
Chilean Journal of Statistics
Vol. 3, No. 1, April 2012, 15–29

Bayesian Statistics

Research Paper

A Bayesian random effects model for survival probabilities
after acute myocardial infarction

Alessandra Guglielmi1, Francesca Ieva1,∗, Anna M. Paganoni1

and Fabrizio Ruggeri2

1Department of Mathematics, Politecnico di Milano, Milano, Italy
2CNR IMATI, Milano, Italy

(Received: 18 March 2011 · Accepted in final form: 14 July 2011)

Abstract

Studies of variations in health care utilization and outcome involve the analysis of multi-
level clustered data, considering in particular the estimation of a cluster-specific adjusted
response, covariates effect and components of variance. Besides reporting on the extent
of observed variations, those studies quantify the role of contributing factors including
patients’ and providers’ characteristics. In addition, they may assess the relationship
between health care process and outcomes. In this article we present a case-study, con-
sidering a Bayesian hierarchical generalized linear model, to analyze MOMI2 (Month
Monitoring Myocardial Infarction in Milan) data on patients admitted with ST-elevation
myocardial infarction diagnosis; both clinical registries and administrative databanks
were used to predict survival probabilities. The major contributions of the paper consist
in the comparison of the performance of the health care providers, as well as in the
assessment of the role of patients’ and providers’ characteristics on survival outcome.
In particular, we obtain posterior estimates of the regression parameters, as well as of
the random effects parameters (the grouping factor is the hospital the patients were
admitted to), through an MCMC algorithm. The choice of covariates is achieved in a
Bayesian fashion as a preliminary step. Some issues about model fitting are discussed
through the use of predictive tail probabilities and Bayesian residuals.

Keywords: Bayesian generalized linear mixed models · Bayesian hierarchical models
· Health services research· Logistic regression · Multilevel data analysis.

Mathematics Subject Classification: Primary 62F15 · Secondary 62P10 · 62J12.

1. Introduction

Over recent years there has been a growing interest in the use of performance indicators
in health care research, since they may measure some aspects of the health care process,
clinical outcomes or disease incidence. Several examples, available in clinical literature; see,
e.g., Hasday et al. (2002) and Saia et al. (2009), make use of clinical registries to evaluate
performances of medical institutions, helping the health governance to plan activities on
real epidemiological evidence and needs and to evaluate the performances of structures
they manage, providing knowledge about the number of cases, incidence, prevalence and
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survival concerning a specific disease. As a worthy contribution of this work, both clinical
registry and administrative database were used to model in-hospital survival of acute
myocardial infarction patients, in order to point out benchmarks to be used in provider
profiling process.

The disease we are interested in is the ST-segment elevation acute myocardial infarction
(STEMI): it consists of a stenotic plaque detachment, which causes a coronary thrombosis
and a sudden critical reduction of blood flow in coronary vessels. STEMI is characterized
by a great incidence (650 - 700 events per month have been estimated only in Lombardia
region, whose inhabitants are approximately ten millions) and serious mortality (about 8%
in Italy), and in fact it is one of the main causes of death all over the world. A case of STEMI
can be diagnosed through the electrocardiogram (ECG), observing the elevation of ST
segment, and treated by thrombolytic therapy and/or percutaneous transluminal coronary
angioplasty (PTCA), which up to now are the most common procedures. The patients in
our data set always undergo directly to a PTCA procedure avoiding the thrombolysis, even
if the two treatments are not mutually exclusive. Anyway, good results for any of the two
treatments can be evaluated by observing first the in-hospital survival of inpatients, and
then quantifying the reduction of ST segment elevation one hour after the intervention.
Concerning heart attacks, both survival and quantity of myocardial tissues saved from
damage strongly depend on time saved during the process; in this work, we focus on the
survival outcome. Anyhow, time has indeed a fundamental role in the overall STEMI health
care process. By Symptom Onset to Door time we mean the time since symptoms onset up
to the arrival at Emergency Room (ER), and Door to Balloon time (DB time) is the time
since the arrival at ER up to the surgical practice of PTCA. Clinical literature strongly
stresses the connection between in-hospital survival and procedures time, as attested, e.g.,
in Cannon et al. (2000), Jneid et al. (2008) and MacNamara et al. (2006).

The presence of differences in the outcomes of health care has been documented ex-
tensively in recent years. In order to design regulatory interventions by institutions for
instance, it is interesting to study the effects of variations in health care utilization on
patients outcomes, in particular examining the relationship between process indicators,
which define regional or hospital practice patterns, and outcomes measures, such as pa-
tients survival or treatment’s efficacy. If the analysis of variations concerns in particular
the comparison of the performance of health care providers, it is commonly referred to as
provider profiling; see Normand et al. (1997) and Racz and Sedransk (2010). The results of
profiling analyses often have far-reaching implications. They are used to generate feedback
for health care providers, to design educational and regulatory interventions by institutions
and government agencies, to design marketing campaigns by hospitals and managed care
organizations, and, ultimately, to select health care providers by individuals and managed
care groups.

The major aim of this work is to measure the magnitude of the variations of health care
providers and to assess the role of contributing factors, including patients’ and providers’
characteristics on survival outcome in STEMI patients. Data on health care utilization
have a “natural” multilevel structure, usually with patients at the lower level and hospi-
tals forming the upper-level clusters. Within this formulation, two main goals are taken
into account: one is to provide cluster-specific estimates of a particular response, adjusted
for patient’s characteristics, while the other one is to derive estimates of covariates effects,
such as differences between patients of different gender or between hospitals. Hierarchical
regression modelling from a Bayesian perspective provides a framework that can accom-
plish both these goals. In particular, this article considers a Bayesian generalized linear
mixed model (see Zeger and Karim, 1991) to predict the binary survival outcome by means
of relevant covariates, taking into account overdispersion induced by the grouping factor.
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We illustrate the analysis on a subset of data collected in the MOMI2 survey on patients
admitted with STEMI diagnosis in one of the structures belonging to the Milano Cardio-
logical Network, using a logit model for the survival probability. For this analysis, patients
are grouped by the hospital they have been admitted to for their infarction. Assuming a
Bayesian hierarchical approach for the hospital factors yields modelling dependence among
the random effects parameters, but also using the data set to make inferences on hospitals
which do not have patients in the study, borrowing strength across patients, as well as
clustering the hospitals. A Markov chain Monte Carlo (MCMC) algorithm is necessary to
compute the posterior distributions of parameters and predictive distributions of outcomes,
as well as to use other diagnostic tools, such as Bayesian residuals, for goodness-of-fit anal-
ysis. The choice of covariates and link functions was suggested first in Ieva and Paganoni
(2011), according to frequentist selection procedures and clinical know-how; however, it
was confirmed here using Bayesian tools. We found out that killip first, that is an index
of the severity of the infarction, and then age, have a sharp negative effect on the survival
probability, while the Symptom Onset to Balloon time has a lighter influence on it. An
interesting, novel finding is that the resulting variability among hospitals seems not too
large, even if we underlined that four hospitals have a more extreme effect on the survival
(one has a positive effect, while the remaining three have a negative effect) then the others.
Such finding can be explained by the relative homogeneity among the hospitals, all located
in Milano, the region capital. Larger heterogeneity is expected in future when extending
the analysis to all the hospitals in the region. The advantages of a Bayesian approach to
this problem are more than one: providers’ profiling or patients’ classification are allowed
to be guided not only by statistical but clinical knowledge also, hospitals with low expo-
sure can be automatically included in the analysis, and providers’ profiling can be simply
achieved through the posterior distribution of the hospital-effects parameters.

To the best of our knowledge, this study is the first example of the use of Bayesian
methods in provider profiling using data which arise from the linkage between Italian
administrative databanks and clinical registries. This paper shares the same framework
of hierarchical generalized linear mixed models as in Daniels and Gatsonis (1999), who
examined differences in the utilization of coronary artery bypass graft surgery for elderly
heart attack patients treated in hospitals.

The paper is organized as follows. Section 2 illustrates the data set about STEMI in
Milano Cardiological Network, while Section 3 describes the main features of the pro-
posed model, with a short discussion on covariates selection. Section 4 and 5 discuss prior
elicitation and Bayesian inferences, respectively. Finally, Section 6 presents results of the
inference on quantities of interest with a discussion. Some final remarks are reported in
Section 7. All the analyses have been performed with WinBUGS; see Lunn et al. (2000)
and also http://www.mrc-bsu.cam.ac.uk/bugs and R (2009) (version 2.10.1) programs.

2. The STEMI Data Set

A net connecting the territory to hospitals, by a centralized coordination of the emergency
resources, has been activated in the Milano urban area since 2001. The aim of a moni-
toring project on it is the activation of a registry on STEMI to collect process indicators
(Symptom Onset to Door time, first ECG time, Door to Balloon time and so on), in order
to identify and develop new diagnostic, therapeutic and organizational strategies to be
applied to patients affected by STEMI by Lombardia region, hospitals and 118 organi-
zation (the national toll-free number for medical emergencies). To reach this goal, it is
necessary to understand which organizational aspects can be considered as predictive of
time to treatment reduction. In fact, organizational policies in STEMI health care process
concern both 118 organization and hospitals, since a subject affected by an infarction can
reach the hospital by himself or can be taken to the hospital by 118 rescue units.
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So, in order to monitor the Milano Cardiological Network activity, times to treatment
and clinical outcomes, the data collection MOMI2 was planned and made on STEMI pa-
tients, during six periods corresponding to monthly/bimonthly collections. For these units,
information concerning mode of admission (on his/her own or by three different types of
118 rescue units), demographic features (sex, age), clinical appearance (presenting symp-
toms and Killip class at admittance), received therapy (thrombolysis, PTCA), Symptom
Onset to Door time, in-hospital times (first ECG time, DB time), hospital organization
(for example, admission during on/off hours) and clinical outcome (in-hospital survival)
have been listed and studied. The Killip classification is a system used with acute myocar-
dial infarction patients, in order to stratify them in four risk severity classes. Individuals
with a low Killip class are less likely to die within the first 30 days after their myocardial
infarction than individuals with a high Killip class. The whole MOMI2 survey consists of
840 statistical units, but in this work we only focus on patients who underwent primary
PTCA and belonging to the third and fourth collections, since they are of better quality.
Among the resulting PTCA-patients, we selected those who had their own hospital admis-
sion registered also in the Public Health Database of Lombardia region, in order to confirm
the reliability of the information collected in the MOMI2 registry. Finally, the considered
data set consists of 240 patients.

Previous frequentist analyses on MOMI2 survey (see Grieco et al., 2008; Ieva, 2008;
Ieva and Paganoni, 2010) pointed out that age, total ischemic time (Symptom Onset to
Balloon time, denoted by OB) in the logarithmic scale and killip of the patient, are the
most significant factors in order to explain survival probability from a statistical and
clinical point of view. Here killip is a binary variable, corresponding to 0 for less severe
(Killip class equal to 1 or 2) and 1 for more severe (Killip class equal to 3 or 4) infarction.
This choice of covariates was confirmed using Bayesian variable selection procedure; see
the next section for more details.

The main goal of our study is to explain and predict, by means of a Bayesian random
effects model, the in-hospital survival (i.e., the proportion of patients discharged alive
from the hospital). The data set consists of n = 240 patients who were admitted to J = 17
hospitals after a STEMI event. The number of STEMI patients per hospital ranges from 1
to 32, with a mean of 14.12. Each observation yi records if a patient survived after STEMI,
i.e., yi = 1 if the ith patient survived, yi = 0 otherwise. In the rest of the paper, y denotes
the vector of all responses (y1, . . . , yn). The data set is strongly unbalanced, since 95%
of the patients have been discharged alive. The observed hospital-survival rates ranges
from 75% to 100%. These high values are explained because they are in-hospital survival
probabilities, a follow-up data being not available yet. The data set contained some missing
covariates, with proportions of 7%, 24% and 2% for age, OB and killip respectively. The
missing data for age and OB were imputed as the empirical means (64 years for age,
553 minutes for OB), while we sampled the missing 0-1 killip class covariates from the
Bernoulli distribution with probability of success estimated from the non-missing data.
After having imputed all the covariates, the mean value of age and OB did not change,
while the proportion of patients with less severe infarction (killip = 0) was 94%. Finally,
we had no missing data concerning hospital of admission and outcome.

3. A Bayesian Generalized Mixed-Effects Model

We considered a generalized mixed-effects model for binary data from a Bayesian view-
point. For a recent review on this topic, see Chapters 1–3 in Dey et al. (2000). For each
patient (i = 1, . . . , n), let Yi be a Bernoulli random variable with mean pi, which represents
the probability that the ith patient survived after STEMI. The pi’s are modelled through
a logit regression with covariates x := {xi}, xi := (1, xi1, xi2, xi3) which represent the age,
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the Symptom Onset to Balloon time in the log scale (log-OB) and the killip, respectively,
of the ith patient in the data set. Moreover, age and log-OB have been centered. Since the
patients come from J different hospitals, we assume the following multilevel model, with
the hospital as a random effect:

Yi|pi
ind∼ Be(pi), i = 1, . . . , n, (1)

and
logit(pi) = log

(
pi

1− pi

)
= β0 + β1xi1 + β2xi2 + β3xi3 + bk[i], (2)

where bk[i] represents the hospital effect of the ith patient in hospital k[i]. We denote by
β the vector of regression parameters (β0, β1, β2, β3). It is well-known that Equations (1)
and (2) have a latent variable representation (see Albert and Chib, 1993), which can be
very useful in performing Bayesian inference, as well as in providing medical significance:
conditioning on the latent variables Z1, . . . , Zn, the Y1, . . . , Yn are independent, and, for
i = 1, . . . , n,

Yi =

{
1, if Zi ≥ 0;
0, if Zi < 0;

(3)

where

Zi = x>i β + bk[i] + εi, εi
i.i.d.∼ fε, (4)

being fε(t) = e−t(1 + e−t)−2 the standard logistic density function. The same class of
models, however, without considering random effects, was applied in Souza and Migon
(2004) to a similar data set of patients after acute myocardial infarction.

As mentioned in Section 2, the choice of covariates was first suggested in Ieva and
Paganoni (2011), using frequentist model choice tools. However, we have considered it also
in a Bayesian framework, using the Gibbs variable selection method by Dellaportas et al.
(2002). But first, as a default analysis, we considered covariates selection via the R package
BMA; see Raftery et al. (2009). A subgroup of 197 patients with 11 non-missing covariates
was processed by the function bic.glm, and 7 covariates were selected (age, OB time, killip,
sex, admission during on/off hours, ECG time, number of previous hospitalizations). For
this choice of covariates, the non-missing data extracted from the 240-patients data set
consists of 217 units, which were again analyzed via bic.glm . The posterior probability
that each variable is non-zero was very high (about 40%) for age and killip, while they
were smaller than 7% for the others. Moreover, the smallest BICs denoting the “best”
models resulted for those including age, killip and sex. Since sex is strongly correlated
with age in our data set (only elderly women are in), at the end, we agreed with the choice
of covariates in Ieva and Paganoni (2011), considering only age and killip, while the OB
time was strongly recommended by clinical and health care utilization know-how, since it
was the main process indicator of the MOMI2 clinical survey.

As a second analysis, we consider only covariates which have non-missing values for all
patients (age, OB time, killip, sex, admission during on/off hours, number of previous
hospitalizations), to be analyzed using the Gibbs variable selection method. The linear
predictor assumed in the right hand-side of Equation (2) to select covariates can be rep-
resented as

ηi = β0 +
6∑

j=1

γjβjxij , i = 1, . . . , n, (5)
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where (γ1, . . . , γ6) is a vector of parameters in {0, 1}. Of course, a prior for both the
regression parameter β and the model index parameter γ must be elicited, so that the
marginal posterior probability of γ suggest which variables must be included in the model.
We assumed different “noninformative” priors for the logit model with the linear predictor
given in Equation (5), as suggested in Ntzoufras (2002), implementing a simple BUGS
code to compute the marginal posterior distributions for each γj , for j = 1, . . . , 6, and the
posterior inclusion probabilities. However the analysis confirmed the previously selected
model.

The selection of such a few number of covariates (with respect to 13, the total number)
is not surprising since previous analyses; see Ieva (2008) and Ieva and Paganoni (2010)
pointed out that the covariates are highly correlated. For instance, there is dependency
between age on one hand and sex, or symptoms, or mode of admission, on the other,
between symptoms and killip, or symptoms and mode of admission, and between sex
and symptoms. These relationships can be explained because acute coronary syndromes,
as STEMI, affect mainly male patients instead of females, and are more frequent as the
patient age increases. Moreover, it is well-known that the STEMI symptoms depend on the
severity of the infarction itself, and elderly patients have usually more atypical symptoms.
Furthermore, the symptoms may influence the choice of the type of ambulance sent to
rescue the patient; ambulances which allow the ECG teletransmission are usually sent to
patients presenting more typical infarction symptoms, in order to allow them to skip the
waiting time due to ER procedures, and to reduce accordingly the door to balloon time.

4. The Prior Distribution

As mentioned in the previous sections, one of the aim of this paper is to make a compar-
ison among the patients survival probabilities treated in different hospitals of the Milano
Cardiological Network. Such an aim can be accomplished if, for instance, we assume the
hospital each patient was admitted to as a random factor. We make the usual (from a
Bayesian viewpoint) random effects assumption for the hospitals, that is, the hospital ef-
fect parameters bj ’s are drawn from a common distribution; moreover, since no information
is available at the moment to distinguish among the hospitals, we assume symmetry among
the hospital parameters themselves, i.e., b1, . . . , bJ can be considered as (the first part of
an infinite sequence of) exchangeable random variables. Via Bayesian hierarchical models,
not only we model dependence among the random effects parameters b := (b1, . . . , bJ), but
it be also possible to use the data set to make inferences on hospitals which have few or
no patients in the study, borrowing strength across hospitals. As usual in the hierarchical
Bayesian approach, the regression parameter β and the hospital parameter b are assumed
a priori independent, β is given a (multivariate) Gaussian distribution and b is given a
scale-mixture of (multivariate) Gaussian distributions; more specifically:

β ⊥ b, β ∼ MN(µβ, Vβ),

b1, . . . , bJ |σ i.i.d.∼ N(µb, σ
2), and σ ∼ U(0, σ0).

(6)

Observe that the prior assumption on b is that, conditionally on the parameter σ, each
hospital effect parameter has a Gaussian distribution with variance σ2; here the uniform
prior on σ is set as an assumption of ignorance/symmetry on the standard deviation of
each hospital effect. The Gaussian prior for β is standard, but its hyperparameters, as
well as the hyperparameter of the prior distribution for σ, it is given informatively, using
available information from other MOMI2 collections; for more details, see Section 6.2. On
the other hand, a more standard prior for bj would be a scale-mixture of normals, mixed
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by an inverse-gamma distribution for σ2, with parameter (η, η) for small η. However, this
prior has been often criticized (see Gelman, 2006), mainly because the inferences do not
result robust with respect to the choice of η, and the prior density (for all small η), as well
as the resulting posterior, are too peculiar. In what follows, the parameter vector (β,b, σ)
is denoted by θ.

5. Bayesian Inference

Based on given priors and likelihood, the posterior distribution of θ is expressed by

π (θ|y,x) ∝ π (θ)L(y|θ, z,x)f(z)

= π(β)π(b|σ)π(σ)
n∏

i=1

(I(0,+∞)(zi))yi(I(−∞,0](zi))1−yi

n∏

i=1

fε(zi − x>i β − bk[i]).

(7)

We are interested in predictions too. This implies (i) considering the posterior predictive
survival probability of a new patient coming from an hospital already included in the
study, or (ii) the posterior predictive survival probability of a new patient coming from a
new (J + 1)th hospital. We have

P(Yn+1 = 1|y,x, bj) =
∫

R4

P(Yn+1 = 1|β, bj ,x)π(β|bj ,y)dβ, j = 1, . . . , J, (8)

for a new patient with covariate vector x coming from the jth hospital in the study, and

P(Yn+1 = 1|y,x, bJ+1) =
∫

R4

P(Yn+1 = 1|β, bJ+1,x)π(β|bJ+1,y) dβ, (9)

where π(β|bJ+1,y) is computed from

π(β, bJ+1|y) =
∫

R+
π(bJ+1|σ)π(β, σ|y)d σ,

being π(bJ+1|σ) the prior population conditional distribution given in Equation (6).
As far as model checking is concerned, we consider predictive distributions for patients

already enrolled in the study in the spirit of replicated data in Gelman et al. (2004). More
specifically, we compute

P(Y new
i = 1|y,xi, bk[i]), for all i = 1, . . . , n. (10)

Here, Y new
i denotes the ith “replicated data that could have been observed, or, to think

predictively, as the data that we would see tomorrow if the experiment that produced
yi today were replicated with the same model and the same value of parameters that
produced the observed data”; see Gelman et al. (2004, Section 6.3). Since we have a very
unbalanced data set, the following Bayesian rule is adopted: a patient is classified as alive
if P(Y new

i = 1|y,xi, bk[i]) = E[Y new
i |y,xi, bk[i]] is greater than the empirical mean ȳn. This
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rule is equivalent to minimize the expected value of the following loss function

L(P(Yi = 1|y,xi, bk[i]), a1) = Max{0, ȳn − P(Yi = 1|y,xi, bk[i])},
L(P(Yi = 1|y,xi, bk[i]), a0) = Max{0, P(Yi = 1|y,xi, bk[i])− ȳn},

where the action a1 is to classify the patient as alive and the action a0 corresponds to
classify the patient as dead. Then the coherence between the Bayesian rule and the data
set is checked.

Finally we computed the latent Bayesian residuals for binary data as suggested in Albert
and Chib (1995). Thanks to the latent variable representation in Equations (3) and (4) of
the model, we can consider the realized errors

ei = Zi − (x>i β + bk[i]), i = 1, . . . , n, (11)

obtained solving Equation (4) w.r.t. εi. Each ei is a function of the unknown parameters,
so that its posterior distribution can be computed through the MCMC simulated values,
and later examined for indications of possible departures from the assumed model and the
presence of outliers; see also Chaloner and Brant (1998). Therefore, it is sensible to plot
credibility intervals for the marginal posterior of each ei, comparing them to the marginal
prior credibility intervals (of the same level).

6. Data Analysis

In this section we illustrate the Bayesian analysis of the data set described in Section 2,
giving some details on computations and prior elicitation.

6.1 Bayesian computations

As we mentioned in Section 1, all estimates were derived using WinBUGS. The compu-
tation of the full conditionals to directly implement a Gibbs sampler algorithm can be
computed starting from Equation (7); however they are not “standard” distributions, i.e.,
closed form expressions do not exist for all of them, given the priors in Equation (6). Some
details on the full conditionals for general design GLMMs required by WinBUGS are in
Zhao et al. (2006).

The first 100,000 iterations of the chain were discarded, retaining parameter values each
80 iterations to decrease autocorrelations, with a final sample size equal to 5,000; we
run the chains much longer (for a final sample size of 10,000 iterations), but the gain
in the MC errors was relatively small. Some convergence diagnostics (Geweke’s and the
two Heidelberger-Welch ones) were checked; see, e.g., the reference manual of the CODA
package (Plummer et al., 2006) for more details. Moreover, we monitored traceplots, au-
tocorrelations and MC error/posterior standard deviation ratios for all the parameters,
indicating the MCMC algorithm converged. Code is available from the authors upon re-
quest.

6.2 Informative prior hyperparameters

Concerning information about hyperprior parameters, we fixed µb = 0 regardless of any in-
formation, since, by the exchangeability assumption, the different hospitals have the same
prior mean (fixed equal to 0 to avoid confounding with β0). As far as β is concerned, we
have enough past data to be relatively informative in eliciting prior hyperparameters; they
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were fixed after having fitted model given in Equations (1) and (2), under non-informative
priors for θ, to “similar” data, i.e., 359 patients undergone primary PTCA whose data were
collected during the other four MOMI2 collections. Therefore, for the present analysis, we
fixed µβ = (3, 0, 0.1,−0.7)>, which are the posterior means of the regression parameters
under the preliminary analysis. The matrix Vβ was assumed diagonal, Vβ = diag(2, 0.04,
0.5882, 3.3333), which, except for the second value, are about 10 times the posterior vari-
ances of the regression parameters under the preliminary analysis (0.04 is 100 times the
posterior variance, in order to consider a vaguer prior for β1). The prior hyperparameter
σ0 was fixed equal to 10, a value compatible with the support of the posterior distribu-
tion for σ in the preliminary analysis. Posterior estimates of β, b and σ proved to be
robust with respect to µβ and V , even when we fixed a non-diagonal matrix for V , as-
suming prior dependence through the regression parameters (the non-diagonal V elicited
via the preliminary analysis as well). As far as the variances of the β’s parameters are
concerned, the robustness analysis pointed out that assuming smaller values than those
reported here yielded a “too informative” prior, that is the data did not swamp the prior;
on the other hand, larger variances produced typical computational difficulties of a “too
vague” prior. This choice of the variances values represents an optimal trade-off between
these two behaviors.

6.3 Results

Summary inferences about regression parameters and σ can be found in Table 1, while the
marginal posterior distributions are depicted in Figures 1 and 2.

Table 1. Posterior means, standard deviations, and 95% credibility intervals of the regression pa-
rameters and σ.

Informative prior Credibility intervals
mean sd lwr upr

intercept β0 3.8160 0.5704 2.8310 5.1100
age β1 -0.0792 0.0324 -0.1464 -0.0183
log(OB) β2 -0.1527 0.3326 -0.7902 0.5154
killip β3 -1.5090 0.8159 -3.0470 0.1340
random effect std. dev. σ 1.1770 0.7417 0.0766 2.8960

From Table 1 and Figure 1 it is clear that the marginal posteriors of β1 and β3 are
concentrated on the negative numbers, confirming the näıve interpretation that an increase
in age or killip class decreases the survival probability. The negative effect of the log(OB) is
questionable, given its high variability, even if the posterior median of β2 is −0.16. Anyway,
it was indeed included because of its clinical relevance; moreover, it is the main process
indicator in health care monitoring of STEMI procedures. Observe that the posterior
mean of β0 + bj , which is the logit of the survival probability for a patient with “average”
covariates from any hospital, is between 2.90 and 4.78, yielding a high posterior estimates
of the survival probability from any hospital, as expected.

By inspecting Figure 2 a shrinkage of the posterior density of σ with respect to the
uniform prior can be observed; this fact supports the conjecture of a low variability within
medical institutions, which can be partly explained by the relative homogeneity among
the hospitals, all located in Milano. As far as the marginal posterior distribution of the
random effect parameters are concerned, Figure 3 displays the posterior median and mean
(with 95% credibility intervals) of each hospital parameter bj , for j = 1, . . . , J .
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Figure 1. Marginal posterior density of the regression coefficients.
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Figure 2. Marginal posterior density of σ.

In Table 2, we report

p̃j = min{P(bj > 0|y), P(bj < 0|y)}, j = 1, . . . , J,

together with the signum of the posterior median of the bj ’s. Low values of p̃j denote the
posterior distribution of bj is far from 0, so that the jth hospital significantly contributes to
the (estimated) regression intercept β0+bj . In Figure 3, the credible intervals corresponding
to p̃j less than 0.18 are depicted in yellow; it is clear that hospital 9 has a positive effect,
while hospital 10, 11 and 15 have a negative effect on the survival probability.
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Figure 3. Posterior median (bullet), mean (square) and 95% credibility intervals of all random effect
parameters bj . The credible intervals for hospitals such that min(P(bj > 0|y), P(bj < 0|y)) < 0.18
are dashed.

Table 2. Values of p̃j and the signum of the posterior median of each hospital parameters.

b1 b2 b3 b4 b5 b6 b7 b8 b9

0.27 0.40 0.32 0.25 0.44 0.41 0.49 0.49 0.18
+ + + + - + + + +
b10 b11 b12 b13 b14 b15 b16 b17

0.17 0.12 0.28 0.28 0.44 0.17 0.26 0.29
- + - - + - - +

Observe that all the credible intervals of the random effect parameters in Figure 3
include 0, so that we might wonder if the random intercept should be discarded from the
model. However, Mauri (2011) presents a Bayesian selection analysis of the same data set
considered here, concluding that the posterior inclusion probability of the random effect is
significantly larger than 0 (between 0.2 and 0.6 under different reasonable priors). Similar
findings were drawn in Ieva and Paganoni (2010) from a frequentist perspective.

Figure 4 displays medians and 95% credibility intervals for the posterior predictive sur-
vival probabilities give in Equation (8) of four benchmark patients:

(a) x1 = 0, x2 = 0, x3 = 0, i.e., a patient with average age (64 years), average OB (553
min.) and less severe infarction (Killip class 1 or 2);

(b) x1 = 0, x2 = 0, x3 = 1, i.e., a patient with same age and OB as (a), but with severe
infarction (Killip class 3 or 4);

(c) x1 = 16, x2 = 0, x3 = 0, i.e., an elder patient (80 years), with average OB (553 min.)
and less severe infarction;

(d) x1 = 16, x2 = 0, x3 = 1, i.e., an elder patient with average OB and severe infarction,

coming from an hospital already in the study. The last credibility interval (in red in each
panel) corresponds to the posterior predictive survival probability give in Equation (9) of
a benchmark patient coming from a new random (J + 1)th hospital. Moreover, from the
figure it is clear that killip has a stronger (on average) influence on survival than age since,
moving from left to right panels (same age, killip increased) the credibility intervals get
much wider than moving from the top to the bottom panels (same killip, age increased).

Finally, as far as predictive model checking is concerned, we computed the predictive
probabilities in Equation (10); the classification rule described in Section 5 gives an error
rate equal to 27% (64 patients were erroneously classified as dead and only 1 patient was
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Figure 4. Posterior median (bullet), mean (square) and 95% credible intervals of the posterior
predictive survival probabilities for 4 benchmark patients from each hospital in the study and from
a new random hospital (the 18th dashed credible interval).

erroneously classified as alive). As a measure of goodness of fit we also computed the Brier
score, the average squared deviation between predicted probabilities and outcomes, which
is equal to 0.04, showing a fairly good predictive fit of our model.

The left panel of Figure 5 displays the posterior distributions of the Bayesian residuals,
as in Equation (11), for each observations, where the red line in the plot denotes the
prior marginal distribution (logistic). On the other hand, the right panel shows the same
posterior distributions in a 3-dimensional perspective, each residual posterior referring to
the posterior survival probability of the corresponding patient.

The picture shows that there are no outliers among the patients who survived, since
their posterior residual densities and the prior residual one share the same cluster. More
variability appears among the dead patients as far as posterior location and dispersion
are concerned. This feature could be brought about by the disparity in the number of
cases among the dead and the alive in our data set. Moreover, most deaths occur in the
class of more severe infarction, and concern elder people. This rationale explains the larger
credibility intervals in Figure 4(d) (right bottom panel) as well, which in fact refers to
elderly patients with severe infarction.
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Figure 5. Left panel: posterior distributions of the latent Bayesian residuals. The dashed and solid
lines correspond to observations yi = 0 (dead) and yi = 1 (alive), respectively. The solid gray
line is the marginal prior distribution (logistic). Right panel: posterior distributions of the latent
Bayesian residuals against the expected posterior survival probabilities.

7. Conclusions

In this work we have considered a Bayesian hierarchical generalized linear model with ran-
dom effects for the analysis of clinical and administrative data with a multilevel structure.
These data arise from MOMI2 clinical registry, based on a survey on patients admitted with
ST-elevation myocardial infarction diagnosis, integrated with administrative databanks.
The analysis carried out on them could provide a decisional support to the cardiovascular
health care governance. We adopted a Bayesian point of view to tackle the problem of
modelling survival outcomes by means of relevant covariates, taking into account overdis-
persion induced by the grouping factor, i.e., the hospital where each patient has been
admitted to. To the best of our knowledge, this study is the first example of a Bayesian
analysis of data arising from the linkage between Italian administrative databanks and
clinical registries. The main aim of this paper was to study the effects of variations in
health care utilization on patient outcomes, since the adopted model points out relation-
ships between process and outcome measures. We also provided cluster-specific estimates
of survival probabilities, adjusted for patients characteristics, and derived estimates of
covariates effects, using MCMC simulation of posterior distributions of the parameters;
moreover we discussed model selection and goodness of fit. We found out that Killip first,
and age, have a sharp negative effect on the survival probability, while the OB (onset to
balloon) time has a lighter influence on it. The resulting variability among hospitals seems
not too large, even if we underlined that 4 hospitals have a more extreme effect on the
survival: in particular hospital 9 had a positive effect, while hospitals 10, 11 and 15 had a
negative effect. As far as negative features of the MCMC outputs are concerned, we found
that the marginal posterior distributions of (β0, bj), for each j, are concentrated on lines
of the whole parameter space, due to the “confounding” between the intercept parame-
ter and the random effects parameters. However the mixing and the convergence of the
chain, under a suitable thinning, were completely satisfactory. Finally, as a further step in
the analysis, we are considering Bayesian nonparametrics to model the hospital effects, in
order to take advantage of the “in-built” clustering they provide.
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