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 21 

Abstract  22 

The aims of this study were the evaluation of polyphenols and vitamin C content, and antioxidant 23 

capacity of dehydrated pulp powder and the dried flour obtained with the skin residue remaining 24 

after pulp preparation from camu-camu (Myrciaria dudia). Fifty three different phenolics were 25 

characterized by HPLC-DAD-ESI-MS-MS and UPLC-HR-QTOF-MS-MS and their amount in 26 

camu-camu flour was higher than the pulp powder (4007.95 mg/100 g vs 48.54 mg/100 g). In both 27 

powders the flavonol myricetin and conjugates, ellagic acid and conjugates and ellagitannins were 28 

detected. Cyanidin 3-glucoside, and quercetin and its glycosides were only found in the pulp 29 

powder, while proanthocyanidins were only present in the flour (3.5g/ 100g, mean degree of 30 

polymerization 3). The vitamin C content was smaller in pulp powder (3.5%) than in the flour 31 

(9.1%). The radical-scavenging capacity of both powders was determined by the DPPH, ABTS and 32 

ORAC assays, and was higher for camu-camu flour as could be expected for its higher phenolics 33 

and vitamin C content.  34 

 35 

Keywords: Camu-camu; Myrciaria dubia; Phenolics; Ellagitannins; Ellagic acid conjugates; 36 

Proanthocyanidins; Antioxidant capacity; Vitamin C; Dehydrated powders. 37 
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1. Introduction 40 

Consumption of fruits and vegetables is known to lower the risk of several diseases, including 41 

cardiovascular diseases, cancer and stroke (Willett, 2002) and such health benefits are mainly attri-42 

buted to the content in antioxidant compounds and particularly vitamin C and phytochemicals such 43 

as polyphenols and carotenoids (Steinmetz & Potter, 1996). 44 

Among the fruits, berries are reported to exhibit many beneficial effects in human health 45 

(Seeram, 2010; Seeram, 2012). This is well documented by several studies and has been the focus 46 

of much current research on chemoprevention of cardiovascular diseases (Basu, Rhone, & Lyons, 47 

2010). As well as being a good source of vitamin C, dietary fiber, and minerals, berries contain high 48 

levels of natural polyphenol components that act as potent antioxidants. 49 

Among the berries, those produced by the genus Myrciaria have received attention recently 50 

due to their high content in antioxidants including vitamin C and polyphenols. Thus Myrciaria 51 

dubia (camu-camu) (da Silva et al., 2012), M. jaboticaba (Leite, Malta, Riccio, Eberlin, & Pastore, 52 

2011; Wu, Dastmalchi, Long, & Kennelly, 2012) and M. vexator (Dastmalchi et al., 2012) fruits 53 

have been recently studied. An increase of plasma antioxidant potential of rats after the intake of 54 

freeze-dried jaboticaba peel has recently been demonstrated (Leite et al., 2011). Camu-camu is a 55 

native Amazonian bush from the Myrtaceae family. Its fruits are round berries having an average 56 

diameter of 2.5 cm; its pulp is pink, while its skin is green when immature and changes during the 57 

ripening process from green to red-purple due to the presence of anthocyanins (Zanatta & 58 

Mercadante, 2005). Camu-camu is appreciated for its high content of ascorbic acid, which varies 59 

from 1.9-2.3 g / 100 g fresh matter depending on the maturity stage (Chirinos, Galarza, Betalleluz-60 

Pallardel, Pedresch, & Campos, 2010). Compared to other fruits, camu-camu is considered one of 61 

the richest sources of vitamin C, with a higher content than acerola (Rufino, Alves, de Brito, Péere-62 

Jiménez, Saura-Calixto, & Mancini-Filho, 2010).  63 



 
 
 
 

 
 

Camu camu fruits have a significant use history as edible and as traditional medicines with 64 

different ethnobotanical uses throughout the tropical and subtropical world (Flores, 1998). 65 

In addition to vitamin C, several studies have reported that camu-camu is a good source of 66 

bioactive phytochemicals. Different concentrations of flavan-3-ols, flavonols, flavanones, gallic 67 

acid and ellagic acid were also detected (Chirinos et al., 2010; de Souza Schmidt Gonçalves, Lajolo, 68 

& Genovese, 2010; Genovese, Da Silva Pinto, De Souza Schmidt Gonçalves, & Lajolo, 2008; 69 

Reynertson, Yang, Jiang, Basile, & Kennelly, et al., 2008; Rufino et al., 2010), although no 70 

complete study with a detailed characterization of the main phenolic compounds 71 

(proanthocyanidins, ellagitannins and ellagic acid conjugates) has been reported to date.  72 

Research on phenolic compounds and health has been a focus of interest in the last decade 73 

due to their antioxidant activity and free radical-scavenging ability (Tomás-Barberán & Andres-74 

Lacueva, 2012). In particular, the polyphenols seem to be involved in several beneficial effects in 75 

human health (Ross & Kasum, 2002; Tomás-Barberán & Andres-Lacueva, 2012; Traka & Mithen, 76 

2011). The results obtained so far suggest the potential application and positive biological effects of 77 

camu-camu berries and derived food products in human health (Inoue, Komoda, Uchida, & Node, 78 

2008; Yazawa, Suga, Homna, Shirosaki, & Koyama, 2011), although human intervention studies 79 

are necessary.  80 

Camu-camu consumption as fresh fruit is rare due to its high acidity and bitterness (Flores, 81 

1998). It is mainly consumed as juice, or as an ingredient for jellies, ice-creams, liquors, wines or 82 

other foods (Cavalieri, 1993; Villachica, 1997; Franco & Janzantti, 2005). Its commercial interest 83 

has particularly increased due to its high vitamin C content. However, due to the loss of this vitamin 84 

during postharvest storage and processing, alternative technological processes need to be developed 85 

to preserve the nutritional value of camu-camu berries. Water is the main component of the fruits 86 

and has a direct implication on quality loss through its effect on many physicochemical and 87 

biological attributes. Therefore, the dehydration process has been suggested as an alternative to 88 



 
 
 
 

 
 

obtain camu-camu ingredients that in powdered form can be used to enhance vitamin C and 89 

bioactive compounds of different food products. 90 

Few studies have reported a thorough chemical characterization, particularly phenolic 91 

compounds characterization, of camu-camu fruit. The phenolics content has been often evaluated as 92 

total polyphenols in the fruits, and the main components previously identified were ellagic acid, 93 

quercetin, rutin and gallic acid (Chirinos et al., 2010; De Souza et al., 2010; Reynertson et al., 2008; 94 

Rufino et al., 2010). No information has previously been reported either on the proanthocyanidins 95 

or ellagitannins composition of camu-camu fruit or the powder products produced from the berry 96 

pulp and skins by a dehydration processes.  97 

Therefore, this study aims to the chemical characterization of two different powders 98 

obtained from camu-camu fruit, one from the pulp and the second one from the remaining peel and 99 

pulp (flour). Our main objective was to characterize the phenolic compounds, quantify the vitamin 100 

C and determine the antioxidant capacity due to the nutritional potential which they might exhibit.  101 

 102 

2. Materials and methods 103 

 104 

2.1 Chemicals 105 

Standards of gallic acid, ellagic acid, quercetin, myricetin, rutin, catechin, and cyanidin 3-O-106 

glucoside (Cy-glc), sodium acetate, potassium phosphate, o-phenylene diamine (OPDA) manganese 107 

dioxide, sodium fluoride, ethylenediaminetetraacetic acid (EDTA), 2,2'-azino-bis(3-108 

ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2'-azobis(2-amidino-propane)dihydrochloride 109 

(AAPH), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were purchased from Sigma-Aldrich 110 

(Darmstadt, Germany). Phloroglucinol, ascorbic acid, dehydro-ascorbic acid, potassium chloride, 111 

hydrochloric acid, methanol, acetonitrile, acetic acid, and formic acid were from Merck (Darmstadt, 112 

Germany). Vescalagin was used as external standard for ellagitannin quantification and was kindly 113 



 
 
 
 

 
 

provided by Prof. Stephan Quideau (University of Bordeaux, France). Water was obtained from 114 

Milli-Q apparatus (Millipore, Milford, MA, US).  115 

 116 

2.2 Samples 117 

Two powders from camu-camu fruit were provided by Agricola San Juan de la Amazonia 118 

Europa (ASJAEU) (Valencia, Spain). Both powders were obtained from mature turning color 119 

maturity state Myrciaria dubia fruits harvested during the summer 2010 in Pucallpa Ucayali (Peru). 120 

One powder was produced from the pulp (pulp powder), dried in a spray drier at an inlet 121 

temperature of 185 °C and an outlet temperature of 95 °C. The second powder (flour) was produced 122 

from the remaining peel with adhered pulp after pulp extraction, and was dried in a fluid bed drier 123 

at a temperature of 45-55 °C. Therefore two different drying processes were applied to obtain these 124 

powders and this was due to the different water content of the raw materials which was about 90% 125 

for the pulp fraction and about 20% for peel and pulp fraction. Both powders were packaged under 126 

vacuum and stored at 4 °C until used. 127 

 128 

2.3 Determination of phenolic compounds 129 

The phenols extraction was performed as follows: 1 g pulp powder was dissolved in 25 mL 130 

of 50% methanol in water acidified with1% formic acid; 1 g camu-camu flour was dissolved in 25 131 

mL of 50% methanol in water. Different extractions were carried out in order to achieve the better 132 

phenols recovery using variable ratio of water and methanol, with and without formic acid. The use 133 

of 50% methanol in water acidified with 1% formic acid and methanol 50% for pulp powder and 134 

camu-camu flour, respectively, allowed the better recovery of phenols. The powders were vortexed 135 

for 2 minutes, sonicated for 15 minutes (Sonicator Branson 5510, Emerson, Danbury, CT, US) and 136 

centrifuged at 3000 rpm for 15 min at 4 °C (Centrifuge 5804 R, Eppendorf, Hamburg, Germany). 137 

The supernatants were recovered, freeze-dried under vacuum, suspended in 2 mL of the 138 



 
 
 
 

 
 

corresponding extraction solvent, then filtered with a PVDF filter 0.22 µm (Millipore, Billerica, 139 

MA, US) and injected in LC/MS. 140 

The identification and quantification of phenols were performed using an Agilent 1100 141 

Series equipment (Agilent, Santa Clara, CA, US) equipped with G1312A binary pump, G1313A 142 

autosampler, G1315B photodiode array detector, and G1322A degasser controlled by the Agilent 143 

software v. A08.03. HPLC was coupled with a detector MSD Trap 1100 Series (Agilent) with an 144 

electrospray ionization system (ESI), with the following conditions: the heated capillary was 350 ºC 145 

and 3-3.5 kV voltage, mass scan (MS) and MS/MS were measured from 100 to 1500 m/z. Collision-146 

induced fragmentation experiments were performed in the ion trap using helium as the collision gas, 147 

and the collision energy was set at 75%. Mass spectrometry data were acquired in the negative 148 

ionization modes. A column Pursuit XRs C18 250x40mm from Varian (Agilent, Santa Clara, CA, 149 

US) was used and a flow rate of 0.8 mL min
-1

. The used solvents were 1% formic acid in water (A) 150 

and acetonitrile (B) which was in the following separation gradient: 1% B in A at 0 min, 9% B at 10 151 

min, 35% B at 48 minutes, and 95% B at 52 minutes, following by washing and conditioning steps. 152 

Data were registered from 250 nm to 700 nm and the phenolic compounds were quantified at 280 153 

mn, 360 mn, and 520 nm, depending on the type of phenolic compound. Integrations were 154 

performed by Agilent ChemStation for LC 3D, Rev. B.01.03 SR1. MS trap control was carried out 155 

Bruker Daltonic version 5.2. 156 

Quantification of gallic acid, ellagic acid, myricetin and their derivatives, and ellagitannins 157 

was carried out with the calibration curves obtained for gallic acid (1-300 mg L
-1

), ellagic acid (1-158 

300 mg L
-1

), rutin (1-300 mg L
-1

), and vescalagin (0.1-100 mg L
-1

), respectively, at the appropriate 159 

wavelengths. All the samples and standards were injected in triplicate. 160 

Moreover, samples of pulp powder and flour were analyzed by UPLC-Q-TOF (Agilent) in 161 

order to further confirm the phenolic compounds identified by MS Trap. The Q-TOF equipment had 162 

the following conditions: ESI gas temperature 280 ºC, drying gas 9 l/min, nebulizer 35 psig, sheath 163 



 
 
 
 

 
 

gas temp 400 ºC, sheath gas flow 12 l/min. MS TOF fragmentor 100V, mas range 100-1500, 164 

negative mode. The column was Poroshell 120, EC-C18, 2.7 µm, 30 x 100 mm (Agilent); the 165 

eluents were 0.1% formic acid in water (A) and acetonitrile acidified with 0.1% formic acid (B). 166 

The separation gradient started with 1% B in A at 0 min, 9% at 3 min, 48% at 20 minutes, and 95% 167 

at 23 minutes, following by washing and conditioning steps. The volume injected was 2 µL and the 168 

flow rate was 0.4 mL/min. The determinations were carried out in triplicate. 169 

 170 

2.4 Analysis of proanthocyanidins 171 

Proanthocyanidins were quantified as previously reported by Kennedy and Jones (2001) 172 

using an acid catalysis in the presence of phloroglucinol. Briefly, 50 mg sample were dissolved in 173 

800 µL of phloroglucinol (50 mg mL
-1

) added with ascorbic acid (10 mg mL
-1

) dissolved in 174 

methanol acidified with 0.1 N HCl. The reaction mix was vortexed and incubated at 50 °C for 20 175 

minutes. The reaction tube was placed in ice and 1 mL 40 mM sodium acetate was added in order to 176 

stop the reaction. The sample was centrifuged, filtered with a 0.22 µm PVDF filter, and injected in 177 

LC/MS. The identification and quantification of catechin, epicatechin and their derivatives was 178 

carried out by Agilent 1100 Series apparatus equipped with detector MSD Trap 1100 Series 179 

(Agilent), as previously described (Buendía et al., 2010; Vallejo, Marín, & Tomás-Barberán, 2012). 180 

Briefly, the column used was an Atlantis C18 (250 mm x 4.6 mm, 5 µm particle size; Water, 181 

Milford, MA, US) operating at a flow rate of 1 mL min
-1

; the injection volume was 10 µL. The 182 

solvents were 2.5% acetic acid in water (A) and acetonitrile (B) with a separation gradient starting 183 

with 3% B in A at 0 min, 9% at 5 min, 16% at 15 min, 50% at 45 min followed by washing and 184 

conditioning steps. The phenolic compounds were quantified at 280 nm with a calibration curve of 185 

catechin (1-300 mg L
-1

). The MS detector operated in negative ion-mode. The Trap interface and 186 

ion optics settings were the following: spray potential 65 psi; nebulization gas (nitrogen) relative 187 



 
 
 
 

 
 

flow value 11; capillary temperature 325 °C. Full-scan mass spectra were acquired scanning the 188 

range 100–800 m/z. 189 

 190 

2.5 Determination of ascorbic and dehydroascorbic acids 191 

Quantification of ascorbic acid and dehydroascorbic acid was carried out as previously 192 

described by Zapata and Dufour (1992). Briefly, 50 mg sample were dissolved in 10 ml of 5% 193 

methanol added with citric acid (21 g L
−1

) and EDTA (0.5 g L
−1

). The homogenate was filtered 194 

through a 0.45 µm PVDF filter and purified on a C18 Sep-Pak cartridge (Waters, Mil-ford, MA, 195 

US). The HPLC analysis was achieved after derivatization of DHAA into the fluorophore 3-(1,2-196 

dihydroxyethyl) furol [3,4-b]quinoxaline-1-one (DFQ), with 1,2-phenylenediamine dihydrochloride 197 

(OPDA). Standard solutions, column conditioning, mobile phase, flow rate, wavelengths and 198 

derivatization procedures used were previously reported by Gil, Ferreres, and Tomás-Barberán 199 

(1999), and Martínez-Sánchez, Tudela, Luna, Allende, and Gil (2011). The results were expressed 200 

as g ascorbic acid and dehydroascorbic acid per 100 g powder. 201 

 202 

2.6 Antioxidant capacity assays 203 

The antioxidant capacity of both powders was carried out through three different methods 204 

measuring the free radical scavenging capacity, such as DPPH, ABTS and ORAC assays. 205 

The free radical scavenging activity determining with DPPH was in accordance to Brand-206 

Williams, Cuvelier ,and Berset (1995) with some modifications (Espín, Soler-Rivas, Wichers, & 207 

García-Viguera, 2000; Llorach, Tomás-Barberán, & Ferreres, 2004). The DPPH solution was 208 

diluted with methanol to an absorbance of 1.00 (± 0.03) at 515 nm. In a 96-wells micro plate (Nunc, 209 

Roskilde, Denmark), 250 µL of DPPH solution were placed in each well and 2 µL sample were 210 

added. The sample was dissolved in 70% methanol (20 g L
-1

) and, after centrifugation, it was 211 

serially diluted.  212 



 
 
 
 

 
 

The ABTS method was performed according with Mena et al. (2011). The ABTS solution 213 

was diluted with water to an absorbance of 1.00 (± 0.03) at 414 nm. In a 96-wells micro plate 214 

(Nunc, Roskilde), 250 µL of ABTS solution were put in each well and 2 µL sample were added. 215 

The sample was dissolved in water (20 g L
-1

) and, after centrifugation, it was serially diluted. For 216 

both assays, the reaction kinetic was monitored for 50 minutes at 25 °C by micro plate reader 217 

(Infinite® M200, Tecan, Grödig, Austria). A calibration curve was made by adding increasing 218 

concentration of Trolox ranged from 50 µM to 1000 µM; each concentration was assayed in 219 

quadruplicate, as well each sample.  220 

The free radical scavenging activity determined by ORAC assay was in accordance to Prior 221 

et al., (2003) with some modifications. In a 96-wells micro plate, 100 µL 14 µM fluoresceine 222 

prepared in 75 mM phosphate buffer pH 7.4, 20 µL sample (or standard) and 30 µL 75 mM 223 

phosphate buffer pH 7.4 were placed into each well. After 15 minutes incubation at 37 °C, 30 µL 224 

AAPH (21.6 mg/mL) were added. Readings were carried out with a fluorescent microplate reader 225 

(Multi-Detection Microplate Reader, Synergy 
TM

 HT, Biotek Instruments USA) which was 226 

programmed to read the fluorescence with an excitation wavelength of 485 nm and an emission 227 

wavelength of 528 nm at 1 min interval for 90 minutes using software Gen 5
TM

. Calibration curve 228 

was obtained with increasing concentration of Trolox prepared in 75 mM phosphate buffer pH 7.4, 229 

ranged from 5 µM to 50 µM.  230 

The results were expressed as µM of Trolox per g of sample. Each concentration was 231 

assayed in quadruplicate, as well as each sample. 232 

 233 

3. Results and discussion 234 

 235 

3.1 Phenolics characterization 236 



 
 
 
 

 
 

The phenolic compounds characterized in camu-camu powders are shown in Table 1 and 237 

Figure 1A, 1B and 1C. The UV spectra of the different compounds recorded with a Diode Array 238 

Detector (DAD) showed that flavonols, ellagic acid conjugates, ellagitannins and proanthocyanidins 239 

were the main polyphenols present. One anthocyanin was detected in pulp powder, and at least two 240 

hydroxycinnamic acid derivatives, which showed the characteristic UV/Vis spectrum of a caffeic 241 

acid derivative (maximum at 332 nm, and shoulder at 298 nm and m/z 353) were detected, although 242 

their molecular weights could not be clearly established from the HPLC-MS analyses. The different 243 

compounds were characterized by their UV spectra, their molecular ion and fragments obtained 244 

with an ESI-MS-MS detector (Table 1) and comparison, wherever possible, with authentic markers. 245 

In addition, the different compounds were confirmed using a high resolution analysis on a UPLC-246 

Q-TOF equipment in which the molecular formulae were calculated (Table 2). All identified 247 

compounds showed a low error (-3.30) and a high score (better than 92.15) that indicated the 248 

accuracy of the exact mass and the molecular formulae obtained. 249 

The flavonols myricetin (3,5,7,3’,4’,5’-hexahydroxyflavone) (28) and its 3-O-hexoside (4) 250 

(probably glucoside) and its two 3-O-pentoside isomers (6) (probably arabinoside and xyloside), 251 

were detected. They showed characteristic UV spectra of flavonols with a free hydroxyl at 3 252 

position for myricetin (UV band I maximum at 374 nm), and a blocked hydroxyl at 3 for the O-253 

glycosides (UV band I maximum at 356 nm) (Table 1). The pseudomolecular ions recorded with the 254 

HPLC-ESI MS and the fragments obtained confirmed these structures with the characteristic losses 255 

of a hexosyl and a pentosyl residue respectively leading to the myricetin aglycone fragment at m/z 256 

317. The High-resolution Mass Spectrometry Analysis confirmed these structures (Table 2). In 257 

addition two quercetin (3,5,7,3’,4’-pentahydroxyflavone) 3-O-glycosides were also detected, 258 

quercetin 3-O-hexoside (26) and 3-O-pentoside (27) and these two were only detected in the pulp. 259 

Rutin (quercetin 3-O-rutinoside) that was previously reported in camu-camu (Reynertson et al., 260 

2008), was not detected in the analyzed powders. In addition, the flavanones naringenin and 261 



 
 
 
 

 
 

eriodictyol, that had previously been reported (Akter, Oh, Eun, & Ahmed, 2011) were not detected 262 

here either.  263 

The anthocyanins were easily detected with UV-Vis detector set at 520 nm. Only one 264 

pigment was detected its UV-Vis spectrum with a maximum at 520 nm suggested a cyanidin 265 

derivative, and this was confirmed by the MS-MS analysis that showed that this was a cyanidin 266 

hexoside. This is most probably Cyanidin 3-O-glucoside (29) that was previously reported in fresh 267 

camu-camu fruits (Zanatta & Mercadante, 2005). The structure was confirmed by high-resolution 268 

Q-TOF MS-MS (Table 2). No delphinidin 3-O-glucoside was detected, although this anthocyanin 269 

had been previously reported in camu-camu (Zanatta & Mercadante, 2005). This is not unexpected 270 

as delphinidin is more susceptible to oxidative and thermal degradation than cyanidin.   271 

A number of compounds with the characteristic UV spectrum ellagic acid were detected 272 

(Table 1). The main one was free ellagic acid (7) that showed a pseudomolecular ion at m/z 301 and 273 

coincided chromatographically with an authentic standard of this polyphenol. Nine other different 274 

compounds showed a UV spectrum similar to that of ellagic acid and all of them but compound 1 275 

produced a fragment in the MS analysis at m/z 301 confirming that they were ellagic acid 276 

conjugates. Compound 1 showed a pseudomeolecular ion at m/z 469 and a fragment at m/z 425 that 277 

are characteristic of valoneic acid bilactone, a compound that often occurs in plants containing 278 

ellagitannins. The conjugates included a O-hexoside (2) (most probably glucoside), a O-pentoside 279 

(3) (most probably arabinoside or xyloside), and a O-deoxyhexoside (5) (most probably 280 

rhamnoside). In addition, two isomeric compounds with pseudomolecular ion at m/z 489 (8, 9) were 281 

detected. The fragmentation and the high resolutions MS-MS coincided with ellagic acid acetyl 282 

rhamnoside, previously reported in several Myrtaceae species, but that were not reported in camu-283 

camu. In addition other ellagic acid derivatives were detected with pseudomolecular ions at m/z 585 284 

(10) and m/z 719 (12, 13). All these compounds produced fragments at m/z 301 for ellagic acid, and 285 

the molecular formulae were established with the high-resolution Q-TOF equipment, but these 286 



 
 
 
 

 
 

compounds were not completely characterized as the fragmentation did not provide enough 287 

information to suggest a chemical structure. 288 

Ten ellagitannins were characterized in camu-camu powders.  Their UV spectra provided 289 

information on the number of hexahydroxydiphenoyl (HHDP) and galloyl residues that every 290 

compound had on the glucose nucleus (Salminen, Ossipov, Loponen, Haukioja, & Pihlaja, 1999). 291 

The isomeric C-glucosides vescalagin (16) and castalagin (15) were characterized by the 292 

pseudomolecular ion at m/z 933, and the characteristic fragments that did not include the ellagic 293 

acid fragment at m/z 301, and were confirmed by chromatographic comparisons with authentic 294 

standards. Two isomers of HHDP-galloyl-glucose (19, 48), with a pseudomolecular ion at m/z 633 295 

and fragments at m/z 463 (M-H-galloyl) and 301 (ellagic acid), were characterized. Two isomers of 296 

di-HHDP-galloyl-glucose (causarictin/potentillin) (23, 47), with a pseudomolecular ion at m/z 935 297 

and fragments at m/z 917 (M-H-H20), 633 (M-H-HHDP) and 301 (ellagic acid), were also detected. 298 

Di-HHDP-glucose (pedunculagin) (18) with a pseudomolecular ion at m/z 783 and fragments at m/z 299 

481 (M-H-HHDP) and 301 was also detected, as well as digalloyl-HHDP-glucose (21) with m/z 785 300 

and fragments at m/z 483 (M-H-HHDP) and 301, and trigalloyl-HHDP-glucose (tellimagrandin II) 301 

(24) with m/z 937 and fragments at m/z 767 (M-H-galloyl), 741, 465 (M-H-galloyl-HHDP) and 301 302 

(ellagic acid).  303 

The different ellagitannins were confirmed by High Resolution MS analyses with the Q-304 

TOF detector, with the calculation of the corresponding molecular formulae (Table 2).  305 

Gallic acid (14) was also detected as well as an unidentified gallic acid derivative (25) with a 306 

pseudomolecular ion at m/z 569.  307 

 Proanthocyanidins were also present in the camu-camu flour, although the UV spectra and 308 

UV response was not relevant compared with those of the rest of phenolic compounds that had a 309 

higher UV absorption coefficient. Three main proanthocyanidins were detected in the HPLC-DAD-310 

MS-MS chromatograms (Table 1), in which gallocatechin-gallate (46) with a pseudomolecular ion 311 



 
 
 
 

 
 

at m/z 457, a dimer of gallocatechin-gallate (22) at m/z 915 and fragments at m/z 457 and m/z 169 312 

(gallate), and a trimer of gallocatechin-gallocatechingallate-gallocatechingaltate (17) at m/z 1221 313 

with a main fragment at m/z 915 (M-H-gallocatechin), were detected. These were confirmed by 314 

High-resolution Q-TOF, with the determination of the structural formulae (Table 2). In addition, 315 

gallocatechin (49), catechin (50), a B-type procyanidin dimer (51) at m/z 577, a gallocatechin-316 

gallate dimer (22), gallocatechin gallate (46), and catechin gallate (53) were detected. The 317 

sensitivity of the Q-TOF equipment allowed the detection of these proanthocyanidins, although 318 

some of them were not detected in the HPLC-ESI-MS-MS analyses (Table 1).  319 

 320 

3.2 Phenolics quantification 321 

The total phenolics content of both camu-camu powders was calculated as an addition of the 322 

individual characterized compounds by their UV absorbance at the convenient wavelength, and 323 

using the appropriate external standards for each type of compound (Table 3). In the case of 324 

proanthocyanidins, they were quantified by HPLC-UV after the acid catalyzed degradation in the 325 

presence of phloroglucinol (Kennedy & Jones, 2001) (Table 4).  326 

The content in pulp powder was 48.54 mg/100 g (Table 3). Among the phenols the total 327 

concentration of myricetin and its 3-O-glycosides (3 mg/100g) was higher than that reported in 328 

fresh fruit (Reynertson et al., 2008). The content of ellagic acid and its conjugated derivatives was 329 

9.75 mg/100 g powder, of which the 60% was for free ellagic acid. The amount of quercetin and its 330 

glycosides (< 0.05 mg/100 g) was lower than that reported in literature related to either fresh fruit 331 

(Reynertson et al., 2008) or dry matter (De Souza Schmidt Gonçalves et al., 2010). Neither gallic, 332 

proanthocyanidins or kaempferol derivatives were detected in pulp powder.  333 

Higher amounts of phenols were detected in the camu-camu flour (Table 3, Table 4, Figure 334 

1). As for the pulp powder, only the identified peaks in the chromatograms are quantified. No quer-335 

cetin, rutin, kaempferol, and anthocyanins were detected in the camu-camu flour analysed although 336 



 
 
 
 

 
 

these compounds were previously found in camu-camu fresh berries (Reynertson et al., 2008; De 337 

Souza Schmidt Gonçalves et al., 2010). The total concentration of phenols in camu-camu flour, 338 

quantified by addition of the individual compounds characterized, was 4007.95 mg/100 g (Table 3, 339 

Table 4). The amount of proanthocyanidins, namely catechin, and gallocatechin, and their gallate 340 

derivatives (and trace amounts of the epicatechin isomers) was up to 3423.5 mg/100 g (Table 4, 341 

Figure 1D), which is more than twice the content of other fruits recognized as a good source of 342 

proanthocyanidins, such as strawberry (1170 mg/100 g dry matter), apple (1460 mg/100 g dry mat-343 

ter), and grape (1420 mg/100 g dry matter) (Tarascou et al., 2010). Moreover, the content of these 344 

compounds was higher than that found in cocoa powder (278 mg/100 g dry matter) (Lee, Kim, Lee, 345 

& Lee, 2003) and Brazil nut (419 mg/100 g dry matter) (John, & Shahidi, 2010). Among the proan-346 

thocyanidins, the most abundant compound was epigallocatechin (845.5 mg/100 g), followed by 347 

epigallocatechin gallate (767.5 mg/100 g) and catechin gallate (729.8 mg/100 g). The proanthocya-348 

nidin composition resulted to be similar to the phenolic profile of green tea which has been reported 349 

to have a relevant nutritional potential (McKay & Blumberg, 2002). Catechin-gallates have recently 350 

been described as potent inhibitors of -amylase and -glucosidase with implications in obesity 351 

prevention (Yilmazer-Musa, Griffith, Schneider, & Frei, 2012). In addition, the polymerization de-352 

gree of the proanthocyanidins present in this powder was around 3, suggesting a relatively high ab-353 

sorption in humans (Scalbert & Williamson, 2000) which can consequently have potential biologi-354 

cal activities. It has been reported that proanthocyanidins play an important role in several biologi-355 

cal processes resulting in health benefits. Several beneficial effects of proanthocyanidins have been 356 

reported such as antioxidant, anti-inflammatory, antimicrobial, antiproliferative, cardioprotective, 357 

hypolipidemic and antidiabetic properties (Nandakumar, Singh, & Katiyar, 2008; Serrano, Puuppo-358 

nen-Pimia, Dauer, Aura, & Saura-Calixto, 2009; Bladé, Arola, & Salvado, 2010).  359 

Ellagitannins were also relevant constituents of camu-camu powders although the concentra-360 

tion found was lower than that of the proanthocyanidins (405.4 mg/100 g) (Table 3). However, the 361 



 
 
 
 

 
 

level of ellagitannins was higher than that of strawberry (162 mg/100 g dry matter) (Buendía et al., 362 

2010) and similar to that of raspberry (415 mg/100 g dry matter) (Bobimaité, Viskles, & Venskuto-363 

nis, 2012). The most abundant ellagitannins were vescalagin (228.9 mg/100 g), followed by casta-364 

lagin (64.5 mg/100 g) and di-HHDP-galloyl glucose (38.4 mg/100 g). In addition, the content of 365 

free ellagic acid and its glycosidic conjugates (129.80 mg/100g) was higher than those previously 366 

reported in strawberry (8.8-20.6 mg/100 g dry matter) (Bobimaité et al., 2012), and Brazil nut (11.4 367 

mg/100 g dry matter) (John & Shahidi, 2010). More than half of the ellagic acid was present as free 368 

ellagic acid (Table 3, Figure 1). A small quantity of myricetin derivatives was also present (1.40 369 

mg/100 g) although in lower concentration than that reported in camu-camu berries (24 mg/100 g 370 

dry matter) (Reynertson et al., 2008).   371 

The phenolic compounds in camu-camu are characterized for a high number of hydroxyls, in 372 

which groupings of three phenolic hydroxyls are the common feature as are the cases of gallic acid, 373 

ellagitannins, myricetin, and gallocatechin-gallate (Figure 2), and this can be linked to a high anti-374 

oxidant activity.  375 

 376 

3.3 Ascorbic acid and dehydroascorbic acid quantification 377 

The ascorbic acid contents were 3.51 ± 0.97 g/100 g and 9.04 ± 0.95 g/100 g in camu-camu 378 

pulp powder and camu-camu flour respectively. These values are higher than those reported in fresh 379 

camu camu fruit (Rufino et al., 2010; Chirinos et al., 2010) due to the lower moisture content of the 380 

powder (1-3%) (De Souza Schmidt Gonçalves et al., 2010). This content was very relevant although 381 

the amount of ascorbic acid present in fresh berries could be partly degraded during the production 382 

of these powders from the fresh fruit that needs thermal treatments (Shofian et al., 2011), and some 383 

variations in the content could had happened as ascorbic acid concentration in berries depends on 384 

the ripening stage (Marques, Ferreira, & Freire, 2007). The ascorbic acid content in these camu-385 

camu powders was much higher than those reported for freeze-dried fruits, such as red pummel 386 



 
 
 
 

 
 

(0.02 g/100 g dry matter), strawberry (0.6 g/100 g dry matter), and tomato (0.6 g/100 g dry matter), 387 

which are known to be a source of vitamin C (Tsai, Chang, & Chang., 2007; Asami, Hong, Barret, 388 

& Mitchell, 2003; Chang, Lin, Chang, & Liu, 2006).  389 

The dehydroascorbic acid values were of 0.69 ± 0.31 g/100 g and 0.578 ± 0.027 g/100 g for 390 

camu-camu pulp powder and camu-camu flour, respectively. Dehydroascorbic acid usually 391 

represents about 10-20% of the ascorbic acid present in fruit and vegetable products (Riemer & 392 

Karel, 1978; Borowski, Szajdek, Borowska, Ciska, & Zieliński, 2008), and is considered to be the 393 

first compound produced in the oxidative degradation of ascorbic acid (Chang et al., 2006). In the 394 

presnt study, dehydroascorbic acid represented the 19.5% of the vitamin C (ascorbic + 395 

dehydroascorbic acid) for pulp powder and 6.4% for camu-camu flour, confirming the data 396 

previously reported in literature, and suggesting that the higher temperature used for the production 397 

of the pulp powder led to a higher transformation of ascorbic acid into dehydroascorbic acid. In 398 

addition, the higher content of antioxidant polyphenols in the skin than in the pulp could also help 399 

preventing the transformation of ascorbic acid into dehydroascorbic acid.  400 

 401 

3.4 Antioxidant capacity 402 

The antioxidant capacity was determined in both pulp powder and flour using ABTS, DPPH 403 

and ORAC assays. The ABTS assay showed the free-radical scavenging activity for pulp powder 404 

(167.5 ± 54.4 µmol Trolox / g) which is about 4 fold lower than that of camu-camu flour (752.3 ± 405 

41.0 µmol Trolox / g). These values are higher than those reported in foods well known for their 406 

high antioxidant capacity, such as guava (98 µmol Trolox / g) (Corral-Aguayo, Yahia, Carrillo-407 

Lopez, & González-Aguilar, 2008), strawberry (about 250 µmol Trolox / g) (Proteggente et al., 408 

2002), and cocoa powder (617 µmol Trolox/g) (Lee et al., 2003). Similarly, the antioxidant capacity 409 

determined as DPPH was higher in camu-camu flour (1036.4 ± 211.2 µmol Trolox /g) than in pulp 410 

powder (510.5 ± 156.1 µmol Trolox/g). These values were again higher than those reported for 411 



 
 
 
 

 
 

guava (300 µmol Trolox / g) (Corral-Aguayo et al., 2008), apple and kiwi (37 µmol Trolox / g) 412 

(Wijngaard, Rößle, & Brunton, 2009), cocoa (458 µmol Trolox / g) (Lee et al., 2003), and broccoli 413 

(3 µmol Trolox / g powder) (Borowski et al., 2008). 414 

The camu-camu flour revealed an antioxidant capacity value of ORAC two fold higher (755.2 ± 415 

77.9 µmol Trolox / g) than that of the pulp powder (337.1 ± 77.9 µmol Trolox / g). As this method 416 

determines both lipophilic and hydrophilic antioxidants, the high value obtained in the camu-camu 417 

flour was expected as this product revealed high contents of both vitamin C and phenolic 418 

compounds. This antioxidant capacity was higher than those reported for strawberry (153.6 µmol 419 

Trolox/g) (Wang, Cao, & Prior 1996), and blackberry (204 µmol Trolox/g) (Wang & Lin, 2000) 420 

and were consistent with those previously reported for camu-camu (De Souza Schmidt Gonçalves et 421 

al., 2010).  422 

The antioxidant capacity determined by the ABTS assay was lower than that determined by the 423 

DPPH assay for the camu-camu flour and pulp powder, and this differs from previous studies with 424 

other plant extracts (Arnao, 2000). This could be explained by the higher content of phenolics, 425 

particularly proanthocyanidins, in the flour, which are more soluble in methanol than in water. 426 

Nevertheless, the high antioxidant capacities of the flour determined by the ABTS and the ORAC 427 

assays can also be related to the high content of vitamin C and phenolic compounds present. The 428 

ORAC values were also lower than those determined as DPPH for both powders. This could again 429 

be due to the extraction of the camu-camu powders in water which can probably limit the extraction 430 

of some phenolics, such as the proanthocyanidins.  431 

 432 

4. Conclusion 433 

Camu-camu fruit is considered as a good source of bioactive compounds potentially beneficial 434 

for human health. The consumption of this fruit is limited by its acidity and bitter taste, and 435 

therefore the dehydration process is a good alternative for its use as a powdered food ingredient. 436 



 
 
 
 

 
 

These results revealed that the two camu-camu powder products studied are excellent sources of 437 

bioactive substances including vitamin C and phenolic compounds which resulted in high 438 

antioxidant capacity values. Camu-camu flour showed a higher concentration of vitamin C than the 439 

camu-camu pulp powder and high proanthocyanidins content. Therefore, camu-camu flour has a 440 

good potential to be used as an ingredient for the formulation of functional foods. The results 441 

provide further evidence that this flour is a rich source of bioactive compounds with potential 442 

health-promoting properties such as antioxidant, anti-inflammatory, and hypocholesterolemic 443 

activities which have been related to vitamin C and phenolic compounds such as flavonoids. 444 

However, in vivo and intervention studies are needed to assess the nutritional and functional 445 

potential of this camu-camu product.  446 

 447 
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Table 1. HPLC-DAD-ESI-MS-MS analysis of camu-camu powders phenolic compounds.  1 

Number Compound 

Retention 

Time 

(min) 

[M-H]
- λ max (nm) MS fragments 

Flavonols     

4 Myricetin 3-O-hexoside 27.5 479 264, 358 316, 221, 179 
6 Myricetin 3-O-pentoside 29.2 449 258, 356 317 
6 Myricetin 3-O-pentoside 30.4 449 272, 356 316 

26 Quercetin 3-O-hexoside 31.7 463 256, 362 417, 301 

27 Quercetin 3-O-pentoside  35.5 433 256, 352 301, 179, 151 

28 Myricetin 38.3 317 256, 374 317, 179, 151 

      

Anthocyanins     

29 Cyanidin 3-O-glucoside 20.6 447 520 285 
 

Ellagic acid derivatives      

1 Valoneic acid dilactone 15.4 469 255, 374 425 
2 Ellagic acid hexoside 24.7 463 255, 362 301 
3 Ellagic acid pentoside 28.9 433 254, 360 301 
5 Ellagic acid desoxyhexoside 29.7 447 254, 364 300 
7 Ellagic acid 30.9 301 256, 368 229 
8 Ellagic acetyl rhamnoside 35.9 489 254, 362 301 
9 Ellagic acetyl rhamnoside 36.5 489 254, 362 301  

10 Ellagic acid derivative 37.2 585 254, 360 415, 301 
12 Ellagic acid derivative 40.8 719 254, 362 301 
13 Ellagic acid derivative 41.5 719 254, 362 301 

     
Ellagitannins      

15 Castalagin 11.5 933 246 915, 889, 631 
16 Vescalagin 13.9 933 246 915, 889, 631 
48 HHDP-galloyl-glucose 15.3 633 240, 270 463, 301 

18 
Di-HHDP-glucose 

(Pedunculagin) 
16.2 784 240 481, 301 

47 
Di-HHDP-galloyl-glucose 

(casuarictin/potentillin) 
19.5 935 240, 270 917, 633, 301 

19 HHDP-galloyl-glucose 19.8 633 240, 270 463, 301 

20 
Di-HHDP-galloyl-glucose 

(casuarictin/potentillin) 
20.5 935 240, 270 917, 633, 301 

21 Digalloyl-HHDP-glucose 21.8 785 240, 272 484, 301 

23 
Di-HHDP-galloyl-glucose 

(casuarictin) 
25.9 935 240, 270 917, 633, 301 

24 
Tri-galloyl-HHDP-glucose 

(tellimagrandin II) 
27.9 937 240, 276 767, 741, 465, 301 

     
Gallic acid derivatives     

14 Gallic acid 9.0 169 274 125 
25 Gallic acid derivative 37.8 569 238, 274 551, 523, 169 

      
Proanthocyanidins     

17 
Gallocatechin-gallocatechin 

gallate-gallocatechingallate  
15.8 1221 240,274sh 915 

46 Gallocatechin-gallate 24.0 457 240, 274 331,305,169 
22 Gallocatechin-gallate-dimer 24.1 915 240, 274 457, 169 
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Table 2. High-Resolution UPLC-Q-TOF Characterization of phenolic compounds in camu-camu 3 

powders. 4 

Number Compound 
Exact 

mass 

Exact 

mass 

theorical  
Error Score 

Retention 

Time 

(min) 
Formula 

Flavonols       

4 Myricetin 3-O-hexoside 479.0842 479.0831 -2.85 91.42 8.2 C21H20O13 
6 Myricetin 3-O-pentoside 449.0734 449.0725 -2.32 96.00 8.6 C20H18O12 
6 Myricetin 3-O-pentoside 449.0734 449.0725 -2.37 95.17 9.0 C20H18O12 
6 Myricetin 3-O pentoside 449.0735 449.0725 0.20 94.43 9.1 C20H18O12 

26 Quercetin 3-O-hexoside 463.0890 463.0882 -2.18 96.46 9.2 C21H20O12 
27 Quercitin 3-O-pentoside  433.0787 433.0776 -2.35 97.02 10.3 C20H18O11 
28 Myricetin 317.0314 317.0303 -3.59 95.54 11.4 C15H10O8 

        
Anthocyanins       

29  Cyanidin 3-O-glucoside 447.0944 447.0933 -2.63 95.31 6.2 C21H21O11 
       

Ellagic acid derivatives       

1 Valoneic acid dilactone 469.0053 469.0049 -0.95 99.06 5.0 C21H9O13 
2 Ellagic acid hexoside 463.0533 463.0518 -0.42 98.59 7.3 C20H16O13 
3   Ellagic acid pentoside 433.0423 433.0412 -2.53 96.75 8.4 C19H14O12 
5 Ellagic acid desoxyhexoside 447.0593 447.0569 -4.62 85.05 8.7 C20H16O12 
7 Ellagic acid 301.0000 300.9990 -3.42 96.08 9.1 C14H6O8 
8 Ellagic acid acetyl-rhamnoside 489.0679 489.0675 -0.76 99.15 10.8 C22H18O13 
9 Ellagic acid acetyl-rhamnoside 489.0678 489.0675 -0.68 98.76 10.9 C22H18O13 

10 Ellagic acid derivative 585.0526 585.0522 -0.97 98.17 11.2 C26H18O16 
12 Ellagic acid derivative 719.2199 921.2193 -0.94 96.34 12.7 C34H39O17 
13 Ellagic acid derivative 719.2206 719.2193 -1.20 96.14 12.8 C34H40O17 

        
Ellagitannins       

15 Castalagin 933.0645 933.0640 -0.33 98.45 3.9 C41H26O26 
16 Vescalagin 933.0640 933.0640 -0.31 99.68 4.6 C41H26O26 
48 HHDP-galloyl-glucose 633.0746 633.0733 -3.35 93.54 4.8 C27H22O18 
18 Di-HHDP-glucose 783.0695 783.0686 0.22 98.40 5.0 C34H24O22 
47 Di-HHDP-galloyl-glucose 935.0794 935.0796 0.36 95.48 5.1 C41H28O26 
19 HHDP-galloyl-glucose 633.0747 633.0733 -3.10 85.20 5.2 C27H22O18 
20 Di-HHDP-galloyl-glucose 935.0801 935.0796 -0.96 97.97 6.4 C41H28O26 
21 HHDP-digalloyl-glucose 785.0857 785.0843 -2.06 95.92 6.7 C34H26O22 
23 Di-HHDP-galloyl-glucose 935.0797 935.0796 0.00 99.93 8.0 C41H28O26 
24 Tri-galloyl-HHDP-glucose 937.0945 937.0953 0.45 99..37 8.5 C41H30O26 

        
Proanthocyanidins        

49 Gallocatechin 305.0674 305.0667 -1.25 99.38 4.3 C15H14O7 
50 Catechin  289.0723 289.0718 -2.27 97.85 5.0 C15H14O6 
51 Procyanidin dimer B-type 577.1349 577.1351 -0.66 99.02 5.6 C30H26O12 
22 Gallocatechin gallate dimer 913.1461 913.1469 0.62 99.36 6.9 C44H34O22 
46 Gallocatechin gallate 457.0779 457.0776 -2.21 97.4 7.7 C22H18O11 
53 Catechin gallate 441.0828 441.0827 -1.49 98.27 9.7 C22H18O10 

        
Gallic acid and derivatives       

14 Gallic acid 169.0147 169.0142 -2.58 98.89 3.1 C7H6O5 
25 Gallic acid derivative 569.2246 569.2240 -0.75 97.97 10.9 C27H38O13 
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Table 3. Content of phenolic compounds in camu-camu powders. Mean values (n=3) with standard deviation. 6 

Number Compound 
Pulp powder 

(mg/100g powder) 

Flour 

(mg/100g powder) 

Flavonols   

4 Myricetin 3-O-hexoside 0.55 ± 0.11 1.40 ± 0.05 

6 Myricetin 3-O-pentoside trace Nd 

6 Myricetin 3-O-pentoside 1.47 ± 0.07 trace 

26 Quercetin 3-O-hexoside trace Nd 

27 Quercetin 3-O-pentoside  0.05±0.01 Nd 

28 Myricetin 0.98±0.04 5.28 ± 0.10 

 Total 3.05 ±0.07 6.68 ± 0.16 

Anthocyanins   

29 Cyanidin 3-O-glucoside 19.63 ± 0.60 Nd 

    

Ellagic acid derivatives    

1 Valoneic acid dilactone Nd 5.46 ± 0.10 

2 Ellagic acid hexoside Nd 7.52 ± 0.08 

3 Ellagic acid pentoside 1.22 ± 0.07 20.42 ± 0.16 

5 Ellagic acid desoxyhexoside 2.84 ± 0.11 12.94 ± 0.28 

7 Ellagic acid 5.60 ± 0.11 76.49 ± 0.49 

8 Ellagic acetyl rhamnoside Nd 3.90 ± 0.06 

9 Ellagic acetyl rhamnoside Nd 3.13 ± 0.06 

10 Ellagic acid derivative Nd 2.27 ± 0.14 

12 Ellagic acid derivative Nd 1.51 ± 0.03 

13 Ellagic acid derivative Nd 1.61 ± 0.01 

 Total 9.75 ±0.10 129.80 ± 0.15 
    

Ellagitannins    

15 Castalagin Nd 64.51 ± 1.11 

16 Vescalagin 12.71 ± 0.51 228.88 ± 1.89 

18 
Di-HHDP-glucose 

(Pedunculagin) 
3.39 ± 0.16 17.93 ± 0.17 

47 
Galloyl-bis-HHDP-glucose 

(casuarinin(potentillin) 
Nd 29.89 ± 0.21 

19 HHDP-galloyl-glucose Nd 37.80 ± 0.17 

20 
Di-HHDP-galloyl-glucose 

(casuarictin/potentillin) 
Nd 38.37 ± 2.78 

21 HHDP-galloyl-glucose Nd 7.89 ± 0.41 

23 
Di-HHDP-galloyl-glucose 

(casuarictin) 
Nd 5.71 ± 0.35 

24 
Tri-galloyl-HHDP-glucose 

(tellimagrandin II) 
Nd 4.89 ± 0.17 

 Total 16.10 ±0.33 435.86 ± 0.98 
    

Gallic acid derivatives   

14 Gallic acid Nd 29.56 ± 0.71 

25 Gallic acid derivative Nd 6.40 ± 0.50 

 Total  35.96 ± 0.54 
    

Proanthocyanidins   

17 
Gallocatechin-gallocatechin 

gallate-gallocatechingallate 
Nd 19.38 ± 0.78 

46 Gallocatechin-gallate Nd 27.35 ± 0.89 

22 Gallocatechin-gallate-dimer Nd 17.46 ± 0.39 

 Total  64.19 ± 0.54 
   

 TOTAL 48.54±0.28 672.49±0.55 
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Table 4. Proanthocyanidin analysis of camu-camu flour by phloroglucinolysis. HPLC Retention 8 

times, UV/Vis spectra, HPLC-ESI-MS-MS fragmentations. 9 

Number Compound 

Retention 

Time 

(min) 

[M-H]
- 

λ max 

(nm) 

MS 

fragments 

mg/100 mg 

powder 

(average±sd) 

30 Catechin 15.3 289 275 245, 205, 179 213.53±3.27 
31 Epicatechin 19.1 289   trace 

32 Catechin aduct 11.5 413   trace 

33 Epicatechin aduct 12.0 413 277 287, 261, 175 845.48±1.89 
34 Catechin gallate 24.9 441 277 331, 289, 169 52.02±0.40 
35 Epicatechin gallate 27.4 441   trace 

36 Gallocatechin aduct 17.4 565 277 439, 413, 395 677.73±11.99 
37 Epigallocatechin aduct 23.6 565   trace 

38 Gallocatechin 10.7 305 277 287, 219, 178 45.28±4.72 
39 Epigallocatechin 14.4 305 277 287, 219, 178 60.10±0.67 
40 Gallocatechin aduct 6.1 429   trace 

41 Epigallocatechin aduct 8.6 429 275 303, 261, 177 409.20±6.47 
42 Gallocatechin gallate 19.3 457 275 331, 305, 287 352.75±0.13 
43 Epigallocatechin gallate 22.2 457   trace 

44 Gallocatechin gallate aduct 10.2 581   trace 

45 Epigallocatechin gallate aduct 12.4 581 275 455, 429, 319 767.46±0.13 
     Total 3525.54±3.30 
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Figure Captions 

Figure 1: HPLC analyses of phenolic compounds from camu-camu pulp powder at 360 nm (A), 

camu-camu flour at 360 nm (B) and at 280 nm (C). *: unidentified compound. For compound 

characterization see Table 1.  HPLC-DAD-MS-MS chromatogram of camu-camu flour 

proanthocyanidins (D) analyzed using the acid catalyzed degradation in the presence of 

phloroglucinol (280 nm). For compound identification see Table 4.  

 

Figure 2. Characteristic phenolic compounds of camu-camu powders.
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