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1 Introduction

Black holes in anti-de Sitter (AdS) spaces provide an important testground to address

fundamental questions of quantum gravity like holography. These ideas originally emerged

from string theory, but became then interesting in their own right, for instance in recent

applications to condensed matter physics (cf. [1] for a review), where black holes are again

instrumental, since they provide the dual description of certain condensed matter systems

at finite temperature, like e.g. holographic superconductors [2].

On the other hand, among the extremal black holes (which have zero Hawking temper-

ature), those preserving a sufficient amount of supersymmetry are of particular interest,

as this allows (owing to non-renormalization theorems) to extrapolate an entropy com-

putation at weak string coupling (when the system is generically described by a bound

state of strings and branes) to the strong-coupling regime, where a description in terms of

a black hole is valid [3]. However, this picture, which has been essential for our current

understanding of black hole microstates, might be modified in gauged supergravity (arising

from flux compactifications) due to the presence of a potential for the moduli, generated

by the fluxes. This could even lead to a stabilization of the dilaton, so that one cannot

extrapolate between weak and strong coupling anymore. Obviously, the explicit knowledge

of supersymmetric black hole solutions in AdS is a necessary ingredient if one wants to

study this new scenario.

A first step in this direction was made in [4], where the first examples of extremal static

BPS black holes in AdS4 with nontrivial scalar field profiles were constructed. This analysis

was facilitated by the results of [5], where all timelike supersymmetric backgrounds of N =

2, D = 4 gauged supergravity coupled to abelian vector multiplets were classified. This

provides a systematic method to obtain BPS solutions, without the necessity to guess some
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suitable ansätze. The upshot of [4] was the construction of a genuine static supersymmetric

black hole with spherical horizon. This came as a surprise, since up to now the common

folklore was that static spherical AdS black holes develop naked singularities in the BPS

limit [6]. This is indeed true in minimal gauged supergravity, but the no-go theorems of [6]

were circumvented in [4] by admitting nonconstant moduli. The spherical solutions of [4]

were then further studied and generalized in [7, 8].

In this paper, we shall go one step further with respect to [4], and include also rotation.

Apart from the supersymmetric Kerr-Newman-AdS family [9, 10] and its cousins with

noncompact horizons [10], there are not many known solutions of this type. One of the

most notable exceptions is perhaps the rotating two-charge black hole in SO(4)-gauged

N = 4, D = 4 supergravity [11], whose BPS limit was studied in [12]. Notice that the

black holes constructed below are qualitatively different from the ones in [11], since they

are solitonic objects that admit no smooth limit when the gauging is turned off.

In addition to the motivation given above, a further reason for considering super-

symmetric rotating black holes is the attractor mechanism [13–17], which states that the

scalar fields on the horizon and the entropy are independent of the asymptotic values of

the moduli. (The scalars are attracted towards their purely charge-dependent horizon val-

ues). However, in gauged supergravity, the moduli fields have a potential, and typically

approach the critical points of this potential asymptotically, where the solution approaches

AdS. Thus, unless there are flat directions in the scalar potential, the values of the moduli

at infinity are completely fixed (in terms of the gauge coupling constants), and therefore

a more suitable formulation of the attractor mechanism in AdS would be to say that the

black hole entropy is determined entirely by the charges, and is independent of the values

of the moduli on the horizon that are not fixed by the charges. First steps towards a

systematic analysis of the attractor flow in AdS were made in [18, 19] for the non-BPS and

in [4, 8] for the BPS case, but it would be very interesting to generalize in particular the

results of [4] to include also rotation.

The remainder of this paper is organized as follows: In the next section, we briefly

review N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets (presence

of U(1) Fayet-Iliopoulos terms) and give the general recipe to construct supersymmetric

solutions found in [5]. In 3, the equations of [5] are solved for constant scalars. This

leads to a generalization of the Plebanski-Demianski solution of cosmological Einstein-

Maxwell theory to an arbitrary number of vector multiplets. We also find a remarkable

relationship of the latter with the dimensionally reduced gravitational Chern-Simons action.

In section 4, the case of nonconstant scalars is considered, using the SU(1, 1)/U(1) model

with prepotential F = −iX0X1. First, we present in 4.1 a class of one half BPS near-

horizon geometries, where the moduli field still has a nontrivial dependence on one of

the horizon coordinates. Then, in section 4.2, a two-parameter family of rotating black

holes is constructed. These solutions preserve one quarter of the supersymmetries, and

approach the geometries of section 4.1 near the horizon. (4.3) contains an uplifting of the

obtained black holes to M-theory, together with some comments on their higher-dimensional

interpretation. We conclude in 5 with some final remarks.
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The reader who wants to skip the technical details can, instead of reading sections 3

and 4.2, immediately jump to eqs. (3.18) ff. and (4.31) ff. respectively for a summary

of the results.

2 N = 2, D = 4 gauged supergravity and its BPS geometries

We consider N = 2, D = 4 gauged supergravity coupled to nV abelian vector multi-

plets [20].1 Apart from the vierbein eaµ, the bosonic field content includes the vectors

AI
µ enumerated by I = 0, . . . , nV , and the complex scalars zα where α = 1, . . . , nV . These

scalars parametrize a special Kähler manifold, i. e. , an nV -dimensional Hodge-Kähler man-

ifold that is the base of a symplectic bundle, with the covariantly holomorphic sections

V =

(

XI

FI

)

, DᾱV = ∂ᾱV − 1

2
(∂ᾱK)V = 0 , (2.1)

where K is the Kähler potential and D denotes the Kähler-covariant derivative. V obeys

the symplectic constraint

〈V , V̄〉 = XI F̄I − FIX̄
I = i . (2.2)

To solve this condition, one defines

V = eK(z,z̄)/2v(z) , (2.3)

where v(z) is a holomorphic symplectic vector,

v(z) =

(

ZI(z)
∂

∂ZI F (Z)

)

. (2.4)

F is a homogeneous function of degree two, called the prepotential, whose existence is

assumed to obtain the last expression. The Kähler potential is then

e−K(z,z̄) = −i〈v , v̄〉 . (2.5)

The matrix NIJ determining the coupling between the scalars zα and the vectors AI
µ is

defined by the relations

FI = NIJX
J , DᾱF̄I = NIJDᾱX̄

J . (2.6)

The bosonic action reads

e−1Lbos =
1

2
R+

1

4
(ImN )IJF

I
µνF

Jµν − 1

8
(ReN )IJ e

−1ǫµνρσF I
µνF

J
ρσ

−gαβ̄∂µz
α∂µz̄β̄ − V , (2.7)

with the scalar potential

V = −2g2ξIξJ [(ImN )−1|IJ + 8X̄IXJ ] , (2.8)

1Throughout this paper, we use the notations and conventions of [21].
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that results from U(1) Fayet-Iliopoulos gauging. Here, g denotes the gauge coupling and

the ξI are constants. In what follows, we define gI = gξI .

The most general timelike supersymmetric background of the theory described above

was constructed in [5], and is given by

ds2 = −4|b|2(dt+ σ)2 + |b|−2(dz2 + e2Φdwdw̄) , (2.9)

where the complex function b(z,w, w̄), the real function Φ(z,w, w̄) and the one-form σ =

σwdw+σw̄dw̄, together with the symplectic section (2.1)2 are determined by the equations

∂zΦ = 2igI

(

X̄I

b
− XI

b̄

)

, (2.10)

4∂∂̄

(

XI

b̄
− X̄I

b

)

+ ∂z

[

e2Φ∂z

(

XI

b̄
− X̄I

b

)]

−2igJ∂z

{

e2Φ
[

|b|−2(ImN )−1|IJ + 2

(

XI

b̄
+
X̄I

b

)(

XJ

b̄
+
X̄J

b

)]}

= 0 , (2.11)

4∂∂̄

(

FI

b̄
− F̄I

b

)

+ ∂z

[

e2Φ∂z

(

FI

b̄
− F̄I

b

)]

−2igJ∂z

{

e2Φ
[

|b|−2ReNIL(ImN )−1|JL+2

(

FI

b̄
+
F̄I

b

)(

XJ

b̄
+
X̄J

b

)]}

−8igIe
2Φ

[

〈I , ∂zI〉 −
gJ

|b|2
(

XJ

b̄
+
X̄J

b

)]

= 0 , (2.12)

2∂∂̄Φ=e2Φ

[

igI∂z

(

XI

b̄
− X̄I

b

)

+
2

|b|2 gIgJ(ImN )−1|IJ +4

(

gIX
I

b̄
+
gIX̄

I

b

)2
]

, (2.13)

dσ + 2 ⋆(3)〈I , dI〉 − i

|b|2 gI

(

X̄I

b
+
XI

b̄

)

e2Φdw ∧ dw̄ = 0 . (2.14)

Here ⋆(3) is the Hodge star on the three-dimensional base with metric3

ds23 = dz2 + e2Φdwdw̄ , (2.15)

and we defined ∂ = ∂w, ∂̄ = ∂w̄, as well as

I = Im
(

V/b̄
)

. (2.16)

Given b, Φ, σ and V, the fluxes read

F I = 2(dt + σ) ∧ d
[

bXI + b̄X̄I
]

+

|b|−2dz ∧ dw̄
[

X̄I(∂̄b̄+ iAw̄ b̄) + (DαX
I)b∂̄zα −XI(∂̄b− iAw̄b) − (DᾱX̄

I)b̄∂̄z̄ᾱ
]

−

|b|−2dz ∧ dw
[

X̄I(∂b̄+ iAw b̄) + (DαX
I)b∂zα −XI(∂b− iAwb) − (DᾱX̄

I)b̄∂z̄ᾱ
]

−
1

2
|b|−2e2Φdw ∧ dw̄

[

X̄I(∂z b̄+ iAz b̄) + (DαX
I)b∂zz

α −XI(∂zb− iAzb) −

(DᾱX̄
I)b̄∂z z̄

ᾱ − 2igJ (ImN )−1|IJ
]

. (2.17)

2Note that also σ and V are independent of t.
3Whereas in the ungauged case, this base space is flat and thus has trivial holonomy, here we have U(1)

holonomy with torsion [5].
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In (2.17), Aµ is the gauge field of the Kähler U(1),

Aµ = − i

2
(∂αK∂µz

α − ∂ᾱK∂µz̄
ᾱ) . (2.18)

3 Constant scalars

Let us first assume gIDαX
I = 0, which implies that the scalars are constant.4

In order to solve the system (2.10)–(2.14), inspired by the analysis in pure gauged

supergravity [22], we make the ansatz

X̄

b
=
f(z) + p(w, w̄)

g(z)
, e2Φ = h(z)ℓ(w, w̄) , (3.1)

where we defined X ≡ gIX
I . Here, f(z), g(z) and p(w, w̄) are complex functions, while

h(z) and ℓ(w, w̄) are real. (2.10) implies then that ḡp− gp̄ is independent of w, w̄. This in

turn leads to

p = (1 + iλ1)Re p+ iλ2 ,

where λ1, λ2 ∈ R are constants. From the ansatz (3.1) it is clear that the prefactor 1 + iλ1

as well as iλ2 can be absorbed into f(z) and g(z), so that we can choose p real without

loss of generality. But then g(z) is also real, if we want p to have a nontrivial dependence

on w, w̄. Thus, equ. (2.10) boils down to

∂z lnh = −8Im f

g
, (3.2)

while (2.13) gives

∂∂̄ ln ℓ

ℓ
= h

[

−1

4
∂2

z lnh+
2

g2|X|2 |f + p|2gIgJ (ImN )−1|IJ +
4

g2
(f + f̄ + 2p)2

]

. (3.3)

This is of the type

A(w, w̄) = −B(z) + C(z)p(w, w̄) +D(z)p2(w, w̄) , (3.4)

for some functions A, B, C, D. Applying the operator ∂∂z to (3.4) yields p = const. or

C,D constant. The former case is trivial, so we shall consider the latter in what follows.

(3.4) implies then that B is constant as well. Explicitely we have

D =
h

g2

[

2

|X|2 gIgJ(ImN )−1|IJ + 16

]

, C = (f + f̄)D , (3.5)

and hence the real part of f(z) is independent of z, and can be absorbed into p. One

can thus choose f imaginary and C = 0 without loss of generality. Using the special

geometry relation

gαβ̄DαX
IDβ̄X̄

J = −1

2
(ImN )−1|IJ − X̄IXJ , (3.6)

4This is true if the scalar potential has no flat directions.
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we get D = 12h/g2. Taking into account (3.2), the expression for B becomes

B =
h

4
(lnh)′′ +

h

16
(lnh)′2 = constant . (3.7)

This is a differential equation for h, with solution

h =







(

B
u0

+ u0z
2
)2

, u0 6= 0 ,

−4Bz2 , u0 = 0 ,
(3.8)

where u0 denotes a real integration constant.5 In the following, we are interested in the

case u0 6= 0 only. For the functions g and f one has

g = ±2

√

3h

D
, f = ∓ i

2

(
√

3h

D

)′

. (3.9)

By rescaling p → ±p
√

3/D/2 in the ansatz (3.1) we can choose the upper sign and set
√

3/D/2 = 1, i.e., D = 3/4 without loss of generality. Then (3.3) reduces to

∂∂̄ ln ℓ = ℓ

[

−B +
3

4
p2

]

. (3.10)

The Bianchi identities (2.11) are automatically satisfied, while the Maxwell equations (2.12)

imply

∂∂̄p = ℓ

[

1

4
p3 −Bp

]

. (3.11)

As was noticed in [22], (3.10) and (3.11) follow from the dimensionally reduced gravitational

Chern-Simons action [23]

S =

∫

d2x
√
g
[

pR+ p3
]

, (3.12)

if we choose the conformal gauge gijdx
idxj = ℓdwdw̄. Note that in (3.12), p is not a

fundamental field, rather it is the curl of a vector potential,
√
gǫijp = ∂iAj−∂jAi. Actually,

the equations of motion following from the action (3.12) are slightly stronger than our

system (3.10), (3.11), which does not include the traceless part of the constraints δS/δgij =

0. Grumiller and Kummer were able to write down the most general solution of (3.12),

using the fact that the dimensionally reduced Chern-Simons theory can be written as a

Poisson-sigma model with four-dimensional target space and degenerate Poisson tensor of

rank two [24]. This solution is given by [24]

ℓ =
1 + δ

cosh4(
√
Bx̃)

, p = 2
√
B tanh(

√
Bx̃) ,

δ =

( C
2B2

− 1

)

cosh4(
√
Bx̃) , (3.13)

5A further integration constant can be eliminated by shifting z.
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where the coordinate x̃ is related to x = (w + w̄)/2 by

dx

dx̃
=

cosh2(
√
Bx̃)

1 + δ
, (3.14)

and C denotes an integration constant.6 Note that the solution for negative B can be

obtained by a simple analytical continuation from (3.13) [22].

The shift vector σ can now be determined from (2.14), with the result

σ = σydy , σy =
1

4g|X|2
(

p4

8B
− p2 +

C
B

)

− u0p
2

32B|X|2 , y =
w − w̄

2i
. (3.15)

Putting all together and using p as a new coordinate in place of x, the metric (2.9) becomes7

ds2 = −64|X|2(B/u0 + u0z
2)2

4u2
0z

2 + p2
(dt + σydy)

2 +
4u2

0z
2 + p2

16|X|2(B/u0 + u0z2)2
dz2

+
4u2

0z
2 + p2

32B|X|2
(

p4

8B − p2 + C
B

)dp2 +
4u2

0z
2 + p2

32B|X|2
(

p4

8B
− p2 +

C
B

)

dy2 . (3.16)

This resembles the Plebanski-Demianski (PD) solution [25] of cosmological Einstein-

Maxwell theory, which is also specified by quartic structure functions. Indeed, in the case

1 − C/(2B2) > 0, consider the coordinate transformation

(

τ

ς

)

=

(

1 − C
2B2

)−1/2
(

1
u0

− C
16B2|X|2

1
4Bu0

− 1
32B|X|2

)(

t

y

)

, q = 2u0z , (3.17)

which casts the line element (3.16) into the PD form

ds2 =
p2 + q2

P dp2 +
P

p2 + q2
(

dτ + q2dς
)2

+
p2 + q2

Q dq2 − Q
p2 + q2

(

dτ − p2dς
)2
, (3.18)

with the structure functions

P = γ − Ep2 +
p4

l2
, Q = γ̂ + Eq2 +

q4

l2
, (3.19)

where

γ = 32C|X|2 , γ̂ = 64B2|X|2 , E = 32B|X|2 , l2 =
1

4|X|2 . (3.20)

l is related to the effective cosmological constant by Λ = −3/l2. In these coordinates, the

fluxes (2.17) read8

F I =
2XIX̄

|X|(p2 + q2)2
(γ̂ − γ)1/2

[

(p2 − q2)(dτ + q2dς) ∧ dp+ 2pq(dτ − p2dς) ∧ dq
]

. (3.21)

6More precisely, C and B are the Casimir functions of the Poisson sigma model that can be interpreted

respectively as energy and charge [24].
7Notice that the analogue of (3.16) in minimal gauged supergravity was found in [22].
8Observe that contraction of (3.6) with gI and taking into account gIDαXI = 0 yields X̄XJ =

− 1

2
(ImN )−1|IJgI , and thus X̄XJ is real.
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Comparing the functions (3.19) and the field strengths (3.21) with the general expressions

given in [25], we see that in our case the mass, nut and electric charge parameters M, N

and Q vanish. It would be very interesting to see how one has to generalize the ansatz (3.1)

in order to get solutions with nonzero M, N and Q. That there must be supersymmetric

solutions of this type is clear from the analysis for minimal gauged supergravity in [26].

Notice also that for M = N = Q = 0, the BPS conditions obtained in [26] boil down to

E2 =
4

l2
γ̂ , (3.22)

which is exactly what follows from (3.20). As a by-product, we have thus shown that

the PD solution in minimal gauged supergravity with M = N = Q = 0 satisfying (3.22)

does really admit a Killing spinor. This was not obvious, since [26] analyzes only the first

integrability conditions, which are in general necessary but not sufficient for the existence

of Killing spinors.

4 Nonconstant scalar fields

In this section we shall obtain supersymmetric rotating black holes as well as their near-

horizon geometries, which both have nontrivial moduli turned on. This is done for the

SU(1,1)/U(1) model with prepotential F = −iX0X1, that has nV = 1 (one vector multi-

plet), and thus just one complex scalar τ . Choosing Z0 = 1, Z1 = τ , the symplectic vector

v becomes

v =











1

τ

−iτ
−i











. (4.1)

The Kähler potential, metric and kinetic matrix for the vectors are given respectively by

e−K = 2(τ + τ̄) , gτ τ̄ = ∂τ∂τ̄K = (τ + τ̄)−2 , (4.2)

N =

(

−iτ 0

0 − i
τ

)

. (4.3)

Note that positivity of the kinetic terms in the action requires Reτ > 0. For the scalar

potential one obtains

V = − 4

τ + τ̄
(g2

0 + 2g0g1τ + 2g0g1τ̄ + g2
1τ τ̄) , (4.4)

which has an extremum at τ = τ̄ = |g0/g1|. In what follows we assume gI > 0.

4.1 1/2 BPS near-horizon geometries

An interesting class of half-supersymmetric backgrounds was obtained in [27]. It includes

the near-horizon geometry of extremal rotating black holes. The metric and the fluxes

– 8 –
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read respectively

ds2 = −z2eξ
[

dt+ 4(e−2ξ − L)
dx

z

]2

+ 4e−ξ dz
2

z2

+16e−ξ(e−2ξ − L)dx2 +
4e−2ξdξ2

Y 2(e−ξ − Leξ)
, (4.5)

F I = 8i

(

X̄XI

1 − iY
− XX̄I

1 + iY

)

dt ∧ dz

+
4

Y

[

2X̄XI

1 − iY
+

2XX̄I

1 + iY
+ (ImN )−1|IJ gJ

]

(zdt − 4Ldx) ∧ dξ , (4.6)

where L is a real integration constant and Y is defined by

Y 2 = 64e−ξ |X|2 − 1 . (4.7)

The moduli fields zα depend on the coordinate ξ only, and obey the flow equation

dzα

dξ
=

i

2X̄Y
(1 − iY )gαβ̄Dβ̄X̄ . (4.8)

For L > 0, the line element (4.5) can be cast into the simple form

ds2 = 4e−ξ

(

−z2dt̂2 +
dz2

z2

)

+ 16L(e−ξ − Leξ)

(

dx− z

2
√
L
dt̂

)2

+
4e−2ξdξ2

Y 2(e−ξ − Leξ)
, (4.9)

where t̂ ≡ t/(2
√
L). (4.9) is of the form (3.3) of [28], and describes the near-horizon geome-

try of extremal rotating black holes,9 with isometry group SL(2,R)×U(1). From (4.8) it is

clear that the scalar fields have a nontrivial dependence on the horizon coordinate ξ unless

gIDαX
I = 0. As was shown in [27], the solution with constant scalars is the near-horizon

limit of the supersymmetric rotating hyperbolic black holes in minimal gauged supergrav-

ity [10]. We shall now give an explicit example of a near-horizon geometry with varying

scalars, taking the simple model introduced above, with prepotential F = −iX0X1. In

this case the flow equation (4.8) becomes

dτ

dξ
=

i

2Y
(1 − iY )

−g0 + g1τ

g0 + g1τ̄
(τ + τ̄) . (4.10)

Using Y in place of ξ as a new variable, this boils down to

dτ

dY
= − g2

1τ
2 − g2

0

2g0g1(Y − i)
, (4.11)

which is solved by

τ =
g0
g1

Y − i+ C

Y − i− C
, (4.12)

9Metrics of the type (4.9) were discussed for the first time in [29] in the context of the extremal Kerr

throat geometry.
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with C ∈ C an integration constant. This allows to compute |X|2 as a function of Y ,

|X|2 = g0g1
Y 2 + 1

Y 2 + 1 − |C|2 . (4.13)

Plugging this into (4.7) yields an expression for ξ in terms of Y ,

e−ξ =
Y 2 + 1 − |C|2

64g0g1
. (4.14)

4.2 Supersymmetric rotating black holes

We now want to obtain stationary BPS black holes with nonconstant moduli, that approach

the geometries of the previous subsection in the near-horizon limit. To this end, we use

the ansatz
X̄I

b
=
f I(z) + ηI(w, w̄)

g(z)
, e2Φ = h(z)ℓ(w, w̄) , (4.15)

where f I(z) is an imaginary function, while g(z), ηI(w, w̄), h(z) and ℓ(w, w̄) are real.

Then, (2.10) reduces again to (3.2), where f is defined by f ≡ f IgI . (2.13) becomes

∂∂̄ ln ℓ

ℓ
= h

[

−1

4
∂2

z lnh− 8

g2

∑

I

g2
I (η

I2 − f I2
) +

16

g2
η2

]

, (4.16)

with η ≡ ηIgI . Guided by the constant scalar case (cf. section 3) we take h/g2 = const. ≡
c1 > 0 and10

− h

4
∂2

z lnh+
8h

g2

∑

I

g2
If

I2
= const. ≡ c2c1 . (4.17)

With these assumptions, (4.16) gives

∂∂̄ ln ℓ

ℓ
= c1c2 − 8c1

∑

I

g2
Iη

I2
+ 16c1η

2 . (4.18)

In order to solve (4.17), we make the ansatz

g = c+ az2 , h = c1(c+ az2)2 , f I = i(αIz + βI) , (4.19)

for some real constants a, c, αI , βI . One finds that (4.17) is satisfied if the following

constraints hold:

a2 = 8
∑

I

g2
Iα

I2
,

∑

I

g2
Iα

IβI = 0 , −ac− 8
∑

I

g2
Iβ

I2
= c2 . (4.20)

Moreover, (3.2) yields

gIα
I = −a

2
, gIβ

I = 0 . (4.21)

10It is easy to show that for constant scalars one must have fI = γIf , ηI = γIη, where the constants γI

satisfy γIgI = 1. Using this together with (3.2), equ. (4.17) reduces to (3.7).
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The Bianchi identities (2.11) lead to

αI = − a

4gI
, (4.22)

which implies the first equation of (4.21). Finally, the Maxwell equations (2.12) hold

provided that

αIJ∂∂̄η
J + 4gIc1ℓηαLJ

( c

a
αLαJ − βLβJ − ηLηJ

)

= 0 , (4.23)

where

(αIJ) ≡
(

0 1

1 0

)

. (4.24)

It would be interesting to see if (4.18) and (4.23), similar to (3.10) and (3.11), follow from

an action principle of the type (3.12).

We shall now solve the eqs. (4.18), (4.23) under the additional assumption ℓ = ℓ(x),

ηI = ηI(x), using an ansatz analogous to (3.13):

ℓ =
1 + δ

cosh4(κx̃)
, ηI = η̂I tanh(κx̃) ,

δ = A cosh4(κx̃) ,
dx

dx̃
=

cosh2(κx̃)

1 + δ
, (4.25)

where κ, η̂I and A are constants. Plugging this into (4.18) and (4.23) gives

g0η̂
0 = g1η̂

1 , (4g0η̂
0)2c1 = κ2 = −c1c2 . (4.26)

At the end, the shift vector σ is determined by (2.14), which yields

σ = σydy , σy =
η̂0κ(cosh−4(κx̃) +A)

2g1(c+ az2)
+
c1aη̂

0

2g1κ
tanh2(κx̃) . (4.27)

Similar to the case of constant scalars, for A < 0 the solution can be cast into a Plebanski-

Demianski-type form by the coordinate transformation

(

t

y

)

7→ lg1
√

E

η̂0
√
−2A

(

al2

2 − (1+A)al4E

4

− 1√
c1

l2E

2
√

c1

)(

t

y

)

, (4.28)

p = l

√

E

2
tanh(κx̃) , q =

al
√

E

4
√

2g0η̂0
z , (4.29)

where

l2 ≡ 1

4g0g1
. (4.30)

The metric becomes then

ds2 =
p2 + q2 − ∆2

P dp2 +
P

p2 + q2 − ∆2

(

dt+ (q2 − ∆2)dy
)2

+
p2 + q2 − ∆2

Q dq2 − Q
p2 + q2 − ∆2

(

dt− p2dy
)2
, (4.31)
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with the structure functions

P = (1 +A)
E2l2

4
− Ep2 +

p4

l2
, Q =

1

l2

(

q2 +
El2

2
− ∆2

)2

, (4.32)

and the parameter ∆ is defined by

∆ ≡ β0l
√

E√
2η̂0

. (4.33)

Notice that, although we must have obviously E > 0 in the above coordinate transformation,

the final solution in the PD form can be safely continued to E ≤ 0.11

In the new coordinates, the complex scalar field τ reads

τ =
g0
g1

p2 + q2 − ∆2 + 2ip∆

p2 + (q − ∆)2
. (4.34)

For ∆ = 0, τ is thus constant, and assumes the value τ = g0/g1, for which the potential (4.4)

is extremized. Note also that for p fixed and q → ∞ or viceversa, τ tends to g0/g1 as well.

The positivity domain Reτ > 0 is determined by p2+q2−∆2 > 0. Finally, the fluxes (2.17)

are given by F I = dAI , where

AI = − Ep
√
−A

4gI(p2 + q2 − ∆2)

(

dt+ (q2 − ∆2)dy
)

. (4.35)

The solution is thus specified by three free parameters A,E,∆. A particular case is obtained

by choosing
√
−A =

l2 + j2

l2 − j2
, E =

j2

l2
− 1 , (4.36)

p = j cosh θ , y = − φ

jΞ
, t =

T − jφ

Ξ
, Ξ ≡ 1 +

j2

l2
. (4.37)

Defining also

ρ2 = q2 + j2 cosh2 θ , ∆q =
1

l2

(

q2 +
j2 − l2

2
− ∆2

)2

, ∆θ = 1 +
j2

l2
cosh2 θ ,

the metric (4.31), scalar field (4.34) and U(1) gauge potentials (4.35) become

ds2 =
ρ2 − ∆2

∆q
dq2 +

ρ2 − ∆2

∆θ
dθ2 +

∆θ sinh2 θ

(ρ2 − ∆2)Ξ2

(

jdT − (q2 + j2 − ∆2)dφ
)2

− ∆q

(ρ2 − ∆2)Ξ2

(

dT + j sinh2 θdφ
)2
, (4.38)

τ =
g0
g1

j2 cosh2 θ + q2 − ∆2 + 2ij∆ cosh θ

j2 cosh2 θ + (q − ∆)2
, (4.39)

AI =
cosh θ

4gI(ρ2 − ∆2)

(

jdT − (q2 + j2 − ∆2)dφ
)

. (4.40)

11In fact, it is easy to see that the case of negative E corresponds to the analytical continuation κ = ik,

η̂I = in̂I , where k, n̂I ∈ R. The hyperbolic functions in (4.25) become then trigonometric.
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This solution contains two arbitrary constants j and ∆. The former can be interpreted

as rotation parameter, since for j = 0 the geometry is static. Moreover, there is an event

horizon determined by ∆q = 0, i.e., for

q2 = q2h = ∆2 +
1

2
(l2 − j2) . (4.41)

From (4.40) it is also clear that these rotating black holes carry two magnetic charges

that are inversely proportional to the coupling constants gI . Notice that the positivity

domain of the scalar is q2 + j2 cosh2 θ > ∆2, but since for q ≥ qh we have q2 + j2 cosh2 θ ≥
q2h + j2 = ∆2 + (l2 + j2)/2 > ∆2, there are no ghosts outside the horizon.12 For ∆ = 0, the

scalar is constant, and we recover the supersymmetric rotating black hole with hyperbolic

horizon in minimal gauged supergravity found in [10].13 For j = 0 and ∆ 6= 0, (4.38)–(4.40)

boil down to

ds2 = −l2N2dT 2 +
dq2

l2N2
+

(

q2 − l2

2
sinh2 ν

)

(dθ2 + sinh2 θdφ2) , (4.42)

τ =
g0
g1

q − l√
2
sinh ν

q + l√
2
sinh ν

, AI = −cosh θ

4gI
dφ , (4.43)

where

l2N2 =

(

q2

l2 − 1
2 cosh2 ν

)2

q2

l2
− 1

2 sinh2 ν
, ∆ ≡ − l√

2
sinh ν . (4.44)

This is exactly the BPS black hole found in section 3.1 of [4], with hyperbolic horizon

and nontrivial profile for the scalar field. It is interesting to note that for zero rotation

parameter, τ becomes real, whereas for the rotating solution it is complex, i.e., one has a

nonzero axion. A similar scenario was encountered in [11].

Let us now take a closer look at the near-horizon geometry of (4.38), which is obtained

by introducing new coordinates z, t̂, φ̂ according to

q = qh + ǫq0z , T =
t̂q0
ǫ
, φ = φ̂+ Ω

t̂q0
ǫ
, (4.45)

and then taking the limit ǫ→ 0. Here, Ω = j/(q2h + j2 −∆2) is the angular velocity of the

horizon, and q0 is defined by

q20 =
l4Ξ2

8q2h
.

In this way one gets

ds2 =
ρ2
h − ∆2

4q2hz
2
l2dz2 +

ρ2
h − ∆2

∆θ
dθ2 +

l4∆θ sinh2 θ

4(ρ2
h − ∆2)

(

dφ̂+
j

qh
zdt̂

)2

−ρ
2
h − ∆2

4q2h
l2z2dt̂2 , (4.46)

12Presumably there is a curvature singularity at q2 + j2 cosh2 θ = ∆2, although we did not check

this explicitely.
13Actually, even for ∆ = 0, the above solution slightly generalizes the one of [10], in that it carries two

charges instead of one.
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where

ρ2
h = q2h + j2 cosh2 θ .

The final coordinate transformation

e−ξ =
q2h + j2 cosh2 θ − ∆2

16q2h
l2 , x = −16q3h

jl4Ξ
φ̂ , (4.47)

casts the metric (4.46) into the form (4.9), with the constant L in (4.9) given by

L =
l8Ξ2

1024q4h
,

and we used also (4.14). The parameter C appearing in (4.14) turns out to be related to ∆

by ∆2 = q2h|C|2. The phase of C is fixed by requiring that the scalar field (4.39) coincides

(after taking the limit ǫ→ 0) with the expression (4.12), which leads to

C = −i∆
qh

.

Note that there is a simple relationship between θ and the coordinate Y used in section 4.1,

namely

Y = − j

qh
cosh θ ,

and hence Y is up to a prefactor identical to the coordinate p that appears in the PD form

of the metric.

In conclusion, we have found a two-parameter family (4.38)–(4.40) of extremal rotating

black holes preserving one quarter of the supersymmetries, i.e., two real supercharges. The

solutions interpolate between AdS4 at infinity and the geometry (4.9) near the horizon,

which is 1/2 BPS. Notice also that there is a nontrivial scalar field profile (4.39), and for

q → qh, τ does not become constant, but still depends on the horizon coordinate θ.

4.3 Lifting to M-theory

We now want to uplift some of the black hole solutions obtained above to M-theory, and

comment on their higher-dimensional interpretation. To this end, let us be slightly more

general, and consider the stu model of N = 2, D = 4 gauged supergravity (which, as we

shall see below, contains the F = −iX0X1 model used in this section as a truncation). In

the zero-axion case, i.e., for real scalars, this can be embedded into D = 11 supergravity

using the reduction ansatz presented in [30], that we briefly review in what follows. The

eleven-dimensional metric reads

ds211 = ∆̃2/3ds24 + g−2∆̃−1/3
3
∑

I=0

XI−1 (
dµ2

I + µ2
I(dφI + gAI)2

)

, (4.48)

where ∆̃ =
∑3

I=0X
Iµ2

I . The four quantities µI satisfy
∑

I µ
2
I = 1, and can be parametrized

in terms of angles on S3 as

µ0 = sinϑ , µ1 = cos ϑ sinχ , µ2 = cos ϑ cosχ sinψ , µ3 = cos ϑ cosχ cosψ .
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The XI are given by

XI = e−
1

2
~aI ·~ϕ , ~ϕ = (ϕ1, ϕ2, ϕ3) , (4.49)

with

~a0 = (1, 1, 1) , ~a1 = (1,−1,−1) , ~a2 = (−1, 1,−1) , ~a3 = (−1,−1, 1) ,

and satisfy X0X1X2X3 = 1.

The reduction ansatz for the four-form field strength is

F(4) = 2g
∑

I

(

XI2
µ2

I − ∆̃XI
)

ǫ(4) +
1

2g

∑

I

XI−1∗̄dXI ∧ d(µ2
I)

− 1

2g2

∑

I

XI−2
d(µ2

I) ∧ (dφI + gAI) ∧ ∗̄F I , (4.50)

where F I = dAI , ∗̄ denotes the Hodge dual operator of ds24 and ǫ(4) is the corresponding

volume form.

This leads to the four-dimensional stu model with bosonic action

e−1L4 =
1

2

[

R− 1

2
(∂~ϕ)2 − 1

4

∑

I

e~aI ·~ϕF I2
+ 8g2(coshϕ1 + coshϕ2 + coshϕ3)

]

, (4.51)

which can also be obtained from the general theory (2.7) by choosing a prepotential pro-

portional to (X0X1X2X3)1/2, taking all gI equal, and subsequently setting the axions to

zero, cf. [4] for details.14 In order to obtain from (4.51) the model with F = −iX0X1

considered in this section, one has to further truncate according to

ϕ1 = ϕ3 = 0 , eϕ2 = τ , F 2 = F 0 , F 3 = F 1 , (4.52)

such that X2 = X0 and X3 = X1. This yields exactly the model introduced in eqs. (4.1)

ff., with the additional restriction that τ must be real15 and g0 = g1 = g.

Due to the zero-axion condition τ = τ̄ , we cannot uplift the rotating black holes (4.38)–

(4.40), since these have a complex scalar unless ∆ = 0.16 For the static solution (4.42),

(4.43), τ is real, and the above reduction ansatz leads to an eleven-dimensional metric

ds211 = ∆̃2/3ds24 + g−2∆̃−1/3

{

τ1/2

[

dµ2
0 + µ2

0(dφ0 −
1

4
cosh θdφ)2 + dµ2

2

+µ2
2(dφ2 −

1

4
cosh θdφ)2

]

+ τ−1/2

[

dµ2
1 + µ2

1(dφ1 −
1

4
cosh θdφ)2

+dµ2
3 + µ2

3(dφ3 −
1

4
cosh θdφ)2

]}

, (4.53)

14The XI used here are related to the XI in section 3.2 of [4] by XI
here = 2

√
2XI

there. Moreover, one has

to identify gI = g/
√

2, F I
here =

√
2F I

there, and eϕα = τα, α = 1, 2, 3.
15Notice that X0, X1 computed from (4.1) differ from X0 and X1 defined in (4.49) by a factor one half.
16Actually, the F = −iX0X1 model can be embedded into N = 4, D = 4 SO(4) gauged supergravity as

well. To see this, set τ = e−ϕ + iχ, which casts the action (2.7) into an abelian truncation of the bosonic

N = 4 SO(4) gauged supergravity action (17) of [31]. Solutions of the latter can (even for χ 6= 0) in

principle be lifted to eleven dimensions along the lines of [31], but we shall leave this for future work.
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where

∆̃ = τ−1/2(µ2
0 + µ2

2) + τ1/2(µ2
1 + µ2

3) ,

while ds24 and τ are given by (4.42) and (4.43) (with g0 = g1 = g) respectively. Finally, the

four-form field strength can be easily computed from (4.50).

In the case ν = 0, the scalar τ becomes constant (τ = 1), and the solution (4.53)

can be interpreted as the gravity dual corresponding to membranes wrapping holomorphic

curves in a Calabi-Yau five-fold [32]. Moreover, for ν = 0 (i.e., ∆ = 0), τ in (4.39) is

real (and constant), which allows to uplift also the rotating black holes, which in eleven

dimensions correspond to supersymmetric waves on wrapped membranes [32]. It would be

interesting to see whether the general solution (4.53) (for ν 6= 0) has a similar interpretation.

This might allow for a microscopic entropy computation of the four-dimensional black

hole (4.42), which can then be compared with the macroscopic Bekenstein-Hawking result

SBH =
Ahor

4G4
=
πV

4g2
, V ≡

∫

sinh θdθdφ , (4.54)

where we used that 8πG = 1 in our conventions. Notice that, for a noncompact horizon H2,

only the entropy density s = S/V is finite. If instead the hyperbolic space is compactified

to a Riemann surface of genus h, we can use Gauss-Bonnet to get V = 4π(h− 1), and thus

SBH =
π2

g2
(h− 1) . (4.55)

5 Final remarks

In this paper we have constructed new magnetically charged rotating BPS black holes in

N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets. One of our

results is a two-parameter family of solutions with noncompact horizon that preserve two

real supercharges and have a nontrivial scalar field profile. In the near-horizon limit, there

is a supersymmetry enhancement to 1/2 BPS. We limited the calculations of section 4 to

the prepotential F = −iX0X1, but it would be very interesting to generalize them to the

stu or at least to the so-called t3 model, since this admits spherically symmetric static BPS

black holes [4], that can in principle be given rotation.

A further point to explore would be how the attractor equations in gauged supergrav-

ity [4, 8] get modified if one includes rotation. This involves solving eqs. (2.10)–(2.14) for

the most general stationary near-horizon geometry.

Finally, another possible generalization of our work is the inclusion of hypermultiplets.

Black holes in N = 2, D = 4 gauged supergravity with charged hypers were constructed

and analyzed in [33]. When the hypermultiplet scalars are charged, black holes of this

type might have applications in the emerging field of holographic superconductivity, where

usually no analytical solution is known, and one has to resort to numerical techniques.

Work along these directions is in progress [34].
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