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ENEECO-D-13-00402R1 
Answers to the reviewers’ comments 

 

To Prof. Richard S.J. Tol, Editor 

Energy Economics 

 

 

Dear Prof. Tol, 

This letter accompanies the revised version of the paper ENEECO-D-13-00402R1: “Causality and 

Predictability in Distribution: the Ethanol-Food Price Relation Revisited”. 

We thank you for the consideration of our work and we thank the reviewers for this second round of 

comments,  which have greatly improved the readability of our paper. 

As you can see from our detailed reply to the referee’s comments, we have addressed all the points raised 

by reviewer #2. 

In addition, we have followed all your suggestions, that is: i) we have shifted as much material as we could 

to the appendix. Specifically, we have reduced the introduction and the data description, while we have 

moved  part of  the comments on the empirical findings to the appendix. With those adjustments, we have 

been able to reduce the paper length from 31 to 25 pages; ii) we have re-read the paper carefully and 

checked all the references; iii) we have submitted both the black-and-white and the colour versions of the 

graphs. 

We look forward to your final decision on our paper.   

Kind regards, 

Andrea Bastianin, Marzio Galeotti and Matteo Manera 

*Response to Editor
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ENEECO-D-13-00402R1 
Answers to the reviewers’ comments 

Reviewer #2: 

R2/1 The manuscript is still too long for the amount of information it conveys.  Any effort on the part of the 

authors to reduce the length will be much appreciated by the readers. 

We further reduced the length of the paper by placing the section “Quantile forecasts” in the appendix and 

by shortening the introduction and the data section. Now the length of the paper, including figures and 

tables, is 25 pages (the previous version was 31 pages). 

 

R2/2 As an example, the innovative aspects of the manuscript could be reduced to one paragraph instead of 

two pages. 

We did as the referee suggests see reply to R2/1. 

 

R2/3 Please state if prices in figure 1 and table 1 are real or nominal prices.  Some statement on how real 

prices are converted to nominal prices should be provided. 

As described in Section 3 (“Data”) we used nominal prices, therefore no conversions were implemented. 

The title and the notes in Figure 1 have been changed. See R2/5 for Table 1. 

 

Figure 1. Prices: Ethanol, Indices, Field Crops and Cattle 

… 

Notes: Prices are represented on a common scale (i.e. nominal prices have been multiplied by 100 and 

divided by their value in January 1987). 

 

R2/4 Please mention the results of a unit root test on the data.  The log differences in prices are stationary, 

right? 

Results of the Augmented-Dickey-Fuller and Phillips-Perron tests for a unit root, jointly with those of KPSS 

test for trend-stationarity have now been added to the Appendix. All log prices are integrated of order one, 

while their first differences are stationary. 

 

R2/5 Table 1.  Tables should stand alone.  Please state what panel a and b are within the table. 

Table 1 has been changed as the referee suggests. See below. 

 

*Response to Reviewer
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Table 1. Descriptive Statistics: January 1987 - December 2010/March 2012 

Panel (a): Nominal Prices  

   ETH  

 PI1 

 (CAT excl.)  

 PI2 

 (CAT incl.)   COR   SOY   WHE   CAT 

Mean 1.53 102.63 347.25 2.70 6.71 3.84 76.52 

Coef. Var. 0.35 0.51 0.28 0.40 0.33 0.38 0.15 

Min 0.89 47.46 215.08 1.43 4.00 1.99 58.60 

Date Min 01/1987 01/1987 01/1987 02/1987 10/2001 11/1999 09/1998 

Max 3.58 287.70 723.11 6.93 13.30 9.84 104.00 

Date Max 06/2006 06/2011 12/2010 08/2011 08/2008 03/2008 12/2010 

Panel (b): Returns 

   ETH  

 PI1 

 (CAT excl.)  

 PI2 

 (CAT incl.)   COR   SOY   WHE   CAT 

Mean 0.09 0.15 0.06 0.09 0.05 0.08 0.19 

Coef. Var. 82.05 38.80 55.55 60.25 93.56 66.21 17.67 

Skewness 0.40 0.53 0.37 -0.62 -0.23 -0.54 0.02 

Kurtosis 4.26 10.76 5.79 6.60 4.81 6.57 4.51 
Notes: CAT = cattle; COR = corn; ETH = ethanol; PI1 = price index 1; PI2 = price index 2; SOY = soybean; WHE = wheat. Entries 

are descriptive statistics for nominal prices (Panel a) and percentage log returns (Panel b). Panel (a) shows the sample average 

(Mean), the coefficient of variation (Coef. Var.), the minimum (Min) and maximum (Max) price and their dates (Date Min and Date 

Max). Panel (b) shows the sample average (Mean), the coefficient of variation (Coef. Var.), the sample Skewness and Kurtosis for 

log-returns. The time period spanned by the monthly nominal spot price of CAT and PI2 is January 1987-December 2010, while the 

monthly nominal spot prices of COR, ETH, SOY, WHE and PI1 are observed from January 1987 to March 2012.  

 



 We study the relationship between biofuels, field crops and cattle in the U.S.. 

 We focus on Granger causality predictability in distribution. 

 Density forecasts are constructed using Conditional Autoregressive Expectile models. 

 Both the centre and the left tail of the ethanol returns distribution can be predicted by using field 

crops returns. 

 Ethanol cannot be used to forecast any region of the field crops or cattle returns distributions. 

Research Highlights



Abstract 

This paper examines the relationship between biofuels, field crops and cattle prices in the U.S. from a new 

perspective. We focus on predictability in distribution by asking whether ethanol returns can be used to 

forecast different parts of field crops and cattle returns distribution, or vice versa. Density forecasts are 

constructed using Conditional Autoregressive Expectile models estimated with Asymmetric Least Squares. 

Forecast evaluation relies on quantile-weighed scoring rules, which identify regions of the distribution of 

interest to the analyst. Results show that both the centre and the left tail of the ethanol returns distribution 

can be predicted by using field crops returns. On the contrary, there is no evidence that ethanol can be used 

to forecast any region of the field crops or cattle returns distributions. 

Abstract
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Causality and Predictability in Distribution: the Ethanol-Food Price 

Relation Revisited 

 

1. Introduction 

Large world food price increases and huge price volatilities are generally interpreted as 

problematic for many developing nations, which are compelled to face higher costs to feed 

large parts of their populations and have to manage the subsequent political instabilities. The 

level and volatility recently hit by the price of corn are often viewed as the effects of the 

massive development of biofuels, ethanol in particular [Mercer-Blackman et al. 2008, 

Mitchell 2008, Parker, 2013, UNCTAD, 2008]. According to the so-called “Food versus 

Fuel” claim food price inflation is primarily due to the ethanol production boom. This 

proposition relies on the implicit assumption that, if the amount of arable land is fixed over 

the short-run, Granger causality runs from ethanol price to corn prices and from corn prices to 

the price of other corn-based products.
 
 

We examine short-run Granger causality relations for the whole distribution of returns on the 

price of ethanol, field crops and cattle in Nebraska from January 1987 through March 2012. 

We focus on in-sample and out-of-sample short-run relations to answer the following 

questions: a) Can lagged returns on ethanol be used to forecast field crops or cattle returns? b) 

Can lagged returns on field crops predict returns on ethanol? c) Is the whole distribution of 

returns predictable? d) Or, is predictability limited to some parts of the distribution? 

We provide a number of interesting results. In particular, ethanol has no predictive power for 

field crops and cattle. This finding holds: i) in-sample; ii) out-of-sample; iii) for the whole 

returns distribution. Moreover, ethanol can be forecasted using lagged returns on field crops. 

This result has been obtained: iv) in-sample; v) out-of-sample; vi) for the centre and the left 

tail of the distribution. Finally: vii) there is no evidence of predictability in the right tail of the 

distribution. While results i) and iv) are in line with most of the related literature (see Section 

2), findings ii), iii), v), vi) and vii) represent new empirical evidence on the biofuels-food 

price relation. 

Many studies have analysed the impact of biofuels on food prices, along two main lines of 

research (for a comprehensive survey see Zilberman et al., 2013). The first relies on time-

series econometrics to analyse the linkages between biofuel and food prices (Serra and 

Zilberman, 2013 for a survey). The second, by means of simulation- and theory-based 

methods, deals with the impact of the introduction of biofuels on food prices (Kretschmer and 



 3 

Peterson, 2010). Time-series studies show that the price of biofuels is positively correlated 

with the prices of food and fuels, but that the reverse correlation is very weak. 

Our paper can be placed in the first strand of the literature. We analyse short-run Granger 

causality linkages between returns on ethanol, field crops and cattle in the U.S. by 

considering their whole distribution, rather than focusing on few specific moments such as 

the mean or the variance. Compared to previous studies about the ethanol-food relation, our 

approach is innovative in many respects. 

First, we test for Granger causality both in-sample and out-of-sample. On the contrary, a 

common feature to most of the previous empirical literature is to analyse the relationship 

between biofuel prices and agricultural prices, using only in-sample Granger causality tests, 

while nothing is said about the out-of-sample performance of the estimated models. 

Second, many studies which are surveyed in Section 2 show evidence of in-sample Granger 

causality running from field crops prices to ethanol prices, but not vice versa. These findings 

are entirely based on empirical models for the first or second moments of the variables of 

interest, which ignore the issue of predictability in other parts of the distribution
1
. Since 

returns are generally non-normal, their distribution can be hardly summarized by the mean. 

As a consequence, even if there is no evidence of Granger causality in mean, we might still 

find evidence of predictability in higher moments (see Cenesizoglu and Timmermann, 2008, 

Granger and Pesaran, 2000, Pesaran and Skouras, 2002 for theoretical motivations of the use 

of density forecasts).
 
 

We extend the previous analyses by using the Asymmetric Least Squares (ALS) estimator of 

Newey and Powell (1986) to produce forecasts for the whole distributions of returns, as well 

as for specific areas of the distributions including the first moment. 

Third, our density forecasts evaluation, which relies on the quantile scoring rule of Gneiting 

and Ranjan (2011), is of interest for a variety of forecasts users. A scoring rule is a loss 

function for density forecasts, which associates a lower score to a better forecast. The 

quantile scoring rule assigns more weight to the part of distribution (either centre, tails, right 

or left tail) which is of interest for a forecasts user. For instance, the tails of the distribution 

are usually the main focus of risk managers (e.g. Value-at-Risk), while policy makers, who 

often exploit confidence intervals around point forecasts to assess the effects of potential 

economic interventions, are generally more interested in the centre of the distribution. For 

                                                 
1
 A notable exception is Nazlioglu (2011), who studies non-linear Granger causality linkages between oil and 

agricultural commodity prices. 
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example, the Energy Information Administration has been publishing since 2009 confidence 

intervals for crude oil and natural gas futures prices in its Short Term Energy Outlook. 

Fourth, we include cattle price in the analysis to assess whether biofuel induced price 

variations, if any, are transmitted along the food market chain. Interestingly, although Serra 

and Zilberman (2013) identify this as a topic that should be high on the biofuels research 

agenda, in their survey of the econometric literature there are only three studies that include 

meat (Balcombe, 2011; Esmaeili and Shokoohi, 2010; Nazlioglu and Soytas, 2011). 

The rest of the paper is organized as follows. In Section 2 we briefly review the relevant 

literature. Section 3 illustrates the data, while in the Section 4 we detail our modelling 

approach. Section 5 contains the empirical results, and Section 6 concludes. 

 

2. Related Literature 

The relation between ethanol and field crops prices has been discussed in the empirical 

literature from two main perspectives: the assessment of the presence of long-run 

relationships between fuel and agricultural prices, and the investigation of existence, as well 

as the direction, of their Granger causality links. Given the approach followed in our paper, in 

this section we concentrate on contributions pertaining to the second strand of research, while 

we address the interested reader to Serra and Zilberman (2013) and Nazlioglu et al. (2013) for 

exhaustive surveys of the time series literature. 

The studies testing the presence and the direction of the relationship between fuel and 

agricultural prices deal with a variety of empirical methods applied to weekly or monthly spot 

and futures prices: structural vs. reduced form models, linear vs. non-linear models, statistical 

vs. econometric methods. In general, this literature has tackled the issue of Granger causality 

only with in-sample analyses. The majority of the contributions find evidence of Granger 

causality running from the prices of field crops, corn in particular, to the price of ethanol. 

This result is robust to the method of analysis, to the sampling frequency and the type of price. 

Ubilava and Holt (2010) is the only study that focuses on out-of-sample predictability. Using 

weekly averages of U.S. futures prices for the period October 2006 - June 2009 and a non-

linear time series model for corn, the authors conclude that the inclusion of energy prices (oil 

and ethanol) in the model does not improve corn price forecasts
2
. 

Kristoufek et al. (2012b, 2013a) rely on weekly price data for the period between November 

2003 and February 2011 to analyse relations between biofuels (U.S. ethanol and German 

                                                 
2
 These results are consistent with those in Bastianin, Galeotti and Manera (2013). 
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biodiesel), their production factors and fossil fuels. The authors show that in the U.S. short-

term and medium-term Granger causality linkages run from corn to ethanol, but not vice 

versa. 

These findings are consistent with those of Vacha et al. (2013) who use wavelet coherence 

analysis to study time and frequency dependent correlations between biofuels, agricultural 

commodities and fossil fuels. The results show that the price of production factors (U.S. corn 

and German diesel) lead the price of biofuels (ethanol and biodiesel), but not vice versa. 

Zhang et al. (2009) estimate a vector error correction model (VECM) on U.S. weekly data for 

corn, oil, gasoline, ethanol, and soybean prices over the period March 1989 through 

December 2007. In the pre-ethanol boom period, 1989-1999, the authors find evidence of 

Granger causality running from the price of corn to ethanol price, whereas a causality 

reversal occurs in the boom period, 2000-2007. 

Zhang et al. (2007) test whether the limit-price hypothesis can explain pricing patterns in the 

U.S. ethanol-fuel market by means of a structural vector autoregression (SVAR) model 

estimated on monthly data from April 1998 to July 2005. The variables included in their 

SVAR model are corn, ethanol, MTBE (i.e. methyl-tertiarybutyl ether), gasoline prices and 

MTBE and ethanol quantities. The results indicate that corn prices Granger cause the price of 

ethanol, but not vice versa. 

Zhang et al. (2010) use monthly price data for corn, rice, soybeans, sugar, wheat, ethanol, 

gasoline, and oil from March 1989 through July 2008 to analyse short and long-run impacts 

of fuels on agricultural commodities in the U.S.. The authors fail to find any evidence of 

long-run and short-run Granger causality between fuel and agricultural commodity prices. 

Saghaian (2010) analyses pair-wise Granger-causality relations by relying on monthly data 

on oil, ethanol, corn, soybean, and wheat prices for the period January 1996 - December 2008. 

The results point to the existence of unidirectional relationships running from soybeans and 

wheat price series to ethanol, and hence indicate that ethanol does not Granger cause 

soybeans or wheat price series. Moreover, there seems to be a feedback relationship between 

corn and ethanol prices. However, the author shows that the evidence of causality is stronger 

from corn price to the price of ethanol than vice versa; in fact, causality running in the 

opposite direction is statistically significant only at the 10% significance level.  

Serra et al. (2011) fit an exponential smooth transition VECM to monthly U.S. data on 

ethanol, corn, oil, and gasoline prices from 1990 to 2008. An increase in ethanol prices is 

found to cause an increase in corn prices. However, they also show that corn price hikes, lead 
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to increases in the price of ethanol. Given that corn production is relatively inelastic, at least 

in the short-run, an increase in the size of the ethanol market will yield corn price increases 

that in turn will yield higher ethanol prices. 

Kristoufek et al. (2012a) analyse the relationships between the monthly prices of biodiesel, 

ethanol and related fuels and agricultural commodities (corn, wheat, sugar cane, soybeans, 

sugar beets). Their results indicate that in the short and medium-term the price of corn 

Granger-causes the price of ethanol, but that there is no causality running in the opposite 

direction. Moreover, the authors show that an increase in the price of corn positively affects 

the price of ethanol and that this effect is relatively short-lived. 

These results have been confirmed and extended in a subsequent paper by Kristoufek et al. 

(2013b). By applying minimal spanning and hierarchical trees to the same set of commodities 

the authors study the linkages between the prices of biofuels and their producing factors, 

whether these relations are non-linear and change at different frequencies (weekly and 

monthly). Their findings show that the price transmission mechanism is non-linear and that 

both ethanol and biodiesel respond to the price of their producing factors, but not vice versa. 

Wixson and Katchova (2012) test causality and asymmetric price transmission in the U.S. 

with monthly price from January 1995 to December 2010 for the following commodities: 

soybeans, corn, wheat, oil, and ethanol. They find evidence of unidirectional Granger 

causality running from returns on corn and soybeans to returns on ethanol. 

A different viewpoint is offered by Gilbert (2010), who shows that the 2007–2008 food price 

increases can be hardly attributed to the growing demand for grains as biofuels feedstocks. 

Rather than being market-specific, the 2007-2008 price hikes can be more convincingly 

explained by common factors, such as macroeconomic and monetary shocks propagating to 

food prices through index-based investment in agricultural derivatives markets. 

 

3. Data 

The U.S. is the world’s largest producer of corn, at 13 billion bushel per year. Since 2005, an 

average one-third of corn crop production has been diverted from food and dedicated to 

ethanol production. The expansion of U.S. biofuels has been induced by a number of distinct 

energy and environmental policies (see Janda et al. 2012 for an overview). Our dataset 

comprises five monthly time series of nominal spot prices, namely ethanol, corn, soybeans, 
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wheat and cattle
3
, recorded in Nebraska from January 1987 through March 2012 (December 

2010 for cattle). 

Moreover, to summarize field crops and cattle price dynamics, we also consider two price 

indices. The first index includes the three field crops prices, while the second index adds the 

price of cattle to the first price index. Both indices are constructed by assigning time-varying 

weights based on the dollar value of production to the price of different commodities. 
4
 

The price of ethanol is measured in dollars per gallon, the prices of field crops (i.e. corn, 

soybeans and wheat) are denominated in dollars per bushel, while the price of cattle is 

expressed in dollars per hundredweight. Data sources are the Nebraska Energy Office for the 

price of ethanol, and the National Agricultural Statistics Service maintained by the U.S. 

Department of Agriculture (USDA) for the prices of crops and cattle. The dollar value of 

production of field crops and cattle used to construct the price indices have been sourced 

from the USDA database. 

The price series are shown in Figure 1, while summary statistics are reported in Table 1. 

 

 [Figure 1 about here] 

 

[Table 1 about here] 

 

As shown in Figure 1, the price of ethanol has experienced two main phases. The first period, 

from 1987 to early 2000’s, is characterized by price stability and low volatility. In the second 

period, from the second half of 2000’s onwards, volatility is higher and prices have a 

rollercoaster behaviour. A joint inspection of Figure 1 and Table 1 (Panel a) reveals that the 

second period started with a price increase culminating at a record price of 3.58 dollars per 

gallon in June 2006. The price of ethanol had another peak, at 2.9 dollars per gallon, in July 

2008, just one month after the implosion of the oil price bubble originated in March 2008 

(Phillips and Yu, 2011). Descriptive statistics for percentage price changes (i.e. returns) are 

shown in Panel (b) of Table 1. As expected, the unconditional distributions of all series is 

slightly asymmetric and displays different degrees of excess kurtosis. 

                                                 
3
 The economic intuition of why cattle and ethanol might be related can be illustrated with a simple example. 

Suppose that there is Granger causality running from ethanol returns to corn returns. Since ethanol feedstocks 

are used in the production of other food products such as meat, there might also be Granger causality running 

from ethanol to cattle. 
4
 More details about the dataset and the construction of indices are provided in the Appendix. 
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4. Density Forecasts with Expectiles 

Our forecasting strategy can be illustrated as follows
5
. The variables of interest are the 

percentage price changes of ethanol (ETH), corn (COR), soybean (SOY), wheat (WHE), 

cattle (CAT), and two price indexes (PI1, PI2). Variables are indexed by the subscript i = 

ETH, COR, SOY, WHE, CAT, PI1, PI2. Percentage price changes (i.e. returns) on each 

variable are computed as rit = 100  ln(Pit / Pit-1), where Pit is the price of variable i at time t. 

We are interested in bivariate relations between returns on ethanol and returns on the other 

variables, therefore we consider the following single-equation expectile models: 

 

jt (= 0() + rETHt-1 + rjt-1 +3()rjt-1 + jt (1a) 

 

ETHt (= 0() + ()rjt-1 + ()rETHt-1 +3()rETHt-1 + ETHt (1b) 

 

where j = COR, SOY, WHE, CAT, PI1, PI2 and t = 2,…,T. 

In models (1a)-(1b), jt(t-1) and ETHt (for   (0, 1), denote the 100th 

conditional expectile of returns on variable j and ethanol, respectively, while t-1 is the 

information set available at time t-1. The absolute value of returns of the dependent variable 

is introduced to capture time variation in the conditional distribution of returns (Engle and 

Manganelli, 2004). Expectile models are indexed by . As explained below, we match 

expectiles with quantiles, indexed by () = 0.05, 0.10, ,…, 0.95, and estimate a total of 19 

equations for each dependent variable. 

Models (1a-b) are similar to the Conditional AutoRegressive Expectile (CARE) of Kuan et al. 

(2009), the only difference being the inclusion of the additional explanatory variables rjt-1 and 

|rjt-1| (rETHt-1 and |rETHt-1|). For this reason, we refer to models (1a)-(1b) as CARE-X. 

Each model (1a) and (1b) (i.e. for a total of 12 models) is estimated with Asymmetric Least 

Squares (ALS; see Newey and Powell, 1987). ALS is similar to Ordinary Least Squares 

(OLS), with the exception that the squared error loss function is weighted according to the 

sign of the residuals. 

The solution for the ALS estimator is known as “expectile”. Expectiles, as quantiles, can be 

used to describe the distribution of a random variable. Since expectiles are less immediate to 

                                                 
5
 More details about the forecasting strategy are provided in the working paper version of the paper, which is 

available on the webpage of the first author. 
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interpret than quantiles, in this paper we follow Efron (1991) and Granger and Sin (2000) and 

obtain the quantiles by calculating the proportion of in-sample observations lying below the 

100th fitted expectile curve. We then use the estimated quantiles in density forecasting to 

analyse the predictability of the distributions of returns on ethanol and field crops prices. 

The performance of CARE-X forecasts is evaluated against the following benchmark models
6
: 

 

jt (= 0() + jt (2a) 

 

ETHt (= 0() + ETHt (2b) 

 

We refer to specifications (2a)-(2b) as the Constant Expectile (CE) models. Models (2a)-(2b) 

imply that, for each variable and expectile, the optimal forecast in t + 1 is the estimate of the 

100th expectile at time t. 

In-sample and out-of-sample Granger causality tests can be easily calculated in the context of 

the CARE-X models (1a)-(1b). Moreover, an out-of-sample Granger causality test requires to 

compare the forecasting performances of models (1a)-(1b) with the CE models (2a)-(2b). 

Since models (2a)-(2b) assume that returns are unpredictable, out-of-sample tests of 

predictability can be carried out by asking which models produce the lowest forecast error 

loss function. 

For each model and quantile we use a rolling window of size T0 to obtain a vector of H 

forecasts. We evaluate each forecast by means of the quantile scoring rule (QS) of Gneiting et 

al. (2011). The QS provides a summary of the model’s overall ability to forecast the whole 

distribution (i.e. across all quantiles). Scoring rules have the same interpretation as loss 

functions: more accurate density forecasts are associated to lower scores, less accurate 

density forecasts are associated to higher scores. 

The QS assigns the same weight to all forecast errors, independently of their location in the 

support of the distribution. Should the focus be on the tails (e.g. for risk management 

purposes) or on the centre of the distribution, it would be more appropriate to associate a 

higher score to the area of interest. Gneiting et al. (2011) have thus proposed a weighted 

version of the QS (WQS).  

                                                 
6
 Studying bi-variate relations among ethanol, field crops, cattle and price indices amounts to estimating 12 

CARE-X models for each of the 19 quantiles of interest (i.e.  = 0.05, 0.10, …, 0.90, 0.95). For each model 

involving field crops and price index 1 we produce 180 forecasts. For models involving cattle or price index 2 

we issue 165 forecasts. Therefore the total number of one-step ahead forecasts is (180 × 19 × 8) + (165 × 19 × 4) 

= 39900. 
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The WQS uses a weight function that assigns a higher score to the desired part of the 

distribution. In addition to the uniform QS that does not use any weight function, we consider 

four WQSs to focus on the following parts of the distribution: 1) centretails; 3) left tail; 4) 

right tailTherefore we have used a total of five scoring rules for each CARE-X model and its 

corresponding benchmark. 

The significance of score differentials (S is given by the scoring rule of a CARE-X model 

minus the scoring rule of the corresponding CE model) is then evaluated with the Conditional 

Predictive Ability (CPA) test of Giacomini and White (2006). 

The CPA test can be implemented either as an unconditional test or as a conditional test of 

predictive ability. In the first case, a rejection of the null hypothesis, coupled with a negative 

score differential, suggests that the CARE-X model is on average more accurate than the CE 

model. In the second case, some explanatory variables can be included in the test equation to 

obtain a conditional test of predictive ability. Since traditional fuels, biofuels and agricultural 

markets are intertwined, we use a dummy variable based on net oil price increases (NOPI) to 

check if there are asymmetries in the forecasting performance of CARE-X models across 

quiet and turbulent phases of the energy markets.
7
 A rejection of the null hypothesis provides 

evidence that the score differential is statistically different from zero. Hence, according to the 

sign of the differential, it is possible to determine whether, conditionally on the state of the oil 

market, CARE-X forecasts are more accurate than CE forecasts.  

 

5. Empirical Results 

Our empirical findings can be summarized as follows: 

 In-sample results: returns on ethanol are Granger caused by returns on corn, soybeans 

and wheat. These results hold for the left tail and the centre, but not for the right  tail 

of the distribution. There is evidence of a feedback relation between returns on 

soybeans and ethanol, but only for the centre of the distribution. Granger causality 

also runs from returns on ethanol to returns on soybeans, but this relation is limited to 

the right tail of the distribution. Lastly, Granger causality runs from returns on ethanol 

to returns on the price indices, but only in the right tail of the distribution. 

 Out-of-sample evaluation: returns on field crops help forecasting the left tail and the 

centre of the distribution of ethanol returns, but not vice versa. The in-sample 

                                                 
7
 Net oil price increases proxy oil shocks. Following Hamilton (1996), we construct a dummy variable, NOPIt, 

where NOPIt=1 if the spot price of WTI crude oil in month t is higher than the maximum price recorded during 

the previous three years, and NOPIt=0 otherwise. We include the lagged value of NOPI in the CPA test. 
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evidence of Granger causality running from ethanol to soybeans and to price indices 

is therefore not confirmed out-of-sample. 

 No linkages between returns on ethanol and cattle have emerged. 

Compared with previous analyses, the contribution of this study to the empirical literature on 

biofuels is novel, since it presents not only in-sample evidence, but also focuses on out-of-

sample evaluation of density forecasts of biofuels and food prices. As just highlighted, this 

helps identifying some differences between in-sample and out-of-sample results. 

The availability of reliable forecasts is crucial both for financial decision-making and for 

policy design. For instance, Chang et al. (2011) have shown how to construct an optimal 

biofuel dynamic portfolio that consists of crude oil, corn and soybeans that petroleum 

companies can use to handle variations in crude oil and energy-crops prices and volatilities. 

The ability of our models to predict the left tail of the distribution of returns on the price of 

ethanol could be exploited in these settings, in that large negative returns often initiate a 

period of increased volatility. 

The focus on the performance of models out-of-sample is important also for designing 

effective policies. In their 2011 Agricultural Outlook the OECD and FAO Secretariats 

discuss several measures to reduce price volatility in agricultural markets. They suggest that 

one of the key ingredients to formulate policy responses to extreme volatility in agricultural 

markets is to enhance market transparency by improving information and surveillance 

systems on market prospects (see OECD/FAO, 2011). The enhancement of global monitoring 

systems, such as the FAO Global Information and Early Warning System clearly depends on 

the availability of good forecasts. 

 

5.1 In-sample results 

Estimates of CARE-X models (1a)-(2a) for the period January 1987 through March 2012 

(December 2010 for variables CAT and PI2) are shown in Table 2.  

 

[Table 2 about here] 

 

From Panel (a), the coefficients associated to lagged returns on ethanol are in the vast 

majority of cases statistically insignificant, irrespective of the quantile. Moreover, neither the 

magnitude, nor the sign of the coefficients display any clear pattern across quantiles. For both 

price indices the coefficient on lagged ethanol returns is positive in the left tail of the 
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distribution, then constantly decreases, becoming negative in the right tail. Looking at the 

CARE-X model for corn, lagged returns on ethanol have negative coefficients for quantiles 

below the median, while positive coefficients above the median. In the case of soybeans, we 

can see that price returns are negatively correlated with ethanol and that most of the 

coefficients in the right tail of the distribution are statistically significant only at the margin. 

The Bonferroni statistic for testing the joint null hypothesis that all coefficients associated to 

lagged returns on ethanol are zero across quantiles is reported in the last row of Table 2 for 

each estimated model. The null hypothesis is rejected for both price indices only, due to the 

significance of the coefficients estimated within the extreme quantiles (0.85-0.95). 

Interestingly, it is not possible to reject the null hypothesis for soybeans, which is the only 

commodity showing some statistically significant coefficients associated to lagged returns on 

ethanol. 

In summary, we are unable to find any empirical evidence of a relation between ethanol and 

field crops or cattle. Keeping in mind that those findings are against the presence of bivariate 

Granger causality running from ethanol to returns on price indices, corn, wheat and cattle, 

there is no reason to expect that ethanol can be fruitfully exploited to make predictions for 

these variables. 

The lack of causality running from ethanol returns to field crops returns is consistent with the 

literature reviewed in Section 2. However, our results are more general, since we are allowed 

to conclude that returns on ethanol do not provide useful information for forecasting any part 

of the distribution of returns on field crops and cattle. 

The pattern of coefficients reported in Panel (b) of Table 2 is completely different. In CARE-

X models with returns on ethanol as dependent variables, lagged returns on price indices and 

field crops are statistically significant for most of the quantiles, while coefficients on cattle 

are always statistically insignificant. All coefficients are positive and tend to decrease and 

become statistically insignificant as one moves from the left to the right tail of the 

distribution. Price indices and the other field crops seem to have predictive power for the 

centre and the left tail of the distribution of the ethanol returns. On the contrary, none of the 

exogenous variables is statistically significant for large quantiles. Finally, the Bonferroni tests 

allow to reject the joint null hypothesis of absence of Granger causality for all variables, with 

the exception of cattle. 

To conclude, there is no evidence of bivariate Granger causality running from ethanol to field 

crops and cattle. Conversely, field crops seem to Granger cause ethanol. More precisely, our 
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results suggest that returns on field crops might be used to forecast the centre and the left tail 

of the distribution of returns on ethanol, with the exception of its right tail.  

 

5.2 Density forecasts 

Since each model (1a)-(1b) is estimated to match expectiles with quantiles  = 0.05, 0.10, 

0.15, …, 0.90, 0.95 (i.e. 19 quantiles), 228 series of one-period ahead forecasts are computed. 

The size of the estimation sample is T0 = 123, which corresponds to 40% of the total number 

of observations, T, for the returns on ethanol. For each model and quantile, a vector of H 

forecasts is obtained with a rolling window procedure. We start by estimating each model 

using observations from t = 1 to t = T0, and calculate forecasts in t = T0 + 1. Then, 

observations from t = 2 to t = T0 + 1 are used to estimate each model and compute the 

corresponding forecasts in t = T0 + 2. This algorithm is iterated until forecasts in t  = T are 

calculated. Due to different sample sizes, the forecast evaluation period varies across 

commodities. Specifically, April 1997-March 2012 (H = 180) for PI1 and field crops, while 

April 1997-December 2010 (H = 165) for PI2 and cattle. 

We use the weighted quantile score function and the CPA test to evaluate the predictive 

performance of each model on the whole distribution
8
. 

The weighted versions of the quantile scoring rules assign a higher score to specific parts of 

the distribution. For instance, if one is interested on the tails of the distribution, higher 

penalty can be attached to forecast errors that occur outside the inter-quartile range and a 

lower penalty to errors around the median.  

The numerical values of the score differentials and results of the unconditional (UPA) and 

conditional predictive ability (CPA) tests are presented in Table 3. 

 

[Table 3 about here] 

 

The score differentials reported in Panel (a) are generally positive and the UPA and CPA 

tests lead to 8 rejections out of 90 comparisons. That is, ethanol has in general no predictive 

content for (any part of) the distributions of the returns on field crops, cattle and price indices. 

In Panel (b), the average un-weighted (“Uniform”) standardized score differential is negative, 

meaning that density forecasts from the CARE-X model (1b) are to be preferred to the 

                                                 
8
 We have also analysed the accuracy of quantile forecasts. More precisely, for each quantile and model, we 

computed the asymmetric quadratic loss and implemented a forecasts encompassing test. Results based on these 

alternative approaches are presented in the Appendix and are consistent with those obtained from density 

forecasts. 
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density forecasts from the benchmark CE model (2b). However, the UPA test indicates that 

the score differential is not statistically different from zero. Table 3 shows two variants of the 

CPA test. The first, CPA1, includes in the test function a constant term and the first lag of the 

score differential, while the second test, CPA2, is conditional on both a constant term and the 

NOPI dummy variable. The conditional tests always reject the null hypothesis of equal 

predictive ability, with p-values lower than 5% (6 out of 12 cases) or lower than 10% (6 out 

of 12 cases). These results suggest that corn can be used to forecast the whole distribution of 

ethanol. 

Although the numerical values of the weighted score differentials are almost invariantly 

negative (with the only exception of cattle), in most cases we cannot reject, neither 

unconditionally nor conditionally, the null hypothesis of equal predictive ability for the tails 

(taken jointly) and the right tail of the distribution. Conversely, the null hypothesis is rejected 

most of the times in the centre and left tail of the distribution. These findings are, on the one 

hand, not surprising, since different weights are applied to different parts of the distribution, 

while, on the other hand, they contribute to illustrate that conditioning on past forecasting 

performances (i.e. CPA1) or on the state of the oil market (i.e. CPA2) is relevant for the 

output of the predictive ability tests. 

The ability of field crops to forecast the centre and the left tail of the distribution of ethanol 

returns is confirmed as well. In particular, for PI1 and field crops, 35 rejections of the null 

hypothesis of equal predictive ability are observed out of 60 cases. The majority of those 

rejections is observed in the centre (18.3%) and in the left tail (20%). The predictive ability of 

PI2 and cattle is extremely poor. Actually, the null hypothesis of equal predictive ability is 

rejected 12 times out of 30 comparisons, most of which are due to PI2. 

Figure 2 reports different score functions for the density forecasts of ethanol, obtained with 

CARE-X model (1b), where the explanatory variable is corn, and compared with the score of 

the density forecasts from the corresponding CE benchmark model (2b). 

 

[Figure 2 about here] 

 

The top Panel (“Uniform”) displays the unweighted quantile score function. In this case 

forecast errors are given the same penalty along the whole support of the distribution. The 

score of the CE benchmark model (2b) lies above the score of the CARE-X model (1b) for all 

quantiles below  = 0.75. As a consequence, the score differential is negative in the left tail 
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and around the centre of the distribution, while positive in the right tail. This suggests, once 

again, that both the centre and the left tail of the distribution of ethanol returns can be 

predicted using corn. The four panels at the bottom of Figure 2 show weighted score 

functions. The two plots in the left part of the middle Panel illustrate quantile scores that 

assign more weight to forecast errors in the centre and in the left tail of the distribution. In 

this case, forecasts obtained from the CARE-X model are generally superior to forecasts 

calculated with the benchmark CE model. The two plots in the right part of the middle Panel 

show quantile scores which give more weight to forecast errors in both tails and in the right 

tail of the distribution. Focusing on the latter, the density forecasts obtained using the CE 

model (2b) are on average more accurate than the predictions generated by the corresponding 

CARE-X model (1b). 

 

6. Conclusions 

In this paper we have studied the relationship between returns on ethanol, field crops and 

cattle from the new perspectives of out-of-sample Granger causality and predictability. 

Instead of focusing on specific moments, we have analysed the whole distribution of returns 

both in-sample and out-of-sample. 

This new line of investigation is appropriate for at least three reasons. First, while previous 

studies on the biofuels-food price relation carry out only in-sample Granger causality tests, 

our analysis correctly interprets the definition of causality provided by Granger (1969). More 

specifically, the definition of causality is a statement about forecasting ability, hence tests 

whose direct focus is on forecasting are more appropriate (Ashley et al., 1980) and often have 

more power than in-sample tests (Chen, 2005; Clark and McCracken, 2005). 

Second, since returns are generally non-normal, a failure to reject the null hypothesis of 

absence of Granger causality in mean does not necessarily exclude the presence of Granger 

causality for higher moments of the distribution. Therefore, our contribution, which explicitly 

analyses the whole distribution of returns, can provide useful information for a variety of 

forecast users and forecast purposes. 

Third, our work partly fills some gaps in the biofuel literature recently highlighted in the 

survey by Serra and Zilberman (2013). According to these authors, while most studies 

dealing with the biofuel-food price transmission have focused on price levels, price volatility 

has received little attention. Moreover, little is known about the transmission mechanism of 

biofuel price shocks to food price volatility and about the response of biofuel volatility to oil 
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price shocks. Lastly, they point out that since biofuel feedstocks are used as production 

factors also for food products, the literature should consider not only the biofuels market 

chain, but also the transmission of price shocks along the food market chain. 

Our study analyses predictability relationships between ethanol price returns and food price 

returns relying on density forecasts. Hence, it contributes to a better understanding of the 

links between first, second and higher moments of the distributions of ethanol and food price 

returns, under both normal and extreme market conditions (i.e. we use net oil price increases 

to assess if the forecasting performance of models varies through different phases of the oil 

market). Moreover, in order to extend the range of food commodities included in the analysis, 

we also considered cattle. 

Quantile and density forecasts have been used to address the following questions: i) what is 

the direction of Granger causality between ethanol, field crops, and cattle? ii) are the 

observed causality linkages a feature of the whole return distribution or of some specific parts? 

iii) can any in-sample evidence of causality be exploited to improve out-of-sample forecasts? 

Both in-sample and out-of-sample results confirm and extend the findings of most of the 

existing literature. Actually, we find very limited empirical evidence, if not any at all, that 

ethanol returns Granger cause field crops or cattle returns. Rather, we provide empirical 

support for the existence of reverse causality, running from field crops to ethanol. 

More precisely, we show that ethanol returns cannot be used to forecast any part of the 

distributions of returns on field crops and cattle. Second, both quantile and density forecasts 

for ethanol can be improved by using returns on field crops as explanatory variables. Third, 

these results hold for the centre and the left tail of the distribution of ethanol returns, but not 

for its right  tail. This last finding suggests that the information content of returns on field 

crops can be fruitfully exploited to forecast extreme ethanol price decreases, which are of 

interest in risk management to compute value-at-risk or expected shortfall. Evidence of 

predictability for the centre of the distribution is useful for constructing prediction intervals 

for policy evaluation exercises. 

Lastly, it is worth recalling that forecasts have been evaluated on a sample running from the 

late 1997 through the early 2012. This time period is very challenging, since it is 

characterized by two recessions, very volatile energy markets and includes the financial crisis. 

Clearly, these events are mirrored in the recent developments of the whole U.S. economy, 

including the biofuel and agricultural markets and the price dynamics of the commodities 

traded in those markets. Any change that these markets might have experienced can hardly be 
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identified by a single moment of the distribution of returns. Rather, it is more likely that, 

given the complexity and the magnitude of events such as recessions and financial crises, a 

clearer picture of the predictive relationships between ethanol, field crops and cattle returns 

can be obtained either by looking at their entire distributions, as we did in this paper, or with 

more flexible modelling approaches such as the wavelet coherence analysis of Vacha et al. 

(2013). 

An interesting topic for future research would be to raise the bar of forecast evaluation by 

using these methods and other econometric models common in the biofuels literature in 

financial applications such as hedging, portfolio allocation or value-at-risk. 
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Tables & Figures 

Table 1. Descriptive Statistics: January 1987 - December 2010/March 2012 

Panel (a): Nominal Prices  

   ETH  

 PI1 

 (CAT excl.)  

 PI2 

 (CAT incl.)   COR   SOY   WHE   CAT 

Mean 1.53 102.63 347.25 2.70 6.71 3.84 76.52 

Coef. Var. 0.35 0.51 0.28 0.40 0.33 0.38 0.15 

Min 0.89 47.46 215.08 1.43 4.00 1.99 58.60 

Date Min 01/1987 01/1987 01/1987 02/1987 10/2001 11/1999 09/1998 

Max 3.58 287.70 723.11 6.93 13.30 9.84 104.00 

Date Max 06/2006 06/2011 12/2010 08/2011 08/2008 03/2008 12/2010 

Panel (b): Returns 

   ETH  

 PI1 

 (CAT excl.)  

 PI2 

 (CAT incl.)   COR   SOY   WHE   CAT 

Mean 0.09 0.15 0.06 0.09 0.05 0.08 0.19 

Coef. Var. 82.05 38.80 55.55 60.25 93.56 66.21 17.67 

Skewness 0.40 0.53 0.37 -0.62 -0.23 -0.54 0.02 

Kurtosis 4.26 10.76 5.79 6.60 4.81 6.57 4.51 
Notes: CAT = cattle; COR = corn; ETH = ethanol; PI1 = price index 1; PI2 = price index 2; SOY = soybean; WHE = wheat. 

Entries are descriptive statistics for nominal prices (Panel a) and percentage log returns (Panel b). Panel (a) shows the sample 

average (Mean), the coefficient of variation (Coef. Var.), the minimum (Min) and maximum (Max) price and their dates 

(Date Min and Date Max). Panel (b) shows the sample average (Mean), the coefficient of variation (Coef. Var.), the sample 

Skewness and Kurtosis for log-returns. The time period spanned by the monthly nominal spot price of CAT and PI2 is 

January 1987-December 2010, while the monthly nominal spot prices of COR, ETH, SOY, WHE and PI1 are observed from 

January 1987 to March 2012.  
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Table 2. Coefficient Estimates: March 1987 - December 2010/March 2012 
Panel (a) Does ethanol Granger cause variable j?   

 j 

 PI1 PI2 COR SOY WHE CAT 

0.05 0.156 0.022 -0.046 0.001 0.041 -0.036 

0.10 0.073 0.022 -0.074 -0.047 0.000 -0.015 

0.15 0.052 0.018 -0.065 -0.054 0.004 -0.004 

0.20 0.036 0.016 -0.053 -0.054 0.005 -0.002 

0.25 0.028 0.014 -0.044 -0.053 0.013 0.000 

0.30 0.016 0.010 -0.040 -0.051 0.018 0.001 

0.35 0.007 0.008 -0.034 -0.052 0.023 0.002 

0.40 -0.001 0.005 -0.029 -0.053 0.026 0.004 

0.45 -0.006 0.002 -0.025 -0.054 0.028 0.007 

0.50 -0.011 0.001 -0.020 -0.056 0.030 0.008 

0.55 -0.018 -0.001 -0.016 -0.058* 0.029 0.011 

0.60 -0.029 -0.003 -0.011 -0.061* 0.029 0.014 

0.65 -0.037 -0.006 -0.005 -0.063* 0.029 0.016 

0.70 -0.048 -0.013 0.001 -0.065* 0.027 0.022 

0.75 -0.061 -0.018 0.005 -0.067* 0.027 0.026 

0.80 -0.086 -0.026 0.012 -0.071* 0.024 0.034 

0.85 -0.113* -0.039 0.026 -0.081* 0.014 0.041 

0.90 -0.174*** -0.072* 0.029 -0.095** 0.010 0.049 

0.95 -0.362*** -0.168*** 0.001 -0.119* -0.016 0.087** 

Bonferroni 0.002*** 0.015** 1.000 0.471 1.000 0.409 

Panel (b) Does variable i Granger cause ethanol? 

 i 

 PI1 PI2 COR SOY WHE CAT 

0.05 0.280*** 0.422*** 0.212** 0.333*** 0.313*** 0.224 

0.10 0.234*** 0.388*** 0.248*** 0.313*** 0.273*** 0.157 

0.15 0.199*** 0.311*** 0.250*** 0.316*** 0.229*** 0.082 

0.20 0.177*** 0.253*** 0.244*** 0.299*** 0.178** 0.060 

0.25 0.158*** 0.224*** 0.242*** 0.285*** 0.157** 0.051 

0.30 0.144*** 0.187** 0.238*** 0.273*** 0.144** 0.039 

0.35 0.137** 0.175* 0.234*** 0.255*** 0.138** 0.034 

0.40 0.132** 0.167 0.229*** 0.245*** 0.135** 0.030 

0.45 0.127** 0.160 0.225** 0.231** 0.132** 0.027 

0.50 0.122* 0.154 0.219** 0.222** 0.131* 0.024 

0.55 0.118 0.150 0.214* 0.213* 0.130 0.016 

0.60 0.114* 0.148 0.210** 0.205** 0.131** 0.012 

0.65 0.112** 0.148 0.201** 0.197** 0.132** 0.010 

0.70 0.110** 0.149 0.193** 0.188** 0.131** 0.015 

0.75 0.108* 0.151 0.187** 0.183** 0.131** 0.024 

0.80 0.105* 0.152 0.178** 0.178** 0.134** 0.024 

0.85 0.104 0.153 0.166 0.157 0.138* 0.008 

0.90 0.114 0.170 0.156 0.138 0.141 -0.031 

0.95 0.123 0.073 0.105 0.060 0.167 -0.156 

Bonferroni 0.000*** 0.000*** 0.001*** 0.006*** 0.002*** 1.000 
Notes: See notes to Table 1. In Panel (a) the estimated model is (1a), where the dependent variable is the returns on variable j. In Panel (b) 
the estimated model is (1b), where the dependent variable is the returns on ethanol. Entries are coefficient estimates (with the exception of 

the rows headed “Bonferroni”, where entries are p-values). Stars denote rejection of the null hypothesis of no Granger Causality (GC) 

running from ethanol to variable j (Panel a) and from variable i to ethanol (Panel b). The null hypothesis is H0: in model (1a) for Panel 

(a), or H0: 1 = 0 in model (1b) for Panel (b). Headers reported in column  indicate the quantiles estimated from expectiles. “Bonferroni” 

indicates the Bonferroni bound for the joint null hypothesis of no GC across quantiles. * (**) [***] denotes  rejection of the null hypothesis 

of no GC at 0.10 (0.05) [ 0.01] significance level. 
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Table 3. Density Forecasts: Score Function Differentials and CPA Tests 

Panel (a) Does ethanol help forecasting variable j? 

  Weights: Uniform Weights: Center Weights: Tails Weights: Left Tail Weights: Right Tail 

j UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 

PI1 0.023 0.023 0.023 0.014 0.014 0.014 0.049 0.049 0.049 -0.032 -0.032 -0.032 0.080 0.080 0.080 

PI2 -0.016 -0.016 -0.016 -0.025 -0.025 -0.025 0.014 0.014 0.014 -0.003 -0.003 -0.003* -0.015 -0.015 -0.015 

COR 0.043 0.044 0.043* 0.045 0.045 0.045* 0.034 0.034 0.034* 0.021 0.021 0.021 0.058 0.058 0.058* 

SOY -0.064 -0.064 -0.064 -0.063 -0.063 -0.063 -0.061 -0.061* -0.061 -0.061 -0.061 -0.061 -0.056 -0.056 -0.056 

WHE 0.099 0.099 0.099 0.092 0.092 0.092 0.108 0.108 0.108 0.056 0.056 0.056 0.132* 0.132** 0.132 

CAT -0.082 -0.082 -0.082 -0.086 -0.086 -0.086 -0.056 -0.056 -0.056 -0.105 -0.105 -0.105 -0.041 -0.041 -0.041 

Panel (b) Does variable j help forecasting ethanol? 

 Weights: Uniform Weights: Center Weights: Tails Weights: Left Tail Weights: Right Tail 

j UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 

PI1 -0.135* -0.135** -0.135** -0.147* -0.147** -0.147** -0.095 -0.095 -0.095 -0.173** -0.173** -0.173*** -0.045 -0.045 -0.045 

PI2 -0.097 -0.097* -0.097* -0.111 -0.111* -0.111* -0.055 -0.055 -0.055 -0.138* -0.138 -0.138** -0.016 -0.016* -0.016 

COR -0.102 -0.102* -0.102* -0.111 -0.111** -0.111** -0.065 -0.065 -0.065 -0.147* -0.147* -0.147** -0.018 -0.018* -0.018 

SOY -0.163** -0.163** -0.163* -0.179** -0.179** -0.179* -0.107 -0.107 -0.107 -0.189** -0.189** -0.189** -0.073 -0.073 -0.073 

WHE -0.143* -0.143** -0.143** -0.155** -0.155** -0.155** -0.103 -0.103 -0.103 -0.178** -0.178** -0.178*** -0.055 -0.055 -0.055 

CAT -0.064 -0.064* -0.064** -0.073 -0.073* -0.073** -0.036 -0.036 -0.036 -0.105 -0.105 -0.105** 0.003 0.003 0.003 
Notes: See notes to Table 1. This table reports standardized weighted quantile scoring rule differentials S, (i.e. the scoring rule of a CARE-X model minus the scoring rule of the corresponding CE model). Weights 

are used to evaluate score differentials in the Centre, Tails (both), Left Tail and Right Tail of the distribution. The option “Weights: Uniform” considers the un-weighted scoring rule. In Panel (a) negative numbers (i.e. 

S<0) indicate that the scoring rule of CARE-X model (1a) is on average lower than the scoring rule of CE model (2a). In Panel (b) negative numbers (i.e. S<0) indicate that the score function of CARE-X model (1b) 

is on average lower than the score function of CE model (2b). Asterisks indicate rejection of the null hypothesis of the CPA test, namely H0: E(S)=0. * (**) [***] denotes rejection of the null hypothesis at 10% (5%) 

[1%]. A rejection of the null, coupled with S<0, indicates that CARE-X forecast are on average more accurate than CE forecasts for a given part of the distribution of the dependent variable. UPA indicates the 

unconditional predictive ability test. CPA1 is the CPA test based on the lagged value of the score differential. CPA2 is the CPA test based on the lagged value of the Net Oil Price Increase (NOPI). 
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Figure 1. Prices: Ethanol, Indices, Field Crops and Cattle 

 
Notes: Prices are represented on a common scale (i.e. nominal prices have been multiplied by 100 and divided by their value in January 

1987). 
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Figure 2: Quantile Score Functions for Ethanol Forecasts 

 
Notes: This figure shows average weighted quantile score functions for ethanol forecasts obtained with equations (1b) and (2b) and corn as the explanatory variable. A continuous line identifies scores associated to 
density forecasts from CARE-X model (1b), while a dash-dotted line is used for density forecast from CE benchmark model (2b). CARE-X forecasts are preferred to CE forecasts if  CARE-X score lies below CE 

score. 
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A.1 Data description 

 

Table A1. Data description 

Series ID Description Unit Frequency Time Period Source
a
 

PE Ethanol: Average Rack Prices 

F.O.B. Omaha, Nebraska 

Dollars per 

Gallon 

Monthly Jan/1982 - 

Mar/2012 

NEO 

PC Corn (Grain): Price Received Dollars per 

Bushel 

Monthly Jan/1982 - 

Mar/2012 

USDA 

PS Soybeans: Price Received Dollars per 

Bushel 

Monthly Jan/1982 - 

Mar/2012 

USDA 

PW Wheat: Price Received Dollars per 

Bushel 

Monthly Jan/1982 - 

Mar/2012 

USDA 

PB Cattle (>500 LBS): Price Received Dollars per 

CWT
b
 

Monthly Jan/1982 - 

Dec/2010 

USDA 

YC
c
 Corn (Grain): Production Dollars Yearly 1982-2012 USDA 

YS
c
 Soybeans: Production Dollars Yearly 1982-2012 USDA 

YW
c
 Wheat: Production Dollars Yearly 1982-2012 USDA 

YB
c
 Cattle (Incl Calves): Production Dollars Yearly 1988-2012 USDA 

Notes: (a) NEO = Nebraska Energy Office; USDA = U.S. Department of Agriculture - National Agricultural Statistics Service; (b) CWT = 
hundredweight; (c) The value for 2012 is obtained as a cubic trend forecast. 

 

The production variables described in Table A1 have been used to construct two commodity 

price indexes whose aim is to provide a summary of the price developments for field crops 

and cattle. The first (PI1 in the paper) is formed using percentage price variations of corn, 

wheat and soybeans; the second (PI2 in the paper) includes also cattle prices. 

Both indices have been constructed by averaging prices with production based weights of the 

form: 

wj,1,t = Yj,t / (YCt + YWt + YSt), for j = C, S, W and t = 1982, …, 2012 (A1) 

wi,2,t = Yi,t / (YCt + YWt + YSt + YBt), for i = C, S, W, B and t = 1982, …, 2010 (A2) 

Given that production variables are recorded at yearly frequency, we constructed monthly 

observations by assuming constant weights within the year (e.g. wj,1,1/1982 = wj,1,2/1982 = … = 

wj,1,12/1982, where r/1982 indicates the r-th month of year 1982). 

Weights calculated using current dollar production data are displayed in Figure A1. Current 

dollars price indices PI1 and PI2 are calculated as follows: 

PI1,t = (PCt / wC,1,t) + (PWt / wW,1,t) + (PSt / wS,1,t), for t = 1/1982, …, 3/2012, (A3) 

PI2,t = (PCt / wC,2,t) + (PWt / wW,2,t) + … 

           …+ (PSt / wS,2,t) + (PBt / wB,2,t) 

for t = 1/1982, …, 12/2010. (A4) 
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Figure A1. Weights for Price Index 1 (Panel a) and Price Index 2 (Panel b). 
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A.2 Unit root tests 

 

Table A2. Unit root and stationarity tests 

Panel (a): log-prices 

Test:  ADF Phillips-Perron KPSS 

Exogenous:  C C & T C C & T C C & T 

Ethanol 0.2012 0.0473** 0.1696 0.0539* NS NS 

Price Index 1 (Excl. Cattle) 0.8145 0.7809 0.7453 0.6441 NS NS 

Price Index 2 (Incl. Cattle) 0.9536 0.9508 0.9280 0.9085 NS NS 

Corn 0.5011 0.5270 0.7000 0.7327 NS NS 

Soybeans 0.4432 0.4570 0.5094 0.5425 NS NS 

Wheat 0.4503 0.5380 0.2591 0.2760 NS NS 

Cattle 0.7296 0.0821* 0.5386 0.3742 NS NS 

Panel (b): First difference of log-prices 

Test: ADF Phillips-Perron KPSS 

Exogenous: N   N   C   

Ethanol 0.0000***   0.0000***   S   

Price Index 1 (Excl. Cattle) 0.0000*** 

 

0.0000***   S 

 Price Index 2 (Incl. Cattle) 0.0000*** 

 

0.0000***   S 

 Corn 0.0000*** 

 

0.0000***   S 

 Soybeans 0.0000*** 

 

0.0000***   S 

 Wheat 0.0000*** 

 

0.0000***   S 

 Cattle 0.0000***   0.0000***   S   
Notes: Entries in the columns labelled “ADF” and “Phillips-Perron” are p-values of the null hypothesis that a series has a unit root. In the 
case of the KPSS test “NS” (“S”) denotes rejection (non rejection) of the null hypothesis of trend stationarity at 95% confidence level. “N” 

(neither trend, nor constant), “C” (constant) and “ C&T” (constant and trend) indicate the deterministic component included in the test 

equation. 

 

To investigate the statistical properties of the log-price series Table A2 shows tests proposed 

by Dickey and Fuller (1979) in its augmented form (ADF), by Phillips and Perron (1988) 

(PP), and by Kwiatkowski, Phillips, Schmidt, and Shin (1992) (KPSS). 

Panel a shows that all (log) prices have a unit root, while Panel b shows that their first 

difference is stationary. 
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A.3 Quantile forecasts 

Since each model (1a-1b) (see Equations in the paper) is estimated to match expectiles with 

quantiles  = 0.05, 0.10, 0.15, …, 0.90, 0.95 (i.e. 19 quantiles), 228 series of one-period 

ahead forecasts are computed.
1
 The size of the estimation sample is T0 = 123, which 

corresponds to 40% of the total number of observations, T, for the returns on ethanol. For 

each model and quantile, a vector of H forecasts is obtained with a rolling window procedure. 

We start by estimating each model using observations from t = 1 to t = T0, and calculate 

forecasts in t = T0 + 1. Then, observations from t = 2 to t = T0 + 1 are used to estimate each 

model and compute the corresponding forecasts in t = T0 + 2. This algorithm is iterated until 

forecasts in t  = T are calculated. Due to different sample sizes, the forecast evaluation period 

varies across commodities. Specifically, April 1997-March 2012 (H = 180) for PI1 and field 

crops, while April 1997-December 2010 (H = 165) for PI2 and cattle. 

For each quantile and model, we compute the asymmetric quadratic loss: 

 

Lt,(rit, tq ,
ˆ
 ) = [ + (1-2)  I(rit - tq ,

ˆ
 ≤ 0]  |rit - tq ,

ˆ
 |

2
 (A5) 

 

where tq ,
ˆ
  is the one-step ahead quantile forecast obtained from the ALS estimation of 

CARE-X models (1a)-(1b) and CE models (2a)-(2b); t = T0 + 1, …, T;  = 0.05, 0.10, 

0.15, …, 0.90, 0.95; i = ETH, COR, SOY, WHE, CAT, PI1, PI2.  

For any quantile , a given CARE-X model produces more accurate forecasts than its 

benchmark if the average loss (defined as: L(.) = H
-1

 
T

t=T0+1 Lt,(.)) of the CARE-X model 

is smaller than the average loss of the corresponding CE model. 

This allows us to check whether the forecasts obtained with CARE-X models are on average 

more accurate than the benchmark CE forecasts.  

In Panel (a) of Table A4 we show the asymmetric quadratic loss for CARE-X models (1a), 

where (lagged) ethanol returns is the exogenous explanatory variable and returns on variable j 

is the dependent variable. Since ethanol has no in-sample predictive power for both price 

indices, cattle and most field crops, we do not expect to find evidence of out-of-sample 

predictability running from ethanol to these commodities. When price indices PI1 and PI2 

and field crops are considered, the benchmark CE model (2a) leads to an average loss lower 

than the average loss calculated on the CARE-X (1a) forecasts in 33 cases out of 50. 

                                                 
1
 This figure excludes the forecasts obtained using the benchmark models. 
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Table A4. Asymmetric Quadratic Loss 

Panel (a) CARE-X model (1a) vs CE model (2a) 

j/ 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.80 0.90 0.95 

PI1 11.147* 15.129* 22.697* 27.272 28.359 28.802 27.076 25.333 19.909 16.378 

CE(1) 11.225 15.281 22.816 27.194* 28.129* 28.394* 26.338* 24.501* 18.804* 15.711* 

PI2 3.346 4.832 7.676 9.004 9.391 9.475 8.759 8.218 6.429 4.682 

CE(2) 3.270* 4.757* 7.454* 8.728* 9.036* 9.047* 8.226* 7.654* 5.859* 4.398* 

COR 7.413* 10.227* 14.372 15.863 15.857 15.265 13.120 11.949 8.353* 6.001* 

CE(1) 9.013 10.468 14.263* 15.698* 15.649* 15.093* 12.977* 11.812* 8.408 6.063 

SOY 7.545* 10.014* 13.827* 15.126* 15.094* 14.424* 12.157* 11.006* 7.753* 5.308* 

CE(1) 7.768 10.655 14.986 16.323 16.183 15.414 12.806 11.472 8.062 5.711 

WHE 13.400 17.019 25.234 28.608 29.453 28.795 25.267 23.531 16.979 11.957 

CE(1) 11.032* 15.400* 23.421* 26.618* 27.425* 26.810* 23.798* 22.162* 16.416* 11.714* 

CAT 2.515* 3.509* 4.716* 5.141* 5.232* 5.149* 4.645* 4.294* 3.369* 2.590* 

CE(2) 2.583 3.677 5.070 5.583 5.656 5.518 4.942 4.517 3.400 2.735 

Panel (b) CARE-X model (1b) vs CE model (2b) 

j/ 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.80 0.90 0.95 

PI1 13.286* 19.956 31.947 38.318 40.196 39.942 36.053 33.865 24.773 18.033 

PI2 14.224 21.905 35.671 42.222 44.073 43.607 39.040 36.460 26.107 18.204 

COR 13.754 20.544 33.330 39.237 40.890 40.322 36.602 34.162 25.318 18.371 

SOY 13.404 19.545* 31.809* 37.852* 39.553* 39.452 35.752 33.505 25.113 18.084 

WHE 13.823 20.186 32.293 38.525 40.275 40.068 36.014 33.567 25.092 17.854 

CAT 14.673 22.108 36.020 42.490 44.196 43.752 39.076 36.185 25.378 17.966 

CE(1) 15.915 24.804 37.023 42.991 44.052 42.985 37.284 34.453 24.414* 17.357 

CE(2) 15.886 24.849 38.869 44.885 46.294 45.296 39.299 36.186 24.992 16.803* 

EW-ALL 13.468 20.071 32.369 38.411 40.174 39.892 35.956 33.638 24.790 17.734 

EW-CROPS 13.420 19.718 31.882 37.872 39.611 39.377* 35.627* 33.282* 24.867 17.748 

Notes: See notes of Table 1. The table reports the asymmetric quadratic loss function for each estimated model. In Panel (a) the model of interest is (1a), where the dependent variable is the returns on variable j. In 

Panel (b) the model of interest is (1b), where the dependent variable is the returns on ethanol. Headers reported in row  indicate the quantiles estimated from expectiles. The benchmark forecasts are obtained from 

the CE models (2a) (Panel a) and (2b) (Panel b), and the equally-weighted forecast combinations (EW). Two are the evaluation periods: 1) April 1997-March 2012 (H = 180) for PI1 and field crops; 2) April 1997-

December 2010 (H = 165) for PI2 and CAT. CE(1) and CE(2) refer to CE models evaluated in period 1) or period 2), respectively. EW-ALL and EW-CROPS are the EW combined forecasts based on all variables and 

field crops only. In Panel (a) an asterisk identifies the best model (i.e. lowest loss model) for each variable j and each quantile . In Panel (b) an asterisk identifies the best model for each quantile .  

 



 7 

Ten of these occurrences are associated to the CARE-X models applied to soybeans returns, 

with respect to which our in-sample analysis has suggested that ethanol might have predictive 

power. CARE-X models (1a) applied to corn returns and PI1 produce more accurate forecasts 

that their corresponding benchmarks for extreme quantiles. However, in general the 

magnitude of the loss differentials is negligible. 

For PI2 and wheat the CE benchmark (2a) is always associated to lower losses than the 

CARE-X (1a) models. Somewhat puzzling, the CARE-X model outperforms the benchmark 

also for cattle, with respect to which ethanol has no in-sample predictive power. 

Panel (b) of Table A4 presents the asymmetric quadratic losses for ethanol forecasts, that is 

for CARE-X models (1b) and corresponding CE benchmarks (2b). Since field crops have no 

in-sample predictive power for the right tail of distribution of ethanol returns, we compute for 

each quantile two additional forecast models. The first (EW-ALL) is an equally weighted 

average of all forecasts for ethanol obtained from CARE-X models (1b), while the second 

(EW-CROPS) is an equally weighted average of forecasts for ethanol obtained from the 

subset of CARE-X models which include field crops as exogenous variables. 

The benchmark CE models are outperformed 80% of the cases. CE models perform best only 

in correspondence to the 0.90 and 0.95 quantiles, confirming that extreme ethanol price 

increases cannot be predicted with field crops. The combined forecast model EW-CROPS 

performs best for some quantiles above the median (i.e. 0.60, 0.75, 0.80), where lack of in-

sample Granger causality is found.  

An alternative way of comparing the forecasting performance of CE and CARE-X models is 

to calculate optimal combining weights. For each model and quantile, the optimal combining 

weights are the estimated coefficients of regressing realized returns on the i-th variable on a 

constant term and forecasts obtained with CARE-X and CE models applied to the i-th 

variable, i = ETH, COR, SOY, WHE, CAT, PI1, PI2. As shown by Elliott and Timmermann 

(2004), when the loss function is asymmetric quadratic, the optimal forecast combination 

weights can be estimated with the Iterated Weighted Least Squares (IWLS) algorithm. If the 

optimal combining weight of the forecasts obtained with CARE-X model (1a) (1) is equal to 

one and the optimal combining weight of the forecasts obtained with CE model (2a) (2) is 

equal to zero, then the forecasts obtained with CARE-X model (1a) are more accurate than 

the forecasts based on the CE benchmark model (2a). In this sense, CARE-X model (1a) 

“forecast-encompasses” CE model (2a). 
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Table A5. Optimal Combining Weights: CARE-X and CE Forecasts 

Panel (a)

  

 0.05 0.10 0.25 0.50 0.75 0.90 0.95 

j CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE 

PI1 0.423* -0.518 0.970 -1.887** 0.945 -1.886 0.295 2.299 -0.243** 2.287 -0.982*** 2.678*** -0.790*** 0.765 

PI2 0.278** -4.422*** 0.018 -1.196 -0.003** -6.054** 0.117 0.814 -0.039** 3.797** -0.262** 4.745*** -0.030** 1.554** 

COR 0.505** 0.732 0.459*** 1.396 0.475*** 0.607 0.431*** 1.951 0.449*** 1.852 0.428** 1.728 0.092*** 0.599 

SOY 0.246*** 0.023 0.580 -1.292 0.740 -2.661 0.730 -0.024 0.699 -0.084 0.519* 0.216 0.290** 0.844 

WHE -0.706*** 0.448 -0.634*** -0.149 -0.356*** -2.326 -0.173** -0.678 -0.091*** 0.761 0.203* 0.549 0.358 -0.072 

CAT 0.577* -0.064 0.766 -6.602 0.975 -3.581 0.938 -0.936 0.847 -1.685 0.457 -5.537*** 0.374** -2.475** 

Panel (b) 

  

 0.05 0.10 0.25 0.50 0.75 0.90 0.95 

j CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE 

PI1 0.847 -0.142 0.930 -0.394 1.044 -0.142 1.016 0.133 0.770 0.406 0.293 0.660 0.161** 0.838 

PI2 0.702 1.100* 0.865 0.402 0.981 -0.025 0.889 0.136 0.621 0.187 0.198 0.393 0.193* 0.279 

COR 0.751 0.356 0.947 -0.310 0.900 -0.207 0.788 0.154 0.597 0.345 0.183* 0.618 0.053** 0.714 

SOY 0.761 0.040 0.878 -0.102 0.978 -0.144 0.988 0.186 0.808 0.427 0.163* 0.604 0.036** 0.705 

WHE 0.774 -0.063 0.966 -0.515 1.103 -0.196 1.038 0.088 0.790 0.455 0.270* 0.751 0.201** 0.830 

CAT 0.655** 0.937 0.856 0.076 0.854 -0.107 0.753 0.057 0.604 0.069 0.270 0.340 0.177* 0.344 
Notes: See notes to Table 1. In Panel (a) CARE-X and CE indicate models (1a) and (2a) respectively, where the dependent variable is the returns on variable j. In Panel (b) CARE-X and CE indicate models (1b) and 

(2b) respectively, where the dependent variable is the returns on ethanol. Headers reported under the label  indicate the quantiles estimated from expectiles. Numbers reported in Panel (a) are the combining weights 1 

and 2 estimated from the regression model: rjt = 0 + 1rjt
CARE-X +2rjt

CE + ejt, where rjt are actual returns from variable j, rjt
CARE-X are forecasts from CARE-X model (1a) and rjt

CE are forecast from CE model (2a). If the 

single null hypotheses 1=1 and 2=0 are not rejected, then forecasting with CARE-X model (1a) is more accurate than forecasting with CE model (2a). In Panel (b) CARE-X and CE indicate models (1b) and (2b) 

respectively, where the dependent variable is the returns on ETH. Numbers reported in Panel (b) are the combining weights 1 and 2 estimated from the regression model: rETHt = 0 + 1rETHt
CARE-X +2rETHt

CE + eETHt, 

where rETHt are actual returns from ETH, rETHt
CARE-X are forecasts from CARE-X model (1b) and rETHt

CE are forecast from CE model (2b). If the single null hypotheses 1=1 and 2=0 are not rejected, then forecasting 

with CARE-X model (1b) is more accurate than forecasting with CE model (2b). Coefficients 0, 1, 2, 0, 1 and 2 are estimated with Iterated Weighted Least Squares.  * (**) [***] denotes rejection of each single 
null hypothesis at 0.10 (0.05) [ 0.01] significance level.  
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Analogously, if the optimal combining weight of the forecasts obtained with CARE-X model 

(1b) (1) is equal to one and the optimal combining weight of the forecasts obtained with CE 

model (2b) (2) is equal to zero, then CARE-X model (1b) “forecast-encompasses” CE 

model (2b). 

Estimated optimal combining weights and statistical tests of the null hypotheses 1=1 (1=1) 

and 2=0 (2=0) are reported in Table A5. Results in Panel (a) indicate that in most cases the 

CARE-X combining weights are statistically different from unity, suggesting lack of 

“forecast encompassing”. Therefore, the test results are supportive of the in-sample absence 

of Granger causality running from ethanol to corn, wheat, price indices and cattle. Once again, 

ethanol seems to be useful to forecast some parts of the distribution of soybean returns. 

Actually, with the exception of the smallest and largest quantiles, the null hypotheses 1=1 

and 2=0 are never rejected. 

The results reported in Panel (b) have a penchant for “forecast encompassing”. In the case of 

PI1 and field crops, the null hypotheses 1=1 and 2=0 cannot be rejected for quantiles from 

0.05 to 0.75. Interestingly, for PI1 and PI2, which are by construction linear combinations of 

different series of returns, the two null hypotheses are not rejected also for the 0.90-th 

quantile. 
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