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Abstract

Gonadotropin-releasing hormone (GnRH) receptors are expressed in prostate cancer, specifically in the most aggressive
stage of the tumor (castration-resistant prostate cancer, CRPC) for which the standard treatment, docetaxel-based
chemotherapy, can only improve the median survival time by few months. We previously showed that GnRH agonists exert
an antitumor activity in CRPC cells; however, a link between GnRH receptors and the apoptotic machinery remains to be
defined. Aim of this study was to evaluate whether, in CRPC cells, GnRH agonists might affect the expression/activity of
apoptosis-related proteins and might sensitize, or resensitize, cancer cells to chemotherapeutics. We demonstrated that, in
p53-positive DU145 cells, GnRH agonists: a) increase the expression of the proapoptotic protein Bax; this effect is mediated
by the phosphorylation (activation) of p53, triggered by the p38 MAPK; b) potentiate the antiproliferative/proapoptotic
activity of docetaxel; c) resensitize docetaxel-resistant cells to the antitumor activity of the cytotoxic drug. These data
indicate that GnRH agonists sensitize and, more importantly, resensitize DU145 CRPC cells to chemotherapy in a p53-
dependent manner. To confirm the crucial role of p53 in the activity of GnRH agonists, experiments were performed in p53-
null PC3 cells. We found that GnRH agonists fail to increase Bax expression and do not potentiate the cytotoxic activity of
docetaxel. These results may provide a rationale for novel combination treatment strategies, especially for docetaxel-
resistant CRPC patients expressing a functional p53 protein.
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Received October 14, 2013; Accepted March 5, 2014; Published April 10, 2014

Copyright: � 2014 Moretti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
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Introduction

Prostate cancer is the most commonly diagnosed cancer for men

and the second leading cause of cancer-related deaths among men

in Western Countries [1]. Most prostate cancers are dependent on

the presence of androgens for growth and survival, and androgen

ablation therapy, aimed to block androgen secretion/activity,

represents the most effective initial treatment [2,3]. This therapy

includes surgical or chemical castration, achieved by: administra-

tion of gonadotropin-releasing hormone (GnRH) analogs; blocking

of the binding of androgens to their receptor by antiandrogens;

inhibition of steroidogenic enzymes. Unfortunately, despite an

excellent initial response, in approximately 2 to 3 years, most

prostate cancers will progress to castration-resistant prostate

cancer (CRPC) stage with increased proliferation and malignancy

[4,5]. For CRPC patients, taxane-based chemotherapy represents

the treatment of choice [6,7]. Docetaxel acts by binding to tubulin

to promote polymerization and prevents microtubule depolymer-

ization in the absence of guanosine triphosphate. It has also been

shown to induce tumor cell death by affecting the expression/

activity of multiple cancer-specific targets, including downregula-

tion of the antiapoptotic protein Bcl-2 and upregulation of the

proapoptotic protein Bax [8,9]. However, despite the initial

demonstration of a better survival with docetaxel-based chemo-

therapy, the improvement was found to be only a progression-free

survival of few months [6,10]. Thus, treatment of patients with

CRPC that progresses after docetaxel-based chemotherapy

remains a significant clinical challenge. The identification of novel

strategies aimed at overcoming docetaxel resistance will likely

improve the therapeutic options for these patients.

GnRH was first identified as the hypothalamic key regulator of

the reproductive functions. By binding to specific receptors

(GnRH-R) on pituitary gonadotropes GnRH activates the

pituitary-gonadal axis. GnRH agonists, when given continuously

and at high doses, desensitize pituitary GnRH-R, thus suppressing

gonadal steroid secretion; on the basis of their activity, these

compounds represent the most widely and successfully utilized

medical treatment for androgen-responsive prostate cancer [2,11].

It is now well established that GnRH receptors are expressed in

prostate cancer cells, specifically in CRPC cells and tissues [12–

15].
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These receptors (as well as GnRH receptors in breast and

gynecological cancer cells and tissues) have been first characterized

in terms of binding affinity. However, contrasting results have

been reported: one class of low-affinity binding sites [12,13,16–

18]; two types of receptors (one with high affinity and one with low

affinity) [19–21]; one single class of high affinity GnRH binding

sites [22–25]. In particular, we reported the presence of low

affinity GnRH receptors in prostate cancer cells [12,13]. The

reason for this discrepancy is still a matter of debate; however, it

might be due to the different experimental conditions adopted

(different cancer cell lines and ligands, evaluation of the binding

affinity in cancer cells/tissues expressing the binding sites vs. cells

engineered to overexpress the receptors, cell-specific posttransla-

tional modifications of the receptor, etc.).

These initial contrasting observations stimulated the character-

ization of cancer GnRH receptors at the molecular level.

Specifically, we reported that both the mRNA coding for the

human pituitary GnRH receptor and the corresponding protein

are expressed in prostate cancer cells, either androgen-dependent

or castration-resistant [26]. Moreover, the nucleotide sequence of

the cDNA coding for the tumor receptors has been shown to

correspond to that previously reported for the pituitary receptors

[27,28].

We further showed that GnRH agonists, through activation of

locally expressed GnRH receptors, exert a strong antiproliferative

effect on prostate cancer cells, both in vitro and in vivo [12,29,30];

this antitumor activity is specific since it is completely abrogated

after the silencing of the GnRH receptor by means of a specific

siRNA [31].

In addition to reduced cell proliferation, apoptosis has been

suggested to be involved in the antitumor activity of GnRH

analogs. However, the data so far available on this issue are still

controversial [30,32–35].

Here, we confirm our previous observation that GnRH agonists

do not, by themselves, induce apoptosis in CRPC cells. However,

in p53-expressing DU145 prostate cancer cells, they increase the

expression of the proapoptotic protein Bax, through phosphory-

lation at Ser-15 (i.e., activation) of p53, the major regulator of the

intrinsic apoptotic pathway; activation of this p53-Bax apoptotic

signaling is triggered by p38 MAPK phosphorylation. We also

show that GnRH agonists sensitize DU145 cells to the antimitotic

activity of docetaxel. More importantly, GnRH agonists resensitize

docetaxel-resistant DU145 cells to the death-inducing activity of

the chemotherapeutic agent. These data indicate that, in p53-

positive prostate cancer cells, targeting locally expressed GnRH

receptors by means of GnRH agonists sensitizes and resensitizes

cancer cells to chemotherapy, in a p53-dependent manner. The

crucial role played by p53 is further demonstrated by the

observation that GnRH agonists do not affect Bax expression

and fail to potentiate the apoptotic activity of docetaxel in p53-null

PC3 prostate cancer cells. Taken together, these results represent

the rationale for combination treatment strategies for docetaxel-

resistant CRPC patients, expressing a functional p53 protein.

Materials and Methods

Cell Cultures
The human castration-resistant DU145 (p53-positive) and PC3

(p53-null) prostate cancer cell lines were purchased from the

American Tissue Culture Collection. Both PC3 and DU145 cells

represent the most appropriate and widely utilized model of

CRPC in the literature [36–40]. Cells were routinely grown in

Roswell Park Memorial Institute-1640 (RPMI-1640) medium

supplemented with 5% Fetal Bovine Serum (FBS), glutamine

(1 mmol/L) and antibiotics (100 IU/mL penicillin G sodium and

100 mg/mL streptomycin sulfate), in humidified atmosphere of 5%

CO2/95% air at 37uC.

Materials and Antibodies
The GnRH agonist Goserelin acetate [D-Ser(tBu)6Aza-Gly10-

GnRH, Zoladex, GnRH-A] was kindly provided by AstraZeneca

Pharmaceuticals. The GnRH antagonist Antide (Ant) and

docetaxel (Doc) were purchased from Sigma-Aldrich.

In all the experiments, the GnRH agonist has been utilized at

the dose of 1026 mol/L, on the basis of previous studies, from the

authors’ laboratory as well as from others, aimed to investigate the

molecular aspects of the antitumor activity of GnRH analogs in

CRPC cells [29,41–46]. The same range of doses were also

utilized to investigate the antitumor activity of GnRH agonists in

several experimental models of cancer cells overexpressing the

GnRH receptor [16,47–49].

Pifithrin-a, the specific inhibitor of p53 transcriptional activity,

and SB203580, the specific p38 MAPK inhibitor, were purchased

from Santa Cruz Biotechnology and from Sigma-Aldrich,

respectively.

Antibodies used for Western blotting experiments: rabbit anti-

human Bax (1:500; #2772), rabbit anti-human p38 MAPK

(1:1,000;. #9212) and rabbit anti-human p-p38 MAPK (1:1,000;

#9211) from Cell Signaling Technology; mouse monoclonal anti-

human Bcl-2 (1:250; #Sc-7382), mouse monoclonal anti-human

p53 (1:1,000; #Sc-53394), rabbit anti-human p-p53 (Ser-15;

1:1,000; #Sc-101762) and goat anti-human actin 1–19 (1:1,000;

#Sc-1616) from Santa Cruz Biotechnology.

Microarray Analysis
DU145 prostate cancer cells were seeded (56105 cells/dish) in

10-cm tissue culture dishes; after 48 hours, cells were treated with

GnRH-A (1026 mol/L) for 24 hours and total RNA was prepared

with the use of the RNeasy mini kit (Qiagen), according to the

instructions of the manufacturer. After quality control using a

bioanalyzer (Agilent 2100), RNAs were labeled according to

Affymetrix protocol using One Cycle Labeling Kit (Affymetrix).

15 mg of resulting cRNAs were hybridized onto whole genome

microarray U133 plus 2.0. After hybridization on Affymetrix HG-

U133 Plus 2.0 chips, gene expression values were estimated for

each probe set using packages in the Bioconductor suite [50].

Genes were normalized and analyzed with the Robust Multichip

Analysis (RMA) method within the affy package [51] and the

GCRMA package [52]. The differences in log expression levels for

both RMA and GCRMA normalized data were evaluated by the

two-tailed t-test as implemented in the limma package [53]. Genes

with P-values,0.05 and the absolute expression fold change

greater than 1.5 were considered as significantly differentially

expressed (DE) between treated and untreated cells. A gene list was

generated by taking the overlap of DE genes generated by limma

from both the RMA and GCRMA normalization methods.

Western Blot Analysis
At the end of the experiments, cells were washed with PBS and

lysed in RIPA buffer (0.05 mol/L Tris.HCl pH 7.7, 0.15 mol/L

NaCl, 0.8% SDS, 10 mmol/L EDTA, 100 mmol/L NaVO4,

50 mmol/L NaF, 0.3 mmol/L PMSF, 5 mmol/L iodoacetic acid)

containing leupeptin (50 mg/mL), aprotinin (5 ml/mL) and pep-

statin (50 mg/mL). Protein concentration was determined using

the BCA method. Protein extracts (30 mg) were resuspended in

Sample buffer (0.5 mol/L Tris.HCl pH 6.8, 20% glycerol, 10%

SDS, 0.2% 2b-mercaptoethanol, 0.05% blue bromophenol) and

heated at 95uC for 5 minutes. Following electrophoretic separa-
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tion by SDS-PAGE, proteins were transferred onto nitrocellulose

membranes. Membranes were blocked in 3% non fat dry milk

prior to incubation at room temperature for 2 hours with the

specific primary antibodies at the appropriate dilutions. Detection

was done using a horseradish-peroxidase-conjugated secondary

antibody and enhanced chemiluminescence reagents (Supersignal

Chemiluminescence Detection System). In each Western blot

experiment actin expression was evaluated as a loading control.

For each protein analysis, three different experiments were done;

the densitometric analysis reported in the figures was performed

on the results obtained from the three different experiments.

Cell Proliferation and Cell Viability Studies
DU145 and PC3 cells were seeded (16104 cells per dish) in 6-

cm dishes. After 2 days, cells were treated with GnRH-A

(1026 mol/L) for 24 hours, either alone or in the presence of the

GnRH antagonist Antide (Ant, 1026 mol/L), followed by

docetaxel (10 nmol/L) for 48–72 hours. Cells treated with each

of the two drugs alone or without any treatment served as controls.

At the end of the treatments, cells were harvested and counted by

hemocytometer. For viability studies, DU145 and PC3 cells were

treated as described and cell viability was measured by Trypan

Blue exclusion assay. The number of dead cells was measured by

counting Trypan Blue staining cells.

Caspase-3 Enzyme Activity Assay
Caspase-3-like activity was assessed using the CaspACE

colorimetric assay kit (Promega). DU145 cells were seeded

(26105 cells/dish) in 10-cm dishes. After 2 days, cells were

pretreated with GnRH-A (1026 mol/L) for 24 hours and then

treated with docetaxel (10 nmol/L) for 72 hours. At the end of the

treatments, cells (both adherent and detached) were lysed in the

lysis buffer contained in the kit followed by centrifugation

(15,0006g for 10 minutes at 4uC). Caspase-3-like activity was

assessed by following the proteolytic cleavage of the colorimetric

substrate Ac-DEVD-pNA. Samples were read at 405 nm in a

spectrophotometer using a 100 mL quarz cuvette. The pan-caspase

inhibitor z-VAD-fmk was used to confirm assay specificity.

Colony Formation Assay
For the development of docetaxel-resistant cells (DU145-R),

DU145 cells seeded in 10-cm dishes were serially treated with

docetaxel (10 nmol/L, once a week) until they developed the

ability to grow and divide in the presence of the drug (8 weeks). To

investigate whether GnRH agonists might resensitize DU145-R

cells to the activity of docetaxel, a standard clonogenic assay was

performed. DU145-R cells were seeded at 1,000 cells/well in six-

well plates and allowed to attach for 24 hours. Cells were then

treated with GnRH-A (1026 mol/L) for 24 hours followed by

docetaxel (10 nmol/L) for 72 hours. At the end of the treatment,

cells were rinsed and fresh medium was added. Cells were cultured

for 14 days in 5% FBS containing medium and then fixed and

stained with crystal violet. Images of stained colonies were

captured by a Nikon photocamera.

Statistical Analysis
When appropriate, data were analyzed by Bonferroni’s test,

after one-way analysis of variance. P-values,0.05 were considered

significant.

Results

GnRH Agonists Increase Bax Expression in DU145 Cells
We previously reported that GnRH agonists exert an antipro-

liferative effect on DU145 prostate cancer cells. However, it is still

unclear whether apoptosis might also be involved in the antitumor

activity of these compounds [30,32–35]. The BCL-2 family of cell

death regulators (both proapoptotic and prosurvival) represents a

critical control point in the intrinsic pathway of apoptosis. The

balance of these two classes of proteins determines the fate of the

cell. The proapoptotic protein Bax, through oligomerization with

Bak, translocates from the cytoplasm to mitochondria to increase

mitochondrial outer membrane permeabilization, triggering cyto-

chrome c release and caspase-3 activity [54]. Here, we investigated

whether GnRH agonists might affect the expression of genes

involved in the apoptotic pathway. DU145 cells were treated with

GnRH-A for 24 hours and changes in gene expression profile were

evaluated by genome-wide transcriptomic analysis. Among the

genes whose expression was modified by the treatment we focused

our attention on the expression of Bax. Bax expression was

significantly increased by 1.67 fold (Table 1); this increase was

confirmed at the protein level by Western blotting (Fig. 1A). The

stimulatory effect of GnRH-A on Bax expression was found to be

specific since it was abrogated by the cotreatment of the cells with

the GnRH antagonist Antide (Fig. 1B). On the other hand, the

GnRH agonist did not affect the expression of the antiapoptotic

protein Bcl-2 (Fig. 1C).

In DU145 Cells GnRH Agonists Upregulate Bax Expression
through the p53 Signaling Pathway
The key role of p53 in the intrinsic apoptotic pathway is well

established [55]. After being activated through phosphorylation at

Ser-15, p53 translocates into the nucleus to regulate the expression

of proapoptotic genes, such as Bax [56]. Moreover, p53

phosphorylation was reported to be dependent on the activity of

the p38 MAPK [57]. By Western blot analysis we found that, in

DU145 cells, GnRH-A treatment (1–48 hours) did not affect the

expression of p53; however, the levels of the serine-15 phosphor-

ylated (i.e., active) form of the protein were significantly increased

after 1 and 5 hours of treatment (Fig. 2A). When the cells were

pretreated (2 hours) with pifithrin-a (the p53 inhibitor) the

stimulatory effect of GnRH-A (24 hours) on Bax expression was

completely abolished (Fig. 2B). We also found that treatment of the

cells with GnRH-A (5–15 minutes) did not affect the expression

level of p38 MAPK; however it significantly increased the levels of

the phosphorylated form of the MAPK, at 5 and 10 minute time

intervals (Fig. 3A). Pretreatment (30 minutes) of the cells with

SB203580 (1 mmol/L), the specific p38 inhibitor, significantly

reduced the stimulatory effects of GnRH-A on p53 phosphoryla-

tion (1 and 5 hours) (Fig. 3B). Thus, in DU145 cells GnRH

agonists upregulate the expression of the proapoptotic protein Bax

through p53 phoshorylation; p38 MAPK is an upstream activator

of this p53-Bax signaling pathway.

GnRH Agonists Sensitize p53-positive DU145 Cells to the
Cytotoxic Activity of Docetaxel
A perturbation in the balance between pro- and antiapoptotic

factors is a crucial step in the cell decision to undergo apoptosis or

survival. Based on the stimulatory effect of GnRH agonists on Bax

expression, mediated by p53 activation, we investigated whether

GnRH agonists might induce apoptosis in DU145 cells. By FACS

analysis we couldn’t observe any proapoptotic effect of GnRH-A

on these cells (data not shown). These observations were not

unexpected since it was previously reported that, in CRPC cells,

GnRH and Docetaxel in Prostate Cancer Cells
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GnRH agonists reduce cell proliferation without inducing

apoptosis [30,32,35]. The reason why, in DU145 cells, GnRH

agonists increase Bax levels without triggering the apoptotic event

is intriguing. However, it is well known that DU145 cells

overexpress the antiapoptotic protein Bcl-2, and the levels of this

protein are not affected by the GnRH-A treatment (see Fig. 1C).

Table 1. Affymetrix Human Genome U133 Plus Array.

Probe Gene Description Fold change

211833_s BAX BCL2-associated X protein 1,67348

DU145 cells were treated with GnRH-A (1026 M) for 24 hours. Changes in gene expression profile were evaluated by genome wide transcriptomic analysis and
statistically analyzed as described in Materials and Methods.
doi:10.1371/journal.pone.0093713.t001

Figure 1. In DU145 cells, GnRH agonists increase the expression of the proapoptotic protein Bax, without affecting the expression
of the antiapoptotic protein Bcl-2. (A) DU145 cells were treated with GnRH-A (1026 mol/L) for either 24 or 48 hours. Western blotting was
performed on whole cell extracts by using an anti-Bax antibody. As expected, GnRH-A treatment increases Bax protein expression at 24 hours of
treatment. (B) DU145 cells were treated with GnRH-A (1026 mol/L) and with the GnRH antagonist Antide (Ant, 1026 mol/L), either alone or in
combination, for 24 hours. Western blotting was performed as described in A). Ant, given alone, does not affect Bax expression, while GnRH-A, as
expected, increases the expression of Bax. This stimulatory effect of GnRH-A is specific since it is abrogated by the cotreatment of the cells with the
GnRH antagonist. (C) Treatment of DU145 cells with GnRH-A (1026 mol/L) for either 24 or 48 hours, does not affect Bcl-2 expression, as evaluated by
Western blotting. For both Bax and Bcl-2 protein expression analysis one representative of three different experiments is shown. Data represent
means 6 SEM. *P,0.05 versus C (untreated controls); **P,0.05 versus GnRH-A-treated cells.
doi:10.1371/journal.pone.0093713.g001
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Figure 2. In DU145 cells, GnRH agonists increase the expression of Bax through p53 phosphorylation (Ser-15). (A) DU145 cells were
treated with GnRH-A (1026 mol/L) for different time intervals (1–48 hours). Western blot analysis was performed on whole cell extracts by using p53
or p-p53 (Ser-15) antibodies. Treatment with GnRH-A does not affect the expression of p53 at any time intervals considered; however, the levels of
the serine-15 phosphorylated form of the protein are significantly increased after 1 and 5 hours of treatment. (B) DU145 cells were treated with
GnRH-A (1026 mol/L) either alone or after a pretreatment with pifithrin-a (Pif, 30 mmol/L, for 2 hours), the specific p53 inhibitor. Western blot analysis
was performed on whole cell extracts using Bax antiobody. The results obtained show that pifitrhin-a, when given alone, does not affect Bax
expression. As expected, GnRH-A increases the expression of Bax; this effect is completely abolished when the cells are pretreated with pifithrin-a.
One representative of three different experiments, for each of the analyses performed, is shown. Data represent means 6 SEM. *P,0.05 versus C
(untreated controls); **P,0.05 versus GnRH-A-treated cells.
doi:10.1371/journal.pone.0093713.g002
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Thus, it is possible that, in these cells, the increased expression of

Bax induced by GnRH-A is not sufficient to efficiently enhance

the Bax/Bcl-2 ratio to trigger apoptosis. On the basis of these

considerations, we reasoned that GnRH agonists, through

upregulation of proapoptotic factors, might sensitize prostate

cancer cells to the activity of cytotoxic drugs, known to act by

increasing the expression of proapoptotic factors while decreasing

that of antiapoptotic proteins. We focused our attention on

docetaxel since: a) it represents the treatment of choice for CRPC

[4,5]; b) it has been shown to induce tumor cell death through

upregulation of the proapoptotic protein Bax and downregulation

of the antiapoptotic protein Bcl-2 [8,9]. First, by Western blotting,

we confirmed that docetaxel (48 hours) significantly decreases the

expression of Bcl-2, while increasing that of Bax (Fig. 4A). Then,

we evaluated whether GnRH agonists might potentiate the

antitumor activity of docetaxel. We first found that, when given

Figure 3. In DU145 cells, GnRH agonists trigger p53 phosphorylation (Ser-15) through activation of p38 MAPK. (A) DU145 cells were
treated with GnRH-A (1026 mol/L) for different time intervals (5–15 minutes). Western blot analysis was performed on whole cell extracts by using
p38 and p-p38 antibodies. Treatment with GnRH-A does not affect the expression of p38 at any time interval considered. On the other hand, GnRH-A
significantly increases the levels of the phosphorylated form of p38 (p-p38) at 5 and 10 minutes of treatment.(B) As expected, GnRH-A increases the
expression levels of p-p53, confirming previous results; densitometric analysis of the data demonstrate that this effect is significantly reduced when
the cells are pretreated with the specific p38 inhibitor SB203580 (SB, 1 mmol/L, for 30 minutes). One representative of three different experiments, for
each of the analyses performed, is shown. Data represent means6 SEM. *P,0.05 versus C (untreated controls); **P,0.05 versus GnRH-A-treated cells.
doi:10.1371/journal.pone.0093713.g003
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alone, GnRH-A (24 hours) does not affect the proliferation of

DU145 cells. This was not unexpected, since we have previously

reported that, in CRPC cells, GnRH agonists can exert a

significant antiproliferative effect only when the treatments are

performed for longer time intervals (4–7 days) [29]. Similar data

have been reported for other types of tumors [58,59]. Then we

demonstrated that pretreating DU145 cells with GnRH-A (24

hours) significantly improves the antiproliferative effects of

docetaxel (48–72 hours) at all time intervals (Fig. 4B). Moreover,

we could show that the sensitizing effect of GnRH-A to docetaxel

was specific since it was completely abrogated by the cotreatment

of the cells with the GnRH antagonist Antide (Fig. 4C). In the

same experimental conditions, assessment of cell viability was

performed by Trypan Blue exclusion assay. GnRH-A, when given

alone, did not affect cell viability (Fig. 4D). As expected, docetaxel

significantly increased the number of positive Trypan Blue stained

cells (dead cells). This effect was significantly potentiated by

pretreatment of the cells with GnRH-A at all time intervals

(Fig. 4D). To confirm that the pretreatment with GnRH agonists

sensitizes CRPC cells to the antitumor activity of docetaxel,

DU145 cells were treated with GnRH-A (24 hours) and then with

the cytotoxic drug for 72 hours. Caspase-3 activity was then

evaluated as a marker of apoptotic cell death. GnRH-A, given

alone, did not affect caspase-3 activity; as expected, docetaxel

increased enzymatic activity. Pretreatment of the cells with

GnRH-A significantly potentiated the proapototic effect of the

chemotherapeutic agent. The effect is specific since it was

counteracted by the simultaneous treatment of the cells with the

pan-caspase inhibitor z-VAD-fmk (Fig. 4E).

These results indicate that, in p53-positive DU145 prostate

cancer cells GnRH agonists specifically sensitize the cells to the

cytotoxic activity of docetaxel; this effect is likely the consequence

of the GnRH-A-induced activation of the p38/p53/Bax apoptosis

signaling pathway.

GnRH Agonists Resensitize p53-positive DU145 Cells to
the Cytotoxic Activity of Docetaxel
To obtain docetaxel-resistant cells (DU145-R), DU145 cells

were serially treated with docetaxel (once a week for 8 weeks) until

they developed the ability to grow in the presence of the drug. In

these cells, the resistance to the cytotoxic compound was

associated with a significant decrease of Bax levels, without any

change in the level of expression of Bcl-2 (Fig. 5A), confirming

previous observations reporting little consensus between taxane-

resistance and overexpression of Bcl-2 [60]. On the other hand,

our data clearly indicate that DU145 cells can contrast and

overcome the antitumor activity of chemotherapeutic drugs by

increasing the ratio between anti- and proapoptotic proteins. By

clonogenic assay, we then investigated whether GnRH agonists

might resensitize docetaxel-resistant prostate cancer cells to the

proapoptotic activity of the chemotherapeutic drug. Treatment of

DU145-R cells with GnRH-A (24 hours) alone did not affect the

ability of the cells to form colonies (Fig. 5B). As expected, DU145-

R cells formed colonies in the presence of docetaxel (72 hours),

confirming their acquisition of resistance to the drug. However,

combination treatment (GnRH-A for 24 hours followed by

docetaxel for 72 hours) completely abolished the colony formation

ability of DU145-R cells (Fig. 5B). These results indicate that

GnRH agonists can resensitize docetaxel-resistant prostate cancer

cells to the antitumor activity of the chemotherapeutic drug.

GnRH Agonists do not Sensitize p53-null PC3 Cells to the
Cytotoxic Activity of Docetaxel
To confirm the crucial role of p53 in the ability of GnRH

agonists to sensitize prostate cancer cells to the cytotoxic activity of

docetaxel, experiments were performed in p53-null PC3 prostate

cancer cells [61]. By Western blotting we could confirm that p53 is

not expressed in PC3 cells (Fig. 6A). Moreover, treatment of the

cells with GnRH-A (24 or 48 hours) did not affect either Bax or

Bcl-2 protein levels (Fig. 6B). As expected, pretreatment of the cells

with GnRH-A (24 hours) did not potentiate the antiproliferative

(Fig. 6C) and the cytotoxic (Fig. 6D) activity of docetaxel (48–72

hours).

These results confirm that the ability of GnRH agonists to

sensitize prostate cancer cells to cytotoxic therapy is dependent on

a functional p53 protein.

Discussion

The therapeutic options for castration-resistant prostate cancer

patients are still very limited [4,5]. Docetaxel is considered the

treatment of choice for these men; however, the response to the

drug is often associated with increased resistance to apoptosis and

progression of the tumor with a very short overall survival [6,10].

For this reason, great efforts are now being made to define new

molecular therapies aimed at potentiating the effectiveness of

current cytostatic drugs and/or at overcoming chemotherapy-

resistance.

It is well established that GnRH receptors are expressed in

prostate cancer cells, specifically in CRPC cells and tissues [12–

15].

GnRH agonists, through activation of these receptors, exert a

strong antitumor effect (antiproliferative, antimetastatic), by

interfering with the activity of mitogenic growth factors [30,62].

However, it is still unclear whether, in addition to reduced cell

proliferation, apoptosis might be involved in the antitumor activity

of these compounds.

In this paper, we first investigated whether activation of GnRH

receptors might affect the expression of genes/proteins involved in

the apoptotic pathway. We studied CRPC DU145 prostate cancer

cells because they have been shown to respond to GnRH agonists

and express p53. We found that, in DU145 cells, GnRH-A

significantly increased the expression of the proapoptotic protein

Bax (both at the mRNA and at the protein level). Moreover, these

compounds induced the phosphorylation (i.e., activation) of the key

proapoptotic protein p53 at Ser-15, through the activity of the p38

MAPK. More importantly, we could demonstrate that blocking

the activity of p53 (by means of the specific inhibitor pifithrin-a)
completely abolished the stimulatory effects of GnRH-A on Bax

expression. These results indicate that, in DU145 prostate cancer

cells, GnRH agonists upregulate the expression of the proapopto-

tic protein Bax; this effect is dependent on the activation of p53, by

p38 MAPK.

It has been previously shown that DU145 cells express p53 with

two point mutations at residues 223 and 274 located in the DNA

binding domain of the protein [63]. In these cells, p53 lacks the

antioncogenic activity of the wild-type protein. In the present

paper we demonstrated that GnRH-A induced p53 phosphoryla-

tion at Ser-15 and this was associated with increased Bax

expression, suggesting that serine phosphorylation of mutant p53

restored the activity of the protein. These observations are in line

with those reported by Lin and coworkers [64], showing that, in

DU145 cells, resveratrol promotes Ser-15 phosphorylation of p53

increasing its binding to DNA. According to these authors, it is

also possible that treatment of DU145 cells with proapoptotic
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signals might promote expression of a wild-type allele of p53 in

sufficient abundance to be functional [64]. More recently, Volate

and coworkers [65] demonstrated that the phytochemical gossypol

induces apoptosis in DU145 cells through phosphorylation of p53

at Ser-392 and caspases 9 and 3 activation, further confirming that

the mutated form of p53 can restore its activity after being

Figure 4. GnRH agonists sensitize p53-positive DU145 cells to the antiproliferative/proapoptotic activity of docetaxel. (A) Western
blot analysis was performed to confirm that the cytotoxic activity of docetaxel (Doc) is mediated by a perturbation of the ratio pro-to-antiapoptotic
proteins. DU145 cells were treated with docetaxel (10 nmol/L) for 48 hours. As expected, docetaxel decreases the expression of the antiapoptotic
protein Bcl-2 while increasing Bax expression. One representative of three different experiments is shown. (B) DU145 cells were pretreated with
GnRH-A (1026 mol/L) for 24 and then with docetaxel (10 nmol/L) for different time intervals (48–72 hours). At the end of the treatments, cells were
counted by hemocytometer. Pretreatment of the cells with GnRH-A significantly increases the antiproliferative effect of docetaxel at all time intervals
considered. (C) DU145 cells were pretreated with GnRH-A (1026 mol/L) and with the GnRH antagonist Antide (Ant, 1026 mol/L), either alone or in
combination, for 24 hours, and then with docetaxel (10 nmol/L) for 60 hours. At the end of the treatments, cells were counted by hemocytometer.
Pretreatment of the cells with GnRH-A significantly increases the antiproliferative effect of docetaxel; this effect is specific since it is completely
abrogated by the cotreatment of the cells with Ant. (D) At the end of the treatments (performed as described in B), cell viability was measured by
Trypan Blue exclusion assay. The number of dead cells was measured by counting Trypan Blue staining cells. Data are expressed as percent of stained
cells/total cells. Docetaxel significantly increases the number of dead cells; at all time intervals, this effect is significantly potentiated by pretreatment
of the cells with GnRH-A. (E) DU145 cells were pretreated with GnRH-A for 24 hours and then treated with docetaxel for 72 hours. At the end of the
treatment caspase 3-like activity was assessed using the CaspACE colorimetric assay kit. Pretreatment of the cells with GnRH-A significantly
potentiates the proapototic effect of docetaxel in terms of caspase-3 activity. The effect is specific since it is counteracted by the simultaneous
treatment with the pan-caspase inhibitor z-VAD-fmk. In B-E each experimental group consisted of six replicates and each experiment was repeated
three times. Data represent means 6 SEM. *P,0.05 versus C (untreated controls); **P,0.05 versus docetaxel-treated cells.
doi:10.1371/journal.pone.0093713.g004
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phosphorylated. It is also interesting to remind that two-thirds of

CRPC patients have wild-type p-53 in their tumors [66].

The observation that GnRH agonists promote Bax expression,

through p53 activation, prompted us to investigate whether

GnRH agonists might induce apoptosis in DU145 cells. However,

by FACS analysis we couldn’t detect any proapoptotic effect of

GnRH-A on these cells, confirming previous observations

[30,32,35]. On the basis of these results, we reasoned that GnRH

agonists, through Bax upregulation, might promote a perturbation

in the balance between pro- and antiapoptotic factors, thus

sensitizing prostate cancer cells to the activity of cytotoxic drugs,

such as docetaxel. To verify this hypothesis, we first confirmed that

in DU145 cells docetaxel exerts its proapoptotic activity by

increasing the expression of Bax while decreasing that of Bcl-2,

confirming previous observations [8,9]. Then, we could demon-

strate that a pretreatment of CRPC cells with GnRH-A

significantly potentiates the antiproliferative/proapoptotic activity

of docetaxel. GnRH agonists, followed by docetaxel when the

tumors develop castration resistance, represent the treatment of

choice for prostate cancer patients [2–7,67]. Our results support

the accepted notion that this treatment strategy may provide a

better outcome than orchiectomy followed by docetaxel in this

clinical setting. In line with these observations, Gnanapragasam

and coworkers [14] have reported that in patients with established

progression to hormone refractory disease, GnRH agonist-based

therapy, in the presence of high prostate cancer GnRH receptor

expression, is associated with improved disease-specific survival.

Unfortunately, to date there are no studies investigating the

differences in outcomes between prostate cancer patients treated

with GnRH analogs followed by docetaxel vs. orchiectomy

followed by the chemotherapeutic drug.

It is now well established that, after first-line docetaxel-based

therapy, most prostate cancer patients develop progressive disease

associated with resistance to the cytotoxic drug. Novel tubulin-

binding semi-synthetic taxane drugs (i.e., cabazitaxel) are now

being investigated [68,69]. However, common adverse events with

cabazitaxel, such as neutropenia, lead to the suggestion that this

agent should be administered cautiously and with appropriate

monitoring [70]. Thus, identification of new second-line regimens

for CRPC patients progressing after docetaxel is needed.

Interestingly, in this paper we could show, by clonogenic assay,

that GnRH agonists, through p53-mediated Bax expression, can

resensitize docetaxel-resistant prostate cancer cells, characterized

by downregulation of Bax, to the antitumor activity of the

chemotherapeutic drug. These data indicate that a combination

therapy, based on GnRH agonists followed by docetaxel, might

represent an effective treatment strategy for CRPC patients after

development of docetaxel-resistance.

Taken together, our results indicate that, in DU145 prostate

cancer cells, GnRH agonists increase the expression of the

proapoptotic protein Bax, in a p53-dependent manner; by

increasing the ratio pro-to-antiapoptotic proteins, GnRH agonists

sensitize, and more importantly resensitize, castration-resistant

prostate cancer cells to the cytotoxic/proapoptotic activity of

docetaxel.

Figure 5. GnRH agonists resensitize p53-positive DU145 cells to the cytotoxic activity of docetaxel. DU145 prostate cancer cells were
made resistant to docetaxel (Doc) after treatment with the chemotherapeutic drug (10 nmol/L) once a week for 8 cycles. (A) Western blot analysis of
Bcl-2 and Bax in docetaxel-resistant (DU145-R) cells. In DU145-R cells the expression of the proapoptotic protein Bax looks significantly down-
regulated, while the expression of the antiapoptotic protein Bcl-2 is not significantly modulated. One representative of three different experiments is
shown. Data represent means 6 SEM. *P,0.05 versus DU145 cells. (B) Clonogenic survival assay of DU145-R cells pretreated with GnRH-A (1026 mol/
L) for 24 hours and then treated with docetaxel (10 nmol/L) for 72 hours. GnRH-A given alone does not affect the ability of DU145-R cells to form
colonies. DU145-R cells can form colonies in the presence of the chemotherapeutic agent, confirming their acquisition of resistance to the drug.
Combination treatment completely abolishes the colony formation ability of DU145-R cells. Each experimental group consisted of two/three
replicates and each experiment was repeated three times with identical results.
doi:10.1371/journal.pone.0093713.g005
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To further confirm the crucial role of p53 in the ability of

GnRH agonists to sensitize CRPC cells to chemotherapeutic

drugs, we investigated the effects of a pretreatment with GnRH-A

on the cytotoxic effects of docetaxel in p53-null PC3 prostate

cancer cells. As expected, we found that GnRH-A was unable to

potentiate either the antiproliferative or the antiapoptotic activity

of the cytotoxic drug.

In conclusion, the observations reported in this paper demon-

strate that GnRH agonists can sensitize and, most importantly,

resensitize CRPC cells to the cytotoxic activity of chemothera-

peutic drugs, in a p53-dependent manner. These results may be

translated into the development of novel GnRH analog-based

combination therapies, especially for docetaxel-resistant, p53-

positive, CRPC patients. To further support the hypothesis of such

Figure 6. GnRH agonists do not sensitize p53-null PC3 cells to the antiproliferative/proapoptotic activity of docetaxel. (A) Western
blot analysis was performed to confirm the absence of p53 expression in PC3 cells. It is shown that p53 is expressed in DU145 cells while it is absent in
PC3 cells. (B) Western blot analysis performed on whole cells extracts shows that treatment of PC3 cells with GnRH-A (1026 mol/L, for 24–48 hours)
does not affect the expression of either the proapoptotic (Bax) or the antiapoptotic (Bcl-2) protein. One representative of three different experiments
is shown. (C) PC3 cells were pretreated with GnRH-A (1026 mol/L) for 24 and then with docetaxel (10 nmol/L) for different time intervals (48–72
hours). Cells were then counted by hemocytometer. Pretreatment of the cells with GnRH-A does not potentiate the antiproliferative effect of
docetaxel at all time intervals considered. (D) At the end of the treatments (as described in C), cell viability was measured by Trypan Blue exclusion
assay. The number of dead cells was measured by counting Trypan Blue staining cells. Data are expressed as percent of stained cells/total cells.
Docetaxel significantly increases the number of dead cells; pretreatment of the cells with GnRH-A does not potentiate the cytotoxic activity of
docetaxel at any time interval considered. Each experimental group consisted of six replicates and each experiment was repeated three times. Data
represent means 6 SEM. *P,0.05 versus C (untreated controls).
doi:10.1371/journal.pone.0093713.g006
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a novel treatment modality, the results obtained from the in vitro

studies here reported should be confirmed by in vivo experiments

performed in nude mice bearing DU145 cell xenografts.

Moreover, these data strongly support the notion that molecular

profiling of prostate cancer cells is crucial for the identification of

tumor biomarkers predictive of therapeutic response and of disease

outcome.
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