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Abstract: A Peer-to-Peer (P2P) platform is considered for collaborative Infor-

mation Retrieval (IR). Each peer hosts a collection of text documents with subjects

related to its owner's interests. Without a global indexing mechanism, peers locally

index their documents, and provide the service to answer queries. A decentralized

protocol is designed, enabling the peers to collaboratively forward queries from the

initiator to the peers with relevant documents.

Semantic Overlay Network (SON) is one of the state-of-the-art solutions, where

peers with semantically similar resources are clustered. IR can then be e�ciently

performed by forwarding queries to the relevant peer clusters in an informed way.

SONs are built and maintained mainly via peer rewiring. Speci�cally, each peer

periodically sends walkers to its neighborhood. The walkers walk along peer con-

nections, aiming at discovering more similar peers to replace less similar neighbors

of its initiator. The P2P network hence gradually evolves from a random overlay

network to a SON.

Random and greedy walk can be applied individually or integrated in peer

rewiring as a constant strategy during the progress of network evolution. However,

the evolution of the network topology may a�ect their performance. For exam-

ple, when peers are randomly connected with each other, random walk performs

better than greedy walk for exploring similar peers. But as peer clusters gradu-

ally emerge in the network, a walker can explore more similar peers by following a

greedy strategy. This thesis proposes an evolving walking strategy based on Sim-

ulated Annealing (SA), which evolves from a random walk to a greedy walk along

the progress of network evolution. According to the simulation results, SA-based

strategy outperforms current approaches, both in the e�ciency to build a SON and

the e�ectiveness of the subsequent IR.

This thesis contains several advancements with respect to the state-of-the-art

in this �eld. First of all, we identify a generic peer rewiring pattern and formalize

it as a three-step procedure. Our technique provides a consistent framework

for peer rewiring, while allowing enough �exibility for the users/designers to

specify its properties. Secondly, we formalize SON construction as a combinatorial

optimization problem, with peer rewiring as its decentralized local search solution.

Based on this model, we propose a novel SA-based approach to peer rewiring. Our

approach is validated via an extensive experimental study on the e�ect of network

rewiring on (i) SON building and (ii) IR in SONs.
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Résumé: Nous considérons une plate-forme pair-à-pair pour la Recherche

d'Information (RI) collaborative. Chaque pair héberge une collection de docu-

ments textuels qui traitent de ses sujets d'intérêt. En l'absence d'un mécanisme

d'indexation global, les pairs indexent localement leurs documents et s'associent

pour fournir un service distribué de réponse à des requêtes. Notre objectif est de

concevoir un protocole décentralisé qui permette aux pairs de collaborer a�n de

transmettre une requête depuis son émetteur jusqu'aux pairs en possession de doc-

uments pertinents.

Les réseaux logiques sémantiques (Semantic Overlay Networks, SON) représen-

tent la solution de référence de l'état de l'art. Dans les SONs, les pairs qui possèdent

des ressources sémantiques similaires sont regroupés en clusters. Les opérations de

RI seront alors e�caces puisqu'une requête sera transmise aux clusters de pairs qui

hébergent les ressources pertinentes. La plupart des approches actuelles consistent

en une recon�guration dynamique du réseau de pairs (peer rewiring). Pour ce faire,

chaque pair exécute périodiquement un algorithme de marche aléatoire ou gloutonne

sur le réseau pair-à-pair a�n de renouveler les pairs de son cluster. Ainsi, un réseau

à la structure initialement aléatoire évolue progressivement vers un réseau logique

sémantique.

Jusqu'à présent, les approches existantes n'ont pas considéré que l'évolution de

la topologie du réseau puisse in�uer sur les performances de l'algorithme de recon�g-

uration dynamique du réseau. Cependant, s'il est vrai que, pour une con�guration

initiale aléatoire des pairs, une marche aléatoire sera e�cace pour découvrir les pairs

similaires, lorsque des clusters commencent à émerger une approche gloutonne de-

vient alors mieux adaptée. Ainsi, nous proposons une stratégie mixe qui applique

un algorithme de recuit simulé (Simulated Annealing, SA) a�n de faire évoluer une

stratégie de marche aléatoire vers une stratégie gloutonne lors de la construction du

SON. Les résultats de nos évaluations montrent que cette stratégie améliore les ap-

proches actuelles aussi bien pour la performance de la construction du SON que pour

la pertinence des résultats retournés aux requêtes circulant sur le réseau pair-à-pair.

Cette thèse contient plusieurs avancées concernant l'état de l'art dans ce

domaine. D'abbord, nous modélisions formellement la recon�guration dynamique

d'un réseau en un SON. Nous identi�ons un schéma générique pour la recon�gu-

ration d'un réseau pair-à-pair, et après le formalisons en une procédure constituée

de trois étapes. Ce framework cohérent o�re à ses utilisateurs (i.e. concepteurs

du réseau) de quoi le paramétrer. Ensuite, le problème de la construction d'un

SON est modélisé sous la forme d'un problème d'optimisation combinatoire pour

lequel les opérations de recon�guration du réseau correspondent à la recherche
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décentralisée d'une solution locale. Fondée sur ce modèle, une solution concrète à

base de recuit simulé est proposée. Nous menons une étude expérimentale poussée

sur la construction du SON et la RI sur SONs, et validions notre approche.

Mot-clés: Réseau Pair-à-Pair, Recherche d'Information, Réseaux Logiques Sé-

mantiques, Recâblage des Pairs, Recherche Locale, Recuit Simulé



Abstract: L'oggetto dello studio è una piattaforma Peer-to-Peer (P2P) per

Information Retrieval (IR).

Ogni peer ospita una collezione di documenti testuali con contenuti relativi agli

interessi del suo proprietario. Senza l'utilizzo di un meccanismo di indicizzazione

globale, i peer indicizzano localmente i loro documenti e forniscono il servizio di

risposta a interrogazioni (query). La rete è dotata di un protocollo decentralizzato

che rende possibile l'inoltro collaborativo delle query dal peer iniziatore ai peer con

i documenti rilevanti.

Le Semantic Overlay Network (SON) sono una delle soluzioni allo stato dell'arte,

dove i peer con risorse semanticamente simili sono raggruppati, formando un cluster.

L'IR viene quindi realizzata e�cientemente inoltrando le query ai cluster che si

sanno essere rilevanti. Le SON sono costruite e mantenute principalmente attraverso

l'operazione di peer rewiring. Nello speci�co, ogni peer periodicamente invia un

walker ai suoi vicini. Il walker segue le connessioni dei peer, con lo scopo di scoprire

dei peer più simili al peer iniziatore di quanto non lo siano gli attuali vicini, per

rimpiazzarli. La rete P2P network quindi evolve gradualmente da una rete casuale

ad una SON.

Esplorazioni casuali e greedy possono essere applicate individualmente o in

maniera integrata nel peer rewiring come una strategia generale durante l'evoluzione

della rete. Tuttavia, l'evoluzione della topologia della rete può in�uenzare le

prestazioni di queste modalità esplorative. Per esempio, quando i peer sono con-

nessi casualmente l'esplorazione casuale opera meglio della esplorazione greedy per

raggiungere peer simili, ma quando i cluster emergono gradualmente un walker può

esplorare più peer simili utilizzando una strategia greedy. Questa tesi propone una

strategia esplorativa basata su Simulated Annealing (SA), la quale evolve da una es-

plorazione casuale ad una di tipo greedy, seguendo l'evoluzione della topologia della

rete. I risultati delle simulazioni dimostrano che la strategia basata su SA raggiunge

migliori prestazioni rispetto agli approcci correntemente utilizzati, sia in termini di

e�cienza nella costruzione della SON, sia nell'e�cacia della successiva IR.

Questa tesi propone diversi avanzamenti rispetto allo stato dell'arte in questo

campo. Prima di tutto, si identi�ca un modello generico per il peer rewriting,

formalizzato come una procedura in tre passi. La tecnica proposta fornisce una

soluzione consistente per il peer rewiring, permettendo allo stesso tempo abbastanza

�essibilità per gli utenti e i progettisti nella speci�ca delle proprietà del sistema.

In secondo luogo, la costruzione della SON viene formalizzata come un problema

di ottimizzazione conbinatorica, con il peer rewiring come strumento per la riceca

locale della soluzione, in modalità decentralizzata. Sulla base di questo modello
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viene proposto un innovativo approccio al peer rewiring basato su SA. Questo

approccio è stato validato attraverso uno studio sperimentale estensivo degli e�etti

delle connessioni della rete su (i) la costruzione di SON e (ii) la IR nelle SON.

Keywords: Peer-to-Peer Networks, Information Retrieval, Semantic Overlay

Networks, Peer Rewiring, Local Search, Simulated Annealing.
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A Peer-to-Peer (P2P) network is a decentralized distributed network architecture

in which individual nodes (called peers) act as both suppliers and consumers of

resources. It is in contrast to the centralized Client-Server (C/S) model where client

nodes request resources provided by central servers.

A large number of P2P based systems have been developed for content (e.g.,

document) sharing, delivering and searching in last decades, such as P2P �le shar-

ing systems (e.g., [BitTorrent 2013]), P2P web search (e.g., [YaCy 2011]), and P2P

social networks (e.g., [PeerSoN 2012]). With the content distributed in peers, all

of these systems must provide a basic and necessary searching service, which is

de�ned as Peer-to-Peer Information Retrieval (P2P-IR). It involves forwarding the

information requests from their initiators to the peers having the relevant contents,

and then getting the relevant contents back to the initiators. When an information

request is issued by one peer, how to e�ciently get the relevant content in other

peers is still an open question.

One paradigm to perform P2P-IR is to build a Semantic Overlay Network (SON),

an overlay network where peers with semantically similar content are clustered to-

gether [Crespo 2002b]. Queries can be forwarded to relevant peer clusters in an

informed way instead of being blindly �ooded over the whole network. Moreover,

range queries or other advanced queries can be allowed in SONs [Doulkeridis 2010].



2 Chapter 1. Introduction

The choice of the speci�c paradigm to build SONs partially depends on the un-

derlying network infrastructure. This choice in turn a�ects the robustness of the

network against peers' dynamics behaviors (join/leaving the network, updating the

content), the autonomy of the peers over their content, and even the performance of

P2P-IR [Raftopoulou 2009a]. In general, similar peers can be clustered in structured

P2P overlay networks, super-peer based P2P overlay networks, or unstructured P2P

overlay networks. Among them, unstructured P2P overlay networks have the advan-

tages of allowing high robustness to the dynamics and high autonomy of the peers.

In this unstructured infrastructure, peers randomly connect to a limited number of

other peers as their neighbors. They can leave or join the network without causing

much workload to the network. However, peers can only communicate with their

neighbors, which constitute the only knowledge they have about the network. Also,

no central server exists to control the whole network and globally manage the re-

sources in the network. All these factors make the clustering of similar peers to form

a SON a challenging task, especially when the size of the network is large, and the

peers frequently leave/join the network or update their contents.

This thesis considers an application of P2P-IR in which peers have full autonomy

over their contents and can freely join/leave the network. Therefore, we focus on

building SONs in unstructured P2P networks.

1.1 Peer-to-Peer Information Retrieval

1.1.1 Reference Scenario

Let's consider a decentralized system for sharing personal expertise among re-

searchers. Each researcher has a collection of text documents about his/her spe-

ciality (could be more than one speciality), and keeps them in a personal computer

or privately somewhere in a server (e.g., cloud). An software agent is used to man-

age the documents (e.g., indexing and querying) for each researcher. It has full

autonomy over these documents (e.g., which �le to share, which search technique

for indexing and querying).

A large number of software agents self-organize into a P2P network�SON�

where software agents are called peers. Each peer has a limited number of connec-

tions to other peers which are called the peer's neighbors. By keeping a connection

to a peer, it means the keeper can directly send messages to the peer, although the

messages may go through several routers in the physical network. The connections

are directed: peer A connecting to peer B does not necessarily mean that peer B

connects to peer A. They are self-organized by the peers themselves in such a way

that peers with similar contents are connected and thus clustered, so that these
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peers can access each other within few hops; the peer clusters are connected so that

message can be forwarded from one cluster to another. With the self-organized SON,

researchers can ask relevant information from other researchers by sending a request

to the network. The request is post-processed by the software agent into a query.

Query routing is then performed in the following ways: one or more relevant peer

clusters are �rstly identi�ed according to the connections among peer clusters. Then

the query is forwarded to the relevant cluster(s). Once a query reaches a relevant

cluster, it is di�used among the peers in the cluster via the connections that cluster

them up. These peers perform local IR and then return the relevant documents to

the query initiator.

Besides the full autonomy over their documents collections, peers can au-

tonomously join/leave the network or update their contents. The self-organized

SON has a mechanism to e�ciently restore the SON topology changed by these

dynamic behaviors, so that keep it robust against these behaviors. Therefore the

performance of the target tasks (e.g., IR) can not be a�ected.

The same P2P-IR scenario is also suitable to interest-based P2P social network,

where users host web pages or documents which are related to their interests. By

sending a query to the relevant user clusters in which users share the similar interest,

the query initiator can get relevant information. Self-organized SON can also be

applied to P2P Information Filtering, in which documents are recommended among

peers sharing similar interest.

1.2 Problem Statement

The problem is how to build the SON given a randomly connected P2P overlay

network and certain requirements and constraints.

Let's represent a self-organized P2P overlay network as G = 〈P,L〉 with P rep-

resenting all the peers and L representing all the connections. Each peer pi has a

collection of text documents Di in one/multiple themes, and a limited number of

connections to the other peers (a limited number of neighbors). Initially, the neigh-

bors of each peer are randomly sampled from the network. The connections must

be rewired to the appropriate peers, in order to build SON that has the following

properties:

Clustered: Each peer has a set of connections to the peers with similar document

collections. Through these connections, peers are clustered, in such a way that

each peer can access all the similar peers in the network by one or few hops.

This property is used for di�using information such as queries within a cluster.
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Connected: Each peer has a set of connections to the peers with di�erent docu-

ment collections. These connections make the whole network connected. The

property is used for identifying the peer clusters that are relevant to a query.

The following hypotheses of operational constraints are made according to the

reference scenario:

No coordinators: Neither a central point nor powerful and stable peers exist to

facilitate the SON construction;

Peer autonomy: Peers have full autonomy over their documents. They locally

manage and index the documents they would like to share. Other peers can

not access these contents unless they send a query to the peers to request

relevant documents;

Limited connections: Each peer only keeps a limited number of connections to

the other peers, considering that maintaining the connections consumes the

resources of the peer as well as the networking facility.

In addition, in order to maintain its topology when dynamic behaviors like join-

ing/leaving the network or updating contents happen, the SON must be able to

perform the following operations:

Joining new peers: new connections must be added in the network in order to

associate the new peers with the other similar peers in the network;

Recovering broken connections: old connections must be rewired when one of

the connected peer leave the network and break the connection;

Rewiring changed connections: old connections must be rewired, when one of

the connected peer updates its content and thus change their similarity.

With the above constraints of local operations and network dynamics, it is chal-

lenging to design a protocol to build a SON e�ciently. By e�ciently, it means to

build a SON with a high quality of peer clusters and with a low cost of time and

tra�c.

1.3 Methodology

Given a random P2P overlay network as previously described, the SON is built

via peer rewiring : peers rewire their connections so that each peer has a set of

connections to peers with similar contents (called short-range links) and a set of
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connections to peers with di�erent contents (called long-range links). Similar peers

are then clustered up by short-range links and peer clusters are connected by long-

range links. Long-range links can be easily obtained, since there are usually much

more peers with di�erent contents than peers with similar contents. So the rewiring

mainly focuses on building short-range links.

We identify and formalize peer rewiring as a three-step procedure repeatedly

performed by each peer that initially connects to some random peers. A peer that

rewires its connections is called rewiring peer. The three-step procedure is described

as follows:

Rewiring initiation: the rewiring peer initiates a walker, which is actually a mes-

sage carrying the necessary information about the rewiring peer.

Peer collection: the walker walks along peer connections, collects the information

of the peers it accesses, and returns to the rewiring peer when its time to

live (TTL) equals to 0.

Link update: the original peer selectively sets new links and discards old ones,

according to the information of the explored peers.

Each peer repeatedly discovers more similar peers from its neighborhood (a set of

peers that can be accessed within a given number of hops). The walker takes its steps

according to a certain strategy and collects the information of the peers it explores.

These peers are then used to update the peer's short-range links until the rewiring

peer links to either semantically nearest peers (s-NN selection) [Voulgaris 2007] or

the peers whose average similarity to the rewiring peer is below a given thresh-

old (range-based selection) [Schmitz 2004, Raftopoulou 2008a].

Based on the formalization, peer rewiring is modeled as a decentralized local

search approach to a combinatorial optimization problem, which refers to the task

of building SONs. A Simulated Annealing (SA)-based decentralized local search

approach is then employed. It guides the walker to take its steps to other peers

according to a certain probability. The probability is controlled by two factors.

One is the similarity between these peers and the rewiring peer; the other is a

gradually decreasing parameter called temperature. When the temperature is high,

the probability to step on any peer is almost the same, so peers are almost randomly

explored in the neighborhood. As the temperature decreases, the probability to step

on similar peers increases, and the probability to step on dissimilar peers decreases.

Therefore, the strategy the walker employs gradually changes from random walk

to greedy walk, which matches with the evolution of the network topology: from a

random network to a SON. In other words, random walk is employed when the peers
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are randomly connected; as peer clusters gradually emerge in the network, random

walk is gradually replaced by greedy walk.

To rewire the links introduced or destroyed by dynamic behaviors, the walker is

also guided by SA with an initial temperature decided by the context. If the quality

of the short-range links does not improve because the current temperature is too

low, the temperature is reset to a higher value to allow an extensive exploration in

the neighborhood.

1.4 Contributions

We have three main contributions, which are described in the following.

1.4.1 Generic Models for Building SONs

We identify a generic framework for building SONs in self-organized P2P networks,

where no central controller nor coordinators exist and frequent dynamic behaviors

happen. We identify a generic peer rewiring pattern and formalize it as a three-

step procedure that is initiated independently and periodically by each peer. Our

technique provides a consistent framework for peer rewiring, while allows enough

�exibility for the users/designers to specify its properties.

We model the building of SONs as a combinatorial optimization problem, and

the process of rewiring peer connections as its decentralized local search solution.

In the combinatorial optimization problem, an objective function is de�ned to mea-

sure the �tness of the SON, which involves the similarity between peers and their

neighbors, and the number of accessible similar peers in their neighborhood. In

the decentralized local search solution, each peer independently optimizes the con-

�guration of its neighbors, by searching better con�gurations from a local search

space (its neighborhood).

This optimization model reveals an explicit gap between building SONs (the

combinatorial combination problem) and its state of the art solution: peer

rewiring (the decentralized local search solution). Optimizing the con�guration

of peer's neighbors may not guarantee a global optimum of the combinatorial op-

timization problem: it depends on the speci�c local search strategy. This model is

useful for better analyzing the state of the art approaches and designing a better

decentralized local search strategy to reach the global optimum.

1.4.2 SA-based Decentralized Local Search Solution

We propose a novel Simulated Annealing (SA)-based decentralized local search so-

lution to the combinatorial optimization problem described above. The approach
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employs SA to implement an evolving local search strategy that matches with the

evolution of the P2P overlay network topology. It extends the traditional way to

use random search and greedy search individually or to integrate them with �xed

probability [Schmitz 2004, Voulgaris 2007, Parreira 2007, Raftopoulou 2008a].

With the evolution of the P2P overlay network topology from a random con-

nected network to a SON, peers' neighborhood structures are changing over the

time. Consequently, it is more rational to allow more random searches in the begin-

ning and more greedy searches in the end, since similar peers are gradually linked

up in the neighborhood. The proposed SA-based approach implements this idea

and takes the existing research one step further.

1.4.3 Extensive Experimental Study

We make an extensive experimental study about the e�ect of the network con�gura-

tion and the local search con�guration on the performance of building SONs and the

subsequent IR. Speci�cally, we simulate di�erent walking strategies, such as greedy

walk, random walk, SA-based walk to �gure out how they a�ect the performance

of building SONs. The same strategies are used to discover similar peers for the

new peers who join the network at di�erent times (e.g., in the beginning where the

network is still randomly connected; when similar peers start to become clustered;

when the peers are well clustered). Their performance is studied and analyzed to

�nd the relation between the strategy's performance and the joining time.

Moreover, we study the minimum number of links each peer should keep in order

to maintain the whole network connected. A connected network can allow a peer

to access all the other peers by following certain connections. It is the pre-requisite

for peer rewiring and the subsequent IR task. With this minimum limit, we study

how the number of links each peer keeps can a�ect the performance of peer rewiring

and the subsequent IR. These experimental studies provide new insights into the

fundamental issues related to network design and SON organization.

1.5 Organization of the Thesis

The thesis has six chapters. In Chapter 2, we give an overview of the state of the art

about P2P Information Retrieval, SONs and the evaluation of the SON construction.

Based on this overview, we point out the position of this thesis. In Chapter 3, we

present the generic mechanism to build SONs and perform IR in SONs. Our opti-

mization model of building SONs is then presented. Chapter 4 presents a SA-based

decentralized local search solution for the combinatorial optimization problem we

model in Chapter 3. Experimental results and analysis are presented in Chapter 5,
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followed by conclusions and future works in Chapter 6.
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2.1 Introduction

P2P networks are a type of overlay networks designed as an alternative to the

conventional Client-Server infrastructure. In the latter infrastructure, servers are

designed to o�er services like storage and search to clients. The clients communicate

with the servers to get services, and they do not o�er any service. In P2P networks,

instead, a peer acts both as a server and a client. When it o�ers services to other

peers, the peer acts as a server; when it requests services from other peers, it acts

as a client [Wang 2003].

Information Retrieval over P2P networks (P2P-IR) involves forwarding a query

from its initiator to peers with relevant documents (query routing), performing

local IR in these peers, and then returning the relevant documents to the peer that

initiates the query. A lot of works in this �eld focus on how to achieve e�cient query

routing. To this end, the underlying overlay network matters a lot. Based on the

same overlay network, the way to organize the resources matters too. This thesis

specially focuses on IR in unstructured P2P networks, an overlay network where

peers only know their neighbors and their dynamic behaviors do not cause much
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workload on the network. In the lack of a central server, peers autonomously rewire

their connections to form a SON that facilitates e�cient P2P-IR performance (it

will be described in Chapter 3).

In this chapter, we �rstly introduce a list of concepts which will be repeatedly

used in the thesis, then we review the state of the art in P2P-IR and SONs. We

start from the introduction and analysis of di�erent P2P overlay networks. We then

give an overview of IR in P2P networks in which SONs play an important part.

A detailed overview is presented about building SONs, specially building SONs in

unstructured P2P overlay networks. In this detailed review, we also present how the

documents of a peer are described and how similarity between peers is measured in

the state of the art. Finally, we present metrics to evaluate the protocols to build

SONs and the quality of the resulting SONs.

2.2 Clarifying the Concepts

Some concepts are clari�ed as follows. They will be repeatedly used in this thesis.

Overlay Network An overlay network is a computer network built on the top of

another network, particularly a physical network [Jannotti 2000]. Nodes in

the overlay are connected by virtual or logical links, each corresponding to a

path�through one or multiple physical links�in the underlying network. P2P

overlay networks are one of the typical examples.

P2P Overlay Network A P2P overlay network [Lua 2005] can be represented as

a graph G = 〈P,L〉, where P is a non-empty countable set, called peers, and

L is a set of pairs of di�erent peers, called links. Throughout this thesis, we

will refer to a peer as pi by its order i in the set P . The link li,j joins the

peers pi and pj , which are de�ned as connected. The link is directed, and pj

is called the neighbor of pi. For the sake of being concise, P2P networks will

be used frequently to refer to P2P Overlay Networks.

Peers Peers refer to the nodes in a P2P overlay network. They have three roles

in the network: (i) as resource provider to provide hardware resources (like

processing power, storage capacity and network link capacity), services and

content (text documents in this thesis); (ii) as resource consumers to access

the resources provided by all the peers in the network; (iii) as message trans-

mitters to forward a message to the next hop, to enable the communication

between peers [Lua 2005]. Peers are also featured by their autonomously dy-

namic behaviors: (i) joining/leaving the network; (ii) changing their content

without the permission of a central control point.
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P2P Information Retrieval (P2P-IR) P2P-IR involves four steps: (i) query

initiation: a peer issues a query when its user has an information request.

We call this peer query initiator; (ii) query routing: a peer forwards the

query to one or more of its neighbors once it receives a query, until the peers

with relevant documents are reached or the time to live (TTL) of the query is

equal to 0; (iii) local IR: when a peer receives a query, it performs IR against

its text documents and sends the relevant documents back to the query ini-

tiator; (iv) postprocessing: once the query initiator receives these documents,

postprocessing like ranking and replication removal can be performed to re�ne

the results [Tigelaar 2012].

Semantic Overlay Networks (SONs) SONs are de�ned as a type of P2P over-

lay networks for organizing peers in thematic clusters with similar contents,

so that queries can be selectively forwarded to only those peers having con-

tent within speci�c topics [Crespo 2002b]. In its original proposal, a global

classi�cation hierarchy was used to organize the thematic peer clusters, each

corresponding to one class in the classi�cation hierarchy and called a SON.

However, SONs do not necessarily imply the use of semantics in the traditional

sense (e.g., ontology). Peers can form clusters by connecting to the other sim-

ilar peers [Tang 2003a, Voulgaris 2007, Raftopoulou 2009b]. The peer cluster

generated in this way is not well de�ned as in the original proposal. Instead,

all the peers are somehow connected with each other. For clarifying the pre-

sentation, in this thesis, we call the whole network with peers clustered a

SON.

Peer Rewiring Peer rewiring refers to the process in which a peer removes an ex-

isting or dead link and builds a new one to another peer [Raftopoulou 2010].

A rewiring peer refers to the peer that performs the operation of remov-

ing/building links.

Neighborhood The neighborhood of a peer refers to the set of peers that can be

accessed by this peer within a given number of hops. Speci�cally, if a peer pi

initiates a message with time to live (TTL) γ, and forwards it to other peers

along all the possible links until its TTL equals 0, the peers the message visits

are called the neighborhood of pi. γ is called the radius of the neighborhood.

The message that is forwarded along the possible links is also mentioned as

a walker that walks along the possible pathes; forwarding the message to

another peer is regarded as the walker going a step further.

Short-range Links are links that connect the peers within a thematic clus-



12 Chapter 2. State of the Art

ter [Raftopoulou 2008a]. The number of short-range links is limited due to

the cost for maintaining them. The peers the short-range links point to are

called short-range contacts.

Long-range Links are links that connect peers of di�erent clus-

ters [Raftopoulou 2008a]. The number of long-range links is limited

due to the cost for maintaining them. The peers the long-range links point to

are called long-range contacts.

2.3 P2P Overlay Networks

In a P2P network, peers form a self-organizing network that is overlayed on the

Internet Protocol (IP) network. Data is still exchanged over the underlying TCP/IP

network, but in P2P overlay networks peers communicate with each other directly

via the logical links (each of which corresponds to a path through the underlying

physical network). In [Buford 2010], a list of properties are de�ned for a typical

P2P overlay network. We list the most signi�cant ones:

Resource sharing: each peer marks a part/all of its local resource as `shared', as

a contribution of the system resources.

Networked: peers are interconnected with other peers, so as to form a connected

graph.

Decentralization: no central control point exists, and the behavior of the system

is embodied by the collective behaviors of the participant peers. Some P2P

systems however use a central server as a booster or a directory server of the

system resources, e.g., the initial version of Napster1 (it pioneered the idea of

P2P �le sharing with a centralized search facility).

Autonomy: behaviors of a peer in the P2P system are determined locally, and

there is no single administration for the P2P system.

A typical P2P Overlay Network should also have the properties of Symmetry,

Self-organization and Scalability. Symmetry implies that all the peers have equal

roles; Self-organization lets peers to use local knowledge and local operations to

collaboratively maintain the network architecture, no peer dominates the system;

Scalability requires that the workload at each peer and the response time of the

system do not grow more than linearly with respect to the overlay network size. In

1www.napster.com
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addition, a P2P overlay network should be resilient against peers dynamic behav-

iors. For example, it should be able to facilitate new peers joining the network, and

maintain the network stability when peers leave or change their resources. However,

these properties are not exhibited in some P2P systems, according to the require-

ments of the speci�c application [Buford 2010].

With the above features, a P2P overlay network o�ers various services like rout-

ing architecture, search of data items, and fault tolerance [Lua 2005]. Based on how

peers are connected to each other in the P2P overlay network, and how resources are

indexed and searched, P2P overlay networks are classi�ed as unstructured, struc-

tured, and hybrid.

Unstructured P2P Overlay Network: The notion of unstructured P2P overlay

network describes a type of P2P overlay networks in which no global structure

is imposed and peers randomly connect to each other. Peers locally index their

resources and play equal roles. In order to search information, the query has to

be forwarded from the initiator to the peers with relevant documents. Since peers

has no global information about the network and the connections are random, the

query has to be forwarded blindly or only using local information [Fletcher 2005].

A traditional way is �ooding the query through the network, and blindly �nding

those peers that have the relevant information [Kalogeraki 2002].

Typical Examples of unstructured P2P overlay networks includes the initial ver-

sions of Gnutella2 and FreeNet3.

Structured P2P Overlay Network: Oppositely to unstructured P2P overlay

network, a strict global structure is imposed on a structured P2P overlay net-

work. Peers are arranged into a speci�c topology based on this global structure.

Structured P2P overlay networks commonly implement a Distributed Hashing Ta-

ble (DHT), in which a constant hashing function is used to assign each �le to a

particular peer. Thanks to the existence of the global structure, query forward-

ing can be performed in a deterministic way [Dhara 2010]. Chord [Stoica 2001]

and CAN [Ratnasamy 2001] are two commonly used protocols in structured P2P

network.

In Chord, a constant hashing function is used to generate an m-bit ID for each

peer. All the peers form a Ring topology. The peers in the Ring are ordered by

their IDs in a clockwise order. The same hashing function is used to generate an

ID for each �le. The ID is called key. Each peer keeps a hashing table for storing

2http://rfc-gnutella.sourceforge.net/
3https://freenetproject.org/
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〈key, file information〉 pairs. The �le information, which contains the �le's name

and the IP address of the peer where the �le is stored, is used to locate the �le. A

〈key, file information〉 pair is stored in its �rst successor peer, de�ned as the peer

in the Ring whose ID is equal to or follow the key. The predecessor peer, on the

contrary, is the peer in the Ring whose ID is smaller than the key.

Each peer keeps a routing table to enable �nding a �le when its key is given. The

routing table consists of the information of the other peers in the Ring, including

the �rst predecessor of the peer, a list of its successors, and a �nger table with m

entries. The ith entry in the �nger table points to the peer whose ID is the closest

to (id + 2i−1) mod 2m, with id as the ID of the peer. The searching procedure for

a �le location is as follows: upon receiving a lookup request (a key), the peer �rst

checks if the key falls between its ID and its successor's ID. If it does, it returns the

successor as the destination peer and terminates the searching service. If the key

does not belong to the current peer, the peer forwards the request to the peer in

its �nger table with the ID the closest to and lower than the key. The forwarding

process proceeds recursively until the destination peer is found.

In CAN, the IDs of peers and IDs (keys) of �les are generated as a point in an

m-dimensional space using a constant hashing function. Unlike in Chord where each

peer stores the keys in an ID interval, peers in CAN store the keys in a region of the

m-dimensional space. Speci�cally, the entire m-dimensional space is divided into

zones where each node owns one zone. The node that owns a zone is responsible

for the keys belonging to that zone. Similar to Chord, each peer keeps a routing

table for lookup service. This table contains the information of its neighbors in the

m-dimensional space. Neighboring nodes are the nodes whose zones are adjacent

to each other. Given a key, searching the locations of the relevant �les starts with

forming a CAN message carrying the destination coordinates. The message is then

forwarded toward the peer which owns the destination zone in a greedy fashion:

the peer always forwards the message to the neighbor that is the closest to the

destination.

Hybrid P2P Overlay Network: The unstructured and structured P2P overlay

networks treat participant peers equally, and are referred as pure/�at P2P overlay

networks. Hybrid P2P overlay networks, on the other hand, consider the heterogene-

ity of the participant peers. Powerful peers (e.g., with high storage, large bandwidth)

are used as super-peers. They collaboratively perform the majority of the tasks, as

a central server [Darlagiannis 2005]. So a hybrid overlay network is a combination

of a �at P2P overlay network and a conventional Client-Server network.

Each super-peer manages a set of normal peers and holds a directory of their
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resources. A normal peer can submits information request to the super-peer and

get relevant documents returned. For the communication between super-peers, both

unstructured and structured P2P infrastructure can be used [Eberspächer 2005].

Searching is performed in the following way. When a peer has an information

request, it �rstly sends the request to its super-peer. The super-peer then decides

to forward this request to the other peers it manages or to the other super-peers

managing other peers. If the relevant documents are located in the peers it manages,

it takes the former action. It sends the request directly to the relevant peers. The

peers receiving the request perform local IR and send relevant documents directly

to the request initiator. Otherwise, the super-peer forwards the request message to

the other super-peer(s) based on the routing mechanism of the super-peer overlay

network. The other super-peers do the similar operation until the peers with relevant

documents are found or the request time is out. An example of this type of hybrid

P2P overlay networks is JXTA [Traversat 2003].

Analysis of P2P Overlay Network Architecture: Each of the above three

overlay network architectures has its advantages and disadvantages. We analyze and

compare them according to their tolerance to dynamic behaviors of peers, routing

e�ciency and the search service they can provide. The comparison summary is

presented in Table 2.1.

Table 2.1: Comparison of di�erent P2P overlay networks

Tolerance to dynamic

behaviors of peers

Search service Routing

e�ciency

Unstructured High Speci�ed by peers Low

Structured Low matching(Chord);

point/range

query(CAN)

High

Hybrid Normal peers: high Speci�ed by peers High

Super-peers: low

Unstructured P2P overlay network are highly robust against dynamic behav-

iors of peers, because peers are less dependent on each other as in structured P2P

overlay network [Jin 2010]. Moreover, each peer can specify its local IR service,

which allows more advanced searches for the coming queries. However, the lack

of a global structure results in low routing e�ciency, especially for unpopular re-

sources [Buford 2010].
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Structured P2P overlay networks have a higher routing performance com-

paring with unstructured P2P overlay network, due to its global structure and

DHT. However, the structure imposed on the network requires a higher cost for

topology maintenance, especially with frequent dynamic behaviors in the net-

work. For example, in Chord, the joining or leaving action of a peer requires

O(log2 size of the network) messages [Stoica 2001]. In CAN, the same action re-

quires O(number of dimensions) messages [Ratnasamy 2001]. In addition, the

global structure in structured P2P overlay networks limits the search service they

can provide (only matching in Chord and point/range query in CAN).

While both unstructured and structured P2P overlay networks have their ad-

vantages and disadvantages in nature, hybrid P2P overlay networks combine most

of their advantages, avoid some of their disadvantages and provide better perfor-

mance [Schollmeier 2001], thanks to the employment of super-peers. Super-peers

refer to the most powerful and stable peers in the network. They provide e�cient

routing performance. At the same time, the normal peers have more �exibility to

join or leave the network without causing too much cost for maintaining the net-

work topology. No global structure exists in the network, so advanced search service

is possible, because the normal peers can specify the search services they provide.

However, since hybrid P2P overlay network is composed of heterogenous peers, its

application is limited to the situation where super-peers exist.

Although the di�erent P2P overlay network architectures have di�erent proper-

ties, they share a common operation called bootstrapping. It is executed when a

peer joins the P2P overlay network for the �rst time. It is used to help the new peer

to connect to the other peers in the network. A common approach for bootstrapping

is through a bootstrapping server [Cramer 2004]. The bootstrapping server keeps

a list of existing peers. When being contacted by a new peer, the bootstrapping

server replies it with one or a set of randomly selected peers. The new peer contacts

these peers and builds connections with them.

2.4 P2P Information Retrieval

To search documents stored distributively in peers, a query should be �rstly issued

by one peer. Then the query should be forwarded to peers where relevant docu-

ments are stored. The implementation of this task heavily depends on the P2P

overlay network architecture. In Table 2.2, we classify P2P-IR into two categories

according to their indexing techniques. One uses global indexing, and the other

uses local indexing. Global indexing aims to use a consistent mechanism to index

all the documents in the network. It can be implemented by a central server or by
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employing structured P2P overlay network, for instance, Chord and CAN. While

global indexing may require a well-organized P2P overlay network and perform IR

e�ciently, local indexing is implemented over unstructured P2P networks or super-

peer P2P overlay networks. In local indexing, peers index their documents locally

and perform local IR in order to �nd documents relevant to a query. The network

topology is loosely organized because peers are not strictly dependent on each other

as in structured P2P networks.

Table 2.2: Typical works for P2P-IR

Indexing approach Overlay network Typical works

Global Indexing Chord [Podnar 2007]

CAN [Tang 2003b]

Local Indexing Unstructured P2P [Crespo 2002b]

Super-peer based P2P [Doulkeridis 2010]

2.4.1 Global Indexing

The simplest way to implement global indexing is to use a central server. This ap-

proach avoids most problems regarding query routing and index placement. How-

ever, it has the problem of single point failure and other legal problems [Risson 2006].

The most famous example of this type of network is Napster. It is the pioneering

P2P �le sharing system whose original version ran into legal di�culties and then

ceased operations.

Besides, Chord and CAN are two systems commonly used for global indexing

in P2P overlay networks. In Chord based IR, documents are indexed by their com-

ponent terms [Reynolds 2003]. The indices are stored in a HDT, where keys are

the hashing function values of terms. To index a document in Chord, a set of en-

coded 〈term, documentinformation〉 pairs are published in a DHT. The document

information refers to the name of the document as well as the IP address of the

peer that kept it. When a query is issued, a hash value is generated for each of

its component terms. These hashing values are used to query the DHT to get the

the information of the documents that contain the terms. The relevant documents

are those containing all the component terms of the query. Tra�c cost is spent

for publishing documents to DHT, querying the DHT, contacting the peers hold-

ing the relevant document, and transferring the documents to the query initiator.

To save tra�c cost for publishing documents, [Papapetrou 2007, Papapetrou 2010]

form the peers into groups in a self-organized fashion. Instead of each individual

peer submitting index information, all peers of a group cooperate to publish the
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index updates to the DHT in batches. In [Podnar 2007], documents are indexed

with highly discriminative keys, in order to save bandwidth consumption.

In CAN based IR [Tang 2003a, Tang 2003b], content-based full-text search is

implemented via a distributed lookup table that supports multi-dimensional doc-

ument/query representation. Documents in the network are indexed according to

their vector representations (based on Latent Semantic Analysis: an advanced doc-

ument indexing and ranking algorithm) in such a way that documents with similar

vector representations are indexed in the lookup table of the same/adjacent peers.

So the relevant documents of a given query can be found in the same/adjacent peers,

which achieves both e�ciency and accuracy.

2.4.2 Local Indexing

While global indexing has to be based on a global lookup table which requires a

strictly organized network topology, local indexing can be implemented in a loosely

organized P2P network. A peer simply indexes its local �les and waits for queries

from the other peers. When it receives a query, local IR is performed, and then the

relevant documents are returned to the query initiator. Local indexing enables rich

queries (not limited to a keyword lookup) and advanced retrieval technique.

To forward a query to target peers, a simple way is �ooding. Normally, a TTL

is de�ned to limit the hops the message is �ooded, in order to save the tra�c cost.

However, it still generates a large volume of query tra�c with no guarantee that

a match will be found, even if it does exist in the network. There have been a lot

of attempts to improve this �ooding approach. For example: forwarding queries by

a random walk [Lv 2002], an informed walk [Adamic 2003], or by clustering peers

according to their content [Crespo 2002b] or interest [Sripanidkulchai 2003].

A variant, or rather an optimized methodology, of local indexing is aggregated lo-

cal indexing. A super-peer based P2P overlay network is employed for this. A super-

peer holds the index of both its own content as well as an aggregation/summary

of the indices of all the peers it manages. This architecture introduces a hierarchy

among peers and by doing so takes advantage of their inherent heterogeneity. It has

been used by FastTrack and in recent versions of Gnutella. Query routing is per-

formed by the super-peers which are in charge of sending the query to target peers.

Since these super-peers have more computing power and high stability, communica-

tion among them has lower susceptibility to bottlenecks and thus query routing can

be better performed compared to local indexing. For example, in [Balke 2005], a

super-peer backbone is organized in the HyperCuP topology for optimizing the nec-

essary query routing. In [Marin 2009], a super-peer based P2P network architecture

is also used to improve the querying performance.
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P2P-IR with local indexing avoids index publishing or updating, while that

with global indexing must perform it. Thus, the cost for local indexing is cheaper,

and the impact of churn on the network is lower. But for query routing, local

indexing costs more than global indexing does, and makes unpopular data unreach-

able [Tigelaar 2012]. On the other hand, global indexing provides e�cient query

routing, but it only supports exact matching or point/range queries.

2.5 Semantic Overlay Networks (SONs)

SONs were �rstly proposed and de�ned as overlay networks where nodes con-

nect to other nodes that have semantically similar content [Crespo 2002b,

Garcia-Molina 2003]. In SONs, nodes with semantically similar content are clus-

tered together. This allows a �exible network organization that improves query

performance while maintaining a high degree of node autonomy [Crespo 2002b].

The SONs in this proposal are organized based on unstructured P2P network archi-

tecture, which guarantees network �exibility and node autonomy.

The concept of SON is also used in P2P-IR proposals based on CAN and super-

peer based architecture. For example, in [Tang 2003b, Tang 2003a], the authors

propose an approach to cluster the documents using LSA and CAN-based P2P

overlay network, so that semantically similar documents are indexed in neighbor-

ing peers. In [Doulkeridis 2008, Löser 2004, Kurve 2013], a super-peer based ar-

chitecture is used to cluster the peers with similar content. Super-peers are used

to manage the peer clusters. These works follow the principle of SONs to make

peers with similar content neighbor to each other. They improve query perfor-

mance, but allow a low degree of node autonomy due to either the global indexing

as in [Tang 2003a, Tang 2003b] or aggregated local indexing as in [Doulkeridis 2008].

In other words, the documents in each peer are indexed and managed not only by

the peer itself but also by the other peers.

Many studies show that peer search systems perform better when the content

in peers are clustered and queries are sent to relevant clusters. In SON systems,

a query are processed by �rstly identifying the relevant peer clusters; then it is

directly forwarded to those relevant clusters. Local search is only performed in the

peers in those relevant clusters, so the search services of other peers can be freed

for answering the other queries [Crespo 2002b]. Moreover, the peers in the same

cluster can answer each other's query, if the query is about the same theme of the

cluster [Sripanidkulchai 2003].

Based on the state of the art, we generalize a classi�cation about P2P overlay

networks and P2P-IR. Figure 2.1 illustrates this classi�cation. It also illustrates the
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P2P Overlay Network

Structured P2P Unstructured P2P Hybrid P2P

Chord CAN Super-peer based P2P
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Semantic 

Overlay 
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Figure 2.1: Categories of P2P overlay networks and P2P-IR, and the P2P network

architectures and P2P-IR techniques employed by Semantic Overlay Networks (the

thick arrowed lines)

overlay networks and P2P-IR approaches that are used for SONs. In this thesis, we

focus on SONs based on unstructured P2P networks. This task is challenging due

to its constraints: (i) peers have high autonomy over their documents; (ii) neither

central server nor super-peers exist in the network; (iii) peers keep limited number of

connections, so each peer only has a local knowledge about the network; (iv) dynamic

behaviors should be tolerated, so that a robust protocol is required to maintain the

topology of the SON. The �rst two constraints make it impossible to use any e�cient

global manipulation like structured P2P network/hybrid network infrastructure to

organize the network into a SON. Instead, peers have to self-organize into clusters

based on their local knowledge and local operations, while the local knowledge is

constrained by the limited number of the connections each peer keeps.

The state of the art of SONs in unstructured P2P networks is presented in the

following.

2.5.1 SONs in Unstructured P2P Networks

Three di�erent techniques are commonly used to generate SONs in unstructured

P2P networks: (1) one or more coordinators are used to cluster the documents in

peers; (2) peers discovers their acquaintances with similar interest/content based

on the feedbacks of the previous queries; (3) peers proactively discover the other
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peers with similar interest/content. An comparison of these three techniques is

summarized in Table 2.3.

Table 2.3: Overview of the techniques for generating and maintaining SONs

Coordinators Query feedbacks Proactive acquaintance

discovering

Pros: peers can be well

clustered; query rout-

ing can be e�ciently

performed.

Cons: stable and pow-

erful peers are required

as coordinators.

Pros: no additional cost is

required.

Cons: accumulating query-

ing feedbacks takes time;

the pre-requisite assump-

tion may be not realistic.

Pros: proactive similarity

measuring based on un-

structured P2P network

Cons: high cost and bad

cluster quality if the ap-

proach for acquaintance

discovering is not appro-

priate.

2.5.1.1 Using Coordinators

In this technique, a central server or powerful and stable peers are required to be

the coordinators. This technique can build SONs and perform the target tasks in

SONs e�ciently due to the global information as well as the facility the coordinators

have, but its application is limited because heterogeneous peers are required. For

example, a central controller is used in [Bawa 2003] to cluster the peers into topic-

based groups each called segment. Two types of links between peers are de�ned, one

for connecting peers whose documents are in the same segment, the other for con-

necting peers whose documents are in di�erent segments. The central controller is a

distinguished peer in charge of clustering documents and assign segment ID for new

peers. Following a similar line, [Klampanos 2004] proposes a two-stage clustering

procedure: individual peer documents are locally clustered using a hierarchical clus-

tering algorithm; then a global clustering algorithm is performed in the controller

based on the local clusters.

Coordinators are also used in [Doulkeridis 2006, Doulkeridis 2007,

Doulkeridis 2008] where a hierarchy clustering approach is proposed based on

peer coordinators to generate SONs. As in [Klampanos 2004], peers locally cluster

their documents. Then the peers in local regions are grouped (called zones),

forming clusters based on data stored on these peers. These zones are merged and

clustered recursively until global zones and clusters are obtained. Local grouping

and zone merging are performed by peer coordinators. In [Trianta�llou 2003], a

P2P architecture where nodes are logically organized into a �xed number of clusters
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is presented. The information of clusters are calculated during the bootstrapping of

the system and each node has the information of the clusters in the whole network.

2.5.1.2 Using Query Feedbacks

For this second technique, building SONs does not impose much workload on the

system, because it takes advantage of the querying histories. A heuristic is used to

detect the peers that share interests: peers that have content that we are looking for

share similar interests [Sripanidkulchai 2003]. When a peer joins the system, it may

not have any information about other peers' interests. Its �rst attempt to locate

content is executed through �ooding. The lookup returns a set of peers that store

the content, which are the potential candidates of `shortcuts'. As more lookups are

performed, peers can build a list of `shortcuts' that can be used to forward later

queries. In [Sripanidkulchai 2003], a content location solution is proposed in which

peers loosely organize themselves into an interest-based structure on top of the

existing Gnutella network. A similar proposal is made in [Tempich 2004]. It de�nes

a method for query routing that lets peers observe which queries were successfully

answered by other peers. The peers memorize their observations, and subsequently

use the information to select peers to forward requests to. [Sedmidubsky 2008]

proposes two algorithms to improve the connection built based on the querying

feedbacks as well as the later querying routing. One is used to manage query histories

of individual peers with the possibility to tune the trade-o� between the extent of

the history and the level of the query-answer approximation; the other is to limits

the exploration of the network in query routing.

In addition to �nd peers with similar interests, query histories can also be used

to associate a peer with relevant peer clusters. [Koloniari 2008] models the cluster-

reformulation problem as a game where peers determine their cluster membership

based on potential gain in the recall of their queries. This work assumes that each

cluster has a unique identi�er, and that all the peers in the cluster are aware of this

unique identi�er.

However, accumulating query feedbacks takes time. When no queries or only a

small number of queries are generated, IR has to be performed by �ooding or random

walk. Moreover, a peer may issue the queries that are not related with its content,

hence the peers answering the queries can not be considered to share the similar

interests to this peer. In this case, the query has to be forwarded in a blind way

such as �ooding or random walk. This problem can be observed in [Cholvi 2004].

The basic premise of this work is that �le requests have a high probability of being

ful�lled within the community they originate from, therefore increasing the search

e�ciency. To this end, peers perform local dynamic topology adaptations, based
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on the query tra�c patterns, in order to spontaneously create communities of peers

that share similar interests. Similar to the other works mentioned above, dynamic

topology adaptation is implemented by directing acquaintance links toward the peers

that have returned relevant results in the past. A similar work is [Cohen 2007],

where peers self-organize into overlapped groups by taking into account previous

query satisfaction. Each peer can belong to di�erent groups, by connecting to a set

of peers that also belong to the same group. Hence, each groups can be regarded as

an overlay, which is unstructured P2P network with peers containing similar items.

Users decide which group to use for searching.

2.5.1.3 Proactively Discovering Acquaintances

Oppositely to the technique using querying feedbacks to build interest-based connec-

tion between peers, [Voulgaris 2007] proposes a proactive method to build semantic

overlays. It is a two-layered approach combining two epidemic protocols, one allow-

ing each peer to proactively �nd and dynamically maintain a list of similar peers;

the other allowing each peer to maintain a list of random peers. For this technique,

workload is required for proactively discovering peers with similar contents or simi-

lar interests, called acquaintances. Proactive acquaintance discovering is performed

in an unstructured P2P network, so it allows peer autonomy, and tolerates dynamic

behaviors.

However, if the way to discover acquaintances is not appropriately designed,

more workload is needed, and the cluster quality is not be guaranteed as in

the technique using coordinators. This factor is studied in [Raftopoulou 2008c,

Raftopoulou 2008a]. The authors propose iCluster, which designs a mechanism

to discover similar peers in one's neighborhood. The discovering is performed by

forwarding a message along peer's connection. The peers the message visits are

discovered peers. It can be implemented by forwarding the message randomly or

to the most similar peer among the current accessible peers. Other possibilities to

discovering similar peers are also proposed. Their performances are demonstrated

according to simulated experiments, which shows that random walk can achieve the

best cluster quality comparing to the other discovering approaches.

Another typical approach to proactively build SONs is proposed

in [Parreira 2007]. It follows the spirit of peer autonomy and creates seman-

tic overlay networks based on the notion of `peer-to-peer dating'. Peers periodically

select a peer to `date' with, and decide weather or not to regard it as a `friend'

based on certain similarity estimation. A list of peers are managed as the `dating'

candidates, which include random peers provided by the underlying network infras-

tructure, the peer's current `friends' as well as their `friends'. These candidates are
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probabilistically selected with respect to their types (random peers, `friends' or the

`friends' of a `friend').

The works in proactive acquaintance discovering di�er not only in the speci�c

protocols to discover the acquaintance, but also in the way they measure the simi-

larity between two peers. A statistical language model is employed in [Linari 2006]

to calculate the similarity. Peers in the network are represented by a statistical Lan-

guage Model derived from their local data collections. A symmetrized and `metri-

cized' related measure, the square root of the Jensen-Shannon divergence, is used

to approximate peer similarity before it is contacted. It hence maps the problem of

forming SONs to a metric search problem. The peers periodically meet peers that

are randomly picked or suggested by other peers. The search strategy exploits the

triangular inequality to e�ciently prune the search space and relies on a priority

queue to visit the most promising peers �rst. In [Li 2008] where a framework called

Semantic Small World (SSW) is proposed, peers and their documents are projected

into a high-dimensional space generated by Latent Semantic Analysis (LSA). The

similarity between two peers is then calculated based on their locations in this space.

Thanks to LSA, this measurement can re�ect the semantic similarity. However, the

workload to use LSA is heavy because the LSA model has to be computed in a

central point with the document collection of the whole network (or document sam-

ples) and updated as the content in the network changes. Besides, [Penzo 2008]

and [Schmitz 2004] employ ontology to describe the content in each peer, and mea-

sure peer similarity based on their representative concepts. [Penzo 2008] addresses

the issue of SON creation in a Peer Data Management System (PDMS) where peers

have di�erent schemas and they are connected through schema mappings. Each

peer is represented by a set of concepts. Each concept will be associated to at most

one SON. Heterogeneity is solved using the WordNet as background thesaurus. A

distance function is de�ned among sets of concepts according to their relation in the

ontology. A similar approach is also described in [Schmitz 2004].

Besides evaluating peer similarity based on their interests or contents, some

works also consider other criteria. For example, [Löser 2007] proposes a system

called INGA, where peers create and maintain shortcuts to other peers based on

four layers: (i) at the content provider layer, shortcuts are created to remote peers

which have successfully answered a query, (ii) at the recommender layer, informa-

tion is maintained about remote peers who have issued a query, (iii) at the boot-

strapping layer, shortcuts to well connected remote peers are kept, and (iv) at the

network layer, connections are maintained to peers of the underlying network topol-

ogy; [Parreira 2007] describes three measurements that can be used to identify good

friends: (i) credits about peer's cooperation history, (ii) amount of the overlapped
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documents between peers, and (iii) the semantic similarity of the contents of peers;

[Bertier 2010] presents Gossple, an internet-scale protocol that discovers connections

between users and leverages them to enhance navigation within the Web 2.0. A set

of social anonymous acquaintances are discovered for each peer by a gossip proto-

col. The acquaintances are de�ned as the users that share the similar tags over their

contents.

2.5.2 Evaluation of SONs

Semantic overlay networks have been studied mainly for subsequent tasks of infor-

mation retrieval or information �ltering, hence their evaluation has been oriented

towards the performance of these tasks. In summary, the following aspects are

evaluated: convergence speed to generate the SON, the quality of peer clusters,

querying performance in SONs, and the workload required for generating the SON

and querying.

In Figure 2.2, we present an overview about the evaluation metrics in the state

of the art involving all the aspects. However, works that evaluate all the aspects are

rare: usually the focus is only on some of the aspects. For example, only clustering

quality and network workload are evaluated in [Eisenhardt 2003], since it aims to

clustering documents rather than to P2P-IR. The evaluation of this work is per-

formed by comparing the resulting document clusters with the ground truth. It also

evaluated the time to take for one iteration of k-means clustering. Only workload

is considered in [Banaei-Kashani 2004, Bawa 2003]. The former evaluates the pro-

posed Small-World Access Methods (SWAM) by communication cost, computation

cost, and query time. In the latter the quality of the proposed approach is evalu-

ated by the average number of sites that are probed to answer a query and by the

bandwidth and latency consumed for a query. Only IR performance is evaluated

in [Doulkeridis 2007, Doulkeridis 2008], where the metrics of recall and precision are

employed.

Most of the works focus on the evaluation of querying performance and work-

load in the network. Querying performance aims to evaluate the quality of the

search results to a given query. The most commonly used metrics are recall

and precision. Recall is de�ned as the fraction of relevant instances that are re-

trieved; precision is de�ned as the fraction of retrieved instances that are relevant.

They are used in [Klampanos 2004, Bertier 2010]. In [Tempich 2004, Löser 2007,

Sedmidubsky 2008], however, only recall is used as the metric for querying perfor-

mance. Other works like [Li 2008, Sripanidkulchai 2003, Cholvi 2004] use search

failure ratio and success rate. They use these metrics instead of recall and precision,

because the searching task is designed to search the exact �le given its name as a
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Figure 2.2: Overview of SONs evaluation, the size of each section implies the amount

of corresponding works

query. Therefore, the search result is either successful or unsuccessful.

Workload, on the other hand, focuses on the tra�c spent for building a SON

and perform querying. To this end, various measurements are used in the liter-

ature. In summary, the following metrics are commonly used: (i) the average

or minimum search path length to reply a query [Li 2008, Sripanidkulchai 2003,

Cholvi 2004]; (ii) the number of messages required for answering a query [Li 2008,

Sripanidkulchai 2003, Tempich 2004, Löser 2007, Raftopoulou 2008c]; (iii) main-

tenance cost for keeping the network robust against peers' dynamic behav-

iors [Li 2008, Bertier 2010]. Besides, in [Li 2008] index load is also evaluated, be-

cause the network topology in this approach is constructed by indexing similar

documents in the same/adjacent peers. Peers adaptively self-organize themselves in

order to maintain the topology; in [Cholvi 2004], a measurement called in-degree is

employed to evaluate the number of the peers that chose one peer as their acquain-

tance.

Convergence speed is used to measure the time required to build a SON.

In [Voulgaris 2007], the author used real world traces from the eDonkey �le shar-

ing system. The convergence speed on cold start, on adaptivity to changes in user

interests is studied to evaluate the proposal. [Bertier 2010] evaluates the quality

of a node's semantic neighbors through its ability to provide the node with inter-

esting items. The author also considers the time required to build a network of

Gossple from a random network, then considers the maintenance of this network by

evaluating convergence in a dynamic scenario where nodes join an existing stable

network.

Some works directly focus on the clustering quality�how well the similar peers
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are clustered�rather than evaluate it according to the IR performance. For exam-

ple, [Penzo 2008] evaluates the resulting clusters by their internal quality and exter-

nal quality, which are quanti�ed by Silhouette indices and Rand index respectively.

Similarly in [Raftopoulou 2009a], several metrics are used to this end: clustering

coe�cient, generalized clustering coe�cient, and clustering e�ciency. The former

two aim to quantify how the neighbors of a peer are connected with each other;

the latter is rather designed for the subsequent task like IR; it measures how many

similar peers a peer can access within certain number of hops.

The evaluations are often performed via two sets of experiments. One starts

from a random peer con�guration and examines whether the peer relocation pro-

tocol leads to the desired cluster con�guration for the given data content and

workload. The other starts from a `good' cluster con�guration for a given con-

tent and workload, and examines how well the periodic reformulation protocol

adapts to changes of the content and the workload [Koloniari 2008, Bertier 2010,

Voulgaris 2007, Raftopoulou 2010].

To summarize, the evaluation works in the state of the art mainly focus on the

performance of IR in generated SONs, such as IR recall/precision and searching

cost. Comparatively, the quality of peer clusters and the convergence speed to

build SONs are less considered. However, if we consider SONs as a general P2P

network topology that can be used not only for IR but also other applications like

recommendation [Kim 2008], it is more meaningful to directly evaluate the quality

of peer clusters to demonstrate its potential performance on the target task. The

convergence speed also matters, because it indicates the time a peer has to wait

until peer clusters emerge in the network and bene�t the peers's target task like IR.

2.6 Summary

An overview and analysis of P2P-IR and SONs were presented in this chapter. We

brie�y introduced P2P overlay networks, and gave an analysis about these P2P

overlay networks. We then introduced P2P-IR, focusing on how the contents in the

network are organized and indexed. Among the works on P2P-IR, SONs outperform

the others with respect to their performance in target tasks like IR.

We reviewed the methodology to build SONs in unstructured P2P network,

which is commonly implemented by using powerful and stable peers as coordinators,

feedbacks of querying history, or proactive acquaintance discovering. The applica-

tion of the �rst approach is limited in the network with a certain number of powerful

and stable peers. Given an unstructured P2P network where peers have equal roles,

this approach is not suitable to reorganize it into a SON. The second approach
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builds SONs in such a passive way that acquaintances may not be found quickly.

Moreover, the premise of this approach�two peers share similar interests if one

previously answered the other's query�is not always true in the reality, considering

the fact that a peer may issue casual queries which are not relevant to its interests.

In the third approach of proactive acquaintance discovering, no constraints are im-

posed on the peers and building SONs can be done e�ciently if the right discovering

strategy is used. However, works using this approach independently demonstrate

their acquaintance discovering strategies. A generic framework is missed to formal-

ize the principles shared among these works. These shared principles will be useful

for studying the essential point of this approach. It would be also useful for design-

ing a better discovering strategy, so that the decentralized discovering behaviors can

more e�ciently generate a network topology with globally better peer clusters.

An overview of the evaluation metrics for SONs was presented in the end. Many

works focus on the evaluation of the IR performance in SONs and the workload of

building the SONs. However, a direct evaluation of the cluster quality in a SONmay

be more worthwhile, considering that a good cluster quality would bene�t not only

IR, but also the other target tasks like collaborative �ltering and recommendation.
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In this chapter, we present a methodology to build SONs in unstructured P2P

networks. Brie�y, the connections between peers should be con�gured in such a way

that similar peers are linked up and thus form a cluster. Since there is no centralized

controller, the con�guration is performed in such a way that peers autonomously

rewire their links by removing the old links and building new ones to peers with

more similar contents. To do this, a peer must discover the peers with more similar

contents from its neighborhood, and uses them to replace its less similar neighbors.

In Section 3.1, we identify and formalize a generic procedure of peer rewiring, and

then describe the process of IR in the resulting SONs. In Section 3.2, we describe

our optimization model to build SONs. The task of building SONs is modeled as a

combinatorial optimization problem, and peer rewiring is modeled as a decentralized

local search solution. Based on this model, we study how a decentralized local search

approach (peer rewiring) can result in a global optimum of the system (SON).
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3.1 Methodology

To cluster peers with similar content, a similarity metric must be de�ned. In this

section, we �rstly introduce the similarity measurement between peers, and then

present the generic procedure of peer rewiring. Finally we introduce IR in the

achieved SON.

3.1.1 Similarity Measurement

To evaluate the similarity between peers, each peer is represented by a for-

mal description of its content. We call it the peer pro�le, in the similar way

as [Bertier 2010]. Depending on the target application, a pro�le can be a term vector

that summarizes the frequent terms in the peer's content [Raftopoulou 2008a], a set

of tags the user employs to annotate the content [Bertier 2010], or topics/concepts

derived from an ontology [Schmitz 2004] or machine learning techniques like Latent

Dirichlet Allocation (LDA) [Draidi 2011]. A peer may have multiple pro�les, each

corresponding to one of its interests. Since the number of pro�les has no signi�cant

e�ect on our study, we assume that each peer pi only has one interest. So each peer

only has one pro�le. The similarity between two peers is calculated as the semantic

similarity between their pro�les.

Comparing to a peer pro�le described with terms/tags, topics can exhibit

the semantics in the content; comparing to the topics derived from an ontology,

LDA [Blei 2003] is a more generic approach to model the topics in documents. So

we follow the idea in [Draidi 2011] to represent the pro�le of a peer pi as a set of

topics. Formally, it is described as: Profpi = {topici1, topici2, topici3...}, where each
element refers to the ID of a topic. To implement this, LDA is used to model all

the topics in the network. The model is in turn used to infer the topics associated

with an individual peer. More details about this implementation are provided in

Chapter 5.

We employ Jaccard distance [Levandowsky 1971], one of the classic measure-

ments for the distance between two sets, to evaluate the similarity between peer

pro�les, as showed in Equation 3.1. A small Jaccard distance refers to high sim-

ilarity between two peers. In the rest of the thesis, we will interchangeably use

`similarity' and `distance' when referring to the metric of Jaccard distance.

Dis(pi, pj) = 1−
|Profpi ∩ Profpj |
|Profpi ∪ Profpj |

. (3.1)

Jaccard distance is a symmetric metric which satis�es the triangle inequal-

ity [Levandowsky 1971]: Dis(pa, pb) + Dis(pb, pc) ≥ Dis(pa, pc). In other words,

if Dis(pa, pb) + Dis(pb, pc) < x, Dis(pa, pc) is also below x. Given x < 1.0, these
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three peers are similar to each other with a certain value of similarity. The smaller

x is, the more similar they are. With this feature, peers with similar contents can

be clustered. This will be useful in building SONs, as stated in [Linari 2006].

Besides the above techniques to generate peer pro�le and calculate peer sim-

ilarity, other techniques can also be used, if they satisfy the following properties

: (i) the representation of peer pro�le and the similarity measurement exhibit the

semantics in the documents; (ii) the similarity measurement satis�es the triangle

inequality. In this thesis, we use LDA and Jaccard distance to calculate peer pro�le

and peer similarity, because they embody the properties described above. It is out

of the scope of the thesis to study the di�erent techniques.

3.1.2 De�nition of Links

To build SONs in unstructured P2P networks, each peer pi maintains a set of links

to the peers that have similar contents to pi. In [Linari 2006, Voulgaris 2007], the

links point to k most similar peers; in [Raftopoulou 2008a, Schmitz 2004], they

point to a set of peers whose average similarity to pi is above a prede�ned thresh-

old; in [Sripanidkulchai 2003], these links point to the peers that answered pi's

queries, since the authors assume that peers share the similar interests if one

can answer the other's queries. Besides maintaining links to the similar peers,

in [Raftopoulou 2008a], each peer also maintains a set of links pointing to the peers

with di�erent contents, in order to keep the whole network a connected component.

For the same object, peers in [Voulgaris 2007] keep a set of links to some random

peers. Similarly, in [Linari 2006, Sripanidkulchai 2003], an underlying random over-

lay network is used to keep the whole network connected.

Although building SONs mainly aims to cluster similar peers up, maintaining

the whole network connected is also important. A connected network can o�er an

underlying infrastructure to discover similar peers in the network. After a SON

is built, the whole network should still be connected, so that peer clusters can

communicate with each other.

In this thesis, we follow the way used in [Raftopoulou 2008a] to de�ne the links

into short-range links and long-range links: the former point to the similar peers;

the latter point to peers with di�erent contents. These peers are called short-range

contacts and long-range contacts, respectively. Formally, pi's short-range contacts

and long-range contacts are represented as P i
short and P

i
long. Short-range links are

used to cluster semantically similar peers, while long-range links are used to keep

peer clusters connected and thus provide paths between peer clusters. Regarding

IR, short-range links are used to search information within a peer cluster, while

long-range links are used to forward the query to the relevant peer clusters.
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Each peer pi keeps the information of its contacts in a routing table, where each

entry stores the information of one contact. The entry contains the type of the

contact (Short-range or Long-range), its IP address, its peer pro�le, its similarity

to pi, the last time it was contacted, and other application-related information if

necessary. An example of routing table is given in Table 3.1:

Table 3.1: Example of a routing table

Type IP Pro�le Similarity Last contact

Link A Short-range IPpa Profpa 0.2 14:59,10/18/2013

Link B Long-range IPpb Profpb 0 14:00,10/18/2013

For each peer pi, the number of its contacts in P
i
short and P

i
long is represented as

s and l. The values of s and l are pre-�xed by the network designer or the user. A

threshold θ is de�ned to distinguish the short-range contacts P i
short and long-range

contacts P i
long. Formally, the short-range contacts of pi should meet the following

requirement:

P i
short =

{
pj

∣∣∣∣ 1

|P i
short|

∑
pj∈P i

short

Dis(pi, pj) ≤ θ
}
, (3.2)

where 1
|P i

short|
∑

pj∈P i
short

Dis(pi, pj) refers to the average distance between pi

and its short-range contacts. It is called intra-cluster distance. To facilitate the

presentation, we formally de�ne the intra-cluster distance between pi and its short-

range contacts as follows:

IntraDis(pi) =
1

|P i
short|

∑
pj∈P i

short

Dis(pi, pj). (3.3)

Based on the same threshold θ, long-range links should respect the following

constraint:

P i
long = {pj |Dis(pi, pj) > θ and Dis(pj , pk) > θ, pk ∈ P i

long − {pj}}, (3.4)

where the distance among pi and the clusters it links to is above the threshold θ.

This constraint makes the peer clusters with di�erent content connected and avoids

the redundancy in the long-range links, such that there do not exist two long-range

links pointing to the same peer cluster.

The reason of using θ is to control the quality of peer clusters formed by short-

range links. Its value must be decided carefully, because a very large θ results

in loose clusters while a very small θ makes it di�cult to connect similar peers
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together. This can a�ect the subsequent query routing performance, as explained

in [Schmitz 2004, Raftopoulou 2008a].

3.1.3 Building SONs via Peer Rewiring

When a peer joins an unstructured P2P network, it initializes its short-range links

and long-range links by connecting to s + l random peers that are provided by a

bootstrapping server. For building SONs in unstructured P2P networks, peers must

rewire their short-range links to similar peers. Long-range links can also be rewired

along the same procedure. The protocols of peer rewiring have been proposed and

framed diversely in the state of the art. A generic methodology is required to provide

a consistent framework for this task, while allow enough �exibility for the protocol

designer to specify its properties.

In this subsection, we identify and formalize peer rewiring as a periodical three-

step procedure. A single three-step procedure is called a rewiring cycle, involving

the steps of rewiring initiation, peer collection and link update. The peer that

initiates the rewiring process is called rewiring peer. For each peer pi, the object of

its periodical rewiring cycles is to discover more similar peers in the neighborhood

by a walker, to use them to replace current less similar short-range contacts, and

�nally to achieve such links that satisfy the requirement of short-range contacts.

3.1.3.1 Rewiring Initiation

In initiating step, the rewiring peer pi �rstly checks its current links. According

to the situation of current links, it decides weather or not to initiate a walker, for

exploring pi's neighborhood and collecting the information of peers in the next step.

If pi's current links meet the prede�ned criteria and all of them are online, pi does

not initiate the walker and the rewiring cycle terminates.

The walker is actually a message Ri called rewiring message initialized by the

rewiring peer pi. It is described as a tuple 〈IPpi , P rofpi , TTLRi , C〉:

• IPpi : IP address of the rewiring peer pi;

• Profpi : pro�le of pi;

• TTLRi : time to live (TTL) of the message Ri;

• C: an initially empty list for storing the information of collected peers.

The properties that can be speci�ed by the designer include: the value of TTLRi ,

the other data structure included in the tuple to carry more information, the criteria

of good links, and the exception management. The exception refers to the case where
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the short-range links of some peers never meet the criteria. For example, a peer may

never achieve a set of short-range contacts with intra-cluster distance below the

threshold θ, because such peers do not exist in the network. In this case, the peer

can either continue to perform peer rewiring or stop the process. The former choice

is employed in this thesis. For the criteria of links, we use Equation 3.2 and 3.4 in

this thesis.

3.1.3.2 Peer Collection

Peer collection aims to discover more similar peers in pi's neighborhood and then

to collect their information, in order to update pi's current contacts in the next

step. This is implemented by a walker that walks along the links and collects the

information of the peers it accesses. The walking process is actually a procedure in

which the rewiring message Ri is forwarded from one peer to another. We regard it

as a walker walking along a path, for the sake of both clear presentation and later

usage. During the walking process, information about the visited peers is recorded

in Ri.C (as well as the neighbors of the visited peers, depending on the speci�c

rewiring protocol).

When a peer pj receives a rewiring message Ri, it �rstly reduces its TTL by 1.

It then calculates Dis(pi, pj) and appends a tuple 〈IPpj , P rofpj , Dis(pi, pj)〉 to the

element C of Ri. pj then forwards Ri to one of its neighbors (or n of its neighbors,

depending on the speci�c rewiring protocol). The forwarding process continues

recursively until TTLRi becomes 0. When TTLRi equals to 0, the rewiring message

is sent back to pi. Each time the rewiring message is forwarded from one peer to

another peer, it can be considered as the walker takes its step to the next stop.

The key to peer rewiring is the strategy to choose the peers from a set of can-

didates (pj 's neighbors) and forwards Ri to them. In general, di�erent strategies

may di�er from each other with respect to their performance in the e�ciency and

e�ectiveness of building SONs. This will be studied in Chapter 4.

3.1.3.3 Link Update

Link update is performed in pi after it receives the returned rewiring message Ri.

According to the information of the peers collected in Ri.C, pi selectively sets new

links and discards old ones.

To update short-range links, old links corresponding to less similar peers are

replaced with new ones corresponding to more similar peers. The implementation

details are showed in Algorithm 1. Firstly, the collected peers P i
collected as well as the

short-range contacts P i
short are ordered according to their distance to the rewiring
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peer pi (line 2�3). Then the peers with lowest value of distance in P i
collected is used

to replace the short-range contacts with the highest value of distance, if only the

former distance is lower than the latter (line 6�7). REPLACE(P i
short[n], P i

collected[n])

replaces the information of P i
short[n] in pi's routing table with the information of

P i
collected[n].

Algorithm 1: Updating short-range contacts of pi

1 Input: P i
collected, P

i
short; // collected peers and current short-range

contacts, |P i
short| = s

2 SORT(P i
collected); // increasingly by their distance to pi

3 SORT(P i
short); // decreasingly by their distance to pi

4 n = 0; // indicate the position of the peers that are being

processed

5 while n < P i
collected.length and n < P i

short.length do

6 if Dis(P i
collected[n], pi) < Dis(P i

short[n], pi) then

// update the entry of P i
short[n] in pi's routing table with

P i
collected[n]

7 REPLACE(P i
short[n], P i

collected[n]);

// move to the next collected peer and next short-range

contact

8 n++;

9 else

10 break;

11 end

12 end

Long-range links of pi can also be updated with the information of the collected

peers. The details to update long-range contacts are presented in Algorithm 2. The

idea is to replace a current long-range contact with a collected peer, in such a way

that the collected peer's distance to pi and the other long-range contacts is above

the threshold θ. Speci�cally, we pick up the collected peers one by one. For each

collected peer pm, we check its distance to pi and pi's long-range contacts (line 4�9),

and record the long-range contact in peerToUpdate if the distance is below or equal

to θ. pm will not be used to update pi's current long-range contact if more than

one long-range contact is recorded in peerToUpdate, because replacing one of them

with pm still results in more than one link pointing to the same peer cluster, and

this does not make any improvement to the con�guration of the long-range contacts
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de�ned in Equation 3.3. If peerToUpdate is empty, it implies that pm is from a peer

cluster which is di�erent from all the peer clusters pi's current long-range contacts

belong. In this case, a random long-range contact is selected and replaced by pm

just for refreshing the links.

Algorithm 2: Updating long-range contacts of pi

1 Input: P i
collected, P

i
long; // collected peers and current long-range

contacts, |P i
long| = l

2 for pm in P i
collected do

3 peerToUpdate = {};
4 if Dis(pm, pi) > θ then

// check pm's distance to pi's other long-range contacts

5 for pn in P i
long do

6 if Dis(pm, pn) ≤ θ then
7 peerToUpdate = peerToUpdate ∪ {pn};
8 end

9 end

// pm does not replace the current long-rang contact if

|peerToUpdate| > 1

10 if |peerToUpdate| == 1 then

11 REPLACE(pn, pm); // pn is the peer recorded in

peerToUpdate

12 end

// randomly replace a long-range contact when peerToUpdate

is empty

13 if |peerToUpdate| == 0 then

14 Randomly select a peer pn from P i
long;

15 REPLACE(pn, pm);

16 end

17 end

18 end

Long-range links can also be updated by initiating a special rewiring cycle. In

this special rewiring cycle, the rewiring message is forwarded either randomly or

to the peer whose distance to the rewiring peer is above θ. When the rewiring

message is returned to pi, the same algorithm 2 is used to update pi's long-range

links. The long-range links are initially random and then connect the peers with
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di�erent content, peers always can access peers with di�erent contents. Moreover,

there are usually much more peers with di�erent contents than peers with similar

contents in the network. These factors make it much less di�cult to discover peers

with di�erent contents than �nding similar peers, so we will not focus too much on

rewiring long-range links in the rest of the thesis.

To maintain the links, each peer periodically sends a `hello' message to its con-

tacts, to check if the contacts are still online or changed their pro�les. Note that

in the above algorithms, contacts are updated by only considering their distances

to the rewiring peer, as well as to each other when updating long-range contacts.

Updating the contacts that are not online is not presented, because it is a trivial

task. But in the real application, this should be considered.

The generated SON is evaluated with respect to clustering e�ciency and its

performance for target tasks like IR and information �ltering. A good SON should

allow a peer to access its similar peers within one or few hops along the short-range

links. It should also provide good performance for the subsequent tasks.

3.1.4 Searching in SONs

Searching in SONs involves (i) forwarding a query from its initiator to relevant peer

cluster(s), and (ii) �nding relevant documents stored in the peers of the cluster(s).

The �rst step is called inter-cluster search and the second step intra-cluster search.

The searching is performed via an approach similar to the line

in [Raftopoulou 2008a]. Speci�cally, when a peer pi initiates a query qi, it

also computes a topic-based representation for it. The query is integrated in a

query message Qi, which contains the following information:

• IPpi : IP address of the query initiator pi;

• qi: the query issued by pi, which is used to perform local IR in relevant peers;

• Profqi : topic-based representation of qi;

• TTLQi : time to live of this query message;

• Dqi : an initially empty list for storing the information of the relevant docu-

ments.

When a query is initiated by a peer pi, one or more relevant peer clusters are

discovered �rstly, as showed in Algorithm 3. Speci�cally, when a peer pk receives

a query (pi is also considered as such a pk), it calculates the distance between its

pro�le and that of the query. If the distance is below or equal to θ, we consider
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that pk is the member of a relevant peer cluster. Through pk, intra-cluster search is

performed as described in Algorithm 4. Otherwise, pk forwards the query to nq of

its contacts which are most similar to Qi. The forwarding process continues until

TTLQi equals to 0 or pk is the member of a relevant peer cluster.

Algorithm 3: INTER_CLUSTER_SEARCH(pi,Qi)

1 pi initiates a query Qi = 〈IPpi , qi, P rofqi , TTLQi , Dqi〉;
2 while TTLQi > 0 do

3 for each peer pk that hosts Qi do

// Profqi is used to calculate this distance

4 if Dis(pk, qi) ≤ θ then
5 INTRA_CLUSTER_SEARCH(pi,Qi);

6 else

7 TTLQi = TTLQi − 1;

8 pk forwards Qi to nq contacts that are the most similar to qi;

9 end

10 end

11 end

Algorithm 4: INTRA_CLUSTER_SEARCH(pi,Qi)

1 Qi = 〈IPpi , qi, P rofqi , TTLQi , Dqi〉;
2 Reset TTLQi as kqi ;

3 while TTLQi ≥ 0 do

4 for each peer pk that receives Qi do

5 pk performs local IR and returns the relevant documents to pi or save

them in Dqi ;

6 TTLQi = TTLQi − 1;

7 if TTLQi < 0 and Dqi is not empty then

8 return Dqi to pi

9 else

10 pk forwards Qi to its short-range contacts whose distance to qi is

below or equal to θ;

11 end

12 end

13 end
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Note that when the distance between the query and the initiator pi is below or

equal to θ, we consider the initiator pi is the member of a relevant peer cluster to

the query. In this case, the query will be di�used along pi's short-range links.

Once a relevant peer cluster is found at pk, intra-cluster search is performed. pj

spreads the query to the peers that its short-range links connect to. The TTLQi is

reset to be a smaller value than the initial TTLQi in Algorithm 3, because the peers

in a cluster can be accessed within less hops. A simple and intuitive way to spread the

query is �ooding, as presented in [Raftopoulou 2008a]. However, �ooding the query

in a large peer cluster is expensive. Moreover, some peers may not have the relevant

documents even though they are in the same cluster of pk. Information like querying

history can be introduced to improve the performance [Tempich 2004], but it takes

time to accumulate query feedbacks. In this thesis, we employ a more intuitive

approach, as described in Algorithm 4. The idea is to forward the query only to the

peers whose distance to the query pro�le is below or equal to θ. When a peer in the

cluster receives a query, it performs local IR and returns the relevant documents to

the query initiator pi. A document is relevant to the query if its similarity to the

query is above a threshold. More details about this will be explained in Chapter 5.

3.2 Building SONs as an Optimization Model

3.2.1 Building SONs: Combinatorial Optimization Problem

In previous section, we have built SONs by connecting similar peers via short-range

links and peers with di�erent contents via long-range links. In this section, we

model this process as a combinatorial optimization problem in a graph G = 〈P,L〉.
G is the graph representation of the P2P network. P is the peers in the network,

and L is the short-range links in the network. Given a number of peers and the

number of short-range links for each peer, the task is to �nd the optimal graph

con�guration such that the similar peers are clustered up and then similar peers

can access each other in one or few hops. Long-range links are not considered in

this model, because (i) they do not imply the quality of peer clusters; (ii) it is not

di�cult to achieve optimal long-range links to keep the peer clusters and thus the

whole network connected (refer to Section 3.1.3.3).

Formally, the optimal graph con�guration should be the one satisfying the fol-

lowing two properties:

Property 1 Intra-cluster distance at each peer should be below or equal to a thresh-

old θ, following Equation 3.2. This property aims to control the quality of the

peer's short-range contacts.
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Property 2 Each peer should be able to access all the other similar peers within a

few hops. To simplify, similar peers with a distance below or equal to θ should

be accessible within γ hops.

To quantify these properties of the graph, an objective function is de�ned with

the following principles:

Principle 1 The value of the objective function should characterize the �tness of

the graph con�guration.

Principle 2 The objective function should be a proper integration of two parts,

each corresponding to one of the two properties of the graph con�guration.

We qualify the property 1 for each peer with the following equation:

IntraDis(pi) =

{
0, if IntraDis(pi) ≤ θ

θ − IntraDis(pi), if IntraDis(pi) > θ
(3.5)

where IntraDis(pi) is called the relative intra-cluster similarity of pi. Ideally, the

optimum of this equation is 0. It corresponds to the fact that pi has obtained the

optimal short-range contacts: the intra-cluster distance at pi is below or equal to

threshold θ. In reality, the optimum of this equation may be negative for some

peers, when there do not exist such peers in the network whose average distance to

pi is equal or below to θ. But this will not a�ect the property of this equation in

measuring the �tness of pi's short-range contacts.

For each peer, property 2 is quali�ed as:

C(pi) =
|{pj |H(pi, pj) ≤ γ,Dis(pi, pj) ≤ θ}|
|{pk | pk ∈ G.P,Dis(pi, pk) ≤ θ}|

. (3.6)

where H(pi, pj) refers to the number of hops from pi to pj . This is called clus-

tering e�ciency, proposed by [Raftopoulou 2008b] to quantify the connections of

the similar peers. It is calculated as the number of peers {pj} that can be reached

from pi within γ hops following short-range links and whose distance to pi is below

or equal to θ, divided by the total number of peers in the network whose distance

to pi is below or equal to θ.

This metric is similar to the recall metric used in IR1. Another metric similar to

the precision metric2 can also be used, which is calculated by replacing |{pk | pk ∈
G.P,Dis(pi, pk) ≤ θ}| with |{pk |H(pi, pk) ≤ γ}| in Equation 3.6. Both of these

two measurement focus on the similar peers that can be accessed within γ hops and

1Recall is de�ned as the fraction of relevant instances that are retrieved.
2Precision is de�ned as the fraction of retrieved instances that are relevant.
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whose distance to pi is below or equal to θ. But recall evaluates if pi can access all

the peers in the network whose distance to pi is below or equal to θ, while precision

evaluates if all the peers that pi can access are similar to pi (e.g., with a distance

below or equal to θ).

We focus on the recall in this thesis. For each peer pi, the recall can show if

most of its similar peers are clustered in its neighborhood. This is important for

the target task like IR, because a higher recall can allow the queries to be di�used,

within few hops, to most of the peers that are similar the query and thus have the

potential to answer the queries.

Relative intra-cluster similarity IntraDis(pi) and clustering e�ciency C(pi) are

used to qualify the property 1 and 2 for each peer. They are complementary to each

other: the former measures the local cluster quality between a peer and a limited

number of short-range contacts; the later shows how each peer connects to all the

peers that are similar to it. By considering the P2P network as a single system with

component peers, we de�ne the objective function as:

O(G) =
1

N

N∑
i=1

(IntraDis(pi)) +
1

N

N∑
i=1

(C(pi)), (3.7)

where N represents the total number of peers in the network. The two compo-

nents of this object function are called relative intra-cluster similarity of the network

and clustering e�ciency of the network, respectively. Ideally, the maximum value

of 1
N

∑N
i=1(IntraDis(pi)) should be 0, which means that intra-cluster distance of

all peers is below or equal to θ. In reality, however, there may be peers such that

their average distance to the most similar peers is larger than θ. This can happen

when the peer pro�les are not uniformly distributed in the topical space. In that

case, the optimum of this function would be smaller than 0. The maximum value of
1
N

∑N
i=1(C(pi)) is 1. An optimal network con�guration should be the one optimize

both of the two components of the object function. However, a network with the

optimal relative intra-cluster similarity does not necessarily imply that it also has an

optimal clustering e�ciency (will be discussed in Section 3.2.3), so we keep this two

components to be independent by simply summing them in the objective function.

3.2.2 Peer Rewiring: Decentralized Local Search Solution

In order to optimize the objective function of the graph con�guration in the pre-

vious subsection, an intuitive way is to exhaustively enumerate the possible graph

con�gurations and calculate their objective function values. Thus the highest value

will be found as the optimum of the objective function. The corresponding graph

con�guration is the optimum con�guration.
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However, exhaustive enumeration of all possible graph con�gurations is not pos-

sible, because the number of possible graph con�gurations is too large. For a network

with N peers, if each peer has M short-range links, its short-range links can have

CM
N−1 possible con�gurations. Then for the short-range links of all the peers, there

exist (CM
N−1)

N con�gurations. In addition, when changes happen in the network

like peer joining, leaving and updating their content, the current con�guration may

not be the optimum anymore. Additional computation is required to recompute

the optimal con�guration. A classical solution for combinatorial optimization prob-

lem is using local search [Kolen 1994]. The local search approach assumes a space

where all possible graph con�gurations reside. Each graph con�guration has a set

of other graph con�gurations as its neighbors in the space. A neighbor refers to

a con�guration that is reachable from the current con�guration via a well-de�ned

move. Speci�cally, given an initial graph con�guration, local search refers to move

from the current con�guration to one of its neighbors. Current graph con�guration

is iteratively replaced by a new con�guration, until the optimum con�guration is

achieved or a recursion bound is elapsed.

In a P2P network setting, no central point controls the local search to move

the graph from one con�guration to another. Instead, each peer is allowed to au-

tonomously rewire its links to peers that are discovered in its neighborhood. So

the only possible way is to let each peer optimize its local con�guration (short-

range links). Local optimizations move the global network con�guration from one

to another. If local optimizations are properly performed, a global optimal network

con�guration can be obtained (will be explained in Section 3.2.3). In the state of

the art in SONs in unstructured P2P networks, peer rewiring is employed in this

way, but it has never been framed as an optimization model, and it is not clear how

peer rewiring results in the global optimization with similar peers clustered via the

short-range links. In order to have a more clear idea about the relation between

local optimizations and global optimization, as well as to explore better solutions

to the optimization problem, we formalize the generic peer rewiring procedure into

a decentralized local search solution to the optimization problem of building SONs.

In this decentralized local search solution, each peer independently performs lo-

cal search to �nd optimal short-range contacts. Local search refers to the process

in which each peer explores peers from its neighborhood, uses them to update its

short-range links, and then achieves a better con�guration of its short-range links.

The local search is performed repeatedly until the rewiring peer achieves the opti-

mal short-range links. By `decentralized', we mean that each peer independently

performs the rewiring process. The behaviors of all peers are expected to enable

the emergence of peer clusters; By `local', we refer to the fact that peers can only
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explore peers in their neighborhood.

Similar to the optimization for the network con�guration, an objective function

is required for the local search operations of each peer. According to the details of

peer rewiring, we de�ne this objective function as:

O(pi) = IntraDis(pi). (3.8)

It corresponds to an evaluation of the local con�guration of peer pi (its short-

range links). Starting from an initial con�guration of short-range links that point

to some random peers, pi recursively changes its con�guration to a new one with a

higher value of O(pi), like moving in a con�guration space. A neighbor of the current

con�guration is obtained by updating the current short-range contacts with peers

explored in pi's neighborhood. Exploring peers in the neighborhood is performed

by a walker based on certain strategy, which is the key to the performance of this

decentralized local search solution.

Formally, the local search of each peer pi involves the following elements:

Current con�guration Si: pi's current short-range links.

Con�guration space CS: if there are N peers in the network, there are Cs
N−1

possible con�gurations for each peer pi, where s refers to the number of short-

range links and is �xed.

Objective function O(Si): O(Si) = IntraDis(pi). The target of local search is

to �nd a S
′
i so that the objective function reaches its optimum (in the reality,

the optimum may not be 0 if no such peers exist in the network). There may

exists more than one optimal con�guration, if there are more than s peers that

are similar to pi in the network in terms of θ.

Neighboring con�guration S
′
i: a con�guration that is reachable from the current

con�guration Si. It is obtained by replacing the less similar short-range con-

tacts with peers explored in pi's neighborhood. Once a peer pe is explored,

a possible neighboring con�guration is generated since pe can be used to re-

place the least similar short-range contact in the current con�guration Si. To

facilitate presenting the idea, we characterize a neighboring con�guration S
′
i

by {pe}, the explored peers that can be used to replace current short-range

contacts.

With the above elements, local search of each peer is described as a periodical

process, each round of the search corresponds to one rewiring cycle, that is com-

posed of a sequence of operations: initiating a walker; using the walker to explore
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Figure 3.1: Repeated local search process of each peer (yellow part is performed

by the walker to explore neighboring con�guration; blue part is performed by the

rewiring peer to update the current con�guration with the explored ones).

the neighboring con�gurations; and updating the current con�guration with the

neighboring ones. A single step taken by the walker is considered as a single local

search step for a neighboring con�guration. As Figure 3.1 shows, neighboring con-

�gurations are explored with a sequence of local search steps. The peer information

the walker collected at each step characterizes one neighboring con�guration. All

the neighboring con�gurations are sent back to the rewiring peer when the walker's

TTL equals 0. Figure 3.2 illustrates an example about local search steps taken by

a walker with TTL of 5.

The details of the local search processes are described in Algorithm 5. Speci�cally

in each local search round, neighboring con�gurations are �rstly explored by the

walker in its neighborhood, as showed in line 5�9. TTLRi local search steps are

performed in one local search round. In each local search step, the walker faces a set

of possible peers to step on. These possible peers are the short-range and long-range

contacts of its host peer pr
3. The walker has to choose one from them as its next

step, called explored peer. LOCAL_SEARCH(Ri, pr) in line 7 represents a local

search step. It involves the strategy to select one of the contacts as the walker's

next step. The information of the explored peers is recorded in the walker, and then

used to update the current con�guration when it is sent back to pi (line 11�16).

The neighboring con�guration is accepted if only it makes any optimization over

the objective function O(pi) (line 15).

The local search steps (operations of LOCAL_SEARCH(Ri, pr)) play an im-

3Note the long-range contacts are also used here, since they connect up the whole network and

thus similar peers may also be discovered through them, especially when the network is randomly

connected.
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Figure 3.2: An example of local search steps performed by a walker with TTL as

5, each peer is assumed to have 4 contacts (black arrowed lines: walker's path; blue

circles: pi's current neighbors; yellow circles: explored peers).

portant role in this algorithm, because the strategy they use to select one of the

contacts determines the e�ciency to achieve the optimal con�guration of the short-

range links. It also a�ects the e�ectiveness of the resulting SON topology. This will

be discussed in the next subsection.

In the classic local search approaches, the current con�guration is updated once

a neighboring con�guration is found. But in our local search process, the current

con�guration is updated after TTLRi neighboring con�gurations are found, since

the information of the neighboring con�gurations are returned to pi after every

TTLRi local search steps (the walker returns to pi after its TTL is run out), and

only pi can updating its con�guration. However, our local search process still

can be analogized to the classic local search approach, if we consider the TTLRi

neighboring con�gurations as a single neighboring con�guration characterized by

all the explored peers.

Note that a peer pi may never achieve the optimum of its objective function due

to the fact that there may not exist a set of peers in the network whose average

distance to pi is below θ. Certain mechanism must be designed to deal with this ex-

ception. For instance, the peer can stop the optimization process if its con�guration

is not improved in a certain number of continues local search steps. In addition,
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more than one peer can be selected as the walker's next step in each local search

step. In that case, the walker copies itself and each copy goes to a di�erent peer.

Moreover, P i
collected can collect not only the information of the explored peer, but

also the information of the other contacts of the walker's host peer. These are the

properties that can be speci�ed by the algorithm designer. However, they do not

a�ect the essential principle of this decentralized local search solution. So we will

consider the basic con�guration such that: peers keep optimizing their con�gura-

tion; only one peer is selected as the walker's next step; only the information of the

peer the walker visits is collected and returned.

Algorithm 5: Local search process of pi

1 Current con�guration of pi: Si = P i
short ;

2 Initiate a rewiring message Ri as a walker;

3 Initiate Ri's host peer pr as pi ;

4 while O(Si) < 0 do

// explore peers (neighboring configurations)

5 P i
collected = {} ;

6 for i = [1 : TTLRi ] do

7 pe = LOCAL_SEARCH(Ri, pr) ;

8 P i
collected = P i

collected ∪ {pe} ;
9 pr = pe

10 end

// accept/refuse the neighboring configurations, each peer in

P i
collected implies a possible neighboring configuration

11 for pe ∈ P i
collected do

12 �nd the least similar peer pmax in Si ;

// form the neighboring configuration by replacing pmax

with pe

13 S
′
i = (P i

short − {pmax}) ∪ {pe} ;
14 if O(S

′
i) is improved then

15 Si = S
′
i ;

16 end

17 end

18 end

19 return Si;
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3.2.3 Discussion: From Decentralized Local Search to Global Op-

timization

With the building of SONs modeled as a combinatorial optimization problem

and peer rewiring modeled as a decentralized local optimization solution to it,

an explicit di�erence between their objective functions can be observed. The

former aims to optimize the quality of peer clusters from a global point of view,

so it takes cluster e�ciency into consideration in its objective function, while

the latter only aims to optimize the quality of individual peers and their direct

short-range contacts. There is no explicit proof showing that the decentralized

local search solution always leads to the global optimization. There exists a lot

of local search strategies, whose e�ect on this global optimization problem is

still not clear. In the remaining of this subsection, we brie�y analyze the link

between decentralized local search and global optimization. A formal theoretical

study for this problem should be conducted, which could be part of the future works.

Optimization of the Relative Intra-cluster Similarity: In a network with

N peers, if each peer pi has a set of s peers as its short-range contacts, there are

Cs
N−1 possible peer sets for pi's short-range contacts. Assuming M is the number

of the sets each with s peers whose average distance to pi is below or equal to θ, the

probability that a set of peers meets the criteria of short-range contacts isM/Cs
N−1.

In other words, given a set of peers as pi's short-range contacts, with the probability

of M/Cs
N−1, they can optimize pi's relative intra-cluster similarity. In unstructured

P2P network, since peers can continuously rewire their links and obtain new short-

range contacts, they can try a large number of the short-range contact con�guration.

In this case, the probability becomes higher to have the short-range contacts that

can optimize peers' relative intra-cluster similarity.

Speci�cally, achieving the short-range contacts satisfying the criteria depends

on the following factors: it is possible for a peer to access such peers in the network

within the number of hops equal to the TTL of the walker for peer rewiring; the

right walking strategy is designed for the walker to discover them. The former

requirement can be satis�ed if a proper TTL of the walker is set, since both

long-range and short-range links make the whole network a connected component.

The latter requirement will be studied in the next chapter, where di�erent walking

strategies are analyzed and an novel strategy is proposed.

Optimization of the Clustering E�ciency: the decentralized local search

focuses only on optimizing the average intra-cluster distance between the peers and

their short-range contacts. Oppositely, clustering e�ciency considers the connection



48 Chapter 3. Optimization Model for Building SONs

between a peer pi and all the other peers that are similar to it. This is important

because the number of all the peers that are similar to pi may be much larger than

the number of its short-range links. In an optimized SON, these similar peers are

supposed to be accessible from one another along the short-range links. To make

sure that decentralized local search solution also results in high clustering e�ciency,

isolated similar peers should be avoided. Isolated similar peers refer to a set of

peers with similar content, such that some of them are not accessible by following

the short-range links of the others.

To avoid isolated similar peers, one way is to allow the walker to visit the contacts

with dissimilar contents which may connect to a similar peer. To this end, some

steps to the peers with di�erent contents should be taken during the local search,

so that a similar peer may be discovered through a step to a dissimilar peer. For

example, let pa and pc are two similar peers that belong to two sets of isolated

similar peers. They are isolated by pb that is not similar to both pa and pc, which

means that pb is one of pa's contacts and pc is one of pb's contacts. When pa sends

a walker to perform local search for rewiring its short-rang contacts, the walks to pb

and then pc can help to discover pc and then remove the isolation.

A simple way to avoid isolated similar peers is to let the walkers always take

random steps, so that isolated similar peers can be gradually removed if enough

amount of random steps are taken. Useless random steps can also be taken in

this way, which is a waste of time and tra�c. However, it is challenging to decide

when to use random walk and how many random walks to use, because each peer

does not know the topology of its neighborhood except its direct neighbors. In the

next chapter, we propose a novel decentralized local search approach to tackle this

challenge.

3.2.4 Related Work

Study on evolutionary P2P topology is not new. It is about (re)organize the links

between peers to achieve a certain network topology, in order to optimize the per-

formance of a certain task [Sakaryan 2003a]. In [Merz 2006], an evolutionary local

search approach is proposed to design a P2P topology named minimum routing cost

spanning trees. Given an initial topology, a local search is used to �nd a better topol-

ogy in the neighboring topologies, which refer to a set of topologies that are reachable

from the current one by a well-de�ned 'move'. The local search is performed by a

central controller, who has the knowledge of the whole network and knows how to

perform the `moves'. Similar works are proposed in [Wolf 2009, Wi±niewski 2011].

[Ohnishi 2012] uses an evolutionary algorithm (EA) inspired by biological genetics

and evolution to adapt a P2P topology for quick, accurate, and reliable searches. A
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super-peer is used to manage the global knowledge of the network and perform EA

in a centralized way. [Sakaryan 2003b, Sakaryan 2004] proposes to use decentralized

algorithms to self-organize a static P2P network into communities each sharing sim-

ilar content. It states that the algorithm is executed locally on every peer and each

peer gets the information about other peers by traveling search messages. However,

no detailed information is presented.

The idea of P2P topology with communities is quite similar to

SONs [Crespo 2002b], where peers with similar content are `clustered' up. It

is studied in a lot of works such as [Schmitz 2004, Voulgaris 2007, Parreira 2007,

Raftopoulou 2008a]. These works follow the idea of [Sakaryan 2004], and

allow each peer to reconstruct its links to peers with similar content. Specif-

ically, each peer explores the information about other peers (not its current

neighbors) via gossiping [Voulgaris 2007, Parreira 2007] or traveling search mes-

sages [Schmitz 2004, Raftopoulou 2008a]. With the explored information, it

reconstructs its links to peers with (more) similar content.

In this thesis, we take the current research one step further by �rstly identifying

a generic pattern of peer rewiring. The generic pattern is formalized as a three-step

procedure that is repeatedly and independently performed by each peer. We then

associate local link reconstruction with the global network evolution by modeling

them as optimization models. We model the building of a SON as a combinatorial

optimization problem, and peer rewiring as its decentralized local search solution.

This modeling reveals an observable gap between the combinatorial combination

problem and the decentralized local search solution. This motivates us �nding local

solutions with desirable properties that can lead to a global topology that is optimal

or close to the optimum.

3.3 Summary

In this chapter, we presented a generic procedure framework for building SONs

by peer rewiring. It formalizes the task of building SONs in unstructured P2P

networks into a generic framework, and allows enough �exibility for the designer to

specify its properties. It also allows peers' dynamic behaviors like changing content,

joining or leaving the network. Then we modeled the problem of building SONs

as a combinatorial optimization task, with peer rewiring as its decentralized local

search solution. In the end, an analysis was made based on the optimization model,

which revealed a gap between the local search solution and the global optimization

task that has to be �lled carefully through the identi�cation of e�ective local search

procedure.
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4.1 Introduction

In the last chapter, building SONs based on peer rewiring is modeled as an com-

binatorial optimization problem with a decentralized local search solution. In this

chapter, we study the possible ways to perform the decentralized local search. The

local search aims to explore peers from the neighborhood of a rewiring peer pi, and

then to use them to optimize pi's current con�guration of the short-range links as

well as the quality of peer clusters. It is repetitively performed, until the optimum

is achieved.

The local search is autonomously performed by each peer. A single local search

process of peer pi is implemented by letting a walker walking along the links in pi's

neighborhood. The information of the visited peers is collected by the walker and

returned to pi for updating its current links. Traditional ways for a walker taking its

steps include random walk, greedy walk or both [Schmitz 2004, Raftopoulou 2009a].
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Random walk means the walker takes its next step randomly, while greedy walk

means the walker steps to the peer which is the most similar to the rewiring

peer. These strategies are individually applied or integrated in the local search

process [Schmitz 2004, Parreira 2007, Raftopoulou 2009a], and are kept constant as

the network evolves from a randomly connected network to a SON.

However, the evolution of pi's neighborhood structure may a�ect the perfor-

mance of the local search strategy. For example, before peer clusters emerge in the

network, pi's neighborhood contains random peers connected with each other. So

following a link to a dissimilar peer, the walker may access a similar peer afterwards;

while following a link to a similar peer, it may meet no more similar peers. As peer

clusters gradually emerge, peers similar to peer pi start to be accumulated in its

neighborhood. Then following a link to a similar peer, the walker can access other

similar or more similar peers with a high probability. This phenomena motivates

an evolving local search strategy, which evolves from a random strategy to greedy

strategy.

To this end, we propose to use Simulated Annealing (SA) to guide the walker to

explore the peer's neighborhood. SA is a metaheuristic based local search approach

which allows a `bad' search being accepted with a decreasing probability. In this

thesis, the `bad' search refers to the exploration of a peer that is not useful for

improving the quality of pi's short-range contacts.

In this chapter, we will �rstly present an overview of local search in Section 4.2,

and then detail the idea of an evolving local search strategy in Section 4.3. Then

we introduce SA in Section 4.4. We present how SA is adapted and applied in our

task in Section 4.5.

4.2 Local Search: an Overview

Local search is used to �nd a solution among a large number of candidate solutions

to optimize a quality criterion [Aarts 2003]. It moves from one solution to a neigh-

boring one in the solution space until it arrives at the optimal solution. Neighboring

solutions refer to the solutions that can be reached from the current solution ac-

cording to a well-de�ned move, which is dependent on the speci�c application. The

number of neighboring solutions is often much less than the total number of the

solutions in the solution space. Therefore, when moving from one solution to one of

its neighbors, only local information is available and considered. A good solution is

the one that improves the quality criterion, while a bad solution is the one worsening

the criterion.

Since local search aims at optimizing a given criterion, an intuitive way to move
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from one solution to another is hill climbing. Hill climbing is an algorithm in which

the initial arbitrary solution iteratively moves to a better solution selected from

the local search space. It is good for �nding a local optimum (the best solution

among the neighboring solutions), but it is not guaranteed to �nd the best so-

lution (the global optimum) out of all possible solutions (the search space). To

overcome the problem of local optimum in hill climbing, the following improvement

can be made: repeated local search using random restarts [Lourenço 2010]; iterated

local search employing a perturbation leading to new restarts [Lourenço 2010], tabu

search [Glover 1999], or simulated annealing [Kirkpatrick 1983b]. In the �rst two

approaches, a certain number of restarts are tried in order to �nd the global opti-

mum, but the local search heuristic keeps the same for each restart. In tabu search,

a memory structure is used to describe the visited solutions or user-de�ned rules. If

a potential solution has been previously visited within a certain short-term period

or if it has violated a rule, it is marked as `tabu' (forbidden) so that the algorithm

does not consider it.

Simulated annealing is applied in local search approaches with the property of

accepting bad solutions with a certain probability [Battiti 2009]. Comparing to the

other local search approaches aiming to improve the approach of hill climbing, SA

has the following features: (i) rather than restarting from a new solution when it

is stuck in a local optimum using hill climbing, SA can manage to jump out of the

local optimum by accepting a bad solution from the neighborhood. Through the bad

solution and its neighborhood, better solution may be found. (ii) SA accepts bad

solutions with a decreasing probability, controlled by a parameter called temperature.

When the temperature is high, the probability to accept bad solutions is almost the

same as the probability to accept good solutions, so the local search is similar to

random walk; as the temperature goes to 0, less bad solutions are accepted, and

more moves to good solutions are accepted. When this SA-based local search is

applied in a combinatorial optimization problem, the gross features of the eventual

status of the system appears at high temperatures thanks to the high probability to

accept bad solutions, while �ne details develop at low temperatures by only moving

to the good solutions, as stated in [Kirkpatrick 1983a].

4.3 Motivation

We aim to e�ciently build a P2P network with similar peers clustered, by letting

each peer pi to optimize the con�guration of its short-range contacts as explained

in Section 3.1.2. The con�guration of pi's short-range contacts is optimized when

the intra-cluster distance (see Equation 3.3) is above a given threshold θ. The
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optimization is performed as follows: pi sends a walker and lets it walk along the

links in pi's neighborhood. The walker collects the information of the peers it

explores for updating pi's current short-range contacts. The exploration of a peer

is considered as a local search step to �nd a neighboring con�guration. For each

explored peer, we call it good peer if the quality of pi's intra-cluster distance is

improved by replacing one of its contacts with the explored peer. Otherwise, we call

it a bad peer.

The peers are explored in sequence as the walker takes its steps along the links.

Their information is then returned to pi by the walker, when its time to live (TTL)

equals to 0. The good peers are then used by pi to replace its short-range links.

The walker explores the peers by following the links from one peer to another. For

each step/hop it takes, the walker has more than one potential peers to step on,

since each peer has more than one links. Therefore, the walker must decide which

link to follow. Taking one step forward is one local search step, as formalized in

Chapter 3. It is performed by either random walk or a mixture of random walk and

greedy walk in the literature. In random walk, the walker takes its step by random.

Random walk allows the walker randomly step to a peer that is even not similar

to pi and hence o�ers an extensive search. Therefore, pi can have the chance to

explore a large number of peers in the network via random walk, and then has a

high possibility to achieve the optimal short-range contacts. However, the exploring

process takes time because some random steps may end up without �nding any good

peers. So a combination of random walk and greedy walk is often used as a compro-

mise [Schmitz 2004, Voulgaris 2007, Raftopoulou 2008a, Raftopoulou 2009a], and

each is employed with a �xed probability; in [Raftopoulou 2009a], the author also

proposed to perform random walk when pi's intra-cluster distance is above a thresh-

old and greedy walk when it is below a threshold. But this strategy does not signif-

icantly outperforms the other strategies.

However, as the local search drives the network gradually towards a SON, the

evolution of the network (speci�cally the neighborhood structure) may a�ect the

performance of the local search strategy. For example, before peer clusters emerge

in the network, pi's neighborhood consists of random peers connected with each

other. So following a link to a dissimilar peer, the walker may access a similar

peer afterwards; while following a link to a similar peer, it may meet no more

similar peers. As peer clusters gradually emerge, peers similar to peer pi start to

be accumulated in its neighborhood. Then following a link to a similar peer, the

walker can access other similar or more similar peers with a high possibility. This

phenomena motivates an evolving local search strategy, which evolves from a random

strategy to greedy strategy.
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In this thesis, the local search strategy is considered in an evolving way. Accord-

ing to our observation, as peers perform repeated local search process, the structure

of pi's neighborhood gradually changes: the number of random peers decreases and

the number of similar peers increases. In the beginning, random walk may be the

best way to explore good peers. Gradually, the walker can access more and more

good peers by following a link to a good peer. So it can be better if the probability

to use di�erent local search strategies can be gradually controlled. In the controlled

local search strategy, random walk is used with a high probability in the beginning.

As the neighborhood structure evolves, less random walk is taken while more greedy

walk is performed. To this end, SA can be used because it can accept bad solutions

with a decreasing probability, and thus a evolving local search strategy is possible

to be implemented. The other local search approaches like iterative local search and

tabu search do not have this property.

4.4 Simulated Annealing (SA)

SA originally comes from annealing in metallurgy, a technique involving heating

and controlled cooling of a material to a low energy state, which refers to a highly

ordered state such as a crystal lattice. To accomplish this, the material is heated into

a temperature that allows many atomic rearrangements. The material is then cooled

carefully until it freezes into a good crystal. This notion of cooling is employed in

the Simulated Annealing algorithm to solve optimization problems. It conducts a

poor solution to iteratively move to another solution, until an optimal solution (or

a solution close to the optimum) is reached [Rutenbar 1989].

To implement SA in an optimization task, a sequence of local search steps are

performed until the optimum is achieved. An objective function is de�ned to quan-

tify the �tness of the solutions. At each single search step, SA randomly picks up

one of the neighboring solutions S
′
of the current solution S, and probabilistically

decides between moving to S
′
or staying at S. If it decides to move to the neigh-

boring solution S
′
, the current solution is updated as S

′
. This step is repeated until

the solution is optimal according to a certain criterion, or until a given computa-

tion budget has been exhausted. Following the description in [Henderson 2003], we

present a detailed SA-based maximizing process in Algorithm 6.

SA starts from an initial solution S0 and keeps moving to other solutions either

until tMax steps are performed or an optimal solution is found. The optimal

solution is quanti�ed as the optimal value eMax of its objective function. The

value of the objective function is called energy, calculated by calling ENERGY().

The call NEIGHBOR(S) (line 10) generates a neighboring solution S
′
of current
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solution S; the call P(E, E
′
, Tt) returns a probability. If the probability is larger

than the value returned by RANDOM() (line 10), we move the current solution E

to the neighboring solution S
′
(line 11). This is also mentioned as the neighboring

solution S
′
is accepted with the probability P(E, E

′
, Tt).

Algorithm 6: Simulated Annealing (SA)

1 S = S0; // current solution

2 E = ENERGY(S); // current energy

3 relaxationT ime = 0; // counter for relaxation time

4 t = 0; // current step of cooling schedule

5 while t < tMax and E < eMax do

6 Tt = TEMPERATURE(t); // Tt = T0, if t = 0

7 while relaxationT ime < rT ime do

// rT ime is the computation budget

8 S
′
= NEIGHBOR(S);

9 E
′
= ENERGY(S

′
);

10 if P (E,E
′
, Tt) > RANDOM() then

11 S = S
′
; E = E

′
; // move the current solution to the

neighboring one

12 end

13 relaxationT ime = relaxationT ime+ 1;

14 end

15 t = t+ 1;

16 end

17 return S

The probability to accept a neighboring solution is controlled by the energy of

the current solution E, the energy of the neighboring solution E
′
, and the current

temperature Tt. In traditional SA algorithm, this is implemented by Metropolis

dynamics [Metropolis 1953], which always accepts the good solution, and accepts

the bad solution with a given probability between 0 and 1. Consider a minimizing

problem, Metropolis dynamics can be formally described in the following equation:

P (E,E
′
, Tt) =

 1, if E
′ ≤ E

e−(E
′−E)/Tt , if E

′
> E

(4.1)

The process that Metropolis dynamics is repeatedly used to accept/refuse neigh-

boring solutions can be regarded as simulating a Markov chain [Bertsimas 1993].
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Figure 4.1: Probabilistic distribution of Metropolis and Glauber dynamics.

Similar to Metropolis dynamics, Glauber dynamics can also be used to accept/refuse

a state transition in a system with multiple elements, and to simulate a Markov

chain [Levin 2009]. Consider a minimizing problem, Glauber dynamics accepts both

good and bad solutions with a probability de�ned as follows:

P (E,E
′
, Tt) =

1

1 + e(E
′−E)/Tt

. (4.2)

Figure 4.1 shows, for a given value of −(E
′ −E)/Tt, the probability distribution

of Metropolis dynamics and Glauber dynamics.

Tt is a parameter in analogy with the temperature in physical annealing. In

optimization problems, however, the temperature is rather a controlling parameter

to drive the initial solution to the optimum [Kirkpatrick 1983a]. Starting from

a heuristic high value, the temperature is controlled by a cooling schedule. The

cooling schedule determines when the current temperature should be lowered, and

how much it should be lowered. In Algorithm 6, the former is implemented by

a relaxation time rT ime, which refers to the number of attempts of local search

that are performed before the temperature is lowered; the latter is implemented by

the call TEMPERATURE(), which yields a lower temperature given the current

annealing step t.

A high temperature tends to allow more bad moves from current solution,

while a low temperature allows less. Similar to the physical annealing process,

cooling schedule gradually decreases the temperature Tt as the system approaches

to its optimal solution. An e�ective cooling schedule is essential to reduce the
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amount of time required to �nd an optimal solution. However, how the temper-

ature is speci�cally scheduled often depends on the speci�c optimization prob-

lem [Bertsimas 1993]. The commonly used cooling schedules include exponential

schedule in Equation 4.3, linear schedule in Equation 4.4, and logarithmic schedule

in Equation 4.5 [Nourani 1998].

Tt = T0 a
t 0 < a < 1, t > 0 (4.3)

Tt = T0 − a× t (4.4)

Tt =
a

log (t+ 1)
t > 0 (4.5)

4.5 SA-based Decentralized Local Search

Although SA has been applied in the local search approach for the optimization

problems, applying SA in the decentralized local search in this thesis is not trivial.

First of all, the local search mechanism in this thesis is not exactly the same to

the traditional local search. It allows a �exible local search strategy, but does not

move to the other solutions immediately. Secondly, we must formalize the de�nition

of solution and energy in our task so that SA can be applied. Moreover, the P2P

system we aim to optimize has a variable size and state because of peers' dynamics

behaviors. In this section, we will present how the SA is adapted into our task.

4.5.1 Applying SA to Decentralized Local Search

SA is applied to guide a walker exploring pi's neighborhood. Speci�cally, the walker

takes its next step to a good or bad peer by a probability controlled by SA. A

good peer is de�ned as the peer whose similarity to pi is higher than pmax, the peer

that is pi's short-range contact that has the least similarity (also mentioned as the

biggest distance) to pi. So by replacing the peer pmax with the good peer, the intra-

cluster distance is decreased between pi and its short-range contacts; a bad peer is

de�ned as the peer whose similarity to pi is not higher than the similarity between

pi and pmax. According to the principle of SA, at a high temperature, bad peers

are accepted as the walker's next step with high probability; as the temperature

decreases, the probability to accept bad peers decreases, thus more good peers are

accepted. The temperature decreasing process corresponds to the evolution of peer's

neighborhood structure. A higher temperature implies a neighborhood structure

with a lot random connections between random peers, as the temperature decreases,



4.5. SA-based Decentralized Local Search 59

similar peers emerge in the neighborhood and gradually connect with each other.

So at a high temperature, a step to a bad peer is helpful to discover good peers in

the next step. While as the neighborhood structure evolves, a step to a good peer

is more helpful to discover good peers in the next step.

We make a formal analogy between SA and our task in Table 4.1. The aim of

our task is to search good peers to replace a peer pi's current short-range contacts.

So when a walker decides to step on a peer p
′
r, the current solution refers to the

current con�guration of peer pi's short-range links. A new solution refers to a

new con�guration where the most distant short-range contact pmax is replaced by

p
′
r. Let peer pr is the host peer of the walker Ri, a possible new solution can

be generated by taking any of pr's neighbors as Ri's next step. The energy of a

solution is measured by intra-cluster distance, the average distance between pi and

the short-range contacts in the con�guration.

Table 4.1: Exploring a peer pi's neighborhood with SA

A solution The con�guration of pi's short-range con-

tacts

Current solution S = pi's current short-range contacts

P i
short

Current energy E = IntraDis(pi)

Neighboring solution (P i
short − {pmax}) ∪ {p

′
r}, p

′
r is Ri's next

stop, pmax is pi's least similar short-range

contact

Energy of neighboring solution 1
s

∑
pk∈(P i

short−{pmax})∪{p′r}
Dis(pk, pi)

Time budget tMax

Relaxation time TTL of the walker Ri

So the goal becomes to minimize the solution until its energy achieve the intra-

cluster distance threshold θ. The probability to accept a neighbor solution is de�ned

by Metropolis or Glauber dynamics. As stated previously, exploring peer's neighbor-

hood is a repeated local search process. The temperature is cooling down as peer's

neighborhood is repeatedly explored. In a single local search iteration, the walker

continuously takes a number of steps. The number of steps is equal to the walker's

TTL, which can be speci�ed by the system designer. To calculate the probability of

taking p
′
r as the next step, the energy di�erence ∆E and current temperature are

required. The latter is controlled by cooling schedule, and the former is calculated

by Equation 4.6. Since the number of the short-range links s is kept the same, the

equation can be simpli�ed as ∆E = Dis(p
′
r, pi)−Dis(pmax, pi):
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∆E = E
′ − E

=
1

s

∑
pk∈(P i

short−{pmax})∪{p′r}
Dis(pk, pi)− IntraDis(pi)

=
1

s

∑
pk∈(P i

short−{pmax})∪{p′r}
Dis(pk, pi)−

1

s

∑
pk∈P i

short

Dis(pk, pi)

=
1

s
(Dis(p

′
r, pi)−Dis(pmax, pi))

(4.6)

Algorithm 7: Local search process of pi

1 t = 0; // initial time

2 Tt = T0; // initial temperature

3 while IntraDis(pi) > θ or t < tMax do

4 Initiating the walker: Ri = 〈IP (pi), P rofpi , TTLRi , dmax, C〉;
5 pr = pi; // pr is the current host peer of the walker

// Ri explores the neighborhood by a sequence of local search

steps

6 while TTLRi > 0 do

// search new host peer for next step

7 p
′
r = LOCAL_SEARCH(Ri, pr, Tt);

// record the information of the new host(explored) peer

8 Append 〈IPp′r
, Dis(p

′
r, pi)〉 to Ri.C;

9 pr = p
′
r; // p

′
r becomes the current host peer

10 TTLRi = TTLRi − 1;

11 end

12 Ri returns to pi;

13 Update short-range contacts of pi using Algorithm 1;

14 t = t+ 1;

15 Tt = TEMPERATURE(t);

16 end

Algorithm 7 details the repeated local search algorithm using SA: pi periodically

starts local search process until the optimum is achieved or a time budget is �nished.

In each local search iteration, a number of local search steps are performed sequently.

The searched solutions are returned to pi, and pi decides to stay with the current

solution or move to the other solutions. This corresponds to the exploring behaviors

of the walker in pi's neighborhood. It is implemented in line 4�11. New solutions

featured by p
′
r are collected by the walker (by storing the information of p

′
r in Ri).
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p
′
r is selected from the neighbors of the walker's current host peer pr, based on SA.

This implementation is described in Algorithm 8.

Algorithm 8: LOCAL_SEARCH(Ri, pr, Tt)

1 Input: Ri, pr, Tt; // the walk, the walker's current host peer, and

the current temperature

2 checkedPeer = {}; // record the searched peers

3 while p
′
r: randomly selected from (P r

short ∪ P r
long)− checkedPeer do

// randomly try the unchecked peers in the local search space

P r
short ∪ P r

long

4 checkedPeer = checkedPeer ∪ {p′r};
5 if P (Ri.dmax, Dis(p

′
r, pi), Tt) > RANDOM() then

6 return p
′
r;

// if no peer is accepted as the walker's next step, chose one

randomly

7 p
′
r: randomly selected from P r

short;

8 return p
′
r;

Current solution is not changed until a set of new solutions are collected by

the walker. This is in accordance with the process of peer rewiring described in

Chapter 3, where peer pi does not update its neighbors until the walker �nishes

exploring the neighborhood. It updates them when it �nally receives the returned

walker which carries the information of the new solutions. Note that this does not

a�ect the fact that bad peers (bad solution) can be accepted as the walker's next

step and an extensive local search can be performed, because the peers are explored

in sequence and accepting bad peers may result in a set of good peers as the walker's

future steps. The number of local search steps is the TTL of the walker.

Tt is used to control the exploration where local search is performed. With the

returned explored peers whose information is stored in Ri, pi updates its short-range

contacts. Long-range contacts can also be updated in the meanwhile, but it is an

operation speci�ed by the protocol designer as stated in Chapter 3. If the energy

of discovered solutions is not better than the current energy, pi keeps its current

short-range links, and the energy of current solution does not change.

The temperature during a single search process remains the same. This process

is then repeated with a decreased temperature generated by TEMPERATURE(t),

until the intra-cluster distance is optimized to be equal to or below θ.

Peers are accepted as the walker's next step according to the probability decided
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by either Metropolis or Glauber dynamics, as showed in lines 5�6 in Algorithm 8.

The probability is calculated based on two inputs: the current temperature and the

energy di�erence between the current solution and the new solution.

Since the energy di�erence should be calculated when a walker selects a peer

as its next step, the rewiring message carried by the walker has to include the

information of the distance between its initiator pi and the least similar distant

short-range contact pmax = Dis(pmax, pi), represented as dmax. The rewiring

message is then reformatted as a tuple 〈IPpi , P rofpi , TTLRi , dmax, C〉. If no peer

is selected as the walker's next step by Metropolis or Glauber dynamics, a random

one is pick instead (line 8).

4.5.2 Enhanced SA-based Decentralized Local Search

In the previous subsection, we apply SA in the local search task for peer rewiring

without changing any detail of the task. We use the probability controlled by SA

to select a peer as the walker's next step. The selected peer corresponds to a new

solution, which is not used to replace the current solution immediately but kept in

the rewiring message until it returns to the rewiring peer. This is not exactly what

traditional SA does in local search, where the new solution replaces the current one

once it is accepted.

In addition, the walker only collects the information of the peer that is selected

as its next step, even thought the whole local search space can be easily accessed,

since each peer has a good knowledge about its neighbors. Instead of only collecting

the information of the walker's next step, the walker can also collect the information

of the other good solutions in the current local search space, which may accelerate

the optimization process.

In this subsection, we propose an enhanced algorithm (Algorithm 9) to the

previous algorithm (Algorithm 7). Instead of keeping the current solution unchanged

during a single round of exploration, we propose to perform solution transition

immediately after each single step of the walker. To implement this, additional

information has to be included in the rewiring message Ri. Speci�cally, we append

to Ri a ranked list of distance values between pi and its short-range contacts. After

each walk step to p
′
r, the biggest distance value is replaced by the distance between pi

and p
′
r, if the latter is smaller than the former. The replacement can be regarded as

removing an old short-range link and building a new one (although the real replacing

operation will take place after Ri returns to pi). By doing this, the current solution

is updated in real time, which may be helpful to the subsequent exploration process.

In addition, except collecting the information of the peer p
′
r (the next step of the
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walker Ri), the walker is also allowed to collect the information of the other good

solutions in the local search space. These additional good solutions are also returned

to pi in order to speed up the optimization process of its short-range links.

Algorithm 9 describes the details of this enhanced SA-based local search. The

real-time update for the solution is performed in lines 6�8. Lines 10�14 show how

the walker collects the information of other good solutions.

Algorithm 9: ENHANCED_EXPLORATION(pi, Tt)

1 rankedDis = SORT(Dis(pj , pi),∀pj ∈ P i
short); // generate the ordered

distance list

2 Ri = 〈IP (pi), P rofpi , TTLRi , rankedDis, C〉; // initiate the walker,

containing rankedDis

3 pr = pi; // initiate the host peer of the walker

4 while TTLRi > 0 do

5 p
′
r = LOCAL_SEARCH(Ri, pr, Tt);

// updating rankedDis in Ri if Dis(p
′
r, pi) is smaller than one

of the elements in rankedDis

6 if Dis(p
′
r, pi) < MAX(Ri.rankedDis) then

7 Ri.rankedDis =

(Ri.rankedDis− {MAX(Ri.rankedDis)}) ∪ {Dis(p
′
r, pi)};

8 end

// collect information of p
′
r in Ri

9 Append 〈IPp′r
, Dis(p

′
r, pi)〉 to Ri.C;

// continuing appending pr's other short-range contacts to Ri

if they are good peers

10 for pj in P
r
short − {p

′
r} do

11 if Dis(pj , pi) < MAX(Ri.rankedDis) then

12 Append 〈IPpj , Dis(pj , pi)〉 to Ri.C;

13 end

14 end

15 pr = p
′
r;

16 TTLRi = TTLRi − 1;

17 end

18 return Ri
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4.5.3 Cooling Schedule

A cooling schedule is used to control the cooling rate of the temperature. In physical

annealing process, it is assumed that cooling rate should be low enough for letting

the probability distribution of the system state to be near thermodynamic equilib-

rium [Bertsimas 1993]. A relaxation time is de�ned to indicate the time one must

wait for the equilibrium to be restored after the change of temperature. It strongly

depends on the `topography' of the energy function and on current temperature. In

SA algorithm, these con�gurations about cooling schedule do not have the exact

meaning as that in physical annealing process [Brooks 1995], they are rather con-

trolling parameters that are often achieved by empirical study. Adaptive simulated

annealing algorithms [Ingber 2012] are proposed to automate the cooling schedule

by connecting it to the search progress. However, we are more interested in observ-

ing the performance of SA-based local search given an appropriate cooling schedule.

Hence, in this thesis, the appropriate cooling schedule is set by trial-and-error in

a preliminary experiment: the cooling schedule that achieves the best local search

result is used for our study.

Some heuristics can be used to choose the appropriate cooling schedule function

as well as the relaxation time at any temperature. We consider to keep the same

temperature while the walker is sent to explore the neighborhood, and decrease it

when another walker is sent to perform another iteration of neighborhood explo-

ration. For each temperature, the relaxation time is set as the TTL of a walker,

which refers to the number of the attempts of local search. During the time a peer

performs the local search to update its short-range contacts (the current solution),

other peers in the network must also updates their con�gurations of the short-range

contacts considering that peers rewire their connections in parallel. The updated

con�gurations change the topology of network. Therefore, the temperature must

change between any two iteration of local search in order to re�ect the change of

the system. However, the temperature in a single iteration of local search should

remain the same, because no neighboring solution is returned to the rewiring peer

and allows it to update its current solution before the TTL of the walker reaches

0, and thus it can be assumed that no signi�cant changes happen in the network

topology during this period of time.

For choosing the proper cooling schedule function, we need to consider the e�ect

of temperatures on the energy di�erences. A proper cooling schedule should be able

to control the temperature so that the probability to accept any solution has the

intrinsic principles of SA [Brooks 1995]: (i) the probability is almost the same to

accept any bad solution in the beginning of the cooling schedule, no matter how

much the resulting energy di�erence is; (ii) as temperature decreased, the value of
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the energy di�erence must also e�ect the probability. For example, the probability to

accept a bad solution with energy di�erence 0.1 must be smaller than the probability

to accept a bad solution with energy di�erence 0.5.

Now let's consider how the cooling schedule can respect the above principle in

our task. In our task, since the Jaccard distance between two peers ranges between

0 and 1, the absolute value of the energy di�erence achieved in each local search step

is also in the same range. In Tables 4.2 and 4.3, the probability to accept a solution

is listed given a range of temperature and a certain value of energy di�erence for

Metropolis and Glauber dynamics, respectively.

Table 4.2: The probability of Metropolis dynamics given the value of the tempera-

ture and the energy di�erence

4E
0.2 0.4 0.6 0.8 1.0

Tt

0.5 0.67 0.44 0.30 0.20 0.13

1 0.81 0.67 0.54 0.44 0.36

2 0.90 0.81 0.74 0.67 0.60

10 0.98 0.96 0.94 0.92 0.90

50 0.99 0.99 0.98 0.98 0.98

Table 4.3: The probability of Glauber dynamics given the value of the temperature

and the energy di�erence

4E
-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1.0

Tt

0.5 0.88 0.83 0.76 0.68 0.59 0.40 0.31 0.23 0.16 0.11

1 0.73 0.68 0.64 0.59 0.54 0.45 0.40 0.35 0.31 0.26

2 0.62 0.59 0.57 0.54 0.52 0.47 0.45 0.42 0.40 0.37

10 0.52 0.52 0.51 0.51 0.50 0.49 0.49 0.48 0.48 0.47

50 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49

Since the probability distributions of Metropolis and Glauber dynamics are

monotonically increasing (Figure 4.1), we can observe, given a range of energy di�er-

ence [-0.2, -1.0], any temperature above 10 generates the probability ranges [0.90, 1)

for accepting bad solution in Metropolis dynamics, and [0.47, 0.5) for accepting bad

solution in Glauber dynamics. A wider range of probability can only be achieved

with a temperature smaller than 2. For example, when the temperature is 0.5, with
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Metropolis dynamics, an energy di�erence -0.2 corresponds to a probability 0.67,

while an energy di�erence -0.1 corresponds to a probability 0.13.

Assuming that the cooling schedule starts from a quite high initial tempera-

ture, like 500, we can observe that it works almost the same when the scheduled

temperature is above 10, since the temperature above 10 allows to accept any bad

solutions with a probability close to 1 (Metropolis dynamics) or 0.5 (Glauber dy-

namics). Local search in this case is like random walk. When the temperature is

cooled to be below 2, the probability to take bad solutions starts to decrease. When

the temperature becomes very low, the probability to take bad solutions is close to

0. Particularly in Glauber dynamics, when the temperature decreases, the proba-

bility to take good solutions also changes. It gradually increases as the temperature

decreases. When the temperature becomes very low, the probability to take good

solutions is close to 1. Local search in this case becomes greedy walk, so that only

good solutions are accepted.

In order to allow a gradual evolution of the local search strategy (from random to

greedy) with Metropolis or Glauber dynamics, the cooling rate should be carefully

controlled to avoid too many random walks or too many greedy walks. For exam-

ple, with the linear cooling schedule showed in Figure 4.2, the temperature remains

high for a long time, allowing a large number of random walks; as the tempera-

ture becomes low, it continuously decreases with the same rate, which only allows

a small number of greedy walks before it reaches 0. Instead, with the logarithmic

cooling schedule, the temperature decreases very rapidly to the temperature which

allows greedy walks. So there are not enough random walks to extensively explore

the neighborhood to allow the peer clusters to emerge. If we consider a cooling

schedule which allows a high cooling rate when the temperature is above 2 and a

slow cooling rate when the temperature is below 2, some useless random walks can

be avoided, and greedy walks are gradually allowed. Good peers can be discovered

more e�ciently in this way. So both of these two cooling schedules are not appro-

priate for our task. Only the exponential cooling schedule is in accord with our

requirement, which starts from a high temperature, and has a proper cooling speed

in the beginning and slows down after the temperature become low.

As a conclusion, we give a general picture about SA-based local search for all

peers in unstructured P2P network. From unstructured network to SONs, P2P

network gradually changes its topology. The initial random links are gradually

changed to be links between similar peers. This is analogized to a cooling process

from a high temperature to a low one. For each peer in the network, at a high

temperature, it explores the neighborhood almost randomly; as the temperature

decreases, it tends to guide the walker to the good peers with a higher probability.



4.5. SA-based Decentralized Local Search 67

0 20 40 60 80 100
Step

0

100

200

300

400

500

T
e
m

p
ra

tu
re

Exponential

a=0.1
a=0.2
a=0.3
a=0.4
a=0.5
a=0.6
a=0.7
a=0.8
a=0.9

0 100 200 300 400 500
Step

0

100

200

300

400

500

T
e
m

p
ra

tu
re

Linear

a=1.0
a=1.5
a=2.0
a=2.5
a=3.0
a=3.5
a=4.0
a=4.5
a=5.0

0 20 40 60 80 100
Step

0

2

4

6

8

10

12

T
e
m

p
ra

tu
re

Logarithmic

a=0.1
a=0.5
a=1.0
a=2.0
a=3.0
a=4.0
a=5.0
a=6.0
a=7.0

Figure 4.2: Cooling schedule with initial temperature T0 = 500.

Given a random P2P network, peers perform SA-based peer rewiring independently

until their intra-cluster distance reaches the threshold θ. The cooling schedule for

SA-based peer rewiring is set as Equation 4.3. The same initial temperature and

same cooling rate are set for each peer, considering that they reside in the same

system.

4.5.4 Cooling Schedule with Peers' Dynamic Behaviors

The P2P network we study consists of dynamic behaviors like peer joining/leaving

and content updating. In Figure 4.3, we demonstrate the possible dynamic behaviors

of peers during the process of network topology evolution. These dynamics behaviors

result in new situations for peers rewiring.

The �rst situation is caused by new peers joining the network during the network

evolution. SA-based peer rewiring of these new peers has to be treated di�erently,

because their initial temperature depends on the state of the network when they

join. For example, if the peer clusters already emerge in the network, the new peer

does not need a high initial temperature to randomly explore its neighborhood; if

the peers are still randomly connected with each other when a new peer join the

network, it should start peer rewiring at a high temperature, because random walk is

necessary in this case to explore possible good peers in its neighborhood. Therefore,

given a new peer joining the network during the network evolution, a reasonable

initial temperature should be set by considering the network state.

The second situation is that existing links that met the requirement can be

changed. For example, a short-range contact may leave the network; or it may
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Figure 4.3: Peers' dynamic behaviors can happen at any time during the network

evolution, in which the clustering e�ciency is assumed to increase monotonically in

this illustration.

change its content and accordingly change its pro�le. This may cause the intra-

cluster distance above the threshold θ. In this case, peers have to restart peer

rewiring to rewire the links. SA-based peer rewiring in this case also needs an

appropriate initial temperature according to the network topology of that moment.

Therefore, a consistent cooling schedule schema is proposed in Algorithm 10.

It integrates peers' dynamic behaviors in the process of generating SONs from a

random P2P network. In this algorithm, the initial temperature for a new peer

is decided by the temperature of its neighbors, which implies the situation of cur-

rent network topology. Speci�cally, it is calculated as the average temperature of

the peers's neighbors, which includes its long-range contacts and short-range con-

tacts (line 11). The traditional cooling schedule decreases the temperature mono-

tonically, and the probability to accept bad solutions also decreases. When the

temperature is close to 0, only good solutions are accepted, since a temperature

close to 0 also results in the probability to accept bad solutions close to 0 (line 9).

Cooling the temperature in this way works perfectly for generating SONs when no

dynamic behaviors exist in the network, because as the similar peers are gradu-

ally clustered, stepping on good peers can explore more good/better peers, and the

necessity to step on bad peers to explore good peers decreases.
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Algorithm 10: TEMPERATURE(t,pi)

1 G =< P,L >;

2 if pi in G.P then

3 if t == 0 then

4 return T0; // initially, the temperature is the same for all

the peers that originally exist in the network

5 else

6 if IntraDis(pi) is not improved and no bad peers are accepted in the

last ξ local search iterations then

7 Tt = RESET();

8 else

9 Tt = T0a
t;

10 if pi is not in G.P then

11 Tt = 1
s+l

∑
pj∈P i

short∪P
i
long

Tt,pj ; // Tt,pj is the temperature of pj, pj

is one of pi's s+ l contacts

12 return Tt

However, if the dynamics in the network happen when the temperature is very

low and it involves a large number of peers, the network must be recon�gured into

an optimum state. To this end, certain bad peers should be accepted when the

walker explores the neighborhood in order to reconnected the isolated similar peers.

But with a low temperature close to 0, bad peers are not possible to be accepted

as the walker's next step. Therefore, the temperature must be reset to be a high

value in order to allow bad peers to be accepted. Formally, in order to decide when

to reset the temperature, certain information has to be recorded in the peer's last

ξ local search iterations: the improvement the peer achieves over its intra-cluster

distance and the number of bad peers that are accepted. If the peer's intra-cluster

distance has not been improved and no bad peers are accepted in the last ξ local

search iterations (line 6), we follow the idea from [Battiti 2009], to increase the

temperature by a heating factor h larger than one at each iteration during the

processing of reheating (line 7).

4.6 Summary

In this chapter, a SA-based approach was introduced in the decentralized local

search task for building SONs. Firstly, we presented our motivation to use SA
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instead of other local search approaches. Then we recast SA into our task, with each

peer performing a SA-based local search algorithm to optimize the con�guration of

its short-range links. An appropriate cooling schedule was then selected for the

proposed approach. We concluded the chapter with the proposal of a dynamic

cooling schedule, which adaptively sets the peers' temperature according to the

situation of their neighborhood that is a�ected by the network evolution as well as

the dynamic behaviors of peers.
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In this chapter, we evaluate our approach, Simulated Annealing (SA) based

decentralized local search approach, by simulating it to build Semantic Overlay

Networks (SONs). Firstly, we introduce how we prepare the content in peers for the

simulation (Section 5.1). The properties of the required data are identi�ed, and a

proper data set is chosen based on an overview of the related work. The data set

is distributed in the peers of a simulated P2P network, according to the category

information of its documents. Peer pro�les are then calculated. In Section 5.2,

we detail the con�guration of the P2P network connections and our approach. We

then present the simulation procedure, from which, the results are evaluated by the

metrics introduced in Section 5.3, and presented and analyzed in Section 5.4. We

�nally summary our simulation results in Section 5.5.
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5.1 Data Preparation

There exist many data sets for evaluating Information Retrieval (IR) in SONs. This

rises the problem of how to properly choose the data set. We �rstly identify the

properties of the data set required in this thesis, then review the related works

about data preparation. Based on the review, Reuters corpus [corpus 2011] is chosen

for evaluating our proposal. Details are then described about how Reuters corpus

is distributed to peers, how each peer calculates its pro�le, and how queries and

reference assessment are achieved.

5.1.1 Data Requirement

We identify 3 properties of the data that is required for evaluating our approach:

• Property 1: The data should be a collection of text documents over which

text-based IR can be performed, since we build SONs for the application of

full-text P2P-IR. It should have queries and relevance assessment in order to

evaluate the performance of IR.

• Property 2: The documents in each peer is assumed to represent the user's

interests. So additional information like topics or categories about the docu-

ments should be available or easily obtained, in order to facilitate distributing

the documents to peers.

• Property 3: The document collection should be large enough to be dis-

tributed to a P2P network with a large number of peers, so that our approach

can be evaluated in not only the networks with small size but also the networks

with large size.

5.1.2 Related Work

There are mainly four sources of data sets for IR in P2P networks. One of the

resources is from TREC 1, which provides data collections for evaluating centralized

text Information Retrieval. For IR in P2P networks, TREC 5, 6 and 9 are commonly

used. For example, TREC 5 is used in [Balke 2005]. In this work, documents were

randomly distributed to peers, and queries with 2 words on average were randomly

generated from the documents. The P2P-IR results are compared to a ground

truth, which is generated by evaluating the same queries against the whole TREC

5 document collection in a centralized way. TREC 6 2 and TREC 9 3 are used

1http://trec.nist.gov/
2http://boston.lti.cs.cmu.edu/callan/Data/
3http://trec.nist.gov/data/t9 �ltering.htm
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in [Raftopoulou 2008a]. Based on the category information of the corpus, each peer

keeps a set of documents in one category. This corresponds to the assumption that

each peer has one interest. ClueWeb12 data set 4 is another data set published by

TREC. It is comprised of roughly 1 billion web pages. It is also used for IR in P2P

networks [Ke 2010]. In this work, the web pages belonging to the same web site

were distributed to one peer.

Free resources like Wikipedia5, MEDLINE6 and Reuters [Lewis 2004] have been

also used. In [Podnar 2007, Skobeltsyn 2006], the authors crawled Wikipedia doc-

uments and distributed them randomly over peers. They used the real query

logs of Wikipedia for IR in P2P networks. The ground truth relevant documents

were generated by a centralized search engine using the BM25 relevance schema7.

In [Papapetrou 2010], MEDLINE and Reuters were used. The authors deploy doc-

uments to peers based on the category information of documents. Reuters-21578, a

sub collection of Reuters, was used in [Doulkeridis 2010].

In the works dealing with the general task of IR in P2P networks, real text

documents are not used for the evaluation. Instead, arti�cial data is often pro-

duced to validate the proposed approaches, such as in [Crespo 2002a, Kumar 2005a,

Marin 2009, Kim 2011].

Another alternative of data set is real traces from P2P �le sharing systems or

Online Social Networks (OSN). The latter is becoming a main data source for IR

in P2P networks, due to the recently emerging research in social networks. For

example, in [Bender 2007], the authors crawled a part of del.icio.us8, and assume

each peer corresponds to a user. The documents in each peer were the bookmarks

the user shared. The tags annotated to the bookmarks were used as queries, and

the ground truth relevant documents are the bookmarks that contain the same tags.

Real traces crawled from CiteULike 9 was used in the similar way in [Bertier 2010].

We summarize the data sets used in the literature in Table 5.1. Except TREC,

MEDLINE, Reuters and ClueWeb09, all the other data sets are the traces from

P2P �le sharing systems or OSN and are not published. So it is di�cult to re-

produce them. In the works using TREC, MEDLINE, Reuters or ClueWeb09,

documents are distributed either by random or by the additional information like

category or URL. Among them, works using MEDLINE, Reuters and TREC-9/6

distribute documents to peers according to their categories, which can make sure

4http://www.lemurproject.org/clueweb12.php/
5http://www.wikipedia.org/, available for download from http://download.wikimedia.org
6Medline database, US National Library of Medicine, http://www.ncbi.nlm.nih.gov/
7BM25 is a ranking function used by search engines to rank matching documents according to

their relevance to a given search query
8https://delicious.com/
9http://www.citeulike.org/faq/data.adp
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Table 5.1: Data sets used in state of the art (N/A: information is not available)

Data set Distribution

strategy

Query Relevant

documents

No. of peers

[Tang 2003b] TREC-7,8 Random Prede�ned Prede�ned 1000-10,000

[Balke 2005] TREC-5 Random Random

words

N/A 100-2000

[Papapetrou 2007] MEDLINE Category N/A N/A 500-5000

[Papapetrou 2010] Reuters Category N/A N/A 1000-5000

[Podnar 2007,

Skobeltsyn 2006]

Wikipedia Random Query log Centralized

BM25

4-28,1-1000

[Zhang 2007] Gnutella trace User Query log Term

matching

1706

[Voulgaris 2007] eDonkey trace User File name exact

searching

11,872

[Bender 2007,

Bertier 2010]

OSN trace User Tags Tag match 13,515/100,000

[Raftopoulou 2010] TREC-9/6 Category N/A N/A 2000

[Doulkeridis 2010] Reuters N/A Random

words

Key word

match

2000-20,000

[Ke 2010] ClueWeb09 Web

site(URL)

Documents Exact

searching

100-10,000

the documents in each peer have central topics. These central topics can be con-

sidered as the user's interests. In addition, most of the date sets are used to

simulate the networks ranging from 100 to 10000. For simulating the networks

with more than 10000 peers, Reuters and traces from eDonkey and OSN are used

in [Voulgaris 2007, Bertier 2010, Doulkeridis 2010]. For query and relevant docu-

ments (ground truth), most of the works obtain the queries and relevant documents

based on the data set they use and the searching task they target.

We choose Reuters for our simulation, considering that (i) Reuters is a freely

available full-text data set, so that full-text P2P-IR can be performed and the sim-

ulation can be reproduced easily; (ii) Documents in Reuters have the additional

information about their category, and the category information can be used for dis-

tributing documents to peers. (iii) Reuters has more than 800,000 text documents

which can be distributed to a large number of peers, while the other two data sets

MEDLINE and TREC-9/6, which also have category information for documents,

have 348,566 and 30,000/556,078 documents, respectively.
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5.1.3 Using Reuters Corpus

Reuters corpus is a collection of news articles in di�erent categories. It consists of

804,414 news articles belonging to 103 categories (an article may belong to several

categories). The 103 categories are hierarchical. By removing the categories on

higher hierarchy, we get 77 categories. Since we assume each peer has one inter-

est (as described in Section 3.1.1 in Chapter 3), we assign each peer a collection

of documents D which are randomly extracted from one random category. For the

value of |D|, we follow the strategy in [Papapetrou 2010] which also use Reuters

and the category information to distribute documents, and assign each peer 20 doc-

uments from the same category. To avoid duplicated documents returned to the

same query during IR, peers in the same category are not allowed to share common

documents. This could in turn results in worse IR performance, since there is only

one copy of the relevant document in the network. Therefore, it is a tradeo� between

tra�c cost and IR performance.

Although it has no available queries and relevance assessment, a set of arti�cial

queries and relevant documents can be generated easily, as showed in the works

like [Balke 2005, Podnar 2007, Papapetrou 2010]. A set of documents can be ran-

domly selected as queries for searching other similar �les, and the corresponding

relevant documents of each query can be obtained by a centralized search engine.

The results archived by the centralized search engine are used as the relevance as-

sessment, because more advanced searching techniques can be used in a centralized

search engine, so the results are more close to the ideal performance. Moreover,

even with the same searching techniques, a centralized search engine can provide

ideal ground truth to P2P-IR, to evaluate if the query routing in P2P-IR guarantees

that the query can reach all the peers storing the ground truth relevant documents.

In this thesis, we randomly chose 100 documents from Reuters corpus as represen-

tative possible queries in the network, considering that there are 77 categories in

the network. For each query, we employ Lucene10 to perform IR over the whole

document collection. The top 100 documents returned by Lucene are used as the

ground truth.

5.1.4 Generating Peer Pro�le

Peer pro�le is represented as a set of topics for describing the interest of the peer.

We use Latent Dirichlet Allocation (LDA) to generate representative topics for each

peer, as stated in Section 3.1.1 in Chapter 3.

LDA is trained on a collection of documents sampled from peers. We use Java-

10http://lucene.apache.org/core/
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based package MALLET11 to train LDA model and infer topics for new documents.

Speci�cally, we use the same server that works as a bootstrap server of the P2P

network to train LDA model, and share the trained model to all peers in the network.

The peers use the model to infer the topics of their documents locally once they join

the network. The inferred topics with a probabilistic weight above threshold 0.1

are regarded as the peer's topics. For the implementing details, we follow the work

proposed in [Draidi 2011].

5.2 Experimental Setup

The simulation is performed in four parts. In the �rst part, we simulate the process

of network topology evolution from a random P2P network to a SON where peers

with similar content are clustered up. In the second part, IR over the generated

P2P network topologies is simulated. An evolution of IR performance is expected

during the evolution of the network topology. In the third part, we simulate the

topology evolution with dynamic behaviors of the peers. Peer joining is the focus of

this thesis. We simulate the behavior of peer joining at di�erent times during the

network evolution process. The new peers are initially connected to some random

peers. They then use local search to build short-range links to similar peers. We are

interested in how the status of the network topology and the local search strategy

would a�ect the e�ciency to build short-range links for the new peers that join the

network at di�erent times. In the last part, the SA-based local search is simulated

with di�erent con�gurations.

In the rest of this section, parameters used for the simulation are described,

followed with a detailed simulation procedure.

5.2.1 Con�guring the Network: Setting Parameters

The con�guration for the network and peer rewiring must be set before the simula-

tion. All the parameters and their baseline values are listed in Table 5.2.

The parameters are carefully con�gured, by considering their potential e�ect

on the quality of peer clusters and IR results, as well as the required time and

tra�c cost. A detailed discursion based on experimental study will be presented in

Section 5.4.5, a brief description about them is presented in the following:

Network size N refers to the scale of the network we study. In this thesis, we are

interested in studying the evolution of overlay network with large number of

11http://mallet.cs.umass.edu/
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Table 5.2: Parameters for the network con�guration and SA-based local optimiza-

tion

Networking

Network size N 5000-25000

Short-range links s 15

Long-range links l 15

Intra-distance threshold θ 0.5

TTL of clustering message kc 7

TTL of query message kq 3,4

SA-based local Initial temperature T0 100

optimization Cooling schedule T (t) T0a
t, 0 < a < 1

Relaxation time kr 7

peers. As the simulated networks in the state of the art often has 100-10000

peers, we simulate P2P networks with up to 25000 peers.

Number of long-range contacts l is to make the whole network connected. The

number of long-range contacts a�ects the shortest path length between any

two peers, and may hence a�ect the performance of peer clustering and IR.

Experiments in Section 5.4.5 show that in order to make the network be a

connected component, the minimum number of random links each peer should

keeps is 11; in Table 5.14 in the same section, an explicit IR improvement can

be observed when we change the value of l from 10 to 15. So l is set as 15

in the simulation, so that a good IR performance can be obtained while the

maintenance cost of the links remains low. The value of l is the same for

all the peers, since we assume peers have equal capability to maintain their

links (considering maintaining a link requires periodical message exchanges).

Number of short-range contacts s is to make the peers with similar contents

connected. It may a�ect the quality of peer clusters and the performance of

intra-cluster IR. It is set as 15 after a tradeo� between the IR performance

and the cost to maintain the links, as showed in Table 5.12 and Table 5.13 in

Section 5.4.5. Similarly, the value of s is the same for each peer.

Intra-similarity threshold θ may a�ect the performance of Information Re-

trieval. It is set as 0.5, which achieves the best IR performance according

to experimental study (part of the experimental results are reported in Ta-

ble 5.12, Section 5.4.5).

TTL of clustering message kc may a�ect the convergence time of peer clustering
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and the quality of the resulting peer clusters.

TTL of query message kq a�ects the performance of IR. To choose the value for

these two TTL, a tradeo� has to be made between the tra�c cost and the

performance. According to experiments and a careful tradeo�, we set kc as 7,

and kq as 3 and 4.

For SA-based local optimization, the following parameters are set:

Initial temperature T0 is a simulated value to indicate the initial state of the

system. We tried 50,100,500,1000 as an initial temperature, the overall per-

formance with initial temperature 100 is better than the others with respect

to their convergence speed in building SONs.

Cooling schedule T (t) controls the cooling process of the temperature. It decides

how the temperature decreases step by step. In Chapter 4, a speci�c analysis

is made for selecting the appropriate cooling schedule, and the exponential

cooling schedule is chosen.

Relaxation time kr is set to be equal to kc, as discussed in Section 4.5.3 of Chap-

ter 4. It indicates the number of local search steps performed at a given

temperature. This parameter may a�ect the quality of peer clusters.

5.2.2 Simulation Procedure

To start, we initiate a random P2P network with 25000 peers, each has s+ l links,

as illustrated in Algorithm 11.

Then we execute peer rewiring repeatedly and independently in each peer. To

facilitate observation, a prede�ned time interval τ is assigned as the period of

rewiring cycles. During this period, each peer is randomly scheduled to initiate

a peer rewiring cycle. After a period of τ , these peers can initiate another cycle of

peer rewiring. Note that in each period, the order to initiate rewiring cycle might

a�ect the rewiring performance of individually peer, but has slight e�ect on the

overall clustering performance of the network thanks to the randomness. This will

be discussed in detail in Section 5.4.5.

The baseline parameter sets are presented in Table 5.2. Table 5.3 summaries all

the approaches we implement for peer rewiring. We implement the baseline local

search approaches using random walk, greedy walk, and random/greedy walk each is

employed with equal probability. These approaches are commonly used in the state

of the art, such as in [Voulgaris 2007, Parreira 2007, Raftopoulou 2010]. SA-based
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Algorithm 11: Generating random P2P network

1 Initiation: G = 〈P,L〉;
// P refers to all the peers in the network, L is empty

2 for pi ∈ P do

3 j = 0; // use j to count the number of the links pi already has

// pi has to build s+ l links, s short-range links and l

long-range links

4 while j < s+ l do

5 Randomly select a peer pj from P − {pi};
6 if 〈pi, pj〉 is not linked then

7 L = L ∪ {〈pi, pj〉};
8 j++;

approach is simulated with di�erent value of a in the cooling schedule, and with

both Metropolis and Glauber dynamics.

While the network topology evolves from a random network to a SON, IR is

performed over a set of network topology sampled from the network evolution. In

this thesis, the performance of IR is mainly to verify the quality of peer clusters,

so only the IR performance within the clusters are considered. In each sampled

network topology, 100 queries (100 random documents as described in Section 5.1.3)

are initiated by the peers which have the queries' original copy in their document

collections. Since the queries are randomly sampled, they can represent the possible

queries in the simulated P2P network. Therefore, the P2P-IR result of these queries

can exhibit the overall IR performance in the network. Since a query is also a part

of its initiator's content, we consider the query, the query initiator and the peer

cluster it belongs to share the similar topics. Therefore, the relevant documents to

the query can be found in the peers that are in the same cluster with the initiator.

To implement this, the query is di�used to the query initiator's neighborhood along

the short-range links: it is forwarded to the peers that have a distance below or equal

to θ to the query initiator (Algorithm 3 in Chapter 3). The query can be forwarded

up to kq hops maximally. For re�ning the performance, more complicated query

routing strategy can be used within the peer cluster, such as the querying routing

based on a routing table [Kumar 2005b] or social relations [Bender 2007]. However,

this is not the focus of this thesis.

Besides simulating peer rewiring in a static network with a �xed number of peers,

we also simulate the rewiring process in the network with dynamics. There are three

types of dynamics: new peers joining the network, peers leaving the network and
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Table 5.3: A summary of local search strategies

Baseline
Random walk

Greedy walk

Random/Greedy walk

SA-based local search
Metropolis dynamics

Glauber dynamics

peers changing their content. For peers leaving the network and peers changing their

content, the a�ected peers may simply rewire their links by explore similar peers

via its current similar neighbors. But for new peers joining the network, they have

to build connection to similar peers or peer clusters through their initially random

links. In this thesis, we focus on simulating the rewiring process for new peers,

because this is more challenging to �nd similar peers along random links than �nd

similar peers via existing similar neighbors. In total, 365 new peers are simulated

to join the network at a certain time during the network evolution. The contents of

the new peers are duplicated from the contents of a set of existing peers, which are

sampled uniquely from the 77 categories they belong to. The unique sampling makes

the rewiring behaviors of these 365 new peers representative to the overall joining

behaviors in the network. Di�erent local search strategies are simulated to rewire

the links of the new peers, including random walk, greedy walk, random/greedy

walk and our SA-based local search.

In the end, we conduct the simulation of building SONs with various network

con�gurations, in order to study how the network con�guration a�ect the quality of

the resulting SONs and the IR performance in SONs. We also perform the simulation

in various random networks, in order to verify the robustness of our approach.

5.3 Metrics

We aim to evaluate the e�ciency and e�ectiveness of the proposed peer clustering

approach. The former involves in the time consumed for clustering peers, and the

latter refers to the quality of peer clusters. The consumed time is evaluated as the

number of rewiring cycles the peers take in order to achieve the short-range links

meeting a certain criterion. For the quality of peer clusters, we employ three metrics:

relative intr-cluster similarity, clustering e�ciency and IR performance. As stated

in Chapter 3, we de�ne the task of peer clustering as an optimization problem with

the objective function:
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O(G) =
1

N

N∑
i=1

(IntraDis(pi)) +
1

N

N∑
i=1

(C(pi)), (5.1)

It contains relative intra-cluster similarity of the network, which is the av-

erage value of each peer's relative intra-cluster similarity:

IntraDis(pi) =

{
0, if IntraDis(pi) ≤ θ

θ − IntraDis(pi), if IntraDis(pi) > θ
(5.2)

and clustering e�ciency of the network, which is the average value of each

peer's clustering e�ciency:

C(pi) =
|{pj |H(pi, pj) ≤ γ,Dis(pi, pj) ≤ θ}|
|{pk | pk ∈ G.P,Dis(pi, pk) ≤ θ}|

. (5.3)

Relative intra-cluster similarity and clustering e�ciency are integrated in this

objective function. They evaluate peer clusters from both local and global view-

points, since the former only considers the peer and its short-range contacts, while

the latter considers the peer and all the other similar peers in the network. In or-

der to study the relationship between these two elements, we consider them as two

di�erent metrics.

To evaluate the quality of the peer clusters, we also evaluate the potential IR

performance within the peer clusters. Since peers in a cluster have the content with

similar topics, we expect that all the relevant documents for a query are located in

the peer cluster. Therefore, for each query, we calculate the recall of the relevant

documents, that is the number of the relevant documents that can be retrieved from

the peer's neighborhood, divided by the total number of relevant documents in the

network. The overall IR performance is measured as the average recall of all queries.

Assuming qi is a query initiated by pi, Dqi is its relevant documents located in the

network, and pk is any peer that receives the query qi in the relevant peer cluster,

the recall of qi is calculated as:

R(qi) =
|{dj | dj ∈ Dqi ∧ dj is stored in pk}|

|Dqi |
. (5.4)

5.4 Results and Analysis

5.4.1 Building SONs from Random Networks

In this section, we present the simulation results of building SONs from random

networks, using the local search strategies showed in Table 5.3. We present and
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Figure 5.1: Optimization of relative intra-cluster similarity via random/greedy walk

analyze the optimization process of the relative intra-cluster similarity and the clus-

tering e�ciency of the networks as the network topology evolves.

5.4.1.1 Relative Intra-cluster Similarity

Figure 5.1 shows the comparison of random walk, greedy walk and random/greedy

walk with respect to the maximization process on the relative intra-cluster similarity

of the network. Even though the greedy walk reaches a relatively high value very

quickly, it ultimately performs the worst, because it is stuck in that status without

getting much improvement ever since.

Comparatively, random walk and random/greedy walk perform better. They

achieve almost the same relative intra-cluster similarity after 100 rewiring cycles,

but the latter has a high optimization speed than the former in the beginning. As

showed in the �gure, up to 70 rewiring cycles, random walk keeps achieving a lower

relative intra-cluster similarity than random/greedy walk. This is due to the feature

of greedy walk, which can collect good peers e�ciently when peer clusters emerge

in the network. However, greedy walk alone is not able to optimize the relative

intra-cluster similarity, because of its drawback of not being able to jump out of the

local optima.

Figure 5.2 shows the optimization of relative intra-cluster similarity via SA-based

local search with Glauber dynamics and Metropolis dynamics. The result of random

walk is also presented for comparison. The following conclusions can be drawn from

these two �gures: (i) Using Glauber dynamics, SA-based local search can achieve a

higher value of relative intra-cluster similarity, as well as higher convergence speed of

optimization. In other words, SA-based local search with Glauber dynamics takes
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Figure 5.2: Optimization of relative intra-cluster similarity with SA-based local

search (random walk as the reference)

less rewiring cycles to achieve a certain value of relative intra-cluster similarity,

comparing to the random walk and SA-based local search with Metropolis dynamics.

(ii) Using Metropolis dynamics, SA-based local search performs slightly better than

the random walk approach. (iii) In the results of SA-based local search with Glauber

dynamics, with the same initial temperature T0 = 100, small values of a can achieve

higher convergence speed of optimization than large values.

More detailed comparing results are listed in Table 5.4 and Table 5.5, which

describe the relative intra-cluster similarity of the network after di�erent numbers

of rewiring cycles. In Table 5.4, detailed results of SA-based local search with

Glauber dynamics are presented. We can observe that SA-based local search with

Glauber dynamics achieves the relative intra-cluster similarity −0.0051 after 100

rewiring cycles, while random walk achieves -0.03 after the same number of rewiring

cycles. The standard deviation of the former is also smaller than that of random

walk. Moreover, a high convergence speed can be observed with a = 0.1 and a = 0.3.

For example, with a = 0.1, the relative intra-cluster similarity reaches −0.0364 with

standard deviation 0.1038 after 40 rewiring cycles. The similar result is achieved by

random walk after 100 rewiring cycles, by SA-based local search with a = 0.5 and

a = 0.7, and by SA-based local search with a = 0.9 after 70 rewiring cycles.

Table 5.5 presents the results of SA-based local search with Metropolis dynamics.

No big di�erence can be observed between the approaches with di�erent parame-

ters. SA-based local search with Metropolis dynamics performs slightly better than

random walk, and Metropolis dynamics with small a is slightly faster than that

with large a. For example, when the rewiring cycles are between 20-70, the relative

intra-cluster similarity with a = 0.1 is slightly higher than that with a = 0.9.
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Table 5.4: SA-based local search with Glauber dynamics: relative intra-cluster sim-

ilarity/standard deviation

SA-based local search with Glauber dynamics, T0 = 100 Random

a = 0.1 a = 0.3 a = 0.5 a = 0.7 a = 0.9 walk

RC = 0 -0.4734

/0.0365

-0.4734

/0.0365

-0.4734

/0.0365

-0.4734

/0.0365

-0.4734

/0.0365

-0.4734

/0.0365

RC = 10 -0.2820

/0.1439

-0.3004

/0.1365

-0.3291

/0.1248

-0.3585

/0.1092

-0.3632

/0.1059

-0.3648

/0.1051

RC = 20 -0.1232

/0.1581

-0.1308

/0.1595

-0.1457

/0.1621

-0.1916

/0.1630

-0.2595

/0.1473

-0.2625

/0.1468

RC = 30 -0.0622

/0.1281

-0.0640

/0.1294

-0.0700

/0.1342

-0.0862

/0.1436

-0.1800

/0.1563

-0.1862

/0.1568

RC = 40 -0.0364

/0.1028

-0.0376

/0.1037

-0.0404

/0.1081

-0.0471

/0.1147

-0.1201

/0.1471

-0.1364

/0.1513

RC = 50 -0.0224

/0.0826

-0.0231

/0.0839

-0.0255

/0.0880

-0.0286

/0.0922

-0.0741

/0.1280

-0.1025

/0.1410

RC = 60 -0.0148

/0.0688

-0.0154

/0.0698

-0.0166

/0.0722

-0.0181

/0.0750

-0.0419

/0.1053

-0.0799

/0.1299

RC = 70 -0.0107

/0.0592

-0.0110

/0.0595

-0.0117

/0.0615

-0.0122

/0.0625

-0.0243

/0.0845

-0.0643

/0.1197

RC = 80 -0.0083

/0.0526

-0.0083

/0.0519

-0.0088

/0.0539

-0.0091

/0.0544

-0.0156

/0.0696

-0.0523

/0.1100

RC = 90 -0.0066

/0.0474

-0.0064

/0.0457

-0.0070

/0.0481

-0.0070

/0.0479

-0.0107

/0.0584

-0.0434

/0.1011

RC = 100 -0.0054

/0.0427

-0.0051

/0.0407

-0.0056

/0.0428

-0.0055

/0.0424

-0.0079

/0.0506

-0.0366

/0.0935
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Table 5.5: SA-based local search with Metropolis dynamics: relative intra-cluster

similarity/standard deviation

SA-based local search, Metropolis dynamics, T0 = 100 Random

a = 0.1 a = 0.3 a = 0.5 a = 0.7 a = 0.9 walk

RC = 0 -0.4734

/0.0365

-0.4734

/0.0365

-0.4734

/0.0365

-0.4734

/0.0365

-0.4734

/0.0365

-0.4734

/0.0365

RC = 10 -0.3650

/0.1050

-0.3639

/0.1064

-0.3644

/0.1059

-0.3643

/0.1060

-0.3650

/0.1048

-0.3648

/0.1051

RC = 20 -0.2584

/0.1526

-0.2568

/0.1536

-0.2573

/0.1532

-0.2600

/0.1505

-0.2631

/0.1464

-0.2625

/0.1468

RC = 30 -0.1736

/0.1654

-0.1737

/0.1657

-0.1734

/0.1656

-0.1738

/0.1662

-0.1866

/0.1563

-0.1862

/0.1568

RC = 40 -0.1195

/0.1566

-0.1213

/0.1575

-0.1202

/0.1576

-0.1214

/0.1577

-0.1351

/0.1510

-0.1364

/0.1513

RC = 50 -0.0861

/0.1435

-0.0884

/0.1442

-0.0872

/0.1440

-0.0880

/0.1444

-0.0994

/0.1407

-0.1025

/0.1410

RC = 60 -0.0649

/0.1302

-0.0661

/0.1307

-0.0657

/0.1306

-0.0661

/0.1310

-0.0724

/0.1292

-0.0799

/0.1299

RC = 70 -0.0508

/0.1184

-0.0514

/0.1186

-0.0511

/0.1187

-0.0513

/0.1189

-0.0527

/0.1173

-0.0643

/0.1197

RC = 80 -0.0408

/0.1079

-0.0409

/0.1076

-0.0412

/0.1080

-0.0413

/0.1085

-0.0407

/0.1064

-0.0523

/0.1100

RC = 90 -0.0333

/0.0983

-0.0333

/0.0982

-0.0335

/0.0987

-0.0339

/0.0994

-0.0325

/0.0965

-0.0434

/0.1011

RC = 100 -0.0275

/0.0901

-0.0272

/0.0896

-0.0275

/0.0900

-0.0279

/0.0909

-0.0265

/0.0880

-0.0366

/0.0935
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Figure 5.3: Cooling schedule with initial temperature 100 and di�erent a

Now we explain (i) why small values of a perform better than high values of a and

(ii) why the performances of Glauber dynamics is better than Metropolis dynamics.

The di�erent performance of di�erent a is caused by the cooling schedule controlled

by a. A cooling schedule with various a is showed in Figure 5.3. From this �gure, it is

clear that a cooling schedule with a large value of a decreases the temperature slowly.

With a = 0.9, for example, we can observe that the temperature becomes below 2

after about 40 rewiring cycles. With a = 0.7, the temperature becomes below 2

after about 10 rewiring cycles. As we discussed in Chapter 4, a temperature higher

than 2 results in almost a random walk for the local search. This can explain why

the performance of SA-based local search is similar to that of random walk in the

early phase of rewiring, specially for a = 0.9. After the temperature becomes below

2, more greedy walks and less random walks are taken. This trend continues as

the temperature continues to decrease. This explicitly makes the performance with

a = 0.9 start to be di�erent from the random walk. Take an example in Table 5.4,

from RC = 40, the performances of SA-based local search with a = 0.9 and random

walk start to show explicit di�erence.

The di�erent performance of Glauber dynamics and Metropolis dynamics can

be explained by their di�erent principles. In Glauber dynamics, both good and bad

peers are accepted with some probability. In the beginning, good and bad peers

are accepted with the similar probability. As the rewiring proceeds, less bad peers

while more good peers are accepted. At the same temperature, the better the peer

is, the higher the probability is to accept it. In Metropolis dynamics, instead, good

peer is always accepted with probability 1, no matter how much improvement it
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Figure 5.4: Analysis of peer rewiring behaviors: average distance between peers and

their updated contacts

causes. Bad peers are accepted with high probability in the beginning and then are

accepted with a gradually lowered probability. How these di�erent principles make

the rewiring performance di�erent? We show an experimental analysis in Figure 5.4.

Figure 5.4 presents the peer rewiring behaviors of Glauber and Metropolis dy-

namics in the network: the average Jaccard distance between the peers and their

updated contacts after each rewiring cycle. Only the behaviors with a = 0.1 and

a = 0.9 are showed (Figure 5.4(a) and Figure 5.4(b), respectively), since these two

values are typical among all the values. The similar pattern can be observed from

these two �gures: the average Jaccard distance in the algorithm with Glauber dy-

namics is generally smaller than that in the algorithm with Metropolis and random

walk. It implies that the good peers accepted by Glauber dynamics have better

quality than the good peers accepted by Metropolis dynamics, with respect to their

distance to the rewiring peers. This allows SA-based local search with Glauber

dynamics achieves the higher relative intra-cluster similarity using less rewiring cy-

cles.

5.4.1.2 Clustering E�ciency

Figure 5.5 and 5.6 report the optimization process of clustering e�ciency with di�er-

ent local search strategies. The clustering e�ciency is calculated within the neigh-

borhood with radius of γ = 3 and γ = 4 respectively. For the strategies of random

walk, greedy walk and random/greedy walk, Figure 5.5 shows the compared results.

Random walk performs the best. According to the clustering e�ciency with γ = 3 in

Table 5.6, random walk achieves the clustering e�ciency 0.6997 on average after 100

rewiring cycles. It is much higher than that of greedy walk and random/greedy walk.
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Figure 5.5: Optimization of clustering e�ciency with random/greedy walk

The reason of its high clustering e�ciency mainly lies in its capability to �nd good

peers by accessing bad peers. This capability is enabled by the fact that the walker

for exploration the neighborhood can randomly steps to any possible peer, and can

make connected the similar peers that are isolated by dissimilar peers. In this way,

a higher clustering e�ciency can be achieved because the similar peers can access

each other within few hops via their short-range links. In addition, in Figure 5.5(b),

the clustering e�ciency decreases in the beginning, and increases afterwards. The

same happens for the SA-based algorithm when γ = 4. The explanation will be

given when we discuss the result of SA-based algorithms.

Comparing the results in 5.5 to the optimizing results of relative intra-cluster

similarity in Figure 5.1, we can observe that, with the baseline approaches, a better

performance in optimizing relative intra-cluster similarity does not imply a better

performance in optimizing clustering e�ciency. Speci�cally, random/greedy walk

have a general better performance than random walk in optimizing the relative

intra-cluster similarity; but in optimizing the clustering e�ciency, random walk

performs much better, because it better connects all the similar peers rather than

only the peers and their short-range contacts.

In Figure 5.6, the results of SA-based local search are demonstrated, with the

results of random walk as the reference. For SA-based local search, the �rst thing we

can observe is that Glauber dynamics outperforms random walk in terms of cluster-

ing e�ciency and convergence speed. This observation is similar to our observation

about their performance in optimizing the relative intra-cluster similarity, in which

Glauber dynamics also outperforms random walk. Similar convergence pattern of

clustering e�ciency can also be observed from Table 5.7: SA-based local search

with Glauber dynamics achieves the clustering e�ciency 0.69 at 50 rewiring cycles
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Figure 5.6: Clustering e�ciency with SA-based local search (random walk as the

reference)
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Table 5.6: Clustering e�ciency/standard deviation of random and greedy walk (RC:

rewiring cycles, γ = 3)

Local search approaches

Random walk Random/greedy walk Greedy walk

RC = 0 0.1338/0.0188 0.1338/0.0188 0.1338/0.0188

RC = 10 0.1604/0.0448 0.1424/0.0452 0.1349/0.0405

RC = 20 0.2781/0.1433 0.1811/0.0782 0.1531/0.0481

RC = 30 0.4100/0.1997 0.2202/0.0939 0.1643/0.0550

RC = 40 0.5049/0.2084 0.2477/0.0980 0.1721/0.0614

RC = 50 0.5714/0.2045 0.2722/0.0985 0.1775/0.0666

RC = 60 0.6152/0.1967 0.2909/0.0973 0.1808/0.0692

RC = 70 0.6456/0.1868 0.3044/0.0951 0.1828/0.0708

RC = 80 0.6686/0.1770 0.3145/0.0935 0.1845/0.0725

RC = 90 0.6865/0.1679 0.3233/0.0919 0.1861/0.0740

RC = 100 0.6997/0.1616 0.3307/0.0919 0.1873/0.0755

with a small standard deviation, while random walk achieves it after 100 rewiring

cycles with a larger deviation. Similar to its performance in optimizing relative

intra-cluster similarity, SA-based local search with Metropolis does not show much

advancement. Its clustering e�ciency with γ = 4 is showed in Table 5.8. From the

table, we can see quite equal performances of SA-based local search with Metropolis

and random walk. Since the results with γ = 3 and γ = 4 almost shows the same

pattern, the results of Glauber dynamics with γ = 4 and the results of Metropolis

dynamics with γ = 3 are not presented to avoid the redundance.

Furthermore, we can observe that small values of a perform better in general, but

the highest clustering e�ciency is always achieved by a = 0.9 after a certain number

of rewiring cycles. For example, when γ = 3, with Glauber dynamics, a = 0.9 starts

to achieve explicit better clustering e�ciency after about 70 rewiring cycles; with

Metropolis dynamics, a = 0.9 starts to outperform after about 55 rewiring cycles.

When γ = 4, with Glauber dynamics, after about 70 rewiring cycles, a = 0.7 also

performs better than the smaller values of a.

These improvements are probably because that a = 0.9 allows more random

walks than the other values of a in the beginning of the rewiring process, which

make similar peers be better connected. However according to the values showed in
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Table 5.7: Clustering e�ciency/standard deviation of SA-based local search with

Glauber dynamics (RC: rewiring cycles, γ = 3)

SA-based local search with Glauber dynamics, T0 = 100 Random

a = 0.1 a = 0.3 a = 0.5 a = 0.7 a = 0.9 walk

RC = 0 0.1338

/0.0188

0.1338

/0.0188

0.1338

/0.0188

0.1338

/0.0188

0.1338

/0.0188

0.1338

/0.0188

RC = 10 0.2431

/0.1193

0.2176

/0.0976

0.1858

/0.0692

0.1639

/0.0479

0.1611

/0.0447

0.1604

/0.0448

RC = 20 0.5056

/0.2158

0.4920

/0.2163

0.4628

/0.2143

0.3872

/0.1942

0.2818

/0.1432

0.2781

/0.1433

RC = 30 0.6192

/0.1921

0.6173

/0.1939

0.6035

/0.1978

0.5791

/0.2075

0.4206

/0.1992

0.4100

/0.1997

RC = 40 0.6684

/0.1645

0.6679

/0.1667

0.6606

/0.1696

0.6526

/0.1796

0.5348

/0.2039

0.5049

/0.2084

RC = 50 0.6940

/0.1471

0.6940

/0.1493

0.6881

/0.1507

0.6871

/0.1572

0.6223

/0.1926

0.5714

/0.2045

RC = 60 0.7068

/0.1373

0.7064

/0.1393

0.7028

/0.1400

0.7047

/0.1431

0.6811

/0.1721

0.6152

/0.1967

RC = 70 0.7135

/0.1315

0.7129

/0.1328

0.7104

/0.1335

0.7146

/0.1349

0.7127

/0.1532

0.6456

/0.1868

RC = 80 0.7172

/0.1276

0.7172

/0.1273

0.7148

/0.1289

0.7195

/0.1308

0.7274

/0.1437

0.6686

/0.1770

RC = 90 0.7198

/0.1244

0.7205

/0.1230

0.7179

/0.1246

0.7231

/0.1268

0.7349

/0.1374

0.6865

/0.1679

RC = 100 0.7219

/0.1219

0.7228

/0.1200

0.7201

/0.1216

0.7254

/0.1243

0.7390

/0.1336

0.6997

/0.1616



92 Chapter 5. Evaluation

Table 5.8: Clustering e�ciency/standard deviation of SA-based local search with

Metropolis dynamics (RC: rewiring cycles γ = 4)

SA-based local search, Metropolis dynamics, T0 = 100 Random

a = 0.1 a = 0.3 a = 0.5 a = 0.7 a = 0.9 walk

RC = 0 0.8635

/0.0218

0.8635

/0.0218

0.8635

/0.0218

0.8635

/0.0218

0.8635

/0.0218

0.8635

/0.0218

RC = 10 0.8606

/0.0467

0.8603

/0.0476

0.8605

/0.0484

0.8606

/0.0477

0.8604

/0.0471

0.8604

/0.0478

RC = 20 0.8670

/0.1078

0.8661

/0.1084

0.8666

/0.1088

0.8680

/0.1083

0.8683

/0.1079

0.8688

/0.1084

RC = 30 0.8826

/0.1409

0.8808

/0.1404

0.8826

/0.1400

0.8816

/0.1408

0.8881

/0.1371

0.8877

/0.1379

RC = 40 0.9027

/0.1491

0.9022

/0.1471

0.9024

/0.1486

0.9031

/0.1472

0.9120

/0.1419

0.9118

/0.1416

RC = 50 0.9185

/0.1433

0.9180

/0.1410

0.9193

/0.1414

0.9198

/0.1412

0.9277

/0.1364

0.9283

/0.1364

RC = 60 0.9315

/0.1318

0.9319

/0.1290

0.9318

/0.1303

0.9325

/0.1306

0.9397

/0.1259

0.9402

/0.1265

RC = 70 0.9412

/0.1205

0.9422

/0.1179

0.9419

/0.1184

0.9422

/0.1185

0.9496

/0.1144

0.9501

/0.1151

RC = 80 0.9483

/0.1100

0.9499

/0.1076

0.9493

/0.1082

0.9492

/0.1084

0.9572

/0.1036

0.9573

/0.1055

RC = 90 0.9539

/0.1008

0.9546

/0.1003

0.9547

/0.1001

0.9544

/0.1001

0.9622

/0.0956

0.9629

/0.0966

RC = 100 0.9576

/0.0943

0.9584

/0.0937

0.9586

/0.0934

0.9583

/0.0933

0.9656

/0.0891

0.9668

/0.0902
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the tables, these improvements are so slight that they can be almost ignored.

In addition, the clustering e�ciency decreases in the initial 10 rewiring cycles

when γ = 4. This could be explained by the e�ect of clustering peers in a network.

In our simulation, each peer has 15 connection as short-range links. These links

are generated randomly in the beginning. Ideally, one peer may have contacts to

154 = 50625 peers within 4 hops if no two peers can be reached repeatedly by

taking the di�erent paths. This number is even larger than the size of our network.

Then, when similar peers are gradually connected, neighbors of a peer can become

neighbors among themselves. Before the peer clusters are better formed, this can

temporarily decrease the number of similar peers that can be accessed within 4

hops. This can be demonstrated by the analysis of the simulation results. Figure 5.7

illustrates the histogram of the clustering e�ciency of all the peers and its evolution

during the peer rewiring process. Since a lot of SA-based local search approaches

perform similarly, only some are sampled and illustrated. From the �gure we can

observe: with γ = 3, the peaks of the histogram evolve from low clustering e�ciency

to high clustering e�ciency; while with γ = 4, there are the peaks that move to the

lower values of the clustering e�ciency in the beginning of the evolution. It implies

that in the beginning of the rewiring processes, a lot of peers can access less similar

peers with their non-optimized short-range links, comparing to the number of the

similar peers they can access with the random links before peer rewiring.

For SA-based local search with Glauber dynamics, the performance di�erences

with various values of a can be explained by their cooling schedule. As we discussed

in Section 5.4.1.1, when the temperature is above 2, the walking strategy of the

rewiring message is close to a random walk, because only the very good (bad)

peers are accepted (refused) with high (low) probability, the probability to accept

the other peers are similar. A cooling schedule with di�erent parameter is showed

in Figure 5.3. From this �gure, the cooling schedule with a = 0.9 decreases the

temperature the most slowly. We can observe the temperature becomes below 2

after 40 rewiring cycles. This explains why its performance is similar to random

walk in the beginning. After that, more greedy walks and less random walks are

taken because of the decreasing temperature. This explicitly makes the performance

with a = 0.9 di�erent from the random walk. Moreover, the large number of random

walks in the initial phase contributes a lot to avoid isolated peer cluster, which helps

the approach achieves a better cluster e�ciency in the end.

To summarize, our approach, SA-based local search with Glauber dynamics,

shows its explicit advancement in optimizing clustering e�ciency of the simulated

SONs, thanks to its evolving local search strategy controlled by Glauber dynamics.

This evolving local strategy allows a certain number of random walks to make con-
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nected the similar peers in the network in the beginning, and then allows more greedy

walks to e�ciently �nd the optimal short-range contacts for each peer. Therefore,

both random walk and greedy walk are properly employed during the evolution of

the network topology, and then the performance of building SONs as well as the

quality of the resulting SONs are improved.

5.4.2 Information Retrieval in SONs

In order to verify the quality of the resulting SONs in the section above (Sec-

tion 5.4.1), IR is performed within the generated peer clusters.

Since the query a peer initiates is from its own document collections (the con-

�guration of IR are described previously in Section 5.2.2), the query is similar to

the peer's documents. So it can be answered within the same peer cluster of the

initiator. It is implemented by letting a peer to issue a query which is actually

a document from its local content, and forwarding the query to the peers with a

distance below θ along the initiator's short-range links. By doing this, the query is

di�used in the peer cluster where the query initiator belongs to.

A maximum number of hops kq is set for the query forwarding. In this simulation,

we set is as 3 and 4. The performance with kq = 4 is better than that with kq =

3, but the performance di�erence between di�erent approaches shows the similar

pattern with kq = 3 and kq = 4. As stated in Section 5.3, we are mainly interested

in how many relevant documents can be reached in the initiator's neighborhood,

only IR recall is reported.

Figure 5.8 presents the IR recall with random walk, greedy walk and ran-

dom/greedy walk. The best performance is achieved by random walk, as we ex-

pected, because it has a higher clustering e�ciency and has good performance in

avoiding isolated similar peer clusters. We can also observe a large standard devia-

tion for the IR recall in Table 5.9. The similar observation can also be observed in

the results achieved by performing IR in SONs generated by SA-based local search.

This could be due to the heterogeneity of the queries we set up. The queries are

the documents randomly extracted from the document collection of the whole net-

work, where some queries have the relevant documents with high similarity, while

others have the relevant documents with low similarity. At the same time, due to

the non-uniform distribution of the documents with respect to their topics, in the

network, we have peer clusters with di�erent size. Some clusters may contain a

large number of similar peers, while others are composed of only a few peers. This

heterogeneity could make the location distribution of the relevant documents of the

queries di�erent from one another.
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(c) Glauber,a = 0.9,γ = 3
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(d) Glauber,a = 0.9,γ = 4
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(e) Random walk,γ = 3
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Figure 5.7: Evolution of the histogram of peers' clustering e�ciency in di�erent

local search approaches (RC: rewiring cycles)
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Figure 5.8: Evolution of IR recall in SONs generated via random/greedy walk

Table 5.9: IR recall/standard deviation in SONs generated with 100 rewiring cycles

via random walk and greedy walk

Local search approaches

Random walk Random/greedy walk Greedy walk

kq = 3 0.2205 /0.1935 0.1010 /0.0951 0.0483 /0.0665

kq = 4 0.3609 /0.3086 0.1993 /0.1900 0.0900 /0.1215
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The IR recall keeps increasing as the network topology evolves from a random

network to a SON, as we can observe from Figure 5.9. It implies that the network

evolution makes it possible to access more peers storing the relevant documents.

Moreover, the general IR performance with kq = 4 is better than that with kq = 3,

since the similar peers accessed within 4 hops obviously are more than the peers

accessed within 3 hops. This explanation can be con�rmed by the results in Fig-

ure 5.6, which shows that the clustering e�ciency with γ = 3 is about 0.72, while

the clustering e�ciency with γ = 4 is about 0.95.

However, the overall IR recall is low even when the �nal clustering e�ciency

with γ = 4 is about 0.95. This is the result of a tradeo�: the queries are only

forwarded to the peers whose distance to the query initiator is below the threshold

0.5, in order to save the tra�c cost. However, the relevant documents may be also

stored in the peers whose distance to the query initiator is above 0.5. Moreover, in

our simulation setting, two peers in the same category do not share any document,

this could also be the reason of the low IR recall.

For SA-based local search, its IR recall is illustrated in Figure 5.9. The general IR

recall of SA-based local search is higher than that of random walk. Among SA-based

local search with di�erent con�gurations, Glauber dynamics achieves good results

with a = 0.1, a = 0.3, a = 0.5 and a = 0.7. SA-based local search with Metropolis

does not show much IR improvement over random work, since it does not show

much advancement over random walk in optimizing the clustering e�ciency and the

relative intra-cluster similarity.

More speci�c details about these results are presented in Table 5.10 and 5.11.

Since the results with kq = 3 and kq = 4 show the similar pattern regarding the IR

performance with di�erent approaches, only the IR results with kq = 4 are displayed

in the table. We can observe from Table 5.10 that: to achieve the IR recall of 0.3609

with a deviation of 0.3086, random walk has to perform 100 rewiring cycles, while

SA-based local search just needs 50 or 60 rewiring cycles. We can also observe the

e�ect of many random walks in the beginning of SA-based local search with a = 0.9.

It results in IR recalls similar to the results achieved by random walk. The data

in Table 5.11 con�rms our observation that SA-based local search with Metropolis

dynamics is not much advanced than random walk.

An overall low IR recall can also be observed from the results of SA-based al-

gorithms, since the same tradeo� is used in order to save tra�c cost: the queries

are only forwarded to the peers whose distance to the query initiator is below the

threshold 0.5. The other peers that are similar to the query initiator are not ac-

cessed even though they have the relevant documents. In general, from these results,

we can conclude that network topology with similar peers clustered (SON) can im-
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Figure 5.9: Evolution of IR recall in SONs generated via SA-based local search (ran-

dom walk as the reference)
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prove the subsequent IR performance. We can also conclude that the higher the

clustering e�ciency is, the better the IR performance it. However, a high clus-

tering e�ciency has limited e�ect on the IR performance if the querying routing

technique is not properly designed. In order to have really good IR performance

within a peer cluster, more advanced query routing techniques should be considered,

such as routing table [Kumar 2005b] or additional relations among peers like social

relations [Bender 2007].

5.4.3 Enhanced SA-based Local Search

In this section, we present the simulation results of the enhanced SA-based local

search: its performance in building SONs and the IR recall in the resulting SONs.

Enhanced SA-based Local Search aims to improve the performance of SA-based

Local Search, by allowing the walkers to collect the information of more peers in

a single local search process (the algorithm is presented in Chapter 4). SA-based

Local Search with Glauber dynamics and with a = 0.7 is chosen as the baseline,

since it shows a good performance in building SONs and results in a relatively high

IR recall after 100 rewiring cycles. We implement enhanced SA-based local search

using the same con�guration of the baseline SA-based Local Search algorithm.

In Figure 5.10 and 5.11, compared results are presented for the SA-based local

search and enhanced SA-based local search. We can observe that enhanced SA-

based local search greatly improves the optimization process of relative intra-cluster

similarity. Within less than 10 rewiring cycles, it achieves a quite high relative

intra-cluster similarity which is very close to the optimum. As we stated before, in

the very beginning of peer rewiring, peers are explored with a local search strategy

similar to random walk. With random walk in a random network, an extensive

search space is explored. Statistically, a large search space provides more good

peers. Consequently enhanced SA-based local search is able to collect all the good

peers in the extensive search space. This enables enhanced SA-based local search

to �nd the appropriate short-range contacts quickly.

However, this good result has a cost: the quick optimization drives the network

topology into a local minimum quickly, and makes it not be able to jump out from

it. More speci�cally, enhanced SA-based local search tends to take all the similar

neighbors of its neighbors as its own neighbors. This operation can easily results

in the following connection con�guration: peer pa has short-range contact pb, pb's

short-range contact pc is also pa's short-range contacts. If too many of this type

of links appear in the network, peers can have the di�culty to explore the other

part of the network and access the other similar peers in the network. This can

be observed in Figure 5.11, which presents the optimization process of clustering
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Table 5.10: IR recall/standard deviation in SONs generated with 100 rewiring cycles

via SA-based local search with Glauber dynamics (kq = 4)

SA-based local search with Glauber dynamics, T0 = 100 Random

a = 0.1 a = 0.3 a = 0.5 a = 0.7 a = 0.9 walk

RC = 0 0.0012

/0.0045

0.0012

/0.0045

0.0012

/0.0045

0.0012

/0.0045

0.0012

/0.0045

0.0012

/0.0045

RC = 10 0.1204

/0.2054

0.1053

/0.1934

0.0772

/0.1570

0.0518

/0.1138

0.0425

/0.1008

0.0464

/0.1172

RC = 20 0.2843

/0.3026

0.2816

/0.3020

0.2656

/0.3002

0.2279

/0.2936

0.1493

/0.2398

0.1517

/0.2461

RC = 30 0.3251

/0.3043

0.3338

/0.3091

0.3228

/0.3117

0.3238

/0.3099

0.2421

/0.2991

0.2302

/0.2952

RC = 40 0.3466

/0.2996

0.3548

/0.3039

0.3512

/0.3027

0.3534

/0.3059

0.2936

/0.3083

0.2750

/0.3127

RC = 50 0.3550

/0.3004

0.3627

/0.3039

0.3633

/0.3051

0.3646

/0.3059

0.3309

/0.3118

0.3071

/0.3121

RC = 60 0.3658

/0.3005

0.3668

/0.3048

0.3673

/0.3069

0.3691

/0.3055

0.3560

/0.3078

0.3311

/0.3094

RC = 70 0.3675

/0.3019

0.3680

/0.3049

0.3689

/0.3073

0.3718

/0.3056

0.3671

/0.3063

0.3428

/0.3087

RC = 80 0.3675

/0.3021

0.3684

/0.3050

0.3691

/0.3076

0.3732

/0.3057

0.3710

/0.3069

0.3507

/0.3106

RC = 90 0.3675

/0.3021

0.3684

/0.3052

0.3696

/0.3077

0.3736

/0.3059

0.3737

/0.3076

0.3562

/0.3093

RC = 100 0.3675

/0.3021

0.3686

/0.3053

0.3696

/0.3077

0.3738

/0.3061

0.3749

/0.3083

0.3609

/0.3086
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Table 5.11: IR recall/standard deviation in SONs generated with 100 rewiring cycles

via SA-based local search with Metropolis dynamics (kq = 4)

SA-based local search with Metropolis dynamics, T0 = 100 Random

a = 0.1 a = 0.3 a = 0.5 a = 0.7 a = 0.9 walk

RC = 0 0.0012

/0.0045

0.0012

/0.0045

0.0012

/0.0045

0.0012

/0.0045

0.0012

/0.0045

0.0012

/0.0045

RC = 10 0.0393

/0.0860

0.0380

/0.0902

0.0449

/0.1162

0.0384

/0.0843

0.0479

/0.1098

0.0464

/0.1172

RC = 20 0.1484

/0.2364

0.1607

/0.2456

0.1624

/0.2503

0.1452

/0.2374

0.1502

/0.2399

0.1517

/0.2461

RC = 30 0.2439

/0.2808

0.2488

/0.2943

0.2510

/0.2924

0.2450

/0.2807

0.2321

/0.2898

0.2302

/0.2952

RC = 40 0.2918

/0.2970

0.2927

/0.3040

0.3011

/0.3086

0.2972

/0.3015

0.2862

/0.3030

0.2750

/0.3127

RC = 50 0.3193

/0.3028

0.3159

/0.3047

0.3221

/0.3121

0.3262

/0.2993

0.3167

/0.3076

0.3071

/0.3121

RC = 60 0.3352

/0.3050

0.3301

/0.3034

0.3377

/0.3096

0.3386

/0.3015

0.3346

/0.3076

0.3311

/0.3094

RC = 70 0.3465

/0.3017

0.3392

/0.3021

0.3510

/0.3087

0.3485

/0.3005

0.3489

/0.3063

0.3428

/0.3087

RC = 80 0.3563

/0.3009

0.3430

/0.3015

0.3590

/0.3071

0.3546

/0.2996

0.3569

/0.3056

0.3507

/0.3106

RC = 90 0.3619

/0.3027

0.3492

/0.3001

0.3634

/0.3072

0.3588

/0.3002

0.3644

/0.3039

0.3562

/0.3093

RC = 100 0.3656

/0.3028

0.3547

/0.2988

0.3669

/0.3086

0.3655

/0.3019

0.3678

/0.3049

0.3609

/0.3086
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Figure 5.10: Comparison of enhanced SA-based local search and SA-based local

search in relative intra-cluster similarity
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(b) γ = 4

Figure 5.11: Comparison of enhanced SA-based local search and SA-based local

search regarding clustering e�ciency

e�ciency achieved by enhanced SA-based local search and SA-based local search.

With γ = 4, the enhanced SA-based local search does not improve the clustering

e�ciency. Instead it decreases the clustering e�ciency and keeps it stable since then.

With γ = 3, enhanced SA-based local search reaches a quite high clustering e�ciency

in a short time, but stops to make explicit improvement since then. Besides of the

reason of the shrimped exploring space, this is also because as most of the peers

achieve the required short-range links in the beginning, less peers start rewiring

process in the network.

Regarding the IR recall of these two approaches (Figure 5.12), we can observe

that enhanced SA-based local search can achieve an acceptable IR performance, but

it is not able to break its maximum performance to make further improvement.
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0 20 40 60 80 100
Rewiring cycles

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

In
fo

rm
a
ti

o
n
 R

e
tr

ie
v
a
l 
R

e
ca

ll

Enhanced SA-based local search
SA-based local search
Random walk

(b) kq = 4

Figure 5.12: Comparison of enhanced SA-based local search and SA-based local

search in IR recall

5.4.4 Building SONs with Dynamic Behaviors: Peer Joining

New peers are assumed to join the network during the evolution of the network

towards SONs. In this experiment, the network evolution is implemented via SA-

based local search with Glauber dynamics and a = 0.1, T0 = 100, since it achieved

good performance in building a SON. We conduct the new peers to join the network

after 10, 20, 30, ... 80 rewiring cycles. The setup of the new peers was presented

in Section 5.2.2. The rewiring behaviors of the new peers are then recoded and

displayed in Figure 5.13 and 5.14. The following facts can be observed:

(i) the best optimization performance is showed in SA-based local search, par-

ticularly when the number of rewiring cycles reach 100. In addition, when the new

peers join the network at or before 50 rewiring cycles, SA-based local search achieves

almost the same relative intra-cluster similarity and clustering e�ciency. When they

join the network after 60 rewiring cycles, the optimization result at rewiring cycle

100 degrades. This is due to two reasons: less rewiring cycles are performed; the

temperature of the system becomes so low that good peers are explored with prob-

ability of 1, while no bad peers are explored.

(ii) greedy walk tends to outperform the other strategies in optimizing the rela-

tive intra-cluster similarity in the initial phase of peer rewiring, and then is surpassed

by the other approaches. This is because greedy walk tends to get stuck in local

optimum and not be able to jump out of it. This conclusion is similar to the one

we summarized by simulating the network evolution from a random network to

a SON (Figure 5.1). From the simulation results in Figure 5.5, we also observed

greedy walk performs the worst in optimizing the clustering e�ciency. However,

Figure 5.14 shows that greedy walk achieves comparable clustering e�ciency for
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the new peers, with respect to random walk and random/greedy walk. This results

from the continuously changing situation of the network topology while the new

peers rewire their links. As we described in the beginning of this section, as the new

peers join the network and rewire their links, the peers in the network are becom-

ing well clustered, due to our well-performed SA-based local search. The gradually

clustered peers make it possible that greedy walk can keep �nding good peers from

the neighborhood. Oppositely, in the simulation of the network evolution from a

random network to a SON, all the peers use greedy walk to rewire their links, so

the network topology does not evolve well, and peers are not clustered well. Greedy

walk in this case achieves bad results without any doubt.

(iii) random walk shows no advantage comparing with other approaches. Spe-

cially, when the new peers join the network after 60 rewiring cycles, random walk

performs the worst. This is partially because greedy walk performs better for the

new peers. In addition, it is also because random walk does not play the similar

role in random networks and SONs. In a random network, random walk has the

potential to explore more good peers, while in a SON, its potential is degraded due

to the emergence of peer clusters.

(iv) but still, random walk plays an important role in making similar peers

accessible to each other. That explains the good performance of random/greedy

walk.

Similar conclusions can be drawn for the performance of clustering e�ciency and

IR recall within 4 hops, which is not presented for avoiding repetition.

5.4.5 Con�guration VS. Performance

5.4.5.1 Link Number/TTL VS. Performance

In this subsection, we present how the number of links and the TTL of the walkers

and queries a�ect the performance of peer clustering and the subsequent IR. Since

the performance of these two tasks are correlated in the way that high clustering

e�ciency indicate better IR performance (Figure 5.6 and Figure 5.9), only the e�ect

of the parameters on the performance of IR is reported, in order to avoid redundance.

IR in this subsection is performed by �ooding the queries to all the peers within

kq hops along the short-range links, since short-range links are supposed to point to

similar peers. We made this choice because this can exhibit the potential of a peer's

neighborhood to answer its query which shares the similar topics with the peers

in the neighborhood. In other words, a high IR recall by �ooding can guarantee

that the peers with the relevant documents is within the neighborhood. With this
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Figure 5.13: Relative intra-cluster similarity of new peers (RC: rewiring cycles)
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Figure 5.14: Clustering e�ciency of new peers (RC: rewiring cycles, γ = 3)
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Table 5.12: IR recall of s and θ with N = 25000, l = 15, kc = 7, kq = 3

s

5 10 15 20 25

θ

0.2 0.031 0.065 0.089 0.106 0.121

0.3 0.028 0.053 0.080 0.098 0.117

0.4 0.032 0.087 0.140 0.176 0.219

0.5 0.051 0.163 0.257 0.336 0.424

0.6 0.035 0.096 0.168 0.246 0.306

0.7 0.039 0.112 0.201 0.292 0.387

guarantee, advanced query routing approach can be designed to only forward the

query to the peers with relevant documents within kq hops, while reduce the tra�c

cost caused by �ooding.

We �rstly check the performance with di�erent values of number of short-range

contacts s, intra-similarity threshold θ, and TTL of query message kq, by �xing the

other parameters: the network size N , the number of long-range links l, the TTL

of the walkers kc and the maximum hops the queries are forwarded. These constant

parameters make sure that the results with di�erent s, θ and kq are comparable.

IR performance after 100 rewiring cycles is reported. The rewiring is performed

using random walk, considering random walk is the best baseline approach and its

performance over di�erent parameters can be representative.

Table 5.12 shows the results with di�erent combination of s and θ. We can

observe the best performance is achieved by θ = 0.5. This observation con�rms that

it is necessary to de�ne a distance threshold between each peer and its short-range

contacts, because a proper threshold can control the quality of the similar peers a

peer can access via the short-range links. This is very important for IR. In addition,

the results indicate that the larger the value of s is, the better the performance

is. This is self-explaining, considering the fact that the more connections a peer

has, the more peers it can access. So the more short-range contacts a peer has, the

more similar peers it can access within kq hops, and consequently the more relevant

documents can be found.

With parameter θ �xed as 0.5, the performance of di�erent values of s and kq is

reported in Table 5.13. The conclusion is: the higher the values of s and kq are, the

better the IR recall is. The explanation is quite obvious: with high values of s and

kq, more relevant peers are contacted, and surely the IR recall is better. In addition,

we can also observe that when the value of s is small, increasing the value of kq does

not improve the IR recall as much as when the value of s is large. Similarly, when
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Table 5.13: IR recall of s and kq with N = 25000, l = 15, kc = 7, θ = 0.5

s

5 10 15 20 25

kq

2 0.023 0.053 0.072 0.103 0.133

3 0.051 0.163 0.257 0.336 0.424

4 0.107 0.320 0.490 0.560 0.658

5 0.197 0.477 0.657 0.738 0.843

Table 5.14: IR recall of l and kc with N = 25000, s = 15, kq = 4, θ = 0.5

l

5 10 15 20 25

kc

3 0.261 0.308 0.349 0.385 0.402

4 0.307 0.351 0.392 0.409 0.437

5 0.338 0.377 0.421 0.449 0.463

6 0.384 0.421 0.446 0.458 0.489

7 0.413 0.439 0.490 0.500 0.510

8 0.445 0.475 0.506 0.517 0.530

the value of kq is small, increasing the value of s also does not improve the IR recall

as much as when he value of kq is large. Therefore, a proper combination of s and

kq must be chosen in order to obtain acceptable IR performance.

Regarding the number of long-range contacts l and the TTL of clustering message

kc, di�erent combinations of their values are studied with other parameters �xed as

N = 25000, s = 15, kq = 4, θ = 0.5, since these parameters can generate quite good

IR performance. From the result in Table 5.14, similar conclusion can be drawn:

the larger l and kc are, the better the IR performance is. With larger l and kc,

larger number of similar peers are clustered in the way that they can access each

other within kq hops. However, the IR improvement cause by larger l and kc is not

as explicit as in Table 5.13, especially when l > 15 and kc > 7. Since the long-range

links are used to keep peer cluster as well as the whole network connected, this

observation may implies that the IR performance would not be greatly improved by

the increasing number of the long-range links once the TTL of the rewiring message

can allow one peer to access the other peers in the network.

According to the above evaluation with di�erent parameters, only the threshold

for intra-cluster distance can be decided by experimental results, because there exists
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Table 5.15: Number of strongly connected components with di�erent values of N

and l

N\l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

25000 24907 5008 1483 475 181 51 21 10 4 2 1 1 1 1

20000 19785 3971 1155 403 139 46 20 6 4 1 1 1 1 1

15000 14697 3020 898 293 124 32 12 4 1 2 1 1 1 1

10000 9939 2047 607 203 77 21 8 3 3 2 1 1 1 1

5000 4977 1024 288 107 27 14 3 1 4 1 1 1 1 1

1000 962 196 55 19 7 4 1 2 2 1 1 1 1 1

100 90 28 8 7 1 1 1 1 1 1 1 1 1 1

10 8 2 1 1 1 1 1 1 1 1 1 1 1 1

a value which achieves the best performance when the other parameters about the

network are �xed. For the other parameters, the performance always gets better

when the value of the parameter increases.

Since large parameters results in more maintenance cost and tra�c cost, like

large l and kc, the appropriate parameters should be decided with a tradeo� between

the cost and the IR performance. For example, for the number of long-range links, we

expect a minimum number which makes all the peers are connected, formally called

a strongly connected component [Dorogovtsev 2001]. This provides the possibility

to cluster all the similar peers using peer rewiring, since a peer can access all the

other peers. At the same time, a small number of long-range links requires a low

maintenance load. In Table 5.15, we present the required number of links for each

peer in order to have a strongly connected component. To implement this, we

randomly build P2P networks with N peers and l connections for each peer using

Algorithm 11. We then use the open source library iGraph 12 to check the number of

strongly connected components in the generated random network. We can observe

that a strongly connected component can be generated with l > 10 for each peer.

5.4.5.2 Network Topology/Size VS. Performance

In this subsection, a set of simulations is made to study the e�ect of network topol-

ogy and network size on the performance of building SONs. Since SA-based local

search with Glauber dynamics showed a good performance in building SONs and

the subsequent IR, we also use it to build SONs in 4 random networks with 25000

peers (peers are the same for all the networks) and 30 random connections (s+ l) for

each peer. The con�guration of the other parameters follows the con�guration in

12http://igraph.sourceforge.net/
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Table 5.2. We execute the same SA-base local search in another 2 random networks,

with 10000 and 5000 peers, respectively, and compare their results with the results

we achieved in the network with 25000 peers. The networks with 5000 and 10000

peers are generated with the same number of random connections for each peer. In

order to keep a similar distribution of the peer clusters, these 5000 and 10000 peers

are peers that are randomly sampled from the network with 25000 peers. For each

peer in these three networks, there are on average 131, 262 and 656 peers whose

distance to this peer is below the threshold θ = 0.5. The performance of building

SONs is exhibited by the relative intra-cluster similarity of the network, and the

clustering e�ciency of the network with γ = 4.

In Figure 5.15 and 5.16, we show the results of SA-based local search with

Glauber dynamics in four initially di�erent random networks with 25,000 peers. No

signi�cant di�erence can be observed from these results. Therefore, we can verify

that the performance of our approach is robust to the randomness of the initial

networks.

Figure 5.17 shows the results of the same approach in 3 random networks that

have 5000, 10000 and 25000 peers, respectively. The approach shows the same

performance in optimizing the relative intra-cluster similarity in these 3 networks.

For the results of optimizing the clustering e�ciency, however, signi�cant di�erences

can be observed. After 100 rewiring cycles, the clustering e�ciency of about 0.95,

0.89, and 0.7 are achieved for the networks with 5000, 10000, and 25000 peers,

respectively. For each peer in these three networks, on average, it has respectively

131, 262 and 656 peers whose distance is below or equal to the threshold θ = 0.5.

The resulting clustering e�ciency thus implies that each peer can access about 124,

235, and 459 of these peers, respectively.

Besides, according to the previous simulation (Figure 5.6), we can observe that in

the network with 25000 peers, if the clustering coe�cients is calculated with γ = 4,

the SA-based local search approach with Glauber dynamics can achieve a clustering

e�ciency 0.97. So if we use γ = 4 rather than γ = 3 to calculate the clustering

e�ciency in this subsection, we may achieve the similar clustering e�ciency for

these three networks. Furthermore, if we consider to use a larger number of short-

range contacts, the resulting clustering e�ciency could also be similar in these three

networks.

Therefore, we can conclude that our approach allows each peer to access more

similar peers as the network size and the number of similar peers increase. It exhibit

a quite steady performance in both relative intra-cluster similarity and clustering

e�ciency.
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Figure 5.15: Relative intra-cluster similarity of SA-based local search with Glauber

dynamics in di�erent random network topology with 25000 peers (Random network

topology 1 is the one we used to achieve the previous simulation results).
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Figure 5.16: Clustering e�ciency of SA-based local search with Glauber dynamics

in di�erent random network topology with 25000 peers (Random network 1 is the

one we used to achieve the previous simulation results).
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(e) Network with 5000 peers
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Figure 5.17: Relative intr-cluster similarity and clustering e�ciency of SA-based

local search with Glauber dynamics in random network topologies with di�erent

size (Network with 25000 peers is the one we used to achieve the previous simulation

results).
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5.5 Summary

In this chapter, the proposal of this thesis was validated by extensive simulation

experiments. Random P2P networks were �rstly generated, with each peer hosting

a set of text documents in a single subject. Peer rewiring was then performed in the

networks, aiming at transforming the random networks to SONs. The optimization

progress of a SON was evaluated by tracing the evolution of relative intra-cluster

similarity, clustering e�ciency and the subsequent IR recall. Then new peers were

simulated to join the network along the evolution of its topology. The peer rewiring

behavior of the new peers was evaluated by the evolution of their intra-cluster simi-

larity and clustering e�ciency. The state-of-the-art approaches were implemented as

baselines. In the end, experiments were made to study the e�ect of the parameters

over the performance of peer rewiring approaches.

According to the simulation, we come to the following conclusions: (i) with an

appropriate cooling schedule and Glauber dynamics, our SA-based local search has

higher convergence speed comparing to the state of the art approaches. It uses less

rewiring cycles than the approaches in the state of the art to generate the SONs with

a certain quality. For example, the random walk takes 100 rewiring cycles to achieve

a SON with relative intra-cluster similarity -0.03, our approach takes 40 rewiring

cycles (Table 5.4); the random walk takes 100 rewiring cycles to achieve a SON

with clustering e�ciency 0.69, our approach takes 50 rewiring cycles to achieve

that (Table 5.7). (ii) the simulation veri�es our statement in Chapter 3: a high

relative intra-cluster similarity does not necessarily imply a high clustering e�ciency,

although both of them are used to quantify the peer clusters in the network. The

optimization of these two objects depends on the speci�c local search algorithm.

For example, greedy walk achieves a higher relative intra-cluster similarity than

random walk after 100 rewiring cycles, but it obtains lower clustering e�ciency

than random walk (Figure 5.1 and Figure 5.5); SA-based local search approach

with Glauber dynamics, however, optimize both the intra-cluster similarity and

clustering e�ciency (Figure 5.2 and Figure 5.6), thanks to its appropriate usage of

the random and greedy walk. (iii) SA-based local search with Metropolis dynamics

does not outperform the state of the art approaches, because it always accepts

good solutions without considering the improvements they make and hence does

not have the advantage to e�ciently discover better solutions. Instead, SA-based

local search with Glauber dynamics has high probability to take better solutions, so

its performance is better than the state of the art approaches. (iv) Since clustering

e�ciency can decrease the number of the hops a peer needs to access another similar

peer by following the short-range links, a high clustering e�ciency usually allows a
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good IR performance within a peer cluster. However, its e�ect over the subsequent

IR performance also depends on the speci�c query routing approach. Readers can

refer to Figure 5.6 and Figure 5.9 to revisit the experimental proof. (v) SA-based

local search with Glauber dynamics outperforms the other approaches in joining

new peers. It spends less rewiring cycles to achieve a certain relative intra-cluster

similarity and clustering e�ciency, and obtain higher relative intra-cluster similarity

and clustering e�ciency after certain number of rewiring cycles (Figure 5.13 and

Figure 5.14).

Our experimental study about the con�gurations and their e�ects on the per-

formance of building SONs and IR demonstrates that: (i) it is necessary to de�ne a

distance threshold between each peer and its short-range contacts, because a proper

threshold can control the quality of the similar peers a peer can access via the short-

range links, and then a�ect the performance of target tasks like IR (Table 5.12);

(ii) a proper combination of the number of short-range links s and the TTL of the

query message kq must be chosen in order to obtain acceptable IR performance (Ta-

ble 5.13), while increasing the number of the long-range links after a certain value

does not improve much of the performance in building SONs, if only the TTL of

the walker and its walking strategy allow it to access all(most) of the peers in the

network (Table 5.14); (iii) the performance of our SA-based approach remains the

same for the networks with initially di�erent random topology, according to the

results in Figure 5.15 and Figure 5.16; (iv) our approach shows a high potential to

allow peers to access more similar peers in the network as the network size and the

number of similar peers increase, but more investigations are required in order to

prove its scalability.
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6.1 Conclusions

This thesis studied the task of building Semantic Overlay Networks (SONs) in un-

structured P2P networks, for the application of P2P-IR. This task aims to cluster

peers with semantically similar content (Chapter 1). It is a challenging task because

no central coordinator or global structure exists to facilitate the clustering. Peers

only have a limited local knowledge about their neighbors. With the local knowl-

edge, peers are allowed to perform local operations to rewiring their connections to

similar peers. These local operations make it di�cult to globally cluster up all the

similar peers in the network. Moreover, the dynamic behaviors of the peers require

a robust rewiring mechanism which can e�ciently maintain the network topology.

We identi�ed and formalized peer rewiring as a repeated local search process

performed by each peer. The peer periodically sends a walker to its neighborhood.

The walker walks through the neighborhood via a certain local search strategy,

collects information about the peers it explores, and returns with the information

to its initiator. The collected information is used to update current connections to

more similar peers (Chapter 3).

In order to better understand peer rewiring towards SONs, we recast peer

rewiring as a decentralized local search solution to a combinatorial optimization

problem: building SONs in which similar peers are clustered. Our optimization

model reveals an observable gap between the combinatorial combination problem
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and the decentralized local search solution: the local solution does not necessarily

result in a global optimum topology. This motivates us to �nd a local solution with

desirable properties that can lead to a global topology that is optimal or close to the

optimum. Speci�cally, in order to better cluster the similar peers, while individual

peers aims at rewiring their short-range links to achieve an optimized con�guration

of these links, they must play certain number of random walks properly to make

connected the isolated similar peers (Chapter 3).

The traditional strategy to explore peers in a neighborhood is designed to be

static. It does not consider the correlation between the strategy and the evolving

network topology. In this thesis, we proposed an evolving walking strategy based

on Simulated Annealing (SA), to consider the evolution of the network topology to

improve the performance of peer rewiring (Chapter 4). Thanks to SA, a param-

eter called temperature was used to indicate the network topology state. A high

temperature indicates an random network, while a low temperature indicates the

emergence of peer clusters. With a high temperature, a random strategy was used

to explore peers in the neighborhood to cluster up the isolated similar peers, while

with a low temperature, more greedy strategy and less random strategy was used

to speed up the clustering process and re�ne the peer connections. The strategy

gradually changes as the temperature gradually decreases (as the network topology

gradually evolves into a SON).

Our extensive simulations (Chapter 5) showed that the proposed approach can

greatly improve the convergence time of building SONs as well as the IR performance

in it. Speci�cally, we obtained the following conclusions:

(i) with an appropriate cooling schedule and Glauber dynamics, our SA-based

local search shows higher convergence speed and results in higher quality of peer

clusters. Speci�cally, our approach requires less rewiring cycles than the approaches

in the state of the art to generate the SONs with a certain quality. For example, the

random walk takes 100 rewiring cycles to achieve a SON with clustering e�ciency

0.69, our approach takes 50 rewiring cycles to achieve it; our approach results in

a clustering e�ciency of 0.73 after 100 rewiring cycles, while random walk only

achieves a clustering e�ciency of 0.69.

(ii) properly accepting bad peers (or performing random walks) is important

to perform the decentralized local search task in our study. It can decide if a

decentralized local search algorithm can optimize both the relative intra-cluster

similarity and the clustering e�ciency in the object function. For example, greedy

walk achieves a higher relative intra-cluster similarity than random walk after 100

rewiring cycles, but it obtains lower clustering e�ciency than random walk; SA-

based local search approach with Glauber dynamics, however, optimizes both the
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intra-cluster similarity and clustering e�ciency, thanks to its appropriate usage of

the random and greedy walk.

(iii) SA-based local search with Metropolis dynamics does not outperform the

state of the art approaches, because it always accepts good solutions without con-

sidering the improvements they make and hence does not have the advantage to

e�ciently discover better solutions. Instead, SA-based local search with Glauber

dynamics has high probability to take better solutions, so its performance is better

than the state of the art approaches.

(iv) Since clustering e�ciency can decrease the number of the hops a peer needs

to access another similar peer by following the short-range links, a high clustering

e�ciency usually allows a good IR performance within a peer cluster. However, its

e�ect over the subsequent IR performance also depends on the speci�c query routing

approach.

(v) SA-based local search with Glauber dynamics outperforms the other ap-

proaches in discovering similar peers for new peers. It spends less rewiring cycles

to achieve a certain relative intra-cluster similarity and clustering e�ciency for the

new peers, and obtain higher relative intra-cluster similarity and clustering e�ciency

after a certain number of rewiring cycles.

Our experimental study about the con�gurations demonstrated that: (i) it is

necessary to de�ne a distance threshold between each peer and its short-range con-

tacts, because a proper threshold can control the quality of the similar peers a peer

can access via the short-range links, and then a�ect the performance of target tasks

like IR; (ii) a proper combination of the number of short-range links s and the TTL

of the query message kq must be chosen in order to obtain acceptable IR perfor-

mance, while increasing the number of the long-range links after a certain value does

not improve much of the performance in building SONs; (iii) Our approach can build

SONs from random networks, but how the networks are randomly con�gured does

not a�ect the performance of our approach, if only the number of the connections

for each peer is the same; (iv) our approach shows a high potential to allow peers

to access more similar peers in the network as the network size and the number

of similar peers increase, but more investigations are required in order to prove its

scalability.

6.2 Future Work

6.2.1 Designing Adaptive Cooling Schedule

In our SA-based decentralized local search approach, the parameters for cooling

schedule have been achieved by trial-and-error. This takes time and depends on
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the speci�c network con�guration. In other words, the same experimental e�ort is

required in order to �nd the proper cooling schedule when SA-based decentralized

local search is used in another network topology. An adaptive cooling schedule will

be useful to avoid this e�ort.

Besides, an adaptive cooling schedule is necessary when more dynamic behaviors

happen in the network, like peer leaving and changing their content. The frequency

and the amount of these dynamic behaviors could heavily a�ect the network topol-

ogy, and hence require a cooling schedule that is adaptive to these changes.

To achieve a proper adaptive cooling schedule, the cooling schedule must adjust

the temperature's rate of decrease based on the information obtained during the

algorithm's execution [Bertsimas 1993]. Some fast simulated annealing approaches

in other applications can be studied [Ingber 1989, Ingber 1996] and adapted into

our task.

6.2.2 Re�ning Peer Pro�le and Similarity Measurement

In this thesis, peer pro�le is designed to be represented as a set of topics. The

similarity between two peer pro�les is the Jaccard distance between two topic sets.

However, more information can be integrated to generate a richer peer pro�le: (i)

besides representing the peer pro�le as a set of topics, a real value can also be

assigned to each topic of the pro�le, to quantify its contrition(weight) to represent

the peer's content/interest. These values can be used to re�ne the similarity between

two peer pro�les. This idea is similar to using the term frequency instead of only

terms to better compare the similarity of two documents [Turney 2010]; (ii) the

topics can also be associated with some time-related information, such as when the

topic emerges in the peer pro�le, when the user updates some documents about this

topic. With the time-related information, we can determine if the topic is still an

active topis in the peer pro�le, or if the topic emerges recently [Wang 2006]. This

could be also useful to re�ne the similarity between two peer pro�les.

With a richer peer pro�le explained above, a new similarity measurement can

be designed. Obviously, it will not be a trivial task, because more information is

involved. For example, if a topic in a peer pro�le A is quite new and with a low

quanti�ed contribution, it is not equivalent to the same topic in another pro�le B

with long life span and a high quanti�ed contribution. Moreover, the similarity

measurement may not be symmetric: if B shares A's topics and these topics are

active topics with high weight in B's pro�le, for pro�le A, pro�le B might be a

very similar pro�le, because it has the potential to answer A's queries in terms of

these topics; while for pro�le B, A may be not a very similar one, because the same

topics are not important topics in A, and thus A does not show the advantage to
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answer B's queries in terms of these topics. Although it is not a trivial task, a

measurement based on the richer pro�les can better evaluate the similarity between

two peer pro�les, and thus bene�t the subsequent task of IR or collaborate �ltering.

6.2.3 Re�ning Neighborhood Exploration

When peers rewire current connections to similar peers, they perform local search,

which evolves from random walk to greedy walk, in their neighborhood in order to

�nd the good peers. Random walk is used to search the neighborhood by randomly

following the links, while greedy walk only follows the links that point to the most

similar peer in the current local space. In other words, in this thesis, only pro�le

similarity is considered when peers explore their neighborhood to rewiring current

connections.

However, in a real P2P social network [Mani 2010, Durr 2012], rather than keep-

ing the same number of connections, peers may have di�erent number of connec-

tions according to the popularity of their interests. In this case, peers in the net-

work are featured by another property: peer centrality. The peer centrality can

be quanti�ed as the number of the connections or the number of pathes that pass

it [Freeman 1979]. A high peer centrality exhibits a strong capability to access other

peers in the network [Freeman 1979].

If two of a peer's contacts have the same similarity to the peer but di�erent

centrality, the peer is probably able to �nd more similar peers through the contact

with high centrality rather than through the contact with low centrality. Let's

consider peer pi sends a walker Ri to explore its neighborhood, and the walker has

to choose between peer pj and pk as its next step. If pj and pk have the same

similarity to pi, the state of the art approaches as well as our proposal will allow the

walker randomly to choose one of them as its next step, while a rational choice can

be made based on the peers' centrality. If the walker chooses the peer with higher

centrality as its next step, more similar peers could be found since the peer with

higher centrality can access more peers in the network. Therefore, by integrating

peer centrality into the operation of neighborhood exploration, building SONs is

expected to be more e�cient.

6.2.4 Improving IR Performance within Peer Clusters

We considered IR as the target application of SONs in this thesis. We focused on

generating and maintaining high-quality SONs, and employed the most intuitive

approach to perform IR within a cluster: the queries are �ooded to the peers whose

similarity to the query initiator is above a threshold. This can verify the quality
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of the generated peer clusters. However, it is costly to �ood a query to all the

similar peers (in terms of a similarity threshold) within a cluster. In addition,

the overall IR performance is low by using the intuitive IR, because the relevant

documents may be also kept in the peers with a similarity below the threshold to

the query initiator. Therefore, more re�ned query forwarding can be applied within

a peer cluster. For example, peers can record the information of the queries they

answered or forwarded, manage the information is a routing table, and then the table

can be used to answer/forward the future queries more precisely [Kumar 2005b,

Valdez 2010].

To take one more step forward, semantic query routing could be possible by

inferring semantic relationship between terms. An initial proposal is outlined as

follows: each peer records the queries it treats (forwarding and answering) as query

feedback as well as their initiators. Peers can exchange their query feedback if neces-

sary. With the query feedback, a term-peer frequency matrix can be achieved. The

matrix provides the information of term co-occurrence in certain peers. If two terms

appears almost in the same peers, a latent semantic relationship may exist between

them. To infer latent semantic relationship between the terms based on query feed-

back, approaches in the �eld of social tagging could be introduced [Markines 2009].

The latent semantic relationship can be used for query routing or query extension.
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Acronyms

P2P Peer-to-Peer

IR Information Retrieval

P2P-IR Peer-to-Peer Information Retrieval

C/S Client/Server

SON Semantic Overlay Network

SA Simulated Annealing

TTL Time to live





Notations

G = 〈P,L〉 the network with a set of peers P and a set of links L

P peers in the network

L links in the network

N the size of the network

P the set of peers in the network

s number of short range links for each peer

l number of long range links for each peer

pa a speci�c peer a

pb a speci�c peer b

pc a speci�c peer c

pi any peer i

pj any peer j

pk any peer k

Di document collection in pi

li,j any link from pi to pj

Pshort a set of peers, referring to short-range contacts

Plong a set of peers, referring to long-range contacts

P i
short a set of peers, referring to the short-range contacts of pi

P j
short a set of peers, referring to the short-range contacts of pj

P r
short a set of peers, referring to the short-range contacts of pr

pmax the short-range contact with maximum distance

dmax the distance to pmax

P i
long a set of peers, referring to the long-range contacts of pi
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topici the ID of any topic

θ the threshold for intra-cluster distance

IntraDis the name of the function for intra-cluster distance

Dis the name of the function for distance between peers

Ri rewiring message (walker) send by pi

pr host peer of the rewiring message

pe any explored peer

P i
collected a set of peers, referring to the peers collected for pi

P
′
r possible host peers of the rewiring message in the next step

p
′
r possible host peer of the rewiring message in the next step

nr number of peers a rewiring message is sent to in parallel

qi query initiated by pi

Qi query message initiated by pi

γ hop limit for the metric of clustering e��ciency

S0 initial solution

S current solution

S
′

neighboring solution

S0
i initial solution for peer i

Si current solution for peer i

S
′
i neighboring solution for peer i

T0 initial temperature for cooling schedule

t current annealing step

Tt current temperature

Tt+1 temperature for next step

E energy of current solution
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E
′

energy of new solution

Soptimal optimal solution

a parameter for exponential cooling schedule

tMax maximum steps of simulated annealing

eMax maximum value of the object function

rT ime time to relax at each temperature
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