
JTabWb: a Java framework for implementing
terminating sequent and tableau calculi

Mauro Ferrari1, Camillo Fiorentini2, Guido Fiorino3

1 DiSTA, Univ. degli Studi dell’Insubria, Via Mazzini, 5, 21100, Varese, Italy
2 DI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

3 DISCO, Univ. degli Studi di Milano-Bicocca, Viale Sarca, 336, 20126, Milano, Italy

Abstract. JTabWb is a Java framework for developing provers based
on terminating sequent or tableau calculi. It provides a generic engine
which performs proof-search driven by a user-defined specification. The
user is required to define the components of a prover by implementing
suitable Java interfaces. The implemented provers can be used as stan-
dalone applications or embedded in other Java applications. The frame-
work also supports proof-trace generation, LATEX rendering of proofs and
counter-model generation.

1 Introduction

JTabWb is a Java framework for developing provers based on terminating se-
quent or tableau calculi. The project originated as a tool for experimenting and
comparing on the same ground different calculi and proof-search strategies for
intuitionistic propositional logic. Now it is an advanced general framework which
can be used to implement different logics and calculi. It can be used either to
implement provers as stand-alone Java applications or as APIs to be integrated
in other Java applications. Differently from other frameworks like [1, 4, 5], in
JTabWb the user can specify all the components of a prover including: formu-
las, proof-search nodes, rules and strategies. This allows one to easily implement
provers for different logics and different calculi (sequent-style or tableau-style
calculi). Its main limitation is that all the components are provided as Java
classes, hence the user is expected to be experienced with the language. The
object oriented nature of the target language and the compositionality of the
framework supports the reuse of the components of a prover. This allows one to
easily develop different variants of a prover, so to compare different implemen-
tations of data structures (formulas, sequents,. . .) and different strategies. The
framework also provides support for generation of proof-traces (histories of proof-
search), LATEX rendering of proofs and counter-model generation. JTabWb and
some provers for intuitionistic propositional logic implemented in it are available
at http://www.dista.uninsubria.it/~ferram.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187923916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concept Interface Main methods

Formula AbstractFormula String format()

Node-set AbstractNodeSet String format()

Strategy Strategy AbstractRule nextRule(AbstractNodeSet,

IterationInfo)

Prover Prover Strategy getStrategy()

Engine Engine Engine(Prover, AbstractNodeSet)

ProofSearchResult searchProof()

Rules supertype AbstractRule String name()

Regular rule
σ

R
σ1| . . . |σn

RegularRule int numberOfConclusions()

AbstractFormula mainFormula()

Iterator< AbstractNodeSet> iterator()

Clash-detection rule
A function associating with
any node-set a value in
{SUCCESS,FAILURE}

ClashDetectionRule ProofSearchResult checkStatus()

AbstractNodeSet premise()

Branch-exists rule
σ

R
σ1∥ . . . ∥σn

BranchExistsRule int numberOfBranchExistsConclusions()

AbstractFormula mainFormula()

Iterator< AbstractNodeSet> iterator()

Meta-backtrack rule
A function associating with
a node-set an enumeration of
rule instances

MetaBacktrackRule AbstractNodeSet premise()

int totalNumberOfRules()

Iterator< AbstractRule> iterator()

Fig. 1. Basic concepts and their implementation

2 Basic notions and their implementation

JTabWb provides a generic engine that searches for a proof of a goal driven by
a user-defined prover. In particular the engine searches for a proof of the goal
visiting the proof-search space in a depth-first fashion; at any step of the search,
the engine asks to the strategy component of the prover the next rule to apply.
The user defines the prover by implementing the interfaces modeling the logical
components of the proof-search procedure in Fig. 1. For every component we
indicate the corresponding interface and its main methods.

Formulas are the basic elements of the formal system at hand; one can define
formulas of any kind, e.g., propositional, first-order or modal formulas, but also
“formulas with a sign” or “labelled formulas”. The data structure storing formu-
las during proof-search is modeled by a node-set. E.g., in the case of a sequent
calculus, node-sets represent sequents [Γ ⇒ ∆] where Γ and ∆ are finite sets or
multisets of formulas. Formulas and node-sets only require the implementation
of a method format(), which is invoked by the engine to print detailed information
about the proof-search process.

JTabWb models four kinds of rules: regular, clash-detection, branch-exists
and meta-backtrack. Regular and clash-detection rules directly correspond to

the rules of a calculus; branch-exists and meta-backtrack rules are meta-rules to
encode the proof-search strategy. All the rules have AbstractRule as a common
supertype.

Regular rules directly correspond to the usual formalization of rules in tableau
calculi. A regular rule has the form displayed in Fig. 1: R is the name of the rule,
σ is the premise of R and σ1, . . . , σn (n ≥ 1) its conclusions. We use a double
line to represent rules of the framework so to distinguish them from the rules of
the sequent calculus we use in the examples.

A rule Rs of a sequent calculus can be mapped to a regular rule R writing
Rs bottom-up (the conclusion of Rs becomes the premise of R). As an example,
let us consider the rule for left disjunction of G3i [6]

[A,Γ ⇒ H] [B,Γ ⇒ H]
∨L

[A ∨B,Γ ⇒ H]

This rule is represented in our framework by the regular rule:

[A ∨B,Γ ⇒ H]
∨L

[A,Γ ⇒ H] | [B,Γ ⇒ H]

The main formula of a regular rule is the formula put in evidence in the premise
of the rule (e.g., A∨B in the above example). An instance of a regular rule is an
object implementing the RegularRule interface. Conclusions of a regular rule are
returned as an enumeration of objects of type AbstractNodeSet. To represent an
enumeration of objects we use the Java Iterator interface: it defines the method
next() to get the next element in the enumeration and the method hasNext() to
check whether the enumeration contains more elements or not.

Clash-detection rules model rules without conclusions corresponding to the
end-points of a derivation (closure rules of tableau calculi and axiom rules of
sequent calculi). We represent such a rule by a function CD that, given a node-
set σ, returns SUCCESS if σ is an end-point of the derivation, FAILURE otherwise.
As an example, the axiom rules of G3i

[A,Γ ⇒ A]
Ax

[⊥, Γ ⇒ H]
L⊥

correspond to the following clash-detection rule:

CD([Γ ⇒ A]) =

{
SUCCESS if ⊥ ∈ Γ or A ∈ Γ

FAILURE otherwise

An instance of a clash-detection rule is an object that implements the interface
ClashDetectionRule providing the checkStatus() method encoding the correspond-
ing CD function.

The distinction between invertible and non-invertible1 rules has a crucial role
in the definition of a proof-search procedure, since non-invertible rules introduce
backtrack points in proof-search. E.g., the rules of G3i for right disjunction

1 We adopt the formalization of invertible rule of [6].

public class Rule_Right_Or implements _BranchExistsRule {

private Sequent premise;

private Formula or_formula;

public Rule_Right_Or(Sequent sequent , Formula or_formula) {

this.premise = sequent; this.or_formula = or_formula;

}

...

public Iterator <_AbstractNodeSet > iterator () {

LinkedList <Sequent > list = new LinkedList <Sequent >();

Formula [] disjuncts = or_formula.getSubformulas ();

for(int i=0 ; i < disjuncts.length; i++){

Sequent conclusion = premise.clone ();

conclusion.removeRight(or_formula);

conclusion.addRight(disjuncts[i]);

list.add(conclusion);

}

return list.iterator ();

}

}

Fig. 2. Implementation of the rule ∨Ri of G3i

[Γ ⇒ Ai] ∨Ri i ∈ {1, 2}
[Γ ⇒ A1 ∨A2]

are not invertible. Indeed, it could be the case that [Γ ⇒ A2] is provable while
[Γ ⇒ A1] is not. Hence, searching for a proof of [Γ ⇒ A1 ∨ A2], we have to
try both the rules; if the construction of a proof for [Γ ⇒ A1] fails, we have to
reconsider the premise (backtrack) and try the other way. The two rules above
can be formalized in our framework by means of a branch-exists rule. A branch-
exists rule R with premise σ and conclusions σ1, . . . , σn (n ≥ 1) means that
σ is provable iff at least one of the σi is provable. An instance of a branch-
exists rule is an object implementing the BranchExistsRule interface. The iterator

method returns the conclusions of the rule as an enumeration of objects of type
AbstracNodeSet. As an example, in Fig. 2 we describe an implementation of the
rules ∨Ri of G3i.

A calculus C is a finite set of regular rules, clash-detection rules and branch-
exists rules. A C-tree π is a tree of node-sets such that, if σ is a node of π with
σ1, . . . , σn as children, then either there exists a regular-rule of C having σ as
premise and σ1, . . . , σn as conclusions, or n = 1 and there exists a branch-exists
rule of C having σ as premise and σ1 as one of its conclusions. A C-proof is a
C-tree π such that, for every leaf σ of π, there exists a clash-detection rule CD
of C such that CD(σ) = SUCCESS.

To define proof-search strategies we need to encode another kind of back-
tracking arising from the application of non-invertible rules. Let us consider the
non-invertible rule → L of G3i

[A → B,Γ ⇒ A] [B,Γ ⇒ H]
→ L

[A → B,Γ ⇒ H]

If we are searching for a proof of a sequent σ containing more than one impli-
cation in the left-hand side, we must try all the possible instances of the rule
→ L to assert the provability status of σ. To express this situation we use a
meta-backtrack rule, which is a function MB associating with a node-set σ an
enumeration of rule instances having σ as premise (the non-invertible rules ap-
plicable to σ). We remark that a meta-backtrack rule is not a rule of the calculus
but a meta-rule to encode the proof-search strategy in presence of non-invertible
rules.

The strategy is a function that, taken the current goal of the proof-search (a
node-set) and the current state, returns the next rule to apply in the proof-search.
The method nextRule(AbstractNodeSet goal,IterationInfo info) of the Strategy inter-
face is a callback method invoked by the engine when it needs to determine the
next rule to apply in the proof-search. The engine invokes this method providing
as arguments the current goal of the proof-search and a bunch of data describing
the last move performed by the engine. E.g., the method getAppliedRule() of Iter-

ationInfo returns the rule applied by the engine in the last move; in many cases
this is the only data needed to choose the next rule to apply to goal. For instance,
this is an high-level description of the strategy for a terminating sequent calculus
for intuitionistic propositional logic (as, e.g., the calculus LSJ described in [2]).

_AbstractRule nextRule(_AbstractNodeSet sequent ,

IterationInfo info) {

if (an invertible rule r is applicable to sequent)

return r;

_AbstractRule lastAppliedRule = info.getAppliedRule ();

if (lastAppliedRule is not a clash -detection rule)

return the clash -detection rule for sequent;

if (non invertible rules r1...rN are applicable to sequent)

return the meta -backtrack rule collecting r1...rN

return null

}

A prover is an object implementing the Prover interface which provides the
getStrategy() method and some other methods that are not essential to our dis-
cussion.

3 High-level description of the engine

We give in Fig. 3 an high-level description of the algorithm implemented by the
engine to perform proof-search. An instance of the engine is built by specifying
the prover and the goal; searchProof() searches for a proof of the goal driven by

the strategy specified by the prover. To simplify the presentation we assume
that the data passed to the strategy only consist of the rule applied in the last
step. The search space is visited in a depth-first fashion using a stack to store
the information related to branch points and backtrack points. More precisely,
the stack contains elements (rule,iterator), where rule is the rule that caused the
push action, iterator is the associated enumeration. If rule is a regular rule, the
element of the stack represents a branch point, if rule is a branch-exists or a
meta-backtrack rule, the element represents a backtrack point.

The method searchProof() essentially consists of a loop; we call iteration of
the engine an iteration of such a loop. At every iteration the state of the engine
is characterized by the current goal of the proof-search (i.e., current goal), the
rule to apply in the current iteration (i.e., current rule) and the rule selected for
the next iteration (i.e., next rule). If current rule is a regular rule or a branch-
exists rule, the engine replaces the goal with the first conclusion of the rule and
determines the next rule to apply by invoking the strategy. If the applied rule
has more than one conclusion, then an element e is pushed on the stack by the
call push(current rule,iterator): if current rule is a regular rule, e is a branch point,
otherwise e is a backtrack point.

If current rule is a meta-backtrack rule, the associated enumeration iterator

collects the rules to be applied to current goal. The first rule in the enumeration
(returned by the method next()) is applied and, if iterator contains one or more
rules, the backtrack point (current rule, iterator) is pushed on the stack.

If current rule is a clash-detection rule, then the engine invokes checkStatus() to
determine if the current goal is an end-point of the proof-search. If checkStatus()

returns FAILURE, then the strategy selects the next rule to apply. If it returns
SUCCESS, then restoreBranchPoint() searches the stack for a branch point. If such
a point exists, it provides the new goal and the strategy selects the next rule
to be applied; if the stack does not contain any branch point, the proof-search
successfully terminates. The method restoreBranchPoint() searches the stack for
a branch point, namely an element (rule,iterator), where rule is a regular rule. If
such an element does not exist, it returns null; otherwise, it returns iterator.next(),
representing the new goal to be proved. If iterator is empty, the branch point is
removed.

If current rule is null, it means that the strategy failed to select a rule for
current goal in the last iteration of the engine, hence the proof-search for cur-

rent goal has failed. In this case the engine searches the stack for a backtrack
point invoking restoreBacktrackPoint(). If a backtrack point exists, the engine ap-
propriately updates its state and starts a new iteration. Otherwise, it returns
FAILURE to signal that a proof for the input goal does not exist. The method re-

storeBacktrackPoint() searches the stack for a backtrack point, that is an element
(rule,iterator), where rule is a branch-exists rule or a meta-backtrack rule. If such
an element does not exist, null is returned; otherwise, the pair (rule,iterator.next())
is returned. In the latter case, if rule is a branch-exists rule, then iterator.next() is
a node-set (the next goal to be proved); otherwise, rule is a meta-backtrack rule
and iterator.next() is the next rule to be applied.

// goal and prover are the arguments of the engine constructor

current goal = goal
strategy = prover.getStrategy()
next rule = strategy.nextRule(current goal,null)
while true do

current rule = next rule // the only data about the last iteration

if current rule is a regular rule then
iterator = current rule.iterator()
current goal = iterator.next()
next rule = strategy.nextRule(current goal,current rule)
if iterator.hasNext() then push(current rule,iterator)

end
else if current rule is a branch-exists rule then

iterator = current rule.iterator()
current goal = iterator.next()
next rule = strategy.nextRule(current goal,current rule)
if iterator.hasNext() then push(current rule,iterator)

end
else if current rule is a clash-detection rule then

if current rule.checkStatus() == SUCCESS then
current goal = restoreBranchPoint() // restored is a goal or

null

if current goal == null then return SUCCESS

else next rule = strategy.nextRule(current goal,null)

end
else next rule = strategy.nextRule(current goal,current rule)

end
else if current rule is a meta-backtrack rule then

iterator = current rule.iterator()
next rule = iterator.next()
if iterator.hasNext() then push(current rule,iterator)

end
else if current rule is null then

r = restoreBacktrackPoint() // r is a pair

if r == null then return FAILURE

if snd(r) is a rule then //rule is a meta-backtrack rule
next rule = snd(r) // snd(r) is the next rule to try

current goal = fst(r).premise() // restore the goal from the

rule

else //rule is a branch-exists rule
current goal = snd(r) // snd(r) is the next sub-goal to try

next rule = strategy.nextRule(current goal,current rule)

end

end

end

Fig. 3. engine.searchProof()

4 Implemented provers and other features

The engine can be executed in verbose mode to get a detailed description of
the proof-search or in trace-mode to generate a trace of the proof-search. It
is possible to generate the LATEX rendering of the C-trees visited during the
proof-search (this only requires to provide the data rendering for node-sets and
rule names). The trace of a proof-search can be used to generate the counter-
model for unprovable goals. JTabWb also provides some useful support APIs
(jtabwbx.* packages): two implementations of propositional formulas, a parser for
propositional formulas and a command line launcher for a prover.

We have implemented several provers for intuitionistic propositional logic in
the JTabWb framework. g3ibu is a prover based on the sequent calculi Gbu and
Rbu [3]. lsj is a prover based on the sequent calculi LSJ and RJ [2]. Both these
provers allow one to generate counter-models for unprovable sequents. Finally,
jpintp provides the implementation of several well-known tableau and sequent
calculi for intuitionistic propositional logic.

As for future work, we are developing a language to specify the components
of a JTabWb prover and a library of formulas implementations and node-set
implementations that can be used as building blocks for provers. Finally, we
remark that the JTabWb can be used also to implement calculi for first-order
logic and, in general, non terminating calculi. What is missing for fruitfully use
these kind of calculi is a support which allows the user to directly control the
engine execution. We are developing it as an interactive version of the engine.

References

1. P. Abate and R. Goré. The tableau workbench. ENTCS, 231:55–67, 2009.
2. M. Ferrari, C. Fiorentini, and G. Fiorino. Contraction-free linear depth sequent cal-

culi for intuitionistic propositional logic with the subformula property and minimal
depth counter-models. Journal of Automated Reasoning, 51(2):129–149, 2013.

3. M. Ferrari, C. Fiorentini, and G. Fiorino. A terminating evaluation-driven variant of
G3i. In D. Galmiche and D. Larchey-Wendling, editors, TABLEAUX 2013, volume
8123 of LNCS, pages 104–118. Springer, 2013.

4. O. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC: Logical tableaux
research engineering companion. In B. Beckert, editor, TABLEAUX, volume 3702
of LNCS, pages 318–322. Springer, 2005.

5. D. Tishkovsky, R.A. Schmidt, and M. Khodadadi. The tableau prover generator
MetTeL2. In L. Fariñas del Cerro et al., editor, JELIA, volume 7519 of LNCS,
pages 492–495. Springer, 2012.

6. A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

