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1. ABSTRACT 

 

Although designed to directly target cancer cells and tumor associated-vasculature, anti-

angiogenic drugs (e.g. sunitinib), have been described to influence tumor-host interactions. 

Sunitinib is currently in use at our Institute for the treatment of progressive, advanced soft 

tissue sarcomas (STS) of different histology. However, the systemic and local immune 

responses and their modulation by anti-angiogenic therapies are unknown in these neoplasms, 

namely solitary fibrous tumors (SFTs), clear cell sarcoma (CCS) and alveolar soft part 

sarcoma (ASPS). This thesis aims to shed light on the immunological status of these STS 

patients and to address the question to which extent sunitinib induces immune modulation in 

these patients. Thus, my research focused on the characterization of both tumor-infiltrating 

and circulating immune cells of STS patients. Fine analysis of the immune contexture at the 

tumor site in naïve and in sunitinib-treated tumors revealed that myeloid cells, namely tumor-

associated macrophages, represent a key component of the tumor microenvironment and that 

their reprogramming is part of the response to sunitinib treatment. Immune monitoring of 

circulating cells in these STS patients indicated that circulating myeloid suppressor cells were 

associated to disease progression and were the major player in mediating the immune-

suppressive status in naïve and in sunitinib-treated SFT patients. Moreover, evidence have 

been provided that, in sunitinib-treated SFT patients, myeloid suppressor cells may be part of 

acquired resistance, thus supporting the notion that myeloid cells are the most relevant hurdle 

in the efficacy of anti-angiogenic treatments. Collectively the results of this thesis shed light 

on an unappreciated phenomenon of immune dysfunction in STS patients and indicate that in 

SFTs sunitinib transiently relieves systemic immunosuppression and reprograms the immune 

microenvironment. Moreover, for the first time, an antigen-specific T cell response has been 

evidenced in CCS, and, this tumor-specific response has occurred in association to sunitinib-

induced immune modulation. Overall, this thesis poses the rationale for the development of 

immune-based clinical approaches aimed at achieving a more durable disease control in these 

cancer patients, for which effective medical therapies are still needed.  
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2. STATE OF THE ART 

 

2.1 Cancer immunology 

 

The concept that immune system can control cancer has its roots in the early 1800s when 

Rudolf Virchow was the first to observe the infiltration of tumors by leukocytes, indicating a 

possible cross-talk between the immune system and the malignant tissue. Later, in the 1890s, 

William B. Cooley observed that some cancer patients (interestingly, they were patients 

suffering of a rare sarcoma) experienced spontaneous remission when they contracted acute 

infection [1]. However it was only 50 years later that the cancer immunosurveillance 

hypothesis was formulated by Lewis Thomas and MacFarlane Burnet [2,3]. The core of the 

cancer immunusurveillance hypothesis is based on the assumption that in each individual the 

immune system is responsible for eliminating precancerous or cancerous cells before these 

cells could indeed become a clinically apparent tumors. This idea was based on the 

observation that some cancer patients do not progress for prolonged period of time, and some 

even exhibit spontaneous regression. While this theory was mainly challenged in its infancy, 

in the 1990s it has regained favor thanks to some crucial murine experiments demonstrating 

that mice lacking either IFN-γ responsiveness or adaptive immunity were more susceptible to 

carcinogen-induced and spontaneous primary tumor formation [4,5]. Later on, many 

laboratories added similar findings, thus documenting that the immune system can function 

as an extrinsic tumor suppressor [reviewed in 6]. 

 

2.1.1 Cancer immunoediting 

 

In 2001 it was described that the immune system, besides controlling tumor formation, can 

also shape the tumor to become less immunogenic [7,8]. This prompted a major revision of 

the cancer immunosurveillance hypothesis and posed the basis for the cancer immunoediting 

theory, which stresses the dual host-protective and tumor-promoting actions of immunity on 

developing tumors. This model proposes three distinct sequential phases: elimination, 

equilibrium and escape. The elimination phase looks like an updated version of cancer 

immunosurveillance. Various factors alert the immune system to the presence of the tumor. 

Among them are the so called “danger signals”, such as damage-associated molecular pattern 

(DAMP) molecules derived from dying cells [9]. They lead to the activation of innate 
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immune cells, which in turn coordinate the activation of the adaptive immune arm in order to 

destroy the tumor. The existence of this phase is supported by the fact that mice and human 

with deficient or suppressed adaptive immune response (RAG-2 KO mice, IFN-γ deficient 

mice, or immunosuppressed patients) display a greater incidence of tumor development [10 

and reviewed in 6]. During “equilibrium” tumor cells and immune cells interact to induce 

reciprocal modifications. At this phase the immune system sculpts the immunogenicity of the 

tumor cells maintaining them in a functional state of dormancy [11] in the case of a protective 

immunity. However, at this stage the immune pressure may also lead to the outgrowth of 

tumors with more aggressive features and less sensitive to immune recognition [12]. Finally, 

the tumor itself may actively acquire the ability to circumvent immune recognition to an 

extent that it can escape from, and even suppress, the immune system. Indeed, immune 

evasion has been recently recognized as an emerging hallmark of cancer (Figure 1).  

                                     

 

Immune evasion relies on the setting of both passive and active tolerizing condition [13]. At 

the tumor-cell-level (passive tolerization), mechanisms of escape might include: i) reduced 

immune recognition due to the loss of antigens or to defects in antigen processing and 

presentation [14,15]; ii)  lack of susceptibility due to increased tumor-intrinsic-resistance, for 

example through the over-expression of anti-apoptotic molecules [16] or the up-regulation of 

immunosuppressive receptors that can directly kill T cells (FasL, TRAIL) [17] or preclude 
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their destruction by T cells [18]; iii)  over-expression of “don’t eat me” signals (i.e. CD47) 

which inhibit the phagocytosis by macrophages.  

In addition, tumor immune escape occurs also because severals mechanisms are actively 

operated by tumor cells to establish an immunosuppressive state both at the tumor site and 

systemically (active tolerization). In particular, this will be discussed in details in the next 

chapter.       

 

2.1.2 Tumor-induced immunesuppression 

 

Tumor immune escape is a complex process that relies on the establishment of an 

immunosuppressive state. Tumor cells can promote the development of such a state by 

secreting a myriad of immunosuppressive molecules (e.g. vascular endothelial growth factor 

(VEGF), transforming growth factor (TGF)β, Interleukin (IL)-10, prostaglandin E2 (PGE2) 

[19, 20, 17]. These factors are toxic for optimal cytotoxic effector T cell (CTL) functions as 

well as are crucial for the accumulation (through de novo induction and recruitment) of 

suppressive, tolerogenic and regulatory innate and adaptive immune cells that function both 

to suppress the anti-tumor function of CTL and to promote tumor dependent angiogenesis as 

well as tumor invasion and metastasis. Many of these secreted factors are expressed by many 

types of cancer and correlate with advanced disease stage. Moreover, we should also take into 

account that the expression of many tumor-promoting factors is not confined to tumor cells 

but they are also produced by by-stander immune cells recruited and activated by the tumor 

itself [21].  

The major types of immunosuppressive leukocyte populations relevant to the topic of this 

thesis are regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and tumor-

associated macrophages (TAMs). In the setting of human tumors, their main phenotypic 

features and functional activities are here summarized and discussed (Figure 2).  
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2.1.2.1 T cell dysfunction 

 

Successful T cell activation requires several signals: interaction of the peptide-HLA (human 

leukocyte antigen, also known as major histocompatibility complex (MHC)) complex with 

the TCR of the right specificity (signal 1), co-stimulatory signals (signal 2), and optimally 

also the presence of immunogenic signals (signal 3), such as proinflammatory cytokines or 

“danger signals” (see section 2.1.1). Stimulation in the absence of co-stimulation will induce 

tolerance and anergy in the antigen-specific T cells, a mechanism to prevent auto-reactivity. 

Tumor-induced T cell anergy has been shown to affect both CD8+ and CD4+ T cells and 

occur in T cells that infiltrate tumors [22]. The presentation of antigen to a cognate T cell 

receptor (TCR) is the crucial point in the initiation of an immune response. It results in T cell 

activation and clonal expansion. It has been shown that in the context of tumor a T helper 

type 1 (Th1) response, characterized by T-bet (transcription factor that directs Th1 lineage  

commitment) and by the release of IFN-γ and IL-2 rather than a Th2 response, is necessary 

for immune-mediated tumor rejection. Yet, most of the clinically apparent tumors subvert the 

immune response such that T cells are dysfunctional, and selectively deficient in several of 

the activities necessary to generate a Th1 response, such as the production of IFN-γ [23-25]. 

Moreover, besides co-stimulatory signals (e.g. CD28) T cells express also co-inhibitory 
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receptors, such as programmed-death 1 (PD-1) and cytotoxic T lymphocyte activation marker 

4 (CTLA-4). These molecules are up-regulated after T cell stimulation and they represent a 

physiological “immunologic brake” crucial for the control of an on-going immune response 

also in other physiological setting, such as anti-viral responses. CTLA-4 binds to CD80 and 

CD86 like CD28, but with higher affinity, and conveys negative signals that lead to reduce 

proliferation and cytokine production. PD-1 interacts with PD-L1 (B7-H1) and PD-L2 (B7-

DC). The fact that deficiency in CTLA-4 as well as PD-1 is associated with severe 

autoimmune diseases illustrates the importance of this negative regulation of T cell function 

[26]. Of note, the tumor can make use of these inhibitory pathways to control anti-tumor 

immunity. Many type of tumors have been reported to express PD-L1 [18,27] and are 

therefore able to inhibit T cells [28]. Consequently, high expression of PD-1 on tumor 

infiltrating T cells or PD-L1 on tumor cells has been found to correlate with poor survival in 

cancer patients [29,30]. Importantly, many of the above cited mechanisms of T cell 

dysfunction occur at the tumor site where effective anti-tumor response takes place. Thus in 

order to exert their anti-tumor activities T cells should be able to successfully transmigrate 

through the tumor endothelial barrier. However, several tumor types have developed a 

number of unique ways to prevent homing of effector T cells to the tumor site. Among those 

mechanisms, deregulation of chemokine loops (reduction of T-cell attracting chemokines, 

such as CCL2, CCL5, CXCL10, CXCL11) [31] and the prohibitive/suppressive nature of the 

tumor endothelium [32,33] have been described. Thus, lack of homing of T cells represents 

itself a T cell dysfunction phenomenon.  

 

2.1.2.2 Regulatory T cells (Tregs) 

 

Tregs are a subset of T lymphocytes that in humans represent less than the 10% of circulating 

CD4+ T cells. The high expression of the surface marker CD25 and the positivity for the 

intracellular transcription factor forkhead box P3 (FOXP3) are cardinal phenotypic features 

of these cells. CD25 is also known as IL-2 receptor subunit α (IL-2Rα), and FOXP3, is 

considered the lineage specific factor for this T cell subset. The crucial role played by FOXP3 

in Treg fate determination and immune homeostasis, is strikingly evident in patients with 

FOXP3 mutations. In fact, these patients develop severe autoimmune disease [34]. Another 

characteristic of Tregs is their potent suppressive capacity [35]. Multi-parametric flow 

cytometry analysis is required to identify Treg ex vivo. In this context, we also contributed in 
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suggesting guidelines for an accurate ex vivo identification of human Tregs [36].  

A great number of publications have shown that Tregs are increased in many different human 

cancers and often correlate with poor prognosis [reviewed in 37]. Moreover, Tregs express 

receptors for chemokines such as CCR4, CXCR4 and CCR10 that could induce their 

migration towards the tumor [38, 39]. Indeed, in cancer patients, an increased Treg/Tconv 

(conventional T cells) and Treg/CD8 T cell ratios is often observed in the blood [38, 40], in 

tumor draining lymph nodes [38], and in the tumor [38, 41]. Besides Tregs infiltration into 

the tumor, the accumulation of Tregs at tumor sites may be due to the conversion of CD4+ 

TILs into Tregs, to the selective expansion of Tregs displaying a survival advantage in the 

hypoxic tumor microenvironment (TME), and finally the proliferation of pre-existing Tregs. 

Several lines of evidence clearly documented the role of Tregs in restraining anti-tumor 

immune responses. Suppression exerted by Tregs might mask antigen-specific responses that 

become detectable only after Treg depletion [42].  

Many strategies have been used to manipulate Tregs, including: Treg depletion, inhibition of 

Treg function or blockade of Treg trafficking into lymph nodes or tumors [36].  

 

2.1.2.3 Myeloid-derived suppressor cells (MDSCs)  

 

A large number of studies attest to the remarkable plasticity of the myeloid lineage [43]; 

tumors take advantage of this plasticity to re-direct myeloid differentiation toward the 

acquisition of immune suppressive subsets that effectively interfere with the anti-tumor 

immunity. This is the case of MDSCs and TAMs. 

 

MDSC are a heterogeneous population of variably immature myeloid cells (IMCs) with 

suppressive activity, containing myeloid progenitor cells and precursors of granulocytes, 

macrophages and DC. Elevated levels of MDSC have been reported in the blood of cancer 

patients bearing several types of tumors and they seem to represent a major contributor to 

cancer-related immune suppression [21]. In cancer patients, increased MDSCs are translated 

in inhibition of autologous T cell proliferation and IFN-γ production. Definitively, their 

peripheral blood accumulation has been correlated with tumor progression (tumor stage and 

burden) and poor prognosis [44-46]. The heterogeneity of MDSC in human malignancies is 

striking, thus for their characterization, as for Tregs, the application of multi-parametric flow 

cytometry approach is mandatory. Indeed, a great number of MDSC phenotypes has been 
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described in many different human cancers. Some of these phenotypes overlap, at least 

partially, while others are mutually exclusive.  Agreement in the scientific community 

indicates three main subsets of MDSC [reviewed in 47,48]. Table 1 summarized MDSC 

phenotype described in patients with different tumor histologies. The majority of human 

MDSC subtypes expresses common myeloid markers, such as CD11b and CD33, but have 

low or absent expression of the MHC class II molecule HLA-DR. Many reports described 

MDSC as CD33+HLADR-/low and Lineage (Lin) negative, meaning that they do not express 

CD3, CD19, CD56 and CD14, markers characteristic of T, B or NK cells and monocytes, 

respectively. 

These myeloid precursors, although might appear to be granulocytic-like, they are defined as 

lineage-negative MDSC as long as they do not express the CD15 granulocytic marker 

(CD33+Lin-HLA-DR-CD15-) [44, 65, 70]. Furthermore, a number of studies have detected 

the expression of the granulocytic markers CD15 or CD66b in Lin-CD33+HLADR-/low cells, 

indicating that these populations partially overlap [23, 61, 71-73]. 
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These polymorphonuclear (PMN)/granulocytic-MDSC (hereafter called gMDSC) have been 

suggested to be activated (i.e. “suppressive”) neutrophils distinct from their normal 

counterparts. While mature PMN are short-live, and mostly excluded when peripheral blood 

mononuclear cells (PMBC) are isolated by gradient centrifugation, gMDSC have a low 

density phenotype allowing to co-purify with PBMC [61, 64, 68], and have increase 

resistance to apoptosis [61, 68]. Moreover, according to what described by our group in 

advanced melanoma patients [49], and then by others in several cancer hystologies [45, 46, 

50, 55, 74, 75] a third MDSC can be defined: CD11b+CD14+HLADR-/low monocytic-MDSC 

(mMDSC). They resemble monocytes in size and light scatter characteristics as well as 

express the CD14 monocytic marker. Interestingly, their presence across different human 

cancers, strongly suggest that the ability to affect myeloid differentiation towards immature 

and defective monocytes might be a common feature of human tumors. Interestingly, in 

human cancer these mMDSC have a prognostic significance. In cancer of different 

hystologies, the frequency of this MDSC subset in the blood correlates with tumor burden 

[46,50] and is inversely associated with the response to cancer vaccines [49,74], reinforcing 

their detrimental effect in tumor immunity. 

Moreover, Weide and colleagues recently reported in melanoma patients a “triple-

correlation” between high levels of mMDSC, the absence of antigen-specific T cells and poor 

clinical prognosis, thus suggesting a causal relationship where mMDSC counteract the 

development of tumor-reactive T cells [45]. Regarding the overall MDSC phenotype, 

additional and more specific molecules have been reported as defining human MDSC. 

Similar to murine studies [76] the IL4Rα (CD124, the receptor for Interleukin-4) has been 

suggested as a specific marker for tumor-derived MDSC with suppressor function [51]. As 

far from our experience with melanoma MDSC, we could not detect IL4Rα+ cells either in 

the monocytic or in the granulocytic subpopulations (Tazzari M, unpublished observation). 

VEGFR1 is another marker, which has recently been described in renal cancer patients to be 

expressed in gMDSC [61]. Surprisingly, a recent paper showed that mMDSC from melanoma 

patients could express even markers of more mature myeloid cells, namely CD80 and  CD83 

[50]. This large amount of novel candidate markers further emphasizes the complexity in 

defining these cells. In cancer, one common denominator of these cells is their reliance on 

tumor-derived factors. In healthy individuals, bone marrow-derived IMCs will distribute 

throughout the body and differentiate into macrophage, granulocytes or DC. Instead, the 

presence of tumor-derived soluble mediators arrests IMCs in their immature state, leading to 



___________________________________________Host immunity in soft tissue sarcoma patients 

12 
 

MDSC expansion and activation. Evidence supporting this conclusion derives from studies 

revealing a decline of circulating MDSC after surgical resection of tumors [46], and by in 

vitro experiments which showed that culturing normal neutrophils and/or monocytes with 

conditioned medium from melanoma, renal cell carcinoma (RCC) cells and other solid 

cancers prevented their differentiation, thus leading to MDSC generation [77, 78]. Indeed, 

these studies, although limited to the in vitro setting, underline the crucial role played by 

cancer cells in MDSC recruitment/activation, again pointing to the TME as a crucial site 

where the most immune dysfunctions involving the myeloid compartment stem from. 

However, compare to mouse studies, gaining such in situ data in cancer patients is obviously 

challenging. The number of potential MDSC-inducing and MDSC-activating factors is large, 

including VEGF, IL-6, PGE2, IL-1β, stem cell factor (SCF), macrophage- and granulocyte-

macrophage-colony stimulating factors (M-CSF and GM-CSF) [49] IL-4, IL-13 and TGFβ. 

Clearly, the secretory profile of each tumor is diverse, which can help to explain the 

heterogeneous appearance of MDSC induced by cancers of different hystologies. Thus, the 

prevalence of one MDSC subsets to another in a given tumor histology, might be the result of 

the pressure exerted by the tumor cells able to skew/shape the MDSC composition and 

function. Noticeably, in melanoma and in soft tissue sarcoma lesions, sharing the same 

mesenchymal origin, cells expressing monocyte/macrophage markers are quantitatively 

predominant, while granulocytes are rarely detected (see manuscript I). In contrast, gMDSC 

represent the predominant population in renal cancer [23, 60, 61], in glioblastoma [73], 

bladder cancer [72], and advanced-stage non-small cell lung cancer [62]. Moreover, it is also 

likely that multiple populations are present in the PBMC of patients with a single type of 

tumor. Of note, the majority of the tumor-derived factors implicated in MDSC expansion 

ultimately converges in a common signalling pathway, the Janus tyrosine kinase (JAK) 

protein family members and signal transducer and activator of transcription 3 (STAT3), 

involved in cell survival, proliferation, differentiation and apoptosis [79]. STAT3 is a 

member of the STAT family of transcription factors [80]. STAT3 is constitutively activated 

in many tumor cells, and thereby it contributes to tumor cell survival and proliferation. In 

cancer cells STAT3 activation promotes the production of immunosuppressive molecules 

which down-regulate the immune response. Moreover, increased levels of phosphorylated 

STAT3 has been observed in MDSCs from tumor-bearing mice [81] and more recently it has 

been confirmed in mMDSC from melanoma patients as well [50]. It appears that persistent 

activation of STAT3 in myeloid progenitors prevents their differentiation and increase their 
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proliferation and survival, possibly through up-regulation of STAT3-targeted genes like Bcl-

xL, cyclin D1, c-myc, survivin [79]. Moreover, over-expression of a constitutively active 

form of STAT3 has been proven to increase the MDSC-mediated suppression of T cell 

activation, while its in vitro pharmacological inhibition facilitates the differentiation of 

MDSC in myeloid cells without suppressive activity [50, 82]. MDSC exert their suppressive 

activities by a variety of different mechanisms. Factors implicated in the suppression of T cell 

functions [21] include reactive oxygen species (ROS) production, L-arginine depletion by 

arginase I [60, 61], TGFβ secretion [49], depletion of cysteine, upregulation of cyclo-

oxigenase 2 (COX2) and PGE2, induction of Tregs [55]. Each of these functions has been 

primarily linked to a certain MDSC subtype, although they might use more than a single 

mechanism at once. gMDSCs, have been reported by many to inhibit T cell functions 

predominately via L-arginine depletion, consequently associated with an increased levels of 

plasma arginase activity [60, 61]. In addition to impair autologous T cell proliferation and 

IFN-γ production in response to TCR triggering, MDSC can block T cell activation by 

inhibiting T cell trafficking to antigen-containing sites (i.e. draining lymph nodes and tumor 

tissues) [83]. There is also evidence that MDSC are involved in a whole array of non-

immunological functions, such as promotion of angiogenesis, tumor local invasion and 

metastases [21].  

 

2.1.2.4 Tumor-associated macrophages (TAMs) 

 

Macrophages play an essential role in innate immunity and are involved in a variety of 

immune functions, including host defence and wound healing. They are mature-tissue 

resident myeloid cells derived from circulating monocytes.  

During the course of an immune response macrophages become activated and, depending on 

the cytokine network they encounter, become either highly effective in destroying potential 

pathogens and activating the adaptive immune system, or become attenuators of the 

inflammatory response. These two functional states are classified as M1 or M2 polarization, a 

nomenclature reflecting the Th1/Th2 dichotomy [84]. M1 or “classically” activated 

macrophages are induced by inflammatory stimuli and danger signals, such as 

lipopolysaccharide (LPS) and IFN-γ. When activated, they express HLA-DR molecules at 

high level and release proinflammatory cytokines (e.g. IL-1β, IL-12 and tumor necrosis 

factor (TNF)-α). They have an enhanced ability to present antigens and promote the 
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differentiation of naïve CD4+ T cells into Th1 effector cells. By contrast, M2 or 

“alternatively” activated macrophages, which are activated by IL-4, IL-10 and IL-13 

stimulate CD4+ Th2 cell and Treg differentiation and are characterized by higher production 

of the anti-inflammatory cytokine, IL-10 [85]. However, it stands clear that the M1/M2 

paradigm might be too semplicistic and that a broad range of phenotypes that are in between 

the two extremes M1 and M2  are more likely to occur in vivo. In fact, TAMs have been 

shown to display a high degree of heterogeneity and functional plasticity and their activation 

state is primarily dictated by the soluble factors present within the local microenvironment 

produced either directly by tumor or [24], by intratumoral T helper-cells [86].  

In cancer, TAMs are considered to be a tumor-induced type of M2-polarized macrophages. 

TAMs are not only ineffective as antigen-presenting cells but they also exert pro-tumor 

functions by the direct release of various immunosuppressive factors (while producing low 

levels of M1 mediators). M2-derived factors support tumor cell resistance to apoptotic stimuli 

(e.g. protection of tumor cells from chemotherapy-induced apoptosis [87]) and stimulate the 

proliferation and invasion of malignant cells. Increased TAMs density is usually associated 

with advanced progression and poor prognosis in multiple human epithelial malignancies, 

including breast, prostate, endometrial, kidney, bladder and anaplastic thyroid carcinomas 

[88, 89 and reviewed in 90]. In contrast, accumulation of TAMs remains less well 

characterized in mesenchymal tumors, such as sarcomas [91].  

At the tumor site TAMs certainly derive from the local differentiation of monocytes actively 

recruited by tumor-derived cytokines/growth factors such as VEGF, M-CSF and CCL2. 

Moreover, a relationship between MDSC and TAMs has been also suggested, at least in a 

mouse model [67]. In addition to monocytes, in a murine study, circulating MDSCs have 

been shown to be a plausible precursor of TAMs.  

In situ characterization of macrophages is an important issue and a precise characterization of 

tumor-infiltrating myeloid cells requires the use of immunohistochemical technique (IHC). 

CD68 and CD163 in combination with the specific monocyte/macrophage marker CD14 are 

used to identify and quantify macrophages in tissue sections. These two markers are not 

equivalent in the identification of macrophages [88, 89, 92,93]. Indeed, CD163 is a 

hemaglobin scavanger receptor expressed on most subpopulations of mature tissue 

macrophages [94]. It is believed to be mainly associated with M2 macrophages, owing to its 

upregulation by anti-inflammatory cytokines (IL-4, IL-10) important for M2 polarization in 

vitro. Thus, CD163+ cells have been recognized by many to identify in situ TAMs [93]. In 

contrast, CD68, in association with the HLA-DR maturation marker, has been used to 
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identify a tumoricidal macrophage subsets, more associated with immunostimolatory 

properties [88,89]. Furthemore, although CD163 in IHC studies has been pinpointed as a 

specific macrophage marker, a minor subset of CD34+ stem/progenitor cells [95] and MDSC 

[96] are found to express CD163 in flow cytometry analysis. Thus, it cannot be fully 

excluded that a minor subsets of the CD163+ cells are IMCs.  

Beside their phenotypic diversity, macrophages adopt different geometries in vivo. Within a 

tumor, it has been recently noted that TAMs might adopt a ramified morphology forming a 

network in close contact with cancer cells and blood vessels, in contrast to the absence of 

ramification and the ameboid shape of M1 macrophages [88]. Moreover, a recent in vitro 

study confirms this point showing that elongation itself enhances macrophage polarization 

towards the M2 phenotype [97].  

Their abundant presence and contribution to tumor progression as well as their plasticity has 

prompted researchers to develop therapeutic agents that specifically target or “re-educate” 

these cells. These efforts might be reassumed in three main goals: i) inhibition of monocytes 

recruitment into tumors; ii ) depletion of TAMs; iii ) neutralization of TAM-derived 

molecules. Moreover a more recent approach consists in repolarizing TAMs into M1 

macrophages, able to exert anti-tumor responses protective for the host.  

 

2.1.3 The immune contexture in human tumors 

 

It is now accepted that tumors cannot be simply considered as formed only by neoplastic 

cells. Tumors are ‘aberrant organs’, made up by different cell types and components; these 

include epithelial cells, vascular and lymphatic vessels, and immune cells. All these cell 

subsets are connected to each other by reciprocal cross-talk and altogether, they compose the 

TME. Histopathological analyses of human tumors have provided evidence that variable 

numbers of infiltrating immune cells are found in different tumors. Moreover, this large 

collection of in situ data has allowed the identification of components of the TME that are 

beneficial, as well as those that are deleterious, to patients’ prognosis. Thus is clearly 

emerging the concept that anti-cancer immunity is indeed a dymamic equilibrium in which 

each subset of the immune sytem, exerting pro or anti-tumor activity, can be contemporarily 

present at the tumor site. For example, chronic inflammation and the presence of MDSC or 

M2 type macrophages favor tumor growth and spreading in most cancer types [98]. While, in 

contrast infiltrating lymphocytes with a Th1 polarization are strongly associated with good 

outcome. Indeed, tumor-infiltrating lymphocytes (TILs), their density and localization inside 
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the tumor nest as well as their functional polarization is a strong independent prognostic 

factors in different type of cancers [reviewed in 99,100]. Efforts in the scientific community 

are currently on-going to construct precise algoritsm for defining an ‘immunescore’ to be 

used then as  prognostic value [101].  

 

2.1.4 Immunotherapy in cancer 

 

In advance stages, when tumors have escaped immune control, immunotherapy approaches 

are designed to enhance anti-tumor T cell reactivity and thus reverte the relation between 

immune system and tumor cell growth to a phase of equilibrium (Figure 3).  

This goal can be achieved by actively boosting the positive anti-tumor response and by 

counteracting the immune suppression. Cancer cells express a variety of antigens that are able 

to trigger the host immune response. Among these are the so-called Tumor-Associated (self) 

Antigens (TAAs), such as melanocyte differentiation antigens (gp100/HMB45, Melan-

A/MART-1). 

                   

Moreover, tumors are characterized by the accumulation of genetic alterations that lead to the 

generation of neoantigen-containing epitopes  (Tumor-Specific (non-self) Antigens (TSAs)) 

that can be recognized by T cells [102]. Many different strategies of immunotherapy have 

been developed over the past that include: i) vaccine-based strategies [103]; ii)  cytokine 

therapies [104], both belonging to active immunotherapy; iii)  approaches involving adoptive 

transfer of in vitro expanded, naturally arising, or genetically engineered tumor-specific 
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lymphocytes [105] that belong to adaptive immunotherapy. One of the mechanism by which 

tumors disable immune response relies on antigen persistence and chronic antigenic 

stimulation. This situation leads to a overstimulation of T cells that thus became anergic and 

overexpress the inhibitory receptors CTLA-4 and PD-1. Monoclonal antibodies (mAbs) 

directed to these molecules (anti-CTLA-4/Ipilimumab or anti-PD-1/Nivolumab) release 

immune effector T cells from their natural restraints and appeared to be a very fruitful 

intervention for boosting anti-tumor immunity in the clinical setting [106,107]. In addition, 

the development of successful immunotherapy is likely to depend on identifying dominant 

immune suppressive mechanism in a given tumor type, allowing to design rational 

combinatorial approaches. Ideal candidates for “immunosensitizing drugs” would be for 

example those able to reduce frequency and function of immunoregulatory cells (e.g. MDSC, 

Tregs) or those that will enhance T cell trafficking and infiltration into the tumor bed.  

 

2.2 Targeted-therapy molecules 

 

Malignant transformation is characterized by alteration in the intracellular signalling 

pathways that regulate cell proliferation, survival, differentiation and metabolism. Key 

components in the activation of such pathway are protein kinases that upon the 

phosphorylation of target molecules, induces signalling cascades that culminate in the 

activation of gene transcription and modulation of protein expression or function. In the past 

decade, improvement in the knowledge of the transformation process have allowed the design 

of “molecular targeting” therapeutic approaches that from a clinical standpoint have 

represented a new weapon beyond aspecific cytotoxic agents (radiation/chemotherapy). 

While chemotherapeutic agents interfere with DNA synthesis, or produce chemical damage 

to DNA, targeted-therapy molecules activity relies on the inhibition of those molecular events 

responsible for the maintenance of the malignant phenotype. Based on this, specific tyrosine 

kinase inhibitors (TKIs) have been developed and demonstrated to have significant antitumor 

efficacy. Functionally, TKs can be classified into receptor kinases (i.e. receptors of growth 

factor that regulate cell behaviour in response to extracellular stimuli) and non-receptor 

kinases (i.e. those involved in intracellular signalling that are frequently downstream of 

RTKs). The modifications that promote TK-mediated malignant transformation are diverse 

(e.g. mutations in the catalytic domain, chromosomal recombination that modulate the 

catalytic activity as well as RTK abnormal activation due to tumor-derived overexpression of 

the ligand). The first TKI approved by the US Food and Drug Administration (FDA) was the 
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BCR-ABL inhibitor imatinib mesylate (ST1571; Glivec, Novartis; hereafter indicate as 

imatinib) for the treatment of Philadelphia chromosome positive chronic myeloid leukemia 

(CML) [108]. Of note, this compound also efficiently inhibits TKs other than BCR-ABL, 

including c-KIT, PDGFR, M-CSF receptor and the fms-like tyrosine kinase-protein kinase 3 

(FLT3). This has led to its approval also for c-KIT+ unresectable metastatic gastrointestinal 

stromal tumors (GISTs) [109] and dermatofibrosarcoma protuberans (DFSP) patients [110]. 

Owing to the clinical success of imatinib in CML patients several others targeted-drugs have 

been developed. It is now widely accepted that tumor neo-angiogenesis is a crucial step in 

tumor development and progression [111]. Indeed, among the class of targeted-therapy 

molecules a special place is deserved to anti-angiogenic drugs [112]. Among them, 

Bevacizumab (Avastin, Genentech/Roche), a VEGF-trapping monoclonal antibody [113]; 

and many RTKIs, such as sorafenib (BAY43-9006, Nexavar, Bayer) [114], sunitinib malate 

(SU11248; Sutent, Pfizer, hereafter indicate as sunitinib) [115] pazopanib (GW-786034, 

Votrient; GlaxoSmithKline) [116] and cediranib (AZD2171, Recentin; AstraZeneca) [117] 

have been approved by FDA for clinical use. Currently, there are numerous clinical trials as 

well as off-label medical applications testing the use of these drugs in different tumors, and 

many others antiangiogenic TKIs are being clinically evaluated (e.g. axitinib). Often patients 

develop resistance to TKIs, which might be caused by a tumor cell intrinsic-adaptation, such 

as the acquisition of secondary genetic alterations or the activation of alternative signalling 

pathways [118]. Understanding the molecular mechanisms by which cancer patients develop 

resistance to TKIs is crucial and is a challenge for achieving long-term disease control. 

 

2.2.1 Immunostimulation by anticancer drugs 

 

Considering the intense interplay of the different cells composing the TME (see previous 

paragraphs), it is not surprising that effects delivered to tumor cells may impact normal host 

cells, especially those of the immune system. Data obtained both in some human clinical 

settings and in animal models, strongly demonstrated that conventional chemo and 

radiotherapy treatment, as well as TKIs possess immuno-modulating activities [119]. These 

by-stander immune related effects stem from their capacity to affect directly the signalling 

pathways regulating the functional activities or the maturation/differentiation programs of 

immune cells and/or from their ability to modulate the immune-related features of cancer 

cells. Imatinib represents the paradigm of this double activity. It directly induces the host 

DCs to promote NK activation, and this immunological effect was associated with prolonged 
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disease free survival in imatinib-treated GIST patients [120]; on the other hand, it reduces the 

release of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO) by tumor 

cells [121]. Some cytotoxic drugs (e.g. oxaliplatin, doxorubicin, cyclophosphamide) have 

been shown to affect the immune system by inducing the immunogenic cell death of tumor 

cells [122, 123]. Thus, dying tumor cells release/exposure specific signals (i.e. calreticulin 

(CRT), high mobility group box 1 (HMGB1), ATP) which trigger phagocytosis and promote 

the maturation of dendritic cells, initial events for the induction of a protective immunity. 

Anticancer agents can also favor anti-tumor immunity by increasing the expression or 

presentation of TAAs by cancer cells, as demonstrated for vemurafenib, a specific BRAF 

inhibitor approved for the treatment of melanoma [124]. On the other hand, anticancer drugs 

subvert tumor-induced immunosuppression or exert a stimulatory effect on immune effector 

cells. Both MDSC and TAMs represent interesting therapeutic targets and some of the 

currently anti-cancer therapies actively modulate myeloid cell functions and frequency. For 

instance, gemcitabine reduces the levels of MDSC in patients with advanced pancreatic 

cancer [125]. Moreover, some cytotoxic drugs may also actively stimulate the effector arms 

of the immune systems. Indeed, immune monitoring of patients with advanced non-small cell 

lung cancer revealed that treatment with paclitaxel [126] restored Th1 cellular immunity (i.e. 

IFN-γ and IL-2 secreting CD4+ T cells). 

 

2.2.1.1 A focus on anti-angiogenic drugs 

 

At the tumor site, neo-angiogenesis is promoted by pro-angiogenic tumor-derived factors (in 

particular VEGF) and results in the formation of new, highly abnormal blood vessels 

displaying a heterogeneous distribution, irregular blood flow and increased permeability 

[111]. Sunitinib is an orally bioavailable multi-target TKI that inhibits a broad array of RTKs. 

Indeed, beyond VEGFR-1 and -2, it also targets c-KIT, PDGFRβ, FLT3 and RET [127]. 

Anti-angiogenic therapies were developed to inhibit new blood vessel growth and thus starve 

tumors. However, besides to its well-characterized role in angiogenesis, VEGF may: i) 

promote Treg proliferation [128], ii)  inhibit the maturation and function of DCs [129], iii)  

stimulate MDSCs accumulation [130]. Indeed, drugs inhibiting VEGF-mediated signalling, 

such as sorafenib and sunitinib, have been shown to affect the balance of these cell subsets 

and impact the anti-tumor immune response. In mouse models and in RCC patients sunitinib 

reduces the frequency of circulating Tregs and different subsets of MDSCs [25, 131]. Indeed, 
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mMDSC as well as MDSC defined as, CD33+HLA-DR- and CD15+CD14- are 

downmodulated in the blood of RCC receiving sunitinib treatment [23]. Furthermore, van 

Crujsen and colleagues showed, in a subset of RCC patients experiencing tumor regression, 

that sunitinib induced the reacquisition of a normal frequency of CD1c+ myeloid DC [52]. 

Due to the singularity of each immunosuppressive network put in play by each cancer 

histology (see section 2.1.2) the raising question is: “Are these effects confined to RCC 

patients or they represent a general phenomenon?” Moreover, pro-angiogenic factors and 

abnormal tumor vasculature strongly limits the leukocyte-endothelial interaction and the 

subsequent extravasation of effector cells into the tumor site [132]. Conversely, anti-

angiogenic treatments, while normalizing blood vessels, enhance immune infiltration, as was 

recently shown in different animal models [133,134].  

Altogether, the evidence summarized in these two last paragraphs, strongly indicate that part 

of the clinical efficacy of many anticancer agents relies on restoring an active anti-tumor 

immunity. Of interest, in a murine breast cancer model Huang Y. and colleagues recently 

showed that the efficacy of a cancer vaccine therapy was greatly increased by antiangiogenic 

treatment that, at the tumor site, re-directed TAMs to an immuno-supportive M1-like 

phenotype [135]. Studies that analysed the modulation of the immune contexture at the tumor 

site induced by TKIs are still few, especially considering the wide application of these 

targeted-drugs in tumors of different histology. In this respect, the only documented example 

is reported in melanoma patients in which  tumors surgically removed after short-term 

treatment with vemurafenib, clearly displayed enhanced infiltration with activated CD4+ and 

CD8+ T lymphocytes [136]. Thus, in the human setting, the ability to shape the immune cell 

repertoire at tumor site needs to be further address and hold interesting promise for the 

development of strategies that combine TKIs with immunotherapeutic approaches.  

 

2.3 Soft Tissue Sarcomas and the immune system 

 

Soft tissue sarcomas (STS) are a sundry group of solid tumors that till recently were 

traditionally categorized together based on their mesenchymal origin. However, inside STS, 

current studies are now considering each single histology as a separate entity with unique 

biological and clinical features [137]. The Fondazione IRCCS Istituto Nazionale Tumori, 

Milan has a long-standing interest in different STS subtypes and it is among the major 

referral centre in Italy for these rare diseases. Immunohistochemical and molecular biology 

studies are necessary for their adequate characterization; however, biological behavior, 
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staging and grading are essential for an accurate prognosis and for planning the most 

adequate therapy. The mainstay of treatment for localized STS is surgery, also applied after 

radio or chemotherapy treatment (adjuvant setting).  Of note, some STS patients, can be made 

virtually disease free (i.e. by surgery), but are known to be a high risk for relapse. Metastasis 

can also occur, with lung being the most frequent site of dissemination. STS are mainly 

insensitive to the most applied chemotherapy regimens (anthracyclines and isosfamide). In 

the last years, great advances have been made in the understanding of sarcomas’ molecular 

biology [138] leading to the testing of new targeted-compounds in order to improve efficacy 

and outcome achieved with classical drugs. A number of individual sarcoma subtypes 

responds to TKIs that inhibit both VEGFR and PDGFR. While all these drugs have achieved 

relative success in aggressive metastatic STS, they have failed to cure patients, and the 

clinical responses can be short-lived, due to the occurrence of resistance. Further options for 

the treatment of sarcoma are needed, not only to improve the rate of response to treatment, 

but also to improve the duration of elicited responses and disease stabilization. In an attempt 

to improve response rates, one of the strategies that are currently ongoing is the combination 

treatment with TKIs and conventional cytotoxic drugs [139], however these approaches are 

associated with an increased risk of toxicity (e.g. cardiac toxicity). Thus, the discovery of 

new safer synergistic combination is essential.  

As opposite for other human tumors, including carcinomas and tumors of mesenchymal 

origin such as melanoma,  for STS very little is still known on the role of the immune system 

in disease progression and in the response to treatment as well. So far, few studies have 

examined the systemic and local immune status in selected STS subtypes. However, the 

immunological behaviour of STS is now gaining interest in the scientific community and a 

very recent study described the impact of radiotherapy on the quality of the tumor-associated 

immune infiltrate in a cohort of heterogeneous sarcoma patients. Interestingly, radiotherapy 

induced the in situ accumulation of cells and molecules characteristic of a protective 

immunity [140]. Studies at the tumor site in STS are of course hampered by the paucity of 

cases. Indeed, the TME’s role as a non-neoplastic component of tumor has been studies 

extensively in carcinoma but remains very poorly characterized in sarcomas. Lee CH and 

colleagues, showed in leiomyosarcoma (LMS) that a high density of TAMs (CD163+), likely 

attracted to the primary tumor site by secretion of M-CSF by tumor cells [141], predict poor 

patient outcome [91]. Moreover LMS tumor cells have been shown to express the anti-

phagocytic molecule CD47 and the potentially anti-tumor efficacy of targeting this pathway 

have been demonstrated [142]. In these last years, few studies have discussed the utility of 
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immunotherapy approaches in STS [143]. Of note, many STS are characterized by tumor-

specific chromosomal translocations, which produce neo-antigens that might be seen as 

foreign by the immune system [144]. Moreover, other STS display cancer-testis antigens 

aberrantly [145] and other express differentiated antigens in common with melanoma [146]. 

Overall, these antigens could represent an attractive target for immunotherapy. However a 

better understanding of the meachanisms of tumor-induced immunesubversion in individual 

STS is needed to design combination treatment that includes  targeted drugs and 

immunetherapy. Hereafter I will introduce the three STS subtypes focus of the present thesis. 

 

2.3.1 SOLITARY FIBROUS TUMOR (SFT) 

 

Solitary fibrous tumor (SFT) is a rare STS, characterized by CD34 positive fibroblastic 

appearing tumor cells. It can occur in several anatomical sites: meninges, pleura, peritoneum, 

extremities and viscera; most frequently in middle-aged patients. Only very recently, 

Robinson and colleagues found recurrent fusion transcripts in SFTs caused by inversion at 

chromosome 12q13 involving NAB2 and STAT6, adjacent genes normally transcribed in 

opposite directions [147,148]. Normally, NAB2 is an endogenous inhibitor of EGR1, but in 

the fusion gene NAB2 loses its repressor domain and gains the transcriptional activation of 

STAT6. Thus, the NAB2-STAT6 fusion protein acts to induce expression of EGR1 targeted 

genes. While most SFTs have an indolent course and can be cured by surgery, 15-20% of 

SFTs progress with either local recurrence or distant metastases [149,150]. In addition to the 

classical SFT (CSFT), two more aggressive clinical-pathological variants of SFTs are 

currently recognized: malignant (MSFT) and dedifferentiated (DSFT), the latter showing a 

higher metastatic rate [151,152]. While the standard treatment for CSFT and localized disease 

is surgery, medical therapy is needed in case of locally advanced or metastatic M/DSFT. New 

agents are currently under evaluation, along with radiotherapy and cytotoxic chemotherapy. 

Chemotherapy has been mainly described to be ineffective, but of note dacarbazine have 

recently reported to be active in patients with progressive pre-treated advanced SFTs [153]. 

Involvement of the platelet derived growth factor receptor (PDGFR) β and vascular growth 

factor receptor 2 (VEGFR-2) pathways were reported in SFTs [154,155]. In line with this, 

sunitinib has been recently reported to exert anti-tumor activity in unresectable, progressive 

M/DSFT patients [154,155]. Moreover, in the clinical setting, preliminary data point to the 

potential antitumor activity of other antiangiogenic agents like sorafenib, pazopanib, and 
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bevacizumab combined with temozolomide [156]. Interestingly, in the larger retrospective 

series of M/DSFT patients receiving sunitinib [155], the levels of activation of the direct 

targets of this agent, PDGFRβ and/or VEGFR-2, as evaluated by IHC in tumor lesions, did 

not fully account for the response to treatment. Moreover, very recently, in a xenograft model 

of DSFT, sunitinib monotherapy was found to have low efficacy [153]. These observations 

strongly supported the hypothesis that additional off-target mechanisms may sustain the 

activity of sunitinib in this clinical setting. 

 

2.3.2 CLEAR CELL SARCOMA (CCS) 

Clear Cell Sarcoma (CCS) is a very rare and aggressive soft tissue sarcoma (STS), usually 

arising from deep soft tissue or viscera [157], and marked by a very high metastatic risk 

resulting in a 5-year overall survival of about 50% [158, 159]. In contrast with other STS, and 

similarly to melanoma, its metastatic sites include lymph nodes. CCS, initially named, 

malignant melanoma of soft parts, are molecularly characterized in most cases by a specific 

translocation t(12;22)(q13;q12), which results in fusion of the Ewing’s sarcoma gene, EWS, 

with the cyclic AMP (cAMP) regulated transcription factor, ATF1, a member of the cAMP-

responsive element binding protein (CREB) family [160]. The EWS-ATF1 chimeric fusion 

protein interacts with the MITF (melanocyte master transcription factor) promoter, thus it 

directly and aberrantly activates MITF expression. Consequently, CCS is characterized by the 

expression of the melanocytic differentiation markers HMB45/gp100 and Melan-A/MART-1 

[146]. Overall, several immunophenotypic and molecular features are shared between CCS 

and malignant melanoma. Thus, clinical presentation together with FISH or RT-PCR analysis 

for the specific translocation is crucial to distinguish the two entities. Receptor tyrosine 

kinase expression/activation [161] and gene expression analysis [162], indicate that MITF 

drives the same down-stream pathways in CSC and in melanoma and that PDGFRβ and the 

hepatocyte growth factor receptor (c-Met), are expressed by CCS [163]. CCS is poorly 

sensitive to chemotherapy and anecdotal responses to regimens containing dacarbazine, 

vincristine, anthracycline, and cyclophosphamide and to interferon-alpha-2b [164] have been 

reported. Based on the molecular features described above, multi-kinase inhibitors have been 

used as therapeutic agents in this STS and objective responses to sunitinib, and sorafenib 

treatments have been recently reported [165, 166]. 
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2.3.2 ALVEOLAR SOFT PART SARCOMA (ASPS) 

 

Alveolar soft part sarcoma (ASPS) is a rare malignancy that tends to strike young adults and 

adolescents. Patients with ASPS often present with extensive metastatic disease, frequently 

involving the lungs and sometimes the brain. The clinical management of patients with 

unresectable, metastatic disease is still challenging. ASPS expresses an array of potentially 

therapeutically targetable, angiogenesis-related molecules and, importantly, it has a 

distinctive angiogenic phenotype marked by a peculiar tumor-associated vasculature [167]. 

Base on this, alveolar soft part sarcoma have been shown to respond to both sunitinib [168] 

and cediranib [117]. ASPS carries an unbalanced recurrent t(X;17)(p11;q25) translocation, 

leading to the chimeric transcription factor ASPL-TFE3 [169]. The product of this peculiar 

translocation induces c-Met transcriptional up-regulation and activation [170]. Thus, MET 

may represent a potential therapeutic target in ASPS patients and studies on selective MET 

inhibitors, have been proposed [171].  
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3. AIM OF THE PROJECT 

 

It is now clear that the tumor-host interplay represents a key component in the response to 

treatment. Thus, patient’s immune status, as well as the dynamic changes in the tumor 

microenvironment, needs to be deeply investigated during anticancer treatment. So far, no 

information is available about the systemic immunological status and no accurate histological 

description of the immune contexture at the tumor site exists for the STS subtypes topic of 

my thesis. Consequently, the impact of anti-angiogenic therapies on the immunity of these 

patients remains unexplored. My study aimed to fill these gaps: 

 

 

� The first objective was to investigate the in vivo presence and quality of circulating 

immune cells and tumor immune infiltrates in patients with STS. 

 

� The second goal was to explore whether anti-angiogenic treatment (sunitinib) were 

actively interfering with the immunological status of these patients locally, at tumor 

site, and systemically.  
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4. MAIN RESULTS 

 

Submitted Manuscript I - Adaptive immune contexture at the tumor site and 

downmodulation of circulating myeloid-derived suppressor cells in the response of solitary 

fibrous tumor patients to anti-angiogenic therapy. 

 

The first interesting observation of our in situ analysis on anti-antiogenic naïve SFT 

specimens was the presence of a very dense infiltrate of ramified CD163+ myeloid cells 

diffusely interdispersed among the cancer cells (Figure 1, panel a). These cells, mostly 

CD68 negative (b), included, as shown by confocal analysis, CD163+CD14+ M2-type TAMs 

(arrows) and CD163+CD14- cells (circle), likely representing IMCs (c). Conversely, CD3+ 

lymphocytes were mainly absent (d), and when present, they were enriched in suppressive 

Foxp3+ Tregs (e and f). Collectively, these IHC and confocal analyses indicated an 

immunological status skewed toward immune suppression. 

                 

 

Then, we wondered whether this local immunosuppressive signature could be reversed by 

anti-angiogenic treatments. We observed that, as opposed to sunitinib-naïve tumors, M/DSFT 

lesions surgically removed from patients who received sunitinib in neo-adjuvant setting were 

all characterized by a high density of activated (HLADR+) CD3+ tumor-infiltrating T 
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lymphocytes (TILs), which included both Th1-polarized (T-bet+) CD4+ T cells and cytotoxic 

competent CD8+ T cells (GZMB+ and TIA-1+) (Figure 2A).  

                

 

 

These data were further confirmed by ex vivo analysis on TILs purified from a sunitinib-

treated MSFT lesion (Figure 2B).  
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Interestingly we found that in post-therapy lesions, activated T cells correlated with the 

concomitant presence of a newly acquired population of CD68+CD14+ macrophages rarely 

found in untreated tumors (Figure 3A and 3B panels a and b).  

                     

 

Indeed, we observed that, while CD163+ cells in the pre–treated lesions showed an elongated 

and often ramified morphology, these CD68+ macrophages displayed the round-shape 

morphology typical of the M1 polarization (Figure 3A) [97], expressed high level of HLA-

DR (Figure 3B panel c), and were mainly organized in clusters around areas of tumor 

regression. Thus, proximity to T cells, morphology and phenotype features suggest their 
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immunostimulatory and anti-tumor activity. Altogether, the IHC analysis results were 

consistent with an ongoing adaptive immunity in post-sunitinib M/DSFT lesions.  

 

We then evaluate the systemic immunological status of SFT patients. Multiparametric flow 

cytometry approach was applied to identify the different subsets of immune suppressive cells 

and to quantify their frequency.  We found that: 

a)  CD3+CD4+CD25hiFoxp3hi Tregs, were significantly expanded in M/DSFT patients 

compared with age-matched healthy donors (HDs) (Figure 4A).  

b) No differences in the percentages of Lineage-negative MDSCs (Lin-HLADR-CD33+), 

were detected between patients and HDs. 

c)  The percentage of CD11b+CD14+HLADR-/low mMDSCs, was significantly higher both 

in subjects with CSFTs and M/DSFTs than in HDs (Figure 4B). 

d) gMDSCs, identified both as percentage of Lin-HLADR-CD66b+ and CD66b+CD15+ 

cells in live PBMCs as well as considered as neutrophil count in parallel with the 

arginase activity detected in plasma, were found to be increased in untreated SFT 

patients compare to HDs. Concomitantly, by intracellular staining, circulating CD3+ T 

cells displayed a decreased functionality and they showed a reduced production of 

IFN-γ and IL-2 (Figures 4C and 4D). 

Altogether, these phenotypic and functional assays testify a status of systemic 

immunosuppression in SFT patients.  
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We monitored the frequency of circulating Tregs and the two MDSC subsets (mMDSC and 

gMDSC) in patients with M/DSFTs collected at different time points during sunitinib 

therapy.  We found that: 

a) The frequency of both Tregs and gMDSC decreased during treatment and remained 

low at time of disease progression. Interestingly, the frequency of circulating 

mMDSCs was significantly reduced at day 15 (T15) but, although patients were still 

under drug treatment, a rebound in the number of mMDSCs was observed at disease 

progression (Figure 5A).  
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b) The decrease functionality of the circulating CD3+ T cells, assessed by intracellular 

staining as reduced IFN-γ and IL-2 production, was quickly relieved at T15 but then 

re-established concomitantly with the increase in mMDSCs at progression (Figures 

5B and 5C). 

 

                   

 

c) Three patients displaying a long lasting response to sunitinib treatment consistently 

displayed percentages of mMDSCs comparable to HDs (Figure 6A Panel a) and no 

evidence of CD3+ T cell dysfunction in the peripheral blood could be detected 

(Figure 6A Panel b and c).  

d)  mMDSCs from patients at time of disease progression were assessed for the 

activation of STAT-1, 3, 5 and 6 in response to the ex vivo cytokine stimulation. 

Interestingly, ex vivo analysis of CD14+CD11b+HLADR-/low mMDSCs from 

peripheral blood of patients progressing during sunitinib treatment evidenced an 

IFNα-mediated STAT3 phosphorylation that did not occur in mMDSCs of sunitinib-

responding patients (Figures 6B). 
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Conclusions: Collectively, our results provided phenotypic and functional evidence of a local 

and systemic immunosuppressive status that could be relieved by anti-angiogenic therapy. 

Moreover, high levels of mMDSCs and impaired T cell functions were found to be associated 

with tumor progression, while long-lasting low mMDSC frequency in sunitinib-treated 

patients paralleled the disease control. Initial functional characterization of mMDCS at 

progression suggests that sunitinib-treatment might induce/select a qualitatively different 

mMDSCs population, possibly representing an immune-mediated mechanism of acquired 

resistance. 
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Manuscript II  [in preparation]- Melan-A/MART-1 immunity in a clear cell sarcoma patient 
treated with sunitinib: a case report. 
 

Unlike other tumors, such as malignant melanoma, there are not currently bona fide TAAs or 

TSAs in SFT. Of note, as melanoma, CCS express a MITF-regulated expression of 

melanocyte differentiation antigens (HMB-45/gp100 and Melan-A/MART-1). Thus, I had the 

possibility to directly study the antigen-specific T cell response in a CCS (HLA-A*0201) 

patient with advanced disease that displayed a long-lasting response to treatment with the 

anti-angiogenic drug sunitinib. 

In situ analysis revealed that, tumor specimen removed after treatment with sunitinib 

displayed signs of pathological regression associated with CD3+/CD8+T cell infiltration and a 

selective loss of MART-1 expression at the tumor level, while retaining the positivity for 

HMB-45 and S-100 (Figure 1A and 1B).  
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The in vivo generation of the MART-1 loss antigen variant was associated with the presence 

of an anti-MART-1 systemic immunity. In fact, after in vitro sensitization with the 

immunogenic HLA-A*0201 restricted peptide Melan-A/MART-1[27L], functionally active 

MART-1 specific CD8+T lymphocytes were detected by pentamer staining (Figure 2A) and 

by ELISpot  assay (Figure 2B).  

                                          

 

 

As for SFT, sunitinib treatment induced a sustained down-modulation of the frequency of 

immune suppressive cells, Tregs and mMDSCs,  in  this patient. Modulation of these cell 

subsets paralleled a T cell re-activation (Figure 3) that likely included also the anti-MART-1 

specific T cells. Indeed, in the peripheral blood the percentage of IFN-γ (red line) and IL-2-

producing (blue line) T cells were inversely correlated with that of immunosuppressive cells. 
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Conclusions: These data demonstrate a previously undescribed immune response directed 

toward melanoma antigen in a CCS patients. Altogether the provided evidence support the 

hypothesis that the post-sunitinib MART-1 negative tumor variant was the in vivo outcome of 

T cell-mediated, immune selection occurring in CCS patient likely operated by the anti-

MART-1 T cells. This anti-MART-1 specific immunity may have been reactivated/unleashed 

following the release in the immune suppression induced by the sunitinib treatment.  
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Published Paper III - Structured myeloid cells and anti-angiogenic therapy in alveolar soft 

part sarcoma. [Commentary] 

 

In line with the characterization of myeloid/macrophage cells previously described in SFT 

patients, we explored the presence and the localization of cells expressing myeloid markers in 

the inflammatory infiltrate of metastatic alveolar soft part sarcoma (ASPS). As stated in the 

introduction this tumor is characterized by a peculiar tumor-associated vasculature [167].  By 

IHC and confocal analysis, we found that myeloid cells expressing CD14 and CD163 

markers constitute the prominent cells in the inflammatory infiltrate of naïve ASPS (Figure 

1, panels A and D). Within the TME, these M2-like CD14+CD163+ macrophages were 

structurally organized in two distinct localizations. CD14+CD163+ cells formed a network 

surrounding VEGFR2+ CD31+ endothelial cells (arrows) or, as single cells, they were 

interspersed in tumor nests (circle), keeping deep contact with tumor cells (panels B, C and 

E).  

           

These myeloid cells might function as active inflammatory components promoting VEGF-

mediated vasculogenesis and, although not physically part of the vasculature, they are 

thought to provide trophic support to the characteristic ASPS vascular network. We discuss 

these findings in relation to a published paper by Kummar and colleagues on metastatic 

alveolar soft part sarcoma (ASPS) treated with the anti-angiogenic drug cediranib [117]. 

Interestingly, molecular analysis of ASPS after treatment showed a strong modulation of 

transcripts related not only to angiogenesis/vasculogenesis, but also to inflammatory myeloid 

cells.   
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Conclusions: We showed for the first time that ASPS are heavily infiltrated by M2-like 

CD14+CD163+ macrophages structurally organized to support vasculature or likely exerting 

tumor trophic functions. Our morphological observation provide the rationale for considering 

the tumor infiltrating myeloid cells as potential targets of antiangiogenic therapies such as 

cediranib and suggest that their numeric or functional modulation can be part of the response 

to treatment. 
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5. CONCLUSIONS AND FUTURE PROSPECTS 

 

The results collected in this thesis provided evidence of a local and systemic immunological 

status skewed toward immunosuppression in these STS patients, status that was previously 

ignored and that have crucial importance for directing appropriate clinical intervention in 

these types of neoplasms. The described immunomodulatory activities of sunitinib, together 

with the preliminary evidence that STS might be immunogenic in vivo (as we showed in the 

case report about the CCS subtype) strongly suggest that a re-activated tumor immunity could 

be part of the response to treatment. Data collected in this thesis provide the rationale for 

considering the manipulation of the immune system as a therapeutic approach at least in 

advanced SFT and CCS patients. Indeed, the observed phenomenon that sunitinib transiently 

normalizes disturbed myeloid differentiation status, while sparing lymphocytes and even 

enhancing their function, suggests that this treatment might provide a window, in which these 

patients may benefit from active immunotherapeutic approaches. Thus antibodies directed to 

immunological checkpoints, such as ipilimumab (anti-CTLA-4) or nivolumab (anti-PD-1) 

[106, 107], now in use for melanoma patients, may offer, alone or in association with 

targeted-therapies, a new therapeutic option for achieving more durable disease control in this 

category of STS patients. Of note, both SFT and CCS bear a causative chromosomal 

translocation that encodes for a new fusion protein. This protein, exclusively expressed by 

tumors cells, present in tumor at the early stages and maintained in the advanced metastatic 

disease, can be a potential and ideal source of tumor-specific, unique, non-self antigens 

toward which direct/re-direct the immune response by active vaccination or adoptive 

therapies. 

 

The involvement of myeloid cells in maintaining an immune suppressive state in the 

peripheral blood, together with the heavy infiltration of TAMs observed across different 

naïve STS subtypes, clearly demonstrated by the results provided in this thesis, pose the 

rationale for combination therapies that include drugs limiting the function, differentiation or 

recruitment of myeloid lineage cells in association with other targeted-therapies. Some of 

these drugs are already used in the clinical settings [172-174] with promising results. The 

rebound of the myeloid suppressive cell population documented in the peripheral blood of 

SFT patients at disease progression, although patients were still under sunitinib treatment, 

poses the crucial question whether, in addition to participate to a clinical response, the 

immune system may also take part in the phenomenon of the acquired resistance to treatment. 
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The initial characterization performed in this thesis on the functional features of the mMDSC 

present/selected in the presence of sunitinib at disease progression seem to indicate that this is 

a realistic hypothesis that deserves accurate and further investigation. 

 

In conclusion, the results of this thesis pose the rationale for immune based intervention in 

the subtypes of STS here analyzed. Futures studies should be designed to:  

1. shed light on the antigen specificity of the autologous anti-tumor response in SFT and 

CSC patients and defining immunogenic unique, non self-epitopes for vaccine-based, 

or specific adoptive therapies; 

2. dissect the contribution of the immune system in the ‘acquired resistance‘ to targeted-

therapies. 
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Abstract  

Background:  Host immunity is emerging as a key player in the prognosis and 

response to treatment of cancer patients. However, the impact of the immune 

system and its modulation by therapies are unknown in rare soft tissue sarcomas 

such as solitary fibrous tumours (SFTs), whose management in the advanced forms 

includes anti-angiogenic therapy. Here we studied the in situ and systemic immune 

status of advanced SFT patients and the effects of sunitinib malate (SM) in 

association with the clinical efficacy. Methods: Immune contexture of SFT was 

assessed by immunohistochemistry in lesions from untreated or SM-treated patients. 

Frequency of circulating myeloid-derived suppressor cells (MDSCs), regulatory T 

cells (Tregs) and T cell functions were assessed ex vivo in SFT patients prior and 

during anti-angiogenic therapy. Patients with long term tumour control were included 

to correlate immune profiles and clinical responses. Results: Anti-angiogenic naive 

SFT lesions were heavily infiltrated by CD163+CD14+CD68- and CD163+CD14-CD68- 

myeloid cells but devoid of T cells. Conversely, post–SM tumours acquired a new 

subset of CD68+CD14+ myeloid cells and displayed traits of an on-going adaptive 

immunity, strongly enriched in activated CD8+ and CD4+ T cells. These changes at 

the tumour site paralleled the alleviation of systemic immunosuppression and the 

drop in the frequency of circulating mMDSCs and gMDSC. Rebound in the number 

of mMDSCs, but not of gMDSC occurred at disease progression, and a reduced 

percentages of mMDSCs, comparable to those found in healthy donors (HD), 

endured only in the SM-responsive patients. Conclusion:  The immune contexture of 

SFT patients is heavily involved in anti-angiogenic therapy and it could be exploited 

to achieve more durable disease control through immune-based combination 

strategies.  

 

Keywords:  soft tissue sarcoma, solitary fibrous tumour, anti-angiogenic therapy, 

anti-tumour response, myeloid-derived suppressor cells, tumour-infiltrating 

lymphocytes, tumour microenvironment, immunohistochemistry.  
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Introduction  

Solitary fibrous tumour (SFT) is a rare subtype of soft tissue sarcoma (STS) that can 

occur in several anatomical sites, most frequently in middle-aged patients. Whereas 

most SFTs have an indolent course and can be cured by surgery, 15-20% of SFTs 

progress with either local recurrence or distant metastases (Fletcher et al, 2013; 

Chan et al, 1997). In addition to the classical SFT (CSFT), two more aggressive 

clinical-pathological variants of SFTs are currently recognised: malignant (MSFT) 

and dedifferentiated (DSFT), the latter showing a high-grade sarcoma overgrowth 

(Mosquera et al, 2009; Collini et al, 2012). We and other groups have recently 

described the activity of sunitinib malate (SM) (Chow et al, 2007), in unresectable, 

progressive M/DSFT patients (Stacchiotti et al, 2010; Stacchiotti et al, 2012; George 

et al, 2009). Apart from being an anti-angiogenic drug, SM possesses 

immunomodulatory functions (Ozao-Choy et al, 2009; Ko et al, 2009). The role of the 

immune system in controlling tumour growth has long been recognised and the 

immune contexture, defined by the frequency, type, functional polarisation and local 

distribution of immunocompetent cells at the tumour site, has been shown to impact 

tumour prognosis (Fridman et al, 2012; Galon et al, 2014). Moreover, ‘avoiding 

immune destruction’ has been recently listed as an emerging hallmark of cancer 

(Schreiber et al, 2011; Hanahan et al, 2011) and among the immune suppression 

mechanisms active in cancer patients, those mediated by Foxp3+ regulatory T cells 

(Tregs) and myeloid derived suppressive cells (MDSCs) strongly hinder the anti-

tumour response in patients with cancer of different histology (Filipazzi et al, 2007; 

Diaz-Montero et al, 2009; Mougiakakos et al, 2010). Little is presently known about 

the nature and features of the immune response to SFT, and no accurate histological 

description of local immunity exists for this STS. Moreover, the impact of anti-cancer 

therapies on the immunological status of the SFT patients remains unexplored. 

Herein, we showed that the immunological profiles of CSFT, MSFT and DSFT 

patients, at the tumour site and in circulating PBMCs, revealed an 

immunosuppressive status. Our data demonstrated that SM treatment relieves 

systemic immunosuppression in PBMCs of M/DSFT patients, and at the tumour site 

it favoured the setting of an immune contexture with typical adaptive immunity traits. 

Altogether, these findings pave the way for the design of therapies that combine 

immune-based approach with anti-angiogenic treatment in SFT patients in order to 

achieve a more durable control of this aggressive disease. 



___________________________________________Host immunity in soft tissue sarcoma patients 

54 
 

Materials and methods  

 

Immunohistochemistry (IHC) and confocal analysis  

Serial sections of 5-µm thick formalin-fixed, paraffin-embedded (FFPE) SFT samples 

(n=15) were cut and processed for IHC or immunofluorescence staining as 

previously described (Stacchiotti et al, 2012) and as briefly summarised in the 

supplementary material (see Supporting information, Supplementary materials and 

methods). The clinical and pathological characteristics of each tumour are 

summarised in Supporting information, Table S1. All the tumour samples were 

analysed for the presence of the NAB2-STAT6 fusion as previously described 

(Mohajeri et al, 2013; Robinson et al, 2013) (see Supporting information, 

Supplementary materials and methods). The antibodies used for IHC and confocal 

analysis and their conditions of use are reported in Supporting information, Table S2. 

Confocal microscopy was carried out using a Radiance 2100 microscope (Bio-Rad 

Laboratories, Hercules CA) equipped with a krypton/argon laser and a red laser 

diode. Evaluation of all IHC stains was performed by the Pathologist (S.P.) who 

scored the intensity of the staining using a scale from (-) no staining to (++++) very 

strong staining. 

 

Blood sample collection and patient characteristics   

This study was conducted in compliance with the Declaration of Helsinki and 

approved by the Ethical Committee of Fondazione IRCCS Istituto Nazionale dei 

Tumori, and all of the patients signed a written informed consent for the collection of 

blood samples. Blood samples were collected from SFT patients before and at 

different time points after initiating continuous treatment with anti-angiogenic therapy. 

Blood was also collected at the time of disease progression. Blood from age-

matched healthy donors (HDs) was also obtained for control. PBMCs were isolated 

by Ficoll/PaqueTM PLUS density gradient centrifugation within two hours of the blood 

draw, as described elsewhere (Casati et al, 2006). To avoid assay-to-assay 

variability, purified PBMCs were cryopreserved in liquid nitrogen for batch acquisition 

of Tregs and MDSCs based on phenotype and frequency. Immunological monitoring 

of circulating Tregs and MDSCs was conducted in a total of 17 SFT patients. The 

clinical characteristics of the immunologically monitored patients are reported in 

Table 1. Patients began anti-angiogenic treatments at disease progression and after 
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a minimum period of 15 days of washout if they had previously received 

chemotherapy agents. The mean duration of the anti-angiogenic treatment was 6 

months (range, 1-20); patients underwent disease assessment at baseline and after 

approximately 1-2 months. Objective responses according to the Response 

Evaluation Criteria in Solid Tumors (RECIST) and tumour burden shrinkage were 

determined by physician assessment of radiographs. Patients were treated until they 

experienced RECIST-defined disease progression or unacceptable toxicity. 

 

SFT tumour dissociation and tumour-infiltrating lym phocytes (TILs) analysis 

TILs were obtained from tumour sample of patients who underwent surgery by 

enzymatic and mechanic digestion using the gentleMACS Dissociator (Miltenyi, 

Bergisch-Gladbach, Germany). Briefly, tumour specimens were minced under sterile 

conditions into small pieces and digested over 1 h following the gentleMACS 

Dissociator protocol (Miltenyi) at 37°C. The result ing cell suspension was filtered 

through a 70-µm mesh (BD Biosciences, San Jose, CA), the red blood cells (RBCs) 

were lysed, and the cells suspension was washed twice with RPMI. Cells were 

stored in liquid nitrogen until use. For intracellular cytokine staining, patients’ TILs 

were seeded into 96-well round-bottomed plates at 1.5x105 cells/well in RPMI + 10% 

human serum and stimulated overnight with PMA/Iono (50 ng/mL and 500 ng/mL, 

respectively) plus GolgiStop (4 uL/6 mL, BD Biosciences) at 37°C. TILs were stained 

for the cell surface markers CD3, CD4 and CD8. The cells were then washed, fixed 

and permeabilised with Fix/Perm reagents (eBioscience, San Diego, CA) following 

the manufacturer’s protocol and then stained with a488-labelled anti-IFN-γ 

(BioLegend, San Diego, CA ), PE-labelled anti-Tbet (eBioscience) or PE-labelled 

anti-granzyme B (BD Biosciences). Dead cells were identified using the LIVE-

DEAD® Fixable Violet Dead Cell Stain Kit (Life Technologies, Carlsbad, CA) 

according to manufacturer’s instructions and excluded from the analysis. The 

fluorescence intensity was measured using a GalliosTM (Beckman Coulter, Brea, CA) 

flow cytometer and analysed using Kaluza® software (Tree Star Inc, Ashland, OR). 
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Flow cytometry and intracellular cytokine staining  

Treg and MDSC frequencies were determined by six-colour immunofluorescence 

staining of thawed PBMCs. The antibodies used are reported in Supporting 

information, Table S3. Dead cells were identified using the LIVE-DEAD® Fixable 

Violet Dead Cell Stain Kit (Life Technologies) according to manufacturer’s 

instructions and excluded from the analysis. For surface staining, cells were 

incubated with antibodies for 30 minutes at 4°C aft er blocking non-specific antibody 

binding to the Fc-receptors using FcR Blocking Reagent (Miltenyi). For Treg 

analysis, intracellular staining with APC-conjugated anti-Foxp3 (eBioscience) or the 

proper isotype control (rat IgG2a) was performed after fixation and permeabilisation 

of cells using an intracellular staining kit (eBioscience) according to the 

manufacturer’s instructions. Intracellular staining was performed as follows. 

Lymphocytes activated overnight with anti-CD3/CD28 beads (DynaBeads® 

CD3/CD28 T cell Expander, Invitrogen Dynal AS, Oslo, Norway) in the presence of 1 

µl/ml Golgi Plug (BD Biosciences) were stained for the cell surface marker CD3. The 

cells were then washed, fixed and permeabilised with Cytofix/Cytoperm buffer (BD 

Biosciences) and stained with a 488-labelled anti-IFN-γ (BioLegend), PE-labelled 

anti-IL2 (BD Biosciences). Data acquisition was performed using a GalliosTM 

(Beckman Coulter) flow cytometer, and the Kaluza® software (Tree Star Inc) was 

used for data analysis. 

 

Intracellular protein kinase assay 

Cryopreserved PBMCs were thawed, washed and rested 2h at 37°C in RPMI 

containing 1%HS. Then, cells were incubated either without stimulation or stimulated 

with GMCSF 10ng/ml (Peprotech), IL-4 100ng/mL (Perprotech), VEGF 50ng/mL 

(Peprotech) and IFNα 10000 U/mL (Sigma –Aldrich, St Louis, MO, USA). 

Immediately after stimulation cells were fixed with pre-warmed BD CytofixTM Buffer 

(BD Biosciences) for 10min at 37°C.  After incubati on cells were washed with PBS 

1%FCS and then stained with anti-CD14 APC alexa750 (Beackman Coulter) and 

HLADR FITC (BD Biosciences) for 30 min and permeabilized with Perm Buffer III 

solution (BD Biosciences). Cell were then stained for intracellular expression of anti-

pSTAT1 (Y701) Alexa Fluor 647, -pSTAT3 (Y705) Alexa Fluor 647, -pSTAT6 (Y641) 

PE and –pSTAT5(Y694) PE (all from BD Bioscences). Data were acquired on a 
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GalliosTM (Beckman Coulter) flow cytometer and analysed using the Kaluza® 

software (Tree Star Inc).  

 

 

Arginase activity assay 

Plasma from HD and SFT patients were tested for arginase activity by measuring the 

production of L-ornithine from L-arginine, as previously reported [Rodriguez PC et al 

Cancer Res 2004]. In brief, 25uL of plasma samples were added to 25uL of Tris-HCL 

(50nM; pH 7.5) containing 10mM MnCl2 (sigma). Arginase was then activated by 

heating the mix for 20 min at 55°C. Then a solution  containing 150uL carbonate 

buffer (100mM; sigma) and 50uL L-arginine (100mM; sigma) was added and 

incubated at 37°C for 20 min. The hydrolysis reacti on from L-arginine to L-ornithine 

was stopped with 750uL of glacial acetic acid and identified by a colorimetric assay 

after the addition of 250uL of ninhydrin solution (2.5g ninhydrin (sigma); 40mL H3PO4 

6M; 60mL glacial acetic acid), followed by incubation at for 1h at 95°C. The amount 

(nmol) of L-ornithine was determined measuring the absorbance at 570 nm.  

 

Statistical analysis 

The two-tailed unpaired Student’s t test (with a 95% confidence interval [Cl]) was 

used to compare groups, while the two-tailed paired Student’s t test was used to 

analyse the effect of the treatments between different time points, as indicated in the 

figure legends. Statistical calculations were performed using the Prism5 software 

(GraphPad Software, La Jolla, CA, USA). P values < 0.05 were considered 

statistically significant. Error bars represent the standard error of the mean (SEM). 
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Results  

Tumour-infiltrating immune cells in CSFT and M/DSFT   

To gain insight into the immune contexture of SFTs, the presence and functional 

polarisation of tumour-infiltrating T cells and myeloid/macrophage cells were 

assessed by IHC analysis on a retrospective series of FFPE SFT specimens (n=11) 

collected from patients who did not receive anti-angiogenic therapy prior to surgery. 

This series of anti-angiogenic-naïve SFTs included 3 CSFTs, and 5 MSFTs and 3 

DSFTs. Supporting information Table S1 reports the histopathological features of the 

studied tumours. The majority of the analysed samples were negative or very poorly 

infiltrated with CD3+ T cells (Figure 1A). Only 2 cases (MSFT Tumour ID #8 and 

DSFT Tumour ID #9) displayed a remarkable positivity for CD3 staining (Figure 1A) 

that, however, was paralleled by a strong positivity for the Foxp3 nuclear marker, 

thus indicating enrichment in infiltrating Tregs (Figure 1A). In our samples, antibodies 

directed against the CD68 and CD163 markers did not stain tumour cells but did 

identify two different subgroups of tumour-associated macrophages (TAMs). All of 

the SFT cases displayed strong infiltration by CD163+ cells intermingled with the 

tumour cells, and the frequency of this myeloid cell type was further enhanced in 

tumours with a worse prognosis, namely M/DSFT samples. Conversely, CD68 

staining was completely negative or revealed only few/scattered positive cells 

(Figure 1A). Confocal analysis, performed to better clarify the nature of the myeloid 

cells present in the M/DSFT microenvironment, showed that the majority of the 

CD163+ cells were positive for CD14, fitting with a pro-tumour, M2-TAM nature 

(Figure 1B (arrows)) (Mantovani et al, 2002). Moreover, a subset of CD163 single-

positive cells was also detected (Figure 1B (circle)). According to the literature, these 

cells might represent a subset of myeloid progenitors or immature cells (de Vos van 

Steenwijk et al, 2013). Analysis of the granulocytic component was also performed 

and no evidence for a selective infiltration of this cell subset was evidenced. CD66b+ 

cells were in fact only occasionally found inside the tumor, with some positivity 

detected only in perivascular areas (Figure S1). Collectively, the IHC and confocal 

analyses indicated poor T-cell infiltration and an immunological status skewed 

toward immune suppression in CSFT and in M/DSFT lesions. 
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Evidence of a distinct immune cell signature in M/D SFT lesions from SM-

treated patients  

Pro-angiogenic factors and abnormal tumour vasculature hamper the extravasation 

of immune cells into the tumour parenchyma and promote immune suppression 

(Dirkx et al, 2003). Conversely, anti-angiogenic treatments, while normalising blood 

vessels, enhance immune infiltration, as was recently shown in different animal 

models (Jain et al, 2013; Shrimali et al, 2010). In M/DSFT patients, we recently 

described the activity of SM, and we reported that SM led to vascular normalisation 

at the tumour site (Stacchiotti et al, 2012). We thus explored the immune contexture 

in 4 M/DSFT lesions surgically removed from patients who received SM in neo-

adjuvant setting. All of these samples showed a high density of CD3+ TILs (Figure 

2A), which included both CD4+ and CD8+ T cells. The intratumoral lymphocytes were 

mainly HLA-DR positive, and a consistent fraction of them also stained positive for 

granzyme B (GZMB) and T cell-restricted intracellular antigen (TIA-1, a cytotoxic 

granule-associated protein expressed by cytotoxic T cells and  involved in the 

induction of apoptosis in CTL sensitive targets) (Figure 2A). Thus, the CD3+ 

infiltrating cells were mainly activated T cells endowed with cytolytic potential. 

Moreover, their positivity for the nuclear transcription factor T-bet (immune cell-

specific member of the T-box family of transcription factor coordinating type 1 

immune responses) suggested enrichment in functional, Th-1-polarised T cells 

(Figure 2A). No Foxp3+ cells were detected (Figure 2A), indicating the absence of 

regulatory, suppressive T cells at the tumour site in post-SM M/DSFT patients. 

Concerning the monocyte/macrophage compartment, in addition to the 

CD163+CD68- myeloid population (Figure 3), post-SM M/DSFTs displayed a strong 

positivity for intratumoral CD68+ myeloid cells (Figure 3A). On confocal analysis, 

these CD68+ cells co-expressed CD14 and represented a newly acquired population 

of macrophages rarely found in untreated tumours (Figure 3B Panel b). Moreover, 

these CD68+ macrophages displayed a typical round morphology, and double-

immunofluorescence staining revealed co-expression of both the CD68 and HLA-DR 

markers (Figures 3B Panel c). These features are compatible with the M1 phenotype 

of activated macrophages. On IHC evaluation, all of the cases treated with SM 

showed signs of a pathologic response. Extensive areas of necrosis and tumour 

regression were observed in the proximity of the immune and inflammatory 

infiltration. Of note, around the area of tumour regression, cytotoxic competent, Th1 
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CD8+ and CD4+ T cells were organised in clusters (Figure 2B). Altogether, the IHC 

analysis results were consistent with an ongoing adaptive immunity in post-SM 

M/DSFTs. To strengthen this conclusion, ex vivo TILs were isolated from  excised 

naive and post-SM MSFT (Patient ID #13) specimens and tested in vitro for their 

immunological properties. T cells from post-SM lesions were found to contain 

functionally active CD4+ T cells producing IFN-γ ex vivo and CD8+ granzyme B-

positive T cells, representing effector cytotoxic T lymphocytes (Figure 2C).  

Standard treatment for M/DSFT patients includes different regimens of cytotoxic 

chemotherapy associated or not with radiotherapy.  To verify whether modulation of 

the immune contexture at the tumour site also occurred in patients responding to 

chemotherapy, IHC analysis was performed in 4 M/DSFT tumour lesions surgically 

removed from patients who received chemo/radiotherapy in neo-adjuvant setting. 

Weak/moderate CD3 infiltration and only few, spared CD68+ cells were detected in 

two tumours surgically removed from patients treated with chemotherapy 

(isofosfamide and/or epirubicin)  plus radiotherapy (Figure S2, Tumour ID #14 and 

#15). Absence of CD68+ cells and very week CD3+ T cells infiltration characterised 

the post-epirubicin (monotherapy) tumour (Figure S2 Tumour ID #13).  Of note, in 

the tumour sample from a patient treated with doxorubicin and dacarbazine, 

moderate CD3+ infiltration, associated to a still week but more clusterised CD68+ 

positive infiltrate  was detected in the proximity of areas showing signs of necrosis 

and tumour regression likely suggesting  a possible engagement of  the immune 

response. 

 

Accumulation of immunosuppressive cells in peripher al blood of solitary 

fibrous tumour patients  

To evaluate the systemic immunological status of SFT patients, we explored the 

frequency of Tregs and mMDSCs in the peripheral blood of a prospectively collected 

series of 17 SFT patients who included 5 patients with tumours classified as CSFTs, 

6 as MSFTs and 6 as DSFTs (Table 1). PBMCs of HDs, matched for gender and 

age, were included as controls. Tregs, defined as CD25hiFoxp3hi within a live-gated 

CD3+CD4+ cell population, were significantly expanded in M/DSFT patients 

compared with age-matched HDs (n=11)  (p= 0.0008, 1.04±0.65 vs. 2.57±1.05); 

conversely, no statistically significant difference existed between HDs and CSFTs 

patients (Figure 4A). The percentage of mMDSCs, first defined by our group as 
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CD11b+CD14+HLADR-/low (Filipazzi et al, 2007; Hoechst et al, 2008; Walter S et al, 

2012), was significantly higher both in subjects with CSFTs and M/DSFTs than in 

HDs (p=0.0398, 6.19±4.03; p<0.0001, 13.88±6.56 vs. 3.23±1.31, respectively) 

(Figure 4B). No difference in the percentages of Lin-HLADR-CD33+ MDSCs, were 

detected between patients and HDs (data not shown). The overall frequency of 

CD3+CD4+ T cells and myeloid/monocyte CD14+CD11b+ cells did not differ 

significantly between patients and HDs (Figures 4C and 4D). Moreover, circulating 

CD3+ T cells from CSFT and M/DSFT patients were functionally impaired. Figures 

4E and 4F show that the frequency of CD3+ T cells that produced IFN-γ and IL-2 ex 

vivo was strongly reduced in patients’ PBMCs compared with HDs. Altogether, these 

phenotypic and functional assays suggested a status of systemic 

immunosuppression in SFT patients.  

 

Anti-angiogenic therapy modulates peripheral immuno suppressive cells in 

patients with M/DSFT 

Our in situ analysis provided evidence that anti-angiogenic treatment reprogrammed 

the immune contexture of M/DSFTs and favoured the onset of an active T-cell 

immunity. To evaluate whether anti-angiogenic therapy also affected the systemic 

immunological status of patients with M/DSFT, we monitored the frequency of 

circulating Tregs and mMDSCs in PBMCs from patients with M/DSFTs collected at 

different time points during SM (n= 6 patients) or pazopanib (n=1 patient) therapy 

(Table 1). These anti-angiogenic drugs did not induce lymphopenia (data not 

shown). Interestingly, at the end of the second week of treatment (T15), the 

frequency of blood Tregs, evaluated within the CD3+CD4+ compartment (Figure 5A) 

or in the total number of live cells (Figure S3), was significantly reduced (p=0.0020, 

2.63±1.12 vs. 1.41±0.75; p=0.0117, 0.57±0.37 vs. 0.36±0.26). This effect was long 

lasting, and it was maintained for the duration of the treatment (p=0.0204, 1.41±0.75 

vs. 0.95±0.48; p=0.0403, 0.36±0.26 vs. 0.22±0.14). The frequency of circulating 

mMDSCs, within the monocytic compartment (Figure 5B) or in the total number of 

live cells (Figure S3), was significantly reduced at T15 (p=0.0040, 11.93±4.84 vs. 

6.27±5.52; p=0.0295, 2.72±2.18 vs. 0.44±0.31). An increase in mMDSC frequency 

occurred in all of the patients at the time of disease progression although patients 

were still under drug treatment (p=0.0043, 6.27±5.52 vs. 13.13±5.86; p=0.0030 

0.44±0.31 vs. 1.8±0.66) (Figures 5B). The MDSC population includes also 
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granulocytic MDSC (gMDSC). Contrary to the mouse gMDSC, definition of human 

gMDSC is still challenging due to the lack of a definitive marker that clearly 

differentiates this population from activated granulocytes. However, a consensus has 

been reached in considering gMDSC as CD14-CD66b+ and/or CD15+ activated 

neutrophils within total PBMC or inside the Lin-HLADR- fraction,  displaying low 

density (thus being co-purified with PBMC during blood centrifugation) and releasing 

arginase I in the circulation (Brandau et al, 2011, Rodriguez et al, 2009; Zea H et al, 

2005). Since gMDSC have been  found expanded in the blood of patients with 

tumours of different histology (Filipazzi et al, 2012), we assessed the presence and 

frequency of this MDSC subtype in PBMC of D/MSFT by monitoring the presence of 

CD66b+CD15+ , or CD66b+Lin-HLA-DR- cells as done in others published studies 

(Brandau et al, 2011, Rodriguez et al, 2009; Zea H et al, 2005) (Figure 5D). 

Moreover, for each M/DSFT patient, the arginase activity was quantified in the 

plasma and plotted along the absolute number of blood neutrophils (Figure 5E). As 

respect to HD, M/DSFT patients displayed an enhanced frequency of gMDSC 

(Figure 5D) and an increased number of neutrophils in the blood (Figure 5E), 

number that matched the higher plasma arginase activity. Frequency of gMDSC, 

number of neutrophils and arginase activity were co-ordinately down-modulated by 

SM. However, similarly to Treg and at difference from mMDSC, gMDSC remained 

low all along the duration of sunitinib treatment including at the time of progressive 

disease (Figure 5D and 5E).. 

The functional assessment of the circulating CD3+ T cells, which was based on their 

capacity to produce IFN-γ and IL-2 ex vivo (Figures 5F and 5G), revealed that 

immunosuppression, present in patient PBMCs prior to anti-angiogenic treatment 

(Figures 5Fand 5G, PRE), was quickly relieved at T15. At progression, with the 

increase in mMDSCs, T cells displayed again an impaired function characterized by 

a limited IFN-γ and IL-2 production, similarly to what was found for the pre-treatment 

T cells. 

Three patients displaying a long lasting response to SM treatment (Table 1, Pts 

#6a,8a,10a; SD or PR according RECIST evaluation after  ≥10 months) consistently 

showed a low level of mMDSCs, with values comparable to HDs (Figure 6A Panel a) 

and no evidence of CD3+ T cell dysfunction in the peripheral blood could be detected 

in these SM-responsive patients (Figure 6A Panel b and c).  mMDSCs from patients 

at time of disease progression were assessed for the activation of STAT-1, 3, 5 and 
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6 in response to the ex vivo cytokine stimulation. VEGF was unable to trigger STAT-

3 phophorylation in mMDSCs, likely as a result of the blocking activity exerted by 

SM. The other cytokines tested, namely GM-CSF and IL-4, exerted their canonical 

activation pathways and induced STAT-5 and STAT-6 activation respectively (data 

not shown). Conversely, these mMDSCs stimulated with IFNα, in addition to STAT-1 

(data not shown), displayed a consistent phophorylation of STAT-3. IFNα-dependent 

STAT-3 activation did not occurred in mMDSCs of HD and SM-responsive patients 

(Figures 6B and 6C).  

In summary, the analysis of the circulating immune cells in PBMCs from M/DSFT 

patients provided phenotypic and functional evidence of an immunosuppressive 

status that was quickly but temporary relieved by anti-angiogenic treatment. 

Suspension in the immunosuppression correlated with response to treatment. 
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Discussion  

To our knowledge this is the first report that performed a detailed characterisation of 

the immunological status in the peripheral blood and at the tumour site of SFT 

patients and that considers the immune contexture of SFTs as a possible player in 

the response to therapy as well as in disease progression. SM exerts a significant 

anti-tumour activity in M/DSFT (Stacchiotti et al, 2010; Stacchiotti et al, 2012; 

George et al, 2009) and patients achieving long term tumour control have been 

reported (Levard et al, 2013; Domont et al, 2010). Besides the notion that immunity 

is emerging as a critical player in the response to treatment in cancer patients 

(Zitvogel et al, 2013), the rationale of assessing the role of the immune system in the 

efficacy of SM in SFTs stems from our previous observation that the levels of 

PDGFRβ and/or VEGFR2 activation, evaluated by IHC in tumour lesions, did not 

fully account for the therapeutic response to treatment (Stacchiotti et al, 2012).  

The first interesting observation of our analysis was the presence of an 

immunosuppressed environment at the tumour site, characterized by a very dense 

infiltrate of myeloid cells. These cells, mostly CD68 negative, included 

CD163+CD14+CD68- TAMs, interdispersed among cancer cells and with an 

elongated, ramified morphology compatible with M2-type macrophages (Mantovani 

et al, 2002; Ino et al, 2013; Jensen et al, 2009; Caillou et al, 2011), together with 

CD163+CD14-CD68- cells likely representing immature myeloid-derived cells (de Vos 

van Steenwijk et al, 2013; Jensen et al, 2009). Conversely, CD3+ lymphocytes were 

mainly absent, and when present, they were enriched in suppressive Foxp3+ Tregs. 

An immunosuppressive status was also detectable in the peripheral blood of SFT 

patients. In fact, circulating T cells were consistently functionally impaired, and a 

significant accumulation of mMDSCs and gMDSCs was observed in all the patients 

analysed. Notably, the increased frequency of circulating mMDSCs (Figure 4B) and 

gMDSCs (data not shown) seemed to correlate with tumour grade and disease 

aggressiveness, being already detectable in CSFT patients and reaching the highest 

level in M/DSFT patients. The more compromised immune status of these patients 

with advanced SFTs was further confirmed by the additional accumulation of 

circulating Tregs, which instead showed frequency close to normal values in patients 

with CSFTs. Altogether, this scenario reveals a previously unappreciated tumour-

mediated immunosuppression in SFT patients and particularly in patients with 

M/DSFTs. This observation opens the question whether this immunosuppressive 
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signature can be reversed by anti-angiogenic treatments and whether re-activated 

tumour immunity could be part of the response to treatment. Noteworthy, no 

information about the immunological effect of SM, as detected in situ at the tumour 

site in human setting, are available to date. Our IHC analysis showed that, as 

opposed to SM-naïve tumours, SM-treated lesions were all characterised by a 

remarkable CD3+ T cell infiltration, with no Foxp3+ Treg, but that included Th1 and 

cytotoxic-competent CD4+ and CD8+ T cells. Moreover, TILs purified from a SM-

treated MSFT lesion released ex vivo Th1-related cytokines and cytotoxic Granzyme 

B, thus supporting the local engagement of a functionally active host immune 

response. Activated T cells at the tumour site correlated with the concomitant 

presence of a new subset of CD68+ myeloid cells rarely found in untreated tumours. 

These CD68+ macrophages displayed the round-shape morphology typical of the M1 

polarization (McWorther et al, 2013), and expressed high level of HLA-DR. The pro-

inflammatory and anti-tumour activity of CD68+ macrophages infiltrating post-therapy 

SFTs is also supported by their organization in clusters around the areas of tumour 

regression and in close proximity with activated T lymphocytes. Since macrophages 

display an elevated grade of plasticity in response to external stimuli (Mantovani et 

al, 2013), we may hypothesise that in SFTs, SM re-educated tumour-resident 

myeloid cells toward a more M1 related phenotype, or, alternatively, it recruited ex 

novo a new subset of monocytes/macrophages from peripheral blood.  

Standard treatment for M/DSFT patients includes cytotoxic chemotherapy and/or 

radiotherapy. Evidence from the literature indicates that some chemotherapy 

regimens can be endowed with immunomodulatory activities (Bracci et al, 2014). 

Analysis of the immune contexture was thus performed in M/DSFT tumours obtained 

from cytotoxic responsive patients. Only very mild modulation of the immune 

infiltration was observed and this occurred mainly in those cases receiving 

radiotherapy, thus confirming previously published data (Sharma et al, 2013). Of 

note, two of the analysed tumours, one that did not show any infiltration of T or 

myeloid cells (Tumour ID #13) and one treated with chemotherapy plus RT (Tumour 

ID #14), were surgically removed from patients who were subsequently treated and 

responded to SM and whose post-SM tumours were here analysed (Figure 2A and 

2B). Indeed, at difference from the autologous post-chemotherapy counterpart, post-

SM tumours displayed a profound change in the tumour immune microenvironment 

with huge CD3+ and CD68+ infiltrating cells organised in cluster and intermingled 
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with tumour cells and areas of tumour necrosis. A lymphocyte infiltration, with a 

lower density but with distribution similar to that observed in post-SM tumours, was 

only found in the sample treated with adriamycin and dacarbazine, drugs reported as 

strong immunomodulators (Bracci et al, 2013). In this case a coordinated increase in 

CD3+ and CD68+ cell infiltration could be observed together with areas of tumor 

regression, thus possibly testifying an involvement of the immune system in the 

response to this chemotherapy regimen. In summary, a coordinated immune 

modulation, involving both myeloid and lymphoid immune infiltrate occurred in all the 

4 post-SM tumours, thus indicating a tight association between immune modulation 

and response to SM. This was not the case for the post-chemotherapy samples. 

However, the here analysed post-chemotherapy tumours were derived from patients 

who underwent heterogeneous chemotherapy treatments. So, definitive conclusions 

on the involvement of immune system into chemotherapy-induced response deserve 

further investigation. This is particularly true for the adriamycin and dacarbazine 

regimen, since a single case was available for analysis and in view of the fact that a 

retrospective study recently reported this chemotherapy regimen as effective in 

M/DSFT (Stacchiotti et al, 2013). 

The ability of SM to interfere with myeloid cells, a property already suggested in 

other cancer patients (van Cruijsen et al, 2008; Ko et al, 2009), was further 

supported by our evidence that circulating CD14+CD11b+HLADR-/low mMDSCs and 

gMDSC were significantly decreased in M/DSFT patients upon SM administration. In 

fact, the frequency of gMDSC remained low and similar to frequency found in HD all 

along the duration of the treatment, including the time of progressive disease. 

gMDSC behaviour thus overlapped that of Tregs. Conversely, the SM effect on 

mMDSC appeared to be associated with disease control, as a rebound in the 

number of mMDSCs was observed at disease progression. Moreover, SM-

responsive patients (n=3, 1 SD and 2 PR according RECIST evaluation, mean 

duration time of response ≥10 months, Table 1) consistently displayed percentages 

of mMDSCs comparable to HDs. Initial functional characterization of 

CD14+CD11b+HLADR-/low mMDSCs analyzed ex vivo from peripheral blood of 

patients progressing during SM treatment revealed the capacity of these cells to 

promote STAT3 phophorylation upon IFNα stimulation. IFNα-mediated STAT3 

phophorylation did not occur in mMDSCs of SM-responding patients. The role of 

STAT3 in the development and effector functions of MDSCs is well documented in 
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murine setting (Gabrilovich et al, 2009) and recently suggested as crucial also for 

human monocytic MDSCs (Poschke et al, 2010). However, the functional implication 

of this alternative STAT3 activation in mMDSC biology, and most importantly, the 

effects of anti-angiogenic therapy on such a signalling pathway deserve to be further 

explored. Nevertheless, these data together with the mMDSC boost at progression 

suggest that SM-treatment might induce/select a qualitatively different mMDSCs 

population, possibly representing an immune-mediated mechanism of acquired 

resistance. This ‘immunological resistance to treatment’ occurred only for the 

mMDSC compartment, as the SM-induced modulation of Treg and gMDSC 

frequency was detected in all the treated patients and it lasted for all the duration of 

the treatment.  

In conclusion, our results shed light on a previously unappreciated phenomenon of 

immune dysfunction in this STS subtype and demonstrate that anti-angiogenic 

therapy opens a temporal window during which SFT patients regain normalisation in 

systemic myeloid differentiation status and T-cell functions. Our data indicate that a 

reduced frequency in circulating mMDSC, gMDSC and Tregs, paralleled by a 

regained T cell functions occurred in association to disease control, thus suggesting 

a contribution of the host immunity to the drug efficacy. Moreover, the rebound of 

circulating mMDSCs and impaired T cell functions at tumour progression suggest 

that therapeutic strategies aimed at limiting potential residual myeloid suppressor 

activities (Nagaraj et al, 2010; Iclozan et al, 2013; Mok et al, 2013) and boosting 

tumour-specific immune responses represent a promising approach to improve the 

activity of anti-angiogenic treatment in SFT patients and to achieve a more durable 

control of this aggressive disease. Of note, the recent discovery that SFTs are 

marked by a tumour-specific chromosomal translocation (NAB2-STAT6) makes this 

tumour type an attractive target for active immunotherapy (Mohajeri et al, 2013; 

Robinson et al, 2013). In fact, the chimeric protein encoded by the recombinant 

NAB2-STAT6 gene is a potential reservoir of unique tumour-specific antigens that 

are now considered crucial in the design of an efficient personalised immunotherapy 

(Robbins et al, 2013; Nadler et al, 2002; Tran et al, 2014). 
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Figure legends 

 

Figure 1. Analysis of tumour-infiltrating immune cells in M/DSFTs not treated with 

anti-angiogenic therapy. Representative IHC stainings of two targeted therapy-naïve 

MSFT lesions (Tumour IDs #5 and #8). (A) (H&E) Haematoxylin and eosin staining. 

Images show MSFT (ID #5) with no or (ID #8) moderate CD3 infiltration. CD3+ T 

cells, when present, showed positivity for the Foxp3 nuclear marker. Presence of a 

very high density of CD163-positive macrophages diffusely dispersed among the 

cancer cells. (ID #5) sparse or (ID #8) absence infiltration of CD68+ macrophages. 

(B) Double-label immunofluorescence staining for CD14 (red) and CD163 (green) 

macrophage markers (Tumour ID #4). The arrow indicates CD163+CD14+ cells. The 

circle identifies CD163+ cells that do not express CD14. 

 

Figure 2. Analysis of infiltrating immune T cells in SM-treated M/DSFT lesions. (A) 

Representative IHC stainings of a SM-treated MSFT lesion (Tumour ID #13). (H&E) 

Haematoxylin and eosin stain. Staining for CD3+ T cells (lower and higher 

magnification, respectively), CD4+ T cells and CD8+ T cells are showed. 

Representative images of the expression of T-cell associated markers HLA-DR, 

granzyme B (GZMB), T-bet and Foxp3. (B) IHC analysis of a SM-treated DSFT 

lesion (Tumour ID #14) with evidence of tumour regression. In areas of tumour 

regression T cells (CD3, CD4 and CD8) are organised in clusters. (C) 

Multiparametric flow cytometry analysis of live lymphocytes from freshly dissociated 

naive and SM-treated MSFT tumours (Tumour ID #13). Expression levels of T-bet, 

IFN-γ and granzyme B were evaluated by intracellular flow cytometry in CD3+ T 

cells. The gating strategy is reported. 

 

Figure 3.  Analysis of infiltrating myeloid cells in SM-treated M/DSFT lesions. 

Stainings representative of SM-treated MSFT lesion (Tumour ID #13). (A) IHC 

staining for the macrophage-associated markers CD163 and CD68. Higher 

magnifications of the identified area are shown. (B) Double-label 

immunofluorescence staining and confocal analysis for (a) CD163 (green) and CD68 

(red), (b) CD68 (green) and 14 (red), and (c) CD68 (green) and HLA-DR (red).  
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Figure 4. Accumulation of immunosuppressive cells in the peripheral blood of SFT 

patients. The frequencies of circulating Tregs and mMDSCs were monitored in the 

peripheral blood of CSFT (n=5) and M/DSFT (n=9) patients compared with healthy 

donors (HDs) (n=11). (A, B) Percentages of CD25hiFoxp3hi cells (Tregs) and 

CD11b+CD14+HLADR-/low cells (mMDSCs) defined within CD3+CD4+ T cells and 

CD14+CD11b+ cells, respectively. (C, D) Analysis of peripheral CD3+CD4+ T 

lymphocytes and CD11b+CD14+ myeloid cells within live-gated PBMCs. (E, F) 

Frequency of CD3+ T cells producing (E) IFN-γ and (F) IL-2 after anti-CD3/CD28 

overnight stimulation. Each dot represents one patient. Statistical analysis: two-tailed 

unpaired Student’s t test (95% confidence interval [Cl]); only significant P values are 

shown; bars indicate SEM. 

 

Figure 5. Anti-angiogenic therapy modulates immunosuppression in M/DSFT 

patients. (A,B,D and E) Anti-angiogenic therapy modulates the frequencies of 

immunoregulatory cells in M/DSFT patients. PBMCs of M/DSFT patients collected at 

three time points during anti-angiogenic treatment were analysed for the frequency 

of (A) Tregs in CD3+CD4+ T cells (B) mMDSCs in CD14+CD11b+cells. (C) Gating 

strategy for gMDSC determination; (D) gMDSC detected as CD15+CD66b+ in live 

gated PBMC (black) or as CD66b+ cells within the Lin-HLA-DR- fraction (light blue). 

(E) significantly higher neutrophil absolute count (black dots) and arginase activity 

(red dots) were found in M/DSFT PRE compared to HD and both decreased during 

SM treatment. Grey rectangle indicate reference ranges; each dot represent one 

patient. PRE, PBMCs collected prior anti-angiogenic therapy; T15, PBMCs collected 

at day 15 during therapy; at progression, PBMCs collected at the time of disease 

progression, (F, G) Increased levels of circulating mMDSCs correlated with 

decreased T-cell functionality. PBMCs from M/DSFT patients (n=7) collected at 

different time points during anti-angiogenic treatment (PRE; T15; at progression) 

were assayed for (F) IFN-γ and (G) IL-2 secretion in response to overnight activation 

with anti-CD3/CD28-coated beads. The box plot depicts the median percentages of 

cytokine-producing CD3+ T cells. Statistical analysis: two-tailed paired Student’s t 

test (95% confidence interval [Cl]); only significant P values are shown; bars indicate 

SEM. 
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Figure 6.  Modulation of mMDSC in SM-treated M/DSFT patients. (A) Patients 

responding to SM-treatment had normal levels of mMDSCs and did not display 

dysfunctional T cells. (a) Frequency of CD11b+CD14+HLADR-/low mMDSCs in 

PBMCs from M/DSFT patients treated with SM and displaying disease progression 

(Progression) or responsive to SM-treatment (Response: 2 PR and 1 SD, duration of 

the response ≥10 months). The same PBMCs as in (a) were evaluated for the (b) 

frequency of CD3+ T cells producing IFN-γ and (c) IL-2 after anti-CD3/CD28 

overnight stimulation. (a) Each dot represents the data of a single patient. (b and c) 

Dot represents the mean value. (B) Representative histograms of pSTAT3 analyses 

in CD11b+CD14+HLADR-/low cells (mMDSCs) with (black) and without (gray) IFNα 

stimulation (10000U/mL for 15min at 37°C). (C) Colo umns represent the IFNα-

induced STAT3 activation in CD11b+CD14+HLADR-/low cells of HDs (n=4), SM-

responsive (n=3) and SM-progressive patients (n=6). ∆%pSTAT3 was calculated as: 

%pSTAT3 (IFNα)-%pSTAT3 (basal). Columns represent mean values; bars indicate 

SEM.  
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Table1. Clinicopathologic characteristics of patien ts  

 

Age (median; range): 56; 35-76; Gender (n and %): M 29%, F 71%; Male 5, Female 12. 

Abbreviations: CSFT, classical solitary fibrous tumour; MSFT, malignant solitary fibrous 

tumour; DSFT, dedifferentiated solitary fibrous tumour; PFS, progression-free survival.  

** Patients received 37.5 mg/die of SM  
§ This patient received 800 mg/die of pazopanib  
* PBMCs at the time of progression were not available for analysis.  
¥ PBMCs from the pre-treatment (PRE) period were not available for analysis.  
¶  For this patient, tumour removed after SM treatment was analysed by IHC and 
corresponded to Tumour ID #13 in TableS1. TILs from Tumour ID #13 were analysed ex 
vivo for their functional activity.  
# Patients had undergone a previous chemotherapy regimen. A washout period of at least 
15 days was respected before entering SM treatment and beginning blood draws. 
γ therapy interrupted due to toxicity. 
 
 
 

Patient 

ID  Tumour Site   Diagnosis   Drug treatment**  Reponse to SM:  

RECIST evaluation  
PFS 

(months)  

1a  Thigh  CSFT  -  -  -  
2a  Abdomen  CSFT  -  -  -  
3a  Abdomen  CSFT  -  -  -  
4a  Pelvis  CSFT  -  -  -  
5a  Thigh  CSFT  -  -  -  
6a

¥
  Pleura  MSFT  +  PR  12+  

7a
#
  Pleura  MSFT  +  SD  6  

8a
¥
  Pleura  MSFT  +  SD  10  

9a  Abdomen  MSFT  +  PD  1.5  
10a

¶¥
  Pelvis  MSFT  +  PR  20  

11a  Pleura  MSFT  +  SD  5  
12a

*#
  Pleura  DSFT  +§  Not assessable

γ  -  
13a

#
  Pleura  DSFT  +  PD  2  

14a
#
  Meninges  DSFT  +  PD  1.5  

15a  Pleura  DSFT  +  PD  2  
16a  Peritoneum  DSFT  -  -  -  
17a  Cerebellum  DSFT  -  -  -  
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Supplementary Materials and methods 

 

Immunohistochemistry and confocal analysis  

After xylene deparaffinisation and rehydration, the sections were incubated in a 3% H2O2 

solution for 10 minutes to block endogenous peroxidase. Antigen retrieval was performed by 

heating the sample in a 5-mM EDTA (pH 8) or Tris-EDTA buffer or 5-mM citrate buffer 

solution in a high-pressure cooker for 10-15 or 20 minutes and cooled for 15 minutes prior to 

immunostaining. A peroxidase-labelled polymer was used for the detections according to the 

manufacturer's instructions and visualised using 3,3′-diaminobenzidinetetra hydrochloride 

(DAB)/H2O2. Sections were assessed using a semi-quantitative scoring system. Double 

immunofluorescence staining was performed as follows: after deparaffinisation and antigen 

retrieval, sections were treated briefly with 0.1 M glycine in PBS (pH 7.4) followed by 0.3% 

Triton X-100 buffer and incubated overnight at 4°C with the primary antibodies. The samples 

were washed and incubated for 1 h at RT with appropriately conjugated secondary 

antibodies. Following a final wash, they were mounted on glass slides with 95% glycerol in 

PBS. 

 

RT-PCR 

Total RNA was extracted from frozen specimens, reverse transcribed and amplified using 

two sets of primers for the NAB2-STAT6 fusion construct, as described previously [19,20]. 

The PCR products were directly sequenced using the Big Dye v1.1 cycle sequencing kit 

(Applied Biosystems) on a 3500Dx Genetic Analyzer (Applied Biosystems). 
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Legends to supplementary Figures 

 

Figure S1. Representative example of intratumoral CD66b immunostaining. The top and the 

middle panels display sparse CD66b+ cells infiltration in one of the analysed lesion (Tumour 

ID #4). High expression of the CD66b marker was detected inside the spleen (top panel, 

right) and was used as positive control of the staining. The bottom panel shows positivity of 

the analysed marker in a perivascular area (Tumour ID #8). 

 

Figure S2. Analysis of infiltrating CD68+ myeloid and CD3+ T cells in chemotherapy (CT) 

and radiotherapy (RT)-treated M/DSFT lesions. 

 

Figure S3. Anti-angiogenic therapy modulates immunosuppression in M/DSFT patients. 

Modulation of Tregs (top graph) and mMDSCs (bottom graph) detected within total live cells. 

Student’s t test (95% confidence interval [Cl]); only significant p values are shown. 
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Supplementary Tables (Manuscript I) 
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Supplementary Figures (Manuscript I) 
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Abstract 

 

Background:  Clear cell sarcoma (CCS), initially named malignant melanoma of soft parts, is 

an aggressive soft tissue sarcoma that, due to MITF activation, shares with melanoma the 

expression of melanocyte differentiation antigens. CCS is poorly sensitive to chemotherapy 

and, based on the presence of activated PDGFRβ and c-Met, multikinase inhibitors have 

been used as therapeutic agents. In the case we report here, treatment with sunitinib 

induced a long-lasting clinical response that was associated with an immune activation 

directed against Melan-A/MART-1 antigen.  

 

Case presentation: Here we describe a case of a 28 years old female patient with an 

advanced molecularly confirmed CCS, initially arising from the deep soft tissue of the left 

foot removed in 2007. Sunitinib was started in January 2012 at the dose of 37.5 mg/day, due 

to disease progression with radiologic response. In April 2012 residual tumor was removed 

with evidence of pathologic response and loss of the Melan-A/MART1 antigen on surgical 

specimen. Immunological monitoring during treatment with sunitinib showed a reduce 

frequency of immunosuppressive cells and the presence of a systemic immunity directed 

against the Melan-A/MART-1 antigen in the patient’ blood. Patient relapsed and sunitinib 

was restarted in May 2012, with a new response, and continued for 4 months although with 

repeatedly interruptions due to toxicity. Disease progression and new responses were 

documented at each treatment interruption and restart. Sunitinib was definitively interrupted 

in April 2013 for disease progression. 

Conclusion:  The analysis of this case proves that antigens expressed by CCS, as for 

melanoma, can be immunogenic in vivo and that tumor-antigen specific T cells may exert 

anti-tumor activity in CCS patient. Thus, manipulation of the immune response may have 

therapeutic potential for this soft tissue sarcoma (STS) subtype and immunotherapy 

approaches, such as those using the antibodies ipilimumab and nivolumab, directed to the 

inhibitory immunological checkpoints, can be promising therapeutic options for these 

patients. 

 

Keywords: sarcoma, sunitinib, clear cell sarcoma, antigen specific T cell, immunotherapy, 

chemotherapy. 
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Background  

 

Clear cell sarcoma (CCS) is a very rare and aggressive soft tissue sarcoma (STS), usually 

arising from deep soft tissue or viscera [1], and marked by a very high metastatic risk 

resulting in a 5-year overall survival of about 50% [2-4]. In contrast with other STS, and 

similarly to melanoma, its metastatic sites include lymph nodes. CCS, initially named 

malignant melanoma of soft parts [5], are molecularly characterized in most cases by a 

specific translocation, t(12;22)(q13;q12), which results in fusion of the Ewing’s sarcoma 

gene, EWS, with the cyclic AMP (cAMP) regulated transcription factor, ATF1, a member of 

the cAMP-responsive element binding protein (CREB) family [6]. The EWS-ATF1 chimeric 

fusion protein interacts with the MITF (melanocyte master transcription factor) promoter, thus 

it directly and aberrantly activates MITF expression. Consequently, CCS is characterized by 

the expression of the melanocytic differentiation markers HMB45/gp100 and melan-

A/MART-1 [7]. Overall, several immunophenotypic and molecular features are shared 

between CCS and malignant melanoma. Importantly, a proportion of CCS cases lack 

specific translocation and thus, clinical presentation as well as FISH analysis and RT-PCR 

for the specific translocation are crucial to distinguish the two entities. Receptor tyrosine 

kinase expression/activation [8] and gene expression analysis [9] indicate that MITF drives 

the same down-stream pathways in CCS and in melanoma and that PDGFRβ and c-Met, are 

expressed by CCS [10,11]. Moreover, BRAF activating mutations have been occasionally 

detected in both EWS-ATF1 positive and negative CCS [8,12,13]. CCS is poorly sensitive to 

chemotherapy and anecdotal responses to regimens containing dacarbazine, vincristine, 

anthracycline, and cyclophosphamide and to interferon-alpha-2b [14] have been reported. 

Based on the molecular features described above, multi-kinase inhibitors have been used as 

therapeutic agents in this STS and objective responses to sunitinib, and sorafenib 

treatments have been recently reported [15-16]. Here we describe a case of a 28 years old 

female patient with a metastatic, translocated CCS who experienced a prolonged, objective 

response to sunitinib. We consider this case of interest as objective response to sunitinib 

paralleled the down-modulation in the frequency of immunosuppressive cells in the 

periphery, the presence of a systemic immunity directed against the CCS associated antigen 

Melan-A/Mart-1 and the in vivo immune selection of post-sunitinib, MART-1 negative tumor. 

The analysis of this case proves that antigens expressed by CCS, as for the melanoma, can 

be immunogenic in vivo and that tumor-antigen specific T cells may exert anti-tumor activity 

in vivo in CCS patient. Thus immunotherapy approaches, such as those using the antibodies 

ipilimumab and nivolumab, directed to the inhibitory immunological checkpoints, alone or in 

association with anti-angiogenic therapy, are promising therapeutic options for these 

patients. 
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Case presentation 

 

A female patient aged 28 years presented in 2007 with a lesion arising from the deep soft 

tissue of the left foot, covered by a healthy skin. Prior clinical history was negative for 

melanoma. The lesion was removed together with loco-regional lymph nodes (LN) with 

diagnosis of clear cell sarcoma (CCS) (surgery 2007), and confirmed by the positivity of the 

FISH analysis for EWS-ATF1. Three of five LN were also positive for disease. A loco-

regional and inguinal LN relapse was detected in July 2011 and treated with chemotherapy 

with doxorubicin plus dacarbazine for 5 cycles with response. Given the evidence of a new 

disease progression and based on preliminary evidence of sunitinib possible activity in CCS 

[15], in January 2012 sunitinib was started at the dose of 37.5 mg/day, with a tumor partial 

response to the lesion located on left foot and a complete response to metastasis on upper 

left leg. The response was confirmed by PET and CT scan (Figure 1). In April 2012, patient 

underwent left leg amputation, with evidence of pathologic response to sunitinib in the 

surgical specimen. In May 2012, sunitinib was restarted and maintained at the same dosage. 

During these months of treatment, sunitinib was repeatedly stopped due to toxicity, with 

evidence of rapid disease progression following treatment interruption and of a new 

response after restoring treatment. From January 2013, sunitinib was finally reduced to 12.5 

mg/day due to Grade 3 cardiac toxicity. After initial disease stabilization, disease progression 

occurred and sunitinib was definitively interrupted in April 2013. Patient died of disease in 

February 2014. 

The expression of the MITF regulated melanocytic antigens (HMB-45/gp100 and Melan-

A/MART-1) and S-100 was assessed by immunohistochemistry on pre- and post-sunitinib 

tumor specimens (surgery dic-2010/nov-2011and apr-2012, respectively).  Pre-treatment 

tumor lesions displayed a clear positivity for all of the analyzed antigens. Conversely, tumor 

specimen removed after treatment with sunitinib (surgery april-2012) displayed a selective 

loss of MART-1 expression, while it retained the positivity for HMB-45 and S-100 (Figure 

2A). Post-sunitinib tumor was heavily infiltrated by CD3+ T cells that contained a significant 

proportion of CD8+T cells. Areas with pathological regression were clearly evident in 

association with lymphocyte infiltration (Figure 2B). The in vivo generation of the MART-1 

loss antigen variant was associated with the presence of anti-MART-1 systemic immunity in 

the blood of this CCS patient. Patient’s peripheral blood mononuclear cells (PBMCs) isolated 

in the course of sunitinib treatment and before surgery (surgery april-2012), sensitized in 

vitro with the immunogenic HLA-A*0201 restricted peptide Melan-A/MART-1[27L] displayed 

the presence of a remarkable frequency of MART-1 specific CD8+T cells (7,72%), as 

monitored by pentamer staining (Figure3). These anti-MART-1 specific T cells were 

functionally active. MART-1 sensitized PBMC released IFNγ when stimulated with the target 
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cells loaded with Melan-A/MART-1-epitope (modified and native) and, importantly, they 

recognized  in a MHC restricted fashion HLA-A*0201+MART1+, but not HLA-A*0201+MART1- 

and  HLA-A*0201-MART1+ tumor cells as evaluated by ELIspot assay (Figure 3). 

Conversely, no T cells specific for the HLA-A*0201- gp100[210M],  peptide was evidenced in 

post-sunitinib PBMCs of the patient applying the same procedure . All together these 

evidences strongly support the conclusion that the post-sunitinib MART-1 negative tumor 

variant was the in vivo outcome of a T cell-mediated immune selection occurring in CCS 

patient during sunitinib treatment. The anti-MART-1 systemic immunity in CCS patients was 

associated with the release of immune suppression in post-sunitinib PBMC of the patient.  

Multi-parametric flow cytometry indicate that the peripheral frequency of 

CD3+CD4+CD25hiFoxp3hi regulatory T cells (Tregs) and CD14+CD11b+HLADRneg/low 

monocytic myeloid-derived suppressor cells  (mMDSCs), expanded in cancer patients, 

including melanoma [17-20] , was down-modulated in PBMCs collected during sunitinib 

treatment (Fig. 4A and 4B).  Down-modulation of suppressive cells correlated with a 

generalized boost in the functional activity of peripheral  T cells measured as  IL-2 and IFN-γ 

produced ex vivo upon TCR stimulation by CD3+ cells of post-sunitinib patients’ PBMCs 

(Figure 4C). 
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Conclusions 

 

We described herein the case of a CCS (HLA-A*0201) patient with advanced disease that 

displayed a long-lasting response to treatment with the anti-angiogenic drug sunitinib. In this 

patient, objective response, obtained during sunitinib treatment, was associated with anti-

tumor immunity evidenced in the periphery by the high frequency of cytokine competent anti-

MART-1 T cells and, at the tumor site, by signs of pathological regression associated with 

CD3+/CD8+T cell infiltration and with the in vivo immune selection of MART-1 negative 

antigen loss tumor variant. The study of this clinical case shows that antigen expresses by 

CCS can be immunogenic in vivo and indicates that manipulation of the immune response 

may have therapeutic potential in this STS subtype. As melanoma, CCS express the MITF-

regulated genes including gene encoding for the melanoma differentiation antigens. Thus we 

look at the presence of antigen-specific response in this CCS patient. Interestingly, we 

observed that tumor specimen resected after treatment with sunitinib had lost the expression 

of MART-1 antigen. The in vivo generation of MART-1 loss variant was associated to a 

CD3+CD8+ T cell infiltration and to the presence of areas of pathologic regression thus 

suggesting the in vivo occurrence of MART1-specific response. This hypothesis was further 

supported by the finding that functionally active anti-MART-1 T cells were detectable in the 

blood of this patients collected during sunitinib treatment. Altogether, these evidences 

strongly support the conclusion that the post-sunitinib MART-1 negative tumor variant was 

the in vivo outcome of a T cell-mediated immune selection occurring in CCS during sunitinib 

treatment and demonstrate the immunological response toward a melanocyte differentiation 

antigen, shared with melanoma, in this patient. To our knowledge this is the first report 

documenting the in vivo immunogenicity of CCS tumor. However, this response was limited 

to Melan-A/MART-1, the most immunogenic antigen in melanoma and no specific gp100+ T 

cells were detected in the blood of this patients and reactivity for HMB45/gp100 was 

maintained in post-sunitinib surgical specimen. In the peripheral blood of this patient, we 

observed that sunitinib treatment induced  a sustained down-modulation of  the frequency of 

immune suppressive cells, Treg and mMDSC, and a parallel reactivation of a generalized T 

cell function evaluated as the capacity of CD3+T cells to release Th1 cytokines in response 

to a polyclonal stimulation. The immunomodulatory function of sunitinib has been clearly 

documented in other human tumors and we confirmed this activity in the setting of CCS [21, 

22]. However, our observations also suggest that the release in the immune suppression 

induced by sunitinib, may have unleashed anti-tumor immunity in this CCS patient. Indeed, 

this hypothesis is in agreement with recent findings showing that, in melanoma patients, 

antigen- specific responses are prevented by the presence of high frequency of circulating 
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mMDSCs [23], while decrease of their number is favoring the clinical response in patients 

treated with immunotherapy [24]. 

In conclusion, the study of this case shed light on immune-similarities between CCS and 

melanoma, and indicates that manipulation of the immune response in this STS subtype 

likely evokes antigen-specific response. In addition to T cells specific for MITF- regulated 

antigens, this response may potentially include also T cells recognizing unique, mutation -

specific determinants. In fact, as previously shown by in vitro immunological assays [25], the 

chimeric protein encoded by the specific chromosome translocation of CCS is certainly a 

source for these type of antigens and it is well known that immune response directed to 

mutated antigens plays a crucial role in determining tumor rejection and clinical responses in 

cancer patients under immunotherapy regimens [26,27]. Although generalized conclusion 

cannot be depict from a single case, these findings suggest that immunotherapy, exploiting 

antibodies directed to immunological checkpoints such as ipilimumab (anti-CTLA4) or 

nivolumab (anti-PD1) now in use for melanoma patients,  may offer, alone or in association 

with targeted-therapies, a new therapeutic option for advanced CCS patients, for which no 

successful therapies are currently available. 

 

Materials and methods 

 

PBMCs and cell lines 

PBMCs were obtained by Ficoll density gradient centrifugation followed by cryopreservation. 

The A375mel and the lymphoblastoid cell line T2 were obtained from the American Type 

Cell Culture (ATCC). All these cell lines were cultured in RPMI 1640 (Lonza) supplemented 

with 10%FCS (Lonza), Hepes and antibiotics. For tumor cell line immuno-phenotyping, the 

FITC–labeled BB7.2 monoclonal antibody (BD Bioscence) was used. 

 

Immunohistochemical analysis of antigen expression in tumor biopsies 

5-µm thick formalin-fixed, paraffin-embedded (FFPE) tissue sections were processed for IHC 

staining. The monoclonal antibodies used were directed against the following antigens: anti-

S100, anti-Melan A, anti-HMB45, anti-CD8 (DAKO) and anti-CD3 (Novocastra). 

 

Lymphocyte stimulation and ELISPOT assay 

PBMCs isolated from the patient were thawed and cultured in the presence of the HLA2-

A*0201 restricted-modified peptides (Melan-A/MART-1[27L] or gp100[210M]) (2umol/L) plus 

60IU/mL IL-2 (Proleukin). The cells were tested every 10 to 14 days by flow cytometry 

analysis for the enrichment of CD8+pentamer+ T cells. To assess their reactivity against 

tumor cells, IFN-γ release was determined by ELISpot assay (Mabtech) in the presence of 
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MART1 (modified or native)-pulsed (2umol/L) T2 or HLA-A*0201+/- (MART+/-) melanoma cell 

lines. HLA class I-blocking experiments required preincubation of target cells with the W6/32 

mAb. 

 

Flow cytometry analysis of antigen specific T cells  and immunosuppressive cells 

Phenotypic characterization of T cell cultures was done by the multiparametric flow 

cytometry analysis using the following mAbs: anti-CD8-Krome Orange (Beckman Coulter), 

anti-CD4-APC (BD Bioscence), the HLA-A*0201 multimers were provided by Proimmune 

Ltd. Tregs and MDSCs frequencies were determined by six-colour immunofluorescence 

staining of thawed PBMCs, excluding dead cells using the LIVE-DEAD® Fixable Violet Dead 

Cell Stain Kit (Life Technologies). For surface staining, cells were incubated with the 

following antibodies for 30 minutes at 4°C after bl ocking non-specific antibody binding to the 

Fc-receptors using FcR Blocking Reagent (Miltenyi). For Treg analysis, intracellular staining 

with APC-conjugated anti-Foxp3 (eBioscience) or the proper isotype control (rat IgG2a) was 

performed. Lymphocytes activated overnight with anti-CD3/CD28 beads (DynaBeads® 

CD3/CD28 T cell Expander, Invitrogen Dynal AS, Oslo, Norway) in the presence of 1 µl/ml 

Golgi Plug (BD Biosciences) were stained for the cell surface marker CD3. The cells were 

then washed, fixed and permeabilized with Cytofix/Cytoperm buffer (BD Biosciences) and 

stained with a 488-labelled anti-IFN-γ (BioLegend), PE-labelled anti-IL-2 (BD Biosciences). 

Data acquisition was performed using a GalliosTM (Beckman Coulter) flow cytometer, and the 

Kaluza® software (Tree Star Inc) was used for data analysis. 

 

Figure Legends 

 

Figure 1. Radiologic response in metastatic lesions after sunitinib treatment. 

 

Figure 2.  (A) Immunohistochemical analysis of antigen expression in pre-treated and post-

suntinib tumor lesions. (B) Analysis of infiltrating immune T cells (CD3 and CD8) in sunitinib-

treated tumor.  

 

Figure 3.  (A) Phenotypic analysis of CD8+pentamer+ T cells after sensitization with the 

HLA2-A*0201 restricted-modified peptides (Melan-A/MART-1[27L] or gp100[210M]). (B) 

Following 10days stimulation, the tumor specificity of T cells was assessed by measuring  

IFN-γ secretion (ELISpot assay) in the presence of HLA-A*0201-restricted Melan A/MART-1 

(modified or native)-pulsed (2umol/L) T2 or HLA-matched HLA-A*0201+MART1+ tumor cells 

((#501mel and #624.38mel) pretreated or not with the anti-HLA class I (W6/32) mAb. 

Moreover T cells were also incubated with HLA-mismatched allogeneic HLA-A*0201-
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MART1+ (#624.28mel) or HLA-A*0201+MART1- melanoma cells (#A375mel). The irrelevant 

peptide NEF[180–189] was used as negative control. Statistical analysis of differences between 

means of IFN-γ released by T cells was done by two-tailed t test. 

 

Figure 4.  Sunitinib (SM) treatment modulates peripheral immunoregulatory cells. SM 

modulates the frequencies of (A) CD14+HLADR-/low (mMDSCs) in (B) CD4+CD25hiFoxp3hi 

(Tregs) in live gated PBMC. (C) Increased levels of circulating mMDSCs and Tregs 

correlated with decreased T cell functionality. PBMCs collected during SM treatment (during 

SM) or at time of disease progression (at progression) were assayed for IFN-γ (red line) and 

IL-2 (blue line) secretion in response to overnight activation with anti-CD3/CD28-coated 

beads.  
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