1); thus the permutation-based null
distributions are the same for all traits. We then applied the Benjamini–Hochberg
procedure to (P1,?,PN) to identify trans-meQTLs by controlling FDR at 5%. With
our sample size, h2 40.24 is required to detect trans-meQTLs with power 40.8.

Replication of meQTLs in TCGA samples. The replication was performed in
TCGA histologically normal tissue samples that had genome-wide genotype
(Affymetrix Genome-Wide Human SNP Array 6.0) and methylation profiling
(Illumina Infinium HumanMethylation450 BeadChip). We downloaded genotype
(level 2) and methylation data (level 3) from the TCGA website22. We also
downloaded methylation data for tumour tissue samples and performed PCA
analysis to confirm that normal tissue samples were separated from tumour tissue
samples. Autosomal SNPs with MAF 43%, calling rate 40.99 and Hardy–
Weinberg equilibrium P-value 410� 5 were included for imputation using
IMPUTE2 (ref. 59) and reference haplotypes in the 1,000 Genome Project60

(version 2012/03). We only included samples of European ancestry based on
EIGENSTRAT analysis. The replication set had 65 lung, 87 breast and 142 kidney
histologically normal tissue samples after QC. Again, each methylation trait was
regressed against sex, age, batches and PCA scores based on methylation profiles.
The regression residues were then quantile-normalized to the standard normal
distribution N(0,1) as traits for meQTL analysis. The associations were tested
between the quantile-normalized methylation traits and imputed genotypic
dosages, adjusting for sex, age and PCA scores based on SNPs. A genetic
association detected in EAGLE lung data was considered replicated if the
association had the same direction and FDR o0.05 based on single-sided P-values.

Testing genetic associations with methylation and gene expression traits.
We downloaded gene expression data (level 3) from RNA-seq analysis of 59
histologically normal tissue samples from NSCL patients from TCGA. All samples
also had genome-wide genotype data, and 28 samples had additional methylation
data from Illumina Infinium HumanMethylation450 BeadChips. Regression
analysis was performed to test the association of gene expression with methylation
levels in the CHRNA5 gene and with methylation levels in PABPC4, STARD3 and
SLC35A3 genes. We tested the association between lung cancer GWAS risk SNPs
and gene expression using regression analysis under an additive model, adjusting
for age, sex and PCA scores based on genome-wide SNPs.

Testing for enrichment of cis-meQTLs in lung cancer GWAS. We tested for
enrichment in NCI lung cancer GWAS of European ancestry, which included three
main histologic subtypes of lung cancer (adenocarcinoma (AD), SQ, small cell
carcinoma (SC)) and a small number of other lung cancer subtypes. We investi-
gated whether the identified cis-meQTL SNPs were collectively associated with lung
cancer risk, which was tested by examining whether the GWAS P-values for these
SNPs deviated from the uniform distribution (that is, no enrichment). As the high
LD in SNPs increased variability of the enrichment statistic and caused a loss of
power, we first performed LD pruning using PLINK so that no pair of remaining
SNPs had an r2

Z0.8. The enrichment significance was evaluated by 10,000 random
permutations. The genomic control l values61 based on genome-wide SNPs were
1.01, 0.995, 0.977 and 1.00 for overall lung cancer, AD, SC and SQ, respectively.
Thus, the type-I error rates of our enrichment tests were not inflated. The detailed
procedure for testing a set of cis-meQTL SNPs is described as follows:

First, we performed LD-pruning using PLINK so that no pair of remaining
SNPs had an r2

Z0.8.
Second, we tested the association for the LD-pruned SNPs (assuming K SNPs

left) in a GWAS and computed the P-values (p1,?,pK). We then tested whether
(p1,?,pK) followed a uniform distribution, that is no enrichment.

Third, we transformed P-values into w2
1quantitles qk ¼ F � 1ð1� pkÞ with Fð�Þ

being the cumulative distribution function (CDF) of w2
1. We defined a statistic for

testing enrichment as Q ¼
PK

k¼1 logð1� f þ f expðqk=2ÞÞ35,62, where f is a pre-
specified constant reflecting the expected proportion of SNPs associated with the
disease. As only a small proportion of SNPs may be associated with the disease, we
set f¼ 0.05 for this paper. The statistical power was insensitive to the choice of f in
the range of [0.01, 0.1]62.

Finally, the significance of the test Q was evaluated by 10,000 random
permutations.

meQTL mediation analysis. We investigated whether trans associations were
mediated by the methylation levels of CpG probes nearby the trans-acting SNPs.
Note that this analysis was only for trans associations with cis effects, that is, the
SNP was associated with at least one proximal CpG probes with Po4� 10� 5. See
Fig. 2c.

Suppose an SNP G cis-regulates K proximal (o500 kb) CpG sites A1,?,AK with
Po4� 10� 5 and trans-regulates a distal CpG site B. We performed a linear
regression: BBaþ yG þ lkAk. We also computed marginal correlation coefficient
cor(G,B) and partial correlation coefficient cor(G,B|Ak) using an R package
‘ppcor’63. A full mediation was detected if G and B were not significantly correlated
after conditioning on Ak, or equivalently G was not significant (P40.01) in
regression analysis BBaþ yG þ lkAk for any k. A partial mediation was detected
if any Ak had a Po0.05/K (Bonferroni correction) in the regression analysis
and |cor(G,B)|� | cor(G,B|A) |40.1. An independent effect model (that is,
no mediation) was detected otherwise.

Testing enrichment of meQTL SNPs in regulatory regions. We obtained peak
data for CTCF, DNaseI, H3K27me3, H3K4me3 and H3K36me of SAEC from the
ENCODE project and for H3K27me3, H3K4me3 and H3K9-14Ac from hAEC
from our own laboratory. A SNP is determined to be functionally related to a given
mark or CTCF binding site if the SNP or any of its LD SNPs (r2

Z0.8 with LD
computed using the genotype data of European population in The 1000 Genome
Project) resided in any of the mark regions or CTCF binding sites. We explain our
enrichment testing using CTCF as an example.

We classified genome-wide SNPs into four categories: SNPs not associated with
CpG probes in trans or cis (defined as control SNP set), SNPs only associated with
proximal CpG probes via cis-regulation (cis-only, 21,119 SNPs), SNPs only
associated with distal CpG probes via trans-regulation (trans-only, 192 SNPs) and
SNPs detected with both trans and cis effects (cisþ trans, 277 SNPs). For SNPs in
the category of cis-only, trans-only and cisþ trans, we computed the proportion of
SNPs functionally related to CTCF.

To compute the enrichment of cis-meQTLs in CTCF binding sites, we defined a
control set of SNPs that are not associated with CpG probes via cis- or trans
regulation. The selection of the control set was further complicated by the following
two observations. (1) cis-meQTL SNPs tended to be more common (data now
shown). (2) The probability of a SNP detected as a cis-meQTL SNP positively
depended on the density of the CpG probes in the nearby region. Choosing a
control set while ignoring these two factors could underestimate the proportion of
functionally related SNPs in the control set and thus overestimate the enrichment
for cis-meQTLs. Therefore, we created 1,000 sets of control SNPs with CpG probe
density (measured as the number of CpG probes in the cis region of each SNP) and
MAF matched with the meQTL SNP set, and then averaged the proportions on the
1,000 sets. The enrichment was calculated as the fold change with the proportion in
the control SNP set as baseline.

Next, we investigated whether the enrichment was stronger for SNPs more
significantly associated with CpG sites. As we detected only a few hundred
trans-meQTLs, we focused this analysis on the set of cis-meQTLs. We classified
cis-meQTL SNPs into five categories according to the cis-association P-values:
P410� 7 (the weakest), 10� 10oPr10� 7, 10� 15oPr10� 10, 10� 20oPr10� 15

and Pr10� 20 (the strongest). For each category, we computed the proportion of
SNPs functionally related to CTCF-binding sites.
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meQTL SNPs affect CTCF binding. We found that meQTL SNPs are strongly
enriched in CTCF consensus sequences. We used SAEC data from ENCODE to test
whether meQTL heterozygous SNPs directly affect CTCF binding by disrupting the
CTCF recognition sites. P-values were calculated based on a binomial distribution
Binom(N, 0.5). Here N is the total number reads covering the SNPs. Raw
sequencing data (.fasstq format) from SAEC cells were generated at the University
of Washington as part of the ENCODE project and downloaded from the UCSC
genome browser. Raw data was aligned to the hg19 genome using CLC genomics
workbench (v 5.5.1), parsing out data with o80% contiguous alignment to the
genome and duplicate reads in excess of 10 copies. We used the CTCFBSDB 2.0
programme64 to predict whether the meQTL SNPs or their LD SNPs (r2

Z0.8)
were within CTCF peaks and then examined in SAEC whether CTCF exhibited
allele-specific binding. As common SNPs are more likely to be heterozygous, we
only looked for SNPs with MAF Z0.4. Here we present two such examples.
Systematic investigation of all meQTL SNPs that are heterozygous in SAEC is
warranted once more samples with genotypic data are available.
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