
JSS Journal of Statistical Software

March 2014, Volume 57, Issue 4. http://www.jstatsoft.org/

The YUIMA Project: A Computational Framework
for Simulation and Inference of Stochastic

Di↵erential Equations

Alexandre Brouste
University of Le Mans

Masaaki Fukasawa
Osaka University

Hideitsu Hino
University of Tsukuba

Stefano M. Iacus
University of Milan

Kengo Kamatani
University of Tokyo

Yuta Koike
University of Tokyo

Hiroki Masuda
Kyushu University

Ryosuke Nomura
University of Tokyo

Teppei Ogihara
Osaka University

Yasutaka Shimuzu
Osaka University

Masayuki Uchida
Osaka University

Nakahiro Yoshida
University of Tokyo

Abstract

The YUIMA Project is an open source and collaborative e↵ort aimed at developing
the R package yuima for simulation and inference of stochastic di↵erential equations. In
the yuima package stochastic di↵erential equations can be of very abstract type, multidi-
mensional, driven by Wiener process or fractional Brownian motion with general Hurst
parameter, with or without jumps specified as Lévy noise. The yuima package is intended
to o↵er the basic infrastructure on which complex models and inference procedures can
be built on. This paper explains the design of the yuima package and provides some
examples of applications.

Keywords: inference for stochastic processes, simulation, stochastic di↵erential equations.

1. Introduction

The plan of the YUIMA1 Project is to construct the bases for a complete environment for

1
YUIMA is both the acronym for Yoshida-Uchida-Iacus-Masuda-Andothers but also the name of an im-

portant character in Buddhism religion (http://www.kyohaku.go.jp/eng/syuzou/meihin/kaiga/chuugoku/

item01.html) whose approach to problems fits this project well.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187919196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/
http://www.kyohaku.go.jp/eng/syuzou/meihin/kaiga/chuugoku/item01.html
http://www.kyohaku.go.jp/eng/syuzou/meihin/kaiga/chuugoku/item01.html

2 The YUIMA Project

simulation and inference for stochastic processes via an R (R Core Team 2013) package called
yuima. The yuima package adopts the S4 system of classes and methods (Chambers 1998).

Under this framework, the yuima package also supplies various functions to carry out sim-
ulation and statistical analysis. Both categories of procedures may depend on each other.
Statistical inference often requires a simulation technique as a subroutine, and a certain sim-
ulation method needs to fix a tuning parameter by applying a statistical methodology. It is
especially in the case of stochastic processes because most of the expected values involved do
not admit an explicit expression. The yuima package facilitates comprehensive, systematic
approaches to the solution.

Stochastic di↵erential equations are commonly used to model random evolution along contin-
uous or practically continuous time, such as the random movements of stock prices. Theory
of statistical inference for stochastic di↵erential equations already has a fairly long history,
more than three decades, but it is still developing quickly new methodologies and expanding
the area. The formulas produced by the theory are usually very sophisticated, which makes
it di�cult for standard users not necessarily familiar with this field to enjoy benefits. For
example, by taking advantage of the analytic approach, the asymptotic expansion method for
computing option prices (i.e., expectation of an irregular functional of a stochastic process)
provides precise approximation values instantaneously. The expansion formula, which has a
long expression involving more than 900 terms of multiple integrals, is already coded in the
yuima package for generic di↵usion processes.

The yuima package delivers up-to-date methods as a package onto the desk of the user working
with simulation and/or statistics for stochastic di↵erential equations. In the yuima package,
stochastic di↵erential equations can be of very abstract type, multidimensional, driven by
Wiener process or fractional Brownian motion with general Hurst parameter, with or without
jumps specified as Lévy noise.

The yuima package is intended to o↵er the basic infrastructure on which complex models and
inference procedures can be built on. This paper explains the design of the yuima package
and illustrates some examples of applications. The paper is organized as follows. Section 2
is an overview about the package. Section 3 describes the way in which models are specified
in yuima. Section 4 describes how to simulate yuima models. Section 5 explains asymptotic
expansion methods. Section 6 is a review of basic inference procedures. Finally, Section 7
gives additional details and the roadmap of the YUIMA Project.

Although we assume that the reader of this paper has a basic knowledge of the R language,
most of the examples are easy to understand if he/she knows stochastic di↵erential equations
intuitively or symbolically.

2. The yuima package

The package yuima depends on some other packages, like zoo (Zeileis and Grothendieck 2005),
which can be installed separately. The package zoo is used internally to store time series data.
This dependence may change in the future adopting a more flexible class for internal storage
of time series.

Journal of Statistical Software 3

2.1. How to obtain the package

The yuima package is hosted on R-Forge and the web page of the project is http://R-Forge.
R-project.org/projects/yuima. The R-Forge page contains the latest development version,
and stable version of the package are available through the Comprehenisve R Archive Net-
work (CRAN) at http://CRAN.R-project.org/package=yuima. Development versions of
the package are not supposed to be stable or functional, thus the occasional user should
consider to install the stable version first.

2.2. The main objects and classes

Before discussing the methods for simulation and inference for stochastic process solutions
to stochastic di↵erential equations, we give an overview of the main classes in the package.
As mentioned there are di↵erent classes of objects defined in the yuima package and the
main class ‘yuima’. This class is composed of several slots. Figure 1 represents the di↵erent
classes and their slots. The di↵erent slots do not need to be all present at the same time.2.2. THE yuima.model CLASS 6

yuima

yuima

yuima

model
data
sampling
characteristic
functional

data
yuima.data

yuima.data

original.data
zoo.data

model
yuima.model

yuima.model

drift
diffusion
hurst
measure
measure.type
parameter
state.variable
jump.variable
time.variable
noise.number
equation.number
dimension
solve.variable
xinit
J.flag

sampling

yuima.sampling

yuima.sampling

Initial
Terminal
n
delta
grid
random
regular
sdelta
sgrid
oindex
interpolation

characteristic
yuima.characteristic

yuima.characteristic

equation.number
time.scale

functional
yuima.functional

yuima.functional

F
f
xinit
e

FIGURE 2.1: The main classes in the yuima package.

• drift is an R expression which contains the drift specification.

• diffusion is itself a list of 1 slot which describes the diffusion coef-
ficient relative to first noise.

• parameter which is a short name for “parameters” which is a list of
objects.

• all contains the names of all the parameters found in the diffusion

Figure 1: The main classes in the yuima package.

http://R-Forge.R-project.org/projects/yuima
http://R-Forge.R-project.org/projects/yuima
http://CRAN.R-project.org/package=yuima

4 The YUIMA Project

For example, in case one wants to simulate a stochastic process, only the slots model and
sampling should be present, while the slot data will be filled by the simulator. We discuss
in detail the di↵erent objects separately in the next sections.

The general idea of the yuima package is to separate into di↵erent subclass objects the statis-
tical model, the data and the statistical methods. As will be explained with several examples,
the user may give a mathematical description of the statistical model with setModel which
prepares a ‘yuima.model’ object by filling the appropriate slots. If the aim is the simulation
of the solution of the stochastic di↵erential equation specified in the ‘yuima.model’ object
then, using the method simulate, it is possible to obtain one trajectory of the process. As
an output, a ‘yuima’ object (i.e., a possibly incomplete, object of class ‘yuima’) is created
which contains the original model specified in the ‘yuima.model’ object in the slot named
model and two additional slots named data, for the simulated data, and sampling which
contains the description of the simulation scheme used as well as other informations. The
details of simulate will be explained in Section 4 along with the use of method setSampling

which allows to specify the type of sampling scheme to be used by the simulate method.
But a ‘yuima’ object may contain the slot data not only as the outcome of simulate but also
because the user decides to analyse its own data. In this case the method setData is used to
transform most types of R time series objects into a proper ‘yuima.data’ object. When the
slots data and model are available, many other methods can be used to perform statistical
analysis on these SDE (stochastic di↵erential equation) models. These methods will be dis-
cussed in Section 6. Further, functionals of SDE’s can be defined using the setFunctional

method and evaluated using asymptotic expansion methods as explained in Section 5. The
setFunctional method creates a ‘yuima.functional’ object which is included along with a
‘yuima.model’ into a ‘yuima’ object in order to be used for the evaluation of its asymptotic
expansion.

2.3. The ‘yuima.model’ class

At present, in yuima three main classes of SDE’s can be easily specified. Here we present a
brief overview of these models as they will be described in detail in Section 3, but this allows
to introduce an overall view of the slots of the ‘yuima.model’ class.

In yuima one can describe three main families of stochastic processes at present. These models
can be one or multidimensional and eventually described as parametric models. Let X0 = x0
be the initial value of the process, then, the main classes are as follows:

Di↵usion models described as

dXt = a(t,Xt, ✓)dt+ b(t,Xt, ✓)dWt, X0 = x0,

where Wt is a standard Brownian motion.

SDE’s driven by fractional Gaussian noise, with H the Hurst parameter, described as

dXt = a(t,Xt, ✓)dt+ b(t,Xt, ✓)dW
H
t , X0 = x0.

Journal of Statistical Software 5

Di↵usion processes with jumps and Lévy processes solution to

dXt = a(t,Xt, ✓)dt+ b(t,Xt, ✓)dWt +

Z

|z|>1

c(Xt�, z)µ(dt, dz)

+

Z

0<|z|1

c(Xt�, z){µ(dt, dz)� ⌫(dz)dt}
, X0 = x0.

The functions a(·), b(·) and c(·) may have a di↵erent number of arguments. For example, if
the model is homogeneous in time and drift and di↵usion coe�cients are entirely specified,
then we will use the notaion a(x) and b(x) and describe the di↵usion model simply as dXt =
a(Xt)dt + b(Xt)dWt. And so forth. Detailed hypotheses and regularity conditions on the
coe�cients a(·), b(·) and c(·) for each class of models will be given in the next sections.
Nevertheless, it is important to remark that these notations only matter to the mathematical
description of the model while each coe�cient is passed to yuima methods as R mathematical
expressions. This means that, for example, a(t,Xt, ✓) = t·

p
✓Xt will be passed as t * sqrt(x

* theta), therefore, the order of the arguments is not relevant to R as well as its mathematical
description as long as it is consistent through each specific section. Further, yuima is able to
accept any user-specified notation for the state variable x (for Xt) and the time variable t and
the remaining term of an R expression will be interpreted as parameter as will be explained
in Section 3.1. We are now able to give an overview of the main slots of the most important
class of the yuima package.

The ‘yuima.model’ class contains information about the SDE of interest. The constructor
function setModel is used to give a mathematical description of the SDE. All functions in
the package are assumed to get as much information as possible from the model instead of
replicating the same code everywhere. If there are missing pieces of information, we may
change or extend the description of the model.

An object of class ‘yuima.model’ contains several slots listed below. To see inside its structure,
one can use the R command str on a ‘yuima’ object.

drift is an R vector of expressions which contains the drift specification;

diffusion is itself a list of 1 slot which describes the di↵usion coe�cient matrix relative
to first noise;

hurst is the Hurst index of the fractional Brownian motion, by default 0.5 meaning a
standard Brownian motion. More details will be given in Section 3.5;

parameter, which is a short name for “parameters”, is a list with the following entries
(more details in Section 3.3):

– all contains the names of all the parameters found in the di↵usion and drift
coe�cient;

– common contains the names of the parameters in common between the drift and
di↵usion coe�cients;

– diffusion contains the parameters belonging to the di↵usion coe�cient;

– drift contains the parameters belonging to the drift coe�cient;

6 The YUIMA Project

– jump contains the parameters belonging to the coe�cient of the Lévy noise;

– measure contains the parameters describing the Lévy measure (explained details
in Section 3.6);

measure specifies the measure of the Lévy noise (see Section 3.6);

measure.type is a switch to specify how the Lévy measure is described (see Section 3.6);

state.variable and time.variable, by default, are assumed to be x and t but the
user can freely choose them and they matter to the right-hand side of the equation of
the SDE. The ‘yuima.model’ class assumes that the user either uses default names for
state.variable and time.variable variables or specifies his own names. All other
symbols are considered parameters and distributed accordingly in the parameter slot.
Example of use will be given in Section 3.1;

jump.variable indicates the name of the variable used in the description of the Lévy
component (see Section 3.6);

solve.variable contains a vector of variable names, each element corresponds to the
name of the solution variable (left-hand side) of each equation in the model, in the
corresponding order. An example of use can be found in Section 3.4;

noise.number indicates the number of sources of noise;

xinit is the initial value of the SDE;

equation.number represents the number of equations, i.e., the number of one-dimensional
SDE’s;

dimension reports the dimensions of the parameter space. It is a list of the same length
of parameter with the same names;

J.flag is for internal use only.

As seen in the above, the parameter space is accurately described internally in a ‘yuima’ object
because in inference for SDE’s, estimators of di↵erent parameters have di↵erent properties.
Usually, the rate of convergence for estimators in the di↵usion coe�cient are similar to the ones
in the i.i.d. (independent and identically distributed) sampling while estimators of parameters
in the drift coe�cient are slower or, in some cases, not even consistent. The yuima package
always tries to implement the best statistical inference for the given model under the observed
sampling scheme.

3. Model specification

In order to show how general the approach of the yuima package is, we present some examples.
Throughout this section we assume that all the SDE’s exist while in Section 6 we will give
regularity conditions needed to have a properly defined statistical model.

Journal of Statistical Software 7

3.1. One-dimensional di↵usion processes

Assume that we want to describe the following SDE

dXt = �3Xtdt+
1

1 +X2
t

dWt.

In the above a(x) = �3x and b(x) = 1
1+x2 according to the notation of the previous section

and Wt is a standard Wiener process. This can be described in yuima by specifying the drift
and di↵usion coe�cients as plain R expressions passed as strings

R> mod1 <- setModel(drift = "-3 * x", diffusion = "1/(1 + x^2)")

By default, yuima assumes that the state variable is x and the time variable is t and the
solve variable is again x. Notice that the left-hand side of the equation is implicit, this is
why ‘yuima.model’ has the slot solve.variable. The user should not be worried about the
warning raised by yuima at this stage, as this is just to inform her on the implicit assumption
on the solution variable. At this point, the package fills the proper slots of the ‘yuima’ object

R> str(mod1)

Formal class yuima.model [package "yuima"] with 16 slots

..@ drift : expression((-3 * x))

..@ diffusion :List of 1

.. ..$: expression(1/(1 + x^2))

..@ hurst : num 0.5

..@ jump.coeff : expression()

..@ measure : list()

..@ measure.type : chr(0)

..@ parameter :Formal class model.parameter [package "yuima"] ...

..@ all : chr(0)

..@ common : chr(0)

..@ diffusion: chr(0)

..@ drift : chr(0)

..@ jump : chr(0)

..@ measure : chr(0)

..@ state.variable : chr "x"

..@ jump.variable : chr(0)

..@ time.variable : chr "t"

..@ noise.number : num 1

..@ equation.number: int 1

..@ dimension : int [1:6] 0 0 0 0 0 0

..@ solve.variable : chr "x"

..@ xinit : num 0

..@ J.flag : logi FALSE

From the above, it is possible to see that the jump coe�cient is void and the Hurst parameter
is set to 0.5, because this is a model where the driving process is the standard Brownian

8 The YUIMA Project

0.0 0.2 0.4 0.6 0.8 1.0

−0
.2

0.
0

0.
2

0.
4

0.
6

t

x

Figure 2: The plot function is used to draw a trajectory of a simulated ‘yuima’ object.

motion, i.e., a fractional Brownian motion if Hurst index H = 1
2 . Now, with mod1 in hands,

it is extremely easy to simulate a trajectory by the Euler-Maruyama scheme of the process
as follows

R> set.seed(123)

R> X <- simulate(mod1)

which can be plotted using the command plot

R> plot(X)

and the result is shown in Figure 2.

The simulate function fills in addition the two slots data and sampling of the ‘yuima’ object.

R> str(X, vec.len = 2)

Formal class yuima [package "yuima"] with 5 slots

..@ data :Formal class yuima.data [package "yuima"] ...

..@ original.data: ts [1:101, 1] 0 -0.056 ...

..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr "Series 1"

..- attr(*, "tsp")= num [1:3] 0 1 100

..@ zoo.data :List of 1

..$ Series 1:‘zooreg’ series from 0 to 1

Data: num [1:101] 0 -0.056 ...

Index: num [1:101] 0 0.01 0.02 0.03 0.04 ...

Frequency: 100

..@ model :Formal class yuima.model [package "yuima"] ...

Journal of Statistical Software 9

..@ drift : expression((-3 * x))

..@ diffusion :List of 1

..$: expression(1/(1 + x^2))

..@ hurst : num 0.5

..@ jump.coeff : expression()

..@ measure : list()

..@ measure.type : chr(0)

..@ parameter :Formal class model.parameter ...

..@ all : chr(0)

..@ common : chr(0)

..@ diffusion: chr(0)

..@ drift : chr(0)

..@ jump : chr(0)

..@ measure : chr(0)

..@ state.variable : chr "x"

..@ jump.variable : chr(0)

..@ time.variable : chr "t"

..@ noise.number : num 1

..@ equation.number: int 1

..@ dimension : int [1:6] 0 0 0 0 0 ...

..@ solve.variable : chr "x"

..@ xinit : num 0

..@ J.flag : logi FALSE

..@ sampling :Formal class yuima.sampling ...

..@ Initial : num 0

..@ Terminal : num 1

..@ n : num 100

..@ delta : num 0.01

..@ grid :List of 1

..$: num [1:101] 0 0.01 0.02 0.03 0.04 ...

..@ random : logi FALSE

..@ regular : logi TRUE

..@ sdelta : num(0)

..@ sgrid : num(0)

..@ oindex : num(0)

..@ interpolation: chr "pt"

..@ characteristic:Formal class yuima.characteristic ...

..@ equation.number: int 1

..@ time.scale : num 1

..@ functional :Formal class yuima.functional ...

..@ F : NULL

..@ f : list()

..@ xinit: num(0)

..@ e : num(0)

More details on how to change the default sampling scheme for the simulate method and
how to perform subsampling will be given in Section 4.

10 The YUIMA Project

3.2. User specified state and time variables

Suppose now that the user wants to specify her own model using a prescribed notation, e.g.,
some SDE’s like

dYs = �3sYsds+
1

1 + Y 2
s

dWs,

where a(s, y) = �3sy and b(y) = 1/(1 + y2). Then this model can be described in yuima as
follows

R> mod1b <- setModel(drift = "-3 * s * y", diffusion = "1/(1 + y^2)",

+ state.var = "y", time.var = "s")

In this case the solution variable is the same as the state variable. Indeed, the ‘yuima.model’
object appears as follows

R> str(mod1b)

Formal class yuima.model [package "yuima"] ...

..@ drift : expression((-3 * s * y))

..@ diffusion :List of 1

.. ..$: expression(1/(1 + y^2))

..@ hurst : num 0.5

..@ jump.coeff : expression()

..@ measure : list()

..@ measure.type : chr(0)

..@ parameter :Formal class model.parameter ...

..@ all : chr(0)

..@ common : chr(0)

..@ diffusion: chr(0)

..@ drift : chr(0)

..@ jump : chr(0)

..@ measure : chr(0)

..@ state.variable : chr "y"

..@ jump.variable : chr(0)

..@ time.variable : chr "s"

..@ noise.number : num 1

..@ equation.number: int 1

..@ dimension : int [1:6] 0 0 0 0 0 0

..@ solve.variable : chr "y"

..@ xinit : num 0

..@ J.flag : logi FALSE

Once again, the user may use the simulate method to perform simulation.

3.3. Specification of parametric models

Assume now that we want to specify a parametric model like this

dXt = �✓Xtdt+
1

1 +X�
t

dWt

Journal of Statistical Software 11

0.0 0.2 0.4 0.6 0.8 1.0

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

t

x

Figure 3: A trajectory simulated from the parametric model mod2.

where a(x, ✓) = �✓x and b(x, �) = 1/(1 + x�). Then, yuima attempts to distinguish the
parameters’ names from the ones of the state and time variables

R> mod2 <- setModel(drift = "-theta * x", diffusion = "1/(1 + x^gamma)")

so, in this case, theta and gamma, which are di↵erent form x and t, are assumed to be
parameters. Notice that in the above notation ✓ and � are generic names for the components
of a parameters’ vector ✓ in the notation of Section 2.3.

R> str(mod2)

Formal class yuima.model [package "yuima"] with 16 slots

..@ drift : expression((-theta * x))

..@ diffusion :List of 1

.. ..$: expression(1/(1 + x^gamma))

..@ hurst : num 0.5

..@ jump.coeff : expression()

..@ measure : list()

..@ measure.type : chr(0)

..@ parameter :Formal class model.parameter ...

..@ all : chr [1:2] "theta" "gamma"

..@ common : chr(0)

..@ diffusion: chr "gamma"

..@ drift : chr "theta"

..@ jump : chr(0)

..@ measure : chr(0)

..@ state.variable : chr "x"

..@ jump.variable : chr(0)

12 The YUIMA Project

..@ time.variable : chr "t"

..@ noise.number : num 1

..@ equation.number: int 1

..@ dimension : int [1:6] 2 0 1 1 0 0

..@ solve.variable : chr "x"

..@ xinit : num 0

..@ J.flag : logi FALSE

In order to simulate the parametric model it is necessary to specify the values of the parameters
✓ and � as shown in the next code chunk

R> set.seed(123)

R> X <- simulate(mod2, true.param = list(theta = 1, gamma = 3))

R> plot(X)

and the trajectory can be seen in Figure 3.

3.4. Multidimensional processes

Next is an example of a system of two SDE’s for the couple (X1,t, X2,t) driven by three
independent Brownian motions (W1,t,W2,t,W3,t)

dX1,t = �3X1,tdt+ dW1,t +X2,tdW3,t

dX2,t = �(X1,t + 2X2,t)dt+X1,tdW1,t + 3dW2,t

but this has to be organized into matrix form with a vector of drift expressions and a di↵usion
matrix

✓
dX1,t

dX2,t

◆
=

✓
�3X1,t

�X1,t � 2X2,t

◆
dt+

✓
1 0 X2,t

X1,t 3 0

◆0

@
dW1,t

dW2,t

dW3,t

1

A

For this system it is now necessary to instruct yuima about the state variables on both the
left-hand side of the equation and the right-hand side of the equation, i.e., there is the need
to specify also the solve.variable for the left-hand side of the SDE: A vector containing
the variable names for the numerical solution, the drift vector and the di↵usion matri are
constructed and used as inputs for setModel.

R> sol <- c("x1", "x2")

R> a <- c("-3 * x1", "-x1 - 2 * x2")

R> b <- matrix(c("1", "x1", "0", "3", "x2", "0"), 2, 3)

R> mod3 <- setModel(drift = a, diffusion = b, solve.variable = sol)

Looking at the structure of the noise.number slot in mod3, one can see that this is now set
to 3 which is taken as the number of columns of the di↵usion matrix. Again, this model can
be easily simulated and the trajectory can be seen in Figure 4.

R> set.seed(123)

R> X <- simulate(mod3)

R> plot(X, plot.type = "single", lty = 1:2)

Journal of Statistical Software 13

0.0 0.2 0.4 0.6 0.8 1.0

−3
−2

−1
0

1

t

x1

Figure 4: A trajectory of the multidimensional SDE described in mod3.

Notice that the role of solve.variable is essential because it allows to specify the left-hand
side of an SDE equation. For example, if one wants to specify this model instead of the
previous one

dX2,t = �3X1,tdt+ dW1,t +X2,tdW3,t

dX1,t = �(X1,t + 2X2,t)dt+X1,tdW1,t + 3dW2,t

the solve.variable argument should be specified as solve.variable = c("x2", "x1") in
place of solve.variable = c("x1", "x2"), all the rest being the same as in model mod3.

But it is also possible to specify more complex models like the following

8
><

>:

dX1,t = X2,t |X1,t|2/3 dW1,t,

dX2,t = g(t)dX3,t,

dX3,t = X3,t(µdt+ �(⇢dW1,t +
p
1� ⇢2dW2,t)),

(X1,0, X2,0, X3,0) = (1.0, 0.1, 1.0),

with µ = 0.1,� = 0.2, ⇢ = �0.7 and g(t) = 0.4 + (0.1 + 0.2t)e�2t, for example, and where
W = (W1,W2) is a 2-dimensional standard Brownian motion. In order to pass this model to
yuima we need to rewrite it in matrix form. The solution X = (X1, X2, X3) takes values on
R3
+. This is a stochastic integral equation defined as

Xt = X0 +

Z t

0
a(s,Xs)ds+

Z t

0
b(s,Xs)dWs

with

a(s, x) =

0

@
0

g(s)µx3
µx3

1

A , b(s, x) =

0

@
x2|x1|2/3 0

g(s)�⇢x3 g(s)�
p

1� ⇢2x3
�⇢x3 �

p
1� ⇢2x3

1

A

for x = (x1, x2, x3).

14 The YUIMA Project

R> mu <- 0.1

R> sig <- 0.2

R> rho <- -0.7

R> g <- function(t) 0.4 + (0.1 + 0.2 * t) * exp(-2 * t)

R> f1 <- function(t, x1, x2, x3) {

+ ret <- 0

+ if(x1 > 0 && x2 > 0) ret <- x2 * exp(log(x1) * 2/3)

+ return(ret)

+ }

R> f2 <- function(t, x1, x2, x3) {

+ ret <- 0

+ if(x3 > 0) ret <- rho * sig * x3

+ return(ret)

+ }

R> f3 <- function(t, x1, x2, x3) {

+ ret <- 0

+ if(x3 > 0) ret <- sqrt(1 - rho^2) * sig * x3

+ return(ret)

+ }

R> diff.coef.matrix <- matrix(

+ c("f1(t, x1, x2, x3)", "f2(t, x1, x2, x3) * g(t)", "f2(t, x1, x2, x3)",

+ "0", "f3(t, x1, x2, x3) * g(t)", "f3(t, x1, x2, x3)"), 3, 2)

R> sabr.mod <- setModel(drift = c("0", "mu * g(t) * x3", "mu * x3"),

+ diffusion = diff.coef.matrix, state.variable = c("x1", "x2", "x3"),

+ solve.variable = c("x1", "x2", "x3"))

R> str(sabr.mod@parameter)

The functions f1, f2 and f3 are defined in a way that, when the trajectory of the processes
crosses zero from above, the trajectory is stopped at zero. Notice that in this way the only
visible parameter for yuima is mu as rho and sig are inside the bodies of the functions f2

and f3. If we want to instruct yuima about these parameters, they should appear explicitly
as arguments of the functions as shown in the following R code

R> f2 <- function(t, x1, x2, x3, rho, sig) {

+ ret <- 0

+ if(x3 > 0) ret <- rho * sig * x3

+ return(ret)

+ }

R> f3 <- function(t, x1, x2, x3, rho, sig) {

+ ret <- 0

+ if(x3 > 0) ret <- sqrt(1 - rho^2) * sig * x3

+ return(ret)

+ }

R> diff.coef.matrix <- matrix(c("f1(t, x1, x2, x3)",

+ "f2(t, x1, x2, x3, rho, sig) * g(t)", "f2(t, x1, x2, x3, rho, sig)",

+ "0", "f3(t, x1, x2, x3, rho, sig) * g(t)",

+ "f3(t, x1, x2, x3, rho, sig)"), 3, 2)

Journal of Statistical Software 15

R> sabr.mod <- setModel(drift = c("0", "mu * g(t) * x3", "mu * x3"),

+ diffusion = diff.coef.matrix, state.variable = c("x1", "x2", "x3"),

+ solve.variable = c("x1", "x2", "x3"))

R> str(sabr.mod@parameter)

3.5. Fractional Gaussian noise

The yuima allows for the description of SDE’s driven by fractional Brownian motion of the
following type

dXt = a(Xt)dt+ b(Xt)dW
H
t ,

where WH =
�
WH

t , t � 0
�
is a normalized fractional Brownian motion (fBM), i.e., zero mean

Gaussian processes with covariance function

E(WH
s WH

t) =
1

2

�
|s|2H + |t|2H � |t� s|2H

�

with Hurst exponentH 2 (0, 1). The fractional Brownian motion process is neither Markovian
nor a semimartingale for H 6= 1

2 but remains Gaussian. For H > 1
2 , the solution Xt above

presents the long-range dependence property that makes it useful for di↵erent applications in
biology, physics, ethernet tra�c or finance. In order to specify a SDE driven by fractional
Gaussian noise it is necessary to specify the value of the Hurst parameter. For example, if we
want to specify the following fractional Ornstein-Uhlenbeck model

dYt = 3Ytdt+ dWH
t

we can proceed as follows

R> mod4A <- setModel(drift = "3 * y", diffusion = 1, hurst = 0.3,

+ solve.var = "y")

R> mod4B <- setModel(drift = "3 * y", diffusion = 1, hurst = 0.7,

+ solve.var = "y")

R> set.seed(123)

R> X1 <- simulate(mod4A, sampling = setSampling(n = 1000))

R> X2 <- simulate(mod4B, sampling = setSampling(n = 1000))

R> par(mfrow = c(2, 1), mar = c(2, 3, 1, 1))

R> plot(X1, main = "H = 0.3")

R> plot(X2, main = "H = 0.7")

and the two trajectories can be seen in Figure 5. In this case, the appropriate slot is now
filled

R> str(mod4A)

Formal class yuima.model [package "yuima"] with 16 slots

..@ drift : expression((3 * y))

..@ diffusion :List of 1

.. ..$: expression(1)

..@ hurst : num 0.3

16 The YUIMA Project

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

t

y

H=0.3

0.0 0.2 0.4 0.6 0.8 1.0

−3
.0

−2
.0

−1
.0

0.
0

y

H=0.7

Figure 5: Trajectories of the fractional Ornstein-Uhlenbeck process for di↵erent values of the
Hurst parameter.

..@ jump.coeff : expression()

..@ measure : list()

..@ measure.type : chr(0)

..@ parameter :Formal class model.parameter ...

..@ all : chr(0)

..@ common : chr(0)

..@ diffusion: chr(0)

..@ drift : chr(0)

..@ jump : chr(0)

..@ measure : chr(0)

..@ state.variable : chr "x"

..@ jump.variable : chr(0)

..@ time.variable : chr "t"

..@ noise.number : num 1

..@ equation.number: int 1

..@ dimension : int [1:6] 0 0 0 0 0 0

..@ solve.variable : chr "y"

..@ xinit : num 0

..@ J.flag : logi FALSE

Journal of Statistical Software 17

The user can choose between two simulation schemes, namely the Cholesky method and the
Wood and Chan (1994) method. This is done via the argument methodfGn in the simulate

method. The default simulation scheme is Wood and Chan (1994) and it is chosen by setting
methodfGn = "WoodChan", the other simply by setting methodfGn to "Cholesky".

3.6. Lévy processes

Jump processes can be specified in di↵erent ways in mathematics and hence in the yuima
package. Let Zt be a compound Poisson process (i.e., jump sizes follow some distribution,
like the Gaussian law, and jumps occur at Poisson times). Then it is possible to consider the
simple following SDE which involves jumps

dXt = a(t,Xt, ✓)dt+ b(t,Xt, ✓)dWt + dZt,

or the more general representation

dXt = a(t,Xt, ✓)dt+ b(t,Xt, ✓)dWt +

Z

|z|>1

c(Xt�, z)µ(dt, dz)

+

Z

0<|z|1

c(Xt�, z){µ(dt, dz)� ⌫(dz)dt}
, X0 = x0, (1)

with µ a random measure associated with the jumps of X, that is,

µ(dt, dz) =
X

s>0

1{�Zs 6=0}�(s,�Zs)(dt, dz),

where � denotes the Dirac measure and Z the driving pure-jump Lévy process of the form

Zt =

Z t

0

Z

|z|1
z{µ(ds, dz)� ⌫(dz)ds}+

Z t

0

Z

|z|>1
zµ(ds, dz).

The Lévy measure ⌫ is any measure satisfying ⌫({0}) = 0 and
R
(1 ^ |z|2)⌫(dz) < 1. In the

next example we consider a compound Poisson process with intensity � = 10 with Gaussian
jumps as driving Lévy process. This model can be specified in setModel using the argument
measure.type = "CP" (for compound Poisson). A simple Ornstein-Uhlenbeck process with
Gaussian jumps like this

dXt = �✓Xtdt+ �dWt + dZt

is then specified as follows (the trajectory is shown in Figure 6).

R> mod5 <- setModel(drift = c("-theta * x"), diffusion = "sigma",

+ jump.coeff = "1", measure = list(intensity = "10",

+ df = list("dnorm(z, 0, 1)")), measure.type = "CP",

+ solve.variable = "x")

R> set.seed(123)

R> X <- simulate(mod5, true.p = list(theta = 1, sigma = 3),

+ sampling = setSampling(n = 1000))

R> plot(X)

18 The YUIMA Project

0.0 0.2 0.4 0.6 0.8 1.0

−8
−6

−4
−2

0

t

x

Figure 6: A trajectory of the Ornstein-Uhlenbeck process with jumps following a compound
Poisson process with Gaussian jumps as defined in mod5.

Another possibility is to specify the jump component via the Lévy measure ⌫(·). Without go-
ing into too much details, here is an example of specification of a simple Ornstein-Uhlenbeck
process with IG (inverse Gaussian) Lévy measure ⌫(·) and no Poisson component (see Fig-
ure 7)

dXt = �xdt+ dZt

R> mod6 <- setModel(drift = "-x", xinit = 1, jump.coeff = "1",

+ measure.type = "code", measure = list(df = "rIG(z, 1, 0.1)"))

R> set.seed(123)

R> X <- simulate(mod6, sampling = setSampling(Terminal = 10, n = 10000))

R> plot(X)

The argument measure.type = "code" stands for user defined code.

3.7. Specification of generic models in yuima

In general, the yuima package allows to specify a large family of models which are solutions
to

dXt = a(t,Xt, ✓)dt+ b(t,Xt, ✓)dWt + c(t,Xt, ✓)dZt

using the following interface

setModel(drift, diffusion, hurst = 0.5, jump.coeff, measure, measure.type,

state.variable = "x", jump.variable = "z", time.variable = "t",

solve.variable, xinit)

The coe�cient c(·) may also depend on the process Z, in this case the admissible form
for the coe�cient is c(t, x, ✓, z) = c(t, x, ✓) · z. In the integral representation correspoding

Journal of Statistical Software 19

0 2 4 6 8 10

0
5

10
15

20

t

x

Figure 7: A trajectory of the pure jump process with inverse Gaussian Lévy measure for
jumps as defined in mod6.

to formula (1) the coe�cient c(·) is not allowed to depend on time though. The yuima
package implements many multivariate random number generators (RNG’s) which are needed
to simulate Lévy paths including rIG (inverse Gaussian), rNIG (normal inverse Gaussian),
rbgamma (bilateral gamma), rngamma (normal gamma) and rstable (stable laws). Other
user-defined RNG’s can be used freely.

4. Simulation, sampling and subsampling

The simulate function simulates ‘yuima’ models according to the Euler-Maruyama scheme
in the presence of non-fractional di↵usion noise and Lévy jumps and uses the Cholesky or
the Wood and Chan (1994) methods for the fractional Gaussian noise. For di↵usion mod-
els without jumps, yuima also implements the space discretized Euler-Maruyama method,
which is more e�cient, in the sense of mean squared error approximation, than the usual
time-discretized Euler-Maruyama scheme. The (time-discretized) Euler-Maruyama simula-
tion scheme defines a grid of times 0 = ⌧0 < ⌧1 < · · · < ⌧j < ⌧j+1 < · · · , and constructs an
approximative solution {X̃t, t � 0} of the original process {Xt, t � 0} given by

X̃⌧j+1 = X̃⌧j + b(⌧j , X̃⌧j)(⌧j+1 � ⌧j) + c(⌧j , X̃⌧j)(W⌧j+1 �W⌧j), j � 0.

As the interval ⌧j+1 � ⌧j is independent to {Wt}t�⌧j for each j, W⌧j+1 � W⌧j has the same
distribution as

p
⌧j+1 � ⌧jNj , where Nj is an i.i.d. sequence of standard normal variables.

The basic discretization scheme is equidistant, i.e., ⌧j+1 � ⌧j = T/n = �n, for all j � 0. But
the simulate method provides also the space-discretized Euler-Maruyama method to solve
SDE’s. This is at the moment designed for 1 factor SDE’s only, i.e., the case where the driving
Brownian motion W is 1-dimensional. In this case, the discretization scheme {⌧j} is defined
as

⌧0 = 0, ⌧j+1 = inf{t > ⌧j ; |Wt �W⌧j | = ✏}

20 The YUIMA Project

for each j � 0. Internally, simulate takes ✏2 = T/n = �n which coincides with the mean of
the interval ⌧j+1 � ⌧j . This space-discretizing scheme is known to be 3 times more e�cient
than the usual time-discretized scheme one in the sense of the mean squared error (Fukasawa
2011). To make use of the space-discretized Euler-Maruyama scheme, one should use the
argument space.discretized = TRUE which, by default, is set to FALSE. Other simulation
schemes for 1-dimensional di↵usion processes as explained in Iacus (2008) will be implemented
in the near future.

The simulate function accepts several arguments including the description of the sampling
structure, which is an object of type ‘yuima.sampling’. The setSampling allows for the
specification of di↵erent sampling parameters including random sampling. Further, the
subsampling allows to subsample a trajectory of a simulated SDE or a given time series
in the yuima.data slot of a ‘yuima’ object. Sampling and subsampling can be specified
jointly as arguments to the simulate function. This is convenient if one wants to simulate
data at very high frequency but then return only low frequency data for inference or other
applications. In what follows we explain how to specify arguments of these yuima functions.
Complete details can be found in the manual pages of the yuima package.

Assume that we want to simulate the following model

dX1,t = �✓X1,tdt+ dW1,t +X2,tdW3,t

dX2,t = �(X1,t + �X2,t)dt+X1,tdW1,t + �dW2,t

Now we prepare the model using the setModel constructor function where the variables for
the numerical solution sol, the drift vector b and the di↵usion matrix s are defined before
calling setModel.

R> sol <- c("x1", "x2")

R> b <- c("-theta * x1", "-x1 - gamma * x2")

R> s <- matrix(c("1", "x1", "0", "delta", "x2", "0"), 2, 3)

R> mymod <- setModel(drift = b, diffusion = s, solve.variable = sol)

Suppose now that we want to simulate the process on a regular grid on the interval [0, 3] and
n = 3000 observations. We can prepare the sampling structure as follows

R> samp <- setSampling(Terminal = 3, n = 3000)

and let us analyze its content

R> str(samp)

Formal class yuima.sampling [package "yuima"] with 11 slots

..@ Initial : num 0

..@ Terminal : num 3

..@ n : num 3000

..@ delta : num 0.001

..@ grid :List of 1

.. ..$: num [1:3001] 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 ...

..@ random : logi FALSE

Journal of Statistical Software 21

..@ regular : logi TRUE

..@ sdelta : num(0)

..@ sgrid : num(0)

..@ oindex : num(0)

..@ interpolation: chr "pt"

As seen from the output, the sampling structure is quite rich and we will show how to specify
some of the slots later on. We simulate this process by specifying the sampling argument in
the simulate method

R> set.seed(123)

R> X2 <- simulate(mymod, sampling = samp)

the sampling structure is recorded along with the data in the ‘yuima’ object X2

R> str(X2@sampling)

Formal class yuima.sampling [package "yuima"] with 11 slots

..@ Initial : num 0

..@ Terminal : num [1:2] 3 3

..@ n : num [1:2] 3000 3000

..@ delta : num 0.001

..@ grid :List of 1

.. ..$: num [1:3001] 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 ...

..@ random : logi FALSE

..@ regular : logi TRUE

..@ sdelta : num(0)

..@ sgrid : num(0)

..@ oindex : num(0)

..@ interpolation: chr "pt"

Subsampling

The sampling structure can be used to operate subsampling. The next example shows how
to perform Poisson random sampling, with two independent Poisson processes, one per coor-
dinate of X2.

R> newsamp <- setSampling(random = list(rdist = c(function(x)

+ rexp(x, rate = 10), function(x) rexp(x, rate = 20))))

R> str(newsamp)

Formal class yuima.sampling [package "yuima"] with 11 slots

..@ Initial : num 0

..@ Terminal : num 1

..@ n : num(0)

..@ delta : num(0)

..@ grid : NULL

22 The YUIMA Project

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−3
−2

−1
0

1
2

t

X2

●
● ●

●
●

●

●

●
●

●

●

●
● ●●

●

●

●

●

● ●

●

●
●

●

●
●

●
●
●●

Figure 8: An example of Poisson random subsampling: green and red dots are sampled
according to two di↵erent and independent Poisson processes.

..@ random :List of 1

.. ..$ rdist:List of 2

..$:function (x)

..$:function (x)

..@ regular : logi FALSE

..@ sdelta : num(0)

..@ sgrid : num(0)

..@ oindex : num(0)

..@ interpolation: chr "pt"

In the above we have specified two independent exponential distributions to represent Pois-
son arrival times. Notice that the slot regular is set to FALSE. We subsample the original
trajectory of X2 using the subsampling function (see Figure 8)

R> newdata <- subsampling(X2, sampling = newsamp)

R> plot(X2,plot.type = "single", lty = c(1, 3), ylab = "X2")

R> points(get.zoo.data(newdata)[[1]], col = "red")

R> points(get.zoo.data(newdata)[[2]], col = "green", pch = 18)

We can also operate a deterministic sampling by specifying two di↵erent regular frequencies
(see Figure 9)

R> newsamp <- setSampling(delta = c(0.1, 0.2))

R> newdata <- subsampling(X2, sampling = newsamp)

R> plot(X2,plot.type = "single", lty = c(1, 3), ylab = "X2")

R> points(get.zoo.data(newdata)[[1]], col = "red")

R> points(get.zoo.data(newdata)[[2]], col = "green", pch = 18)

Journal of Statistical Software 23

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−3
−2

−1
0

1
2

t

X2

●

●

●

● ●

●

●

●

●

● ●

● ●

●
● ●

● ●
● ●

●

●

●

●

●
●

● ●
●

●

● ●

Figure 9: An example of deterministic subsampling: the frequency of red dots is two times
the one of the green dots.

0.0 0.2 0.4 0.6 0.8 1.0

−0
.5

0.
0

0.
5

1.
0

t

x1

●●
●

●

●●
●
●

●

●

●

●

●
●●

●
●

●●
●

●

●

●●●●
●

●

●
●

●

●
●

●
●●

●
●
●
●

●
●●

●
●

●
●

●
●

●●

●
●

●

●

●●●
●

●

●

●●
●

●

●
●

●

●●
●●

●
●●

●●

●
●

●

●

●

●

●●

●
●
●

●●●

●

●

●
●

●

●●

●●
●

Figure 10: An example of subsampling used within the simulate command.

Again one can look at the structure of the sampling structure.

Subsampling can be used within the simulate function. What is usually done in simulation
studies, is to simulate the process at very high frequency but then use data for estimation at
a lower frequency (see Figure 10). This can be done in a single step in the following way:

R> set.seed(123)

R> Y.sub <- simulate(mymod,sampling = setSampling(delta = 0.001, n = 1000),

+ subsampling = setSampling(delta = 0.01, n = 100))

R> set.seed(123)

24 The YUIMA Project

0.0 0.2 0.4 0.6 0.8 1.0

−0
.5

0.
0

0.
5

1.
0

t

x1

Figure 11: Plotting directly the subsampled trajectory Y.sub.

R> Y <- simulate(mymod, sampling = setSampling(delta = 0.001, n = 1000))

R> plot(Y, plot.type = "single")

R> points(get.zoo.data(Y.sub)[[1]], col = "red")

R> points(get.zoo.data(Y.sub)[[2]], col = "green", pch = 18)

In the previous code we have simulated the process twice just to show the e↵ect of the
subsampling, but the reader should use only the line which outputs the simulation to Y.sub

as seen in Figure 11.

R> plot(Y.sub, plot.type = "single")

5. Asymptotic expansion

For numerical computation of the expectation of a random variable, the Monte-Carlo method
gives a universal solution although it is time consuming and involves stochastic errors of a
certain scale depending on the number of replications. An alternative tool is the asymptotic
expansion method that can often give a solution with accuracy comparable or superior to
Monte-Carlo methods. The asymptotic expansion method has an advantage in the computa-
tional time because the approximation is given through an analytic formula.

Let us consider a family of d-dimensional di↵usion processes X = (X(")
t)t2[0,T] (" 2 (0, 1])

specified by the stochastic integral equation

X
(")
t = x0 +

Z t

0
a(X(")

s , ")ds+

Z t

0
b(X(")

s , ")dWs, t 2 [0, T] (2)

for " 2 (0, 1], where Wt = (W1,t, . . . ,Wr,t) is an r-dimensional Wiener process. The functional

Journal of Statistical Software 25

of interest is expressed in the following abstract form

F (") =
rX

↵=0

Z T

0
f↵(X

(")
t , ")dW↵

t + F (X(")
T , "), W 0

t = t. (3)

A typical application is the Asian option pricing. For example, in the Black-Scholes model

dX(")
t = µX

(")
t dt+ "X

(")
t dWt, (4)

the price of the option under zero interest rate is of the form

E


max

✓
1

T

Z T

0
X

(")
t dt�K, 0

◆�
.

Thus the functional of interest is

F (") =
1

T

Z T

0
X

(")
t dt, r = 1

with
f0(x, ") =

x

T
, f1(x, ") = 0, F (x, ") = 0

in (3).

Similarly, for F (x, ") = x, the functional becomes F (") = X
(")
T and the price of the European

call option is E[max(X(")
T �K, 0)]. This value has a closed form in the Black-Sholes economy,

but it is necessary to apply some numerical method for pricing the Asian option even in this
linear case.

Returning to the general system (2)–(3), we will assume that the stochastic system is deter-
ministic in the limit as " # 0, that is,

b(·, 0) = 0 and f↵(·, 0) = 0 (↵ = 1, . . . , r).

Since X
(0)
t is the deterministic solution to the ordinary di↵erential equation

dX(0)
t /dt = a(X(0)

t , 0), X
(0)
0 = x0,

the functional F (0) becomes a constant given by

F (0) =

Z T

0
f0(X

(0)
t , 0)dt+ F (X(0)

T , 0). (5)

Under standard regularity of a, b, f↵ and F , it is possible to show F (") has a version that is
smooth in " 2 [0, 1) almost surely, and hence,

F̃ (") := "�1(F (") � F (0))

admits a stochastic expansion

F̃ (") ⇠ F̃ [0] + "F̃ [1] + "2F̃ [2] + · · · (6)

26 The YUIMA Project

as " # 0. This stochastic expansion makes sense in the Sobolev spaces of the Malliavin calculus.
Then the so-called Watanabe’s theory Watanabe (1987) validates the asymptotic expansion
of the (generalized) expectation

E[g(F̃ ("))] ⇠ d0(g) + "d1(g) + "2d2(g) + · · · (7)

as " # 0 for measurable functions g at most polynomial growth or, more generally, for Schwartz
distributions, under the uniform nondegeneracy of the Malliavin covariance of F̃ (") 2. In the
present situation, each di(g) is expressed as

di(g) =

Z
g(z)pi(z)�(z; 0, v)dz,

where pi is a polynomial and �(z; 0, v) is the density of the normal distribution N(0, v) with
v = Cov[F̃ (0)]. Polynomials pi are given by the conditional expectation of multiple Wiener
integrals. The expansion (7) holds uniformly in a class of functions g.

As mentioned above, Monte-Carlo methods require a huge number of simulations to get
the desired accuracy of the calculation of the expectation, while the asymptotic expansion
of F (") gives very fast and accurate approximation by analytic formulation. The yuima
package provides functions to construct the functional F (") and perform automatic asymptotic
expansion based on the Malliavin calculus starting from a ‘yuima’ object. This asymptotic
expansion approach to option pricing was proposed in early 1990’s (Yoshida 1992a; Takahashi
1999; Kunitomo and Takahashi 2001), and several related papers are available today.

Though our method can be applied to the nonlinear system (2)–(3), just as an example, we
shall consider the Asian call option of the geometric Brownian motion of Equation 4 with
µ = 1 and x0 = 1, and

g(x) = max
⇣
F (0) �K + "x, 0

⌘
. (8)

Set the model (2) and the functional (3) as follows:

R> model <- setModel(drift = "x", diffusion = matrix("x * e", 1, 1))

R> T <- 1

R> xinit <- 150

R> K <- 100

R> f <- list(expression(x/T), expression(0))

R> F <- 0

R> e <- 0.5

R> yuima <- setYuima(model = model,

+ sampling = setSampling(Terminal = T, n = 1000))

R> yuima <- setFunctional(yuima, f = f, F = F, xinit = xinit, e = e)

This time the setFunctional command fills the appropriate slots inside the ‘yuima’ object

R> str(yuima@functional)

2
This condition ensures the smoothness of the distribution of

˜F (")
. It should be remarked that the Watan-

abe’s theory is more general than the present use for the variable

˜F (")
having a Gaussian principal part

˜F (0)
.

Journal of Statistical Software 27

Formal class yuima.functional [package "yuima"] with 4 slots

..@ F : num 0

..@ f :List of 2

.. ..$: expression(x/T)

.. ..$: expression(0)

..@ xinit: num 150

..@ e : num 0.5

Then the limit F (0) of F (") is easily obtained by calling the function F0 on the ‘yuima’ object:

R> F0 <- F0(yuima)

R> F0

[1] 257.6134

Set the function g according to (8), where epsilon is the noise level:

R> rho <- expression(0)

R> epsilon <- e

R> g <- function(x) {

+ tmp <- (F0 - K) + (epsilon * x)

+ tmp[(epsilon * x) < (K - F0)] <- 0

+ tmp

+ }

Now we are at the point of computing the coe�cients di (i = 0, 1, 2) in the expansion of the
price E[max(F (") �K, 0)] by applying the function asymptotic_term:

R> asymp <- asymptotic_term(yuima, block = 10, rho, g)

R> asymp

Then the sums

R> asy1 <- asymp$d0 + e * asymp$d1

R> asy1

[1] 156.608

and

R> asy2 <- asymp$d0 + e * asymp$d1 + e^2 * asymp$d2

R> asy2

[,1]

[1,] 157.6082

28 The YUIMA Project

give the first and second order asymptotic expansions of the Asian call price, respectively.

We remark that the expansion of E[g(F̃ ("))G(")] is also possible by the same method for a
functional G(") having a stochastic expansion like (6). Thus our method works even under
the existence of a stochastic discount factor.

One can compare the result of the asymptotic expansion with other well known techniques
like Edgeworth series expansion for the log-normal distribution as proposed, e.g., in Levy
(1992). This approximation is available through the package fExoticOptions (Wuertz 2012).

R> library("fExoticOptions")

R> levy <- LevyAsianApproxOption(TypeFlag = "c", S = xinit, SA = xinit,

+ X = K, Time = 1, time = 1, r = 0.0, b = 1, sigma = e)@price

R> levy

[1] 157.7712

and the relative di↵erence between the two approximations is �0.1%.

Asymptotic expansion for general stochastic processes

Of course, the yuima approach is more general in that the above Lévy approximation only
holds when the process Xt is the geometric Brownian motion. We now give an example when
the underlying process Xt is the following CIR model

dXt = 0.9Xtdt+ "
p

XtdWt, X0 = 1,

and we calculate the asymptotic expansion of a European call option with strike price K = 10
for " = 0.4.

R> a <- 0.9

R> e <- 0.4

R> Terminal <- 3

R> xinit <- 1

R> K <- 10

R> drift <- "a * x"

R> diffusion <- "e * sqrt(x)"

R> model <- setModel(drift = drift, diffusion = diffusion)

R> n <- 1000 * Terminal

R> yuima <- setYuima(model = model,

+ sampling = setSampling(Terminal = Terminal, n = n))

R> f <- list(c(expression(0)), c(expression(0)))

R> F <- expression(x)

R> yuima.ae <- setFunctional(yuima, f = f, F = F, xinit = xinit, e = e)

R> rho <- expression(0)

R> F1 <- F0(yuima.ae)

R> get_ge <- function(x, epsilon, K, F0) {

+ tmp <- (F0 - K) + (epsilon * x[1])

+ tmp[(epsilon * x[1]) > (K - F0)] <- 0

Journal of Statistical Software 29

+ return(-tmp)

+ }

R> g <- function(x) {

+ return(get_ge(x,e,K,F1))

+ }

R> time1 <- proc.time()

R> asymp <- asymptotic_term(yuima.ae, block = 100, rho, g)

[1] "compute X.t0"

R> time2 <- proc.time()

We now extract the first and second order terms of the asymptotic expansion from object
asymp

R> ae.value0 <- asymp$d0

R> ae.value0

[1] 0.7219652

R> ae.value1 <- asymp$d0 + e * asymp$d1

R> ae.value1

[1] 0.5787545

R> ae.value2 <- as.numeric(asymp$d0 + e * asymp$d1 + e^2 * asymp$d2)

R> ae.value2

[1] 0.5617722

R> ae.time <- time2 - time1

R> ae.time

user system elapsed

2.437 0.017 2.454

As can be seen, the contribution of the term corresponding to the second order of the asymp-
totic expansion gives a real contribution to the approximation and the final approximated
value 0.56177 can be compared with a Monte-Carlo estimate based on 1000000 replications
which is equal to 0.561059, but more demanding in terms of CPU time. The relative di↵er-
ence among the two estimates is 0.1%.

6. Inference for stochastic processes

The yuima package implements several optimal techniques for parametric, semi- and non-
parametric estimation of (multidimensional) stochastic di↵erential equations. Most of the

30 The YUIMA Project

techniques presented below apply to high frequency data, i.e., when �n, the time lag between
two consecutive observations of the process, converges to zero as the number n of observations
increases.

6.1. How to input data into a ‘yuima’ object

Although most of the examples in this section are given on simulated data, the main way to fill
up the data slot of a ‘yuima’ object is to use the function setYuima. The function setYuima

sets various slots of the ‘yuima’ object. In particular, to estimate a ‘yuima.model’ called
mod on the data X one can use a code like this my.yuima <- setYuima(data = setData(X),

model = mod) and then pass my.yuima to the inference functions as described in the following.

For example, assuming that an Internet connection is available, the following simple list of
commands downloads data from the internet and constructs a ‘yuima’ object with the data

slot containing the time series.

R> data <- read.csv("http://chart.yahoo.com/table.csv?s=IBM&g=d&x=.csv")

R> x <- setYuima(data = setData(data$Close))

R> str(x@data)

6.2. Quasi maximum likelihood estimation

Consider a multidimensional di↵usion process

dXt = a(Xt, ✓2)dt+ b(Xt, ✓1)dWt, X0 = x0, (9)

where Wt is an r-dimensional standard Wiener process independent of the initial variable X0.
Moreover, ✓1 2 ⇥1 ⇢ Rp, ✓2 2 ⇥2 ⇢ Rq, a : Rd ⇥ ⇥2 ! Rd and b : Rd ⇥ ⇥1 ! Rd ⇥ Rr.
The naming of ✓2 and ✓1 is theoretically natural in view of the optimal convergence rates of
the estimators for these parameters. Given sampled data Xn = (Xti)i=0,...,n with ti = i�n,
�n ! 0 as n ! 1, QMLE (quasi maximum likelihood estimator) makes use of the following
approximation of the true log-likelihood for multidimensional di↵usions

`n(Xn, ✓) = �1

2

nX

i=1

⇢
log det(⌃i�1(✓1)) +

1

�n
⌃�1
i�1(✓1)[(�Xi ��nai�1(✓2))

⌦2]

�
, (10)

where ✓ = (✓1, ✓2), �Xi = Xti � Xti�1 , ⌃i(✓1) = ⌃(✓1, Xti), ai(✓2) = a(Xti , ✓2), ⌃ = b⌦2,
A⌦2 = AA> and A�1 the inverse of A, A[B] = tr(AB). Then the QMLE of ✓ is an estimator
that satisfies

✓̂ = argmax
✓

`n(Xn, ✓)

exactly or approximately.

The yuima package implements QMLE via the qmle function. The interface and the output of
the qmle function are made as similar as possible to those of the standard mle function in the
stats4 package of the basic R system. The main arguments to qmle consist of a ‘yuima’ object
and initial values (start) for the optimizer. The ‘yuima’ object must contain the slots model
and data. The start argument must be specified as a named list, where the names of the
elements of the list correspond to the names of the parameters as they appear in the ‘yuima’

Journal of Statistical Software 31

object. Optionally, one can specify named lists of upper and lower bounds to identify the
search region of the optimizer. The standard optimizer is BFGS when no bounds are specified.
If bounds are specified then L-BFGS-B is used. More optimizers can be added in the future.

QMLE in practice

As an example, we consider the simple model

dXt = (2� ✓2Xt)dt+ (1 +X2
t)

✓1dWt, X0 = 1 (11)

with ✓1 = 0.2 and ✓2 = 0.3. Before calling qmle, we generate sampled data Xti , with

ti = i · n� 2
3 :

R> ymodel <- setModel(drift = "(2 - theta2 * x)",

+ diffusion = "(1 + x^2)^theta1")

R> n <- 750

R> ysamp <- setSampling(Terminal = n^(1/3), n = n)

R> yuima <- setYuima(model = ymodel, sampling = ysamp)

R> set.seed(123)

R> yuima <- simulate(yuima, xinit = 1,

+ true.parameter = list(theta1 = 0.2, theta2 = 0.3))

Now the ‘yuima’ object contains both the model and the data slots. We set the initial values
for the optimizer as ✓1 = ✓2 = 0.5 and we specify them as a named list called param.init.
We can now use the function qmle to estimate the parameters ✓1 and ✓2 as follows

R> param.init <- list(theta2 = 0.5,theta1 = 0.5)

R> low.par <- list(theta1 = 0, theta2 = 0)

R> upp.par <- list(theta1 = 1, theta2 = 1)

R> mle1 <- qmle(yuima, start = param.init, lower = low.par, upper = upp.par)

where upp.par and low.par are the upper and lower bounds of the search region used by the
optimizer (L-BFGS-B in this case). The estimated coe�cients are extracted from the output
object mle1 as follows

R> summary(mle1)

Maximum likelihood estimation

Call:

qmle(yuima = yuima, start = param.init, lower = low.par, upper = upp.par)

Coefficients:

Estimate Std. Error

theta1 0.1969182 0.008095453

theta2 0.2998350 0.126410524

-2 log L: -282.8676

32 The YUIMA Project

Theoretical remarks on QMLE

Consistency of an estimator is always a required property; otherwise the estimation would
loose mathematical backing because the more data the observer obtains, the worse the estima-
tor behaves. For the consistency of ✓̂1, we are assuming �n ! 0 as n ! 1. Indeed, under this
condition, ✓̂1 has asymptotically (mixed) normality (Genon-Catalot and Jacod 1993; Uchida
and Yoshida 2012b). On the other hand, one needs T = n�n ! 1 for the consistency of ✓̂2
since the Fisher information for ✓2 is finite for a finite T and consistent estimation of ✓2 is
theoretically impossible. When T ! 1, usually ergodicity is assumed to ensure a law of large
numbers and as a result the consistency of ✓̂2 is obtained. Moreover, asymptotic normality
is also established. We assume the condition n�p

n ! 0 for p = 2 while applying the quasi
log-likelihood (10) based on the local Gaussian approximation. In practical applications, re-
duction of the parameter’s dimension and relaxing the above condition to n�p

n ! 0 for p
larger than 2 are extremely important. Adaptive estimation methods were proposed for p = 3
and for any p in Yoshida (1992b) and Uchida and Yoshida (2012a), respectively, with the
convergence of moments by a large deviation argument. When T is regarded to be not large,
the small sample e↵ect on estimation of ✓2 appears, which will be discussed in Section 6.3.2.
Modules for QMLE and Bayes estimators are going to be available for jump-di↵usions. See
Shimizu and Yoshida (2006) and Ogihara and Yoshida (2012).

6.3. Adaptive Bayes estimation

Consider again the di↵usion process in (9) and the quasi likelihood defined in (10).

The adaptive Bayes type estimator is defined as follows. First we choose an initial arbitrary
value ✓?2 2 ⇥2 and pretend ✓1 is the unknown parameter for which we construct the Bayesian
type estimator ✓̃1 as follows

✓̃1 =
h Z

⇥1

exp{`n(Xn, (✓1, ✓
?
2))}⇡1(✓1)d✓1

i�1
Z

⇥1

✓1 exp{`n(Xn, (✓1, ✓
?
2))}⇡1(✓1)d✓1 (12)

where ⇡1 is a prior density on ⇥1. According to the asymptotic theory under high frequency
samplings, any function ⇡1 can be used if it is positive on ⇥1. For the estimation of ✓2, we use
✓̃1 to reform the quasi likelihood function. That is, the Bayes type estimator for ✓2 is defined
by

✓̃2 =
h Z

⇥2

exp{`n(Xn, (✓̃1, ✓2))}⇡2(✓2)d✓2
i�1

Z

⇥2

✓2 exp{`n(Xn, (✓̃1, ✓2))}⇡2(✓2)d✓2, (13)

where ⇡2 is a prior density on ⇥2. In this way, we obtain the adaptive Bayes type estimator
✓̃ = (✓̃1, ✓̃2) for ✓ = (✓1, ✓2).

Adaptive Bayes estimation is developed in yuima via the method adaBayes. Consider again
the model (11) with the same values for the parameters. In order to perform Bayesian
estimation, we prepare prior densities for the parameters. For simplicity we use uniform
distributions in [0, 1]

R> prior <- list(theta2 = list(measure.type = "code",

+ df = "dunif(theta2, 0, 1)"),

+ theta1 = list(measure.type = "code", df = "dunif(theta1, 0, 1)"))

Journal of Statistical Software 33

Then we call adaBayes, on the same sample data we used for the qmle function, as follows

R> bayes1 <- adaBayes(yuima, start = param.init, prior = prior)

and we can compare the adaptive Bayes estimates with the QMLE estimates

R> coef(summary(bayes1))

Estimate Std. Error

theta1 0.1971567 0.008102415

theta2 0.3071515 0.126514410

R> coef(summary(mle1))

Estimate Std. Error

theta1 0.1969182 0.008095453

theta2 0.2998350 0.126410524

The argument method = "nomcmc" in adaBayes performs numerical integration, otherwise
the MCMC method is used.

Theoretical remarks on adaptive Bayes estimator

Under the same conditions, the adaptive Bayes estimator ✓̃1 and ✓̃2 perform in the same way
as ✓̂1 and ✓̂2, respectively. See the remark in Section 6.2 and also Yoshida (1992b) and Uchida
and Yoshida (2012b) for details.

The e↵ect of small sample size on drift estimation

It is known from the theory that the estimation of the drift in a di↵usion process strongly
depends on the length of the observation interval [0, T]. In our example above, we took

T = n
1
3 , with n = 750, which is approximatively 9.09. Now we reduce the sample size to

n = 500 and then T = 7.94. We then apply both quasi maximum likelihood and adaptive
Bayes type estimators to these data

R> n <- 500

R> ysamp <- setSampling(Terminal = n^(1/3), n = n)

R> yuima <- setYuima(model = ymodel, sampling = ysamp)

R> set.seed(123)

R> yuima <- simulate(yuima, xinit = 1,

+ true.parameter = list(theta1 = 0.2, theta2 = 0.3))

R> param.init <- list(theta2 = 0.5, theta1 = 0.5)

R> mle2 <- qmle(yuima, start = param.init,

+ lower = list(theta1 = 0, theta2 = 0),

+ upper = list(theta1 = 1, theta2 = 1))

R> bayes2 <- adaBayes(yuima, start = param.init, prior = prior)

and we look at the estimates

34 The YUIMA Project

R> coef(summary(bayes2))

Estimate Std. Error

theta1 0.1950772 0.009987695

theta2 0.2467359 0.135102466

R> coef(summary(mle2))

Estimate Std. Error

theta1 0.1947225 0.009974792

theta2 0.2193002 0.134937463

Compared to the results above, we see that the parameters in the di↵usion coe�cients are
estimated with good quality while for the parameters in the drift the quality of estimation
deteriorates. The adaptive Bayes estimator seems to perform a little better though.

6.4. Asynchronous covariance estimation

Suppose that two Itô processes are observed only at discrete times in a nonsynchronous
manner. We are interested in estimating the covariance of the two processes accurately in
such a situation. This type of problem arises typically in high frequency financial time series.

Let T 2 (0,1) be a terminal time for possible observations. We consider a two-dimensional
Itô process (X1, X2) satisfying the SDE’s

dXl,t = µl,tdt+ �l,tdWl,t, t 2 [0, T]

Xl,0 = xl,0

for l = 1, 2. Here Wl denote standard Wiener processes with a progressively measurable
correlation process dhW1,W2it = ⇢tdt, µl,t and �l,t are progressively measurable processes,
and xl,0 are initial random variables independent of (W1,W2). Di↵usion type processes are
in the scope but this model can express more sophisticated stochastic structures.

The process Xl is supposed to be observed over the increasing sequence of times T l,i (i 2 Z�0)
starting at 0, up to time T . Thus, the observables are (T l,i, Xl,i) with T l,i  T . Each T l,j may
be a stopping time, so it possibly depends on the history of (X1, X2) as well as on the precedent
stopping times. Two sequences of stopping times T 1,i and T 2,j are nonsynchronous, and
irregularly spaced, in general. In particular, function cce from package yuima can be applied
to estimate the quadratic variation of a single stochastic process sampled regularly/irregularly.

The parameter of interest is the quadratic covariation between X1 and X2:

✓ = hX1, X2iT =

Z T

0
�1,t�2,t⇢tdt. (14)

The target variable ✓ is random in general and it can be estimated with the nonsynchronous
covariance estimator (Hayashi-Yoshida estimator)

Un =
X

i,j:T 1,iT,T 2,jT

(X1,T 1,i �X1,T 1,i�1)(X2,T 2,j �X2,T 2,j�1)1{(T 1,i�1,T 1,i]
T
(T 2,j�1,T 2,j] 6=;}.

(15)

Journal of Statistical Software 35

That is, the product of any pair of increments (X1,T 1,i�X1,T 1,i�1) and (X2,T 2,j�X2,T 2,j�1) will
make a contribution to the sum only when the respective observation intervals (T 1,i�1, T 1,i]
and (T 2,j�1, T 2,j] are overlapping. It is known that Un is consistent and has asymptotically
mixed normal distribution as n ! 1 if the maximum length between two consecutive ob-
serving times tends to 0. See Hayashi and Yoshida (2005, 2006, 2008a,b) for details.

Example: Data generation and estimation by yuima package

We will demonstrate how to apply function cce to nonsynchronous high frequency data by
simulation. As an example, consider a two dimensional stochastic process (X1,t, X2,t) satisfy-
ing the SDE

dX1,t = �1,tdB1,t,

dX2,t = �2,tdB2,t.
(16)

Here B1,t and B2,t denote two standard Wiener processes, however they are correlated as

B1,t = W1,t, (17)

B2,t =

Z t

0
⇢sdW1,s +

Z t

0

p
1� ⇢2sdW2,s, (18)

where W1,t and W2,t are independent Wiener processes, and ⇢t is the correlation function
between B1,t and B2,t. We consider �l,t, l = 1, 2, and ⇢t of the following form in this example:

�1,t =
p
1 + t,

�2,t =
p
1 + t2,

⇢t =
1p
2
.

To simulate the stochastic process (X1,t, X2,t), we first build the model by setModel as before.
It should be noted that the method of generating nonsynchronous data can be replaced by
a simpler one but we will take a general approach here to demonstrate a usage of yuima
which shows that it is a comprehensive package for simulation and estimation of stochastic
processes.

R> diff.coef.1 <- function(t, x1 = 0, x2 = 0) sqrt(1 + t)

R> diff.coef.2 <- function(t, x1 = 0, x2 = 0) sqrt(1 + t^2)

R> cor.rho <- function(t, x1 = 0, x2 = 0) sqrt(1/2)

R> diff.coef.matrix <- matrix(c("diff.coef.1(t, x1, x2)",

+ "diff.coef.2(t, x1, x2) * cor.rho(t, x1, x2)", "",

+ "diff.coef.2(t, x1, x2) * sqrt(1 - cor.rho(t, x1, x2)^2)"), 2, 2)

R> cor.mod <- setModel(drift = c("", ""), diffusion = diff.coef.matrix,

+ solve.variable = c("x1", "x2"))

The parameter we want to estimate is the quadratic covariation between X1 and X2:

✓ = hX1, X2iT =

Z T

0
�1,t�2,t⇢tdt. (19)

Later, we will compare estimated values with the true value of ✓ given by

36 The YUIMA Project

R> CC.theta <- function(T, sigma1, sigma2, rho) {

+ tmp <- function(t) return(sigma1(t) * sigma2(t) * rho(t))

+ integrate(tmp, 0, T)

+ }

For the sampling scheme, we will consider independent Poisson sampling. That is, each
configuration of the sampling times T l,i is realized as the Poisson random measure with
intensity npl, and the two random measures are independent of each other as well as the
stochastic processes. Under this scheme the data become asynchronous. It is known that

n1/2(Un � ✓) ! N(0, c), (20)

as n ! 1, where

c =

✓
2

p1
+

2

p2

◆Z T

0
(�1,t�2,t)

2 dt+

✓
2

p1
+

2

p2
� 2

p1 + p2

◆Z T

0
(�1,t�2,t⇢t)

2 dt. (21)

R> set.seed(123)

R> Terminal <- 1

R> n <- 1000

R> theta <- CC.theta(T = Terminal, sigma1 = diff.coef.1,

+ sigma2 = diff.coef.2, rho = cor.rho)$value

R> cat(sprintf("theta = %5.3f\n", theta))

theta = 1.000

so in our case ✓ = 1.

R> yuima.samp <- setSampling(Terminal = Terminal, n = n)

R> yuima <- setYuima(model = cor.mod, sampling = yuima.samp)

R> X <- simulate(yuima)

cce takes the sample and returns an estimate of the quadratic covariation. For example, for
the complete data in Figure 12, we obtain the following estimates

R> cce(X)

$covmat

[,1] [,2]

[1,] 1.491938 1.086078

[2,] 1.086078 1.474730

$cormat

[,1] [,2]

[1,] 1.0000000 0.7321992

[2,] 0.7321992 1.0000000

R> plot(X, main = "complete data")

Journal of Statistical Software 37

0.
0

0.
5

1.
0

x1

0.0 0.2 0.4 0.6 0.8 1.0

t

0.
0

1.
0

x2

complete data

Figure 12: The complete simulated data.

We now apply random sampling in the following way: we define a new sampling structure
via setSampling specifying in the argument random a list which contains a vector of random
distributions. For the ith component of X we specificy an exponential distribution with rate
n·pi/T for the random times. This will generate Poisson random times with the corresponding
rate.

R> p1 <- 0.2

R> p2 <- 0.3

R> newsamp <- setSampling(

+ random = list(rdist = c(function(x) rexp(x, rate = p1 * n/Terminal),

+ function(x) rexp(x, rate = p1 * n/Terminal))))

Now we use the subsampling function to subsample the original data X into new asynchronous
data Y (see Figure 13).

R> Y <- subsampling(X, sampling = newsamp)

R> cce(Y)

$covmat

[,1] [,2]

[1,] 1.397269 1.070313

[2,] 1.070313 1.338464

$cormat

[,1] [,2]

[1,] 1.0000000 0.7826494

[2,] 0.7826494 1.0000000

38 The YUIMA Project

−0
.2

0.
4

0.
8

x1

0.0 0.2 0.4 0.6 0.8 1.0

t

0.
0

1.
0

x2

asynchronous data

Figure 13: The asynchronous data generated from the simulated ones using Poisson random
subsampling.

R> plot(Y, main = "asynchronous data")

Asynchronous estimation for nonlinear systems

Consider now the two-dimensional system with nonlinear feedback

dXt = Ytdt+ �1(t,Xt, Yt)dWt

dYt = �Xtdt+ ⇢(t,Xt, Yt)�2(t,Xt, Yt)dWt + �2(t,Xt, Yt)
p
1� ⇢2(t,Xt, Yt)dBt

with �1(t,Xt, Yt) =
p

|Xt|(1 + t), �2(t,Xt, Yt) =
p
|Yt|, ⇢(t,Xt, Yt) =

1
1+X2

t
and Wt, Bt, two

independent Brownian motions. We construct the model and we generate data from it by
sampling a path of the process

R> b1 <- function(x, y) y

R> b2 <- function(x, y) -x

R> s1 <- function(t, x, y) sqrt(abs(x) * (1 + t))

R> s2 <- function(t, x, y) sqrt(abs(y))

R> cor.rho <- function(t, x, y) 1/(1 + x^2)

R> diff.mat <- matrix(c("s1(t, x, y)", "s2(t, x, y) * cor.rho(t, x, y)", "",

+ "s2(t, x, y) * sqrt(1 - cor.rho(t, x, y)^2)"), 2, 2)

R> cor.mod <- setModel(drift = c("b1","b2"), diffusion = diff.mat,

+ solve.variable = c("x", "y"), state.var = c("x", "y"))

R> set.seed(111)

R> Terminal <- 1

R> n <- 10000

R> yuima.samp <- setSampling(Terminal = Terminal, n = n)

Journal of Statistical Software 39

1.
0

2.
0

3.
0

x

0.0 0.2 0.4 0.6 0.8 1.0

t

2.
5

3.
5

4.
5

y

asynchronous data (non linear case)

Figure 14: The asynchronous data for the nonlinear system.

R> yuima <- setYuima(model = cor.mod, sampling = yuima.samp)

R> yuima <- simulate(yuima, xinit = c(2, 3))

We apply the same Poisson random sampling so that the object Y will contain asynchronous
data (see Figure 14).

R> p1 <- 0.2

R> p2 <- 0.3

R> newsamp <- setSampling(

+ random = list(rdist = c(function(x) rexp(x, rate = p1 * n/Terminal),

+ function(x) rexp(x, rate = p1 * n/Terminal))))

R> Y <- subsampling(yuima, sampling = newsamp)

R> plot(Y, main = "asynchronous data (non linear case)")

The estimated covariance for the complete trajectory yuima is now compared with the one
obtained on asyncronous data Y.

R> cce(yuima)

$covmat

[,1] [,2]

[1,] 2.7092720 0.7803843

[2,] 0.7803843 3.4705059

$cormat

[,1] [,2]

[1,] 1.0000000 0.2544988

[2,] 0.2544988 1.0000000

40 The YUIMA Project

R> cce(Y)

$covmat

[,1] [,2]

[1,] 2.7134061 0.7330106

[2,] 0.7330106 3.3945659

$cormat

[,1] [,2]

[1,] 1.0000000 0.2415242

[2,] 0.2415242 1.0000000

6.5. Change-point analysis

Consider a multidimensional SDE of the form

dYt = atdt+ b(Xt, ✓)dWt, t 2 [0, T],

where Wt is a r-dimensional Wiener process and at and Xt are multidimensional processes,
✓ 2 ⇥ ⇢ Rp, b : Rd ⇥⇥ ! Rd ⇥ Rr, is the di↵usion coe�cient (volatility) matrix.

When Y = X the model above is a di↵usion model. The process at may have jumps but
should not explode and it is treated as a nuisance in this model. The change-point problem
for the volatility is formalized as follows

Yt =

(
Y0 +

R t
0 asds+

R t
0 b(Xs, ✓

⇤
0)dWs for t 2 [0, ⌧⇤)

Y⌧⇤ +
R t
⌧⇤ asds+

R t
⌧⇤ b(Xs, ✓

⇤
1)dWs for t 2 [⌧⇤, T].

The change-point ⌧⇤ instant is unknown and is to be estimated, along with ✓⇤0 and ✓⇤1, from
the observations sampled from the path of (X,Y). The yuima package implements the quasi
maximum likelihood approach as in Iacus and Yoshida (2012) described in the following. Let
�iY = Yti � Yti�1 and define

�n(t; ✓0, ✓1) =

[nt/T]X

i=1

Gi(✓0) +
nX

i=[nt/T]+1

Gi(✓1), (22)

with
Gi(✓) = log detS(Xti�1 , ✓) +��1

n (�iY)>S(Xti�1 , ✓)
�1(�iY) (23)

and S = b⌦2. Suppose that there exists an estimator ✓̂k for each ✓k, k = 0, 1. In case ✓⇤k are

known, we define ✓̂k just as ✓̂k = ✓⇤k. The change-point estimator of ⌧⇤ is

⌧̂ = arg min
t2[0,T]

�n(t; ✓̂0, ✓̂1).

Example of volatility change-point estimation for 2-dimensional SDE’s

One example of a model that can be analyzed by this technique is, for example, the 2-
dimensional SDE

✓
dX1,t

dX2,t

◆
=

✓
a1(X1,t)
a2(X2,t)

◆
dt+

✓
✓1.k ·X1,t 0 ·X1,t

0 ·X2,t ✓2.k ·X2,t

◆✓
dW1,t

dW2,t

◆
, t 2 [0, T],

Journal of Statistical Software 41

where a1(·) and a2(·) are any functions and ✓1.k and ✓2.k the value of the parameters before
(k = 0) and after k = 1) the change-point. Just for simplicity and in order to simulate some
data, we specify some specific form for a1(·) and a2(·) but this information will not be used
in the change-point analysis. For example, we will simulate the following 2-dimensional SDE

✓
dX1,t

dX2,t

◆
=

✓
sin(X1,t)
3�X2,t

◆
dt+

✓
✓1.k ·X1,t 0 ·X1,t

0 ·X2,t ✓2.k ·X2,t

◆✓
dW1,t

dW2,t

◆
, t 2 [0, T],

X1,0 = 1.0, X2,0 = 1.0,

with change-point instant at time ⌧ = 4 and T = 10. First, we describe the model to be
simulated

R> diff.matrix <- matrix(c("theta1.k * x1", "0 * x2", "0 * x1",

+ "theta2.k * x2"), 2, 2)

R> drift.c <- c("sin(x1)", "3 - x2")

R> drift.matrix <- matrix(drift.c, 2, 1)

R> ymodel <- setModel(drift = drift.matrix, diffusion = diff.matrix,

+ time.variable = "t", state.variable = c("x1", "x2"),

+ solve.variable = c("x1", "x2"))

and then simulate two trajectories. One up to the change-point ⌧ = 4 with parameters
✓1.0 = 0.5 and ✓2.0 = 0.3

R> n <- 1000

R> set.seed(123)

R> t0 <- list(theta1.k = 0.5, theta2.k = 0.3)

R> T <- 10

R> tau <- 4

R> pobs <- tau/T

R> ysamp1 <- setSampling(n = n * pobs, Initial = 0, delta = 0.01)

R> yuima1 <- setYuima(model = ymodel, sampling = ysamp1)

R> yuima1 <- simulate(yuima1, xinit = c(3, 3), true.parameter = t0)

R> x1 <- yuima1@data@zoo.data[[1]]

R> x1 <- as.numeric(x1[length(x1)])

R> x2 <- yuima1@data@zoo.data[[2]]

R> x2 <- as.numeric(x2[length(x2)])

now we generate the second trajectory with parameters ✓1.1 = 0.2 and ✓2.1 = 0.4. For this
trajectory, the initial value is set to the last value of the first trajectory stored in x1 and x2

for the two components of the process (see Figure 15)

R> t1 <- list(theta1.k = 0.2, theta2.k = 0.4)

R> ysamp2 <- setSampling(Initial = n * pobs * 0.01, n = n * (1 - pobs),

+ delta = 0.01)

R> yuima2 <- setYuima(model = ymodel, sampling = ysamp2)

R> yuima2 <- simulate(yuima2, xinit = c(x1, x2), true.parameter = t1)

finally we collate the two trajectories

42 The YUIMA Project

2.
0

3.
0

4.
0

x1

0 2 4 6 8 10

t

2
3

4
5

x2

Figure 15: The 2-dimensional trajectory with change-point around ⌧ = 4.

R> yuima <- yuima1

R> yuima@data@zoo.data[[1]] <- c(yuima1@data@zoo.data[[1]],

+ yuima2@data@zoo.data[[1]][-1])

R> yuima@data@zoo.data[[2]] <- c(yuima1@data@zoo.data[[2]],

+ yuima2@data@zoo.data[[2]][-1])

The composed trajectory appears as follows

R> plot(yuima)

As said, the change-point analysis does not consider the information coming from the drift
part of the model and yuima ignores this internally. Just to make clear that the information
on the drift term is not considered by the function CPoint, we redefine the yuima model
removing the information coming from the drift and then adding back the data.

R> noDriftModel <- setModel(drift = c("0", "0"), diffusion = diff.matrix,

+ time.variable = "t", state.variable = c("x1", "x2"),

+ solve.variable = c("x1", "x2"))

R> noDriftModel <- setYuima(noDriftModel, data = yuima@data)

R> noDriftModel@model@drift

expression((0), (0))

First we show that there is no di↵erence in using the complete model or the model without
drift. For simplicity, we assume to know the true values of the parameters for ✓1.k and ✓2.k

R> t.est <- CPoint(yuima, param1 = t0, param2 = t1)

R> t.est$tau

[1] 3.98

Journal of Statistical Software 43

R> t.est2 <- CPoint(noDriftModel, param1 = t0, param2 = t1)

R> t.est2$tau

[1] 3.98

As can be seen, the above estimates of the change-point are the same for the complete model
yuima and the model without drift noDriftModel.

An example of two stage estimation

In practical situations, the initial values of the parameters are not known and there is the need
to provide preliminary estimators of them. One possible approach is the two stage change-
point estimation approach as explained in Iacus and Yoshida (2012). The idea is to take a
small subset of observations at the very beginning and the end of the time series, estimate a
change-point and and then refine the estimation.

To this aim, the yuima package contains two functions which are useful in the framework of
change-point or sequential analysis. The function qmleL estimates a model by quasi maximum
likelihood using observations in the time interval [0, t] where t can be specificed by the user.
In our example, we set t = 2. Similarly for qmleR, which uses only observations in the time
interval [t, T]. In our example, we take t = 8.

R> qmleL(noDriftModel, t = 2, start = list(theta1.k = 0.1, theta2.k = 0.1),

+ lower = list(theta1.k = 0, theta2.k = 0),

+ upper = list(theta1.k = 1, theta2.k = 1),

+ method = "L-BFGS-B") -> estL

R> qmleR(noDriftModel, t = 8, start = list(theta1.k = 0.1, theta2.k = 0.1),

+ lower = list(theta1.k = 0, theta2.k = 0),

+ upper = list(theta1.k = 1, theta2.k = 1),

+ method = "L-BFGS-B") -> estR

R> t0.est <- coef(estL)

R> t1.est <- coef(estR)

and now we proceed with change-point estimation

R> t.est3 <- CPoint(noDriftModel, param1 = t0.est, param2 = t1.est)

R> t.est3

$tau

[1] 3.99

$param1

theta1.k theta2.k

0.4723067 0.2899005

$param2

theta1.k theta2.k

0.2515379 0.5518635

44 The YUIMA Project

Notice that, even if the estimated parameters are not too accurate because we use small
subsets of observations, the change-point estimate remains good. We can now refine the
estimate of the change-point and the parameters by iterating the above procedure.

R> qmleL(noDriftModel, t = t.est3$tau, start = list(theta1.k = 0.1,

+ theta2.k = 0.1), lower = list(theta1.k = 0, theta2.k = 0),

+ upper = list(theta1.k = 1, theta2.k = 1),

+ method = "L-BFGS-B") -> estL

R> qmleR(noDriftModel, t = t.est3$tau, start = list(theta1.k = 0.1,

+ theta2.k = 0.1), lower = list(theta1.k = 0, theta2.k = 0),

+ upper = list(theta1.k = 1, theta2.k = 1),

+ method = "L-BFGS-B") -> estR

R> t02s.est <- coef(estL)

R> t12s.est <- coef(estR)

R> t2s.est3 <- CPoint(noDriftModel, param1 = t02s.est, param2 = t12s.est)

R> t2s.est3

$tau

[1] 3.98

$param1

theta1.k theta2.k

0.4863371 0.2991717

$param2

theta1.k theta2.k

0.2614729 0.5295390

6.6. LASSO model selection

The least absolute shrinkage and selection operator (LASSO) is a useful and well studied
approach to the problem of model selection and its major advantage is the simultaneous
execution of both parameter estimation and variable selection (Tibshirani 1996; Knight and
Fu 2000; Efron, Hastie, Johnstone, and Tibshirani 2004).

To simplify the idea: take a full specified regression model

E(Y |X1, . . . , Xk) = ✓0 + ✓1X1 + ✓2X2 + · · ·+ ✓kXk

perform least squares estimation under L1 constraints, i.e.,

✓̂ = argmin
✓

(
(Y � ✓X)>(Y � ✓X) +

kX

i=1

|✓i|
)
.

Model selection occurs when some of the ✓i are estimated as zeros. The same idea can be
applied to di↵usion processes. Let Xt be a di↵usion process solution to

dXt = a(Xt,↵)dt+ b(Xt,�)dWt

Journal of Statistical Software 45

↵ = (↵1, . . . ,↵p)
> 2 ⇥p ⇢ Rp, p � 1

� = (�1, . . . ,�q)
> 2 ⇥q ⇢ Rq, q � 1

with b : ⇥p ⇥ Rd ! Rd, � : ⇥q ⇥ Rd ! Rd ⇥ Rm and Wt, t 2 [0, T], is a standard Brownian
motion in Rm. We assume that the functions a and b are known up to ↵ and �. We denote by
✓ = (↵>,�>)> 2 ⇥p ⇥ ⇥q = ⇥ the parametric vector and with ✓0 = (↵>

0 ,�
>
0)

> its unknown

true value. Let Hn(Xn, ✓) = �`n(Xn, ✓) from Equation 10. The QMLE ✓̂ for this model is
the solution of the following problem

✓̂ = (↵̂>, �̂>)> = argmin
✓

Hn(Xn, ✓)

The adaptive LASSO estimator is defined as the solution to the quadratic problem under L1

constraints
✓̌ = (↵̌>, �̌>)> = argmin

✓
F(✓).

with

F(✓) = (✓ � ✓̂)>Ḧn(Xn, ✓̂)(✓ � ✓̂) +
pX

j=1

�n,j |↵j |+
qX

k=1

�n,k|�k|

and Ḧn is the matrix of second partial derivatives of H with respect to the vector ✓. For more
details see Gregorio and Iacus (2012). The tuning parameters should be chosen as in Zou
(2006) in the following way

�n,j = �0|↵̂j |��1 , �n,k = �0|�̂j |��2 , (24)

where ↵̂j and �̂k are the unpenalized QMLE’s of ↵j and �k respectively, �1, �2 > 0 and usually
taken unitary.

An example of model selection for interest rates data

The lasso method is implemented in the yuima package. Let us consider the full CKLS
model (Chan, Karolyi, Longsta↵, and Sanders 1992)

dXt = (↵+ �Xt)dt+ �X�
t dWt

and let us try to estimate the parameter on the U.S. Interest Rates monthly data from 06/1964
to 12/1989 (see Figure 16). We prepare the data from package Ecdat (Croissant 2014), the
model and the constraints for optimization

R> data("Irates", package = "Ecdat")

R> rates <- Irates[, "r1"]

R> plot(rates)

R> X <- window(rates, start = 1964.471, end = 1989.333)

R> mod <- setModel(drift = "alpha + beta * x",

+ diffusion = matrix("sigma * x^gamma", 1, 1))

R> yuima <- setYuima(data = setData(X), model = mod)

R> lambda10 <- list(alpha = 10, beta= 10, sigma = 10, gamma = 10)

R> start <- list(alpha = 1, beta = -.1, sigma = .1, gamma = 1)

R> low <- list(alpha = -5, beta = -5, sigma = -5, gamma = -5)

R> upp <- list(alpha = 8, beta = 8, sigma = 8, gamma = 8)

46 The YUIMA Project

Time

ra
te
s

1950 1960 1970 1980 1990

0
5

10
15

Figure 16: The U.S. Interest Rates monthly data from 06/1964 to 12/1989.

where lambda10 stores the penalty terms �0 and �0 of (24) of the LASSO method.

Now we apply the lasso function

R> lasso10 <- lasso(yuima, lambda10, start = start, lower = low, upper = upp,

+ method = "L-BFGS-B")

From which we see that, instead of the general model

dXt = (↵+ �Xt)dt+ �X�
t dWt

R> round(lasso10$mle, 2)

sigma gamma alpha beta

0.13 1.44 2.08 -0.26

R> round(lasso10$lasso, 2)

sigma gamma alpha beta

0.12 1.50 0.59 0.00

the LASSO method selects the reduced model

dXt = 0.6dt+ 0.12X
3
2
t dWt.

Notice that this model is not an ergodic one, indicating that the LASSO method shows that
the real data are indeed not stationary, but still in the family of CKLS models.

Journal of Statistical Software 47

7. Miscellanea and roadmap of the YUIMA project

Other statistical techniques have already been implemented in the development version of
the yuima package although not yet released into the current distribution. Among these we
mention: the QMLE approach for SDE’s with Lévy noise (Shimizu and Yoshida 2006; Ogihara
and Yoshida 2011); the parametric estimation for the fractional Ornstein-Uhlembeck model
(Brouste and Iacus 2013); di↵erent simulation schemes as in Iacus (2008) for multidimensional
di↵usion processes; lead-lag estimation (Ho↵mann, Rosenbaum, and Yoshida 2013); hypothe-
ses testing via �-divergence (Gregorio and Iacus 2013). For example, a nice (yet incomplete)
utility is the method toLatex for objects of class ‘yuima’ and ‘yuima.model’. A simple writ-
ing like toLatex(my-yuima-obj) produces the related LATEX code which can be copied and
pasted in a mathematical paper. For example,

R> a <- c("-3 * x1", "-x1 - 2 * x2")

R> b <- matrix(c("1", "x1", "0", "3", "x2", "0"), 2, 3)

R> modtex <- setModel(drift = a, diffusion = b,

+ solve.variable = c("x1", "x2"))

R> toLatex(modtex)

%%% Copy and paste the following output in your LaTeX file

$$

\left(\begin{array}{c}

dx1\\ dx2

\end{array}\right)

=

\left(\begin{array}{c}

-3 \cdot x1 \\

-x1 - 2 \cdot x2 \\

\end{array}\right) dt

+

\left[\begin{array}{ccc}

1&0&x2 \\

x1&3&0 \\

\end{array}\right]

\left(\begin{array}{c}

dW1\\ dW2\\ dW3

\end{array}\right)

$$

$$

\left(\begin{array}{c}

x1(0)=0 \\

x2(0)=0 \\

\end{array}\right)

$$

48 The YUIMA Project

which can be typesetted with LATEX to produce

✓
dx1
dx2

◆
=

✓
�3 · x1

�x1� 2 · x2

◆
dt+


1 0 x2
x1 3 0

�0
0

@
dW1
dW2
dW3

1

A

✓
x1(0) = 0
x2(0) = 0

◆

and might be used as a quick starting point for more complex editing of a mathematical paper.
Another major plan is to open the contribution to the YUIMA project to external developers
in the near future as well as to include other estimation procedures for low frequency and/or
sparse data and parallelization of the general infrastructure.

Acknowledgments

This work was in part supported by Japan Society for the Promotion of Science Grants-
in-Aid for Scientific Research No. 24340015 (Scientific Research), No. 24650148 (Challenging
Exploratory Research); the Global COE Program“The Research and Training Center for New
Development in Mathematics” of the Graduate School of Mathematical Sciences, University
of Tokyo; by a Cooperative Research Program of the Institute of Statistical Mathematics and
by the project PRIN 2009JW2STY, Ministero dell’Istruzione dell’Università e della Ricerca.

Project YUIMA I was in part supported by JST Basic Research Programs PRESTO. Project
YUIMA II is in part supported by NS Solutions Corporation. NS Solutions Corporation and
The Graduate School of Mathematical Sciences, University of Tokyo are conducting a joint
study (Azzurro project) on “The Application of Advanced Mathematical Statistics Theories
in the Financial Industry”.

References

Brouste A, Iacus SM (2013). “Parameter Estimation for the Discretely Observed Fractional
Ornstein-Uhlenbeck Process and the yuima R Package.” Computational Statistics, 28(4),
1129–1147.

Chambers JM (1998). Programming with Data: A Guide to the S Language. Springer-Verlag,
New York.

Chan KC, Karolyi GA, Longsta↵ FA, Sanders AB (1992). “An Empirical Investigation of
Alternative Models of the Short-Term Interest Rate.” Journal of Finance, 47(3), 1209–
1227.

Croissant Y (2014). Ecdat: Data Sets for Econometrics. R package version 0.2-4, URL
http://CRAN.R-project.org/package=Ecdat.

Efron B, Hastie T, Johnstone I, Tibshirani R (2004). “Least Angle Regression.” The Annals
of Statistics, 32(2), 407–489.

http://CRAN.R-project.org/package=Ecdat

Journal of Statistical Software 49

Fukasawa M (2011). “Discretization Error of Stochastic Integrals.” The Annals of Applied
Probabability, 21(4), 1436–1465.

Genon-Catalot V, Jacod J (1993). “On the Estimation of the Di↵usion Coe�cient for Multi-
Dimensional Di↵usion Processes.” Annales de l’Institut Henri Poincaré, Probabilités et
Statistiques, 29(1), 119–151.

Gregorio AD, Iacus SM (2012). “Adaptive LASSO-Type Estimation for Ergodic Di↵usion
Processes.” Econometric Theory, 28(1), 1–23.

Gregorio AD, Iacus SM (2013). “On a Family of Test Statistics for Discretely Observed
Di↵usion Processes.” Journal of Multivariate Analysis, 122, 292–316.

Hayashi T, Yoshida N (2005). “On Covariance Estimation of Non-Synchronously Observed
Di↵usion Processes.” Bernoulli, 11(2), 359–379.

Hayashi T, Yoshida N (2006). “Nonsynchronous Covariance Estimator and Limit Theorem.”
Research Memorandum 1020, Institute of Statistical Mathematics.

Hayashi T, Yoshida N (2008a). “Asymptotic Normality of a Covariance Estimator for Non-
synchronously Observed Di↵usion Processes.” The Annals of the Institute of Statistical
Mathematics, 60(2), 367–406.

Hayashi T, Yoshida N (2008b). “Nonsynchronous Covariance Estimator and Limit Theorem
II.” Research Memorandum 1067, Institute of Statistical Mathematics.

Ho↵mann M, Rosenbaum M, Yoshida N (2013). “Estimation of the Lead-Lag Parameter from
Non-Synchronous Data.” Bernoulli, 19(2).

Iacus SM (2008). Simulation and Inference for Stochastic Di↵erential Equations: With R
Examples. Springer-Verlag, New York.

Iacus SM, Yoshida N (2012). “Estimation for the Change Point of the Volatility in a Stochastic
Di↵erential Equation.” Stochastic Processes and Their Applications, 122(3), 1068–1092.

Knight K, Fu W (2000). “Asymptotics for Lasso-Type Estimators.” The Annals of Statistics,
28(5), 1536–1378.

Kunitomo N, Takahashi A (2001). “The Asymptotic Expansion Approach to the Valuation
of Interest Rate Contingent Claims.” Mathematical Finance, 11(1), 117–151.

Levy E (1992). “Pricing European Average Rate Currency Options.” Journal of International
Money and Finance, 11(5), 474–491.

Ogihara T, Yoshida N (2011). “Quasi-Likelihood Analysis for the Stochastic Di↵erential
Equation with Jumps.” Statistical Inference for Stochastic Processes, 14(3), 189–229.

Ogihara T, Yoshida N (2012). “Quasi-Likelihood Analysis for Stochastic Regression Mod-
els with Nonsynchronous Observations.” arXiv:1212.4911 [math.ST], URL http://arxiv.

org/abs/1212.4911.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

http://arxiv.org/abs/1212.4911
http://arxiv.org/abs/1212.4911
http://www.R-project.org/

50 The YUIMA Project

Shimizu Y, Yoshida N (2006). “Estimation of Parameters for Di↵usion Processes with Jumps
from Discrete Observations.” Statistical Inference for Stochastic Processes, 9(3), 227–277.

Takahashi A (1999). “An Asymptotic Expansion Approach to Pricing Financial Contingent
Claims.” Asia-Pacific Financial Markets, 6(2), 115–151.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal
Statistical Society B, 58(1), 267–288.

Uchida M, Yoshida N (2012a). “Adaptive Estimation of an Ergodic Di↵usion Process Based
on Sampled Data.” Stochastic Processes and their Applications, 122(8), 2885–2924.

Uchida M, Yoshida N (2012b). “Nondegeneracy of Random Field and Estimation of Di↵usion.”
arXiv:1212.5715 [math.ST], URL http://arxiv.org/abs/1212.5715.

Watanabe S (1987). “Analysis of Wiener Functionals (Malliavin Calculus) and its Applications
to Heat Kernels.” The Annals of Probability, 15(1), 1–39.

Wood A, Chan G (1994). “Simulation of Stationary Gaussian Processes.” Journal of Compu-
tational and Graphical Statistics, 3(4), 409–432.

Wuertz D (2012). fExoticOptions: Exotic Option Valuation. R package version 2152.78,
URL http://CRAN.R-project.org/package=fExoticOptions.

Yoshida N (1992a). “Asymptotic Expansion for Statistics Related to Small Di↵usions.”Journal
of the Japan Statistical Society, 22(2), 139–159.

Yoshida N (1992b). “Estimation for Di↵usion Processes from Discrete Observation.” Journal
of Multivariate Analysis, 41(2), 220–242.

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. URL http://www.jstatsoft.org/

v14/i06/.

Zou H (2006). “The Adaptive LASSO and its Oracle Properties.” Journal of the American
Statistical Association, 101(476), 1418–1429.

A�liation:

Stefano M. Iacus
Department of Economics, Management and Quantitative Methods
University of Milan
Via Conservatorio 7, 20122 Milan, Italy
E-mail: stefano.iacus@unimi.it
URL: http://twitter.com/iacus

Nakahiro Yoshida
Graduate School of Mathematical Science

http://arxiv.org/abs/1212.5715
http://CRAN.R-project.org/package=fExoticOptions
http://www.jstatsoft.org/v14/i06/
http://www.jstatsoft.org/v14/i06/
mailto:stefano.iacus@unimi.it
http://twitter.com/iacus

Journal of Statistical Software 51

University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
E-mail: nakahiro@ms.u-tokyo.ac.jp
URL: http://www.ms.u-tokyo.ac.jp/~nakahiro/hp-naka-e

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 57, Issue 4 Submitted: 2012-01-08
March 2014 Accepted: 2013-10-03

mailto:nakahiro@ms.u-tokyo.ac.jp
http://www.ms.u-tokyo.ac.jp/~nakahiro/hp-naka-e
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	The yuima package
	How to obtain the package
	The main objects and classes
	The `yuima.model' class

	Model specification
	One-dimensional diffusion processes
	User specified state and time variables
	Specification of parametric models
	Multidimensional processes
	Fractional Gaussian noise
	Lévy processes
	Specification of generic models in yuima

	Simulation, sampling and subsampling
	Subsampling

	Asymptotic expansion
	Asymptotic expansion for general stochastic processes

	Inference for stochastic processes
	How to input data into a `yuima' object
	Quasi maximum likelihood estimation
	QMLE in practice
	Theoretical remarks on QMLE

	Adaptive Bayes estimation
	Theoretical remarks on adaptive Bayes estimator
	The effect of small sample size on drift estimation

	Asynchronous covariance estimation
	Example: Data generation and estimation by yuima package
	Asynchronous estimation for nonlinear systems

	Change-point analysis
	Example of volatility change-point estimation for 2-dimensional SDE's
	An example of two stage estimation

	LASSO model selection
	An example of model selection for interest rates data

	Miscellanea and roadmap of the YUIMA project

