
 1

Influence of the adamantyl moiety on the activity of biphenylacrylohydroxamic acid-based 

HDAC inhibitors 

  

Raffaella Cincinelli,a Loana Musso,a Giuseppe Giannini,b Valentina Zuco,c Michelandrea De 

Cesare,c  Franco Zunino,c  Sabrina Dallavalle.a* 

 
aDepartment of Food, Environmental and Nutritional Sciences, Division of Chemistry and 

Molecular Biology, Università di Milano, Via Celoria 2, 20133 Milano, Italy. 

bR&D Sigma-Tau Industrie Farmaceutiche Riunite S.p.A.,Via Pontina Km 30,400, I-00040, 

Pomezia (RM), Italy 

cMolecular Pharmacology Unit, Dept. Experimental Oncology and Molecular Medicine, 

Fondazione IRCCS Istituto Nazionale Tumori, via Amadeo 42, I-20133 Milan, Italy 

 

Keywords: adamantyl moiety, hydroxamic acids, HDAC inhibitors, antiproliferative activity 

 

 

Abstract 

 

To investigate the influence of the adamantyl group on the biological properties of known HDAC 

inhibitors with a 4-phenylcinnamic skeleton, a series of compounds having the adamantyl moiety in 

the cap structure were synthesized and compared to the corresponding hydroxamic acids lacking 

this group. An unexpected finding was the substantial reduction of inhibitory activity toward the 

tested enzymes, in particular HDAC6, following the introduction of the adamantyl group. In spite of 

the reduced ability to function as HDAC inhibitors, the compounds containing the adamantane still 

retained a good efficacy as antiproliferative and proapoptotic agents. A selected compound (2c; 

ST3056) of this series exhibited an appreciable antitumor activity against the colon carcinoma 

xenograft HCT116.  

 

 

1. Introduction 

 

In a recent study [1] we have reported novel structurally simple histone deacetylase (HDAC) 

inhibitors with a hydroxamic acid as a zinc chelating head group, a cinnamic linker domain and an 

aromatic ring as a cap structure (1, Chart 1). The compounds were designed on the basis of a model 

of the HDAC2 binding site, based on the homology model derived and validated by Wang et al.[2]. 

Our modelling studies indicated that the proximal phenyl ring of prototype compound 1a (R = H) 

exhibited a π–π stacking interaction with the benzyl side chain of Phe151, Phe206 and Tyr304 of 

HDAC2. The distal phenyl ring of 1 (cap structure) appeared to accommodate in a large cavity, 
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without any significant steric clash. In vitro assay with the isoenzyme HDAC2 validated the model, 

confirming that a variety of substitutions in the distal ring were well tolerated [1]. 

 

Chart 1 

 

Therefore, in order to produce highly potent and/or receptor-selective HDAC inhibitors, we mainly 

concentrated our efforts at modifying the cap portion of the HDAC pharmacophore, i.e. the distal 

phenyl ring of 1. 

Among various substituents a growing interest in adamantyl derivatives is gaining prominence, 

since the incorporation of this moiety into various molecules resulted in compounds with modified 

and/or improved biological availability [3].  

The advantages of introducing this bulky group mainly reside in an enhancement of lipophilicity 

and a protection from metabolic cleavage of functional groups in its proximity (e.g. a phenolic OH), 

thus enhancing the duration of action. On the other hand, the adamantyl group being 

“biocompatible”, since metabolism can take place in the liver, toxic effects by accumulation upon 

chronic treatment are not expected [4]. Most adamantyl-based drugs are, in fact, excreted largely 

unmodified, presenting therefore the added benefit that potential side effects arising from bioactive 

metabolites are intrinsically improbable [5]. 

Seven adamantyl -derived drugs are available in the market: Amantadine for use both as antiviral 

and antiparkinsonian drug [6]; Memantine, a NMDA-type glutamate receptors inhibitor [7], active 

in Alzheimer's disease; Rimantadine and Tromantadine as antiviral drugs [8]; Vildagliptin and 

Saxagliptin, as oral anti-diabetic drugs [9]; and Adapalene, a retinoid for topic use against acne [10] 

(Chart 2). 

 

Chart 2 

 

After the discovery of amantadine as an antiviral drug [11], the exploitation of the properties of the 

bulky, apolar adamantyl group has been pioneered in a series of papers from Gerzon et al. [12], 

followed by a large number of studies on compounds for diverse medicinal applications [3][4]. 

Interestingly, in a recent paper from Gopalan et al. [13], adamantyl-based HDAC inhibitors were 

found to exhibit cytotoxicity in the nanomolar range.  

On the basis of these considerations, we selected some of the most active compounds among our 

previously synthesized HDAC inhibitors [1] (compounds 1a-d), and prepared the corresponding 

analogues 2a-d, having the adamantyl moiety in the cap structure (Scheme 1).  
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Scheme 1 

 

2. Results and discussion 

 

2.1. Chemistry 

 

Compounds 1a-d were synthesized according to the procedures described previously [1]. 

Compounds 2a-d were prepared by reacting the corresponding carboxylic acids [14] with 

hydroxylamine using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (WSC) and 

1-hydroxybenzotriazole hydrate (HOBt) as coupling agents (2a-c) or from the corresponding esters 

via reaction with O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (THPONH2), followed by hydrolysis 

with p-toluene sulfonic acid monohydrate (PTSA) (2d) (Scheme 2). 

Successively, a series of derivatives with different substituents on the phenolic oxygen (2e-h) and 

with a naphthalene instead of a cinnamic spacer (2i-l) (Scheme 3) were synthesized following 

standard coupling procedures.  

 

Scheme 2 

Scheme 3 

 

2.2. Biological assays 

To understand the role of the adamantyl group as a determinant of the antitumor activity, we 

performed a comparative study of compounds containing or lacking this group (i.e. 1a-d vs 2a-d).  

The compounds were tested for their inhibitory activity towards HDAC2 isoform and for 

antiproliferative activities against a panel of tumor cell lines from different tissue origin: H460 

(human lung carcinoma cell line), HCT116 (human colon cancer cell line), IGROV-1 and its 

subline resistant to cis-platinum IGROV-1/Pt1 (human ovarian carcinoma cell lines)  

Derivatives 2a-d showed inhibitory activities in the HDAC2 assay lower than the corresponding 

compounds lacking the adamantyl group. However, compounds 2a-d exhibited significant 

antiproliferative profile against H460 cell line, 2b-d showing higher activity than the corresponding 

compounds 1b-d. A comparable effect between the two series was found against HCT116 and 

IGROV-1 cell lines. The growth-inhibitory activities were apparently p53-independent, because the 

cellular effects were comparable in cells with functional (IGROV-1) or p53 defective (IGROV-

1/Pt1). SAHA, used as reference compound, exhibited similar antiproliferative effects under the 

same treatment conditions (72 h exposure) (Table 1).  
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Table 1 

 

A series of derivatives with different substituents on the phenolic oxygen (2e-h) and with a 

naphthalene instead of a cinnamic spacer (2i-l)  (Scheme 3) were also synthesized and tested for 

antiproliferative activity. (Table 2 )  

 

Table 2 

 

Interestingly, these compounds also exhibited a significant antiproliferative profile on all the cell 

lines, in spite of a low inhibitory activity in the HDAC2 assay (IC50 > 5µM).  

In order to unveil whether compounds 2 were active on other HDAC isoforms, a comparative study 

on the different HDAC isoforms was also carried out (Table 3).  

Compounds lacking the adamantyl group, e.g. 1b and 1c, exhibited preferential inhibition of 

HDAC6 (IC50 ca. 40 nM), an effect consistent with tubulin acetylation. The introduction of the 

adamantylmoiety reduced the inhibitory activity against all the isoforms, including HDAC6 and 

HDAC8.  

These findings confirmed the detrimental effect of the adamantly group on the HDAC inhibitory 

activity for this class of compounds.  

 

Table 3 

 

 

In light of the promising results obtained from the antiproliferative activity evaluation, further 

studies on selected compounds were carried out. 

The ability of compounds 1c,d vs 2c,d to induce apoptosis was investigated in IGROV-1 cells 

following 72 h exposure to equitoxic concentrations, i.e. drug concentrations (deduced from dose-

response curve) which produced 80% cell growth inhibition (IC80). As shown in figure 1, all 

compounds were able to induce high levels of apoptosis (i.e. superior to that obtained with SAHA). 

Compounds lacking the adamantyl group (i.e. 1c and 1d) were more effective as apoptosis inducers 

than the analogues containing the adamantly moiety. The former compounds induced apoptotic cell 

death in 90% of treated cells.  

 

Figure 1 
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As shown in figure 2, compound 1c was found to be a potent inducer of acetylation of tubulin, an 

effect consistent with a preferential inhibition of HDAC6 isoform [15], even if to a lesser extent 

with expect of SAHA. A specific feature of these compounds was their ability to induce an early 

acetylation of p53. Conversely, compounds 2c and 2d exhibited a complete loss of ability to induce 

acetylation of tubulin and histone H4 at equitoxic doses, IC80 (Figure 2). This observation is 

consistent with the reduced potency of compounds 2 as HDAC inhibitors.  

 

Figure 2 

 

Since compound 2c is structurally related to the atypical retinoid containing the adamantly group 7 

[16], which is known to induce DNA damage as detected by the cellular response (i.e. activation of 

p53 and induction of phosphorylation of H2AX histone), we examined the markers of DNA damage 

response in IGROV-1 cells (Figure 3). 

In contrast to the atypical retinoid, which induces an early phosphorylation of γ-H2Ax, RPA-2 

cleavage and p53 phosphorylation (at Ser15) [16], 2c did not exhibit the same profile, 

phosphorylation of p53 being detected only.  

 

Figure 3 

 

In spite of the different pattern on protein acetylation, all compounds exhibited a comparable cell-

cycle perturbation with evidence of a marked sub-G1 peak and cell accumulation in G1 (Figure 4). 

 

Figure 4 

 

On the basis of the above results, the therapeutic potential of a representative derivative as an 

anticancer agent was analysed.  

In a previous study we have reported the good antitumor activity of 1c following oral administration 

in a panel of human tumor xenografts [1]. Therefore, we evaluated the efficacy of 2c against the 

human colon carcinoma model HCT116 under similar treatment conditions. A daily oral 

administration (5 day/week) for five weeks produced a significant tumor growth inhibition (60-

70%) at the end of treatment without manifestation of toxicity. The antitumor activity of 2c was 

comparable to that of the analogue lacking the adamantly group (1c) (Figure 5). The good 

tolerability profile allowed prolonged treatment in order to achieve optimal antitumor response. 
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Figure 5 

 

3. Conclusions 

 

The present study was designed to investigate the influence of the adamantyl group on the 

biological properties of known HDAC inhibitors with a 4-phenylcinnamic skeleton [1].  

Indeed, hydrophobic bulky groups in the cap region of HDAC inhibitors have been reported to 

confer a lipophilic nature and some isoform selectivity to the parent compounds. An unexpected 

finding of our study was the substantial reduction of inhibitory activity toward the tested enzymes, 

in particular HDAC6, following the introduction of the adamantyl group. This was consistent with a 

marginal (if any) ability of the modified compounds to induce acetylation of tubulin (Fig. 2). In 

spite of the reduced ability to function as HDAC inhibitors, the compounds containing the 

adamantly moiety still retain a good efficacy as antiproliferative and proapoptotic agents. 

Indeed, a selected compound of this series (2c; ST3056) exhibited an appreciable antitumor activity 

against colon carcinoma xenograft HCT116. Compound 2c was found to induce a dose-dependent 

phosphorylation of histone H2AX but this effect, observed after 24h exposure, could reflect the 

onset of apoptosis. It should be emphasized that zinc-dependent proteins other than HDACs may be 

targeted by hydroxamic-acid-based compounds, but the biological relevance of off-target effects 

remains to be explored.  

Notwithstanding the fact that the molecular mechanism of action of the reported compounds 

remains to be defined, it has been confirmed that the presence of the adamantly moiety sustains the 

antiproliferative effect found for the unsubstituted series of hydroxamic acids. While a better 

understanding of the mechanism of action will provide a basis for rational design of antitumor 

agents, structure-activity information inferred from our study could be the starting point for their 

optimization. 

 

4. Experimental section 

 

4.1 Chemistry 

All reagents and solvents were of reagent grade or were purified by standard methods before use. 

Melting points were determined in open capillaries on a Büchi melting point apparatus and are 

uncorrected. NMR spectra were recorded at 300 MHz with a Bruker instrument. Chemical shifts (δ 

values) and coupling constants (J values) are given in ppm and Hz, respectively. Solvents were 

routinely distilled prior to use; anhydrous tetrahydrofuran (THF) and diethyl ether (Et2O) were 



 7

obtained by distillation from sodium-benzophenone ketyl; dry methylene chloride was obtained by 

distillation from phosphorus pentoxide. All reactions requiring anhydrous conditions were 

performed under a positive nitrogen flow, and all glassware were oven dried and/or flame dried. 

Isolation and purification of the compounds were performed by flash column chromatography on 

silica gel 60 (230-400 mesh) or RP-18 silica gel. Analytical thin-layer chromatography (TLC) was 

conducted on Fluka TLC plates (silica gel 60 F254, aluminum foil).  

 

Compounds 4 [16], 5[14], 7[16], 10a [16], 10b [14], 11a-b [17], and 15 [18] were obtained 

following the procedures reported in the literature. 

 

4.2. General procedure for the synthesis of compounds 2a-c 

 

To a suspension of the appropriate acid (0.53 mmol) in dry DMF (8.3 mL) HOBt (86 mg, 0.64 

mmol) and WSC (132 mg, 0.69 mmol) were added. The mixture was stirred at room temperature 

under nitrogen for 1.5-24 h, then NH2OH·HCl (185 mg, 2.66 mmol) and TEA (368 µL, 2.66 mmol) 

were added. The reaction was stirred at room temperature for 1-4 h. After addition of water, a 

precipitate formed, which was filtered and dried to obtain the desired hydroxamic acid.  

 

4.2.1. 3-(3'-Adamantan-1-yl-biphenyl-4-yl)-N-hydroxyacrylamide (2a). 

 Stirred for 1.5h, then 1h after the addition of hydroxylamine. Yield: 33%. M.p. 132-134 °C. 1H 

NMR (DMSO-d6) δ: 9.10 (1H, brs); 7.75-7.35 (9H, m); 6.51 (1H, d, J = 16.1 Hz); 2.10 (3H, s); 1.95 

(6H, s); 1.74 (6H, s). Anal. Calcd for C25H27NO2: C, 80.40; H, 7.29; N, 3.75.  Found: C, 80.62; H, 

7.32; N, 3.80.  

 

4.2.2. 3-(3'-Adamantan-1-yl-4'-hydroxybiphenyl-4-yl)-N-hydroxyacrylamide (2b). 

Stirred for 3h, then 4h after the addition of hydroxylamine. The crude precipitate was purified by 

flash chromatography with CH3OH/H2O 75:25 v/v on RP-18 silica gel. Yield: 54%. M.p. 184 °C.  

1H NMR (DMSO-d6) δ: 10.70 (1H, brs); 9.50 (1H, s); 9.01 (1H, brs); 7.65-7.50 (4H, m); 7.45 (1H, 

d, J = 16.2 Hz); 7.35-7.25 (2H, m); 6.82 (1H, d, J = 8.8 Hz); 6.45 (1H, d, J = 16.2 Hz); 2.12 (6H, s); 

2.04 (3H, s); 1.72 (6H, s). 13C NMR (DMSO-d6) δ: 162.9, 156.4, 141.9, 138.1, 136.0, 132.7, 129.9, 

128.1, 126.4, 124.9, 124.7, 118.3, 117.0, 38.7, 36.7, 36.3, 28.4. Anal. Calcd for C25H27NO3: C, 

77.09; H, 6.99; N, 3.60.  Found: C, 77.20; H, 6.93; N, 3.62. 

 

4.2.3. 3-(3'-Adamantan-1-yl-4'-methoxybiphenyl-4-yl)-N-hydroxyacrylamide (2c).  
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Stirred for 24 h, then 4h after the addition of hydroxylamine. The solid obtained was filtered and 

washed with acetone. Yield: 75%. 1H NMR (DMSO-d6) δ: 10.72 (1h, brs); 9.03 (1H, brs); 7.70-7.39 

(7H, m); 7.07 (1H, d, J = 8.6 Hz); 6.47 (1H, d, J = 16.0 Hz); 3.84 (3H, s); 2.10 (6H, s); 2.05 (3H, s); 

1.74 (6H, s). 13C NMR (DMSO-d6) δ: 162.8, 158.5, 141.5, 137.9, 133.1, 131.4, 128.1, 126.6, 125.2, 

124.6, 118.6, 112.7, 55.4, 36.6, 28.4. Anal. Calcd for C26H29NO3: C, 77.39; H, 7.24; N, 3.47. 

Found: C, 77.51; H, 7.27; N, 3.41. 

 

4.3. 5-(3'-Adamantan-1-yl-4'-methoxybiphenyl-4-yl)penta-2,4-dienoic acid (tetrahydropyran-2-

yloxy)amide (9)  

To a solution of 6 (68 mg, 0.21 mmol) in dioxane (1.5 mL) bis(pinacolato)diboron (59 mg, 0.23 

mmol), KOAc (62 mg, 0.63 mmol) and PdCl2(dppf) (5 mg, 0.006 mmol) were added. The mixture 

was refluxed for 1.45 h under nitrogen. The solution was cooled at room temperature, then 

compound 8 (144 mg, 0.41 mmol), 2M Na2CO3 (270 µL, 0.53 mmol) and PdCl2(dppf) (5 mg, 0.006 

mmol) were added. The resulting mixture was refluxed for 4 h. After addition of ethyl acetate, the 

organic phase was washed with water, brine, dried over Na2SO4 and filtered. The solvent was 

removed under reduced pressure to give a crude which was purified by flash chromatography 

(hexane /ethyl acetate 60:40)  to obtain 91 mg of 9. Yield: 86%. M. p. 190-192 °C. 

1H NMR (DMSO-d6) δ: 11.20 (1H, brs); 7.69-7.60 (4H, m); 7.55 (1H, m); 7.43 (1H, d, J = 1.9 Hz); 

7.30 (1H, m); 7.12-7.00 (3H, m); 6.05 (1H, d, J = 16.1 Hz); 4.90 (1H, m); 3.92 (3H, s); 3.55 (2H, 

m); 2.12 (6H, s); 2.05 (3H, s); 1.75 (6H, s); 1.72 (2H, m); 1.58 (4H, m). Anal. Calcd for C33H39NO4: 

C, 77.16; H, 7.65; N, 2.73. Found: C, 77.01; H, 7.69; N, 2.78. 

 

4.4. 5-(3'-Adamantan-1-yl-4'-methoxybiphenyl-4-yl)penta-2,4-dienoic acid hydroxyamide (2d).  

To a solution of compound 9 (50 mg, 0.1 mmol) in methanol (1.5 mL) p-toluenesulfonic acid 

monohydrate (PTSA) (6 mg, 0.03 mmol) was added and the mixture was stirred at room 

temperature for 4 h. The solid formed was filtered and dried to give 19 mg of compound 2d. Yield: 

44%. M.p. 242-244 °C (dec). 1H NMR (DMSO-d6) δ: 10.71 (1H, s); 8.95 (1H, s); 7.65-7.59 (4H, 

m); 7.55 (1H, dd, J = 8.8, 1.9 Hz); 7.42 (1H, d, J = 1.9 Hz); 7.25 (1H, m); 7.15-6.90 (3H, m); 6.02 

(1H, d, J = 16 Hz),; 3.85 (3H, s); 2.12 (6H, s); 2.05 (3H, s); 1.75 (6H, s). 13C NMR (DMSO-d6) 

δ: 162.9, 158.4, 140.5, 139.0, 137.9, 137.7, 134.6, 131.5, 127.6, 126.7, 126.5, 125.1, 124.5, 122.1, 

112.7, 55.3, 36.6, 28.4. Anal. Calcd for C28H31NO3: C, 78.29; H, 7.27; N, 3.26. Found: C, 78.11; H, 

7.23; N, 3.22. 

 

4.5. 3-[4-(8-Adamantan-1-yl-2,3-dihydrobenzo[1,4]dioxin-6-yl)-phenyl]-N-hydroxyacrylamide (2e) 
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A solution of HATU (55 mg, 0.14 mmol), acid 10a (60 mg, 0.14 mmol) and DIPEA (0.05 mL, 0.23 

mmol) was stirred for 2 min under nitrogen. NH2OH.HCl (40 mg, 0.58 mmol) was added and the 

resulting solution was stirred at room temperature overnight. The solvent was evaporated, water 

was added and the suspension was stirred 1 h at room temperature. The white solid formed was 

filtered. Yield: 65% M.p. 211-213 °C. 1H NMR (DMSO-d6) δ: 10.75 (1H, s); 9.04 (1H, s); 7.68-

7.52 (4H, m); 7.47 (1H, d, J = 16.0 Hz); 7.03 (1H, d, J = 2.1 Hz); 7.00 (1H, d, J = 2.1 Hz); 6.47 

(1H, d, J = 16.0 Hz); 4.27 (4H, s); 2.10 (6H, s); 2.05 ( 3H, s); 1.74 (6H, s). 13C NMR (DMSO-d6) 

δ: 162.8, 144.0, 142.7, 141.2, 138.7, 138.0, 133.3, 131.6, 128.0, 126.7, 118.6, 116.6, 113.2, 63.7, 

63.5, 36.7, 36.5, 28.4. Anal. Calcd for C27H29NO4: C, 75.15; H, 6.77; N, 3.25. Found: C, 75.25; H, 

6.73; N, 3.21. 

 

4.6. 3-(3'-Adamantan-1-yl-2-chloro-4'-hydroxybiphenyl-4-yl)-N-hydroxyacrylamide (2f) 

Prepared from 10b following the procedure described for 2e. Yield 26%. M.p. 160 °C. 1H NMR 

(DMSO-d6) δ: 10.77 (1H, s); 9.58 (1H, s); 9.10 (1H, s); 7.71 (1H, d, J = 1.8 Hz); 7.56 (1H, d, J = 

8.2 Hz); 7.51-7.36 (2H, m); 7.20-7.13 (2H, m); 6.84 (1H, d, J = 8.2 Hz); 6.51 (1H, d, J = 16.0 Hz); 

2.09 (6H, s); 2.02 (3H, s), 1.72 (6H, s). 13C NMR (DMSO-d6) δ: 167.7, 156.2, 141.8, 141.5, 135.1, 

134.5, 131.8, 129.5, 128.4, 127.5, 126.8, 120.8, 116.1, 36.6, 36.3, 28.4. Anal. Calcd for 

C25H26ClNO3: C, 70.83; H, 6.18; N, 3.30. Found: C, 70.66; H, 6.13; N, 3.33. 

 

4.7. 4-{2-[3-Adamantan-1-yl-4'-(2-hydroxycarbamoylvinyl)-biphenyl-4-yloxy]ethyl}-morpholin-4-

ium toluene-4-sulfonate (2g) 

A solution of 11a (153 mg, 0.3 mmol), THP-ONH2 (36 mg, 0.3 mmol), 1.06 M LiHMDS (0.6 mL) 

in dry THF (4 mL) was stirred at -78 °C for 2h. After warming to room temperature, water was 

added and the aqueous phase was extracted with ethyl acetate. (3 x 5mL). The collected organic 

layers were dried and evaporated to give 3-[3'-adamantan-1-yl-4'-(2-morpholin-4-yl-

ethoxy)biphenyl-4-yl]-N-(tetrahydropyran-2-yloxy)acrylamide as a white solid. Yeld 98%. M.p. 

139-141 °C. 

A suspension of the above compound (176 mg, 0.3 mmol) and PTSA (56 mg, 0.3 mmol) in MeOH 

(25 mL) was stirred at room temperature for 24 h. The solvent was evaporated and the residue was 

washed with ethyl acetate and water to give the title compound as a white solid. Yield 63%. 1H 

NMR (DMSO-d6) δ: 10.77 (1H, s); 10.16 (1H, s); 9.05 (1H, s); 7.74-7.40 (9H, m); 7.21-7.06 (3H, 

m); 6.48 (1H, d, J = 16.0 Hz); 4.52-4.32 (2H, m); 4.17-3.89 (2H, m); 3.86-3.49 (4H, m), 2.28 (3H, 

s); 2.08 (9H, s), 1.76 (6H, s). 13C NMR (DMSO-d6) δ: 162.8, 157.0, 145.6, 141.2, 138.2, 138.0, 



 10

137.7, 133.2, 132.2, 128.1, 126.7, 125.5, 125.2, 124.9, 118.7, 114.0, 63.9, 55.4, 52.2, 36.6, 36.5, 

28.4, 20.8. 

 

4.8. 3-(3'-Adamantan-1-yl-4'-cyanomethoxybiphenyl-4-yl)-N-hydroxyacrylamide (2h) 

A solution of compound 11b (240 mg, 0.56 mmol) and LiOH.H2O (117 mg, 2.8 mmol) in THF:H2O 

1:1 v/v (24 mL) was stirred overnight at room temperature. THF was evaporated and the aqueous 

phase was acidified with 1N HCl to pH 1. The precipitate was filtered to give 3-(3'-adamantan-1-yl-

4'-cyanomethoxybiphenyl-4-yl)acrylic acid as a light brown solid. Yield 93%. M.p. 333-334 °C. 

The above compound was coupled with hydroxylamine hydrochloride following the general 

procedure described for the synthesis of compounds 2a-c to give compound 2h as a white solid. 

Yield 33%. M.p. 172-173 °C. 1H NMR (DMSO-d6) δ: 9.35 (1H, s); 7.70-7.40 (6H, m); 7.32 (1H, d, 

J = 1.9 Hz); 6.98 (1H, d, J = 8.8 Hz); 6.49 (1H, d, J = 16.1 Hz); 4.52 (2H, s); 2.10 (6H, s), 2.05 (3H, 

s); 1.74 (6H, s). 13C NMR (DMSO-d6) δ: 169.7, 162.8, 157.1, 141.3, 138.3, 137.9, 133.2, 132.1, 

128.1, 126.7, 125.2, 124.8, 118.6, 113.8, 67.4, 36.6, 36.5, 28.4. Anal. Calcd for C27H28N2O3: C, 

75.68; H, 6.59; N, 6.54. Found: C, 75.75; H, 6.54; N, 6.57. 

 

4.9. 6-(3-Adamantan-1-yl-4-hydroxyphenyl)-naphthalene-2-carboxylic acid benzyloxyamide (13) 

To a solution of 6-bromo-naphthalene-2-carboxylic acid (154 mg, 0.61 mmol) in anhydrous THF (3 

mL) at 0°C ethyl chloroformate (0.88 mL, 0.92 mmol) and triethylamine (0.138 mL, 0.99 mmol) 

were added. The resulting mixture was stirred for 10 min. then a solution of O-benzyl-

hydroxylamine in CH3OH (obtained from O-benzyl-hydroxylamine hydrochloride (147 mg, 0.92 

mmol), KOH (52 mg, 0.92 mmol) in 0.8 mL of CH3OH) was added. The reaction was stirred for 1 

hour, the solvent was evaporated and the residue was washed with ethyl acetate and water. The 

crude was washed with diethyl ether to obtain 150 mg of 6-bromonaphthalene-2-carboxylic acid 

benzyloxyamide (13). Yield: 69%. M. p. 171 °C. 1H NMR (DMSO-d6) δ: 11.80 (1H, bs); 8.32 (1H, 

d, J = 1.9 Hz); 8.25 (1H, d, J = 1.9 Hz); 8.02-7.87 (2H, m); 7.38 (1H, d, J = 8.2 Hz); 7.67 (1H, m ); 

7.52-7.25 (5H, m); 4.92 (2H, s).  

To a solution of 12 (123 mg, 0.40 mmol) in dioxane (2.4 mL) were added bis(pinacolato)diboron 

(112 mg, 0.44 mmol), PdCl2(dppf) (8.8 mg, 0.012 mmol), KOAc (118 mg, 1.2 mmol) and the 

resulting solution was refluxed for 2h. After addition of 13 (285 mg, 0.8 mmol) and 2M Na2CO3 

(0.5 mL), the solution was refluxed for further 2 h. Ethyl acetate (2 mL) was added and the organic 

phase was washed with water, 1M HCl (4 mL) and brine, then dried and evaporated. Purification by 

flash column chromatography (hexane: ethyl acetate 2:1) afforded compound 14 as a white solid. 

Yield 28%. M.p. 135-138°C. 1H NMR (DMSO-d6) δ: 11.90 (1H, bs); 9.57 (1H, bs); 8.33 (1H, d, J = 
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1.9 Hz); 8.14 (1H, d, J = 1.9 Hz); 8.12-7.97 (2H, m); 7.80-7.72 (2H, m); 7.63-7.28 (7H, m); 6.93 

(1H, d, J = 8.19 Hz); 4.97 (2H, s); 2.46-1.98 (9H, m); 1.90-1.59 (6H, m). Anal. Calcd for 

C34H33NO3: C, 81.08; H, 6.60; N, 2.78. Found: C, 81.29; H, 6.64; N, 2.76. 

 

4.10. 6-(3-Adamantan-1-yl-4-hydroxyphenyl)-naphthalene-2-carboxylic acid hydroxyamide (2i) 

Compound 14 ( 24 mg, 0.05 mmol) was hydrogenated for 36 h at room temperature in MeOH (5 

mL) using 20% Pd/C as a catalyst (5 mg). The catalyst was filtered and the solvent evaporated. The 

crude was purified by flash chromatography (hexane:ethyl acetate 1:2 v/v, then MeOH) to give the 

title compound as a white solid . Yield 70%. M.p. 204 °C. 1H NMR (DMSO-d6) δ: 9.65 (1H, brs); 

8.35 (1H, d, J = 1.9 Hz); 8.12 (1H, d, J = 1.9 Hz); 8.10-7.95 (2H, m); 7.88-7.76 (2H, m); 7.52-7.45 

(2H, m); 6.95 (1H, d, J = 8.6 Hz); 2.19 (6H, s); 2.07 (3H, s); 1.75 (6H, s). 13C NMR (DMSO-d6) 

δ: 164.3, 156.4, 139.8, 136.1, 134.7, 130.8, 130.1, 129.5, 129.3, 128.1, 126.9, 125.8, 125.4, 125.2, 

124.0, 123.6, 117.0, 36.7, 36.4, 28.4. Anal. Calcd for C27H27NO3: C, 78.42; H, 6.58; N, 3.39. 

Found: C, 78.56; H, 6.53; N, 3.34. 

 

4.11. 6-(3-Adamantan-1-yl-4-methoxyphenyl)naphthalene-2-carboxylic acid hydroxyamide (2l) 

The title compound was obtained from 15 following the same procedure described for the synthesis 

of 2e. The crude was purified by RP-18 silica gel chromatography (MeOH :H2O 85:15 v/v). Yield 

30%. M.p. 222 °C. 1H NMR (DMSO-d6) δ: 9.10 (1H, s); 8.35 (1H, d, J = 1.9 Hz); 8.19 (1H, d, J = 

1.9 Hz); 8.10-8.00 (2H, m); 7.88 (1H, dd, J = 8.6, 1.9 Hz); 7.83 (1H, dd, J = 8.6, 1.9 Hz); 7.65 (1H, 

dd, J = 8.9, 1.9 Hz); 7.57 (1H, d, J = 1.9 Hz); 7.12 (1H, d, J = 8.6 Hz); 3.86 (3H, s); 2.14 (6H, s); 

2.07 (3H, s); 1.76 (6H, s). 13C NMR (DMSO-d6) δ: 164.2, 158.5, 139.5, 138.0, 134.6, 131.6, 130.9, 

129.7, 129.4, 128.2, 126.9, 125.9, 125.7, 125.0, 124.1, 123.6, 112.7, 55.4, 36.63, 36.59, 28.4. Anal. 

Calcd for C28H29NO3: C, 78.66; H, 6.84; N, 3.28. Found: C, 78.81; H, 6.81; N, 3.25. 

 

4.12. HDAC2 assay 

HDAC2 was immunoprecipitated from HeLa cells. Whole cell lysates were obtained by lysing the 

cells in a buffer containing 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 10% glycerol, 

0.5% NP-40, 1 mM PMSF, protease inhibitors cocktail (Roche). Lysates were clarified by 

centrifugation (12,000 x g) for 10 min at 4 ºC and were diluted with TBST (20 mM Tris-HCl pH 

7.5, 150 mM NaCl and 0.1% Tween 20) containing 1 mM PMSF. Purified IgG from rabbit antisera 

to HDAC2 (Santa Cruz Biotechnology sc-7899) were then added and immune complexes allowed 

to form for 1 h at 4ºC. Protein A-Sepharose (10 μl of settled beads) were added and the components 

mixed on a rotor overnight at 4 ºC. Immune complexes were collected by centrifugation and washed 
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with cold TBST. HDAC2 activity was assayed with a pan-HDAC substrate (KI-104; Biomol 

Research Laboratories Inc., PA, USA) and the reaction was carried out in half-volume white 96-

well plates. The assay components were incubated at 37 ºC for 40 min. The reaction was quenched 

with the addition of 50 μl HDAC-FDL Developer (KI-105, Biomol) 20X stock diluted in KI-143 

buffer with 2 μM TSA. The plates were incubated 30 min at room temperature to allow the 

fluorescent signal to develop. The fluorescence generated was monitored at 355/460 nm 

(excitation/emission) wavelength. 

 

4.13. Histone Deacetylase Profiling (HDAC1, HDAC3-11) 

HDAC profiling was performed by Reaction Biology Corp. (Malvern, PA) against 10 isolated 

isoforms of human HDAC (HDAC1, HDAC3-11) in the presence of the fluorogenic tetrapeptide 

RHKKAc (p53 residues 379-382) as the substrate (50 μM). Isolated human HDACs were obtained 

by standard purification, with the exception of HDAC3, which was isolated in complex with 

NCOR2 and used as such. TSA and SAHA were used as reference compounds. Each compound 

was dissolved in DMSO (1:3 diluition; 10 doses), and sequentially diluted solutions were used for 

testing. IC50 values were calculated from the resulting sigmoidal dose-response inhibition slopes. 

 

4.14.  Cellular sensitivity to drugs 

Cellular sensitivity to drugs was evaluated by growth-inhibition assay after 72-h drug exposure. 

Cells in the logarithmic phase of growth were seeded in duplicate into 6-well plates. Twenty-four 

hours after seeding, the drug was added to the medium. Cells were harvested 72 h after drug 

exposure and counted with a cell counter. IC50 is defined as the drug concentration causing a 50% 

reduction of cell number compared with that of untreated control. 

 

4.15.  Cell cycle analysis 

The cell cycle distribution was analyzed in propidium iodide-stained cells by FACScan flow 

cytometry, as described [19]. 

 

4.16.  TUNEL assay 

Apoptosis was determined in ovarian carcinoma IGROV-1 cells by TUNEL assay following 72 h-

exposure to the drug and fixed in 4% paraformaldehyde for 45 min, at room temperature. The in 

situ cell death detection kit fluorescein (Roche, Mannheim, Germany) was used according to 

manufacturers instructions. Samples were analyzed by flow cytometry (Becton Dickinson). 
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4.17 Western blotting 

Cells treated with various concentrations of HDAC inhibitors for 4 hours were collected and lysed 

as previously described [19]. 

 

4.18 Tumor models and evaluation of antitumor activity 

The experiments were performed using female athymic Swiss nude mice. Mice were maintained in 

laminar flow rooms keeping temperature and humidity constant. Mice had free access to food and 

water. Experiments were approved by the Ethics Committee for Animal Experimentation of the 

Istituto Nazionale Tumori of Milan according to institutional guidelines. 

Exponentially growing tumor cells (107 cells/mouse) were s.c. injected into the right flank of 

athymic nude mice. Tumor lines were achieved by serial s.c. passages of fragments (about 2x2x6 

mm) from growing tumors into healthy mice. Animals were treated 3 days after tumor implantation. 

Compounds were dissolved in DMSO and diluted in PBS containing 5% Cremophor to a final 

concentration of 10% DMSO. 
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Figure captions 

 

Figure 1. Apoptosis induced in ovarian carcinoma cells IGROV-1 by selected compounds at equitoxic concentrations 

(concentrations causing comparable cell growth inhibition, IC80) after 72 h exposure. SAHA is shown as a reference 

HDAC inhibitor. Apoptosis was determined after 72 h exposure by TUNEL assay and flow cytometry analysis. 

 

Figure 2. Effects of selected compounds on acetylation of tubulin, histone H4 and p53 in IGROV-1 cells, where each 

compound was treated at IC80 dosage, for the indicated exposure times. 

 

Figure 3. Effect of compound 2c on the modulation of proteins implicated in cellular response to DNA damage. 

Compound 7 is an atypical retinoid containing the adamantly group. 

 

Figure 4. Time course of cell cycle perturbation in ovarian carcinoma cells, IGROV-1, following exposure to equitoxic 

concentrations (IC80) of each compound. The cell cycle was analyzed by FACScanTM analysis of PI-stained cells. 

 

Figure 5. Antitumor effect of compound 2c against the human colon carcinoma HCT 116. Animals were treated by oral 

route with 50 mg/Kg (Once-daily administration for 4-5 days a week for 5 weeks, for a total of 24 doses). 
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Tables 

 

Table 1 Inhibition of HDAC2 (IC50, µM) and antiproliferative activity (IC50, µM) of compounds 1a-d and 2a-d and of 

reference HDAC inhibitor (SAHA) against a panel of tumor cell lines. 

 

Cpd. HDAC-2 assay H460 HCT-116 IGROV-1 IGROV-1/Pt1 
SAHA 0.1±0.02 3.4±0.8 0.31±0.02 2.2±0.3 2.2±0.2 

1a 0.82±0.14 5.4±0.1 1.58±0.3 3.5±0.6 4.3±0.7 

2a >10  >10 10.3±1.2 1.23±0.3 5.7±0.9 

1b 0.59±0.2 6.0±0.9 0.33±0.05 7.6±3.5 6.5±2.0 

2b 2.64±0.5 0.83±0.28 0.58±0.01 1.1±0.6 1.3±0.6 

1c 1.16±0.27 3.7±0.1 0.22±0.01 0.75±0.4 2.3±0.3 

2c 2.3±0.6 1.42±0.23 1.3±0.1 0.96±0.35 1.8±0.07 

1d >5 >20 2.4±0.1 0.57±0.09 2.01±0.91 

2d >10 1.4±0.02 1.8±0.4 1.3±0.1 2.03±0.4 

 

 

Table 2. Antiproliferative activity (IC50, µM) of compounds 2e-l and of reference HDAC inhibitor (SAHA) against a 

panel of various tumor cell lines. 

 
Cpd. H460 HCT-116 IGROV-1 IGROV-1/Pt1 

SAHA 3.4±0.8 0.31±0.02 2.2±0.3 2.2±0.2 

2e 1.0±0.04 2.55±0.03 1.2±0.04 0.8±0.2 

2f 5.4±0.3 5.4±0.9 1.34±0.04 1.6±0.16 

2g 2.4±0.2 2.5±0.3 0.38±0.03 1.36±0.16 

2h 2.7±0.02 2.5±0.01 0.9± 0.2 1.6±0.1 

2i 1.0±0.06 0.7 0.65±0.11 1.1±0.3 

2l 1.3±0.1 1.4±0.1 1.5±0.5 4.16 

 
 

Table 3. Inhibition of HDAC isoforms by selected compounds.a 

 

 HDAC-1 HDAC-3 HDAC-4 HDAC-5 HDAC-6 HDAC-7 HDAC-8 HDAC-9 HDAC-10 HDAC-11 

IC50 (M) 
Ab 7.12x10-9 1.03x10-8 1.21x10-8 1.65x10-8 4.19x10-10 2.25x10-8 8.95x10-8 3.81x10-8 2.01x10-8 1.52x10-8 
Bc 2.58x10-7 3.50x10-7 4.93x10-7 3.78x10-7 2.86x10-8 3.44x10-8 2.43x10-7 3.16x10-7 4.56x10-7 3.62x10-7 
1b 5.51x10-6 4.57x10-6 1.71x10-5 1.12x10-5 4.18x10-8 1.56x10-5 1.62x10-7 8.92x10-6 1.10x10-5 5.01x10-6 
2b > 10-4 5.56x10-5 6.14x10-5 7.84x10-5 2.80x10-6 7.51x10-5 6.96x10-6 4.14x10-5 > 10-4 5.72x10-5 
1c 8.55x10-6 8.45x10-5 9.94x10-5 2.96x10-5 3.68x10-8 2.13x10-4 6.98x10-8 3.93x10-5 9.10x10-5 7.30x10-5 
2cd - - - - - - - - - 7.70x10-5 
1d > 10-4 > 10-4 > 10-4 > 10-4 3.26x10-6 > 10-4 1.56x10-6 > 10-4 > 10-4 > 10-4 
2d 6.01x10-5 > 10-4 > 10-4 > 10-4 1.67x10-5 7.72x10-5 3.06x10-5 > 10-4 > 10-4 3.81x10-5 
2h 4.85x10-5 3.40x10-4 4.01x10-5 1.24x10-4 4.08x10-7 4.92x10-5 2.91x10-6 4.23x10-5 6.39x10-5 6.34x10-5 

aAssay condition for compounds is to start with 50 µM, 1:3 dilution, 10 doses.  
bTrichostatin A (TSA): Assay condition is to start with 5 µM, 1:3 dilution, 10 doses. 
cSAHA 
dCompound 2c has a fluorescent background at 50 µM. 
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Figures:  
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Figure 3 
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Figure 5 
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Charts and schemes: 
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Chart 1. Structure of biphenyl-4-yl-acrylohydroxamic acids. 
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Chart 2. Adamantyl-derived drugs in clinical practice. 
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CONHOH

2a  n = 1 R = H  
2b n = 1  R = OH  
2c n = 1  R = OMe 
2d n = 2 R = OMe

R

n

CONHOH

R

n

1a  n = 1 R = H  
1b n = 1  R = OH  
1c n = 1  R = OMe 
1d n = 2 R = OMe  

Scheme 1. Structures of biphenylacrylohydroxamic acids lacking (1) or containing (2)  the adamantyl moiety in the cap 

structure. 
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Scheme 2. Synthesis of compounds 2a-d. Reagents and conditions: a) TfO2, Py, 3h, rt, 87%; b) Et3SiH, dppp, 

Pd(OAc)2, DMF, 24h, 60°C, 42%; c) tri (o-tolyl)phosphine, Pd(OAc)2, TEA, methyl acrylate, 3h, reflux, 67%; d) 

LiOH.H2O, THF/H2O, rt, overnight, 63%; e) WSC, HOBt, DME, rt, 1.5-24h, then NH2OH.HCl, 1-4h, Et3N, 40-75%; f) 

Pd tetrakis, 4-formylbenzeneboronic acid, 2M Na2CO3, toluene, 2h, reflux, 72%; g) Ph3PCH=COOMe, chloroform, 3h, 

reflux, 86%; h) NaOH, methanol, 7h, reflux, 70%; i) Bis(pinacolato)diboron, PdCl2(dppf), KOAc, dioxane, 100°C, 13h, 

then 8, 2M Na2CO3, PdCl2(dppf), reflux, 4h, 86%; j) PTSA, MeOH, rt, 4h, 44%. 
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Scheme 3. Synthesis of compounds 2e-l. Reagents and conditions: a) 1-[bis(dimethylamino)methylene]-1H-1,2,3-

triazolo[4,5-b]pyridinium-3-oxid hexafluorophosphate (HATU), DIPEA, NH2OH.HCl, DMF, rt, 4h, 65% for 2e; 1.5h, 

26% for 2f; b) for 2g: THPONH2, LiHMDS, THF, -78°C, 2h, 100%, then PTSA, MeOH, rt, 24h, 63%; for 2h: 

LiOH.H2O, THF/H2O, rt, overnight, 93%, then WSC, HOBt, DMF, NH2OH.HCl, TEA, rt, overnight, 33%; c) 

Bis(pinacolato)diboron, PdCl2(dppf), KOAc, reflux, 2h, then 6-bromonaphthalene-2-carboxylic acid benzyloxyamide 

(13), 2M Na2CO3, 2h, 28%; d) H2/Pd/C, MeOH, 36h, rt, 70%; e) HATU, DIPEA, NH2OH.HCl, DMF, rt, overnight, 

30%. 

 

 


