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Abbreviations

ASPS alveolar soft part sarcoma

ATP adenosine triphosphate

BRAF v-raf murine sarcoma viral oncogene homolog B1
CCs clear cell sarcoma

CD cluster of differentiation

CML chronic myeloid leukemia

CTL cytotoxic T lymphocytes

CTLA-4 cytotoxic T-Lymphocyte Antigen 4
CRT calreticulin

DAMP damage-associated molecular pattern
DC dendritic cell

FASL Fas ligand

FISH fluorescence in situ hybridization
FLT3 fms-related tyrosine kinase 3

FOXP3 forkhead box P3

GM-CSF granulocyte-macrophage colony-stimulating factor
GZMB granzyme B

HLA human leukocyte antigen

HMGB high-mobility group box

IDO indoleamine 2,3-dioxygenase

IHC immunohistochemistry

IL interleukin

IMCs immature myeloid cells

LPS lipopolysaccharides

M-CSF macrophage colony-stimulating factor
MDSC myeloid-derived suppressor cells
MHC major histocompatibility complex
PBMC peripheral blood mononuclear cell
PCR polymerase chain reaction

PD-1 programmed cell death-1

PD-1L programmed death-ligand 1

PDGF platelet-derived growth factor

PDGFR platelet-derived growth factor receptor
PGE2 prostaglandin E2

RCC renal cell carcinoma

SFT solitary fibrous tumors

STAT saignal transducer and activator of transcription
STS soft tissue sarcoma

TAA tumor-associated antigen

TAM tumor associated macrophage

T-bet T-box transcription factor

TCR T cell receptor

TGF transforming growth factor

Th T helper

TNF tumor necrosis factor

TRAIL TNF-related apoptosis-inducing ligand
TSA tumor-specific antigen

Treg regulatory T cell

VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor
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1. ABSTRACT

Although designed to directly target cancer celsl dumor associated-vasculature, anti-
angiogenic drugs (e.g. sunitinib), have been desdrto influence tumor-host interactions.
Sunitinib is currently in use at our Institute fhie treatment of progressive, advanced soft
tissue sarcomas (STS) of different histology. Hosvewhe systemic and local immune
responses and their modulation by anti-angiogdracapies are unknown in these neoplasms,
namely solitary fibrous tumors (SFTs), clear calcoma (CCS) and alveolar soft part
sarcoma (ASPS). This thesis aims to shed lighthenimmunological status of these STS
patients and to address the question to which exstenitinib induces immune modulation in
these patients. Thus, my research focused on theaaierization of both tumor-infiltrating
and circulating immune cells of STS patients. Fanalysis of the immune contexture at the
tumor site in naive and in sunitinib-treated tuntengealed that myeloid cells, namely tumor-
associated macrophages, represent a key compadhigre tmmor microenvironment and that
their reprogramming is part of the response totsubitreatment. Immune monitoring of
circulating cells in these STS patients indicateat tirculating myeloid suppressor cells were
associated to disease progression and were ther mplgger in mediating the immune-
suppressive status in naive and in sunitinib-tce&ET patients. Moreover, evidence have
been provided that, in sunitinib-treated SFT pasiemyeloid suppressor cells may be part of
acquired resistance, thus supporting the notionnttyzloid cells are the most relevant hurdle
in the efficacy of anti-angiogenic treatments. €diively the results of this thesis shed light
on an unappreciated phenomenon of immune dysfuncti® TS patients and indicate that in
SFTs sunitinib transiently relieves systemic immaugpression and reprograms the immune
microenvironment. Moreover, for the first time, antigen-specific T cell response has been
evidenced in CCS, and, this tumor-specific respdraseoccurred in association to sunitinib-
induced immune modulation. Overall, this thesisgsothe rationale for the development of
immune-based clinical approaches aimed at achievimgre durable disease control in these
cancer patients, for which effective medical thexaare still needed.
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2. STATE OF THE ART

2.1 Cancer immunology

The concept that immune system can control canasrits roots in the early 1800s when
Rudolf Virchow was the first to observe the infiion of tumors by leukocytes, indicating a
possible cross-talk between the immune systemlandntlignant tissue. Later, in the 1890s,
William B. Cooley observed that some cancer pasigintterestingly, they were patients
suffering of a rare sarcoma) experienced spontanemmission when they contracted acute
infection [1]. However it was only 50 years latdrat the cancer immunosurveillance
hypothesis was formulated by Lewis Thomas and MdafRa Burnet [2,3]. The core of the
cancer immunusurveillance hypothesis is based emssumption that in each individual the
immune system is responsible for eliminating preeaous or cancerous cells before these
cells could indeed become a clinically apparent dren This idea was based on the
observation that some cancer patients do not psedoe prolonged period of time, and some
even exhibit spontaneous regression. While thisrthevas mainly challenged in its infancy,
in the 1990s it has regained favor thanks to someia murine experiments demonstrating
that mice lacking either IFN+esponsiveness or adaptive immunity were moreegtifte to
carcinogen-induced and spontaneous primary tumomdton [4,5]. Later on, many
laboratories added similar findings, thus docurmgnthat the immune system can function

as an extrinsic tumor suppressor [reviewef]in

2.1.1 Cancer immunoediting

In 2001 it was described that the immune systemsidbes controlling tumor formation, can
also shape the tumor to become less immunoger8g [Ihis prompted a major revision of
the cancer immunosurveillandaeypothesis and posed the basistf@ cancer immunoediting
theory, which stresses the dual host-protectivetanmbr-promoting actions of immunity on
developing tumors. This model proposes three distsequential phases: elimination,
equilibrium and escape. The elimination phase lolikes an updated version of cancer
immunosurveillance. Various factors alert the immsystem to the presence of the tumor.
Among them are the so called “danger signals”, sasscamage-associated molecular pattern

(DAMP) molecules derived from dying cells [9]. Thégad to the activation of innate



Host immunity in soft tissue sarcoma patients

immune cells, which in turn coordinate the activatof the adaptive immune arm in order to
destroy the tumor. The existence of this phasepparted by the fact that mice and human
with deficient or suppressed adaptive immune respdRAG-2 KO mice, IFNrdeficient
mice, or immunosuppressed patients) display a gréatidence of tumor development [10
and reviewed in 6]. During “equilibrium” tumor celland immune cells interact to induce
reciprocal modifications. At this phase the immggstem sculpts the immunogenicity of the
tumor cells maintaining them in a functional statelormancy [11] in the case of a protective
immunity. However, at this stage the immune pressuay also lead to the outgrowth of
tumors with more aggressive features and lesstsangd immune recognition [12]. Finally,
the tumor itself may actively acquire the ability ¢circumvent immune recognition to an
extent that it can escape from, and even suppthesimmune system. Indeed, immune

evasion has been recently recognized as an emédrgiimgark of cancerHigure 1).
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Figure 1. The balance of tumor elimination, tumor
immunoediting and tumor immune escape

Immune evasion relies on the setting of both pasand active tolerizing condition [13]. At
the tumor-cell-level gassive tolerization mechanisms of escape might inclugereduced
immune recognition due to the loss of antigens codéfects in antigen processing and
presentation [14,15]j) lack of susceptibility due to increased tumoriirgic-resistance, for
example through the over-expression of anti-apaptoblecules [16] or the up-regulation of
immunosuppressive receptors that can directlykitlells (FasL, TRAIL) [17] or preclude



Host immunity in soft tissue sarcoma patients

their destruction by T cells [18]jii) over-expression of “don’t eat me” signals (i.e. G4
which inhibit the phagocytosis by macrophages

In addition, tumor immune escape occurs also becaeserals mechanisms are actively
operated by tumor cells to establish an immunosggive state both at the tumor site and
systemically &ctive tolerizatio In particular, this will be discussed in detaitsthe next

chapter.

2.1.2 Tumor-induced immunesuppression

Tumor immune escape is a complex process thatsralie the establishment of an
immunosuppressive state. Tumor cells can promotediévelopment of such a state by
secreting a myriad of immunosuppressive molecudas {fascular endothelial growth factor
(VEGF), transforming growth factor (TGF,) Interleukin (IL)-10, prostaglandin E2 (PGE2)
[19, 20, 17]. These factors are toxic for optimgiotoxic effector T cell (CTL) functions as
well as are crucial for the accumulation (throudgn novoinduction and recruitment) of
suppressive, tolerogenic and regulatory innate ataptive immune cells that function both
to suppress the anti-tumor function of CTL and tonpote tumor dependent angiogenesis as
well as tumor invasion and metastasis. Many ofdlsereted factors are expressed by many
types of cancer and correlate with advanced disgage. Moreover, we should also take into
account that the expression of many tumor-promol@egors is not confined to tumor cells
but they are also produced by by-stander immuns oetruited and activated by the tumor
itself [21].

The major types of immunosuppressive leukocyte [atimms relevant to the topic of this
thesis are regulatory T cells (Tregs), myeloid-gedti suppressor cells (MDSCs) and tumor-
associated macrophages (TAMSs). In the setting ehdru tumors, their main phenotypic
features and functional activities are here summedrand discusseéigure 2).
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Figure 2. Local and systemic immune suppression

2.1.2.1 T cell dysfunction

Successful T cell activation requires several dgyriateraction of the peptide-HLAgman
leukocyte antigenalso known as major histocompatibility complexHM)) complex with
the TCR of the right specificity (signal 1), comstilatory signals (signal 2), and optimally
also the presence of immunogenic signals (signas8)h as proinflammatory cytokines or
“danger signals”gee section 2.1)1 Stimulation in the absence of co-stimulationlwituce
tolerance and anergy in the antigen-specific Tscalmechanism to prevent auto-reactivity.
Tumor-induced T cell anergy has been shown to ttieth CD8 and CD4 T cells and
occur in T cells that infiltrate tumors [22]. Theepentation of antigen to a cognate T cell
receptor (TCR) is the crucial point in the init@tiof an immune response. It results in T cell
activation and clonal expansion. It has been shthah in the context of tumor a T helper
type 1 (Thl) response, characterized by T-bet gtnayption factor that directs Thl lineage
commitment) and by the release of IgNwnd IL-2 rather than a Th2 response, is necessary
for immune-mediated tumor rejection. Yet, mostha tlinically apparent tumors subvert the
immune response such that T cells are dysfuncti@mal selectively deficient in several of
the activities necessary to generate a Thl respensh as the production of IFNR3-25].

Moreover, besides co-stimulatory signals (e.g. OD28cells express also co-inhibitory

7
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receptors, such as programmed-death 1 (PD-1) aontbgic T lymphocyte activation marker
4 (CTLA-4). These molecules are up-regulated afteell stimulation and they represent a
physiological “immunologic brake” crucial for th@mtrol of an on-going immune response
also in other physiological setting, such as amalwvesponses. CTLA-4 binds to CD80 and
CD86 like CD28, but with higher affinity, and corygenegative signals that lead to reduce
proliferation and cytokine production. PD-1 intdsawith PD-L1 (B7-H1) and PD-L2 (B7-
DC). The fact that deficiency in CTLA-4 as well &D-1 is associated with severe
autoimmune diseases illustrates the importancaisfriegative regulation of T cell function
[26]. Of note, the tumor can make use of thesebitdny pathways to control anti-tumor
immunity. Many type of tumors have been reportedexpress PD-L1 [18,27] and are
therefore able to inhibit T cells [28]. Consequenthigh expression of PD-1 on tumor
infiltrating T cells or PD-L1 on tumor cells hasdmefound to correlate with poor survival in
cancer patients [29,30]. Importantly, many of theowe cited mechanisms of T cell
dysfunction occur at the tumor site where effecaméi-tumor response takes place. Thus in
order to exert their anti-tumor activities T cedlsould be able to successfully transmigrate
through the tumor endothelial barrier. However, esaly tumor types have developed a
number of unique ways to prevent homing of effedtaells to the tumor site. Among those
mechanisms, deregulation of chemokine loops (rémluaif T-cell attracting chemokines,
such as CCL2, CCL5, CXCL10, CXCL11) [31] and thelpbitive/suppressive nature of the
tumor endothelium [32,33] have been described. Tlaak of homing of T cells represents

itself a T cell dysfunction phenomenon.

2.1.2.2 Regulatory T cells (Tregs)

Tregs are a subset of T lymphocytes that in humgmresent less than the 10% of circulating
CD4+ T cells. The high expression of the surfacekeraCD25 and the positivity for the
intracellular transcription factor forkhead box @DXP3) are cardinal phenotypic features
of these cells. CD25 is also known as IL-2 receptaounita (IL-2Ra), and FOXP3, is
considered the lineage specific factor for thisell subset. The crucial role played by FOXP3
in Treg fate determination and immune homeostasistrikingly evident in patients with
FOXP3 mutations. In fact, these patients develoereeautoimmune disease [34]. Another
characteristic of Tregs is their potent suppressiapacity [35]. Multi-parametric flow

cytometry analysis is required to identify Trexgviva In this context, we also contributed in
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suggesting guidelines for an accuraxevivoidentification of human Tregs [36].

A great number of publications have shown that $@g increased in many different human
cancers and often correlate with poor prognosigidveed in 37]. Moreover, Tregs express
receptors for chemokines such as CCR4, CXCR4 an®10Cthat could induce their
migration towards the tumor [38, 39]. Indeed, im@a patients, an increased Treg/Tconv
(conventional T cells) and Treg/CD8 T cell ratissoften observed in the blood [38, 40], in
tumor draining lymph nodes [38], and in the tum®8,[41]. Besides Tregs infiltration into
the tumor, the accumulation of Tregs at tumor sit@y be due to the conversion of CD4
TILs into Tregs, to the selective expansion of Bregsplaying a survival advantage in the
hypoxic tumor microenvironment (TME), and finallyet proliferation of pre-existing Tregs.
Several lines of evidence clearly documented thHe ob Tregs in restraining anti-tumor
immune responses. Suppression exerted by Tregd magtk antigen-specific responses that
become detectable only after Treg depletion [42].

Many strategies have been used to manipulate Tiegading: Treg depletion, inhibition of

Treg function or blockade of Treg trafficking intonph nodes or tumors [36].

2.1.2.3 Myeloid-derived suppressor cells (MDSCSs)

A large number of studies attest to the remarkgldsticity of the myeloid lineage [43];
tumors take advantage of this plasticity to redirenyeloid differentiation toward the
acquisition of immune suppressive subsets thatcfdy interfere with the anti-tumor
immunity. This is the case of MDSCs and TAMs.

MDSC are a heterogeneous population of variably atume myeloid cells (IMCs) with
suppressive activity, containing myeloid progenitails and precursors of granulocytes,
macrophages and DC. Elevated levels of MDSC haea beported in the blood of cancer
patients bearing several types of tumors and tleeynsto represent a major contributor to
cancer-related immune suppression [21]. In canagemts, increased MDSCs are translated
in inhibition of autologous T cell proliferation dnlFN-y production. Definitively, their
peripheral blood accumulation has been correlatiéld twmor progression (tumor stage and
burden) and poor prognosis [44-46]. The heterogerméiMDSC in human malignancies is
striking, thus for their characterization, as foegds, the application of multi-parametric flow

cytometry approach is mandatory. Indeed, a greaibeun of MDSC phenotypes has been
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described in many different human cancers. Soméhe$e phenotypes overlap, at least
partially, while others are mutually exclusive. régment in the scientific community
indicates three main subsets of MDSC [reviewed 14d]. Table 1 summarized MDSC
phenotype described in patients with different turhestologies. The majority of human
MDSC subtypes expresses common myeloid marker$, asicCD11b and CD33, but have
low or absent expression of the MHC class Il mdeddLA-DR. Many reports described
MDSC as CD33HLADR™" and Lineage (Lin) negative, meaning that they dbaxpress
CD3, CD19, CD56 and CD14, markers characteristid@,oB or NK cells and monocytes,
respectively.

These myeloid precursors, although might appeaetgranulocytic-like, they are defined as
lineage-negative MDS@s long as they do not express the CD15 granutocyarker
(CD33'LinHLA-DR'CD15) [44, 65, 70]. Furthermore, a number of studiesehdetected
the expression of the granulocytic markers CD1ED66b in LIlCD33'HLADR ™" cells,
indicating that these populations partially over2p, 61, 71-73].

Disease type Phenotype Ref.
Monocytic MDSC (mMDSC)

Melanoma CD14 HLADR™™ [49]

[50]

CD14"IL4Ra” [51]

RCC CD14 HLADR™®"" 52]

Colon carcinoma CD14"IL4Ra” [51]

HNSCC cp14* [53]

Multiple myeloma CD14 HLADR™" [54]

cD14" [53]

HCC CD14"HLADR™*" [55]

Prostate Cancer CD14"HLADR™%"" [56]

T Cell NHL CD14"HLADRB7-H1" [57]

Granulocytic MDSC (gMDSC) and
Lineage-negative MDSC

RCC LinHLADR CD33" [58]
[59]

CD33"HLADR’ [23]

CD11b’'CD14°CD15" [60]

[61]

CD15+CD14- [23]

NSCLC CcD11b*'cD14'CD15'CD33" [62]
Melanoma LinHLADR CD33" [63]
CD15'IL4Ra* [51]

Colon carcinoma CD15'IL4Ra” [51]
CD15"granulocytes [64]

HNSCC LinHLADR® [65]
CD11b*'CcD14°CD33" [66]

[67]

SSChiCD66b" [68]

Breast carcinoma Lin"™HLADRCD33'CD11b*  [44]
CD15"granulocytes [64]

Pancreatic carcinoma CD15"granulocytes [64]
Lung carcinoma CcD11b*cD33" [69]

Table 1. Adapted from Filipazzi et al, 2012

10
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These polymorphonuclear (PMN)/granulocytic-MDSCradter calledgMDSQ have been
suggested to be activated (i.e. “suppressive”) ropttls distinct from their normal
counterparts. While mature PMN are short-live, arabtly excluded when peripheral blood
mononuclear cells (PMBC) are isolated by gradiesmtrifugation, gMDSC have a low
density phenotype allowing to co-purify with PBM®1] 64, 68], and have increase
resistance to apoptosis [61, 68]. Moreover, acogrdd what described by our group in
advanced melanoma patients [49], and then by othessveral cancer hystologies [45, 46,
50, 55, 74,75] a third MDSC can be defined: CDITOD14'HLADR " monocytic-MDSC
(mMDSQ. They resemble monocytes in size and light scattaracteristics as well as
express the CD14 monocytic marker. Interestinghgirt presence across different human
cancers, strongly suggest that the ability to affegeloid differentiation towards immature
and defective monocytes might be a common feat@ireuman tumors. Interestingly, in
human cancer these mMDSC have a prognostic signde In cancer of different
hystologies, the frequency of this MDSC subsethia blood correlates with tumor burden
[46,50] and is inversely associated with the respaie cancer vaccines [49,74], reinforcing
their detrimental effect in tumor immunity.

Moreover, Weide and colleagues recently reportedmalanoma patients a “triple-
correlation” between high levels of mMDSC, the afeseof antigen-specific T cells and poor
clinical prognosis, thus suggesting a causal wiahip where mMDSC counteract the
development of tumor-reactive T cells [45]. Regagdithe overall MDSC phenotype,
additional and more specific molecules have begorted as defining human MDSC.
Similar to murine studies [76] the IL4R(CD124, the receptor for Interleukin-4) has been
suggested as a specific marker for tumor-derivedSKaDwith suppressor function [51]. As
far from our experience with melanoma MDSC, we doubt detect ILAR™ cells either in
the monocytic or in the granulocytic subpopulatighazzari M, unpublished observatjon
VEGFRL1 is another marker, which has recently besstmbed in renal cancer patients to be
expressed in gMDSC [61]. Surprisingly, a recentgpaghowed that mMDSC from melanoma
patients could express even markers of more matyetoid cells, namely CD80 and CD83
[50]. This large amount of novel candidate markigmsher emphasizes the complexity in
defining these cells. In cancer, one common denatoinof these cells is their reliance on
tumor-derived factors. In healthy individuals, bomarrow-derived IMCs will distribute
throughout the body and differentiate into macragghagranulocytes or DC. Instead, the

presence of tumor-derived soluble mediators ari®8Bs in their immature state, leading to

11
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MDSC expansion and activation. Evidence supporting conclusion derives from studies
revealing a decline of circulating MDSC after suggiresection of tumors [46], and oy
vitro experiments which showed that culturing normaltroghils and/or monocytes with
conditioned medium from melanoma, renal cell camsia (RCC) cells and other solid
cancers prevented their differentiation, thus legdio MDSC generation [77, 78]. Indeed,
these studies, although limited to timevitro setting, underline the crucial role played by
cancer cells in MDSC recruitment/activation, agpointing to the TME as a crucial site
where the most immune dysfunctions involving theelo compartment stem from.
However, compare to mouse studies, gaining sudlitu data in cancer patients is obviously
challenging. The number of potential MDSC-inducargd MDSC-activating factors is large,
including VEGF, IL-6, PGE, IL-1[3, stem cell factor (SCF), macrophage- and grantdecy
macrophage-colony stimulating factors (M-CSF and-GSF) [49] IL-4, IL-13 and TGB.
Clearly, the secretory profile of each tumor iseadse, which can help to explain the
heterogeneous appearance of MDSC induced by caatelifferent hystologies. Thus, the
prevalence of one MDSC subsets to another in angiv@or histology, might be the result of
the pressure exerted by the tumor cells able toviskepe the MDSC composition and
function. Noticeably, in melanoma and in soft tesssarcoma lesions, sharing the same
mesenchymal origin, cells expressing monocyte/npage markers are quantitatively
predominant, while granulocytes are rarely dete(sedmanuscript 1). In contrast, gMDSC
represent the predominant population in renal caf2®, 60, 61], in glioblastoma [73],
bladder cancer [72], and advanced-stage non-smlallung cancer [62]. Moreover, it is also
likely that multiple populations are present in fABMC of patients with a single type of
tumor. Of note, the majority of the tumor-deriveattiors implicated in MDSC expansion
ultimately converges in a common signalling pathwtne Janus tyrosine kinase (JAK)
protein family members and signal transducer arnd/aor of transcription 3 (STAT3),
involved in cell survival, proliferation, differeiation and apoptosis [79]. STAT3 is a
member of the STAT family of transcription fact¢89]. STAT3 is constitutively activated
in many tumor cells, and thereby it contributesumor cell survival and proliferation. In
cancer cells STAT3 activation promotes the productf immunosuppressive molecules
which down-regulate the immune response. Moreowvereased levels of phosphorylated
STATS3 has been observed in MDSCs from tumor-beanitg [81] and more recently it has
been confirmed in mMMDSC from melanoma patients alf |80]. It appears that persistent

activation of STAT3 in myeloid progenitors prevetitgir differentiation and increase their
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proliferation and survival, possibly through up-n&gion of STAT3-targeted genes like Bcl-
XL, cyclin D1, c-myc, survivin [79]. Moreover, ovexpression of a constitutively active
form of STAT3 has been proven to increase the MD&tliated suppression of T cell
activation, while itsin vitro pharmacological inhibition facilitates the diffate@tion of
MDSC in myeloid cells without suppressive actiViip, 82]. MDSC exert their suppressive
activities by a variety of different mechanismsctéas implicated in the suppression of T cell
functions [21] include reactive oxygen species (R@fduction, L-arginine depletion by
arginase | [60, 61], TGF secretion [49], depletion of cysteine, upregulatiof cyclo-
oxigenase 2 (COX2) and PGEZ2, induction of Tregd.[&ach of these functions has been
primarily linked to a certain MDSC subtype, althbutpey might use more than a single
mechanism at once. gMDSCs, have been reported by rwa inhibit T cell functions
predominately via L-arginine depletion, consequeatisociated with an increased levels of
plasma arginase activity [60, 61]. In addition topair autologous T cell proliferation and
IFN-y production in response to TCR triggering, MDSC ddock T cell activation by
inhibiting T cell trafficking to antigen-containingtes (i.e. draining lymph nodes and tumor
tissues) [83]. There is also evidence that MDSC iawelved in a whole array of non-
immunological functions, such as promotion of aggivesis, tumor local invasion and
metastases [21].

2.1.2.4 Tumor-associated macrophages (TAMS)

Macrophages play an essential role in innate imtguaind are involved in a variety of
immune functions, including host defence and woungling. They are mature-tissue
resident myeloid cells derived from circulating moomptes.

During the course of an immune response macropHaemsme activated and, depending on
the cytokine network they encounter, become eithghly effective in destroying potential
pathogens and activating the adaptive immune systmmbecome attenuators of the
inflammatory response. These two functional statesclassified as M1 or M2 polarization, a
nomenclature reflecting the Th1l/Th2 dichotomy [8MNl1 or “classically” activated
macrophages are induced by inflammatory stimuli adanger signals, such as
lipopolysaccharide (LPS) and IFN-When activated, they express HLA-DR molecules at
high level and release proinflammatory cytokinegy.(dL-1(3, IL-12 and tumor necrosis

factor (TNF)«). They have an enhanced ability to present angsigend promote the
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differentiation of naive CD4 T cells into Thl effector cells. By contrast, M2 o
“alternatively” activated macrophages, which ardivated by IL-4, IL-10 and IL-13
stimulate CDZ Th2 cell and Treg differentiation and are chanaotel by higher production
of the anti-inflammatory cytokine, IL-10 [85]. Hower, it stands clear that the M1/M2
paradigm might be too semplicistic and that a bn@audje of phenotypes that are in between
the two extremes M1 and M2 are more likely to @douvivo. In fact, TAMs have been
shown to display a high degree of heterogeneityfandtional plasticity and their activation
state is primarily dictated by the soluble factpresent within the local microenvironment
produced either directly by tumor or [24], by iritnanoral T helper-cells [86].

In cancer, TAMs are considered to be a tumor-indugpe of M2-polarized macrophages.
TAMs are not only ineffective as antigen-presentoedls but they also exert pro-tumor
functions by the direct release of various immumppsessive factors (while producing low
levels of M1 mediators). M2-derived factors supgomor cell resistance to apoptotic stimuli
(e.g. protection of tumor cells from chemotherapgticed apoptosis [87]) and stimulate the
proliferation and invasion of malignant cells. leased TAMs density is usually associated
with advanced progression and poor prognosis irtipheilhuman epithelial malignancies,
including breast, prostate, endometrial, kidnewdder and anaplastic thyroid carcinomas
[88, 89 and reviewed in 90]. In contrast, accumatatof TAMs remains less well
characterized in mesenchymal tumors, such as sarc{d].

At the tumor site TAMSs certainly derive from thecéd differentiation of monocytes actively
recruited by tumor-derived cytokines/growth factesch as VEGF, M-CSF and CCL2.
Moreover, a relationship between MDSC and TAMs basn also suggested, at least in a
mouse model [67]. In addition to monocytes, in arimai study, circulating MDSCs have
been shown to be a plausible precursor of TAMs.

In situ characterization of macrophages is an importaueisnd a precise characterization of
tumor-infiltrating myeloid cells requires the uskimmunohistochemical technique (IHC).
CD68 and CD163 in combination with the specific moyte/macrophage marker CD14 are
used to identify and quantify macrophages in tisseetions. These two markers are not
equivalent in the identification of macrophages,[&®, 92,93]. Indeed, CD163 is a
hemaglobin scavanger receptor expressed on mogbogulations of mature tissue
macrophages [94]. It is believed to be mainly asded with M2 macrophages, owing to its
upregulation by anti-inflammatory cytokines (IL-4-10) important for M2 polarizatiomn
vitro. Thus, CD163 cells have been recognized by many to ideritifgitu TAMs [93]. In

contrast, CD68, in association with the HLA-DR nration marker, has been used to
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identify a tumoricidal macrophage subsets, moreo@ated with immunostimolatory
properties [88,89]. Furthemore, although CD163 HIC Istudies has been pinpointed as a
specific macrophage marker, a minor subset of C38&im/progenitor cells [95] and MDSC
[96] are found to express CD163 in flow cytometnyalgsis. Thus, it cannot be fully
excluded that a minor subsets of the CO16dIs are IMCs.

Beside their phenotypic diversity, macrophages addferent geometries in vivo. Within a
tumor, it has been recently noted that TAMs migiht@ aramified morphologyforming a
network in close contact with cancer cells and Bleessels, in contrast to the absence of
ramification and theameboid shap®f M1 macrophages [88]. Moreover, a recent inovitr
study confirms this point showing that elongatitseif enhances macrophage polarization
towards the M2 phenotype [97].

Their abundant presence and contribution to tumognession as well as their plasticity has
prompted researchers to develop therapeutic adkatsspecifically target or “re-educate”
these cells. These efforts might be reassumed@e tmain goals) inhibition of monocytes
recruitment into tumors;ii) depletion of TAMs;iii) neutralization of TAM-derived
molecules. Moreover a more recent approach consistepolarizing TAMs into M1

macrophages, able to exert anti-tumor responseeqpine for the host.

2.1.3 The immune contexture in human tumors

It is now accepted that tumors cannot be simplysiciered as formed only by neoplastic
cells. Tumors are ‘aberrant organs’, made up bfewint cell types and components; these
include epithelial cells, vascular and lymphaticssas, and immune cells. All these cell
subsets are connected to each other by reciprozsd-talk and altogether, they compose the
TME. Histopathological analyses of human tumorsehavovided evidence that variable
numbers of infiltrating immune cells are found iifetent tumors. Moreover, this large
collection ofin situ data has allowed the identification of componeftthe TME that are
beneficial, as well as those that are deleteridaspatients’ prognosis. Thus is clearly
emerging the concept that anti-cancer immunityndeed a dymamic equilibrium in which
each subset of the immune sytem, exerting pro twt@amor activity, can be contemporarily
present at the tumor site. For example, chroniammmation and the presence of MDSC or
M2 type macrophages favor tumor growth and spregitinrmost cancer types [98]. While, in
contrast infiltrating lymphocytes with a Thl polaiion are strongly associated with good

outcome. Indeed, tumor-infiltrating lymphocytes|(3), their density and localization inside
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the tumor nest as well as their functional poldraais a strong independent prognostic
factors in different type of cancers [reviewe®®,100]. Efforts in the scientific community
are currently on-going to construct precise algaritfor defining an ‘immunescore’ to be

used then as prognostic value [101].
2.1.4 Immunotherapy in cancer

In advance stages, when tumors have escaped imomnl, immunotherapy approaches
are designed to enhance anti-tumor T cell reagtiaitd thus reverte the relation between
immune system and tumor cell growth to a phasegaflibrium (Figure 3).

This goal can be achieved by actively boosting fbsitive anti-tumor response and by
counteracting the immune suppression. Cancer eglisess a variety of antigens that are able
to trigger the host immune response. Among thesehar so-called Tumor-Associated (self)
Antigens (TAAs), such as melanocyte differentiatiantigens (gpl100/HMB45, Melan-
AIMART-1).

\ N anergic/”exhausted”
e T cells

-’. , CD8* Cytotoxic
W Tcells (CTL)
MDSCs IFN-y o
GZMB . .

- CD4* (T-bet*)
Anti-CTLA-4 TIA-1 T helper cells (Th1)
Anti PD-1/PD-1L M2-TAMs /

TUMOR {\‘—z) M1-macrophages

%ﬂdnc Cells (DCs)

Y

Active immunotherapy
Adaptive immunotherapy

Figure 3. Restoration of tumor equilibrium by immunotherapy

Moreover, tumors are characterized by the accumonlatff genetic alterations that lead to the
generation of neoantigen-containing epitopes (Tu8pmecific (non-self) Antigens (TSAS))
that can be recognized by T cells [102]. Many défe strategies of immunotherapy have
been developed over the past that inclujlezaccine-based strategies [108); cytokine
therapies [104], both belonging &ative immunotherapyii) approaches involving adoptive

transfer of in vitro expanded, naturally arising, genetically engineered tumor-specific
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lymphocytes [105] that belong taptive immunotherapyone of the mechanism by which
tumors disable immune response relies on antigasispence and chronic antigenic
stimulation. This situation leads to a overstimolatof T cells that thus became anergic and
overexpress the inhibitory receptors CTLA-4 and PDMonoclonal antibodies (mAbs)
directed to these molecules (anti-CTLA-4/Ipilimumal anti-PD-1/Nivolumab) release
immune effector T cells from their natural resttaimand appeared to be a very fruitful
intervention for boosting anti-tumor immunity inetlelinical setting [106,107]. In addition,
the development of successful immunotherapy id\like depend on identifyinglominant
immune suppressive mechaniam a given tumor type, allowing to design rational
combinatorial approaches. Ideal candidates for ‘imasensitizing drugs” would be for
example those able to reduce frequency and funofiommunoregulatory cells (e.g. MDSC,
Tregs) or those that will enhance T cell traffickiand infiltration into the tumor bed.

2.2 Targeted-therapy molecules

Malignant transformation is characterized by atiera in the intracellular signalling
pathways that regulate cell proliferation, survjvdifferentiation and metabolism. Key
components in the activation of such pathway aretepr kinases that upon the
phosphorylation of target molecules, induces sigmplcascades that culminate in the
activation of gene transcription and modulatiorpadtein expression or function. In the past
decade, improvement in the knowledge of the transdtion process have allowed the design
of “molecular targeting” therapeutic approachest tf@m a clinical standpoint have
represented a new weapon beyond aspecific cytotagents (radiation/chemotherapy).
While chemotherapeutic agents interfere with DNAtbgsis, or produce chemical damage
to DNA, targeted-therapy molecules activity relesthe inhibition of those molecular events
responsible for the maintenance of the malignaenptype. Based on this, specific tyrosine
kinase inhibitors (TKIs) have been developed andatestrated to have significant antitumor
efficacy. Functionally, TKs can be classified imgxceptor kinases (i.e. receptors of growth
factor that regulate cell behaviour in responsesxtracellular stimuli) and non-receptor
kinases (i.e. those involved in intracellular siging that are frequently downstream of
RTKs). The modifications that promote TK-mediatedlignant transformation are diverse
(e.g. mutations in the catalytic domain, chromodome@ombination that modulate the
catalytic activity as well as RTK abnormal actiatidue to tumor-derived overexpression of
the ligand). The first TKI approved by the US Faodl Drug Administration (FDA) was the

17



Host immunity in soft tissue sarcoma patients

BCR-ABL inhibitor imatinib mesylate (ST1571; Glivedovartis; hereafter indicate as
imatinib) for the treatment of Philadelphia chromwe positive chronic myeloid leukemia
(CML) [108]. Of note, this compound also efficignihhibits TKs other than BCR-ABL,
including c-KIT, PDGFR, M-CSF receptor and the fiks-tyrosine kinase-protein kinase 3
(FLT3). This has led to its approval also for c-Kllinresectable metastatic gastrointestinal
stromal tumors (GISTs) [109] and dermatofibrosaragemotuberans (DFSP) patients [110].
Owing to the clinical success of imatinib in CMLtigaits several others targeted-drugs have
been developed. It is now widely accepted that tunem-angiogenesis is a crucial step in
tumor development and progression [111]. Indeedpremthe class of targeted-therapy
molecules a special place is deserved to anti-gegioc drugs [112]. Among them,
Bevacizumab (Avastin, Genentech/Roche), a VEGHstrap monoclonal antibody [113];
and many RTKIs, such as sorafenib (BAY43-9006, NakaBayer) [114], sunitinib malate
(SU11248; Sutent, Pfizer, hereafter indicate astisily) [115] pazopanib (GW-786034,
Votrient; GlaxoSmithKline) [116] and cediranib (A271, Recentin; AstraZeneca) [117]
have been approved by FDA for clinical use. Culyenhere are numerous clinical trials as
well as off-label medical applications testing tree of these drugs in different tumors, and
many others antiangiogenic TKIs are being clinicalValuated (e.g. axitinib). Often patients
develop resistance to TKIs, which might be caused bumor cell intrinsic-adaptation, such
as the acquisition of secondary genetic alteratmmthe activation of alternative signalling
pathways [118]. Understanding the molecular medmasiby which cancer patients develop

resistance to TKIs is crucial and is a challengeafthieving long-term disease control.

2.2.1 Immunostimulation by anticancer drugs

Considering the intense interplay of the differertls composing the TMEsee previous

paragraphs), it is not surprising that effects delivered tonor cells may impact normal host
cells, especially those of the immune system. [dti@ined both in some human clinical
settings and in animal models, strongly demongtrateat conventional chemo and
radiotherapy treatment, as well as TKIs possessuinoamodulating activities [119]. These
by-stander immune related effects stem from thapacity to affecdirectly the signalling

pathways regulating the functional activities oe timaturation/differentiation programs of
immune cells and/or from their ability to moduldtee immune-related features of cancer
cells. Imatinib represents the paradigm of thishdewactivity. It directly induces the host

DCs to promote NK activation, and this immunologjietiect was associated with prolonged
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disease free survival in imatinib-treated GIST guati$ [120]; on the other hand, it reduces the
release of the immunosuppressive enzyme indoleajdalioxygenase (IDO) by tumor
cells [121]. Some cytotoxic drugs (e.g. oxaliplatdoxorubicin, cyclophosphamide) have
been shown to affect the immune system by induttiegimmunogenic cell death of tumor
cells [122, 123]. Thus, dying tumor cells releaspésure specific signals (i.e. calreticulin
(CRT), high mobility group box 1 (HMGB1), ATP) whidrigger phagocytosis and promote
the maturation of dendritic cells, initial eventy the induction of a protective immunity.
Anticancer agents can also favor anti-tumor immurdy increasing the expression or
presentation of TAAs by cancer cells, as demoredrédr vemurafenib, a specific BRAF
inhibitor approved for the treatment of melanom24]J1 On the other hand, anticancer drugs
subvert tumor-induced immunosuppression or exestimulatory effect on immune effector
cells. Both MDSC and TAMs represent interestingrdpeutic targets and some of the
currently anti-cancer therapies actively modulateelmid cell functions and frequency. For
instance, gemcitabine reduces the levels of MDSQadtients with advanced pancreatic
cancer [125]. Moreover, some cytotoxic drugs may alctively stimulate the effector arms
of the immune systems. Indeed, immune monitoringatients with advanced non-small cell
lung cancer revealed that treatment with paclitfk26] restored Th1 cellular immunity (i.e.

IFN-y and IL-2 secreting CD4T cells).

2.2.1.1A focus on anti-angiogenic drugs

At the tumor site, neo-angiogenesis is promotegroyangiogenic tumor-derived factors (in
particular VEGF) and results in the formation ofwnehighly abnormal blood vessels
displaying a heterogeneous distribution, irregudsod flow and increased permeability
[111]. Sunitinib is an orally bioavailable multirgget TKI that inhibits a broad array of RTKs.
Indeed, beyond VEGFR-1 and -2, it also targets T;RIDGFR, FLT3 and RET [127].
Anti-angiogenic therapies were developed to inhileitv blood vessel growth and thus starve
tumors. However, besides to its well-characterizel@ in angiogenesis, VEGF mai):.
promote Treg proliferation [128]i) inhibit the maturation and function of DCs [128i)
stimulate MDSCs accumulation [130]. Indeed, drugshiting VEGF-mediated signalling,
such as sorafenib and sunitinib, have been shovaifféct the balance of these cell subsets
and impact the anti-tumor immune response. In mousgels and in RCC patients sunitinib

reduces the frequency of circulating Tregs anceciffit subsets of MDSCs [25, 131]. Indeed,
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mMDSC as well as MDSC defined as, CDHBA-DR™ and CDI15CD14 are
downmodulated in the blood of RCC receiving suibtitreatment [23]. Furthermore, van
Crujsen and colleagues showed, in a subset of RiIi€nps experiencing tumor regression,
that sunitinib induced the reacquisition of a ndrfrequency of CD1t myeloid DC [52].
Due to the singularity of each immunosuppressivevolk put in play by each cancer
histology (seesection 2.1.2 the raising question is: “Are these effects coadi to RCC
patients or they represent a general phenomenordtédwer, pro-angiogenic factors and
abnormal tumor vasculature strongly limits the ®uke-endothelial interaction and the
subsequent extravasation of effector cells into timmor site [132]. Conversely, anti-
angiogenic treatments, while normalizing blood etssenhance immune infiltration, as was
recently shown in different animal models [133,134]

Altogether, the evidence summarized in these twbparagraphs, strongly indicate that part
of the clinical efficacy of many anticancer agergfies on restoring an active anti-tumor
immunity. Of interest, in a murine breast cancerdeidHuang Y. and colleagues recently
showed that the efficacy of a cancer vaccine thevegs greatly increased by antiangiogenic
treatment that, at the tumor site, re-directed TAMsan immuno-supportive M1-like
phenotype [135]. Studies that analysed the modulaif the immune contexture at the tumor
site induced by TKIs are still few, especially coesing the wide application of these
targeted-drugs in tumors of different histology s respect, the only documented example
is reported in melanoma patients in which tumarggisally removed after short-term
treatment with vemurafenib, clearly displayed erdeahninfiltration with activated CD4and
CD8' T lymphocytes [136]. Thus, in the human setting, hility to shape the immune cell
repertoire at tumor site needs to be further addeesl hold interesting promise for the
development of strategies that combine TKIs witinumotherapeutic approaches.

2.3 Soft Tissue Sarcomas and the immune system

Soft tissue sarcomas (STS) are a sundry group lkd seamors that till recently were

traditionally categorized together based on theesemchymal origin. However, inside STS,
current studies are now considering each singlmlbgy as a separate entity with unique
biological and clinical features [137]. The Fondemm IRCCS Istituto Nazionale Tumori,
Milan has a long-standing interest in different S3igbtypes and it is among the major
referral centre in Italy for these rare diseasesnilinohistochemical and molecular biology

studies are necessary for their adequate charzatien; however, biologicabehavior,
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staging and grading are essential for an accuretgnpsis and for planning the most
adequate therapy. The mainstay of treatment faliloed STS is surgery, also applied after
radio or chemotherapy treatment (adjuvant settil@f)note, some STS patients, can be made
virtually disease free (i.e. by surgery), but anewn to be a high risk for relapddetastasis
can also occur, withuhg being the most frequent site of disseminat®nS are mainly
insensitive to the most applied chemotherapy regsm@nthracyclines and isosfamide). In
the last years, great advances have been made wntterstanding of sarcomas’ molecular
biology [138] leading to the testing of new target®mpounds in order to improve efficacy
and outcome achieved with classical drugs. A numifeindividual sarcoma subtypes
responds to TKIs that inhibit both VEGFR and PDGRRile all these drugs have achieved
relative success in aggressive metastatic STS, hlase failed to cure patients, and the
clinical responses can be short-lived, due to teuence of resistance. Further options for
the treatment of sarcoma are needed, not only pwaowe the rate of response to treatment,
but also to improve the duration of elicited resggmand disease stabilization. In an attempt
to improve response rates, one of the strategasatie currently ongoing is the combination
treatment with TKIs and conventional cytotoxic dsyi§39], however these approaches are
associated with an increased risk of toxicity (egrdiac toxicity). Thus, the discovery of
new safer synergistic combination is essential.

As opposite for other human tumors, including cavmas and tumors of mesenchymal
origin such as melanoma, for STS very little i khown on the role of the immune system
in disease progression and in the response tartesdtas well. So far, few studies have
examined the systemic and local immune status liecteel STS subtypes. However, the
immunological behaviour of STS is now gaining iet&rin the scientific community and a
very recent study described the impact of radi@pgion the quality of the tumor-associated
immune infiltrate in a cohort of heterogeneous @@r@ patients. Interestingly, radiotherapy
induced thein situ accumulation of cells and molecules characterisfica protective
immunity [140]. Studies at the tumor site in ST® af course hampered by the paucity of
cases. Indeed, the TME’s role as a non-neoplasticponent of tumor has been studies
extensively in carcinoma but remains very poorlareleterized in sarcomas. Lee CH and
colleagues, showed in leiomyosarcoma (LMS) thaigh Hensity of TAMs (CD163, likely
attracted to the primary tumor site by secretiodMe€CSF by tumor cells [141], predict poor
patient outcome [91]. Moreover LMS tumor cells hdween shown to express the anti-
phagocytic molecule CD47 and the potentially amtiror efficacy of targeting this pathway

have been demonstrated [142]. In these last y&assstudies have discussed the utility of
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immunotherapy approaches in STS [143]. Of note, yr8iRS are characterized by tumor-
specific chromosomal translocations, which produee-antigens that might be seen as
foreign by the immune system [144]. Moreover, otBaIS display cancer-testis antigens
aberrantly [145] and other express differentiatetigegns in common with melanoma [146].
Overall, these antigens could represent an atyeatéirget for immunotherapy. However a
better understanding of the meachanisms of tunduweed immunesubversion in individual
STS is needed to design combination treatment theludes targeted drugs and
immunetherapy. Hereafter | will introduce the th&ES subtypes focus of the present thesis.

2.3.1 SOLITARY FIBROUS TUMOR (SFT)

Solitary fibrous tumor (SFT) is a rare STS, charazed by CD34 positive fibroblastic
appearing tumor cells. It can occur in several @natal sites: meninges, pleura, peritoneum,
extremities and viscera; most frequently in midalied patients. Only very recently,
Robinson and colleagues found recurrent fusionstn@ypts in SFTs caused by inversion at
chromosome 12qg13 involving NAB2 and STATG6, adjacgahes normally transcribed in
opposite directions [147,148]. Normally, NAB2 is andogenous inhibitor of EGR1, but in
the fusion gene NAB2 loses its repressor domaingaids the transcriptional activation of
STATG6. Thus, the NAB2-STATG6 fusion protein actsinduce expression of EGR1 targeted
genes. While most SFTs have an indolent coursecandbe cured by surgery, 15-20% of
SFTs progress with either local recurrence or distaetastases [149,150]. In addition to the
classical SFT (CSFT), two more aggressive clingathological variants of SFTs are
currently recognized: malignant (MSFT) and deddfderated (DSFT), the latter showing a
higher metastatic rate [151,152]. While the stadderatment for CSFT and localized disease
is surgery, medical therapy is needed in caseaaflippadvanced or metastatic M/DSFT. New
agents are currently under evaluation, along wattiatherapy and cytotoxic chemotherapy.
Chemotherapy has been mainly described to be ciefée but of note dacarbazine have
recently reported to be active in patients withgoessive pre-treated advanced SFTs [153].
Involvement of the platelet derived growth facteceptor (PDGFRJB and vascular growth
factor receptor 2 (VEGFR-2) pathways were repomte®FTs [154,155]. In line with this,
sunitinib has been recently reported to exert @mmter activity in unresectable, progressive
M/DSFT patients [154,155]. Moreover, in the clidisatting, preliminary data point to the

potential antitumor activity of other antiangiogeragents like sorafenib, pazopanib, and
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bevacizumab combined with temozolomide [156]. eséngly, in the larger retrospective
series of M/DSFT patients receiving sunitinib [158]e levels of activation of the direct
targets of this agent, PDGBRand/or VEGFR-2, as evaluated by IHC in tumor lesjadid

not fully account for the response to treatmentrddger, very recently, in a xenograft model
of DSFT, sunitinib monotherapy was found to hawe Efficacy [153]. These observations
strongly supported the hypothesis that additiorfétavget mechanisms may sustain the

activity of sunitinib in this clinical setting.

2.3.2 CLEAR CELL SARCOMA (CCS)

Clear Cell Sarcoma (CCS) is a very rare and aggeessft tissue sarcoma (STS), usually
arising from deep soft tissue or viscera [157], amarked by a very high metastatic risk
resulting in a 5-year overall survival of about 5058, 159]. In contrast with other STS, and
similarly to melanoma, its metastatic sites inclugmph nodes. CCS, initially named,
malignant melanoma of soft parts, are moleculahigracterized in most cases by a specific
translocation t(12;22)(q13;q12), which resultsusién of the Ewing’'s sarcoma gene, EWS,
with the cyclic AMP (cAMP) regulated transcriptidactor, ATF1, a member of the cAMP-
responsive element binding protein (CREB) familgQL. The EWS-ATF1 chimeric fusion
protein interacts with the MITF (melanocyte madtanscription factor) promoter, thus it
directly and aberrantly activates MITF expressidansequently, CCS is characterized by the
expression of the melanocytic differentiation maskdMB45/gp100 and Melan-A/MART-1
[146]. Overall, several immunophenotypic and molacteatures are shared between CCS
and malignant melanoma. Thus, clinical presentatbgether with FISH or RT-PCR analysis
for the specific translocation is crucial to digtiish the two entities. Receptor tyrosine
kinase expression/activation [161] and gene exmmessnalysis [162], indicate that MITF
drives the same down-stream pathways in CSC antelanoma and that PDGBRand the
hepatocyte growth factor receptor (c-Met), are egped by CCS [163]. CCS is poorly
sensitive to chemotherapy and anecdotal resporsaggimens containing dacarbazine,
vincristine, anthracycline, and cyclophosphamidé &minterferon-alpha-2b [164] have been
reported. Based on the molecular features descabede, multi-kinase inhibitors have been
used as therapeutic agents in this STS and obgeotisponses to sunitinib, and sorafenib

treatments have been recently reported [165, 166].
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2.3.2 ALVEOLAR SOFT PART SARCOMA (ASPS)

Alveolar soft part sarcoma (ASPS) is a rare malgyahat tends to strike young adults and
adolescents. Patients with ASPS often present xtbnsive metastatic disease, frequently
involving the lungs and sometimes the brain. Thaiadl management of patients with
unresectable, metastatic disease is still chaltgnghSPS expresses an array of potentially
therapeutically targetable, angiogenesis-relatedlecntes and, importantly, it has a
distinctive angiogenic phenotype marked by a paculimor-associated vasculature [167].
Base on this, alveolar soft part sarcoma have Bhewn to respond to both sunitinib [168]
and cediranib [117]. ASPS carries an unbalancedrmeat t(X;17)(p11;g25) translocation,
leading to the chimeric transcription factor ASPEER [169]. The product of this peculiar
translocation induces c-Met transcriptional up-tagon and activation [170]. Thus, MET
may represent a potential therapeutic target in &gRtients and studies on selective MET

inhibitors, have been proposed [171].
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3. AIM OF THE PROJECT

It is now clear that the tumor-host interplay reyergs a key component in the response to
treatment. Thus, patient’'s immune status, as welthe dynamic changes in the tumor
microenvironment, needs to be deeply investigataihg anticancer treatment. So far, no
information is available about tlsgystemic immunological statasd no accurate histological
description of themmune contexture at the tumor sérists for the STS subtypes topic of
my thesis. Consequently, the impact of anti-angicgéherapies on the immunity of these

patients remains unexplored. My study aimed tdlidise gaps:

% The first objective was to investigate timevivo presence and quality afrculating

immune cells and tumor immune infiltrates in pat$enith STS.

% The second goal was to explore whether anti-angiogieeatment (sunitinib) were

actively interfering with the immunological statatthese patients locally, at tumor

site, and systemically.
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4. MAIN RESULTS

Submitted Manuscript | - Adaptive immune contexture at the tumor site and
downmodulation of circulating myeloid-derived suggsor cells in the response of solitary
fibrous tumor patients to anti-angiogenic therapy.

The first interesting observation of oum situ analysis on anti-antiogenic naive SFT
specimens was the presence of a very dense itdilohramified CD163 myeloid cells
diffusely interdispersed among the cancer cefigiure 1, panel 3. These cells, mostly
CD68 negatively), included, as shown by confocal analysis, COOERL4" M2-type TAMs
(arrows) and CD16ED14 cells (circle), likely representing IMCs)( Conversely, CD3
lymphocytes were mainly absemt)(and when present, they were enriched in suppeess
Foxp3 Tregs € and f. Collectively, these IHC and confocal analysesidated an

immunological status skewed toward immune supprassi

CD183/CD14

FOXP3
S kg R N A s R
e . -aj&-!

S AN

pre-sunitinib SFT lesion

Figure 1

Then, we wondered whether this local immunosuppressignature could be reversed by
anti-angiogenic treatments. We observed that, pesga to sunitinib-naive tumors, M/DSFT
lesions surgically removed from patients who reeédisunitinib in neo-adjuvant setting were
all characterized by a high density of activated ABR") CD3" tumor-infiltrating T
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lymphocytes (TILs), which included both Thi1-poladz(T-bet) CD4™ T cells and cytotoxic
competent CD8T cells (GZMB and TIA-T) (Figure 2A).

post-sunitinib SFT lesion

These data were further confirmed by vivoanalysis on TILs purified from a sunitinib-
treated MSFT lesiorF{gure 2B).
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Interestingly we found that in post-therapy lesioastivated T cells correlated with the
concomitant presence of a newly acquired populatb@D68CD14" macrophages rarely
found in untreated tumor&igure 3A and 3B panels a and p

A

Figure 3

Indeed, we observed that, while CD1@2lls in the pre—treated lesions showed an eledgat
and often ramified morphology, these CD6facrophages displayed the round-shape
morphology typical of the M1 polarizatiofriure 3A) [97], expressed high level of HLA-
DR (Figure 3B panel ¢, and were mainly organized in clusters aroundchsaref tumor

regression. Thus, proximity to T cells, morphologiyd phenotype features suggest their
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immunostimulatory and anti-tumor activity. Altogeth the IHC analysis results were

consistent with an ongoing adaptive immunity intggmitinib M/DSFT lesions

We then evaluate the systemic immunological stafuSFT patients. Multiparametric flow
cytometry approach was applied to identify theedight subsets of immune suppressive cells
and to quantify their frequency. We found that:

a) CD3'CD4'CD258"Foxp3" Tregs, were significantly expanded in M/DSFT patte
compared with age-matched healthy donors (HBgjufe 4A).

b) No differences in the percentagesLofeage-negative MDSQ&inHLADR CD33),
were detected between patients and HDs.

c) The percentage of CD1®D14'HLADR ™" mMDSCswas significantly higher both
in subjects with CSFTs and M/DSFTs than in HBgure 4B).

d) gMDSCs identified both as percentage of HhLADR CD66B" and CD66HCD15
cells in live PBMCs as well as considered as n@hifocount in parallel with the
arginase activity detected in plasma, were foundeoincreased in untreated SFT
patients compare to HDs. Concomitantly, by intrat@t staining, circulating CD3T
cells displayed a decreased functionality and thleywed a reduced production of
IFN-y and IL-2 Figures 4C and 4D.

Altogether, these phenotypic and functional assays testify atust of systemic

immunosuppression in SFT patients
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We monitored the frequency of circulating Tregs émel two MDSC subsets (mMDSC and
gMDSC) in patients with M/DSFTs collected at di#fat time points during sunitinib
therapy. We found that:

a) The frequency of both Tregs and gMDSC decreasemgtireatment and remained
low at time of disease progression. Interestinghye frequency of circulating
mMDSCs was significantly reduced at day 15 (T15) hlthough patients were still
under drug treatment, a rebound in the number oD8Ms was observed at disease
progressionKigure 5A).
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b)

d)

The decrease functionality of the circulating CDBcells, assessed by intracellular
staining as reduced IFNand IL-2 production, was quickly relieved at Tl bhen
re-established concomitantly with the increase MD$Cs at progressiorFigures
5B and 5Q.
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% mMDSCs in CD14+CD11b+ cells

Three patients displaying a long lasting respossunitinib treatment consistently
displayed percentages of mMMDSCs comparable to Hi2gife 6A Panel § and no
evidence of CD3 T cell dysfunction in the peripheral blood coulé detected
(Figure 6A Panel b and §.

mMDSCs from patients at time of disease progressiere assessed for the
activation of STAT-1, 3, 5 and 6 in response to éxevivo cytokine stimulation.
Interestingly ex vivo analysis of CD14CD11BHLADR™" mMDSCs from
peripheral blood of patients progressing duringitgub treatment evidenced an
IFNa-mediated STAT3 phosphorylation that did not oaaumMDSCs of sunitinib-
responding patientd=igures 6B).
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Conclusions Collectively, our results provided phenotypic dadctional evidence of a local
and systemic immunosuppressive status that coulceleyed by anti-angiogenic therapy
Moreover, high levels of MMDSCs and impaired T éafictions were found to be associated
with tumor progression, while long-lasting low mMOSfrequency in sunitinib-treated
patients paralleled the disease control. Initiahctional characterization of mMMDCS at
progression suggests that sunitinib-treatment migttice/select a qualitatively different
mMDSCs population, possibly representing an immeoneeliated mechanism of acquired

resistance.
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Manuscript Il [in preparation]-Melan-A/MART-1 immunity in a clear cell sarcomaigat
treated with sunitinib: a case report.

Unlike other tumors, such as malignant melanomeagtlare not currently bona fide TAAs or
TSAs in SFT. Of noteas melanoma, CCS express a MITF-regulated expressio
melanocyte differentiation antigens (HMB-45/gp10@ &lelan-A/MART-1). Thus, | had the
possibility to directly study the antigen-specificcell response in a CCS (HLA-A*0201)
patient with advanced disease that displayed a-lastqhg response to treatment with the
anti-angiogenic drug sunitinib.

In situ analysis revealed that, tumor specimen removedr dafeatment with sunitinib
displayed signs of pathological regression assediatith CD3/CDS8'T cell infiltration and a
selective loss of MART-1 expression at the tummelgwhile retaining the positivity for
HMB-45 and S-100Kigure 1A and 1B).
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Thein vivo generation of the MART-1 loss antigen variant \@asociated with the presence
of an anti-MART-1 systemic immunity. In fact, aftén vitro sensitization with the
immunogenic HLA-A*0201 restricted peptide Melan-ARRT-1,7;, functionally active
MART-1 specific CDST lymphocytes were detected by pentamer stairfiigu¢e 2A) and
by ELISpot assayHigure 2B).
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Figure 2

As for SFT, sunitinib treatment induced a sustaided/n-modulation of the frequency of
immune suppressive cells, Tregs and mMDSCs, iis ghtient. Modulation of these cell
subsets paralleled a T cell re-activatiéig(re 3) that likely included also the anti-MART-1
specific T cells. Indeed, in the peripheral blobd percentage of IFN<{red line) and IL-2-

producing (blue line) T cells were inversely coatedl with that of immunosuppressive cells.
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Conclusions: These data demonstrate a previously undescribeduimamesponse directed
toward melanoma antigen in a CCS patients. Altagrethe provided evidence support the
hypothesis that the post-sunitinib MART-1 negatiwaor variant was thi vivo outcome of

T cell-mediated, immune selection occurring in C@a&ient likely operated by the anti-
MART-1 T cells. This anti-MART-1 specific immunityay have been reactivated/unleashed
following the release in the immune suppressioniced by the sunitinib treatment.
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Published Paper Il - Structured myeloid cells and anti-angiogenic thgrapalveolar soft

part sarcomaJCommentary]

In line with the characterization of myeloid/madnage cells previously described in SFT
patients, we explored the presence and the lotializaf cells expressing myeloid markers in
the inflammatory infiltrate of metastatic alveokuft part sarcoma (ASPS). As stated in the
introduction this tumor is characterized by a peculumor-associated vasculature [167]. By
IHC and confocal analysis, we found that myeloidlscexpressing CD14 and CD163
markers constitute the prominent cells in the mft@atory infiltrate of naive ASPJ-igure

1, panels A and D. Within the TME, these M2-like CD1€D163 macrophages were
structurally organized in two distinct localizat®onCD14CD163 cells formed a network
surrounding VEGFR2 CD31" endothelial cells (arrows) or, as single cellsgythwere
interspersed in tumor nests (circle), keeping dempact with tumor cellspagnels B, C and
E).

Figure 1

These myeloid cells might function as active infltaatory components promoting VEGF-
mediated vasculogenesis and, although not phygigalt of the vasculature, they are
thought to provide trophic support to the charastier ASPS vascular network. We discuss
these findings in relation to a published paperKeynmar and colleagues on metastatic
alveolar soft part sarcoma (ASPS) treated with @h&-angiogenic drug cediranib [117].
Interestingly, molecular analysis of ASPS afteatneent showed a strong modulation of
transcripts related not only to angiogenesis/vagmnesis, but also to inflammatory myeloid

cells.
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Conclusions: We showed for the first time that ASPS are heainlitrated by M2-like
CD14'CD163 macrophages structurally organized to supportwasae or likely exerting
tumor trophic functions. Our morphological obseimatprovide the rationale for considering
the tumor infiltrating myeloid cells as potentiakgets of antiangiogenic therapies such as
cediranib and suggest that their numeric or fumetionodulation can be part of the response

to treatment.
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5. CONCLUSIONS AND FUTURE PROSPECTS

The results collected in this thesis provided ewggeof a local and systemic immunological
status skewed toward immunosuppression in thesealiénts, status that was previously
ignored and that have crucial importance for dingctappropriate clinical intervention in
these types of neoplasms. The described immunomatmiylactivities of sunitinib, together
with the preliminary evidence that STS might be immmgenicin vivo (as we showed in the
case report about the CCS subtype) strongly sugjggisa re-activated tumor immunity could
be part of the response to treatment. Data cotlectehis thesis provide the rationale for
considering the manipulation of the immune systeamaaherapeutic approach at least in
advanced SFT and CCS patients. Indeed, the obsphartbmenon that sunitinib transiently
normalizes disturbed myeloid differentiation statusile sparing lymphocytes and even
enhancing their function, suggests that this treatrmight provide a window, in which these
patients may benefit from active immunotherapeagiproaches. Thus antibodies directed to
immunological checkpoints, such as ipilimumab @LA-4) or nivolumab (anti-PD-1)
[106, 107], now in use for melanoma patients, mégrp alone or in association with
targeted-therapies, a new therapeutic option fbireatng more durable disease control in this
category of STS patients. Of note, both SFT and (@8r a causative chromosomal
translocation that encodes for a new fusion protéms protein, exclusively expressed by
tumors cells, present in tumor at the early stages maintained in the advanced metastatic
disease, can be a potential and ideal source obrtgpecific, unique, non-self antigens
toward which direct/re-direct the immune responge detive vaccination or adoptive

therapies.

The involvement of myeloid cells in maintaining ammune suppressive state in the
peripheral blood, together with the heavy infilivat of TAMs observed across different
naive STS subtypes, clearly demonstrated by thdtseprovided in this thesis, pose the
rationale for combination therapies that includegdrlimiting the function, differentiation or

recruitment of myeloid lineage cells in associatigith other targeted-therapies. Some of
these drugs are already used in the clinical gtt[d72-174] with promising results. The
rebound of the myeloid suppressive cell populatiocumented in the peripheral blood of
SFT patients at disease progression, althoughmnatigere still under sunitinib treatment,
poses the crucial question whether, in additiorpaoticipate to a clinical response, the

immune system may also take part in the phenomehtire acquired resistance to treatment.
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The initial characterization performed in this tisesn the functional features of the mMDSC
present/selected in the presence of sunitinibsstadie progression seem to indicate that this is

a realistic hypothesis that deserves accurateatitef investigation.

In conclusion, the results of this thesis poser#tmnale for immune based intervention in
the subtypes of STS here analyzed. Futures statlimdd be designed to:

1. shed light on the antigen specificity of the augmlos anti-tumor response in SFT and
CSC patients and defining immunogenic unique, refiepitopes for vaccine-based,
or specific adoptive therapies;

2. dissect the contribution of the immune system &‘#tquired resistance’ to targeted-

therapies.
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Abstract

Background: Host immunity is emerging as a key player in the prognosis and
response to treatment of cancer patients. However, the impact of the immune
system and its modulation by therapies are unknown in rare soft tissue sarcomas
such as solitary fibrous tumours (SFTs), whose management in the advanced forms
includes anti-angiogenic therapy. Here we studied the in situ and systemic immune
status of advanced SFT patients and the effects of sunitinib malate (SM) in
association with the clinical efficacy. Methods: Immune contexture of SFT was
assessed by immunohistochemistry in lesions from untreated or SM-treated patients.
Frequency of circulating myeloid-derived suppressor cells (MDSCs), regulatory T
cells (Tregs) and T cell functions were assessed ex vivo in SFT patients prior and
during anti-angiogenic therapy. Patients with long term tumour control were included
to correlate immune profiles and clinical responses. Results: Anti-angiogenic naive
SFT lesions were heavily infiltrated by CD163"CD14'CD68" and CD163"CD14 CD68"
myeloid cells but devoid of T cells. Conversely, post—-SM tumours acquired a new
subset of CD68'CD14" myeloid cells and displayed traits of an on-going adaptive
immunity, strongly enriched in activated CD8" and CD4" T cells. These changes at
the tumour site paralleled the alleviation of systemic immunosuppression and the
drop in the frequency of circulating mMDSCs and gMDSC. Rebound in the number
of mMMDSCs, but not of gMDSC occurred at disease progression, and a reduced
percentages of mMDSCs, comparable to those found in healthy donors (HD),
endured only in the SM-responsive patients. Conclusion: The immune contexture of
SFT patients is heavily involved in anti-angiogenic therapy and it could be exploited
to achieve more durable disease control through immune-based combination

strategies.
Keywords: soft tissue sarcoma, solitary fibrous tumour, anti-angiogenic therapy,

anti-tumour response, myeloid-derived suppressor cells, tumour-infiltrating

lymphocytes, tumour microenvironment, immunohistochemistry.
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Introduction

Solitary fibrous tumour (SFT) is a rare subtype of soft tissue sarcoma (STS) that can
occur in several anatomical sites, most frequently in middle-aged patients. Whereas
most SFTs have an indolent course and can be cured by surgery, 15-20% of SFTs
progress with either local recurrence or distant metastases (Fletcher et al, 2013;
Chan et al, 1997). In addition to the classical SFT (CSFT), two more aggressive
clinical-pathological variants of SFTs are currently recognised: malignant (MSFT)
and dedifferentiated (DSFT), the latter showing a high-grade sarcoma overgrowth
(Mosquera et al, 2009; Collini et al, 2012). We and other groups have recently
described the activity of sunitinib malate (SM) (Chow et al, 2007), in unresectable,
progressive M/DSFT patients (Stacchiotti et al, 2010; Stacchiotti et al, 2012; George
et al, 2009). Apart from being an anti-angiogenic drug, SM possesses
immunomodulatory functions (Ozao-Choy et al, 2009; Ko et al, 2009). The role of the
immune system in controlling tumour growth has long been recognised and the
immune contexture, defined by the frequency, type, functional polarisation and local
distribution of immunocompetent cells at the tumour site, has been shown to impact
tumour prognosis (Fridman et al, 2012; Galon et al, 2014). Moreover, ‘avoiding
immune destruction’ has been recently listed as an emerging hallmark of cancer
(Schreiber et al, 2011; Hanahan et al, 2011) and among the immune suppression
mechanisms active in cancer patients, those mediated by Foxp3® regulatory T cells
(Tregs) and myeloid derived suppressive cells (MDSCs) strongly hinder the anti-
tumour response in patients with cancer of different histology (Filipazzi et al, 2007;
Diaz-Montero et al, 2009; Mougiakakos et al, 2010). Little is presently known about
the nature and features of the immune response to SFT, and no accurate histological
description of local immunity exists for this STS. Moreover, the impact of anti-cancer
therapies on the immunological status of the SFT patients remains unexplored.
Herein, we showed that the immunological profiles of CSFT, MSFT and DSFT
patients, at the tumour site and in circulating PBMCs, revealed an
immunosuppressive status. Our data demonstrated that SM treatment relieves
systemic immunosuppression in PBMCs of M/DSFT patients, and at the tumour site
it favoured the setting of an immune contexture with typical adaptive immunity traits.
Altogether, these findings pave the way for the design of therapies that combine
immune-based approach with anti-angiogenic treatment in SFT patients in order to

achieve a more durable control of this aggressive disease.
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Materials and methods

Immunohistochemistry (IHC) and confocal analysis

Serial sections of 5-uym thick formalin-fixed, paraffin-embedded (FFPE) SFT samples
(n=15) were cut and processed for IHC or immunofluorescence staining as
previously described (Stacchiotti et al, 2012) and as briefly summarised in the
supplementary material (see Supporting information, Supplementary materials and
methods). The clinical and pathological characteristics of each tumour are
summarised in Supporting information, Table S1. All the tumour samples were
analysed for the presence of the NAB2-STAT6 fusion as previously described
(Mohajeri et al, 2013; Robinson et al, 2013) (see Supporting information,
Supplementary materials and methods). The antibodies used for IHC and confocal
analysis and their conditions of use are reported in Supporting information, Table S2.
Confocal microscopy was carried out using a Radiance 2100 microscope (Bio-Rad
Laboratories, Hercules CA) equipped with a krypton/argon laser and a red laser
diode. Evaluation of all IHC stains was performed by the Pathologist (S.P.) who
scored the intensity of the staining using a scale from (-) no staining to (++++) very

strong staining.

Blood sample collection and patient characteristics

This study was conducted in compliance with the Declaration of Helsinki and
approved by the Ethical Committee of Fondazione IRCCS Istituto Nazionale dei
Tumori, and all of the patients signed a written informed consent for the collection of
blood samples. Blood samples were collected from SFT patients before and at
different time points after initiating continuous treatment with anti-angiogenic therapy.
Blood was also collected at the time of disease progression. Blood from age-
matched healthy donors (HDs) was also obtained for control. PBMCs were isolated
by Ficoll/Paque™ PLUS density gradient centrifugation within two hours of the blood
draw, as described elsewhere (Casati et al, 2006). To avoid assay-to-assay
variability, purified PBMCs were cryopreserved in liquid nitrogen for batch acquisition
of Tregs and MDSCs based on phenotype and frequency. Immunological monitoring
of circulating Tregs and MDSCs was conducted in a total of 17 SFT patients. The
clinical characteristics of the immunologically monitored patients are reported in

Table 1. Patients began anti-angiogenic treatments at disease progression and after
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a minimum period of 15 days of washout if they had previously received
chemotherapy agents. The mean duration of the anti-angiogenic treatment was 6
months (range, 1-20); patients underwent disease assessment at baseline and after
approximately 1-2 months. Objective responses according to the Response
Evaluation Criteria in Solid Tumors (RECIST) and tumour burden shrinkage were
determined by physician assessment of radiographs. Patients were treated until they

experienced RECIST-defined disease progression or unacceptable toxicity.

SFT tumour dissociation and tumour-infiltrating lym phocytes (TILS) analysis

TILs were obtained from tumour sample of patients who underwent surgery by
enzymatic and mechanic digestion using the gentleMACS Dissociator (Miltenyi,
Bergisch-Gladbach, Germany). Briefly, tumour specimens were minced under sterile
conditions into small pieces and digested over 1 h following the gentleMACS
Dissociator protocol (Miltenyi) at 37C. The resulting cell suspension was filtered
through a 70-um mesh (BD Biosciences, San Jose, CA), the red blood cells (RBCs)
were lysed, and the cells suspension was washed twice with RPMI. Cells were
stored in liquid nitrogen until use. For intracellular cytokine staining, patients’ TILs
were seeded into 96-well round-bottomed plates at 1.5x10° cells/well in RPMI + 10%
human serum and stimulated overnight with PMA/lono (50 ng/mL and 500 ng/mL,
respectively) plus GolgiStop (4 uL/6 mL, BD Biosciences) at 37<C. TILs were stained
for the cell surface markers CD3, CD4 and CD8. The cells were then washed, fixed
and permeabilised with Fix/Perm reagents (eBioscience, San Diego, CA) following
the manufacturer's protocol and then stained with a488-labelled anti-IFN-y
(BioLegend, San Diego, CA ), PE-labelled anti-Tbet (eBioscience) or PE-labelled
anti-granzyme B (BD Biosciences). Dead cells were identified using the LIVE-
DEAD® Fixable Violet Dead Cell Stain Kit (Life Technologies, Carlsbad, CA)
according to manufacturer’s instructions and excluded from the analysis. The
fluorescence intensity was measured using a Gallios™ (Beckman Coulter, Brea, CA)

flow cytometer and analysed using Kaluza® software (Tree Star Inc, Ashland, OR).
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Flow cytometry and intracellular cytokine staining

Treg and MDSC frequencies were determined by six-colour immunofluorescence
staining of thawed PBMCs. The antibodies used are reported in Supporting
information, Table S3. Dead cells were identified using the LIVE-DEAD® Fixable
Violet Dead Cell Stain Kit (Life Technologies) according to manufacturer’s
instructions and excluded from the analysis. For surface staining, cells were
incubated with antibodies for 30 minutes at 4C aft er blocking non-specific antibody
binding to the Fc-receptors using FcR Blocking Reagent (Miltenyi). For Treg
analysis, intracellular staining with APC-conjugated anti-Foxp3 (eBioscience) or the
proper isotype control (rat IgG2a) was performed after fixation and permeabilisation
of cells using an intracellular staining kit (eBioscience) according to the
manufacturer’'s instructions. Intracellular staining was performed as follows.
Lymphocytes activated overnight with anti-CD3/CD28 beads (DynaBeads®
CD3/CD28 T cell Expander, Invitrogen Dynal AS, Oslo, Norway) in the presence of 1
pl/ml Golgi Plug (BD Biosciences) were stained for the cell surface marker CD3. The
cells were then washed, fixed and permeabilised with Cytofix/Cytoperm buffer (BD
Biosciences) and stained with a 488-labelled anti-IFN-y (BioLegend), PE-labelled
anti-IL2 (BD Biosciences). Data acquisiton was performed using a Gallios™
(Beckman Coulter) flow cytometer, and the Kaluza® software (Tree Star Inc) was
used for data analysis.

Intracellular protein kinase assay

Cryopreserved PBMCs were thawed, washed and rested 2h at 37C in RPMI
containing 1%HS. Then, cells were incubated either without stimulation or stimulated
with GMCSF 10ng/ml (Peprotech), IL-4 100ng/mL (Perprotech), VEGF 50ng/mL
(Peprotech) and IFNa 10000 U/mL (Sigma -Aldrich, St Louis, MO, USA).
Immediately after stimulation cells were fixed with pre-warmed BD Cytofix ™ Buffer
(BD Biosciences) for 10min at 37<C. After incubation cells were washed with PBS
1%FCS and then stained with anti-CD14 APC alexa750 (Beackman Coulter) and
HLADR FITC (BD Biosciences) for 30 min and permeabilized with Perm Buffer Il
solution (BD Biosciences). Cell were then stained for intracellular expression of anti-
pSTAT1 (Y701) Alexa Fluor 647, -pSTAT3 (Y705) Alexa Fluor 647, -pSTAT6 (Y641)
PE and —pSTAT5(Y694) PE (all from BD Bioscences). Data were acquired on a
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Gallios™ (Beckman Coulter) flow cytometer and analysed using the Kaluza®

software (Tree Star Inc).

Arginase activity assay

Plasma from HD and SFT patients were tested for arginase activity by measuring the
production of L-ornithine from L-arginine, as previously reported [Rodriguez PC et al
Cancer Res 2004]. In brief, 25uL of plasma samples were added to 25uL of Tris-HCL
(50nM; pH 7.5) containing 10mM MnCI2 (sigma). Arginase was then activated by
heating the mix for 20 min at 55C. Then a solution containing 150uL carbonate
buffer (100mM; sigma) and 50uL L-arginine (100mM; sigma) was added and
incubated at 37<C for 20 min. The hydrolysis reacti on from L-arginine to L-ornithine
was stopped with 750uL of glacial acetic acid and identified by a colorimetric assay
after the addition of 250uL of ninhydrin solution (2.5g ninhydrin (sigma); 40mL H3PO,
6M; 60mL glacial acetic acid), followed by incubation at for 1h at 95C. The amount
(nmol) of L-ornithine was determined measuring the absorbance at 570 nm.

Statistical analysis

The two-tailed unpaired Student’s t test (with a 95% confidence interval [CI]) was
used to compare groups, while the two-tailed paired Student’s t test was used to
analyse the effect of the treatments between different time points, as indicated in the
figure legends. Statistical calculations were performed using the Prism5 software
(GraphPad Software, La Jolla, CA, USA). P values < 0.05 were considered
statistically significant. Error bars represent the standard error of the mean (SEM).
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Results

Tumour-infiltrating immune cells in CSFT and M/DSFT

To gain insight into the immune contexture of SFTs, the presence and functional
polarisation of tumour-infiltrating T cells and myeloid/macrophage cells were
assessed by IHC analysis on a retrospective series of FFPE SFT specimens (n=11)
collected from patients who did not receive anti-angiogenic therapy prior to surgery.
This series of anti-angiogenic-naive SFTs included 3 CSFTs, and 5 MSFTs and 3
DSFTs. Supporting information Table S1 reports the histopathological features of the
studied tumours. The majority of the analysed samples were negative or very poorly
infiltrated with CD3" T cells (Figure 1A). Only 2 cases (MSFT Tumour ID #8 and
DSFT Tumour ID #9) displayed a remarkable positivity for CD3 staining (Figure 1A)
that, however, was paralleled by a strong positivity for the Foxp3 nuclear marker,
thus indicating enrichment in infiltrating Tregs (Figure 1A). In our samples, antibodies
directed against the CD68 and CD163 markers did not stain tumour cells but did
identify two different subgroups of tumour-associated macrophages (TAMs). All of
the SFT cases displayed strong infiltration by CD163" cells intermingled with the
tumour cells, and the frequency of this myeloid cell type was further enhanced in
tumours with a worse prognosis, namely M/DSFT samples. Conversely, CD68
staining was completely negative or revealed only few/scattered positive cells
(Figure 1A). Confocal analysis, performed to better clarify the nature of the myeloid
cells present in the M/DSFT microenvironment, showed that the majority of the
CD163" cells were positive for CD14, fitting with a pro-tumour, M2-TAM nature
(Figure 1B (arrows)) (Mantovani et al, 2002). Moreover, a subset of CD163 single-
positive cells was also detected (Figure 1B (circle)). According to the literature, these
cells might represent a subset of myeloid progenitors or immature cells (de Vos van
Steenwijk et al, 2013). Analysis of the granulocytic component was also performed
and no evidence for a selective infiltration of this cell subset was evidenced. CD66b"
cells were in fact only occasionally found inside the tumor, with some positivity
detected only in perivascular areas (Figure S1). Collectively, the IHC and confocal
analyses indicated poor T-cell infiltration and an immunological status skewed

toward immune suppression in CSFT and in M/DSFT lesions.
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Evidence of a distinct immune cell signature in M/D  SFT lesions from SM-

treated patients

Pro-angiogenic factors and abnormal tumour vasculature hamper the extravasation
of immune cells into the tumour parenchyma and promote immune suppression
(Dirkx et al, 2003). Conversely, anti-angiogenic treatments, while normalising blood
vessels, enhance immune infiltration, as was recently shown in different animal
models (Jain et al, 2013; Shrimali et al, 2010). In M/DSFT patients, we recently
described the activity of SM, and we reported that SM led to vascular normalisation
at the tumour site (Stacchiotti et al, 2012). We thus explored the immune contexture
in 4 M/DSFT lesions surgically removed from patients who received SM in neo-
adjuvant setting. All of these samples showed a high density of CD3" TILs (Figure
2A), which included both CD4" and CD8" T cells. The intratumoral lymphocytes were
mainly HLA-DR positive, and a consistent fraction of them also stained positive for
granzyme B (GZMB) and T cell-restricted intracellular antigen (TIA-1, a cytotoxic
granule-associated protein expressed by cytotoxic T cells and involved in the
induction of apoptosis in CTL sensitive targets) (Figure 2A). Thus, the CD3"
infiltrating cells were mainly activated T cells endowed with cytolytic potential.
Moreover, their positivity for the nuclear transcription factor T-bet (immune cell-
specific member of the T-box family of transcription factor coordinating type 1
immune responses) suggested enrichment in functional, Th-1-polarised T cells
(Figure 2A). No Foxp3" cells were detected (Figure 2A), indicating the absence of
regulatory, suppressive T cells at the tumour site in post-SM M/DSFT patients.
Concerning the monocyte/macrophage compartment, in addition to the
CD163"CD68" myeloid population (Figure 3), post-SM M/DSFTs displayed a strong
positivity for intratumoral CD68" myeloid cells (Figure 3A). On confocal analysis,
these CD68" cells co-expressed CD14 and represented a newly acquired population
of macrophages rarely found in untreated tumours (Figure 3B Panel b). Moreover,
these CD68" macrophages displayed a typical round morphology, and double-
immunofluorescence staining revealed co-expression of both the CD68 and HLA-DR
markers (Figures 3B Panel c). These features are compatible with the M1 phenotype
of activated macrophages. On IHC evaluation, all of the cases treated with SM
showed signs of a pathologic response. Extensive areas of necrosis and tumour
regression were observed in the proximity of the immune and inflammatory

infiltration. Of note, around the area of tumour regression, cytotoxic competent, Thl
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CD8" and CD4" T cells were organised in clusters (Figure 2B). Altogether, the IHC
analysis results were consistent with an ongoing adaptive immunity in post-SM
M/DSFTs. To strengthen this conclusion, ex vivo TILs were isolated from excised
naive and post-SM MSFT (Patient ID #13) specimens and tested in vitro for their
immunological properties. T cells from post-SM lesions were found to contain
functionally active CD4" T cells producing IFN-y ex vivo and CD8" granzyme B-
positive T cells, representing effector cytotoxic T lymphocytes (Figure 2C).

Standard treatment for M/DSFT patients includes different regimens of cytotoxic
chemotherapy associated or not with radiotherapy. To verify whether modulation of
the immune contexture at the tumour site also occurred in patients responding to
chemotherapy, IHC analysis was performed in 4 M/DSFT tumour lesions surgically
removed from patients who received chemo/radiotherapy in neo-adjuvant setting.
Weak/moderate CD3 infiltration and only few, spared CD68" cells were detected in
two tumours surgically removed from patients treated with chemotherapy
(isofosfamide and/or epirubicin) plus radiotherapy (Figure S2, Tumour ID #14 and
#15). Absence of CD68" cells and very week CD3" T cells infiltration characterised
the post-epirubicin (monotherapy) tumour (Figure S2 Tumour ID #13). Of note, in
the tumour sample from a patient treated with doxorubicin and dacarbazine,
moderate CD3" infiltration, associated to a still week but more clusterised CD68"
positive infiltrate was detected in the proximity of areas showing signs of necrosis
and tumour regression likely suggesting a possible engagement of the immune

response.

Accumulation of immunosuppressive cells in peripher al blood of solitary
fibrous tumour patients

To evaluate the systemic immunological status of SFT patients, we explored the
frequency of Tregs and mMDSCs in the peripheral blood of a prospectively collected
series of 17 SFT patients who included 5 patients with tumours classified as CSFTSs,
6 as MSFTs and 6 as DSFTs (Table 1). PBMCs of HDs, matched for gender and
age, were included as controls. Tregs, defined as CD25"Foxp3™ within a live-gated
CD3'CD4" cell population, were significantly expanded in M/DSFT patients
compared with age-matched HDs (n=11) (p= 0.0008, 1.04+0.65 vs. 2.57+1.05);
conversely, no statistically significant difference existed between HDs and CSFTs

patients (Figure 4A). The percentage of mMDSCs, first defined by our group as
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CD11b*CD14*HLADR™ (Filipazzi et al, 2007; Hoechst et al, 2008; Walter S et al,
2012), was significantly higher both in subjects with CSFTs and M/DSFTs than in
HDs (p=0.0398, 6.19+4.03; p<0.0001, 13.88+6.56 vs. 3.23+1.31, respectively)
(Figure 4B). No difference in the percentages of LinHLADR CD33" MDSCs, were
detected between patients and HDs (data not shown). The overall frequency of
CD3'CD4" T cells and myeloid/monocyte CD14°CD11b" cells did not differ
significantly between patients and HDs (Figures 4C and 4D). Moreover, circulating
CD3" T cells from CSFT and M/DSFT patients were functionally impaired. Figures
4E and 4F show that the frequency of CD3" T cells that produced IFN-y and IL-2 ex
vivo was strongly reduced in patients’ PBMCs compared with HDs. Altogether, these
phenotypic and functional assays suggested a status of systemic

immunosuppression in SFT patients.

Anti-angiogenic therapy modulates peripheral immuno suppressive cells in
patients with M/DSFT

Our in situ analysis provided evidence that anti-angiogenic treatment reprogrammed
the immune contexture of M/DSFTs and favoured the onset of an active T-cell
immunity. To evaluate whether anti-angiogenic therapy also affected the systemic
immunological status of patients with M/DSFT, we monitored the frequency of
circulating Tregs and mMDSCs in PBMCs from patients with M/DSFTs collected at
different time points during SM (n= 6 patients) or pazopanib (n=1 patient) therapy
(Table 1). These anti-angiogenic drugs did not induce lymphopenia (data not
shown). Interestingly, at the end of the second week of treatment (T15), the
frequency of blood Tregs, evaluated within the CD3"CD4" compartment (Figure 5A)
or in the total number of live cells (Figure S3), was significantly reduced (p=0.0020,
2.63+1.12 vs. 1.41+0.75; p=0.0117, 0.57+0.37 vs. 0.36%0.26). This effect was long
lasting, and it was maintained for the duration of the treatment (p=0.0204, 1.41+0.75
vs. 0.95+0.48; p=0.0403, 0.36+0.26 vs. 0.22+0.14). The frequency of circulating
mMDSCs, within the monocytic compartment (Figure 5B) or in the total number of
live cells (Figure S3), was significantly reduced at T15 (p=0.0040, 11.93+4.84 vs.
6.27145.52; p=0.0295, 2.72+2.18 vs. 0.44+0.31). An increase in mMDSC frequency
occurred in all of the patients at the time of disease progression although patients
were still under drug treatment (p=0.0043, 6.27+5.52 vs. 13.13+5.86; p=0.0030
0.44+0.31 vs. 1.840.66) (Figures 5B). The MDSC population includes also
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granulocytic MDSC (gMDSC). Contrary to the mouse gMDSC, definition of human
gMDSC s still challenging due to the lack of a definitive marker that clearly
differentiates this population from activated granulocytes. However, a consensus has
been reached in considering gMDSC as CD14CD66b" and/or CD15+ activated
neutrophils within total PBMC or inside the LinHLADR' fraction, displaying low
density (thus being co-purified with PBMC during blood centrifugation) and releasing
arginase | in the circulation (Brandau et al, 2011, Rodriguez et al, 2009; Zea H et al,
2005). Since gMDSC have been found expanded in the blood of patients with
tumours of different histology (Filipazzi et al, 2012), we assessed the presence and
frequency of this MDSC subtype in PBMC of D/MSFT by monitoring the presence of
CD66b"CD15" , or CD66b’LIN"HLA-DR’ cells as done in others published studies
(Brandau et al, 2011, Rodriguez et al, 2009; Zea H et al, 2005) (Figure 5D).
Moreover, for each M/DSFT patient, the arginase activity was quantified in the
plasma and plotted along the absolute number of blood neutrophils (Figure 5E). As
respect to HD, M/DSFT patients displayed an enhanced frequency of gMDSC
(Figure 5D) and an increased number of neutrophils in the blood (Figure 5E),
number that matched the higher plasma arginase activity. Frequency of gMDSC,
number of neutrophils and arginase activity were co-ordinately down-modulated by
SM. However, similarly to Treg and at difference from mMDSC, gMDSC remained
low all along the duration of sunitinib treatment including at the time of progressive
disease (Figure 5D and 5E)..

The functional assessment of the circulating CD3" T cells, which was based on their
capacity to produce IFN-y and IL-2 ex vivo (Figures 5F and 5G), revealed that
immunosuppression, present in patient PBMCs prior to anti-angiogenic treatment
(Figures 5Fand 5G, PRE), was quickly relieved at T15. At progression, with the
increase in mMMDSCs, T cells displayed again an impaired function characterized by
a limited IFN-y and IL-2 production, similarly to what was found for the pre-treatment
T cells.

Three patients displaying a long lasting response to SM treatment (Table 1, Pts
#6a,8a,10a; SD or PR according RECIST evaluation after 210 months) consistently
showed a low level of MMDSCs, with values comparable to HDs (Figure 6A Panel a)
and no evidence of CD3" T cell dysfunction in the peripheral blood could be detected
in these SM-responsive patients (Figure 6A Panel b and c). mMDSCs from patients

at time of disease progression were assessed for the activation of STAT-1, 3, 5 and
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6 in response to the ex vivo cytokine stimulation. VEGF was unable to trigger STAT-
3 phophorylation in mMDSCs, likely as a result of the blocking activity exerted by
SM. The other cytokines tested, namely GM-CSF and IL-4, exerted their canonical
activation pathways and induced STAT-5 and STAT-6 activation respectively (data
not shown). Conversely, these mMMDSCs stimulated with IFNa, in addition to STAT-1
(data not shown), displayed a consistent phophorylation of STAT-3. IFNa-dependent
STAT-3 activation did not occurred in mMDSCs of HD and SM-responsive patients
(Figures 6B and 6C).

In summary, the analysis of the circulating immune cells in PBMCs from M/DSFT
patients provided phenotypic and functional evidence of an immunosuppressive
status that was quickly but temporary relieved by anti-angiogenic treatment.

Suspension in the immunosuppression correlated with response to treatment.
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Discussion

To our knowledge this is the first report that performed a detailed characterisation of
the immunological status in the peripheral blood and at the tumour site of SFT
patients and that considers the immune contexture of SFTs as a possible player in
the response to therapy as well as in disease progression. SM exerts a significant
anti-tumour activity in M/DSFT (Stacchiotti et al, 2010; Stacchiotti et al, 2012;
George et al, 2009) and patients achieving long term tumour control have been
reported (Levard et al, 2013; Domont et al, 2010). Besides the notion that immunity
is emerging as a critical player in the response to treatment in cancer patients
(zZitvogel et al, 2013), the rationale of assessing the role of the immune system in the
efficacy of SM in SFTs stems from our previous observation that the levels of
PDGFRB and/or VEGFR2 activation, evaluated by IHC in tumour lesions, did not
fully account for the therapeutic response to treatment (Stacchiotti et al, 2012).

The first interesting observation of our analysis was the presence of an
immunosuppressed environment at the tumour site, characterized by a very dense
infiltrate of myeloid cells. These cells, mostly CD68 negative, included
CD163'CD14'CD68 TAMSs, interdispersed among cancer cells and with an
elongated, ramified morphology compatible with M2-type macrophages (Mantovani
et al, 2002; Ino et al, 2013; Jensen et al, 2009; Caillou et al, 2011), together with
CD163"CD14°CD68 cells likely representing immature myeloid-derived cells (de Vos
van Steenwijk et al, 2013; Jensen et al, 2009). Conversely, CD3" lymphocytes were
mainly absent, and when present, they were enriched in suppressive Foxp3"™ Tregs.
An immunosuppressive status was also detectable in the peripheral blood of SFT
patients. In fact, circulating T cells were consistently functionally impaired, and a
significant accumulation of MMDSCs and gMDSCs was observed in all the patients
analysed. Notably, the increased frequency of circulating mMDSCs (Figure 4B) and
gMDSCs (data not shown) seemed to correlate with tumour grade and disease
aggressiveness, being already detectable in CSFT patients and reaching the highest
level in M/DSFT patients. The more compromised immune status of these patients
with advanced SFTs was further confirmed by the additional accumulation of
circulating Tregs, which instead showed frequency close to normal values in patients
with CSFTs. Altogether, this scenario reveals a previously unappreciated tumour-
mediated immunosuppression in SFT patients and particularly in patients with

M/DSFTs. This observation opens the question whether this immunosuppressive
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signature can be reversed by anti-angiogenic treatments and whether re-activated
tumour immunity could be part of the response to treatment. Noteworthy, no
information about the immunological effect of SM, as detected in situ at the tumour
site in human setting, are available to date. Our IHC analysis showed that, as
opposed to SM-naive tumours, SM-treated lesions were all characterised by a
remarkable CD3" T cell infiltration, with no Foxp3® Treg, but that included Th1 and
cytotoxic-competent CD4" and CD8" T cells. Moreover, TILs purified from a SM-
treated MSFT lesion released ex vivo Thl-related cytokines and cytotoxic Granzyme
B, thus supporting the local engagement of a functionally active host immune
response. Activated T cells at the tumour site correlated with the concomitant
presence of a new subset of CD68™ myeloid cells rarely found in untreated tumours.
These CD68" macrophages displayed the round-shape morphology typical of the M1
polarization (McWorther et al, 2013), and expressed high level of HLA-DR. The pro-
inflammatory and anti-tumour activity of CD68" macrophages infiltrating post-therapy
SFTs is also supported by their organization in clusters around the areas of tumour
regression and in close proximity with activated T lymphocytes. Since macrophages
display an elevated grade of plasticity in response to external stimuli (Mantovani et
al, 2013), we may hypothesise that in SFTs, SM re-educated tumour-resident
myeloid cells toward a more M1 related phenotype, or, alternatively, it recruited ex
novo a new subset of monocytes/macrophages from peripheral blood.

Standard treatment for M/DSFT patients includes cytotoxic chemotherapy and/or
radiotherapy. Evidence from the literature indicates that some chemotherapy
regimens can be endowed with immunomodulatory activities (Bracci et al, 2014).
Analysis of the immune contexture was thus performed in M/DSFT tumours obtained
from cytotoxic responsive patients. Only very mild modulation of the immune
infiltration was observed and this occurred mainly in those cases receiving
radiotherapy, thus confirming previously published data (Sharma et al, 2013). Of
note, two of the analysed tumours, one that did not show any infiltration of T or
myeloid cells (Tumour ID #13) and one treated with chemotherapy plus RT (Tumour
ID #14), were surgically removed from patients who were subsequently treated and
responded to SM and whose post-SM tumours were here analysed (Figure 2A and
2B). Indeed, at difference from the autologous post-chemotherapy counterpart, post-
SM tumours displayed a profound change in the tumour immune microenvironment

with huge CD3" and CD68" infiltrating cells organised in cluster and intermingled
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with tumour cells and areas of tumour necrosis. A lymphocyte infiltration, with a
lower density but with distribution similar to that observed in post-SM tumours, was
only found in the sample treated with adriamycin and dacarbazine, drugs reported as
strong immunomodulators (Bracci et al, 2013). In this case a coordinated increase in
CD3" and CD68" cell infiltration could be observed together with areas of tumor
regression, thus possibly testifying an involvement of the immune system in the
response to this chemotherapy regimen. In summary, a coordinated immune
modulation, involving both myeloid and lymphoid immune infiltrate occurred in all the
4 post-SM tumours, thus indicating a tight association between immune modulation
and response to SM. This was not the case for the post-chemotherapy samples.
However, the here analysed post-chemotherapy tumours were derived from patients
who underwent heterogeneous chemotherapy treatments. So, definitive conclusions
on the involvement of immune system into chemotherapy-induced response deserve
further investigation. This is particularly true for the adriamycin and dacarbazine
regimen, since a single case was available for analysis and in view of the fact that a
retrospective study recently reported this chemotherapy regimen as effective in
M/DSFT (Stacchiotti et al, 2013).

The ability of SM to interfere with myeloid cells, a property already suggested in
other cancer patients (van Cruijsen et al, 2008; Ko et al, 2009), was further
supported by our evidence that circulating CD14*CD11b*HLADR™" mMDSCs and
gMDSC were significantly decreased in M/DSFT patients upon SM administration. In
fact, the frequency of gMDSC remained low and similar to frequency found in HD all
along the duration of the treatment, including the time of progressive disease.
gMDSC behaviour thus overlapped that of Tregs. Conversely, the SM effect on
mMDSC appeared to be associated with disease control, as a rebound in the
number of mMDSCs was observed at disease progression. Moreover, SM-
responsive patients (n=3, 1 SD and 2 PR according RECIST evaluation, mean
duration time of response =10 months, Table 1) consistently displayed percentages
of mMDSCs comparable to HDs. Initial functional characterization of
CD14"CD11b*HLADR™" mMDSCs analyzed ex vivo from peripheral blood of
patients progressing during SM treatment revealed the capacity of these cells to
promote STAT3 phophorylation upon IFNa stimulation. IFNa-mediated STAT3
phophorylation did not occurin mMDSCs of SM-responding patients. The role of

STAT3 in the development and effector functions of MDSCs is well documented in
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murine setting (Gabrilovich et al, 2009) and recently suggested as crucial also for
human monocytic MDSCs (Poschke et al, 2010). However, the functional implication
of this alternative STAT3 activation in mMDSC biology, and most importantly, the
effects of anti-angiogenic therapy on such a signalling pathway deserve to be further
explored. Nevertheless, these data together with the mMDSC boost at progression
suggest that SM-treatment might induce/select a qualitatively different mMDSCs
population, possibly representing an immune-mediated mechanism of acquired
resistance. This ‘immunological resistance to treatment’ occurred only for the
mMDSC compartment, as the SM-induced modulation of Treg and gMDSC
frequency was detected in all the treated patients and it lasted for all the duration of
the treatment.

In conclusion, our results shed light on a previously unappreciated phenomenon of
immune dysfunction in this STS subtype and demonstrate that anti-angiogenic
therapy opens a temporal window during which SFT patients regain normalisation in
systemic myeloid differentiation status and T-cell functions. Our data indicate that a
reduced frequency in circulating mMDSC, gMDSC and Tregs, paralleled by a
regained T cell functions occurred in association to disease control, thus suggesting
a contribution of the host immunity to the drug efficacy. Moreover, the rebound of
circulating mMDSCs and impaired T cell functions at tumour progression suggest
that therapeutic strategies aimed at limiting potential residual myeloid suppressor
activities (Nagaraj et al, 2010; Iclozan et al, 2013; Mok et al, 2013) and boosting
tumour-specific immune responses represent a promising approach to improve the
activity of anti-angiogenic treatment in SFT patients and to achieve a more durable
control of this aggressive disease. Of note, the recent discovery that SFTs are
marked by a tumour-specific chromosomal translocation (NAB2-STAT6) makes this
tumour type an attractive target for active immunotherapy (Mohajeri et al, 2013;
Robinson et al, 2013). In fact, the chimeric protein encoded by the recombinant
NAB2-STAT6 gene is a potential reservoir of unique tumour-specific antigens that
are now considered crucial in the design of an efficient personalised immunotherapy
(Robbins et al, 2013; Nadler et al, 2002; Tran et al, 2014).
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Figure legends

Figure 1. Analysis of tumour-infiltrating immune cells in M/DSFTs not treated with
anti-angiogenic therapy. Representative IHC stainings of two targeted therapy-naive
MSFT lesions (Tumour IDs #5 and #8). (A) (H&E) Haematoxylin and eosin staining.
Images show MSFT (ID #5) with no or (ID #8) moderate CD3 infiltration. CD3" T
cells, when present, showed positivity for the Foxp3 nuclear marker. Presence of a
very high density of CD163-positive macrophages diffusely dispersed among the
cancer cells. (ID #5) sparse or (ID #8) absence infiltration of CD68" macrophages.
(B) Double-label immunofluorescence staining for CD14 (red) and CD163 (green)
macrophage markers (Tumour ID #4). The arrow indicates CD163"CD14" cells. The
circle identifies CD163" cells that do not express CD14.

Figure 2. Analysis of infiltrating immune T cells in SM-treated M/DSFT lesions. (A)
Representative IHC stainings of a SM-treated MSFT lesion (Tumour ID #13). (H&E)
Haematoxylin and eosin stain. Staining for CD3" T cells (lower and higher
magnification, respectively), CD4" T cells and CD8" T cells are showed.
Representative images of the expression of T-cell associated markers HLA-DR,
granzyme B (GZMB), T-bet and Foxp3. (B) IHC analysis of a SM-treated DSFT
lesion (Tumour ID #14) with evidence of tumour regression. In areas of tumour
regression T cells (CD3, CD4 and CD8) are organised in clusters. (C)
Multiparametric flow cytometry analysis of live lymphocytes from freshly dissociated
naive and SM-treated MSFT tumours (Tumour ID #13). Expression levels of T-bet,
IFN-y and granzyme B were evaluated by intracellular flow cytometry in CD3" T

cells. The gating strategy is reported.

Figure 3. Analysis of infiltrating myeloid cells in SM-treated M/DSFT lesions.
Stainings representative of SM-treated MSFT lesion (Tumour ID #13). (A) IHC
staining for the macrophage-associated markers CD163 and CD68. Higher
magnifications of the identified area are shown. (B) Double-label
immunofluorescence staining and confocal analysis for (a) CD163 (green) and CD68
(red), (b) CD68 (green) and 14 (red), and (c) CD68 (green) and HLA-DR (red).
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Figure 4. Accumulation of immunosuppressive cells in the peripheral blood of SFT
patients. The frequencies of circulating Tregs and mMDSCs were monitored in the
peripheral blood of CSFT (n=5) and M/DSFT (n=9) patients compared with healthy
donors (HDs) (n=11). (A, B) Percentages of CD25"Foxp3" cells (Tregs) and
CD11b*"CD14*HLADR™ cells (mMMDSCs) defined within CD3"CD4* T cells and
CD14'CD11b" cells, respectively. (C, D) Analysis of peripheral CD3'CD4" T
lymphocytes and CD11b"CD14" myeloid cells within live-gated PBMCs. (E, F)
Frequency of CD3" T cells producing (E) IFN-y and (F) IL-2 after anti-CD3/CD28
overnight stimulation. Each dot represents one patient. Statistical analysis: two-tailed
unpaired Student’s t test (95% confidence interval [Cl]); only significant P values are

shown; bars indicate SEM.

Figure 5. Anti-angiogenic therapy modulates immunosuppression in M/DSFT
patients. (A,B,D and E) Anti-angiogenic therapy modulates the frequencies of
immunoregulatory cells in M/DSFT patients. PBMCs of M/DSFT patients collected at
three time points during anti-angiogenic treatment were analysed for the frequency
of (A) Tregs in CD3'CD4" T cells (B) mMDSCs in CD14"CD11b"cells. (C) Gating
strategy for gMDSC determination; (D) gMDSC detected as CD15+CD66b+ in live
gated PBMC (black) or as CD66b+ cells within the LinHLA-DR' fraction (light blue).
(E) significantly higher neutrophil absolute count (black dots) and arginase activity
(red dots) were found in M/DSFT PRE compared to HD and both decreased during
SM treatment. Grey rectangle indicate reference ranges; each dot represent one
patient. PRE, PBMCs collected prior anti-angiogenic therapy; T15, PBMCs collected
at day 15 during therapy; at progression, PBMCs collected at the time of disease
progression, (F, G) Increased levels of circulating mMDSCs correlated with
decreased T-cell functionality. PBMCs from M/DSFT patients (n=7) collected at
different time points during anti-angiogenic treatment (PRE; T15; at progression)
were assayed for (F) IFN-y and (G) IL-2 secretion in response to overnight activation
with anti-CD3/CD28-coated beads. The box plot depicts the median percentages of
cytokine-producing CD3" T cells. Statistical analysis: two-tailed paired Student’s t
test (95% confidence interval [Cl]); only significant P values are shown; bars indicate
SEM.
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Figure 6. Modulation of mMMDSC in SM-treated M/DSFT patients. (A) Patients
responding to SM-treatment had normal levels of mMDSCs and did not display
dysfunctional T cells. (a) Frequency of CD11b*CD14*HLADR”” mMDSCs in
PBMCs from M/DSFT patients treated with SM and displaying disease progression
(Progression) or responsive to SM-treatment (Response: 2 PR and 1 SD, duration of
the response =210 months). The same PBMCs as in (a) were evaluated for the (b)
frequency of CD3" T cells producing IFN-y and (c) IL-2 after anti-CD3/CD28
overnight stimulation. (a) Each dot represents the data of a single patient. (b and c)
Dot represents the mean value. (B) Representative histograms of pSTAT3 analyses
in CD11b"CD14"HLADR™" cells (mMDSCs) with (black) and without (gray) IFNa
stimulation (10000U/mL for 15min at 37C). (C) Coloumns represent the IFNa-
induced STAT3 activation in CD11b*CD14*HLADR" cells of HDs (n=4), SM-
responsive (n=3) and SM-progressive patients (n=6). A%pSTAT3 was calculated as:
%pSTAT3 (IFNa)-%pSTAT3 (basal). Columns represent mean values; bars indicate
SEM.
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Tablel. Clinicopathologic characteristics of patien ts

Patient ) ; _ Reponse to SM: PFS
5 Tumour Site  Diagnosis  Drug treatment** RECIST evaluation  (months)
la  Thigh CSFT - - -

2a Abdomen CSFT - - -

3a Abdomen CSFT - - -

4a Pelvis CSFT - - -

5a Thigh CSFT - - -
6a  Pleura MSFT " PR 12+
7a# Pleura MSFT + SD 6
8a  Pleura MSFT " SD 10
%a Abdomen MSFT + PD 15
102" Pelvis MSFT " PR 20
11a  Pleura MSFT + SD 5
12a*# Pleura DSFT +8 Not assessable’ -
13a  Pleura DSFT " PD 2
14a° Meninges  DSFT + PD 15
15a  Pleura DSFT + PD 2
16a  Peritoneum DSFT - - -
17a  Cerebellum DSFT - - -

Age (median; range): 56; 35-76; Gender (n and %): M 29%, F 71%; Male 5, Female 12.
Abbreviations: CSFT, classical solitary fibrous tumour; MSFT, malignant solitary fibrous
tumour; DSFT, dedifferentiated solitary fibrous tumour; PFS, progression-free survival.

** Patients received 37.5 mg/die of SM

§ This patient received 800 mg/die of pazopanib

* PBMCs at the time of progression were not available for analysis.

¥ PBMCs from the pre-treatment (PRE) period were not available for analysis.

9 For this patient, tumour removed after SM treatment was analysed by IHC and
corresponded to Tumour ID #13 in TableS1. TILs from Tumour ID #13 were analysed ex
vivo for their functional activity.

# Patients had undergone a previous chemotherapy regimen. A washout period of at least
15 days was respected before entering SM treatment and beginning blood draws.

y therapy interrupted due to toxicity.
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Figures (Manuscript I)
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myeloid marker expression
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Supplementary Materials and methods

Immunohistochemistry and confocal analysis

After xylene deparaffinisation and rehydration, the sections were incubated in a 3% H,0,
solution for 10 minutes to block endogenous peroxidase. Antigen retrieval was performed by
heating the sample in a 5-mM EDTA (pH 8) or Tris-EDTA buffer or 5-mM citrate buffer
solution in a high-pressure cooker for 10-15 or 20 minutes and cooled for 15 minutes prior to
immunostaining. A peroxidase-labelled polymer was used for the detections according to the
manufacturer's instructions and visualised using 3,3'-diaminobenzidinetetra hydrochloride
(DAB)/H,0O,. Sections were assessed using a semi-quantitative scoring system. Double
immunofluorescence staining was performed as follows: after deparaffinisation and antigen
retrieval, sections were treated briefly with 0.1 M glycine in PBS (pH 7.4) followed by 0.3%
Triton X-100 buffer and incubated overnight at 4C with the primary antibodies. The samples
were washed and incubated for 1 h at RT with appropriately conjugated secondary
antibodies. Following a final wash, they were mounted on glass slides with 95% glycerol in
PBS.

RT-PCR

Total RNA was extracted from frozen specimens, reverse transcribed and amplified using
two sets of primers for the NAB2-STAT6 fusion construct, as described previously [19,20].
The PCR products were directly sequenced using the Big Dye v1.1 cycle sequencing kit
(Applied Biosystems) on a 3500Dx Genetic Analyzer (Applied Biosystems).
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Legends to supplementary Figures

Figure S1. Representative example of intratumoral CD66b immunostaining. The top and the
middle panels display sparse CD66b" cells infiltration in one of the analysed lesion (Tumour
ID #4). High expression of the CD66b marker was detected inside the spleen (top panel,
right) and was used as positive control of the staining. The bottom panel shows positivity of

the analysed marker in a perivascular area (Tumour 1D #8).

Figure S2. Analysis of infiltrating CD68" myeloid and CD3" T cells in chemotherapy (CT)
and radiotherapy (RT)-treated M/DSFT lesions.

Figure S3. Anti-angiogenic therapy modulates immunosuppression in M/DSFT patients.

Modulation of Tregs (top graph) and mMDSCs (bottom graph) detected within total live cells.

Student’s t test (95% confidence interval [Cl]); only significant p values are shown.
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Supplementary Tables (Manuscript I)

Tumour . ) Duration of ) 'Tumor Material
D Diagnosis treatment before Tumor Site (Prlmary-Recurrence-
surgery Metastasis);Assessment
1 CSFT Retroperitoneum primary; surgical specimen
2 CSFT Thigh primary; surgical specimen
3 CSFT Trapezium primary; surgical specimen
4 MSFT Thigh primary; surgical specimen
3 5 MSFT Abdomen primary; surgical specimen
% 6* MSFT Peritoneum metastasis; surgical specimen
3 7 MSFT Retroperitoneum primary; surgical specimen
2 8 MSFT Pleura Local R : surgical speci
= (multiple lesions) ocal Recurrence; surgical specimen
g' 9 DSFT Retroperitoneum primary; surgical specimen
2 10 DSFT Lung metastasis; surgical specimen
11 DSFT Retroperitoneum primary; surgical specimen
6* MSFT 10 months (SM) Peritoneum metastasis; surgical specimen
g § 12 DSFT 5 months (SM) Lung metastasis; surgical specimen
S 5 13* MSFT 6 months (SM) .PeIV|s . Local Recurrence; surgical specimen
n = (multiple lesions)
14* DSFT 3 months (SM)  Peritoneum (multiple lesions) metastasis; surgical specimen
— 13* MSFT 6 months (CT)$ Pelvis Local Recurrence; surgical specimen
E 3'8 14* DSFT  5months (CT/RT)# Peritoneum (multiple lesions) metastasis; surgical specimen
§ ’_°| ‘é‘~ 15 DSFT 7 months (CT/RT)1 Pelvis Local Recurrence; surgical specimen
16 MSFT 5 months (CT) ¥ Lung metastasis; surgical specimen

Table S1. Summary of the retrospective series
IAbbreviations: CSFT, classical solitari fibrous tumour ; MSFT, malignant solitary fibrous tumour; DSFT, dedifferentiated solitary fibrous
tumour; SM, sunitinib; CT, chemotherapy; RT, radiotherapy
Note :*paired autologous samples; Ssecond-line treatment with epirubicin; #high-dose ifosfamide plus readiotherapy; epirubicin and
ifosfamide plus radiotherapy; ¥doxorubicine plus dacarbazine.

Antibody Clone Isotype Company Dilution Antigen Retrieval
Primary antibodies:
CD3 PS1 mouse monoclonal lgG2a MNovocastra 1:50 IHC  citrate buffer 15min
CD4 4B12 mouse monoclonal 1gG1 MNovocastra 1:50 HC EDTA 15min
cDs C8/144B monocolonal mouse 1gG 1.k Dako 1:20 IHC  citrate buffer 15min
Foxp3 259DfCT monocolonal mouse 1gG1 BD 1:100 IHC EDTA 15min
CD163 10D6 monocolonal mouse 1gG1 MNovocastra 1100 IHC  citrate buffer 15min
CD68 kp1 monocolonal mouse 1gG 1.k Dako TR EDTA 10min
CD68 PGM1 Monoclonal mouse 19G3.k Dako 1:%9400|:—’|:Ci EDTA 15min
N 1:400 IHCY . )
HLADR LN3 monoclonal mouse 1gG2b ThermoScientific 140 IF citrate buffer 15min
Thet polyclonal H-210 S.Cruz Biotecnology  1:20 [HC EDTA 20min
Secondary antibodies:
Alexa Fluor® 458 goat Life Technologies 1150
anti mouse 1gG1
AlexaFluor® 568 goat Life Technologies 1150

anti mouse 1gG2b
Biolegend
(biotin)+Immunologic 1:100 biotin
al science 1:300 strept.
(streptavidin)

Rat biotin anti- mouse
1gG3 + Streptavidin
AlexaFluor® 568

Table S2. Panel of antibodies used and immunohistochemical methodological conditions
Wbbreviations: IHC, Immunohistochemistry; IF, Immunofluorescence
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Marker Clone Isotype Fluorochrome
CD3' IgG1y PE
CD4' RPA-T4 IgG 1« APCH7
cD8? B9.11 IgG1k Krome Orange
CD11b? Bear1 IgG1« PECy7
CcD14! MoP9 IgG2b APCH7
cD19’ HIB19 IgG1 FITC
CcD20" 2H7 IgG2b FITC
CD25" M-A251 IgG1« PC7
CD33’ WM53 IgG1k Alexa700
CD45RA HI100 IgG2b FITC
CD56" NCAM16.2  IgG2b FITC
HLADR' G46.6 IgG2a APC
FOXP3® PCH101 Rat IgG2ac APC
T-bet? 4B10 IgG1k PE
L2 MQ1-17H12  IgG2a PE
IFNy* 4S-B3 IgG1x a488
Granzyme B’ GB11 IgG1« PE

isotype controls
G155-178' IgG2a APC

MOPC-21" IgG 1k PE
G155-178' IgG2b FITC
eBR2a Rat IgG2ax APC

Table S3. Flow cytometry antibodies
Notes: 'BD Bioscences, San Jose, CA ; 2Beckman Coulter ,
Fullerton, CA; SeBioscence, San Diego, CA; “Biolegend,San Diego,
CA.
Prior to staining, each antibody was titrated to determine its optimal
dilution using PBMC obtained from HD
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Supplementary Figures (Manuscript I)
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Tumour ID #15 (CT/RT)  Tumour ID #14 (CT/RT) Tumour ID #13 (CT)

Tumour ID #16 (CT)

marker expression

13 MSFT + -
14 DSFT ++ S
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Summary of IHC resulits for post-chemo/radiotherapy
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Abstract

Background: Clear cell sarcoma (CCS), initially named malignant melanoma of soft parts, is
an aggressive soft tissue sarcoma that, due to MITF activation, shares with melanoma the
expression of melanocyte differentiation antigens. CCS is poorly sensitive to chemotherapy
and, based on the presence of activated PDGFR[( and c-Met, multikinase inhibitors have
been used as therapeutic agents. In the case we report here, treatment with sunitinib
induced a long-lasting clinical response that was associated with an immune activation

directed against Melan-A/MART-1 antigen.

Case presentation: Here we describe a case of a 28 years old female patient with an
advanced molecularly confirmed CCS, initially arising from the deep soft tissue of the left
foot removed in 2007. Sunitinib was started in January 2012 at the dose of 37.5 mg/day, due
to disease progression with radiologic response. In April 2012 residual tumor was removed
with evidence of pathologic response and loss of the Melan-A/MART1 antigen on surgical
specimen. Immunological monitoring during treatment with sunitinib showed a reduce
frequency of immunosuppressive cells and the presence of a systemic immunity directed
against the Melan-A/MART-1 antigen in the patient’ blood. Patient relapsed and sunitinib
was restarted in May 2012, with a new response, and continued for 4 months although with
repeatedly interruptions due to toxicity. Disease progression and new responses were
documented at each treatment interruption and restart. Sunitinib was definitively interrupted
in April 2013 for disease progression.

Conclusion: The analysis of this case proves that antigens expressed by CCS, as for
melanoma, can be immunogenic in vivo and that tumor-antigen specific T cells may exert
anti-tumor activity in CCS patient. Thus, manipulation of the immune response may have
therapeutic potential for this soft tissue sarcoma (STS) subtype and immunotherapy
approaches, such as those using the antibodies ipilimumab and nivolumab, directed to the
inhibitory immunological checkpoints, can be promising therapeutic options for these

patients.

Keywords: sarcoma, sunitinib, clear cell sarcoma, antigen specific T cell, immunotherapy,

chemotherapy.
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Background

Clear cell sarcoma (CCS) is a very rare and aggressive soft tissue sarcoma (STS), usually
arising from deep soft tissue or viscera [1], and marked by a very high metastatic risk
resulting in a 5-year overall survival of about 50% [2-4]. In contrast with other STS, and
similarly to melanoma, its metastatic sites include lymph nodes. CCS, initially named
malignant melanoma of soft parts [5], are molecularly characterized in most cases by a
specific translocation, t(12;22)(q13;912), which results in fusion of the Ewing's sarcoma
gene, EWS, with the cyclic AMP (cCAMP) regulated transcription factor, ATF1, a member of
the cAMP-responsive element binding protein (CREB) family [6]. The EWS-ATF1 chimeric
fusion protein interacts with the MITF (melanocyte master transcription factor) promoter, thus
it directly and aberrantly activates MITF expression. Consequently, CCS is characterized by
the expression of the melanocytic differentiation markers HMB45/gp100 and melan-
A/MART-1 [7]. Overall, several immunophenotypic and molecular features are shared
between CCS and malignant melanoma. Importantly, a proportion of CCS cases lack
specific translocation and thus, clinical presentation as well as FISH analysis and RT-PCR
for the specific translocation are crucial to distinguish the two entities. Receptor tyrosine
kinase expression/activation [8] and gene expression analysis [9] indicate that MITF drives
the same down-stream pathways in CCS and in melanoma and that PDGFR[ and c-Met, are
expressed by CCS [10,11]. Moreover, BRAF activating mutations have been occasionally
detected in both EWS-ATF1 positive and negative CCS [8,12,13]. CCS is poorly sensitive to
chemotherapy and anecdotal responses to regimens containing dacarbazine, vincristine,
anthracycline, and cyclophosphamide and to interferon-alpha-2b [14] have been reported.
Based on the molecular features described above, multi-kinase inhibitors have been used as
therapeutic agents in this STS and objective responses to sunitinib, and sorafenib
treatments have been recently reported [15-16]. Here we describe a case of a 28 years old
female patient with a metastatic, translocated CCS who experienced a prolonged, objective
response to sunitinib. We consider this case of interest as objective response to sunitinib
paralleled the down-modulation in the frequency of immunosuppressive cells in the
periphery, the presence of a systemic immunity directed against the CCS associated antigen
Melan-A/Mart-1 and the in vivo immune selection of post-sunitinib, MART-1 negative tumor.
The analysis of this case proves that antigens expressed by CCS, as for the melanoma, can
be immunogenic in vivo and that tumor-antigen specific T cells may exert anti-tumor activity
in vivo in CCS patient. Thus immunotherapy approaches, such as those using the antibodies
ipilimumab and nivolumab, directed to the inhibitory immunological checkpoints, alone or in
association with anti-angiogenic therapy, are promising therapeutic options for these

patients.
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Case presentation

A female patient aged 28 years presented in 2007 with a lesion arising from the deep soft
tissue of the left foot, covered by a healthy skin. Prior clinical history was negative for
melanoma. The lesion was removed together with loco-regional lymph nodes (LN) with
diagnosis of clear cell sarcoma (CCS) (surgery 2007), and confirmed by the positivity of the
FISH analysis for EWS-ATF1. Three of five LN were also positive for disease. A loco-
regional and inguinal LN relapse was detected in July 2011 and treated with chemotherapy
with doxorubicin plus dacarbazine for 5 cycles with response. Given the evidence of a new
disease progression and based on preliminary evidence of sunitinib possible activity in CCS
[15], in January 2012 sunitinib was started at the dose of 37.5 mg/day, with a tumor partial
response to the lesion located on left foot and a complete response to metastasis on upper
left leg. The response was confirmed by PET and CT scan (Figure 1). In April 2012, patient
underwent left leg amputation, with evidence of pathologic response to sunitinib in the
surgical specimen. In May 2012, sunitinib was restarted and maintained at the same dosage.
During these months of treatment, sunitinib was repeatedly stopped due to toxicity, with
evidence of rapid disease progression following treatment interruption and of a new
response after restoring treatment. From January 2013, sunitinib was finally reduced to 12.5
mg/day due to Grade 3 cardiac toxicity. After initial disease stabilization, disease progression
occurred and sunitinib was definitively interrupted in April 2013. Patient died of disease in
February 2014.

The expression of the MITF regulated melanocytic antigens (HMB-45/gp100 and Melan-
A/MART-1) and S-100 was assessed by immunohistochemistry on pre- and post-sunitinib
tumor specimens (surgery dic-2010/nov-2011and apr-2012, respectively). Pre-treatment
tumor lesions displayed a clear positivity for all of the analyzed antigens. Conversely, tumor
specimen removed after treatment with sunitinib (surgery april-2012) displayed a selective
loss of MART-1 expression, while it retained the positivity for HMB-45 and S-100 (Figure
2A). Post-sunitinib tumor was heavily infiltrated by CD3" T cells that contained a significant
proportion of CD8'T cells. Areas with pathological regression were clearly evident in
association with lymphocyte infiltration (Figure 2B). The in vivo generation of the MART-1
loss antigen variant was associated with the presence of anti-MART-1 systemic immunity in
the blood of this CCS patient. Patient’s peripheral blood mononuclear cells (PBMCs) isolated
in the course of sunitinib treatment and before surgery (surgery april-2012), sensitized in
vitro with the immunogenic HLA-A*0201 restricted peptide Melan-A/MART-1;,7; displayed
the presence of a remarkable frequency of MART-1 specific CD8'T cells (7,72%), as
monitored by pentamer staining (Figure3). These anti-MART-1 specific T cells were

functionally active. MART-1 sensitized PBMC released IFNy when stimulated with the target
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cells loaded with Melan-A/MART-1-epitope (modified and native) and, importantly, they
recognized in a MHC restricted fashion HLA-A*0201"MART1", but not HLA-A*0201"MART1
and HLA-A*0201'MART1" tumor cells as evaluated by ELlspot assay (Figure 3).
Conversely, no T cells specific for the HLA-A*0201- gp100;10m, peptide was evidenced in
post-sunitinib PBMCs of the patient applying the same procedure . All together these
evidences strongly support the conclusion that the post-sunitinio MART-1 negative tumor
variant was the in vivo outcome of a T cell-mediated immune selection occurring in CCS
patient during sunitinib treatment. The anti-MART-1 systemic immunity in CCS patients was
associated with the release of immune suppression in post-sunitinio PBMC of the patient.
Multi-parametric  flow cytometry indicate that the peripheral frequency of
CD3'CD4'CD25"Foxp3" regulatory T cells (Tregs) and CD14'CD11b*HLADR"™9"
monocytic myeloid-derived suppressor cells (mMDSCs), expanded in cancer patients,
including melanoma [17-20] , was down-modulated in PBMCs collected during sunitinib
treatment (Fig. 4A and 4B). Down-modulation of suppressive cells correlated with a
generalized boost in the functional activity of peripheral T cells measured as IL-2 and IFN-y
produced ex vivo upon TCR stimulation by CD3" cells of post-sunitinib patients’ PBMCs
(Figure 4C).
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Conclusions

We described herein the case of a CCS (HLA-A*0201) patient with advanced disease that
displayed a long-lasting response to treatment with the anti-angiogenic drug sunitinib. In this
patient, objective response, obtained during sunitinib treatment, was associated with anti-
tumor immunity evidenced in the periphery by the high frequency of cytokine competent anti-
MART-1 T cells and, at the tumor site, by signs of pathological regression associated with
CD3'/CD8'T cell infiltration and with the in vivo immune selection of MART-1 negative
antigen loss tumor variant. The study of this clinical case shows that antigen expresses by
CCS can be immunogenic in vivo and indicates that manipulation of the immune response
may have therapeutic potential in this STS subtype. As melanoma, CCS express the MITF-
regulated genes including gene encoding for the melanoma differentiation antigens. Thus we
look at the presence of antigen-specific response in this CCS patient. Interestingly, we
observed that tumor specimen resected after treatment with sunitinib had lost the expression
of MART-1 antigen. The in vivo generation of MART-1 loss variant was associated to a
CD3'CD8" T cell infiltration and to the presence of areas of pathologic regression thus
suggesting the in vivo occurrence of MART1-specific response. This hypothesis was further
supported by the finding that functionally active anti-MART-1 T cells were detectable in the
blood of this patients collected during sunitinib treatment. Altogether, these evidences
strongly support the conclusion that the post-sunitinib MART-1 negative tumor variant was
the in vivo outcome of a T cell-mediated immune selection occurring in CCS during sunitinib
treatment and demonstrate the immunological response toward a melanocyte differentiation
antigen, shared with melanoma, in this patient. To our knowledge this is the first report
documenting the in vivo immunogenicity of CCS tumor. However, this response was limited
to Melan-A/MART-1, the most immunogenic antigen in melanoma and no specific gp100* T
cells were detected in the blood of this patients and reactivity for HMB45/gp100 was
maintained in post-sunitinib surgical specimen. In the peripheral blood of this patient, we
observed that sunitinib treatment induced a sustained down-modulation of the frequency of
immune suppressive cells, Treg and mMDSC, and a parallel reactivation of a generalized T
cell function evaluated as the capacity of CD3'T cells to release Thl cytokines in response
to a polyclonal stimulation. The immunomodulatory function of sunitinib has been clearly
documented in other human tumors and we confirmed this activity in the setting of CCS [21,
22]. However, our observations also suggest that the release in the immune suppression
induced by sunitinib, may have unleashed anti-tumor immunity in this CCS patient. Indeed,
this hypothesis is in agreement with recent findings showing that, in melanoma patients,

antigen- specific responses are prevented by the presence of high frequency of circulating
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mMmMDSCs [23], while decrease of their number is favoring the clinical response in patients
treated with immunotherapy [24].

In conclusion, the study of this case shed light on immune-similarities between CCS and
melanoma, and indicates that manipulation of the immune response in this STS subtype
likely evokes antigen-specific response. In addition to T cells specific for MITF- regulated
antigens, this response may potentially include also T cells recognizing unique, mutation -
specific determinants. In fact, as previously shown by in vitro immunological assays [25], the
chimeric protein encoded by the specific chromosome translocation of CCS is certainly a
source for these type of antigens and it is well known that immune response directed to
mutated antigens plays a crucial role in determining tumor rejection and clinical responses in
cancer patients under immunotherapy regimens [26,27]. Although generalized conclusion
cannot be depict from a single case, these findings suggest that immunotherapy, exploiting
antibodies directed to immunological checkpoints such as ipilimumab (anti-CTLA4) or
nivolumab (anti-PD1) now in use for melanoma patients, may offer, alone or in association
with targeted-therapies, a new therapeutic option for advanced CCS patients, for which no

successful therapies are currently available.

Materials and methods

PBMCs and cell lines

PBMCs were obtained by Ficoll density gradient centrifugation followed by cryopreservation.
The A375mel and the lymphoblastoid cell line T2 were obtained from the American Type
Cell Culture (ATCC). All these cell lines were cultured in RPMI 1640 (Lonza) supplemented
with 10%FCS (Lonza), Hepes and antibiotics. For tumor cell line immuno-phenotyping, the

FITC—-labeled BB7.2 monoclonal antibody (BD Bioscence) was used.

Immunohistochemical analysis of antigen expression in tumor biopsies

5-um thick formalin-fixed, paraffin-embedded (FFPE) tissue sections were processed for IHC
staining. The monoclonal antibodies used were directed against the following antigens: anti-
S100, anti-Melan A, anti-HMBA45, anti-CD8 (DAKO) and anti-CD3 (Novocastra).

Lymphocyte stimulation and ELISPOT assay

PBMCs isolated from the patient were thawed and cultured in the presence of the HLA2-
A*0201 restricted-modified peptides (Melan-A/MART-1,7; or gpl00p10m) (2umol/L) plus
60I1U/mL IL-2 (Proleukin). The cells were tested every 10 to 14 days by flow cytometry
analysis for the enrichment of CD8 pentamer”™ T cells. To assess their reactivity against

tumor cells, IFN-y release was determined by ELISpot assay (Mabtech) in the presence of
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MART1 (modified or native)-pulsed (2umol/L) T2 or HLA-A*0201"" (MART"") melanoma cell
lines. HLA class I-blocking experiments required preincubation of target cells with the W6/32
mAD.

Flow cytometry analysis of antigen specific T cells and immunosuppressive cells

Phenotypic characterization of T cell cultures was done by the multiparametric flow
cytometry analysis using the following mAbs: anti-CD8-Krome Orange (Beckman Coulter),
anti-CD4-APC (BD Bioscence), the HLA-A*0201 multimers were provided by Proimmune
Ltd. Tregs and MDSCs frequencies were determined by six-colour immunofluorescence
staining of thawed PBMCs, excluding dead cells using the LIVE-DEAD® Fixable Violet Dead
Cell Stain Kit (Life Technologies). For surface staining, cells were incubated with the
following antibodies for 30 minutes at 4C after bl ocking non-specific antibody binding to the
Fc-receptors using FcR Blocking Reagent (Miltenyi). For Treg analysis, intracellular staining
with APC-conjugated anti-Foxp3 (eBioscience) or the proper isotype control (rat IgG2a) was
performed. Lymphocytes activated overnight with anti-CD3/CD28 beads (DynaBeads®
CD3/CD28 T cell Expander, Invitrogen Dynal AS, Oslo, Norway) in the presence of 1 pl/ml
Golgi Plug (BD Biosciences) were stained for the cell surface marker CD3. The cells were
then washed, fixed and permeabilized with Cytofix/Cytoperm buffer (BD Biosciences) and
stained with a 488-labelled anti-IFN-y (BioLegend), PE-labelled anti-IL-2 (BD Biosciences).
Data acquisition was performed using a Gallios™ (Beckman Coulter) flow cytometer, and the

Kaluza® software (Tree Star Inc) was used for data analysis.

Figure Legends

Figure 1. Radiologic response in metastatic lesions after sunitinib treatment.

Figure 2. (A) Immunohistochemical analysis of antigen expression in pre-treated and post-
suntinib tumor lesions. (B) Analysis of infiltrating immune T cells (CD3 and CD8) in sunitinib-

treated tumor.

Figure 3. (A) Phenotypic analysis of CD8 pentamer” T cells after sensitization with the
HLA2-A*0201 restricted-modified peptides (Melan-A/MART-1;7; or gpl00pi0m). (B)
Following 10days stimulation, the tumor specificity of T cells was assessed by measuring
IFN-y secretion (ELISpot assay) in the presence of HLA-A*0201-restricted Melan A/MART-1
(modified or native)-pulsed (2umol/L) T2 or HLA-matched HLA-A*0201"MART1" tumor cells
((#501mel and #624.38mel) pretreated or not with the anti-HLA class | (W6/32) mAb.

Moreover T cells were also incubated with HLA-mismatched allogeneic HLA-A*0201
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MARTL1" (#624.28mel) or HLA-A*0201"MART1 melanoma cells (#A375mel). The irrelevant
peptide NEF150-159) Was used as negative control. Statistical analysis of differences between

means of IFN-y released by T cells was done by two-tailed t test.

Figure 4. Sunitinib (SM) treatment modulates peripheral immunoregulatory cells. SM
modulates the frequencies of (A) CD14'HLADR™" (mMDSCs) in (B) CD4*CD25"Foxp3"
(Tregs) in live gated PBMC. (C) Increased levels of circulating mMDSCs and Tregs
correlated with decreased T cell functionality. PBMCs collected during SM treatment (during
SM) or at time of disease progression (at progression) were assayed for IFN-y (red line) and
IL-2 (blue line) secretion in response to overnight activation with anti-CD3/CD28-coated

beads.
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Structured myeloid cells and anti-angiogenic
therapy in alveolar soft part sarcoma

Chiara Castelli], Marcella Tazzari], Tiziana Negriz, Barbara VerganiB, Licia Rivoltini“, Silvia Stacchiotti®
and Silvana Pilotti®

Abstract

Alveolar soft part sarcoma (ASPS) is a rare soft tissue sarcoma and the clinical management of patients with
unresectable, metastatic disease is still challenging. ASPS expresses an array of potentially therapeutically targetable,
angiogenesis-related molecules and, importantly, it has a distinctive angiogenic phenotype marked by a peculiar
tumor-associated vasculature. Several studies, conducted in transgenic mouse models and in a large variety of
human tumors of different histotype, clearly proved the substantial contribution of tumor-infiltrating myeloid cells,
such as myeloid derived suppressor cells, monocytes and macrophages, in the formation and maintenance of
abnormal blood vessels in tumors. By immunohistochemistry we thus explored the presence and the distribution of
cells expressing myeloid markers in the inflammatory infiltrate of surgical treated metastatic ASPS. Indeed, we found
that myeloid cells expressing CD14 and CD163 markers constitute the prominent cells in the inflammatory infiltrate
of ASPS. These macrophage-like cells form a network surrounding the endothelial cells, or, interspersed in the
tumor nest, they keep deep contact with tumor cells. In this commentary, we discussed our findings in relation to

targeting the VEGFR-1,-2-3 tyrosine kinases.

the recently published paper by Kummar and colleagues reporting the clinical and molecular results of a phase |l
clinical trial in patients with unresectable, metastatic ASPS treated with the anti-angiogenic drug cediranib,

Keywords: Immune infiltrating cells, Inflammation, Myeloid cells, Soft tissue sarcoma, Anti-angiogenic therapy

Commentary

We read with great interest the paper by Kummar et al.
on cediranib in metastatic alveolar soft part sarcoma
(ASPS) [1]. The study evaluated the antitumor activity of
cediranib in 43 patients. The disease control rate (partial
response plus stable disease) of patients who completed
the therapy course was 84%. Tumor biopsies prior and
after one week of cediranib were obtained from a subset of
patients. Thus, the authors investigated for the first time
the gene expression changes in ASPS after anti-angiogenic
treatment, giving a comprehensive overview of the micro-
array/qRT-PCR profiles of significantly modulated genes in
7 validated cases. Included in this list are genes playing a
direct role in the cancer driven neo-angiogenesis. Tumor
lesions from patients treated with cediranib displayed a
selective down-regulation of angiopoietin 2 (ANGPT2) and
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the up-regulation of its receptor TIE2. This opposite gene
modulation may favor the angiopoietin 1 (ANGPT1)-TIE2
interaction and, together with the down-modulation of
VEGEFR1 (FLT1) and VEGFR2 (KDR), drive a physiological
normalization of the vasculature at tumor site [2]. This
hypothesis is also supported by the findings that genes
encoding for proteins expressed by endothelial precursor
cells or by the tumor-associated neo-vasculature such as
Folate receptor 1 (FOLHI, known also as PMSA), CXCR7
and ESML1, [3-6] were also down-modulated. Gene profiling
also revealed that in cediranib treated ASPS, CCL2 mRNA
was associated to the presence of high level of CD163
gene expression. This coordinated gene up-regulation may
suggest the selective recruitment of inflammatory mono-
cytes that differentiate into fully mature macrophages at
tumor site. However, CD163 is a marker associated to
M2-like macrophages, endowed with pro-tumor and
pro-angiogenic functions. Furthermore, the up-regulated
expression of TIE2 in post treated samples can also be
indicative of an increased accumulation of TIE2+ cells,

© 2013 Gastelli et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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known as vessel-associated macrophages, crucially involved
in tumor-mediated neo-angiogenesis [7]. Thus, it is difficult
to reconcile this complex scenario with the observation that
the majority of the examined ASPS biopsies indeed derived
from patients displaying a clinical response to treatment.
The precise knowledge of the type, functional polarization
and localization of immune tumor infiltrating cells in ASPS
will possibly be of help in interpreting these data. While the
Authors studied post-treatment changes on extractive tis-
sues, we examined pre-treatment morphological and bio-
chemical profiles of metastatic ASPS. We have investigated
the pre-treatment immunophenotypic and biochemical
profiles of 7 out of 15 patients treated with sunitinib since
2007 [8,9]. These 7 patients received surgery in our institute
before treatment with sunitinib and their tumor tissues
were available for immunohistochemistry (IHC) analysis.
The other 8 patients underwent surgery elsewhere and
material for the analyses was not at disposal. Moreover,
ethical issues restrained the analysis of post-treated ASPS
since there was no clinical indication for surgery after
sunitinib. In a semi-quantitative scoring system, all the 7
samples displayed similar distribution and density for all
the studied markers. An example, explicative for all the
examined ASPS, is depicted in Figure 1. As showed in
Figure 1, pre-treatment ASPS consisted of a sizeable
population of CD163+ cells found in two distinct localiza-
tions. In fact, they were interspersed within nest tumor
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cells but, most importantly, they were also clearly detectable
in the perivascular region where CD163+ cells (Figure 1
panels A and B, lower and higher magnification, respect-
ively) were aligned to VEGFR2+ cells of endothelial nature
(Figure 1, panel C: CD163 -NCL-CD163, Leica-Novocastra-
green; VEGFR2 -55B11, Cell Signaling Technology- red).
The CD163+ cells were also CD14+ (Figure 1, panel D)
and therefore identifiable as tumor associated macrophages,
and consequently aligned to CD31+ cells (panel E: CD14 -
MS-1080-S1, Thermo Scientific- red; CD31 -JC70A, Dako-
green). Of note, a similar distribution of immunoreactivity
was observed for CSFR-1 (panel F: C20, sc-692, Santa Cruz
Biotechnology). In addition, our previous investigation
showed that CSFR-1 not only was expressed but also acti-
vated [8]. The CSF-1/CSF-1R signaling axis is the major
regulator of survival, proliferation and functional differen-
tiation of macrophages. All together, our observations
established the presence of M2-like, CD163+ CD14+ mac-
rophages in the tumor microenvironment of naive ASPS.
These myeloid cells are active inflammatory components
that may promote VEGF-mediated vasculogenesis and,
although not physically part of the vasculature, they are
thought to provide trophic support to the characteristic
ASPS vascular network. The pre-treatment immunophe-
notypic ASPS signature we observed strongly suggest that
myeloid immune component of the ASPS microenviron-
ment may directly influence the response to anti-angiogenic

Figure 1 Macrophages are key components of the inflammatory microenvironment in metastatic alveolar soft part sarcoma.
Immunohistochemical analysis of CD163+ cells infiltrating an untreated ASPS lesion (A-B). As evidenced by the higher magnification image these
cells are found in two distinct localizations: they are interspersed within nest tumor cells (circle) and they are also detectable in the perivascular
region (arrows). (B) Confocal microscopy imaging of CD163+ cells (green) shows that they are aligned to endothelial VEGFR2+ cells (red) (C).
(D14 staining closely resembles that of CD163 (D) and double staining confirms that CD31+ endothelial cells (green) are lined by CD14+
macrophages (red). (E) A similar distribution of immunoreactivity is observed for CSFR-1 (F).

CD163/VEGFR2
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therapies and become direct target for anti-VEGF/
VEGEFR drugs, such as cediranib. However, Kummar's
data indicated that the CCL2 and CD163 genes, known
markers of inflammatory myeloid cell infiltration and
associated with M2-like pro-tumor macrophages, were
boosted in those ASPS of patients treated with cediranib
with evidence of response. The absence of drug-induced
down-regulation in the myeloid inflammatory components
raises questions concerning its possible association with
the profile of the tumor, with response or resistance to
treatment. At first, we can argue that cediranib treatment
may induce a functional shift of the infiltrating myeloid
cells instead of modulating their frequency at tumor site
(that would have ended up with a diminished expression of
genes encoding for markers of myeloid cells). Indeed, the
active role of VEGF/VEGEFR signaling in the functional
generation of myeloid cells with strong pro-angiogenic
and immunosuppressive functions is amply documented
both in animal models and in humans [10]. Thus, by
blocking this pathway, cediranib might affect the type or
the functional status of the inflammatory cells, eventually
contributing to the transformation of the immunosup-
pressive, pro-angiogenic microenvironment into a more
immunostimulatory, anti-tumor milieu [11]. In support of
this interpretation, cediranib up-regulated the inflamma-
tory pathway genes controlled by the nuclear factor-kB, as
highlighted by the authors themselves. This strong and
coordinated boost of inflammation-related genes might
transform the chronic, pro-tumorigenic inflammation at
the tumor site into an acute inflammation status that is
perceived by the immune system as ‘dangerous’ and is
generally correlated with an active, protective immune
response [12]. In addition, as recently reported in different
tumor settings [13], anti-angiogenic therapy induces a
vascular normalization that alleviates tumor local hypoxia,
thus removing one of the major factors responsible for
the generation of an immunosuppressive environment
[14]. As an alternative hypothesis, it cannot be excluded
that M2-like pro-angiogenic myeloid cells present at
tumor site, as shown by our immunophenotyping stud-
ies, might increase in number to counteract the massive,
antiangiogenic-mediated vascular pruning. Indeed, in
such a case, M2 polarized myeloid cells could be the
immune-related mediators of acquired resistance. To de-
cipher the role of this ‘inflammatory’ component in ASPS
treated with cediranib, and, more in general, for the anti-
angiogenic therapies of solid tumors, it will be crucial to
assess whether or not the localization and the functional
activation of the myeloid cells, resident or newly recruited,
in treated ASPS overlap with those found in pre-treated
tumors. This matter can only be dissected through a
thorough pre/post-treatment analysis of pair-matched
ASPS samples. Nonetheless, the gene expression changes
induced in ASPS after cediranib treatment and the presence
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of a structured myeloid cell infiltration provide the rationale
for further studies to investigate the feasibility of ap-
proaches targeting myeloid cells in combination with
anti-angiogenic therapy. Drugs limiting the viability,
function and differentiation of cells of myeloid lineage
have been recently introduced in clinical setting. Among
them all-trans-retinoic acid (ATRA), with differentiation
potential, and synthetic triterpenoids, that reduce the
intracellular reactive oxygen species, molecules mediating
the suppressive function of MDSC and macrophages,
have been recently used in pilot clinical studies [15,16].
Furthermore, trabectedin has been recently shown to
limit the viability of monocytes and tumor-associated
macrophages in sarcomas [17], and bisphosphonates,
employed in the treatment of bone metastasis, may also
potentially target macrophages [18]. In conclusion, the
precise knowledge of the nature of tumor infiltrating
cells before and after a given drug treatment may pave
the way to new combined therapies aimed at overcoming
drug induced resistance.
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