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Abstract

Chronic obstructive pulmonary disease (COPD) independently associates with an increased risk of coronary artery disease
(CAD), but it has not been fully investigated whether this co-morbidity involves shared pathophysiological mechanisms. To
identify potential common pathways across the two diseases, we tested all recently published single nucleotide
polymorphisms (SNPs) associated with human lung function (spirometry) for association with carotid intima-media
thickness (cIMT) in 3,378 subjects with multiple CAD risk factors, and for association with CAD in a case-control study of
5,775 CAD cases and 7,265 controls. SNPs rs2865531, located in the CFDP1 gene, and rs9978142, located in the KCNE2 gene,
were significantly associated with CAD. In addition, SNP rs9978142 and SNP rs3995090 located in the HTR4 gene, were
associated with average and maximal cIMT measures. Genetic risk scores combining the most robustly spirometry–
associated SNPs from the literature were modestly associated with CAD, (odds ratio (OR) (95% confidence interval
(CI95) = 1.06 (1.03, 1.09); P-value = 1.561024, per allele). In conclusion, our study suggests that some genetic loci implicated
in determining human lung function also influence cIMT and susceptibility to CAD. The present results should help elucidate
the molecular underpinnings of the co-morbidity observed across COPD and CAD.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a condition

characterised by impaired airflow to the lungs that worsens over

time [1]. The primary risk factor for COPD is long-term exposure

to noxious particles and gases, in particular from cigarette

smoking, which has been shown to trigger inflammation and

abnormal immune responses in the small airways [2]. Local

inflammation in the lung may, in turn, trigger systemic inflam-

matory reactions, such as production of acute-phase proteins in

the liver, with potential adverse consequences for non-respiratory

organs [3]. The incidence proportion of COPD of any severity

grade in smokers reported by observational studies ranges between

15%–40%. The corresponding rates in non-smokers are 8%–15%

[4,5]. As not all smokers contract COPD, it is believed that

susceptibility to COPD is highly variable between individuals, and

that some of the variability may be explained by genetics,

environment and lifestyle, and interactions between these factors

[6].

In pulmonary function testing with spirometry, a reduced

postbronchodilator FEV1/FVC ratio indicates the presence of

airflow limitation and is required for the diagnosis of COPD. To

study the genetic component of COPD, genome-wide association

(GWA) studies have attempted to identify genetic determinants of

human lung function in healthy subjects, using spirometry data on

Forced Expiratory Volume in one second (FEV)1 and its ratio to

Forced Vital Capacity (FVC) (FEV1/FVC). To date, a total of 26

genetic loci for human lung function have been identified, some of

which also seem to be associated with COPD susceptibility, such

as the loci at TNS1, RARB, FAM13A, GSTCD, HHIP,

ADAM19, HTR4, AGER, GPR126, C10orf11 and THSD4
[7,8,9,10,11].

Multiple studies have reported that cardiovascular disease

(CVD), including coronary artery disease (CAD), congestive heart

failure, stroke and peripheral arterial disease, is a major

contributor to mortality and morbidity in COPD. A recent

meta-analysis sought to quantify the CVD risk in COPD using

literature data, and observed a 2–5 fold increased CVD risk in

patients with COPD compared with age- and sex-matched

controls without COPD [12]. The difference persisted after

adjustment for known risk factors. Amongst several possible

explanations for the strong co-morbidity is that COPD and CAD

not only progress in parallel, but also share some common

etiologically relevant biological pathways, involving e.g. oxidative

stress, matrix remodelling and innate and adaptive immune

responses. In the present study, we sought to address this

hypothesis by testing genetic loci for spirometric measures as

determinants for carotid intima-media thickness (cIMT) and

susceptibility to CAD.

Methods

SNP selection
Single nucleotide polymorphisms (SNPs) attaining genome-wide

significance in four recent GWA studies for either FEV1 or the

ratio of FEV1 to FVC [13,14,15,16] were selected for cross-

reference analysis with CAD susceptibility and cIMT. In

particular, we selected 26 lead SNPs, representing 26 loci robustly

associated with spirometry measures, through a literature search

(Table 1).

Association with cIMT measures
The database and biobank of a large, multicenter, European

prospective cohort study (acronym: IMPROVE (Carotid Intima

Media Thickness (IMT) and IMT-PRogression as Predictors of

Vascular Events in a High-Risk European Population) was used

for studying SNP associations with various cIMT measures. The

IMPROVE study was set up for the study of cIMT measures as

predictors of incident coronary events, and enrolled 3,711 subjects

with at least three independent CAD risk factors. Detailed

descriptions of IMPROVE, including the protocols for carotid

ultrasound measures have been reported [17,18]. In the present

study, a total of 3,378 subjects were available for the genetic

association analyses, which included the mean and maximum

IMT of a common carotid segment excluding the first cm

proximal to the bifurcation (CC-IMTmean and CC-IMTmax), mean

and maximum IMT in the internal carotid arteries (ICA-IMTmean

and ICA-IMTmax), and the mean and maximum IMT of the

bifurcation (Bif-IMTmean and Bif-IMTmax). Composite IMT

variables considering the whole carotid tree, derived from the

segment-specific measurements (IMTmean, IMTmax, and IMTmean-

max (the average of IMT maxima recorded at the different

segments)) were also tested for association.

Six of the SNPs had previously been genotyped on the Illumina

CardioMetabochip array. The CardioMetabochip interrogates

<200,000 SNPs located in regions identified by previous GWA

studies of metabolic and cardiovascular traits and diseases. For

eight of the lead SNPs, we selected proxy SNPs (r2$0.85) that

were present on the CardioMetabochip array. Proxies were

selected using SNAP software [19] using 1000 genomes pilot 1

CEU samples as reference. The remaining 12 SNPs were

genotyped with TaqMan probes from Applied Biosystems. Quality

control procedures for the CardioMetabochip array in IMPROVE

have been described [20].

We performed linear regression analyses between the 26 lung

function-associated SNPs and different cIMT measures using

PLINK (v1.07) [21], assuming an additive genetic model and

adjusting for age, gender, body-mass index and the first 3

multidimensional scaling (MDS) dimensions to account for

population stratification (based on CardioMetabochip genotype

data, see details in [20]). All cIMT variables were logarithmically

transformed before statistical analysis because of skewed distribu-

tions. All P-values were Bonferroni-corrected (statistical signifi-

cance set at a P-value#0.00192).

Replication
Replication of the rs3995090 association with cIMT measures

was pursued in the Rotterdam Study (RSI and RSII) and in the

Malmö Diet and Cancer Cohort (MDCC). A description of the

samples used for all analyses is included in Section S1. Only

measures of CC-IMTmean were available in all replication cohorts.

In addition, CC-IMTmax measures were available for RSI and

RSII. Results from the three replication cohorts were meta-

analyzed by using an inverse-variance model with fixed effects as

implemented in METAL [22]. Statistical significance for this SNP

was set at a P-value#0.05.

Association with CAD
We also sought association in silico of the 26 lung function

SNPs with CAD in 5,775 CAD cases and 7,265 controls using

GWA data from the PROCARDIS [23] and Wellcome Trust

Case Control Consortium (WTCCC) collections [24]. Association

was tested by logistic regression analysis assuming an additive

model and adjusting for age, gender, and country using STATA

version 11 ( StataCorp LP, College Station, TX, USA). Since

PROCARDIS contains related individuals (see Section S1),

relatedness was taken into account by setting families as clusters.
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All P-values were Bonferroni-corrected (statistical significance set

at a P-value#0.00192).

Association with Gene Expression
SNP rs3995090 was further analyzed, first with respect to its

association with expression levels of HTR4, and then in relation to

the level of expression of adjacent genes (located within 6500

kilobases (kb) of HTR4) in a secondary extended search, using

data from the Advanced Study of Aortic Pathology (ASAP) and

Biobank of Karolinska Endarterectomies (BiKE) data sets [25]. In

the ASAP study, mRNA was extracted from biopsies of ascending

thoracic aorta intima-media (n = 138), aortic adventitia (n = 133),

mammary artery (n = 89), heart (n = 127), and liver (n = 211) from

patients undergoing aortic valve surgery. In the BiKE study, RNA

was extracted from human plaque tissue (n = 126) and peripheral

blood mononuclear cells (n = 96) from patients referred for surgical

treatment of severe carotid artery stenosis. Associations between

SNP genotype and gene expression level were examined using

additive linear models. Rs3995090 was genotyped in both studies

with the Illumina 610w-Quad BeadArray.

Genetic Risk Scores
We calculated weighted and unweighted genetic risk scores

(GRS) based on the significant SNPs from the FEV1/FVC and

FEV1 GWAs in the literature and used it as a continuous predictor

in logistic/linear regression models with CAD and cIMT-related

phenotypes. Unweighted GRS were built considering the number

of risk alleles, while weighted GRS were built considering the

number of risk alleles weighting them for the beta values reported

in literature. Specifically, the GRS for FEV1/FVC was built on the

following SNPs and beta values (in brackets) derived from

[13,14,15,16]: rs153916 (0.031), rs2277027 (0.045), rs12447804

(0.038), rs2857595 (0.037), rs2070600 (0.088), rs2869967 (0.035),

rs11172113 (0.032), rs12477314 (0.041), rs1690989 (0.059),

rs3817928 (0.05), rs2865531 (0.031), rs7068966 (0.033),

rs2284746 (0.04), rs9978142 (0.043), rs993925 (0.034),

rs1036429 (0.037), rs12899618 (0.06), rs1529672 (0.048),

rs12504628 (0.077) and rs2798641 (0.041). The GRS for FEV1

was built on the following SNPs and beta values: rs2571445

(0.035), rs6903823 (0.037), rs10516526 (0.089), rs3995090 (0.038),

rs11001819 (0.029), rs1344555 (0.034) and rs7068966 (0.029).

Figure S1 shows the frequencies of the number of risk alleles used

to calculate unweighted GRS within PROCARDIS and IM-

PROVE cohorts. Since weighted GRS result from the product of

the number of risk alleles and their effect size, the resulting units

are arbitrary. For the sake of clarity, weighted GRS were divided

in intervals representing total number of possible risk alleles to be

comparable to the ‘‘increased OR per risk allele’’ that was

calculated for the unweighted scores.

Results

Associations with cIMT-related measures
We tested the association between the 26 selected SNPs (or good

proxies) and the different cIMT-associated phenotypes. After

adjustment for age, gender and the first three MDS, a SNP located

in the HTR4 gene (rs3995090) and a proxy for rs2865531 (located

in CFDP1) were found to be consistently associated with several of

the cIMT-associated phenotypes (Table 2, Table S1). The

strongest associations were observed with IMTmean (rs3995090)

and IMTmean-max (rs2865531), both composite cIMT variables

considering the whole carotid tree and derived from the segment-

specific measurements. There was very little change in association
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after further adjustment for smoking (pack-years) (data not shown).

Results stratified by smoking-status are shown in Tables S2–S3.

A regional look-up to assess the association between other SNPs

located in the HTR4 gene (rs10077690, rs17720191, rs11168048,

rs10061244, rs13359903, rs2278392, rs1422636, rs4336354,

rs1833710, rs7700268 and rs888961) did not uncover any other

significant cIMT association within this gene.

Associations were also investigated under a model where all

established CAD risk factors were included, using a stepwise model

in SPSS (using log-transformed IMTmean as phenotype). Altogeth-

er, systolic blood pressure, diastolic blood pressure, waist-hip ratio,

triglycerides, HDL-cholesterol, and LDL-cholesterol explained

7.5% of the variance in this cIMT phenotype, after adjusting for

MDS1–3, age and sex. After adjustment for all these covariates,

rs3995090 and rs2865531 remained significantly associated with

the cIMT phenotypes (Table S4).

GRS-based analyses using the significant SNPs from the FEV1/

FVC and FEV1 GWAs in literature were not significant for

association with cIMT phenotypes (Table S5).

Association with CAD
The minor allele of the SNP located in the CFDP1 gene

(rs2865531T) was associated with a lower risk of CAD

(OR(CI95) = 0.85(0.79–0.92); P-value = 5.3661025). The minor

allele of the SNP located in KCNE2 (rs9978142T) was associated

with increased risk of CAD (OR(CI95) = 1.22 (1.10, 1.35); P-

value = 1.2361024). In addition, the GRS assessing the global

effect of all the 7 FEV1–robustly associated SNPs from the 4

previous GWAs in literature showed a moderate effect but

significant association with CAD risk, OR(CI95) for weighted

score = 1.05 (1.02, 1.08); P-value = 0.002; OR(CI95) for unweight-

ed score = 1.06 (1.03, 1.09); P-value = 1.561024 per allele).

The GRS assessing the global effect of the 20 FEV1/FVC-

robustly associated SNPs from the 4 previous GWAs in literature

did not prove to be significantly associated with CAD. Association

results for all SNPs is shown in Table S6.

Replication
Among the two spirometry SNPs that showed significant

associations with cIMT measures, rs2865531 has been previously

reported as a determinant of cIMT and CAD risk [20]. Likewise,

the associations between rs9978142 and rs2865533 and CAD

susceptibility were previously established in a large case-control

study of CAD [26]; hence, replication was not pursued.

Therefore, we concentrated further replication efforts on SNP

rs3995090. Replication of rs3995090 was sought in a total of

12,803 individuals with CC-IMTmean and in 6,679 individuals

with CC-IMTmax measures. The rs3995090A allele was associated

with increased CC-IMTmax (beta = 0.006, P-value = 0.044).

Association with gene expression
Expression levels of HTR4 in the heart and vessel wall tissues

were lower than average (below the 30% percentile of all genes). In

peripheral blood mononuclear cells and carotid plaque, the gene

was expressed at the 60% percentile of all genes. SNP rs3995090

was not associated with mRNA expression levels of HTR4 in any

of the tissues tested in the ASAP and BiKE studies, although a

trend was observed in aortic adventitia at P = 0.0826. In a further

expanded search including other neighbouring genes (6500 Kb),

rs3995090 was not associated with mRNA levels of other

neighbouring genes, after multiple-testing correction for 7 genes

in 7 data sets (Table S7).

Discussion

COPD is the fourth largest cause of death worldwide [27]. Co-

morbidities between COPD and other common complex diseases

such as CAD may suggest that shared genetic and/or environ-

mental risk factors exist. Several epidemiologic studies have

suggested before that CAD is a major contributor to mortality and

morbidity in COPD, and that the association between COPD

measures and CAD goes beyond the fact that both diseases share

common environmental risk factors, such as poor diet, sedentary

lifestyle and smoking (reviewed in [28]). Although these studies

cannot demonstrate a causal relationship between COPD and

CAD, strong evidence suggests that the increased systemic

inflammation and oxidative stress associated with COPD contrib-

ute to the increased risk of cardiovascular events, and it is plausible

that multiple other still unknown pathophysiologic pathways may

contribute to the development of both diseases (reviewed in [29]).

In order to explore potential common genetic variants influencing

risk of both COPD and cardiovascular disease, we tested 26 SNPs

with robust association with human lung function for association

with CAD. Since cIMT is considered a robust biomarker for early

atherosclerosis, we also tested these 26 lung function-associated SNPs

with different measures of cIMT. Of note, inverse relationships

between pulmonary function measures adjusted for other risk factors

and cIMT have been found in several studies [30,31,32], indicating

that cIMT may be a robust biomarker for determining cardiovas-

cular morbidity and mortality in COPD [29].

In agreement with our hypothesis that common genetic factors

exist between the COPD and CAD, we found two lung function-

associated SNPs (rs2865531, located in the CFDP1 gene and

rs9978142 located in the KCNE2 gene) that were also associated

with CAD, the minor allele being associated with lower

(rs2865531T) risk and increased risk of CAD (rs9978142T),

respectively. In addition, the latter, along with SNP rs3995090

located in the HTR4 gene, showed strong associations with several

cIMT measures. Finally, a GRS, assessing the global effect of all

the 7 FEV1–associated SNPs from the literature, showed an

association with CAD risk. In all, these results indicate that

common genetic pathways may exist between COPD and cIMT

and CAD, and these are probably independent from the most

classical associated factors, such as systolic blood pressure, diastolic

blood pressure, waist-hip ratio, triglycerides, HDL-cholesterol, and

LDL-cholesterol, since further adjustment for these covariates did

not alter the associations found in the present study.

Among the SNPs associated with both diseases, the SNP located

in KNCE2 (rs9982601, proxy for rs973754 (r2 = 0.81)) has

previously been associated with early-onset myocardial infarction

(MI) in a GWA study of 2,967 cases and 3,075 matched controls

(OR(CI95%) = 1.19 (1.13, 1.27), P = 261029) [26]. KNCE2,
located on chromosome 21, codes for a potassium voltage-gated

channel, and mutations in this gene cause inherited arrhythmias

[33]. The rare allele of the SNP located in CFDP1 was recently

found to be associated with higher cIMT measures in a gene-

centric meta-analysis [20]. Interestingly, this SNP was not

associated with expression levels of CFDP1, although a strong

association was found between rs4888378 alleles and expression

levels of a nearby gene (BCAR1), which has been implicated in

cellular adhesion, migration and proliferation/survival of smooth

muscle cells [20,34,35].

Our results for rs3995090, located in the HTR4 region, do not

provide solid evidence of an association with a specific gene. The

SNP is located in HTR4, which is a member of the family of

serotonin receptors. However, expression analyses showed that

there are no allelic-specific differences in the expression of this
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gene by rs3995090 genotype. Other mechanisms might be present

that explain the effect of rs3995090 in HTR4, possibly involving

changes at a protein level. Further studies are needed to elucidate

the role of this SNP.

To the best of our knowledge, this is the first comprehensive

look-up of human lung function robustly-associated loci for

association with CAD and cIMT. Although several epidemiologic

studies have suggested shared pathophysiologic pathways between

both diseases, the present study clearly demonstrates that some

human lung function-associated loci are also associated with CAD

and cIMT. While further functional studies are warranted to

elucidate the role of these genes in the pathophysiology of COPD

and CAD, the overall findings made in this and previous studies

suggest that there are some shared genetic pathways involved in

airway obstruction and cardiovascular risk. This notion opens new

interesting perspectives in understanding the co-morbidity of two

important, common complex diseases.
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