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Conifold transitions via affine geometry
and mirror symmetry

RICARDO CASTAÑO-BERNARD

DIEGO MATESSI

Mirror symmetry of Calabi–Yau manifolds can be understood via a Legendre duality
between a pair of certain affine manifolds with singularities called tropical manifolds.
In this article, we study conifold transitions from the point of view of Gross and
Siebert [11; 12; 13]. We introduce the notions of tropical nodal singularity, tropical
conifolds, tropical resolutions and smoothings. We interpret known global obstruc-
tions to the complex smoothing and symplectic small resolution of compact nodal
Calabi–Yau manifolds in terms of certain tropical 2–cycles containing the nodes in
their associated tropical conifolds. We prove that the existence of such cycles implies
the simultaneous vanishing of the obstruction to smoothing the original Calabi–Yau
and to resolving its mirror. We formulate a conjecture suggesting that the existence
of these cycles should imply that the tropical conifold can be resolved and its mirror
can be smoothed, thus showing that the mirror of the resolution is a smoothing.
We partially prove the conjecture for certain configurations of nodes and for some
interesting examples.

14J32; 14J33, 53D37

1 Introduction

A geometric transition between a pair of smooth varieties is the process of deforming
the first variety to a singular one and then obtaining the second one by resolving the
singularities. The first variety is called a smoothing and the second one a resolution.
In [25], Morrison conjectures that, in certain circumstances, mirror symmetry should
map a pair of smooth Calabi–Yau manifolds, related by a geometric transition, to
another pair, also related by a geometric transition but with the roles reversed, so that
the mirror of a smoothing should be a resolution and vice-versa. This idea is supported
by evidences and examples. Morrison also suggests that a new understanding of this
phenomenon could come from the SYZ interpretation of mirror symmetry as a duality
of special Lagrangian torus fibrations. Building on ideas of Hitchin [18], Gross [7],
Gross and Wilson [14], Kontsevich and Soibelman [20; 21] and others on the SYZ
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conjecture, Gross and Siebert show that mirror pairs of Calabi–Yau manifolds can
be constructed from a Legendre dual pair of affine manifolds with singularities and
polyhedral decompositions, also called tropical manifolds [11; 12; 13]. In this article
we consider the special case of conifold transitions. We introduce the notion of tropical
conifold, ie of tropical manifold with nodes, and we show that the smoothing/resolution
process also has a natural description in this context (this was first observed by Gross [7]
and Ruan [27]). Indeed the smoothing of a tropical conifold simultaneously induces
a resolution of its mirror, but in general the process is obstructed. To study global
obstructions we introduce the notion of tropical 2–cycle in a tropical conifold. Our
main result is the following:

Main Theorem The existence of a tropical 2–cycle containing the nodes in a tropical
conifold implies the vanishing of the obstructions to the smoothing of the associated
Calabi–Yau variety and to the resolution of its mirror.

See Theorem 7.3 for the precise statement. We formulate a conjecture claiming that the
inverse also holds, ie that the vanishing of these obstructions can always be detected by
tropical 2–cycles. Moreover we expect that the existence of a resolution/smoothing of
a set of nodes in the tropical conifold should be equivalent to some property expressible
in terms tropical 2–cycles containing the nodes. This would show that the smoothing
and the resolution are themselves mirror pairs in the sense of Gross and Siebert. We
partially prove the conjecture for some special configurations of nodes and for an
interesting family of examples.

1.1 Conifold transitions

A node is the 3–fold singularity with local equation xy � zw D 0. A small resolution
of a node has a P1 as its exceptional cycle, with normal bundle OP1.�1/˚OP1.�1/.
The smoothing of a node (ie xy � zw D � ) produces a Lagrangian 3–sphere as a
vanishing cycle. A conifold transition is the geometric transition associated with a
3–fold with nodal singularities, ie a “conifold.” It was proved by Friedman [5] and
Tian [32] that a compact complex conifold can be smoothed to a complex manifold
if and only if the exceptional cycles of a small resolution satisfy a “good relation” in
homology; see Equation (20). Similarly, on the symplectic side, it was shown by Smith,
Thomas and Yau [30] that a “symplectic conifold” has a symplectic (small) resolution,
with symplectic exceptional cycles, if and only if the vanishing cycles of a smoothing
satisfy a good relation. These two results are a manifestation of the idea that the mirror
of a complex smoothing should be a symplectic resolution.
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1.2 SYZ conjecture

Mirror symmetry is usually computed when the Calabi–Yau manifold is the generic
fibre of a family  W �!C , where the special fibre �0D 

�1.0/ is highly degenerate
(eg one requires that �0 has maximally unipotent monodromy). The Strominger–Yau–
Zaslow (SYZ) Conjecture [31] claims that mirror Calabi–Yau pairs X and {X should
admit “dual” special Lagrangian fibrations, f W X ! B and {f W {X ! B . This original
idea has been revised by Gross and Wilson [7; 14] and Kontsevich and Soibelman [20],
who claimed that special Lagrangian fibrations should exist only in some limiting sense
as the fibre �s D  

�1.s/ approaches the singular fibre �0 (see also the survey paper
by Gross [10]). This “limiting fibration” can be described in terms of a certain structure
on the base B of the fibration. Here B is a real manifold and the structure on B should
contain information concerning the complex and symplectic structure of the Calabi–Yau
manifold. Moreover, this data contains intrinsically a duality given by a Legendre
transform. The important fact is that the structure on B should allow the “reconstruction”
of the original Calabi–Yau. This is known as the reconstruction problem. Therefore,
finding the mirror of a given family  W �!C of Calabi–Yau manifolds becomes the
process of constructing B , with its structure, applying the Legendre transform to obtain
the dual base {B , with dual structure, and then reconstructing the mirror family via
some reconstruction theorem. For instance, in dimension 2, Kontsevich and Soibelman
[21] construct a rigid analytic K3 from an affine structure on S2 with 24 punctures.

1.3 Tropical manifolds and mirror symmetry

In [11; 12; 13] Gross and Siebert completed this program in all dimensions. On B they
consider the structure of an integral affine manifold with singularities and polyhedral
decompositions. Roughly this means B is obtained by gluing a set of n–dimensional
integral convex polytopes in Rn by identifying faces via integral affine transformations
(this is the polyhedral decomposition, denoted P ). Then, at the vertices v of P one
defines a fan structure, which identifies the tangent wedges of the polytopes meeting
at v with the cones of a fan †v in Rn . For a certain codimension-2 closed subset
� � B , this structure determines an atlas on B0 D B �� such that the transition
maps are integral affine transformations. The set �, called the discriminant locus, is
the set of singularities of the affine structure. An additional crucial piece of data is
a polarisation, consisting of a so-called “strictly convex multivalued piecewise linear
function” � on B . Such a � is specified by the data of a strictly convex piecewise linear
function �v defined on every fan †v , plus compatibility conditions between �v and �w
for vertices v and w belonging to a common face. All these data, which we denote
by the triple .B;P; �/, are also called a polarised tropical manifold. The “discrete
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Legendre transform” associates to .B;P; �/ another triple . {B; {P; {�/. Essentially, at
a vertex v of B , the fan †v and function �v provide an n–dimensional polytope {v ,
by the standard construction in toric geometry. Two polytopes {v and {w , associated to
vertices v and w on a common edge of P , can be glued together along a face using
the compatibilities between the pairs .†v; �v/ and .†w; �w/. This gives {B and the
polyhedral decomposition {P . The fan structure and function {� at the vertices of {P
come from the n–dimensional polytopes of P essentially using the inverse construction.

In order to have satisfactory reconstruction theorems it is necessary to put further
technical restrictions on .B;P; �/. Gross and Siebert define such conditions and
call them “positivity and simplicity.” For convenience, we will say that a polarised
tropical manifold is smooth if it satisfies these nice conditions. In particular, in the
3–dimensional case smoothness of B amounts to the fact that � is a 3–valent
graph and the vertices can be of two types: “positive” or “negative”, depending
on the local monodromy of the affine structure. The Gross–Siebert reconstruction
theorem [13] ensures that given a smooth polarised tropical manifold .B;P; �/, it
is possible to construct a toric degeneration  W � ! C of Calabi–Yau varieties,
such that B is the dual intersection complex of the singular fibre �0 . The mirror
family { W {� ! C is obtained by applying the reconstruction theorem to the Le-
gendre dual . {B; {P; {�/.
The integral affine structure on B0 D B �� implies the existence of a local system
ƒ� � T �B0 , whose fibres ƒb ŠZn are maximal lattices in T �

b
B0 . Then one can form

the n–torus bundle XB0
DT �B0=ƒ

� over B0 . The standard symplectic form on T �B0

descends to XB0
and the projection f0W XB0

! B0 is a Lagrangian torus fibration.
In [4], we proved that if B is a 3–dimensional smooth tropical manifold then one can
form a symplectic compactification of XB0

. This is a symplectic manifold XB , con-
taining XB0

as a dense open subset, together with a Lagrangian fibration f W XB! B

which extends f0 . This is done by inserting suitable singular Lagrangian fibres over
points of �. Topologically the compactification XB is based on the one found by
Gross in [8]. It is expected that XB should be diffeomorphic to a smooth fibre �s of the
family  W �!C in the Gross–Siebert reconstruction theorem, whose dual intersection
complex is . {B; {P; {�/. This result has been announced in Gross [9, Theorem 0.1]. A
complete proof for the quintic 3–fold in P4 is found in [8]. We also expect that XB

should be symplectomorphic to �s with a suitable Kähler form, although there is no
proof of this yet.

1.4 Summary of the results

In dimension 3, smoothness of B ensures the general fibre �s of  W �!C is smooth.
We introduce the notion of (polarised) tropical conifold, in which the discriminant locus
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is allowed to have 4–valent vertices. Such vertices, which we call (tropical) nodes, are
of two types: negative and positive. Away from these nodes, a tropical conifold is a
smooth tropical manifold. We believe the Gross–Siebert reconstruction theorem can be
extended also to tropical conifolds, but the general fibre �s should be a variety with
nodes. This is hinted by the fact that the local conifold

xy �wz D 0

has a pair of torus fibrations which induce on the base B the same structure as in a
neighbourhood of positive or negative nodes. In fact, in Corollary 6.7 we show if B

is a tropical conifold, then XB0
can be topologically compactified to a topological

conifold XB (ie a singular topological manifold with nodal singularities). An interesting
observation is that the Legendre transform of a positive node is the negative node. In
particular we also have the mirror conifold X {B . This extends topological mirror
symmetry of [8] to conifolds. Then we give a local description of the smoothing and
resolution of a node in a tropical conifold (see Figures 9 and 10). It turns out that
the Legendre dual of a resolution is indeed a smoothing. At the topological level
this was already observed by Gross [7] and Ruan [27], who also discusses a global
example. The interesting question is global: given a compact tropical conifold, can we
simultaneously resolve or smooth its nodes? We give a precise procedure to do this.
It turns out that the smoothing of nodes in a tropical conifold simultaneously induces
the resolution of the nodes in the mirror. What are the obstructions to the tropical
resolution/smoothing? For this purpose we define the notion of tropical 2–cycle inside
a tropical conifold. These objects resemble the usual notion of a tropical surface as
defined for instance by Mikhalkin in [23]. A tropical 2–cycle is given by a space S

and an embedding j W S!B with some additional structure. The space S has various
types of interior and boundary points. For instance at generic points, S is locally
Euclidean, at the codimension-1 points S is modelled on the tropical line times an
interval and at codimension-2 points S is modelled on the tropical plane (see Figure 13)
and so on. In Theorem 7.3 we prove that if j .S/ contains tropical nodes, then both the
vanishing cycles associated to the nodes in XB and the exceptional curves associated to
the nodes in X {B satisfy a good relation. The idea is that tropical 2–cycles can be used
to construct either 4–dimensional objects in XB or 3–dimensional ones in X {B (see
also Aspinwall, Bridgeland, Craw, Douglas, Gross, Kapustin, Moore, Segal, Szendrői,
and Wilson [1, Chapter 6], where the local duality between A–branes and B –branes is
explained.) Thus obstructions vanish on both sides of mirror symmetry. The results
of Friedman, Tian, and Smith, Thomas and Yau then lead us to Conjecture 8.3. It
states any good relation among the vanishing cycles of a set of nodes in XB is a linear
combination of good relations coming from tropical 2–cycles in B . Moreover there
should exist some property of these tropical 2–cycles which is equivalent to the fact
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that B can be tropically resolved. As a partial confirmation of this conjecture, we prove
the nodes contained in some special configurations of tropical 2–cycles can always be
tropically resolved (Theorems 8.5, 8.7, 8.9 and Corollary 8.6).

Finally we apply these results to specific examples. We consider the case of Schoen’s
Calabi–Yau [29], which is a fibred product of two rational elliptic surfaces. A corre-
sponding tropical manifold has been described by Gross in [9]. It is possible to modify
the example in many ways so that we obtain a tropical conifold with various nodes.
We show how these nodes can be resolved/smoothed and thus obtain new tropical
manifolds. The interesting fact is that this procedure automatically produces the mirror
families via discrete Legendre transform and the reconstruction theorems. For this
class of examples we also partially prove Conjecture 8.3.

Notation

We denote the convex hull of a set of points q1; : : : ; qr in Rn by Conv.q1; : : : ; qn/.
Given a set of vectors v1; : : : ; vr 2Rn the cone spanned by these vectors is the set

Cone.v1; : : : ; vr /D

� rX
jD1

tjvj

ˇ̌̌
tj � 0; j D 1; : : : ; r

�
:

2 Affine manifolds with polyhedral decompositions

We give an informal introduction to affine manifolds with singularities and polyhedral
decompositions. We refer to [11] for precise definitions and proofs.

2.1 Affine manifolds with singularities

Let M Š Zn be a lattice and define MR DM ˝Z R and let

Aff.M /DM Ì Gl.Z; n/

be the group of integral affine transformations of MR . If M and M 0 are two lattices,
then Aff.M;M 0/ is the Z–module of integral affine maps between MR and M 0

R .
Recall that an integral affine structure A on an n–manifold B is given by an open
cover fUig and an atlas of charts �i W Ui ! MR whose transition maps �j ı �

�1
i

are in Aff.M /. An integral affine manifold is a manifold B with an integral affine
structure A. A continuous map f W B! B0 between two integral affine manifolds is
integral affine if, locally, f is given by elements of Aff.M;M 0/.
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An affine manifold with singularities is a triple .B; �;A/, where the B is an n–
manifold, � � B is a closed subset such that B0 D B �� is dense in B and A

is an integral affine structure on B0 . The set � is called the discriminant locus. A
continuous map f W B! B0 of integral affine manifolds with singularities is integral
affine if f �1.B0

0
/\B0 is dense in B and fjf �1.B0

0
/\B0
W f �1.B0

0
/\B0 ! B0

0
is

integral affine. Furthermore f is an isomorphism of integral affine manifolds with
singularities if f W .B; �/! .B0; �0/ is a homeomorphism of pairs.

2.2 Parallel transport and monodromy

Given an affine manifold B , let .U; �/ 2 A be an affine chart with coordinates
u1; : : : ;un . Then the tangent bundle TB (resp. cotangent bundle T �B ) has a flat
connection r defined by

r@uj
D 0 .resp. rduj D 0/

for all j D 1; : : : ; n and all charts .U; �/ 2 A. Then parallel transport along loops
based at b 2 B gives the monodromy representation z�W �1.B;p/! Gl.TbB/. Gross
and Siebert also introduce the notion of holonomy representation, which is denoted �
and has values in Aff.TbB/, and z� coincides with the linear part of � . In the case
of an affine manifold with singularities .B; �;A/, the monodromy representation is
z�W �1.B0;p/! Gl.TbB0/.

Integrality implies the existence of a maximal integral lattice ƒ�TB0 (resp. ƒ��T �B0 )
defined by

(1) ƒjU D spanZh@u1
; : : : ; @un

i .resp. ƒ�jU D spanZhdu1; : : : ; duni/:

We can therefore assume that z� has values in Gl.Z; n/.

2.3 Polyhedral decompositions

Rather than recalling here the precise definition of an integral affine manifold with
singularities and polyhedral decompositions (ie [11, Definition 1.22]), it is better to
recall the standard procedure to construct them; see [11, Construction 1.26]. We
start with a finite collection P 0 of n–dimensional integral convex polytopes in MR .
The manifold B is formed by gluing together the polytopes of P 0 via integral affine
identifications of their proper faces. Then B has a cell decomposition whose cells are
the images of faces of the polytopes of P 0 . Denote by P this set of cells. We assume
that B is a compact manifold without boundary. We now construct the integral affine
atlas A on B . First of all, the interior of each maximal cell of P can be regarded as the
domain of an integral affine chart, since it comes from the interior of a polytope in MR .
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To define a full atlas we need charts around points belonging to lower-dimensional
cells. In fact this will be possible only after removing from B a set �0 which we now
define. Let Bar.P/ be the first barycentric subdivision of P . Then define �0 to be the
union of all simplices of Bar.P/ not containing a vertex of P (ie 0–dimensional cells)
or the barycenter of a maximal cell. For a vertex v 2 P , let Wv be the union of the
interiors of all simplices of Bar.P/ containing v . Then Wv is an open neighbourhood
of v and

fWv j v is a vertex of Pg[ fInt.�/ j � 2 Pmaxg

forms a covering of B ��0 . A chart on the open set Wv is given by a fan structure
at the vertex v ; see [11, Construction 1.26]. This construction gives an integral affine
atlas on B ��0 . In many cases the set �0 is too crude and the affine structure can be
extended to a larger set than B ��0 . This can be done as follows. Notice that �0 is a
union of codimension-2 simplices. Then let � be the union of those simplices around
which local monodromy is not trivial. In [11, Proposition 1.27] it is proved that the
affine structure on B ��0 can be extended to B ��.

Gross and Siebert also introduce the crucial notion of toric polyhedral decomposition.
Essentially this condition establishes certain compatibilities between fans †v and †w
at vertices v and w lying on some common cell. We will come back to this in the next
two paragraphs.

2.4 Local properties of monodromy

The monodromy representation of affine manifolds with polyhedral decompositions
has some useful distinguished properties, which we now describe. First of all notice
that � is contained in the codimension-1 skeleton. Let � be a cell of P of codimension
at least 1, then it is shown in [11, Proposition 1.29] that the tangent space to � is
monodromy invariant with respect to the local monodromy near � . More precisely, there
exists a neighbourhood U� of Int.�/ such that, if b2 ��� and  2�1.U���; b/, then
z�. /.w/Dw for every w tangent to � in b . Moreover (see [11, Proposition 1.32]) the
polyhedral subdivision is toric if and only if for every � there exists a neighbourhood U�
of Int.�/ such that, if b 2 � �� and  2 �1.U� ��; b/, then z�. /.w/�w is tangent
to � for every w 2 TbB0 .

2.5 Quotient fans

If the polyhedral decomposition is toric (see above), then to every cell � 2 P one
can associate a complete fan †� , called the quotient fan of � , whose dimension is
equal to the codimension of � . It is defined as follows. Let b 2 Int.�/��, then to
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every � such that � � � , one can associate the tangent wedge of � at b . This can
be viewed as a convex rational polyhedral cone inside TbB0 (with lattice structure
given by ƒ). The union of all such cones forms a complete fan in TbB0 , which is
the pullback of a complete fan in the quotient TbB0=Tb� . Let †� be such a fan.
The toric condition ensures that the quotient spaces TbB0=Tb� and the fan †� are
independent of b 2 � ��, in fact they can be all identified via parallel transport along
paths contained in a suitably small neighbourhood U� of Int.�/. The local properties of
monodromy, assuming the toric condition, imply that this identification is independent
of the chosen path.

2.6 Examples

In the following examples B will be allowed to have boundary or even to be constructed
using unbounded polytopes. The construction above can be easily adapted to these cases.

Example 2.1 (The focus-focus singularity) Here the dimension is nD 2. The set P 0
is given by two polytopes: a standard simplex and a square Œ0; 1�� Œ0; 1�. Glue them
along one edge to form B (see Figure 1). Let e be the common edge, and let v1

and v2 be the vertices of e . The discriminant locus � consists of the barycenter of e .
Consider the fan in R2 whose 2–dimensional cones are two adjacent quadrants, ie
Cone.e1; e2/ and Cone.e1;�e2/, where fe1; e2g is the standard basis of R2 . Then the
fan structure at vj , j D 1; 2, identifies the tangent wedges of the two polytopes with
these two cones, in such a way that the primitive tangent vector to e at vj is mapped
to e1 (see Figure 1).

�e2v2

e2 e1

e1

�e2 e2v1

Figure 1

Consider a loop  which starts at v1 , goes into the square, passes through v2 and
comes back to v1 while passing inside the triangle. One can easily calculate that z�. /,
computed with respect to the basis fe1; e2g, as depicted in Figure 1, is the matrix�

1 1

0 1

�
:

The singular point � in this example is called the focus-focus singularity.
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Example 2.2 (Generic singularity) This a 3–dimensional example and it is just the
product of the previous example by Œ0; 1�. Here � consists of a segment.

v2

v1 v3v1e1 e1v3

e3
e2

v2

e2 �e3

Figure 2

Example 2.3 (The negative vertex) Here n D 3. Let Pn be the standard simplex
in Rn . The set P 0 consists of two polytopes: P3 and P2 �P1 which we glue by
identifying the triangular face P2�f0g with a face of P3 . In Figure 2 we have labelled
the vertices of these two faces by v1; v2; v3 and the identification is done by matching
the vertices with the same labelling. Now consider the fan in R3 whose cones are
two adjacent octants (ie Cone.e1; e2; e3/ and Cone.e1; e2;�e3/, where fe1; e2; e3g

is the standard basis of R3 ). At every vertex vj identify the tangent wedges of the
two polytopes with these two cones, in such a way that the tangent wedge to the
common face is mapped to Cone.e1; e2/. There is more than one way to do this (since
Cone.e1; e2/ has nontrivial automorphisms), but any choice is a good chart of the affine
structure. If one fixes an orientation then a choice can be made so that the chart is
oriented. The discriminant locus � is the Y-shaped figure depicted in (red) dashed
lines in Figure 2. Now let j be the path going from v3 to vj by passing into P3 and
then coming back to v3 by passing into P2 �P1 . It can be easily shown that z�.1/

and z�.2/ are given respectively by the matrices0@ 1 0 1

0 1 0

0 0 1

1A ;
0@ 1 0 0

0 1 1

0 0 1

1A :
The vertex of � in this example is called the negative vertex.

Example 2.4 (The positive vertex) In this case B D R2 � Œ0; 1� with polyhedral
decomposition given by the following unbounded polytopes (see Figure 3):

Q1 D fx �maxfy; 0g; z 2 Œ0; 1�g

Q2 D fy �maxfx; 0g; z 2 Œ0; 1�g

Q3 D fx � 0;y � 0; z 2 Œ0; 1�g
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p0

e1

e2

e3

�e2� e3

�e1� e2� e3

p1

e3

e1

e2

Figure 3

Let †0 be the fan whose maximal cones are

Cone.e1; e3;�e1� e2� e3/; Cone.e1; e2;�e1� e2� e3/; Cone.e1; e2; e3/:

Then the fan structure at p0 identifies the tangent wedges of Q1;Q2 and Q3 at p0

with the first, second and third cone respectively. Now let †1 be the fan whose maximal
cones are

Cone.e1; e3;�e2� e3/; Cone.e1; e2;�e2� e3/; Cone.e1; e2; e3/:

The fan structure at p1 identifies the tangent wedges of Q1;Q2;Q3 at p1 with the
first, second and third cone respectively. Now let j , j D 1; 2, be the loop which
starts at p0 , goes to p1 by passing inside Q3 and then comes back to p0 by passing
inside Qj . Then we have that z�.1/ and z�.2/ are given respectively by the following
matrices 0@ 1 1 0

0 1 0

0 0 1

1A ;
0@ 1 0 1

0 1 0

0 0 1

1A :
The vertex of � in this example is called the positive vertex.

2.7 MPL functions

A multivalued piecewise linear (MPL) function on an affine manifold with singulari-
ties B and polyhedral subdivision P generalises the notion of piecewise linear function
on a fan † in toric geometry. Let U � B be an open subset. A continuous function
f W U!R is said to be (integral) affine if it is (integral) affine when restricted to U\B0 .
The sheaf of integral affine functions (or just affine) is denoted by Aff .B;Z/ (resp.
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Aff R.B;R/). Notice, for example, that an affine function defined in a neighbourhood
of the singularity in Example 2.1 must be constant along the edge e which contains it.
An (integral) piecewise linear (PL) function on U is a continuous function f W U !R
which is (integral) affine when restricted to U \ Int.�/ for every maximal cell � 2 P
and satisfies the following property: for any y 2 U , y 2 Int.�/ for some � 2 P , there
exists a neighbourhood V of y and an (integral) affine function f on V such that
��f is zero on V \ Int.�/. Notice that this latter property implies that a PL function
on a neighbourhood of the singularity in Example 2.1 is constant when restricted to the
edge e . The sheaf of integral (or just affine) PL functions is denoted by PLP.B;Z/
(resp. PLP;R.B;R/).

When P is a toric polyhedral subdivision, then a PL function satisfies the following
property. Given � 2 P and y 2 Int.�/, then, in a neighbourhood U of y , there is
an affine function f such that � �f is zero on U \ Int.�/. This implies that � �f
descends to a PL function (in the sense of toric geometry) on the quotient fan †�
defined in Section 2.5. We denote this function by �� and we call it the quotient
function.

The sheaf MPLP of integral MPL functions is defined by the exact sequence of
sheaves

0 �!Aff .B;Z/ �! PLP.B;Z/ �!MPLP �! 0:

Given a toric polyhedral subdivision P on B , an MPL function � on B is said to be
(strictly) convex with respect to P if �� is a (strictly) convex piecewise linear function
on the fan †� for every � 2 P . We can now give the following

Definition 2.5 A (polarised) tropical manifold is a triple .B;P; �/, where B is an
integral affine manifold with singularities, P a toric polyhedral decomposition and �
a strictly convex MPL function with respect to P (the polarisation).

It is worth to point out that this notion of tropical manifold differs from other notions
appearing elsewhere in the literature, such as Mikhalkin’s tropical varieties in [23].
Gross and Siebert’s tropical manifolds can be seen as ambient spaces where Mikhalkin’s
tropical varieties can be embedded.

2.8 The discrete Legendre transform

Given a tropical manifold .B;P; �/, the discrete Legendre transform produces a second
tropical manifold . {B; {P; {�/. Topologically the pair . {B; {�/ is homeomorphic to the
pair .B; �/ and the decomposition {P is the standard dual cell decomposition (in the
sense of topological cell decompositions). What changes is the affine structure.
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Given a polytope � 2 P , the MPL function � gives a strictly convex piecewise linear
function �� on the fan †� . Then we let {� be the standard Newton polytope associated
to the pair .†� ; �� /. Its dimension is equal to the codimension of � . Recall that there
is an inclusion reversing correspondence between k –dimensional cones of †� and
faces of {� of codimension k . Then we let {P 0Df{v j v a vertex of Pg. The manifold {B
is obtained from {P 0 as follows. Suppose that � is an edge of P having v and w
as vertices. Then, the properties of � ensure that {� is isomorphic to an .n � 1/–
dimensional face of both {v and {w . Thus {v and {w can be glued along these faces using
the isomorphism with {� . It can be shown that the space produced from {P 0 via these
gluings is a manifold {B homeomorphic to B , with induced cell decomposition {P .

It remains to define a fan structure at all vertices of {P . Notice that a vertex of {P is
the dual of a maximal polytope � 2 P , thus we denote it by {� . The fan †{� at {�
is given by the normal fan of � . One can show that there is a well-defined chart
�{� W W{� ! j†{� j. This construction also gives a naturally defined MPL function {� .
Locally this is given by the standard strictly convex PL function {�{� defined on the
normal fan of a convex lattice polytope. Thus we have the Legendre dual polarised
tropical manifold . {B; {P; {�/.

As an example, it can be easily shown that the negative vertex (Example 2.3) and the
positive one (Example 2.4) are related to each other via a discrete Legendre transform
with respect to suitably chosen polarisations.

2.9 The Gross–Siebert reconstruction theorem

Gross and Siebert consider tropical manifolds which satisfy a further set of technical
conditions which they call “positive and simple”. To avoid confusion with other uses
of the word “positive” in this paper, we will say that a (polarised) tropical manifold is
smooth if it is “positive and simple” in the Gross–Siebert sense. In dimension nD 2 or
3, smoothness amounts to the following. If nD 2, � consists of a finite set of points
and every point of � has a neighbourhood which is integral affine isomorphic to a
neighbourhood of the focus-focus singularity in Example 2.1. If nD 3, then � is a
trivalent graph such that: every point in the interior of an edge of � has a neighbourhood
which is integral affine isomorphic to a neighbourhood of a singular point in Example 2.2
and every vertex of � has a neighbourhood which is integral affine isomorphic to
a neighbourhood of the “positive vertex” in Example 2.4 or of the “negative vertex”
in Example 2.3. In this definition we should also allow � to be curved. In fact in
Examples 2.2, 2.4 and 2.3 we could take � to be made of curved lines lying inside
the same 2–dimensional face and we would still have a well-defined affine structure
on B ��. For the rest of this paper we restrict to dimensions nD 2 or 3.
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In Section 4 of [11], Gross and Siebert consider a toric degeneration  W �! C of
varieties, with a relatively ample line bundle L on � and they associate to it its dual
intersection complex which has the structure of a tropical manifold .B;P; �/. A toric
degeneration has the property that the central fibre �0 D  

�1.0/ is obtained from a
disjoint union of toric varieties by identifying pairs of irreducible toric Weil divisors.
This information is encoded in .B;P; �/, in fact to every vertex v 2 P we associate
the toric variety Sv given by the fan †v . Now to every edge � , connecting vertices v
and w , the intersection between Sv and Sw is the toric divisor D� given by the fan
†� . The polarisation � determines Lj�0

. In [13] they prove the following important
reconstruction theorem.

Theorem 2.6 (Gross–Siebert) Every compact and smooth polarised tropical manifold
arises as the dual intersection complex of a toric degeneration.

In dimension nD 3 the generic fibre of the toric degeneration constructed in the above
theorem is a smooth manifold and if B is a 3–sphere then it is also Calabi–Yau. If we
consider the discrete Legendre transform . {B; {P; {�/, then we can reconstruct the toric
degeneration { W {�!C . Gross and Siebert claim that this family is mirror symmetric
to the family  W �!C and provide many evidences of this. For instance Gross, in [9],
shows that Batyrev–Borisov mirror pairs [2] of Calabi–Yau manifolds arise in this way
(see also the articles by Haase and Zharkov [15; 16; 17].)

3 Lagrangian fibrations

Now consider an integral affine manifold with singularities B with discriminant locus �
and recall the definition (1) of the lattice ƒ� � T �B0 . Then we can define the 2n–
dimensional manifold

XB0
D T �B0=ƒ

�;

which, together with the projection f0W XB0
! B0 , forms a T n fibre bundle. The

standard symplectic form on T �B0 descends to XB0
and the fibres of f0 are Lagrangian.

Clearly the monodromy representation z� associated to the flat connection on T �B0 is
also the monodromy of the local system ƒ� . A “symplectic compactification” of XB0

is
a symplectic manifold XB , together with a surjective Lagrangian fibration f W XB!B

such that we have the commutative diagram

(2)
XB0

� � //

��

XB

��
B0
� � // B;
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where the vertical arrows are the fibrations and the upper arrow is an open symplectic
embedding. We will restrict our attention to the 3–dimensional case nD 3. In this case,
in [4] we proved that XB and f can be constructed under the assumption that B is
smooth (in the sense of Section 2.9). The precise statement of the result in [4] is slightly
more delicate due to the fact that near negative vertices the discriminant locus � has
to be perturbed so that it has a small codimension-1 part. We will explain more about
this later. Our symplectic construction of XB is based on the topological construction
carried out by Gross in [8]. It is expected that XB should be symplectomorphic to a
generic fibre of the reconstructed toric degeneration of Theorem 2.6 with some Kähler
form, where the mirror {B is the dual intersection complex. In [8], in the case of the
quintic 3–fold in P4 , Gross proved that XB is diffeomorphic to a generic quintic
and X {B is diffeomorphic to its mirror; see also [9, Theorem 0.1].

The fibration f will have three types of singular fibres: generic-singular fibres over
edges of �; positive fibres and negative fibres respectively over positive and negative
vertices of �. Let U �B be a small open neighbourhood, homeomorphic to a 3–ball,
of either an edge, a positive or negative vertex. The idea is to find standard local models
of fibrations fU W XU ! U , such that if we let U0 D U \B0 and XU0

D f �1
U
.U0/,

then fU W XU0
! U0 has the structure of a T 3 –fibre bundle, ie XU0

D EU0
=ƒU0

,
where EU0

is a rank-3 vector bundle over U0 and ƒU0
is a maximal lattice. Then,

topologically, in order to glue fU W XU ! U to f0W XB0
! B0 it is enough to show

that EU0
=ƒU0

and f �1
0
.U0/ are isomorphic as T 3 –bundles, ie that they have the

same monodromy. When fU is Lagrangian then an isomorphism is provided by action
angle coordinates.

3.1 Local models

We sketch the construction of the local models, for details see [8, Section 2; 4]. We will
denote local fibrations by f W X !U , instead of the more cumbersome fU W XU !U .
The examples will satisfy the following properties.

(a) X is a (real) 6–dimensional manifold with an S1 action such that X=S1 is a
5–dimensional manifold. We denote Y DX=S1 .

(b) If � W X ! Y is the projection, the image of the fixed point set of the S1 –action
is an oriented 2–dimensional submanifold †� Y .

(c) Let Y 0D Y �†. If X 0D ��1.Y 0/, then � W X 0! Y 0 is a principal S1 –bundle
over Y 0 such that the Chern class c1 , evaluated on a small unit sphere in the
fibre of the normal bundle of † is ˙1.

(d) There exists a regular T 2 fibration xf W Y ! U such that f W X ! U is given
by f WD xf ı� .
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Clearly the discriminant locus of f will be � WD xf .†/. One can readily see that for
b 2�, the singularities of the fibre Xb occur along †\ xf �1.b/.

The prototypical example of X with an S1 action satisfying (a)–(c) is given by X DC3

and S1 action given by

(3) � � .z1; z2; z3/D .�z1; �
�1z2; z3/:

The quotient Y can be identified with C2 �R and the map � can be identified with
�.z/D .z1z2; z3; jz1j

2� jz2j
2/. Clearly †D f.0;u; 0/ 2C2 �Rg.

Remark 3.1 In the examples we will have Y D T 2 �U , where U is homeomorphic
to a 3–ball. In particular the fibres of Y have a linear structure. This fact, together with
the S1 action on X and a choice of a section �0W U !X , implies that f �1.U ��/

has the structure of a T 3 –fibre bundle E=ƒ.

3.2 Generic singular fibration

We describe the model for the fibration over a neighbourhood U of an edge of �. Let
U D D � .0; 1/, where D � C is the unit disc, and let Y D T 2 �U . Let † � Y

be a cylinder defined as follows. Let e2; e3 be a basis of H1.T
2;Z/. Let S1 � T 2

be a circle representing the homology class e3 . Define †D S1 � f0g � .0; 1/. Now,
one can construct a manifold X together with an S1 action and a map � W X ! Y ,
such that X;Y; † and � satisfy properties (a)–(c) above (see [8, Proposition 2.5]). We
define f D xf ı� , where xf W Y ! U is the projection. Then f is a T 3 fibration with
singular fibres homeomorphic to S1 times a fibre of type I1 , ie a pinched torus, lying
over � WD f0g � .0; 1/. If e1 is an orbit of the S1 action, one can take e1; e2; e3 as a
basis of H1.Xb;Z/, where Xb is a regular fibre.

In this basis the monodromy associated to a simple loop around � is

(4) T D

0@ 1 1 0

0 1 0

0 0 1

1A :
If one also chooses a section, then the set of smooth fibres X0 D f

�1.U ��/ has the
structure of a T 3 –fibre bundle E=ƒ.

An explicit Lagrangian fibration with this topology is defined as follows. Let

(5) X D f.z1; z2; z3/ 2C2
�C j z1z2� 1¤ 0; z3 ¤ 0g
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with the standard symplectic form induced from C3 and U DR3 . Define f W X ! U

to be

(6) f .z/D .log jz1z2� 1j; jz1j
2
� jz2j

2; log jz3j/;

The discriminant locus is � D fx1 D x2 D 0g. The S1 action is given by (3). The
quotient space can be identified with Y D R� .C�/2 and the map � W X ! Y with
�.z1; z2; z3/D .jz1j

2� jz2j
2; z1z2� 1; z3/. Here

†D Critf D f.0;�1;u/;u 2C�g:

Notice that f is actually invariant with respect to the T 2 action given by

(7) � � .z1; z2; z3/D .�1z1; �
�1
1 z2; �2z3/

for � D .�1; �2/ 2 T 2 . The second and third components of f give the moment map
with respect to this action. Then X=T 2 can be identified with .C�f1g/�R2 , with
coordinates .u; t1; t2/ and the projection �T 2 W X !X=T 2 is given by

�T 2.z1; z2; z3/D .z1z2; jz1j
2
� jz2j

2; log jz3j/:

3.3 The negative fibration

This example is a model of a fibration over a neighbourhood U of a negative vertex
of �. We give two possible versions, which are topologically equivalent. The first one
is defined as follows. Let

xY D T 2
�R2:

Define ��R2 to be �D fb0g[�1[�2[�3 , where

(8)
b0 D .0; 0/; �1 D f.�t; 0/ j t > 0g;

�2 D f.0;�t/ j t > 0g; �3 D f.t; t/ j t > 0g:

So that � is a graph with a trivalent vertex b0 and three legs, �i , i D 1; 2; 3 (the
shape of a letter “Y”). Fix a basis e2 , e3 for H1.T

2;Z/. Define † � xY to be a
“pair of pants” lying over � such that for i D 1; 2; 3, †\ .T 2 ��i/ is the cylinder
S1 ��i , where S1 is a circle in T 2 representing the classes �e3 , �e2 and e2C e3

respectively. These legs can be glued together over the vertex b0 of � in such a way
that †\ .T 2 � fb0g/ is a figure eight curve. Now let

Y D xY �RD T 2
�R3

and identify xY with xY �f0g and ��R2 with ��f0g�R2�R. Now, one can construct
a manifold X with an S1 action and a map � W X ! Y satisfying the properties (a)–
(c) above. Consider the trivial T 2 fibration xf W Y ! R3 given by projection. The
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composition f D xf ı� is 3–torus fibration. For b 2� the fibre Xb is singular along
xf �1.b/\†. Thus the fibres over �i are homeomorphic to I1 � S1 , whereas the

central fibre, Xb0
, is singular along the figure eight curve. We can take as a basis of

H1.Xb;Z/, e1.b/; e2.b/; e3.b/, where e2 and e3 are the 1–cycles in xf �1.b/D T 2

as before and e1 is a fibre of the S1 –bundle. In this basis, the monodromy matrices
associated to suitable loops about the legs �i are

(9) T1 D

0@ 1 1 0

0 1 0

0 0 1

1A ; T2 D

0@ 1 0 1

0 1 0

0 0 1

1A ; T3 D

0@ 1 1 1

0 1 0

0 0 1

1A :
We now describe the second version. It is defined over

X D fz1z2C z3� 1¤ 0g\ fz1z2� z3 ¤ 0g

by the function

f .z1; z2; z3/D .jz1j
2
� jz2j

2; log jz1z2C z3� 1j; log jz1z2� z3j/:

If we consider the S1 action (3) and the associated projection �.z1; z2; z3/D .jz1j
2�

jz2j
2; z1z2; z3/ onto the quotient space, then f D xf ı� , where

xf W .t;u/ 7! .t; log ju1Cu2� 1j; log ju1�u2j/;

which is a T 2 fibration. Notice that in this case

†D ft D 0;u1 D 0g:

Figure 4

The discriminant locus � is xf .†/, which can be seen to be a codimension-1 thickening
of the letter “Y” graph (ie the amoeba of a line). It is not difficult to perturb this fibration
so that the ends of the legs of � become pinched to codimension-2 (see Figure 4).
With more effort one can make this fibration into a piecewise smooth Lagrangian one;
see [4, Section 5]. We emphasise that from a topological point of view this latter version
of negative fibration is equivalent to the first version with � of codimension 2. In fact
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one can show that the surface † in this latter version is isotopic to a surface which
maps to a genuine codimension-2 Y-shaped � constructed as in the first version (see
Ruan [28, Theorem 4.3], Mikhalkin [24] and [7, Section 4]). Also in this example the
set of smooth fibres X0 D f

�1.R3��/ has the structure of a 3–torus bundle E=ƒ.

3.4 The positive fibration

In this case we give an explicit fibration which turns out to be also Lagrangian. Here
X D fz1z2z3�1¤ 0g, with standard symplectic form induced from C3 . The fibration
f W X !R3 is defined by

(10) f .z1; z2; z3/D .log jz1z2z3� 1j; jz1j
2
� jz2j

2; jz1j
2
� jz3j

2/:

Identify R2 with f0g �R2 �R3 . The discriminant locus � is contained in R2 and it
is given by �D fb0g[�1[�2[�3 , where b0 and the �j are as in (8). Notice that
f is invariant with respect to the T 2 action

(11) � � .z1; z2; z3/D .�
�1
1 z1; �

�1
2 z2; �1�2z3/:

The quotient X=T 2 can be identified with C� �R2 via the map

(12) �.z1; z2; z3/D .z1z2z3� 1; jz1j
2
� jz2j

2; jz1j
2
� jz3j

2/

and f is the composition of � with xf W C� �R2!R3 given by

(13) xf .u;x1;x2/D .log juj;x1;x2/:

The T 2 orbits are generically isomorphic to T 2 . Consider the following submanifolds
of X :

L1 D fz1 D z3 D 0; z2 ¤ 0g

L2 D fz1 D z2 D 0; z3 ¤ 0g

L3 D fz2 D z3 D 0; z1 ¤ 0g

Observe that f .Lj / D �j . Moreover, consider the following circles in side T 2 :
G1Df�2D1g, G2Df�1�2D1g and G3Df�1D1g. Then the stabiliser of points in Lj

is the circle Gj . Obviously .0; 0; 0/ is (the unique) fixed point and f .0; 0; 0/D b0 .
The singular fibre over the vertex of � can be described as T 2�S1 after one of the T 2

is collapsed to a point. The fibres over the legs of � are of generic singular type. Given
a generic point b 2 R3 , choose a basis e1; e2; e3 of H1.Xb;Z/ such that e2 and e3

are represented, respectively, by the circles G1 and G2 with suitable orientation and e1

is the fibre of xf over b . Then, with respect to this basis, the monodromy matrices
around the legs are the inverse transpose of the matrices in (9).
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Theorem 3.2 Given a 3–dimensional tropical manifold .B;P; �/, if B is smooth in
the sense of Section 2.9, then the above local models can be glued to XB0

in order to
obtain a symplectic manifold XB and a Lagrangian fibration f W XB! B such that:

(i) It fits into diagram (2) provided we replace B0 with a smaller open subset
obtained by removing a small neighbourhood of the negative vertices.

(ii) f is continuous and fails to be smooth only over a small neighbourhood of the
negative vertices, where it is piecewise smooth.

(iii) f has a smooth Lagrangian section �0W B!XB which extends the zero section
on XB0

.

We refer to [4, Theorem 8.2] for the proof of this theorem and for the technical details.
We also point out that this result is based on Gross’ topological construction of XB

which is given in [8, Theorem 2.1]. It is also useful to know that the local models can be
modified so that the discriminant locus � is “curved,” ie the edges of � bend inside the
two-dimensional monodromy invariant planes that contain them; see [4, Section 4.3].

Theorem 3.3 Given a 3–dimensional tropical manifold .B;P;�/ and its dual . {B; {P; {�/
define the torus bundle

{XB0
D TB0=ƒ:

If we identify .B; �/D . {B; {�/, then {XB0
and X {B0

are homeomorphic T 3 –bundles.
In particular, if B is smooth in the sense of Section 2.9, {XB0

can be topologically
compactified by gluing a positive fibre over a negative vertex and vice-versa. Denoting
the compactification by {XB , we have that {XB is homeomorphic to X {B .

The first part follows from [11, Proposition 1.50] which shows that the monodromy
of {XB0

is the same as the monodromy of X {B0
. The last two sentences follows

from [8, Theorem 2.1].

4 A review of conifold transitions

4.1 Local geometry

Recall that an ordinary double point or node is an isolated 3–fold singularity with local
equation in C4 given by

(14) z1z2� z3z4 D 0:
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We call the “local conifold” the 3–dimensional affine variety X0 defined by this
equation. It has two small resolutions. One of them is given by � W X !X0 , where

(15) X D f.z; Œt1 W t2�/ 2C4
�P1

j t1z1 D t2z3; t2z2 D t1z4g

and � is the projection onto C4 . The other resolution is obtained by exchanging z3

and z4 in the equations defining X . Recall that X is the total space of the bundle
OP1.�1/˚OP1.�1/. A smoothing of X0 is given by

(16) Y� D fz1z2� z3z4 D �g:

The symplectic form on X0 and Y� is the restriction of the standard symplectic form
on C4 . Notice that Y� contains a Lagrangian 3–sphere given by

(17) Y� \fz2 D z1; z3 D�z4g Š S3

which disappears as �! 0. It is called the vanishing cycle of the node. The symplectic
structure on X is induced by the symplectic structure on C4�P1 which, in coordinates
.z; t/ with t D t2=t1 , is given by

(18) i

2

4X
iD1

dzi ^ dzi C i
ı dt^dxt

2�.1Cjt j2/2
;

where ı is the area of ��1.0/Š P1 .

Observe that after the change of coordinates

z1 7! w1C iw2; z2 7! w1� iw2; z3 7! �w3� iw4; z4 7! w3� iw4

we can write X0 D f
P4

jD1w
2
j D 0g and Y� D f

P4
jD1w

2
j D �g. In these coordinates,

the vanishing cycle in Y� is given by S3 D fImw D 0g. The cotangent bundle of S3

can be written as

T �S3
D f.u; v/ 2R4

�R4
j juj D 1; hu; vi D 0g

with canonical symplectic form
P

j dvj ^ duj . The important fact is that there is a
symplectomorphism

(19)  W X0�f0g ! T �S3
�fv D 0g

given explicitly by
wj D xj C iyj 7!

�
xj

jxj
;�2jxjyj

�
:

More generally a complex conifold is a 3–dimensional projective (or compact Kähler)
variety xX whose singular locus is a finite set of nodes p1; : : : ;pk . Given a conifold,
one can try to find a small resolution � W X ! xX , which replaces every node with an
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exceptional P1 , or a smoothing zX , which replaces a node with a 3–sphere. Passing
from X to zX (or vice-versa) is called a conifold transition. Notice that the existence of
local diffeomorphisms X �P1!X0�f0g! T �S3�S3 imply that small resolutions
and smoothings can always be done topologically (by surgery), but there are obstructions
if one wishes to preserve either the complex or symplectic (Kähler) structure.

4.2 Complex smoothings

A complex small resolution of a set of nodes in a complex conifold always exists, in
the sense that a small resolution always has a natural complex structure such that the
exceptional P1 are complex submanifolds. Notice also that there are 2k –choices of
resolutions, where k is the number of nodes, since for each node we have two choices
of resolutions. Although locally the two resolutions differ just by a change of variables,
globally we may have topologically distinct resolutions (they are related by a flop).
On the other hand finding a complex analytic smoothing of xX is obstructed and the
obstructions were studied by Friedman [5] and Tian [32].

Definition 4.1 Given a manifold X , we say a set of homology classes �j 2Hr .X;Z/,
j D 1; : : : ; k satisfy a good relation if there exist integers �j ¤ 0 for j D 1; : : : ; k

such that

(20)
X

j

�j�j D 0:

Assuming that the resolution X of xX satisfies the @x@–lemma, Friedman and Tian
proved the following. Denote by Cj � X , j D 1; : : : ; k the exceptional P1 ’s of a
resolution and by ŒCj � their classes in H2.X IZ/, then a complex smoothing of xX
exists if and only if for some resolution the ŒCj � satisfy a good relation.

4.3 Symplectic resolutions

In general, even if xX is projective, the resolution X does not have a natural Kähler form.
This suggests that symplectic resolutions are obstructed. The problem was studied
by Smith, Thomas and Yau in [30]. First they show that a symplectic conifold [30,
Definitions 2.3 and 2.4] can always be symplectically smoothed; see [30, Theorem 2.7].
Essentially this consists of replacing the nodes p1; : : : ;pk with Lagrangian spheres
L1; : : : ;Lk using the symplectomorphism (19). Then they prove the following “mirror”
of the Friedman–Tian result. In a smoothing zX of xX , the classes ŒLj � 2H3. zX ;Z/
satisfy a good relation if and only if there is a symplectic structure on one of the 2k

choices of resolutions X such that the resulting exceptional P1 ’s are symplectic;
see [30, Theorem 2.9].
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4.4 Local collars

Let us now make some observations which will be useful in the proof of Theorem 7.3.
Consider the following 4–dimensional submanifold with boundary of T �S3 :

N0 D f.u; v/ 2 T �S3
j v1 D��u2; v2 D �u1; v3 D��u4; v4 D �u3I�� 0g

Observe that N0 can be regarded as half a real line bundle and we have

@N0 D S3:

Under the symplectomorphism  given in (19), N0�S3 is the image of the complex
surface

Q0 D fw1 D iw2; w3 D iw4g:

In the z coordinates we have

(21) Q0 D fz2 D 0; z4 D 0g:

Clearly we could have also defined Q0 to be one of the following fz2 D 0; z3 D 0g,
fz1 D 0; z4 D 0g or fz1 D 0; z3 D 0g, then the closure of  .Q0/ in T �S3 would
still be a 4–manifold bounding S3 , differing from N0 only by a change in signs
in the defining equations. We may think of N0 or Q0 as a “local collar” near the
vanishing cycle. In particular, suppose that inside a symplectic conifold xX there
exists a 4–manifold S (without boundary) containing nodes p1; : : : ;pk , such that
in local coordinates z1; : : : ; z4 around each node, S coincides with Q0 . Then in a
smoothing zX , S lifts to a 4–dimensional manifold with boundary whose boundary
is the union of the vanishing cycles L1; : : : ;Lk . This follows from the proof of
Theorem 2.7 of [30], where the node is replaced by a 3–sphere using  �1 , and the
fact that  .Q0/DN0�S3 .

We can similarly define a local collar near the exceptional P1 in X .

Lemma 4.2 Consider the subset of X0

(22) P0 D f.z; z; r; s/ 2C �C �R�0 �R�0 j rs D jzj2g:

Then ��1.P0/ is a real 3–dimensional submanifold with boundary in X , homeomor-
phic to P1 � Œ0;C1/, whose boundary is the exceptional P1 .

Proof Clearly

��1.P0/D f.z; z; r; s; Œt1 W t2�/ j t1z D t2r; t2xz D t1sg:
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Then, in the coordinate t D t2=t1 ,

��1.P0/D f.r t; rxt ; r; jt2
jr; t/ j t 2C; r � 0g ŠC �R�0:

This proves the lemma.

Therefore suppose that inside a complex conifold xX we can find a subset S , containing
nodes p1; : : : ;pk , such that S � fp1; : : : ;pkg is a real 3–dimensional submanifold
in xX and, in a neighbourhood of every node, S coincides with P0 in some local
coordinates. Then ��1.S/ is a real 3–dimensional submanifold with boundary of
a resolution X , whose boundary is the union of the exceptional curves. Hence the
exceptional curves satisfy a good relation and the nodes can be smoothed.

4.5 Topology change

Suppose that X and zX are related by a conifold transition, ie they are respectively a
resolution and a smoothing of a set of k nodes p1; : : : ;pk of a conifold xX . Let d be
the rank of the subgroup spanned by the homology classes of the exceptional curves
ŒCj � 2H2.X;Z/ and c be the rank of the subgroup spanned by the homology classes
of the vanishing cycles ŒSj �2H3. zX ;Z/. Then we have the following formulas relating
the Betti numbers of X and zX :

(23)

k D d C c;

b2. zX /D b2.X /� d;

b3. zX /D b3.X /C 2c:

For a proof we refer to the survey of Rossi [26] and the references therein.

4.6 Conifold transitions and mirror symmetry

In [25] Morrison conjectures that given X and zX two Calabi–Yau manifolds related
by a conifold transition, then their mirror manifolds (if they exist) are also related by a
conifold transition, but in the reverse direction, ie the mirror of the resolution X is a
smoothing zY and the mirror of the smoothing zX is a resolution Y :

X
CT //

MS
��

zX

MS
��

zY Y
CT
oo

Morrison also extends the conjecture to more general “extremal transitions” and supports
it with many examples. More examples have appeared later in the literature, eg by
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Batyrev, Ciocan-Fontanine, Kim and van Straten in [3]. At the time Morrison wrote the
article, the SYZ interpretation of mirror symmetry as dual special Lagrangian fibrations
had just been proposed and, in the final remarks he suggests that “such an understanding
could ultimately lead to a proof of the conjecture using the new geometric definition
of mirror symmetry.” To achieve this goal he suggests the “important and challenging
problem to understand how such fibrations behave under an extremal transition.” The
goal of our article is to take up this challenge, at least in the case of conifold transitions,
and propose a general strategy using the techniques of the Gross–Siebert program and
the properties of dual torus fibrations as studied in [8; 4]. We will show that the strategy
works in many special cases but we believe that a more general statement should
be in reach of current technologies. We also point out that in [27], Ruan sketches a
Lagrangian fibration on one of the examples of [3] constructed via a conifold transition.

5 Explicit fibrations on the local conifold

In this section we discuss explicit torus fibrations on the local conifold X0 , on its
smoothing Y� and on its small resolution X . These are slightly modified versions
of Ruan’s fibrations [27] (the maps here are proper, Ruan’s fibrations are not) and
are special cases of the examples in [7]. The fibrations will be of two types: positive
fibrations, which are T 2 invariant, and negative ones, which are S1 invariant. We
will need these local models to construct torus fibrations on topological conifolds
(Corollary 6.7) and in the proof of Theorem 7.3. In particular it will be important to
understand the topology of these models, such as local monodromy (Propositions 5.3
and 5.11). We also have two technical paragraphs on the geometry of “local collars,”
these will be essential in the proof of Theorem 7.3, but may be skipped on first reading.

It would be also desirable (although not essential in this paper) to have a symplectic
structure on the conifolds constructed in Corollary 6.7, so that the fibrations are
Lagrangian. We can achieve this, without too much effort, only in the case the conifold
does not have negative nodes, since our model of the negative fibration is not Lagrangian.
Therefore we also give Lagrangian models of the positive fibration.

5.1 Positive fibrations

We assume that the symplectic form on X is given by (18). Consider the T 2 –action
on X which, for � D .�1; �2/ 2 T 2 , is given by

(24) � � .z1; z2; z3; z4; t/D .�1z1; �
�1
1 z2; �2z3; �

�1
2 z4; �1�

�1
2 t/:

If we ignore the variable t , the same expression also gives a T 2 action on the coni-
fold X0 and on the smoothing Y� .
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Example 5.1 (Resolution) We define the fibration on X and X0 . The above action
is Hamiltonian and the corresponding moment map is �D .�1; �2/, where

�1 D jz1j
2
� jz2j

2
�

ı

1Cjt j2
;

�2 D jz3j
2
� jz4j

2
C

ı

1Cjt j2
:

Define fıW X !R3 by

(25) fı.z; t/D .log jz1z2C z3z4� 1j; �1.z; t/; �2.z; t//:

The quotient of X=T 2 can be identified with C� �R2 via the map

(26) �.z; t/D .z1z2C z3z3� 1; �1; �2/

and fı is the composition of � with xf W C� �R2!R3 given by

(27) xf .u;x1;x2/D .log juj;x1;x2/:

Therefore Crit.fı/ consists of the set of points where the T 2 –action has nontrivial
stabiliser. Hence Crit.fı/ consists of the following components:

L0 D f.z; t/ 2X j z D 0; t ¤ 0;1gŠC�

Lj D f.z; t/ 2X j zi D 0; i ¤ j and zj ¤ 0g ŠC�; j D 1; : : : ; 4

b1 D fz D 0; t D 0g

b2 D fz D 0; t D1g

(28)

Notice that points of L2 and L3 must also satisfy t D 0, while points of L1 and L4

must satisfy t D1. These components are mapped to �� f0g �R2 , where � is a
trivalent graph (see Figure 5(a)), consisting of the 5 edges �j WD fı.Lj / and 2 vertices
vj WD fı.bj /, j D 1; 2, where

�0 D f.0;�t; t/ j 0< t < ıg; �1 D f.0; t; 0/ j t > 0g;

�2 D f.0;�t � ı; ı/ j t > 0g; �3 D f.0;�ı; t C ı/ j t > 0g;

�4 D f0; 0;�t/ j t > 0g; v1 D .0;�ı; ı/; v2 D .0; 0; 0/:

(29)

The closure of L0 is the exceptional P1 of the resolution and �0 is the bounded edge
of �. Observe that when ı D 0, we obtain a torus fibration on the conifold X0 , where
the bounded edge fı.L0/ collapses to a point and � becomes a 4–valent graph.

Lemma 5.2 For ı D 0, f0W X0 ! R3 has a Lagrangian section �0 defined on a
neighbourhood of the vertex of �.
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x2

(a) (b)

x1x1

x3x3

x2

Figure 5: Positive fibrations: resolution (a), smoothing (b)

Proof Choose a smooth point p on the fibre over the vertex of �. Let .x;y/ D
.x1;x2;x2;y1;y2;y3/ be Darboux coordinates around this point such that p D .0; 0/

and f0 is given by .x;y/ 7! x . Then �0.x/D .x; 0/ is a Lagrangian section.

Proposition 5.3 For all ı � 0, the map fı is a Lagrangian 3–torus fibration. The
singular fibres are of generic-singular type over edges �j . When ı > 0 the fibres over
the two vertices are of positive type. Moreover, given a generic fibre Xb , there is a
basis e1; e2; e3 of H1.Xb;Z/ and simple closed loops j around the edges �j , such
that the monodromy Tj around these loops is given by the matrices

T1 D T2 D

0@ 1 0 1

0 1 0

0 0 1

1A ; T3 D T4 D

0@ 1 0 0

0 1 1

0 0 1

1A ; T0 D T �1
2 T �1

3 :

Proof To show that fı is Lagrangian, one can either verify it directly or observe that
it is a fibration of the type described in Goldstein [6, Theorem A] (see also [7, The-
orem 1.2]). In fact the T 2 action (24) is Hamiltonian. Also, fı is a special case
of the special Lagrangian fibrations on open Calabi–Yau toric varieties constructed
in [7, Theorem 2.4]. The fact that the fibres over the edges are of generic-singular type
and the fibres over trivalent vertices are of positive type is a consequence of [8, Propo-
sitions 3.3, 2.9 and Example 2.10] (where positive fibres are called of type .1; 2/).

We now compute the monodromy. Consider the following circles in T 2 : G1Df�1D1g,
G2 D f�2 D 1g and G3 D f�1�

�1
2
D 1g. Then G1 is the stabiliser of points over L1

and L2 , G2 is the stabiliser of points over L3 and L4 and G3 is the stabiliser of
points over L0 . For a generic fibre Xb choose a basis e1; e2; e3 of H1.Xb;Z/ such
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that e1 and e2 are represented by G1 and G2 respectively, with a suitable orientation,
and e3 is the fibre over b of xf . Then monodromy around the edges �j (with suitable
choices of loops j ) is given by the matrices Tj (see Section 3.4). Notice that the
loops must satisfy 13 D 42 , which matches the equation T1T3 D T4T2 .

Example 5.4 (Smoothing) We now define the fibration on Y� . Let f W Y�!R3 be
defined by

(30) f .z/D .log jz1z2C z3z4� 1j; jz1j
2
� jz2j

2; jz3j
2
� jz4j

2/;

where the last two function components give the moment map of the torus action (24).
The critical locus of f consists of the set of points of Y� where the torus action has
nontrivial stabiliser. This set has two connected components:

C1 D fz1 D z2 D 0; z3z4 D��g ŠC�; C2 D fz3 D z4 D 0; z1z2 D �g ŠC�

Therefore, the discriminant locus of f has two disjoint components:

f .C1/D fx1 D log j1C �j;x2 D 0g ŠR; f .C2/D fx1 D log j1� �j;x3 D 0g ŠR

depicted in Figure 5(b). The singular fibres are all of generic type. We have that f is La-
grangian. This follows from [6, Theorem A], since the T 2 action is Hamiltonian. This
fibration is also one of the examples discussed as an application of [7, Proposition 3.3].

The vanishing cycle (17) is mapped by f to the set

fx1 D log j�� 2jz3j
2
� 1j;x2 D x3 D 0; 0� jz3j

2
� �g

which is a segment joining the components of the discriminant locus.

5.2 Local collars and the positive fibration

In this section we prove some technical lemmas on the geometry of the “local collars”
defined in Section 4.4 in terms of the positive fibration f0W X0!R3 . We will need
these results in the proof of Theorem 7.3. We have the following:

Lemma 5.5 Let f0W X0! R3 be as in (25) with ı D 0 and Q0 � X0 be as in (21).
Let

S D fx1 D 0;x2 � 0;x3 � 0g �R3:

Then @S ��, f .Q0/D S and there exists a map � W S !X0 such that

(i) f0 ı � D IdS and �.@S/� Critf0 ,

(ii) Q0 D T 2 � �.S/.
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Proof The fact that f .Q0/D S is obvious. Moreover @S D�1 [�3 [ fv1g. It is
clear that the fibres of f0jQ0

are orbits of the T 2 action (24). Now define

(31) �.0;x2;x3/D .
p

x2; 0;
p

x3; 0/:

We have that � satisfies (i) and (ii).

The following lemma is used to define a perturbation of the local collar Q0 .

Lemma 5.6 Let f0W X0 ! R3 be as in (25) with ı D 0, S as in Lemma 5.5 and
�0W R

3!X0 a section. For any open neighbourhood U of �, there exists a smaller
neighbourhood V � U of � and a map � 0W S !X0 such that f0 ı �

0 D IdS and

(i) T 2 � � 0.S \V /DQ0\f
�1

0
.V /,

(ii) T 2 � � 0.S \ .R3�U //D T 2 � �0.S \ .R
3�U //.

Proof We work over the quotient with respect to the T 2 action. We have X0=T 2 is
isomorphic to .C/� �R2 with projection � given in (26). Then f D xf ı� , where xf
is defined in (27). Notice that �.Critf0/ D f�1g ��. Let � W S ! X0 be the map
found in Lemma 5.5 (formula (31)), then the quotient of � is x� D � ı � given by

x�.0;x2;x3/D .�1;x2;x3/:

On the other hand the quotient of �0 will be a section x�0 D � ı �0 of xf , which
restricted to S has the form

x�0jS .0;x2;x3/D .e
2� i�.x2;x3/;x2;x3/

for some smooth real function � . Now let V � U be an open neighbourhood of
� such that there exists a smooth function �W S ! Œ0; 1� satisfying �jS\V D 1 and
�jS\.R3�U / D 0. Define the following function on S :

z� D��C .1� �/�

Then we interpolate x� and x�0 by defining

x� 0.0;x2;x3/D .e
2�iz�.x2;x3/;x2;x3/:

So that x� 0jS\V D x� jS\V and x� 0jS\.R3�U / D x�0jS\.R3�U / . Any lift � 0W S ! X0

of x� 0 will satisfy the lemma.
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We also have a similar result for the other local collar P0 defined in (22). Since we are
only interested in P0 near the singular point of X0 , it will be convenient to redefine P0

with an additional condition as follows:

(32) P0 D f.z; z; r; s/ 2C �C �R�0 �R�0 j rs D jzj2; rs < 1
2
g

We consider the S1 action on X0 given by

(33) � � .z1; z2; z3; z4/D .�z1; �
�1z2; z3; z4/:

Observe that the fixed points of this action are the components L3 and L4 of Critf0

mapped over �3 and �4 .

Lemma 5.7 Let f0W X0!R3 be as in (25) with ı D 0 and let P0 �X0 be the local
collar defined in (32). Let

S D fx1 � 0;x2 D 0g �R3:

Then @S ��, f .P0/D S and there exists a map {� W S !X0 such that

(i) f0 ı {� D IdS and {�.@S/� Critf0 ,

(ii) P0 D S1 � {�.S/,

where S1 acts by (33).

Proof Clearly @S D�3[�4[fv1g. Moreover

f0jP0
.z; z; r; s/D .log j2rs� 1j; 0; r2

� s2/:

A calculation shows that f0.P0/ D S and that the fibres of f0jP0
are orbits of the

S1 –action. Notice also that P0 \Critf0 is mapped one to one to @S . This implies
the existence of {� satisfying the lemma.

Also in this case we will need the following:

Lemma 5.8 Let f0W X0 ! R3 be as in (25) with ı D 0, S as in Lemma 5.7 and
�0W R

3!X0 a section. For any open neighbourhood U of �, there exists a smaller
neighbourhood V � U of � and a map {� 0W S !X0 such that f0 ı {�

0 D IdS and

(i) S1 � {� 0.S \V /D P0\f
�1

0
.V /,

(ii) S1 � {� 0.S \ .R3�U //D S1 � �0.S \ .R
3�U //.
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Proof The idea is similar to the proof of Lemma 5.6. We consider the quotient X0=S
1

with projection � W X0! X0=S
1 and quotient fibration xf W X0=S

1! R3 such that
f0 D

xf ı � . Let S0 D S � @S and consider the restriction of xf to S0 , ie the map
xf jS0
W xf �1.S0/ ! S0 . This defines a trivial T 2 –bundle over S0 , ie xf �1.S0/ Š

S0 � T 2 and xf jS0
is the projection. We have the quotient maps {x� D � ı {� and

x�0 D � ı �0 . For all x 2 S0 , we may write

{x�.x/D .x; Œ�.x/�/ and x�0.x/D .x; Œ�0.x/�/;

where � and �0 are smooth maps with values in R2 and Œ � � denotes the class in
T 2 DR2=Z2 . We may find an open neighbourhood V � U of � and a smooth real
valued bump function �W S !R as in the proof of Lemma 5.6 and define

z� D �� C .1� �/�0:

Then set {x� 0.x/D .x; Œz�.x/�/. Any lift of {� 0W S!X0 of {x� 0 will satisfy the lemma.

5.3 Negative fibrations

Consider the S1 –action on X defined as

(34) � � .z1; z2; z3; z4; t/D .�z1; �
�1z2; z3; z4; � t/

for � 2 S1 . Ignoring t , the same formula also gives an S1 action on X0 and Y� .

Example 5.9 (Resolution) We give another fibration on X and X0 . The moment
map of the action (34) on X is

�D jz1j
2
� jz2j

2
C

ı

1Cjt j2
:

The map fıW X !R3 defined by

(35) fı.z; t/D .�.z; t/; log jz3� 1j; log jz4� 1j/

gives a 3–torus fibration. Notice that X=S1 can be identified with R� .C�/2 via the
map

(36) �.z; t/D .�; z3� 1; z4� 1/

and fı is the composition of � with the regular T 2 fibration xf W R� .C�/2! R3

given by

(37) xf .u1;u2;x/D .x; log ju1j; log ju2j/:
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Therefore Crit.fı/ is the set of fixed points of the S1 action. It consists of the two
components

(38) Di D fzj D 0; j ¤ ig; i D 3; 4:

Notice that points of D3 must also satisfy t D 0 and points of D4 must satisfy t D1.
Thus D3 and D4 are mapped by fı onto the discriminant locus �, which is the union
of two lines as in Figure 6(a):

�3 WD fı.D3/D fx1 D ı;x3 D 0g ŠR

�4 WD fı.D4/D fx1 D 0;x2 D 0g ŠR
(39)

x3

x1

x2



(a) (b) (c)

Figure 6: Negative fibrations: resolution (a), smoothing (b) and (c)

Notice that when ı D 0, f0 is well defined on the local conifold X0 . In this case D3

and D4 intersect at the origin. Moreover the lines (39) come together to form a 4–valent
vertex. A direct calculation shows that the exceptional P1 is mapped to the segment
fx2 D x3 D 0; 0� x1 � ıg joining the components of (39). The fibres over p in the
interior of this segment intersect the exceptional curve along an S1 , which collapses
to a point as p approaches either component of the discriminant. Observe that this
fibration is not Lagrangian with respect to the symplectic form (18). We will discuss
how to obtain Lagrangian fibrations of this model in Section 6.5.

Lemma 5.10 For all ı � 0, fı has a smooth section �0 .

Proof Let †j D �.Dj /, then

†3 D f.ı;u;�1/ 2R� .C�/2g; †4 D f.0;�1;u/ 2R� .C�/2g:

Let x�0W R
3!R�.C�/2 be a section of xf which avoids †3[†4 , eg �0.x1;x2;x3/D

.x1; e
x2 ; ex3/. Then a lift �0W R

3!X of x�0 exists since the S1 –action on X restricts
to a trivial S1 –bundle over x�0.R

3/.
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Notice that f �1
ı
.R3 � �/ has the structure of a T 3 –fibre bundle E=ƒ which is

compatible with the structure of T 2 –fibre bundle xf W R� .C�/2!R3 on the quotient
with respect to the S1 action, ie � restricted to a fibre of fı is a linear map onto the
fibre of xf . The section �0 corresponds to the zero section.

Proposition 5.11 For all ı � 0, all singular fibres of fı are of generic type, except
the one over the vertex of � when ı D 0. Given a generic point b 2R3 , there exists a
basis e1; e2; e3 of H1.Xb;Z/ with respect to which the monodromy Tj around �j is
given by the matrices

(40) T3 D

0@ 1 0 1

0 1 0

0 0 1

1A ; T4 D

0@ 1 1 0

0 1 0

0 0 1

1A :
In particular, when ı D 0, two opposite legs of � emanating from its vertex have the
same monodromy.

Proof Let †3 and †4 be as in the previous lemma and †D†3[†4 . Then † is a
smooth surface, except when ıD 0, in which case †3 and †4 intersect at the singular
point of X0 . When ı > 0, fı satisfies properties (a)–(d) given at the beginning of
Section 3.1, with Y DR�.C�/2 . In the case ıD 0, this remains true if we remove the
singular point of X0 . One can see that the S1 action satisfies property (c) as follows.
On the open set ft ¤1g � X , one has z1 D tz3 and z4 D tz2 . Therefore, on this
open set, .z2; z3; t/ define coordinates with respect to which the S1 action (34) can be
written as � � .z2; z3; t/D .�

�1z2; z3; � t/. Hence it satisfies property (c). Similarly on
the open set ft ¤ 0g.

Observe that a T 2 fibre of xf over a point b 2 �4 , intersects †4 along the circle
f.0;�1;u/ j juj D constg. Denote by e2 the class of this circle inside H1. xf

�1.b/;Z/.
Similarly xf �1.b/, with b 2�3 , intersects †3 in the circle f.ı;u;�1/ j juj D constg.
Denote by e3 the class of this circle in H1. xf

�1.b/;Z/. Since xf is a trivial T 2

fibration, we can identify e2; e3 with a basis of H1. xf
�1.b/;Z/ for any b 2R3 . This

shows that fı , in a neighbourhood of �j , has the structure described in Section 3.2.
Thus all fibres are of generic-singular type. This holds also when ı D 0, except for the
fibre over the vertex of �.

Moreover, for a generic point b 2 R3 , we can choose as basis of H1.Xb;Z/, the
cycles e1; e2; e3 , where e2 and e3 are the chosen cycles in xf �1.b/ and e1 is a fibre
of the S1 –bundle. Thus, it follows from Section 3.2, that with respect to this basis, the
monodromies around �3 and �4 are as stated.
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Example 5.12 (Smoothing) We describe a fibration on Y� . The moment map for the
action (34) on Y� is �D jz1j

2� jz2j
2 . The map f W Y�!R3 is

(41) f .z/D .jz1j
2
� jz2j

2; log jz3� 1j; log jz4� 1j/:

It is a smooth torus fibration but it is not Lagrangian with respect to the standard
symplectic form. The critical locus is

Crit.f /D fz1 D z2 D 0; z3z4 D��g

and the discriminant AD f .Crit.f // has the shape of a 4–legged amoeba contained
in fx1 D 0g �R3 as in Figure 6(b). Specifically, if Log.u; v/D .log juj; log jvj/ and

(42) V D f.u; v/ 2 .C�/2 j .uC 1/.vC 1/C � D 0g;

then AD Log.V /. A construction of a Lagrangian fibration on the smoothing will be
explained in Section 6.5.

A topologically equivalent description of this fibration, when � > 0, can be constructed
as follows. Let �D�0[ � � � [�4[fv1g[ fv2g, where the �j and the vk are as in
(29). Then, as we did in Section 3.3, we can construct a surface † in Y D T 2 �R3

such that xf .†/D�, in such a way that for a point b 2�j we have that xf �1.b/\†

is a circle in T 2 representing the class e2 if j D 3 or 4, the class e3 if j D 1 or 2

and the class �e2� e3 if j D 0. Then, one constructs X with an S1 action satisfying
properties (a)–(c) at the beginning of Section 3.1 (using [8, Proposition 2.5]). The
fibration f W X !R3 is defined as in property (d). If e1 denotes the cycle of the S1

action, with respect to the basis e1; e2; e3 of H1.Xb;Z/, monodromy around the
legs �j is given by the matrices

T1 D T2 D

0@ 1 0 1

0 1 0

0 0 1

1A ; T3 D T4 D

0@ 1 1 0

0 1 0

0 0 1

1A ; T0 D T �1
2 T �1

3 :

In this case X is homeomorphic to a dense open subset of the smoothing Y� . This is
discussed in [7, Section 4]. Notice that in this case � has two vertices over which the
fibration is of negative type.

Remark 5.13 Observe that the torus fibrations on the resolution given in Example 5.1
and the one on the smoothing given in Example 5.12 are topologically “mirror dual” in
the sense of [8], since monodromies are dual to each other. The same is true for the
torus fibrations on the smoothing given in Example 5.4 and on the resolution given
in Example 5.9. This was already observed by Ruan [27] and Gross in [7, Section 4].
In the next section we will show that this is true at the level of “tropical manifolds”,
where mirror duality is meant in the sense of discrete Legendre transform.
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5.4 Local collars and the negative fibration

We now prove some technical lemmas which describe the local collars of Section 4.4 in
terms of the negative fibration on X0 . These will be used in the proof of Theorem 7.3.

Lemma 5.14 Let f0W X0 ! R3 be as in (35) and let Q0 � X0 be the local collar
defined in (21). Let

S D fx1 � 0;x3 D 0g:

Then @S D �3 , where �3 is as in (39) and f0.Q0/ D S . Moreover, for every
b 2 S � @S , f �1

0
.b/\Q0 is an affine 2–dimensional subtorus of f �1

0
.b/, parallel to

the monodromy invariant T 2 with respect to monodromy around �3 .

Proof Obviously @S D�3 and a simple calculation shows that f0.Q0/DS . Observe
that Q0 is invariant with respect to the S1 action (34). Let xQ0D�.Q0/, ie the quotient
of Q0 by S1 , then

xQ0 D f.t;u;�1/ j t � 0;u 2C�g:

Clearly, for all b D .b1; b2; 0/ 2 S , we have

xf �1.b/\ xQ0 D f.b1; e
b2Ci� ;�1/ j � 2Rg

which is an affine subcircle of xf �1.b/. As we have seen in the proof of Proposition 5.11,
the homology class of this circle together with the homology class of the orbit of the S1

action spans the monodromy invariant T 2 with respect to monodromy around �3 .
This proves the lemma.

We now treat the case of the local collar P0 defined in (22). Since we only need
to understand P0 in a neighbourhood of the singular point of X0 it is convenient to
redefine P0 as

(43) P0 D f.z; z; r; s/ 2C �C �R�0 �R�0 j rs D jzj2; r < 1; s < 1g:

Then we have the following:

Lemma 5.15 Let f0W X0!R3 be as in (35) with ıD 0 and let P0 �X0 be the local
collar defined in (43). Let

S D fx1 D 0;x2 � 0;x3 � 0g:

Then @S ��, f .P0/D S and there exists a map {� W S !X0 such that

(i) f0 ı {� D IdS and {�.@S/� Critf0 ,
(ii) P0 D S1 � {�.S/,

where S1 acts by (34).
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Proof Clearly @S D .�3 \ fx2 � 0g/\ .�4 \ fx3 � 0g/, where �3 and �4 are as
in (39). A calculation show that f .P0/ D S . Moreover the fibres of f0jP0

are the
orbits of the S1 action (34). Observe also that P0\Critf0 maps one to one onto @S .
Define

{�.0;x2;x3/D
�p
.1� ex2/.1� ex3/;

p
.1� ex2/.1� ex3/; 1� ex2 ; 1� ex3

�
:

Then {� satisfies the stated properties.

We also have the following analogue of Lemmas 5.6 and 5.8.

Lemma 5.16 Let f0W X0! R3 be as in (35) with ı D 0, S as in Lemma 5.15 and
�0W R

3!X0 a section. For any open neighbourhood U of �, there exists a smaller
neighbourhood V � U of � and a map {� 0W S !X0 such that f0 ı {�

0 D IdS and

(i) S1 � {� 0.S \V /D P0\f
�1

0
.V /,

(ii) S1 � {� 0.S \ .R3�U //D S1 � �0.S \ .R
3�U //.

The proof is identical to the proofs of Lemmas 5.6 and 5.8, so we leave the details to
the reader.

6 Affine geometry and the local tropical conifold

Here we construct two tropical models of the conifold X0 , which we call positive
and negative nodes. We show that these two models are mirror to each other in the
sense of the discrete Legendre transform. Moreover they give rise to torus fibrations
on the conifold X0 which are topologically equivalent to the ones in Examples 5.1
and 5.9 respectively. Then we introduce tropical resolutions and smoothings and show
that discrete Legendre transform exchanges smoothings with resolutions. Finally we
explain how to obtain Lagrangian 3–torus fibrations from these tropical manifolds.

6.1 Tropical nodes

Example 6.1 (Negative node) Let

(44) T D Convf.0; 0; 0/; .1; 0; 0/; .0; 1; 0/; .0; 0; 1/; .1; 0; 1/; .0; 1; 1/g

be a triangular prism in R3 . Construct a tropical manifold . {B; {P; {�/ as follows. Take
two copies of T and choose in each copy a square face, then label the vertices of
these square faces by v1; v2; v3 and v4 as in Figure 7. Now glue the two copies of T

Geometry & Topology, Volume 18 (2014)



Conifold transitions via affine geometry and mirror symmetry 1805

along the chosen faces by the unique affine linear transformation which matches the
vertices with the same label. This is {B . We denote by {e the common face of the two
copies of T . In R3 , let e1; e2; e3 denote the standard basis and let .x;y; z/ be the
coordinates. Consider the fan † in R3 whose 3–dimensional cones are two adjacent
octants, ie Cone.e1; e2; e3/, and Cone.e1;�e2; e3/. At each vertex vj choose a fan
structure which maps the tangent wedge at vj of the first copy of T to the first octant
and the tangent wedge of the second copy of T to the second octant (see Figure 7).
Then the discriminant locus � is the union of the segments joining the barycenter of {e
to the barycenters of its edges.

v4

v2

v3

v1

v3v4

v2
v1

e1

e1
e1

e1

e2

e2

�e2

�e2

e3 e3

e3 e3

Figure 7: Match the vertices with the same labels. The arrows show the fan
structure at the vertices. The (red) dashed lines denote � .

We can easily compute the monodromy of T {B0 . In fact, start at the vertex v4 and
choose the vectors fe1; e2; e3g mentioned above as a basis for Tv4

{B0 . Then consider
a path which goes into the first prism, passes through v3 and then comes back to v4

going into the second prism. Monodromy along this path is given by the matrix0@ 1 1 0

0 1 0

0 0 1

1A :
Similarly, consider a path which goes into the first prism, passes through v1 and then
comes back to v4 going into the second prism. Monodromy along this path is given by
the matrix 0@ 1 0 0

0 1 0

0 1 1

1A :
Observe that Tv4

{B0 has a 2–dimensional subspace, spanned by e1 and e3 which is
invariant with respect to both monodromy transformations. Now define the strictly
convex MPL function {� so that on the fan † it is given by

{�.x;y; z/D

�
y y � 0;

0 y � 0:
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If we apply the discrete Legendre transform to . {B; {P; {�/, we obtain the second tropical
model for the conifold.

Example 6.2 (Positive node) The triple .B;P; �/, mirror to . {B; {P; {�/ above, can be
described as follows. The manifold B can be identified with R2 � Œ0; 1�. If we denote
by Qj � R2 , j D 1; 2; 3; 4 the four closed quadrants of R2 , ie Cone..1; 0/; .0; 1//,
Cone..�1; 0/; .0; 1//, Cone..�1; 0/; .0;�1// and Cone..1; 0/; .0;�1// respectively,
then the 3–dimensional polytopes of P are Lj DQj � Œ0; 1�. In fact Lj is dual to the
vertex vj in {P . Here we ignore the polytopes dual to vertices not contained in {e . The
two vertices p0 D .0; 0; 0/ and p1 D .0; 0; 1/ are dual to the two triangular prisms.
Consider the fan † whose 3–dimensional cones are

Cone.e1;�e1� e2; e3/; Cone.e1; e2; e3/;

Cone.e1; e2;�e3/; Cone.e1;�e1� e2;�e3/:

The fan structure at p0 maps tangent wedges of the polytopes L1;L2;L3 and L4

respectively to the first, second, third and fourth cone above. Similarly at p1 , the
tangent wedges to L1;L2;L3 and L4 are mapped respectively to the first, fourth,
third and second cone above; see Figure 8.

p1

e2
e1

�e1� e2

e1 e2

�e1� e2

p0

e3

�e3

e3

�e3

Figure 8: The tropical positive node: the arrows indicate the fan structure.

One easily checks that the discriminant locus is given by

�D f.t; 0; 1
2
/; t 2Rg[ f.0; t; 1

2
/; t 2Rg;

with a 4–valent vertex in .0; 0; 1
2
/. We can compute monodromy at p0 , where we

choose the basis fe1; e2; e3g of Tp0
B0 . Consider a path which goes from p0 into L2 ,

reaches p1 and then comes back to p0 passing into L1 . Monodromy along this path
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is given by the matrix 0@ 1 1 0

0 1 0

0 0 1

1A :
Similarly, consider a path which goes into L2 , reaches p1 and comes back to p0

passing into L3 . Monodromy along this path is given by the matrix0@ 1 0 1

0 1 0

0 0 1

1A :
Observe that Tp0

B0 has a 1–dimensional subspace, spanned by e1 which is invariant
with respect to both monodromy transformations.

We can now give a more general notion of “tropical conifold,” which is a tropical
manifold where � may have 4–valent vertices (called nodes) modelled on the previous
examples.

Definition 6.3 We say that a 3–dimensional tropical manifold .B;P; �/ is a tropical
conifold if � has vertices of valency 3 or 4. The 3–valent vertices are either of
positive or negative type (see Examples 2.4 and 2.3). Every 4–valent vertex has a
neighbourhood which is integral affine isomorphic to a neighbourhood of the vertex of
� either in Example 6.1 or 6.2. In the former case the vertex is called a negative node,
in the latter a positive node.

Of course, the discrete Legendre transform of a tropical conifold is also a tropical
conifold.

6.2 Local tropical resolutions and smoothings

We will describe two procedures which we claim should be the tropical analogue to
resolving or smoothing a node. In fact each procedure uses discrete Legendre transform
so that while it resolves the positive node (resp. negative) it smooths the mirror negative
one (resp. positive).

Let us describe the local resolution of a positive node, which simultaneously smoothes
the negative one. A positive node is contained in the interior of an edge e of P which
belongs to four 3–dimensional faces. In the mirror . {B; {P; {�/, the face dual to e is the
square face {e . To “smooth” the negative node we proceed as follows. Subdivide {e
in two triangles by adding a diagonal. Then we need to find a suitable polyhedral
decomposition {P 0 which is a refinement of {P and which induces the chosen subdivision
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of {e . Next, we need an MPL function {�0 which is strictly convex with respect {P 0 . The
given subdivision of {e also implies a change in the discriminant locus (see Figure 9),
where the 4–valent vertex splits in two 3–valent ones. This is a smoothing of the
negative node. The resolution of the positive node is the discrete Legendre transform
of the smoothing of the node. The process is illustrated in Figure 9.

Figure 9: The resolution of a positive node: the horizontal arrows are the
discrete Legendre transform, the vertical one is the smoothing of the negative
node.

Similarly we can describe the resolution of a negative node with the simultaneous
smoothing of its mirror positive one (Figure 10). To smooth a positive node, first
subdivide the edge ` where it lies in two new edges. Then we need a refinement P 0 of the
decomposition P which induces the given subdivision of the edge. This decomposition
has an extra vertex, hence we need to define a suitable fan structure at this vertex.
Next, we find a new MPL function �0 which is strictly convex with respect to P 0 . The
choice of the fan structure at the new vertex must have the effect of separating the
two lines of discriminant locus. This is a smoothing of a positive node. The discrete
Legendre transform gives us the resolution of the negative node. Note that the two
lines of the discriminant locus in the negative node are separated by adding in between
a new 3–dimensional polytope, mirror to the new vertex.

In the following paragraphs we apply this idea in detail.
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Figure 10: The resolution of a negative node

6.3 Resolving a positive node and smoothing its mirror

In Example 6.1, let us subdivide {e by taking the diagonal from v2 to v4 (see Figure 7).
Assume that v2 and v4 correspond respectively to the vertices .0; 1; 1/ and .1; 0; 0/ in
the first copy of T and to .1; 0; 0/ and .0; 1; 1/ in the second copy. Now subdivide T

in the two polytopes

Convf.0; 0; 0/; .1; 0; 0/; .0; 1; 0/; .0; 1; 1/g;

Convf.0; 0; 0/; .0; 0; 1/; .1; 0; 1/; .1; 0; 0/; .0; 1; 1/g

and consider this subdivision for each copy of T in {P . This gives the new decom-
position {P 0 . Let us now find the new function {� . The decomposition induces also a
decomposition of the fans at the vertices. For instance, at v2 the new fan is †0

2
, whose

3–dimensional cones are

Cone.e1; e2; e2C e3; e1C e3/; Cone.e2C e3; e1C e3; e3/

Cone.e1;�e2; e1C e3/; Cone.e3;�e2; e1C e3/:

The first two subdivide the first octant and the other two subdivide the second one.
Similarly at v4 , the fan is †0

4
whose 3–dimensional cones are

Cone.e1; e2; e1C e3/; Cone.e1C e3; e2; e3/;

Cone.e1; e1� e2; e1C e3/; Cone.e3;�e2; e1� e2; e1C e3/:
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Now define an MPL function z� as follows. It is the zero function on the fan at v1 .
At v2 it is the unique piecewise linear function which is 1 on e3 and zero on all other
generators of one-dimensional cones. Similarly at v4 define z� to be 1 on e1 and zero
on all other generators. At v3 , z� is �1 on e2 and zero on all other generators. Now
define the new function {�0 by

{�0 D 2{�C z�:

We can verify that {�0 is well defined and strictly convex. The new discriminant locus �
has two negative vertices. Applying the discrete Legendre transform to . {B; {P 0; {�0/
gives a new tropical manifold .B0;P 0; �0/ which we define to be the resolution of a
positive node (Figure 11).

�1

e1

e2

e3

e1
e2 �e2�e3

�e1�e3

q4

q1

q1

q4

q4

q1

q2

q3 q3

q2

q2

q3

�2

�4 �3

Figure 11

There are 4 polytopes in P 0 dual to the vertices v1; : : : ; v4 of {P 0 , which we denote
respectively by �1; : : : ; �4 . We also denote by j̀k the 2–dimensional face in P 0 dual
to the edge from vj to vk , if such an edge exists. The polytopes �2 and �4 are integral
affine isomorphic to the subset in R3 given by the following inequalities:8̂̂̂̂

<̂
ˆ̂̂:
�2� y � 0

x � �1

z � 0

xC z � 0

x�y � 0

They intersect along the face `24 . We label the vertices of `24 by q1; q2; q3 and q4

as in Figure 11. The edge from q1 to q4 is the intersection between �1 , �2 and �4 .
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The polytopes �1 and �3 are as in the picture. Now consider the fan †1 in R3 whose
3–dimensional cones are

Cone.e1; e2; e3/; Cone.e1; e3;�e2� e3/; Cone.e1; e2;�e1� e3;�e2� e3/:

Notice that †1 is part of the normal fan of the two polytopes in {P 0 containing v1; v2

and v4 . Thus the fan structure at q1 maps the tangent wedge to �1 , �2 and �4 to the
first, second and third cone respectively. Here e1 and e2 span a 2–dimensional cone
corresponding to `14 , e1 and e3 span a cone corresponding to `12 and e1 and �e2�e3

span a cone corresponding to `24 . Similarly, at the vertex q4 the fan structure maps the
tangent wedge to �1 , �4 and �2 to the first, second and third cones of †1 respectively.
The tangent wedges to `14 , `12 and `24 correspond respectively to Cone.e1; e3/,
Cone.e1; e2/ and Cone.e1;�e2� e3/. Let †2 be the fan whose 3–dimensional cones
are

Cone.e1; e2; e3/; Cone.e1; e3;�e1� e2� e3/; Cone.e1; e2;�e1� e2� e3/:

Notice that †2 is part of the normal fan of the two polytopes in {P 0 containing v3; v2

and v4 . Hence at the vertices q2 and q3 the fan structure maps the tangent wedges
to �3 , �4 and �2 respectively to the first, second and third cone of †2 . The tangent
wedges to `23 , `34 and `24 correspond respectively to Cone.e1; e2/, Cone.e1; e3/

and Cone.e1;�e1� e2� e3/.

It can be verified that � has two 3–valent positive vertices (see Figure 11), one on
the barycenter of the edge from q1 to q4 and the other on the barycenter of the edge
from q2 to q3 .

6.4 Resolving a negative node and smoothing its mirror

To smooth the positive node in Example 6.2, consider the following refinement P 0
of P . First rescale every polytope Lj by a factor of two, so that Lj D Qj � Œ0; 2�.
Now subdivide each Lj in the polytopes L�j DQj � Œ0; 1� and LCj DQj � Œ1; 2�. We
have thus added a new vertex which we denote by q . We now define the fan structure
at q . Let †q be the fan in R3 whose maximal cones are the eight octants, namely
Cone.˙e1;˙e2;˙e3/. The fan structure at q then identifies the eight tangent wedges
of L˙j , j D 1; : : : ; 4 with these octants in the obvious way. The fan structures at p0

and p1 is unchanged. The new discriminant locus consists of two disjoint lines of
generic-singularities: �� D f.0; t; 1

2
/; t 2 Rg and �C D f.t; 0; 3

2
/; t 2 Rg. Assume

that in the fan †q , the vector e1 is tangent to the edge from q to p1 . On †q consider
the piecewise linear function z� which takes the value 1 on e1 and the value 0 on all
other generators of 1–dimensional cones of †q . We have that

�0 D �C z�
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is well defined and strictly convex. This structure defines the tropical smoothing of
the positive node. A resolution of the negative node is given by the discrete Legendre
transform . {B; {P 0/. This can be described as follows.

vC
1

vC
2

vC4vC
3

vC
2

vC
1

vC
4vC

3

v�
1

v�4 v�
3

v�
1 v�

2

v�2

v�3 v�4

Figure 12

Take two copies of the triangular prism T , defined in (44) and a cube QD Œ0; 1�3�R3 .
Then glue the two copies of T onto two opposite faces of Q as in Figure 12, by matching
vertices which have the same label. This is B with its polyhedral decomposition {P 0 .
The cube Q is obviously mirror to the new vertex q in P 0 . The fan structure at a
vertex v˙j is quite simple. In fact consider the fan † whose 3–dimensional cones are
Cone.e1; e2; e3/ and Cone.e1;�e2; e3/. Then the fan structure identifies the tangent
wedges of T and Q at v˙j with these two octants. It is easy to see that � consists of
two disjoint lines as in Figure 12. This is the tropical resolution of a negative node.

There is also an alternative version of the smoothing of a positive node which proceeds
as follows. Rescale all polytopes Lj by a factor of 4 and subdivide each Lj in
the polytopes L�j D Qj � Œ0; 1� and LCj D Qj � Œ1; 4�. Consider the fan whose
three-dimensional cones are

Cone.e1; e1� e2; e3� e1/; Cone.e1; e2; e3� e1/; Cone.e1; e2;�e3/;

Cone.e1; e1� e2;�e3/; Cone.�e1; e1� e2; e3� e1/; Cone.�e1; e2; e3� e1/;

Cone.�e1; e2;�e3/; Cone.�e1; e1� e2;�e3/:

Now define the fan structure at the new vertex q D .0; 0; 1/ in such a way that the
tangent wedges at q to the polytopes L�

1
, L�

2
, L�

3
and L�

4
are mapped respectively

to the first, second, third and fourth cone, while the tangent wedges to LC
1

, LC
2

, LC
3

and LC
4

are mapped respectively to the fifth, sixth, seventh and eighth cone. It can be
checked that with such a choice of subdivision and fan structure at q , the discriminant
consists of the two components �� D f.t; 0; 1

2
/; t 2Rg and �C D f.0; t; 5

2
/; t 2Rg.

In particular, compared with the previous choices, the two lines of � have now moved
in the opposite way. We leave it to the reader to determine a suitable strictly convex
MPL function.
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The two possibilities for the smoothing should correspond, in the mirror, to the two
choices of small resolution.

6.5 Tropical nodes and Lagrangian fibrations

In Examples 5.1 and 5.4 we have described Lagrangian fibrations over (dense open
subsets of) the local conifold X0 , of a small resolution X and of a smoothing Y� . It is
known that Lagrangian fibrations induce an affine structure on the base of the fibration
via action coordinates.

Proposition 6.4 The affine structure induced on R3�� by the Lagrangian fibrations
on the conifold X0 , on its small resolution X and on its smoothing Y� given respec-
tively in Examples 5.1 and 5.4, is affine isomorphic (locally around the bounded edge
of �) respectively to the affine structures given in Example 6.2 for the tropical positive
node, in Section 6.3 for its resolution and in Section 6.4 for its smoothing.

Proof We only do the case of the fibration on X0 , the other cases are similar. First of
all observe that the inverse transpose of the monodromy matrices in Example 6.2 are
conjugate to the corresponding monodromy matrices of the fibration over X0 found
in Proposition 5.3. Therefore the fibration over R3�� gives a torus bundle which is
topologically isomorphic to XB0

D T �B0=ƒ
� .

In [4, Proposition 4.11] we showed that the affine structure induced by a Lagrangian
fibration over a positive vertex (Section 3.4) is affine isomorphic to the affine structure
of Example 2.4. The same ideas works here, so we only sketch the proof and refer to
the above result for details. We work on the fibration over the conifold f0W X0!R3 ,
the other cases are analogous. Observe that the symplectic form ! on X0 is exact, so
let � be a primitive of ! . We think the base R3 as R�R2 and we view � as inside
the second factor (see (29) with ı D 0). Let

U DR3
� .R�0 ��/:

Since f0 is a topologically trivial 3–torus bundle over U , H1.f
�1

0
.U /;Z/ŠZ3 . Fix

a basis e1; e2; e3 of H1.f
�1

0
.U /;Z/ with respect to which monodromy around � is

given by the matrices in Proposition 5.3. Action coordinates AW U !R3 are defined
by

A.b/D

�
�

Z
e1

�jf �1
0
.b/;

Z
e2

�jf �1
0
.b/;

Z
e3

�jf �1
0
.b/

�
:

This is well-defined since � restricted to f �1
0
.b/ is closed.

Now let B be the affine manifold with singularities in Example 6.2 and denote by �B

its discriminant locus. The proof of the proposition consists in showing that A defines
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a homeomorphism of pairs between .R3; �/ and .B; �B/, or at least between suitable
neighbourhoods of the vertices of � and �B . Moreover A gives an isomorphism
of affine structures between R3 �� and B0 D B ��B . First of all, we need to
show that A extends continuously to R3 . Let A D .A1;A2;A3/. Since the last
two components of f0 are moment maps of the T 2 action and e2 and e3 have been
chosen as the cycles generated by this action, it is easy to show that A2.b/D b2 and
A3.b/D b3 . So the last two components of A extend to R3 . Let us show that also A1

extends. One can give another description of A1 as follows. Fix xb 2 U and assume
that the primitive � has been chosen so that A1.xb/D 0. Now choose some smooth
path �W Œ0; 1�! U between xb and b and construct a cylinder S inside f �1

0
.U / such

that f0.S/D �.Œ0; 1�/ and S \ f �1
0
.�.t// is a circle representing the class e1 . Then

we have

A1.b/D

Z
S

!:

Using the monodromy of the fibration one can show that A1 extends to R3�� and
then it is also easy to see that it extends to R3 (see [4] for details.) To show that A

is a homeomorphism it is enough to show that for fixed values of b2 and b3 the map
t 7! A1.t; b2; b3/ is strictly monotone. Observe that since .b2; b3/ are values of the
moment map �D .�1; �2/, we can form the reduced symplectic manifold X.b2;b3/ .
One can see that X.b2;b3/ŠC� with some symplectic form !red . One can compute !red

explicitly and check that, although it may have poles at irregular points of the action, it
will always be positive definite with respect to the standard orientation on C� . The
Lagrangian fibration induced on C� by f0 is xf W u 7! log juj. Given t2 > t1 , we have

A1.t2; b2; b3/�A1.t1; b2; b3/D

Z
xf �1Œt1;t2�

!red > 0:

This shows that A is a homeomorphism onto its image. It remains to show that A

maps � to �B . In fact this may not be true, but as discussed at length in [4], one may
slightly deform �B inside the monodromy invariant planes, eg one may redefine �B

to be A.�/. The fact that A is an isomorphism of affine structures between R3��

and B0 is a calculation which we leave to the reader.

This shows that we can think of X0 , X and Y� as a (partial) symplectic compactifica-
tion XB of the symplectic manifold XB0

D T �B0=ƒ
� constructed from the relevant

tropical manifold .B;P; �/ (see diagram (2)).

In the case of Examples 5.9 and 5.12, the given fibrations on X0 , X and Y� are not
Lagrangian. In any case we have the following:
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Proposition 6.5 Let B be a neighbourhood of the vertex of the discriminant locus
in Example 6.1, together with the induced affine structure with singularities and de-
note by �B the discriminant locus. Let f0W X0 ! R3 be the 3–torus fibration on
the conifold given in Example 5.9. Then there exists an homeomorphism of pairs
�W .B; �B/! .R3; �/ and a commuting diagram

(45)

XB0

� � //

��

X0

��

B0
� � // R3;

where XB0
D T �B0=ƒ

� . The upper horizontal map is an isomorphism of T 3 –torus
bundles onto its image and the vertical maps are the torus fibrations.

Proof Observe that the monodromy of the torus bundle XB0
!B0 is given by inverse

transpose of the monodromy matrices described in Example 6.1. These are easily seen
to be conjugate to the monodromy matrices found in Proposition 5.11. Hence the
proposition follows, since monodromy is the only topological invariant of these torus
bundles.

Similarly one has that the smooth fibres of the torus fibration on the resolution X (rep.
smoothing Y� ) given in Example 5.9 (resp. Example 5.12) form a torus bundle isomor-
phic to XB0

! B0 obtained from the resolution of the negative node of Section 6.4
(resp. the smoothing of the negative node of Section 6.3). Therefore, at a topological
level, we can consider X0 , X and Y� as the (partial) compactification of XB0

.

Remark 6.6 Notice that the resolution and smoothing of the tropical negative node
have symplectic compactifications, which exist by the result of [4], but we do not know
if what we obtain is symplectomorphic to X or Y� , although we strongly believe this
is true.

Corollary 6.7 Given a tropical conifold .B;P/ as in Definition 6.3, there exists a
topological conifold XB with a conifold singularity for every node of B and a 3–torus
fibration f W XB!B satisfying the commuting diagram (2), where the upper horizontal
arrow is an open (topological) embedding. Moreover f has a section �0W B!X .

Proof Using the homeomorphisms in the last two propositions we can glue local mod-
els applying the same arguments as in Gross’ topological compactification; see [8, Theo-
rem 2.1]. To be more precise, first we glue local models over edges and over positive and
negative trivalent vertices. This is done topologically as in Gross [8] or symplectically
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by matching the affine structures induced by the Lagrangian fibrations (as in [4]). Next,
over positive and negative nodes, we glue the positive and negative fibrations over the
conifold. One has to be careful that on overlaps, the gluing over the edges emanating
from the node matches with the gluing of the local models over the edges. Positive
fibrations on the local conifold can be glued symplectically over positive nodes of B

by matching the affine structures as in Proposition 6.4. On the overlaps, the fibration
over the edges in the positive fibration can be matched (symplectically) to the local
models over the edges following [4, Section 4.4]. The negative fibration over a negative
node can be glued topologically using Proposition 6.5. In this case, on the overlaps, the
fibration over the edges in the negative fibration can be matched to the local models over
the edges using the same argument in the proof of Theorem 2.1 of [8]. The section �0

is obtained by matching the zero section of XB0
with some fixed sections on the local

models.

We also believe one can put a symplectic structure on XB , extending the one on XB0
,

which makes XB into a symplectic conifold in the sense of [30]. In fact this is true if B

does not have negative nodes. We will call XB the conifold associated to B . Notice
also that, as in the smooth case (see Theorem 3.3), we could consider {XB0

D TB0=ƒ.
Then {XB0

can be compactified to form {XB . Over positive (resp. negative) nodes we
glue the negative (resp. positive) fibration of the local conifold and similarly with
positive and negative vertices. We still have that {XB is homeomorphic to X {B .

It is also reasonable to expect that the Gross–Siebert theorem [13], which associates
to a tropical manifold a toric degeneration of Calabi–Yau manifolds, can be extended
to tropical conifolds. Namely, one can expect that given a tropical conifold, we can
reconstruct a toric degeneration whose fibres are Calabi–Yau manifolds with nodes.

7 Good relations

We now start addressing the question of when a given set of nodes in a tropical
conifold B can be simultaneously resolved/smoothed. We introduce the notion of a
tropical 2–cycle and we prove that if a set of nodes is contained in a tropical 2–cycle,
then both the vanishing cycles inside a smoothing of XB and the exceptional curves
inside a small resolution of the mirror X {B satisfy a good relation. Hence, morally,
the obstructions to the symplectic resolution of XB and to the complex smoothing
of the mirror X {B vanish simultaneously. In this section we assume that the tropical
conifold B is oriented. In particular this implies that monodromy has values in Sl.Z; n/
and that the fibres of XB have a canonical orientation.
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7.1 Tropical 2–cycles

Recall that the tropical hyperplane V n�1 in Rn is the set of points in Rn where the
following piecewise linear function fails to be smooth:

f .x1; : : : ;xn/Dmaxfx1; : : : ;xn; 0g

The point .0; : : : ; 0/ is called the vertex of the tropical hyperplane. We call V 1 and V 2

the tropical line and plane respectively.

Our definition of a tropical 2–cycle resembles the definition of a tropical surface such
as in [23], but it has a more topological flavour. A tropical 2–cycle will be a map from
a certain space S to B plus some other data.

Definition 7.1 A tropical domain S is a compact Hausdorff topological space such that
for every p 2 S there is a neighbourhood U of p and a homeomorphism �W .U;p/!

.W; q/, where .W; q/ can be one of the following pairs (see Figure 13):

(a) q 2R2 and W is a neighbourhood of q (p is called a smooth point of S )

(b) q is the vertex of a tropical plane V 2 and W is a neighbourhood of q in V 2

(p is called an interior vertex of S )

(c) q D .0; 0; 0/ 2 V 1�R and W is a neighbourhood of q in V 1�R (p is called
an interior edge point)

(d) W is a neighbourhood of q D .0; 0/ in the closed half plane fx � 0g �R2 (p
is called a smooth boundary point)

(e) qD .0; 0; 0/2V 1�R�0 and W is a neighbourhood of q (p is called a boundary
vertex)

We call points of type (a), (b) and (c) interior points. Points of type (d) and (e) form
the boundary of S , which we denote by @S . We also denote the set of smooth
interior points by Ssm . We will also assume that all connected components of Ssm

are orientable and we fix an orientation. The union of all interior edge points forms
a 1–dimensional manifold, whose connected components we call the interior edges
of S .

We can now give the definition of a tropical 2–cycle:
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a
b

c

d

e

Figure 13: A tropical domain with smooth points (a), interior vertex (b),
interior edge points (c), smooth boundary points (d) and boundary vertices (e)

Definition 7.2 Let .B;P; �/ be a tropical conifold. A tropical 2–cycle in B is the
data .S; j ; v/, where:

(i) S is a tropical domain and j W .S; @S/! .B; �/ is an embedding.

(ii) j�1.�/D @S [ fq1; : : : ; qr g, where q1; : : : ; qr are smooth points and j .qk/

is an edge point of � for all k D 1; : : : ; r ; we denote

S0 D Ssm�fq1; : : : ; qr g:

(iii) v is a primitive, integral, parallel vector field defined along j .S0/.

(iv) j .p/ is a negative vertex of � if and only if p is a boundary vertex of S .

Notice that v induces a rank-2 subvector bundle F of T �B0 over j .S0/, where

Fq D ker v.q/D f˛ 2 T �qB0 j ˛.v.q//D 0g

for every q 2 j .S0/. The above properties imply that if j .p/ is a node or a positive
vertex, then p is a smooth boundary point. We may consider @S as a graph where
boundary vertices are trivalent vertices and p is a bivalent vertex if and only if j .p/

is a node or a positive vertex. Then edges of @S are mapped to a subset of the edges
of �. We require in addition the following properties (see also Figure 14):

(v) If j .p/ is a negative node then the two edges of @S emanating from p are
mapped to edges of � as in Figure 14(4).

(vi) If j .p/ is a positive node then the two edges of @S emanating from p are
mapped to edges of � as in Figure 14(3).

(vii) Let p 2 S be an interior edge point lying on the edge e . Choose an orientation
of e . Given a small connected neighbourhood U of p , j .U \ Ssm/ has 3

connected components. The orientation of e and the orientation of B induce
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a cyclic ordering of these components. Denote by v1; v2; v3 the vector field v
restricted to these components, indexed according to the ordering. Then the vk

span a rank-two subspace of TpB and they satisfy the balancing condition

�1v1C �2v2C �3v3 D 0;

where �k D 1 if the chosen orientation of e coincides with the orientation
induced from the orientation of the k th component of j .U \Ssm/, otherwise
�k D�1.

(viii) If e is an edge of @S and U a small neighbourhood of j .e/, then for all points
q 2 j .Ssm/\U , Fq coincides with the monodromy invariant subspace with
respect to monodromy around j .e/.

(ix) If qk is one of the smooth points such that j .qk/ is an edge point of �, then
monodromy of F around j .qk/ is conjugate to the matrix�

1 0

1 1

�
:

(x) If p is an interior vertex point, and U is a small connected neighbourhood of p ,
then j .U \Ssm/ has 6 connected components. Let vk , k D 1; : : : ; 6 denote
the restrictions of v to these components. Then the vk span the whole of TpB .

j .S/
j .S/

j .S/

j .S/

(1) (2)

(4)(3)

Figure 14: How j .S/ interacts with �: (1) at a positive vertex, (2) at a
negative vertex, (3) at a positive node, (4) at a negative node.

Notice that the embedding j is topological, ie the components of Ssm do not have
to be mapped as affine subspaces of B . In particular the boundary of S can also be
mapped to a “curved” � (see Section 2.9 and the comments following Theorem 3.2).
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Given a tropical conifold .B;P; �/, in Corollary 6.7 we constructed the topological
conifold XB . Strictly speaking, we do not have general symplectic or complex recon-
struction theorems for conifolds, nevertheless we have topological smoothings and
resolutions of XB and therefore we can speak about vanishing cycles and exceptional
curves and it makes sense to ask whether these satisfy good relations. We will prove
the following:

Theorem 7.3 Let .B;P; �/ be an oriented tropical conifold and . {B; {P; {�/ its Le-
gendre dual. Let .S; j ; v/ be a tropical 2–cycle and p1; : : : ;pk be the points of S

which are mapped to nodes of B . Then the corresponding vanishing cycles L1; : : : ;Lk

in a smoothing of XB and exceptional curves C1; : : : ;Ck in a small resolution of X {B
satisfy a good relation.

We want to construct a (topological) 4–dimensional submanifold with boundary zS
inside a smoothing of XB and a 3–dimensional (topological) submanifold with bound-
ary zS� inside a resolution of X {B such that @ zS D

Sk
iD1 Li and @ zS� D

Sk
iD1 Ci .

Equivalently (see Section 4.4) we may think of zS as a 4–dimensional submanifold
without boundary inside XB , containing the nodes, such that in local coordinates near
the nodes, zS coincides with the local collar Q0 as in (21). Similarly zS� may be
thought as a subset of X {B , which, away from the nodes, is a submanifold and in local
coordinates near the nodes, it coincides with the local collar P0 as in (22). The idea
is as follows. Consider the rank-two bundle F defined by v . Since v is integral, we
have that F=.F\ƒ�/ defines a 2–torus bundle over j .S0/. For every ˛ 2Fq , denote
by Œ˛� its class inside Fq=.Fq \ƒ

�/. Given a section � W B0!XB0
, define

(46) zS0 D f.q; �.q/C Œ˛�/ j q 2 j .S0/ and ˛ 2 Fqg:

Essentially zS0 is F=.F \ƒ�/ translated by � . We want to prove that for a suitable
choice of � , zS0 can be compactified to form the submanifold zS such that f . zS/Dj .S/.

The construction of zS� is similar. First of all, as observed in Theorem 3.3, instead of
working in X {B we can equivalently work in {XB , which is formed using the tangent
bundle of B0 . We denote by {f W {XB!B the fibration. The vector field v generates a
1–dimensional subbundle of TB0 along j .S0/, which we call V . Then V=V \ƒ is
an S1 bundle over j .S0/. We form zS�

0
by translating V=V \ƒ by a suitable section

{� W B! {XB . The set zS� is constructed as a suitable compactification of zS�
0

.

As we will see in the construction, � and {� should not be genuine sections. They
should be maps from j .S/ to XB (resp. {XB ) which are sections restricted to j .S0/

but such that �.j .@S//� Critf (resp. {�.j .@S//� Crit {f ). We will first define local
models in some detail. We point out that in the local constructions of � and {� there

Geometry & Topology, Volume 18 (2014)



Conifold transitions via affine geometry and mirror symmetry 1821

is a certain amount of flexibility. For instance we can use partitions of unity to glue
together various pieces of zS and zS� so that they match up when we construct XB as
in Corollary 6.7. In particular it will be convenient to construct � and {� so that they
coincide with the zero section �0 away from j .@S/.

7.2 Local models at smooth boundary points

We discuss local models for zS and zS� near an edge e � j .@S/ of �. In this case,
the local model for both torus fibrations f and {f is the generic singular fibration
of Section 3.2. Condition (viii) of Definition 7.2 implies that v and F are uniquely
determined in a neighbourhood of e , so that the lifts zS0 and zS�

0
only depend on the

choice of sections.

Notice that v is the unique (up to sign) primitive integral vector such that the mon-
odromy T around the edge e satisfies T .w/ �w D mv for all w 2 TbB0 , where
m 2 Z depends on w . It then follows from the first part of Section 3.2, that for every
b 2 B0 near e , the circle Vb=Vb \ƒ must be an orbit of the S1 action (the cycle
called e1 ). Suppose that U is a small neighbourhood of e and let {� W j .S/\U ! {XB

be a section such that

(47) {�.e/� Crit {f :

Then we define

(48) zS�\ {f �1.U / WD S1
� {�.j .S/\U /:

By construction zS� � . zS� \ Crit {f / coincides (inside {f �1.U /) with zS�
0

. We can
assume that U \ j .S/Š e � Œ0; 1/. Then, since the S1 orbits collapse to points on
Crit {f , it is easy to see that zS� \ {f �1.U /Š e �D , where D � C is the open unit
disc. Thus zS�\ {f �1.U / is a 3–manifold.

In a similar way we can construct zS \ f �1.U /. The orbits of the T 2 action (7)
give the monodromy invariant T 2 with respect to monodromy around e (see (4)).
Thus Fb=Fb \ƒ

� must coincide with such an orbit. In particular, given a section
� W j .S/\U !XB such that

(49) �.e/� Critf;

then we define

(50) zS \f �1.U / WD T 2
� �.j .S/\U /:

By construction zS �Critf coincides (inside f �1.U /) with zS0 . It can be seen that
zS \f �1.U /Š e�S1 �D , and thus it is a 4–manifold.
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Notice that the flexibility in the construction of � and {� stands in the fact that we only
require them to satisfy (49) and (47) respectively. We have the following:

Lemma 7.4 Let f W X!U be a generic-singular fibration as constructed in Section 3.2,
where U D D � .0; 1/ and � D f0g � .0; 1/ � U is the discriminant locus. Let
S D Œ0; 1/� .0; 1/ and let j W S ! U be an embedding such that j .@S/D�. Given
any section �0W U !X of f and a neighbourhood V �U of �, there exists a section
� W j .S/!X such that

(i) �.j .@S//� Critf ,

(ii) S1 � � jj.S/\.U�V / D S1 � �0jj.S/\.U�V / ,

(iii) T 2 � � jj.S/\.U�V / D T 2 � �0jj.S/\.U�V / .

Proof We can work on the quotient by the S1 action Y DX=S1 D U �T 2 . We let
� W X ! Y be the quotient map and xf W Y !U the projection. We defined f D xf ı� .
Let x�0 D � ı � be the quotient section of xf . By the construction of Section 3.2, we
have that †D�.Critf / is a “cylinder” such that for all b 2�, xf �1.b/\†� T 2 is a
circle representing some fixed homology class e3 . Decompose T 2 as S1�S1 in such
a way that S1 � f1g represents the class e3 . We can choose coordinates on S1 �S1

in such a way that �0.b/D .1; 1/ 2 S1�S1 for all b 2U . We can also describe † as
follows. There exists a function � W �! S1 such that

(51) †D ffbg �S1
� f�.b/g 2��S1

�S1
j b 2�g:

Notice that since the image of �0 must be disjoint from Critf , we must have that �
maps into S1�f1g. In particular we can write

(52) �.0; t/D e2�i�.t/;

where b D .0; t/ 2 f0g � .0; 1/D� and � is a smooth function with values in .0; 1/.
Inside S , we can find an open neighbourhood W � j�1.V / of @S and a real valued,
smooth function �W S ! Œ0; 1� such that �jW D 1 and �jj�1.U�V / D 0. Now let
.s; t/ 2 Œ0; 1/� .0; 1/ be the coordinates on S and define

z�.s; t/D �.s; t/�.j .0; t//;

where � is as in (52). Now define

x�.j .s; t//D .j .s; t/; 1; e2�iz�.s;t// 2 j .S/�S1
�S1:

By construction we have that x� jj.S/\.U�V / D x�0jj.S/\.U�V / . Therefore any lift
� W j .S/!X of x� will satisfy (i) and (ii). Since S1 orbits are contained in the T 2

orbits, also (iii) must hold.
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Using � and {� as in the above lemma ensures that if we define zS� and zS as in (48)
and (50), then, away from a neighbourhood V of the edge e , they are defined using a
fixed genuine section �0 . We will need the following result in the proof of Theorem 7.3.

Lemma 7.5 Let f W X ! U , U , �, S and j W S ! U be as in Lemma 7.4. Let
� W j .S/!X be a section such that �.j .@S//� Critf . Given U 0 DD � .0; �/� U

with � > 0 and another section � 0W j .S/\U 0!X such that � 0.j .@S/\U 0/�Critf ,
then, for any 0 < �0 < � , there exists a section � 00W j .S/ ! X , which satisfies
� 00.j .@S//� Critf such that

� 00jj.S/\.D�.0;�0// D �
0
jj.S/\.D�.0;�0//;

� 00jj.S/\.U�U 0/ D � jj.S/\.U�U 0/:

Proof We use the same setup of Lemma 7.4, in particular we work on the S1 –quotient
Y D U � T 2 where T 2 D S1 � S1 and �.Critf / D † is described as in (51). In
the coordinates .s; t/ 2 Œ0; 1/ � .0; 1/ D S , the quotient sections x� and x� 0 may be
described as

x�.j .s; t//D .j .s; t/; e2�i�1.s;t/; e2� i�2.s;t//;

x� 0.j .s; t//D .j .s; t/; e2�i� 0
1
.s;t/; e2� i� 0

2
.s;t//;

where �j and � 0j are smooth functions. Now let �W S ! Œ0; 1� be a smooth function
such that �jS\j�1.D�.0;�0// D 1 and �jS\j�1.U�U 0/ D 0 and define

z�j D ��
0
j C .1� �/�j ; j D 1; 2:

We still have z�2.0; t/D �.j .0; t//. Define

x� 00.j .s; t//D .j .s; t/; e2� iz�1.s;t/; e2�iz�2.s;t//:

By construction, any lift � 00W j .S/!X of x� 00 will satisfy the lemma.

7.3 Local models at the nodes

Let us now discuss the local models for zS and zS� at a positive node of B . The local
model for the fibration f W XB ! B over a positive node is given in equation (25)
(with ı D 0) over the local conifold X0 . Lemma 5.5 shows that the local collar Q0

defined in (21), is a compactification zS of zS0 for some suitable choice of section � .
In fact, given S as in the lemma and j the inclusion, then j .S/ is compatible with
condition (vi) of Definition 7.2. Moreover the conclusions (i) and (ii) of the lemma
show that near the edges of �, Q0 is constructed as zS in (50), with � satisfying
(49). Observe also that the assumption that in a neighbourhood of a positive node S
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(or j .S/) is as in the lemma is not restrictive. In fact, given that condition (vi) of
Definition 7.2 must hold, the symmetry of the local model ensures that we can assume
that @S coincides with the two edges as in the lemma, moreover we can always
locally isotope S so that it coincides precisely with the definition of S given in the
lemma. Finally, Lemma 5.6 says that one can find � , satisfying (49), such that zS
coincides with Q0 over a neighbourhood V of � (point (i)), but is defined using a
fixed section �0 outside a larger neighbourhood U (point (ii)).

Let us now construct zS� . Since we are working with {XB (ie on the quotient of the
tangent bundle of B by ƒ), the local model for the fibration {f in a neighbourhood of a
positive node of B is the negative fibration on X0 defined in Example 5.9, with ı D 0.
Lemma 5.15 says that the local collar P0 defined in (43) is a compactification zS�

of zS�
0

defined using a suitable section {� . In fact, given S as in the lemma (and j

the inclusion) j .S/ is compatible with point (vi) of Definition 7.2. Moreover the
conclusions (i) and (ii) of the lemma show that near the edges of �, P0 is constructed
as zS� in (48). The assumption that S is as in the lemma is not restrictive, in fact we
can always locally isotope S into that position. Lemma 5.16 ensures that {� can be
chosen so that zS� coincides with P0 over a neighbourhood V of � (point (i)) and is
defined using a fixed section �0 outside a neighbourhood U (point (ii)).

We now define zS and zS� near a negative node of B . To construct zS we work with
the negative fibration fı (with ı D 0) over X0 given in formula (35). Lemma 5.14
ensures that the local collar Q0 is a compactification zS of zS0 defined using a suitable
section � . First of all, the definition of S in the lemma satisfies condition (v) of
Definition 7.2. Moreover the lemma says that Q0� .Q0\Critf / coincides with zS0

defined in (46), for some suitable section. In fact it concludes that the intersection
of Q0 with a smooth fibre coincides with the translation by a section of the monodromy
invariant T 2 around the edges which bound S , ie it coincides with a translation of Fq

as prescribed by condition (viii) of Definition 7.2. Again, assuming that S is locally as
in the lemma is not restrictive. An argument analogous to Lemmas 5.6 and 5.8 can be
used to construct zS so that it coincides with Q0 over a neighbourhood V of � and is
defined by a fixed section �0 outside a neighbourhood U .

Let us now discuss zS� . We need to use the positive fibration (25). In this case
Lemma 5.7 tells us that the local collar P0 (as defined in (32)) is a compactification zS�

of zS�
0

defined by a suitable section {� . First of all S , as defined in the lemma, and
the inclusion j satisfy point (v) of Definition 7.2. Moreover point (ii) of the lemma
says that P0 is defined as zS� in (48). Again the assumption that locally S is as in
the lemma is not restrictive. Lemma 5.8 tells us that we can construct zS so that it
coincides with P0 over a neighbourhood V of � and is defined by a fixed section �0

outside a neighbourhood U .
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7.4 Local models at positive vertices

The models of zS and zS� at a positive vertex of B are similar to previous ones. For the
definition of zS we use, as the local model for the fibration f W X !R3 , the positive
fibration given explicitly in Section 3.4. In this case, we remarked that f is invariant
with respect to the T 2 action (11) and the T 2 orbits coincide with the monodromy
invariant T 2 .

Let us describe the local models for zS and zS� explicitly for this case.

Lemma 7.6 Let f W X !R3 be the positive fibration described in Section 3.4. Let

zS D fz1 D 0g �X and S D fx1 D 0;x2 � 0;x3 � 0g �R3:

Then, @S ��, f . zS/D S and there exists a map � W S !X such that

(i) f ı � D IdS and �.@S/� Critf ,

(ii) zS D T 2 � �.S/.

Proof Clearly @S coincides with two edges of � emanating from the vertex. A simple
computation shows f . zS/DS . The fibres of f

j zS
over S are precisely orbits of the T 2

action. Consider the quotient X=T 2ŠC��R�R, with projection � given in (12) and
the quotient fibration xf given in (13), such that f D xf ı� . Then �. zS/ coincides with
the image of the section x� W S!C��R�R of xf given by x�.0;x2;x3/D .�1;x2;x3/.
Any lift � W S !X of x� will satisfy (i) and (ii).

This lemma explicitly describes, at a positive vertex, a compactification zS of zS0

defined by a suitable section � . Clearly zS is a 4–dimensional submanifold. Notice
also that the definition of S is compatible with Definition 7.2. Also, the assumption
that S is as in the lemma is not restrictive.

Let us now describe zS� inside {XB . In this case we must use the negative fibration
of Section 3.3 (see Theorem 3.3). It is convenient to use the topological description
given at the beginning of Section 3.3. Recall that we have xY D T 2 �R2 and that we
have the “pair of pants” †� xY which is mapped onto � by the projection onto R2 .
Let .x2;x3/ be the coordinates on R2 . Then we consider Y D xY �R and we denote
by x1 the extra R–coordinate. We identify xY with fx1 D 0g. We then consider the
space X with the S1 action, whose quotient is Y and whose fixed point set is †. Now
let S D fx1D 0;x2 � 0;x3 � 0g. Then @S �� and this definition is compatible with
Definition 7.2. Now consider a section {� W S ! Y such that {�.@S/�†. We define
zS� D ��1.{�.S//, where � W X ! Y is the quotient by the S1 action. It can be easily
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seen that in this case zS� is homeomorphic to C�R, since the orbits of the S1 action
collapse to points over †.

Again, zS and zS� can be perturbed so that, away from a neighbourhood of @S , they
coincide with zS0 and zS�

0
constructed from a fixed section (see Lemmas 5.6 and 7.4).

Moreover the specific definitions of S are not restrictive, since one can assume that up
to local isotopy, near a positive vertex, S is as given.

7.5 Local models at negative vertices

We now describe models for zS and zS� near a boundary vertex p2S (Definition 7.1(v)).
Then, j .p/ is a negative vertex of B (point (iv) of Definition 7.2). To construct zS
inside XB , we use as the local model for the fibration, the negative fibration of
Section 3.3. To construct zS� inside {XB we use the positive fibration of Section 3.4.

Let us start describing zS . Let us consider the topological description of the negative
fibration f W X !R3 given at the beginning of Section 3.3. Then let

j .S/D��R�0 �R3:

Since � is homeomorphic to a tropical line V 1 , we have that .0; 0; 0/ 2 j .S/ is the
image of a boundary vertex (here we assume that .0; 0/ is the vertex of �). Now recall
that †� xY is the “pair of pants” which is mapped by xf to � and that xf �1.�i/ is the
cylinder S1 ��i , where S1 � T 2 represents the class �e3 , �e2 and e2C e3 when
i D 1; 2; 3 respectively. If � W X ! Y is the S1 quotient defining the space X , then
we define the lift zS �X of j .S/ to be

zS D ��1.†�R�0/:

We have that zS is homeomorphic to †�D , where D is a disc in R2 . Now consider
fj zS W zS ! j .S/ and let q 2 �1 �R>0 � j .S/. Notice that fj zS�1.q/ D S1 � S1 ,
where the first factor is a circle representing �e3 and the second factor is a circle
representing e1 , the class of an orbit of the S1 –action. These two cycles are precisely
the monodromy invariant ones with respect to monodromy around �1 . Similarly
we can argue about fj zS�1.q/ D S1 � S1 , with q 2 �j �R>0 and j D 2; 3. Thus
fj zS
�1.�i �R�0/ coincides with the construction of zS done in the case of the smooth

boundary points in �i . Notice moreover that for all q2�i�R>0 , which are sufficiently
away from �i � f0g, we can assume that fj zS�1.q/ Š T 2 is parallel to the unique
linear subspace of f �1.q/ which is monodromy invariant with respect to monodromy
around �i . We can also perturb zS , so that away from j .@S/ it coincides with a lift
zS0 constructed from a fixed section. Observe that the points on .0; 0/�R>0 � j .S/
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are images of interior edge points of S . A more detailed description of zS over such
points will be given in Section 7.7.

Let us now construct zS� , where we use the positive fibration f W X ! R3 as the
model fibration. In this case, f is T 2 invariant with respect to the action (11). We let
j .S/DR�0�� and let {� W j .S/!X be a section such that j .@S/�Critf . Notice
that j .@S/D� and Critf consists of the union of the sets Lj Dfzi D 0; i ¤ j g, with
j D 1; 2; 3. Each of these is mapped to one of the legs of �. Denote by �j the leg
of � which is the image of Lj . For each j D 1; 2; 3, denote by Gj ŠS1 the stabiliser
of the points in Lj with respect to the T 2 action. For instance, G3 D f�1�2 D 1g.
Now define

zS�j D
[

p2R�0��j

Gj � {�.p/:

It can be checked that, since the orbits of Gj collapse to single points on Lj , we have
zS�j ŠD�R�0 . Where D�f0g corresponds to the union of the Gj –orbits of points {�.p/
for all p 2 R�0 � f.0; 0/g. Observe that there is a suitable choice of orientations of
the Gj such that, in H1.T

2;Z/, the classes ŒGj � satisfy ŒG1�C ŒG2�C ŒG3�D 0. Let
Q� T 2 be a 2–chain such that @QD ŒG1�C ŒG2�C ŒG3� and consider the following
closed subset of X :

C D
[

p2R�0�f.0;0/g

Q � {�.p/

Define
zS� D C [ zS�1 [

zS�2 [
zS�3 :

Observe that Q can be chosen so that zS� is a submanifold homeomorphic to R3 . This
can be seen as follows. One can choose Q homeomorphic to a standard 2–simplex
with the vertices identified (see Figure 15(a)). Then, since the T 2 orbit of {�.0; 0; 0/
collapses to a point, we have that C is homeomorphic to the cone of Q, ie to R�0�Q

after the subset f0g �Q is collapsed to a single point. One can then see that after
attaching to this space the sets zS�j we obtain something homeomorphic to R3 .

7.6 Pair of pants

Before engaging in the proof of Theorem 7.3 we generalise the latter argument and give
a slightly more general “pair of pants” construction. Let v1; v2; v3 2R2 be primitive
integral vectors, spanning R2 , such that

(53) v1C v2C v3 D 0:

Given T 2 D R2=Z2 , for each j D 1; 2; 3 the subspace Rvj covers a subgroup
Gj Š S1 � T 2 , with orientation induced by vj . Notice that since all vj are primitive,
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under the canonical isomorphism Z2 ŠH1.T
2;Z/, the subgroups Gj represent the

class vj . Let V 1 �R2 be the tropical line as defined at the beginning of Section 7.1
and denote by p D .0; 0/ its vertex and by D1 , D2 and D3 the three edges of V 1

emanating from p , indexed in anticlockwise order. Let X D R2 �T 2 and consider
the following subset of X :

†0 D

3[
jD1

Dj �Gj

We have the following:

Lemma 7.7 There exists Q� fpg �T 2 such that

†D†0[Q

is an embedded piecewise smooth submanifold of X .

(a) (b)

Figure 15: The region Q (dark): (a) when fv1; v2g is a Z2 –basis, (b) when
it is not.

Proof Notice that (53) implies there exists a chain complex Q such that @QD
S

j Gj .
We want to show that Q can be chosen so that † is a (topological) manifold. If fv1; v2g

forms a Z2 –basis, choose Q to be the triangle pictured in Figure 15(a). Then † is a
piecewise smooth submanifold of X . Notice that in principle one could also choose a
different triangle, ie the other half of the square, but in this case its orientation should
be opposite to the one induced by the choice of ordering of the vj . In particular the
ordering allows a canonical choice of Q.

Let us now discuss the case where fv1; v2g does not form a Z2 –basis. In Figure 15
we have pictured the choice of Q for v1 D .1; 0/ and v2 D .2; 5/. Notice that in this
case v3 D .�3;�5/ is also primitive, as required in the hypothesis. Suppose that v1

and v2 generate a sublattice of Z2 of index m. Let N be the lattice generated by
yv1Dm�1v1 and yv2Dm�1v2 and let T 0DR2=N . Since Z2�N , the identity of R2

induces a covering � W T 2! T 0 of degree m. Let yv3 D�yv1� yv2 and let G0j � T 0 be
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the group covered by Ryvj . Then, since fyv1; yv2g forms a basis of N , we can choose
the triangle Q0 such that @Q0 D

S
j G0j as above. Now let QD ��1.Q0/. It can be

checked that @QD
S

j Gj . Moreover †, defined with this choice of Q, is a piecewise
smooth submanifold of X .

7.7 Proof of Theorem 7.3

In the previous discussion we have shown how the zero sections of f and {f can be
perturbed in a neighbourhood of j .@S/ so that zS and zS� can be constructed over
points on j .@S/. Now we need to show how zS and zS� can be defined over the
remaining points of j .S/. We have the following cases: p is one of the smooth points
q1; : : : ; qr in condition (ii) of Definition 7.2; p is an interior vertex of S ; p is an
interior edge point of S . In all these cases we will define a suitable closed subset Qp

(resp. Q�p ) of the fibre f �1.j .p// (resp. {f �1.j .p//) such that

zS0[

�[
p

Qp

� �
resp. zS�0 [

�[
p

Q�p

��
is a submanifold.

Step 1: Constructing zS� over interior edge points Let us take an interior edge e � S

and a point p 2 e . We apply point (vii) of Definition 7.2. Given some orientation
on e and a small connected neighbourhood U of p in S , j .U \ Ssm/ has three
connected components indexed with a unique cyclic order. Moreover, we have the
vector fields v1; v2 and v3 satisfying the balancing equation. In the following argument
we assume that all �k in the balancing equation are 1. In the general case replace vj
with �vj whenever �j D�1.

Let us first define Q�p . Inside {f �1.j .p// D Tj.p/B=ƒj.p/ , the span of the vec-
tors v1; v2 generates a two torus T and we may consider its subgroups Gk , kD 1; 2; 3,
generated by the vk . Notice that if we parallel transport Gk to a point q of the k th

component of j .U \ Ssm/, then Gk D Vq=Vq \ ƒq . The balancing condition is
equivalent to saying that in H1.T;Z

2/ we have ŒG1�C ŒG2�C ŒG3� D 0, where the
cycles are oriented by the vk . Then we may define Q�p � T as in the proof of
Lemma 7.7. Notice that the choice of Q�p is canonical, given by the ordering of the vk .
Notice also that it is independent of the choice of orientation of the edge e . In fact,
changing the orientation of e inverts the cyclic ordering but also changes all the signs
�k appearing in the balancing condition and hence the orientations of the Gk . It is easy
to see that attaching Q�p to zS�

0
for all interior edge points p , produces a submanifold.

Step 2: Construct zS over interior edge points Now define Qp . Inside f �1.j .p//

we have a triple of 2–tori T1 , T2 and T3 defined by v1 , v2 and v3 via the bundle F .
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Recall that both fibres {f �1.j .p// and f �1.j .p// are canonically oriented. Let
w 2 T �pB be primitive and integral, such that w.v1/D w.v2/D 0. The sign of w can
be chosen by imposing that hw; vi> 0 for all v 2 Tj.p/B such that fv1; v2; vg forms
an oriented R–basis of Tj.p/B . Notice that Rw=Zw D T1\T2\T3 . The vector vk

and the orientation on f �1.j .p// induce an orientation on Tk . Now let T be the
two torus obtained as the quotient of f �1.j .p// by Rw=Zw . Then Tk is mapped
to a subgroup Gk � T , with an orientation. Again, the balancing condition implies
ŒG1�C ŒG2�C ŒG3� D 0 in H1.T;Z

2/. Then, as in the proof of Lemma 7.7, we can
construct Q0p such that @Q0p D

S
k Gk . Define Qp � f

�1.j .p// to be the preimage
of Q0p via the quotient map f �1.j .p//! T . Then clearly @Qp D

S
k Tk . It is not

difficult to show that attaching Qp to zS0 for all interior edge points p we obtain a
submanifold.

Step 3: The constructions over interior edge points and over boundary vertices match
on overlaps In case the interior edge ends on a boundary vertex, we should show that
the constructions in Steps 1 and 2 match with the construction in a neighbourhood of a
boundary vertex given in Section 7.5. In the case of zS� , by parallel transport, the vector
fields v1 and v2 can be defined on a neighbourhood U of the edge e and they generate
a T 2 action on {f �1.U /. The torus T mentioned in Step 1 is an orbit of this T 2

action. If e ends on a boundary vertex it can be seen that this T 2 action coincides with
the one used to construct zS� in Section 7.5. Moreover, also the subgroups Gk , defined
above, coincide with subgroups Gk in Section 7.5. Therefore the two constructions
coincide.

In the case of zS , the two constructions do not strictly coincide, but they are isotopic.
Therefore they can be made to coincide by using this isotopy along the edge e . First
of all observe that the three tori T1;T2 and T3 near a boundary vertex must coincide
with the monodromy invariant ones around each leg of �. In Section 7.5 we had
j .S/ D � �R�0 and interior edge points of j .S/ are of type q D .0; 0; t/ where
.0; 0/ is the vertex of � and t > 0. Also we had zS D ��1.†�R�0/, where † is the
“pair of pants” constructed in Section 3.3. The main difference between the construction
of zS given above and the one given in Section 7.5 is precisely in the way we defined †.
In fact, in Section 3.3 the legs of † are glued together so that, if b0 is the vertex
of �, then †\ .T 2 � fb0g/ is a “figure eight.” We could make a different choice,
eg we could assume that the three circles, forming the legs of †, come together at
T 2 � fb0g as linear subspaces. Then we could assume that †\ .T 2 � fb0g/ is some
closed set Q0 , such as a triangle or a pair of triangles. The main point is that any such
choice would be equivalent up to isotopy and one can choose Q0 so that we obtain the
same construction of zS as described above. Notice also that the S1 action coincides
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with the action of Rw=Zw . In particular one can use the isotopy to interpolate the two
constructions as we move away from a boundary vertex.

Step 4: Constructing zS� over an interior vertex Now let p2S be interior vertices. Let
us define Q�p . There are four interior edges of S meeting at p . Moreover, given small
connected neighbourhood U of p in S , j .U \Ssm/ has 6 connected components. Let
us orient each interior edge emanating from p in the direction moving away from p .
Let v1; : : : ; v6 denote the vector field v restricted to the six components of j .U \Ssm/.
We can assume that the indices have been chosen in such a way that the following
ordered sets fv1; v2; v3g, fv3; v4; v5g, fv1; v5; v6g and fv2; v6; v4g correspond to the
triples meeting at each one of the four interior edges, ordered according to the cyclic
ordering imposed by their orientations. Without loss of generality, one can see that the
sign rule in the balancing condition gives the following equations:

v1C v2C v3 D 0; �v3� v5� v4 D 0; �v1C v6C v5 D 0; �v2C v4� v6 D 0

Now let Q�
1

, Q�
2

, Q�
3

and Q�
4

denote the four subsets of {f �1.j .p// constructed as
above from these triples of vectors. These are obviously the limits of the sets Q�p0
constructed along the four edges as p0 approaches the vertex p . Using point (x) of
Definition 7.2 we can assume that v1; v2 and v4 are linearly independent. If v1 , v2

and v4 are a Z–basis for ƒp then it can be calculated that
S

k Q�
k

is the boundary
of a 3–simplex immersed in {f �1.j .p//. In this case we define Q�p to be this 3–
simplex. More generally one can use an argument similar to the one used in the proof
of Lemma 7.7 to find a suitable Q�p such that @Q�p D

S
k Q�

k
. One can show that

attaching to zS�
0

this Q�p and the sets Q�p0 as above for all interior edge points, we
obtain a submanifold.

Step 5: Constructing zS over interior vertices Now let us define Qp . For each point
on the four edges emanating from p , the previous construction gave a 3–chain whose
boundary is the union of the three 2–tori corresponding to that edge. These four
3–chains come together at the point p as subsets of f �1.j .p//. Denote them by Qj ,
j D1; : : : ; 4 and define QpD

S4
jD1 Qj . It can be verified that attaching to zS0 this Qp

and the sets Qp0 as above for all interior edge points p0 , we obtain a submanifold.

Step 6: Constructing zS over the points q1; : : : ; qr Let p be one of the points
fq1; : : : ; qr g of point (ii) of Definition 7.2. Let us define Qp . Given the condition
on the monodromy of F around p (condition (ix) of Definition 7.2) it is natural
to guess that Qp must be an I1 fibre. This can be shown as follows. Let us use
the construction in Section 3.2 of the generic-singular fibration over an edge of �.
Then the base of the fibration is U D D � .0; 1/ and the quotient of X by the S1

action is Y D U �T 2 . Let e2; e3 2H1.T
2;Z/ and † be defined as in Section 3.2.
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If e1 is the orbit of the S1 action, then monodromy of f is given by (4) in the basis
e1; e2; e3 of H1.Xb;Z/. Now let fh1; h2g be an integral basis of F with respect to
which monodromy of F around p has the given form. Then it can be shown that h2

represents the class e1 and h1 represents the class e2C ae3 for some a 2 Z. Then by
change of basis of H1.T

2;Z/, without loss of generality we may as well assume that
h1 represents e2 . We may also assume that j .S/\U DD � f1

2
g. If we consider a

circle S1�T 2 representing the class e2 , then we may define zS D��1.D�f1
2
g�S1/,

where � W X ! Y is the projection with respect to the S1 action. Then zS has an I1

fibre over p D .0; 1
2
/ 2D � .0; 1/D U and it is a submanifold.

Step 7: Constructing zS� over points q1; : : : ; qr To define Q�p , we use the same model
for the generic singular fibration, but since we are working on the tangent bundle one
can see that condition (ix) of Definition 7.2 implies that the vector field v corresponds
to the class e3 . In particular v is monodromy invariant. This implies that v induces
an S1 action on {f �1.U / where U is a neighbourhood of j .p/. Clearly, away from p ,
the circles Vq=Vq \ƒq defining zS�

0
are orbits of this S1 action. We define Q�p to

be the orbit of �0.j .p// with respect to this S1 action, where �0 is the zero section.
Clearly attaching Q�p to zS�

0
gives a submanifold.

Step 8: Matching up the constructions We complete the argument with a remark on
how to match the constructions of zS and zS� on the overlaps between the various
open sets. The local fibrations and the zero section �0 match by construction (see
Corollary 6.7). In all local constructions, for all points b on the overlaps, f �1.b/\ zS

(resp. {f �1.b/\ zS� ) is an affine subspace of the fibre uniquely prescribed by the vector
field v and by a choice of section � (resp {� ). Therefore we only need to match the
sections � (resp. {� ). In all local constructions, � and {� where chosen to coincide
with the zero section away from a small neighbourhood V of �. So on B �V � B0

we define zS and zS� using the zero section. The remaining case to check is on the
overlap between a neighbourhood of an edge and a neighbourhood of a vertex or a
node. Let f W X ! U be the local model for the fibration along an edge of �. In
Lemma 7.4 we have constructed � W S\U!X , defining zS (or equivalently zS� ) along
this edge. Now, U may overlap with some other open set where we have a fibration
over a vertex or node (or maybe another edge). We have that U D D � .0; 1/ and
assume that, for some � > 0, the open set U 0 DD � .0; �/ is the portion of U which
overlaps with an edge emanating from a node or vertex. Over U 0 we have another
section � 0W U 0 \S ! X which defined zS over the vertex or node. By construction
we have that � 0 satisfies � 0.U 0 \ @S/ � Critf \ f �1.U 0/. In Lemma 7.5 we have
constructed a section � 00W S !X which interpolates � and � 0 . Replace � with � 00 ,
so that now the constructions match. Since both � 0 and � coincide with �0 outside
some neighbourhood V of �\U , then by construction the same will be true of � 00 .
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8 Simultaneous resolutions/smoothings of nodes

We discuss the problem of simultaneously resolving a set of nodes in a tropical conifold
.B;P; �/. More precisely, given a set of nodes in B and hence in XB , the topological
conifold associated to B , we want to construct a new tropical manifold .B0;P 0; �0/
whose topological compactification XB0 is homeomorphic to the resolution of the
corresponding nodes in XB . To achieve this we need to change the affine structure
on B so that a neighbourhood of the node is replaced by a neighbourhood which is
(locally) affine isomorphic to its tropical resolution described in Sections 6.3 and 6.4.
This is not a local problem. In general, we should expect global obstructions. Intuitively,
resolving a node implies the insertion of an extra 2–dimensional face (in the positive
case) or an extra 3–dimensional polytope (in the negative case), causing a modification
of nearby polytopes which propagates away from the node.

As we have discussed in Sections 6.3 and 6.4, the local resolution of a node can be
achieved by smoothing the mirror node and then applying discrete Legendre transform.
Therefore, the problem of tropically resolving a set of nodes is equivalent to the one
of tropically smoothing the mirror ones. In this sense the phrase “simultaneously
resolving/smoothing a set of nodes” also means simultaneously resolving the nodes
on B and smoothing the mirror nodes on {B . In Theorem 7.3 we have proved that the
existence of tropical 2–cycles in B containing the nodes guarantees that the obstructions
to resolve the nodes in XB and to smooth the mirror ones in X {B vanish simultaneously.
This suggests the idea that the existence of tropical 2–cycles could imply the vanishing
of the obstructions to the tropical resolution of nodes.

So, let p1; : : : ;pkCs be a set of nodes of {B , where p1; : : : ;pk are negative and
pkC1; : : : ;pkCs are positive. The negative ones are the barycenters of square 2–
dimensional faces e1; : : : ; ek and the positive ones are barycenters of 1–dimensional
edges `kC1; : : : ; `kCs . Then, to simultaneously smooth these nodes we want to do the
following:

(i) Find a refinement {P 0 of {P , which is a toric subdivision, inducing a diagonal
subdivision of e1; : : : ; ek and the barycentric subdivision of `kC1; : : : ; `kCs .

(ii) Define a suitable fan structure, compatible with {P 0 , at the barycenters of the
edges `kC1; : : : ; `kCs which has the effect of changing the discriminant locus
as in Section 6.4.

(iii) Construct an MPL function {�0 , strictly convex with respect to {P 0 .

This has to be done so that we obtain a new tropical manifold (or conifold, if there
are other nodes) . {B0; {P 0; {�0/ and the corresponding manifold (or conifold) X {B0 is
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homeomorphic to the smoothing of X {B at the nodes corresponding to p1; : : : ;pkCs .
If this can be done, then the mirror .B0;P 0; �0/ of . {B0; {P 0; {�0/ gives the simultaneous
resolution of the mirror nodes. We remark that in point (i) the subdivision of the
edges `kC1; : : : ; `kCs does not have to be necessarily barycentric, it may simply be a
subdivision given by adding one vertex at an interior integral point.

8.1 Related nodes

Let p be a node in a tropical conifold and consider two tropical 2–cycles .S1; j1; v1/

and .S2; j2; v2/. To avoid cumbersome notation we identify Sk with its image jk.Sk/.
If p 2 S1 \ S2 , the vector fields v1 and v2 are always monodromy invariant in a
neighbourhood of p , therefore, by parallel transport, they can be compared. In the
case p is a positive node, they are either equal or opposite to each other. When p is a
negative node, we have two cases. If @S1 and @S2 coincide near p , then v1 and v2

are either equal or opposite. If @S1 and @S2 intersect transversally in p , then v1

and v2 form a basis of the monodromy invariant plane which locally contains �. In
the following the orientation on @Sk is induced from the orientation on Sk .

Definition 8.1 Let S1 and S2 be tropical 2–cycles an let p be a node. We can
uniquely define a coefficient �S1S2

.p/ with the following properties. If either S1

or S2 does not contain p , then �S1S2
.p/ D 0. Assume p 2 S1 \ S2 . When p is

positive, �S1S2
.p/D 1 in the following cases:

(i) @S1 , @S2 and their orientations coincide in a neighbourhood of p and v1 D v2 .

(ii) S1 , S2 and their orientations are as in Figure 16(a) and (b) and v1 D v2 .

Now assume p is negative. If @S1 and @S2 intersect transversally in p , then their
orientations and their ordering (according to their index) induces an orientation of the
monodromy invariant plane containing p . Then �S1S2

.p/D 1 in the following cases:

(iii) @S1 and @S2 intersect transversally in p and the orientation they induce on the
monodromy invariant plane is opposite to the orientation induced by v1 ^ v2 .

(iv) @S1 , @S2 and their orientations coincide in a neighbourhood of p and v1 D v2 .

All other cases are uniquely determined by the property that �S1S2
.p/ changes sign if

we either change the orientation of one of the Sj or change the sign of one of the vj .
Notice that �S1S2

.p/D �S2S1
.p/ and �S1S1

.p/D 1 if and only if p 2 S1 .
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S1

S2

(a) (b)

S1 S2

Figure 16: Tropical 2–cycles at a positive node: if the orientations are as
pictured and v1 D v2 , then �S1S2

.p/D 1 .

Definition 8.2 A given set of nodes p1; : : : ;pk of a tropical conifold .B;P; �/ is
said to be

(i) !–related if the vanishing cycles associated to the corresponding nodes in XB

satisfy a good relation,

(ii) C–related if the exceptional P1 ’s in some small resolution of the corresponding
nodes in {XB satisfy a good relation,

(iii) related if there exist tropical 2–cycles .S1; j1/ : : : ; .Sr ; jr / such that it coincides
with the set of nodes satisfying

(54)
rX

lD1

�SkSl
.p/¤ 0 for at least one k 2 f1; : : : ; rg:

For the motivation behind Definitions 8.1 and 8.2 see Section 9.5.

We conjecture the following:

Conjecture 8.3 Given a set of nodes p1; : : : ;pk in a tropical conifold then:

(i) The notions of related, !–related and C–related are equivalent.

(ii) The property that the set can be simultaneously tropically resolved/smoothed by
the above process is equivalent to some property of the set expressible purely in
terms of tropical 2–cycles containing the nodes.

Although we believe this conjecture to be morally true, we do not exclude that refine-
ments in our definition of tropical 2–cycle will be necessary. We do not know if ! or
C–related is equivalent to the fact that the set can be simultaneously resolved/smoothed.
In Proposition 9.2 we prove that !–related implies related in a class of examples of
compact tropical conifolds. These examples and the next paragraph show evidence
of (ii).
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Remark 8.4 In the proof of the following cases, in order to preserve integrality, we
allow rescalings of the affine structure on B (or {B ). This means that we rescale all
polytopes of P (or {P ) by a factor of N 2N .

8.2 Some special cases

Suppose that there is a polytope P 2 P of the type P D L � Œ0;m�, where L is a
2–dimensional convex integral polytope in R2 and consider S D L � fm=2g. We
assume that @S ��, that the vertices p1; : : : ;pk of S are positive nodes and that @S
does not contain any other vertices of �. These nodes are related (see Figure 17) by the
tropical 2–cycle .S; j ; v/, where j is the inclusion and v is the vector field parallel
to the edges containing the nodes.

p2p1

p4

p3

S

Figure 17

Theorem 8.5 If positive nodes p1; : : : ;pk in a tropical conifold .B;P; �/ are in a
configuration as above, then they can be tropically resolved.

Proof We smooth the mirror nodes. First observe that since the positive nodes
coincide with the vertices of S and @S � �, then L (and therefore S ) must be a
Delzant polytope. This means that the tangent wedge at each vertex of L is generated
by primitive integral vectors which form a Z2 basis. Let q1; : : : ; qk be the vertices
of L, ordered so that qj and qjC1 belong to the same edge (and indices are cyclic).
Then the edges of P containing the nodes are given by ej D qj � Œ0;m� and we denote
the vertices of these edges by qCj D .qj ;m/ and q�j D .qj ; 0/. Let us denote by QCj
and Q�j the 3–dimensional polytopes of {P which are dual to the vertices qCj and q�j
respectively. It is clear that QCj and Q�j will have as common face the square face {ej

which is dual to the edge ej . Now all the faces {ej intersect in a common vertex v0

Geometry & Topology, Volume 18 (2014)



Conifold transitions via affine geometry and mirror symmetry 1837

which is dual to the polytope P . Moreover, {ej�1 and {ej intersect in an edge, which
we denote j̀ . One of the vertices of j̀ is v0 and we denote the other one by vj
(see Figure 18). The fan structure at v0 is given by the normal fan of P , which we
denote †P . If †L � R2 denotes the normal fan of L, with 2–dimensional cones
C1; : : : ;Ck , then †P is clearly given by the 3–dimensional cones CCj DCj� Œ0;C1/

and C�j D Cj � .�1; 0�. We have that CCj and C�j are the tangent wedges at v0 of
the polytopes QCj and Q�j respectively. Notice that emanating from v0 we have the
edges j̀ , all lying in a plane, plus two more edges transversal to this plane which we
denote `C and `� , belonging to QCj and Q�j respectively. In affine coordinates `C

and `� have opposite directions.

q0
1

q04

q0
2

q0
3

v3

v4 v0

v2

v1

w
f1

f2

Figure 18: On the left we see the polytope L and on the right the square faces
{e1; : : : ; {e4 in the mirror. The (dark) dashed diagonals give the subdivision
and we have also drawn the discriminant locus (light dotted lines).

We now describe the refinement {P 0 of {P . We subdivide the faces {ej by taking the
diagonal joining vj to vjC1 . We extend this subdivision as follows. The union of all the
diagonals from vj to vjC1 encloses a 2–dimensional region containing the vertex v0 .
We denote this region by {S . Notice that {S \ {� consists only of the (negative) nodes in
the barycenters of the faces {ej and the edges connecting them. Therefore there exists
an open neighbourhood U of the relative interior of {S such that xU \ {� D {S \ {�,
where xU is the closure of U . Moreover we can assume that xU \Q˙j is convex, for
all j . Now rescale B (see Remark 8.4) so that the edges `C and `� contain at least
one interior integral point which is also contained in U . Let vC and v� be the interior
integral points of `C and `� respectively, closest to v0 . Now subdivide each Q˙j
in two convex polytopes: one being V ˙j D Conv.v˙; v0; vj ; vjC1/ and the other the
closure of its complement. By the convexity of U \Q˙j , we also have V ˙j �

xU , for
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all j . It is clear that this gives a well-defined refinement {P 0 of {P which extends the
given diagonal subdivision of the faces. It follows from the choice of U and the fact
that V ˙j �

xU that, among the new facets of codimension at least 1, the only ones
whose relative interiors intersect � are the diagonals of the faces {ej . This ensures that
the decomposition {P 0 alters the discriminant locus only at the nodes contained in the
faces {ej . Moreover it implies that the subdivision is toric (in the sense of Gross and
Siebert; see Sections 2.3 and 2.4). This follows from [11, Proposition 1.32] where it is
shown that a polyhedral subdivision is toric if and only if for every facet � there exists
a neighbourhood U� of Int.�/ such that, if b 2 � �� and  2 �1.U� ��; b/, then
z�. /.w/�w is tangent to � for every w 2 TbB0 . This property trivially holds for the
new facets whose interiors do not intersect �. For the diagonals of the faces {ej it can
be easily verified (it can be done on the local models).

We now define {�0 . First we construct an MPL function z� , which we may regard as
“supported in a neighbourhood of {S ”. Notice that j̀ and j̀C1 are edges of a square
face, hence all j̀ have the same integral length, which we denote by n. On the fan at
v0 , z� maps the integral generator of the one-dimensional cone corresponding to j̀

to �1, the integral generator of `C to �2nC 1 and the integral generator of `� to 0.
On the fan at vj , z� maps the integral generator of j̀ to 1 and all other edges to zero.
On the fan at v˙ , z� maps the generator of `˙ to n and all other edges to zero. At all
remaining vertices of {P 0 , z� is defined to be zero. We claim that z� is a well-defined
MPL function. Once we have proved this, we define

(55) {�0 DN {�C z�

for some integer N and we claim that for N sufficiently big, {�0 is strictly convex.

We now prove that z� is well defined. We need to show that, along every edge of {P 0
connecting vertices v and v0 , the quotient functions, computed at v and v0 , match. We
only do this for the pair of vertices vj and vC . The other cases are similar. At vj ,
construct a basis ff1; f2; f3g for Tvj

{B as follows. Let f1 be the integral generator
of the edge j̀ and f2 the integral generator of the other edge of {ej adjacent to vj
(hence parallel to j̀C1 ). Notice that if we denote by w the integral generator of the
other edge of {ej�1 adjacent to vj (hence parallel to j̀�1 ) then w D �f2 C kjf1

for some kj (see Figure 18). Now at v0 , consider the vector vC � v0 and parallel
transport it to Tvj

{B via a curve from v0 to vj passing into V Cj . We define f3 to be
the resulting vector. Notice that, if we parallel transport f3 back along the same curve
and then again to vj along a curve passing into V �j , then we obtain f3C f1 . This
is the effect of monodromy around the component of the discriminant locus passing
trough the edge j̀ . This implies that if we parallel transport v� � v0 to vj along a
curve passing into V �j then we obtain �f3�f1 , since in affine coordinates at v0 we
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have v� � v0 D �.v
C � v0/. Notice that the tangent direction to the edge from vj

to vC at vj is nf1C f3 , where n is the integral length of j̀ . Similarly the tangent
direction to the edge from vj to v� is .n�1/f1�f3 . Finally, in the fan structure at vj ,
the tangent wedges of the polytopes V Cj , V �j , V �

j�1
, V C

j�1
correspond respectively to

the cones

Cone.f1; f1Cf2; nf1Cf3/; Cone.f1; f1Cf2; .n� 1/f1�f3/;

Cone.f1; wCf1; .n� 1/f1�f3/; Cone.f1; wCf1; nf1Cf3/:

As defined, z� has value 1 at f1 and zero at all other one-dimensional cones of the fan.
Clearly, this uniquely defines integral linear maps on each cone.

We now compute the quotient along the edge from vj to vC , ie along nf1C f3 . We
choose a basis for the quotient space to be fŒf1�; Œf2�g. The quotient fan will have four
maximal cones, two of which are V C

j�1
and V Cj . Since Œf1C f2�D Œf1�C Œf2� and

ŒwCf1�D .kj C 1/Œf1�� Œf2�, the four cones are

Cone.Œf1�; Œf1�C Œf2�/; Cone.Œf1�; .kj C 1/Œf1�� Œf2�/

Cone.�Œf1�; Œf1�C Œf2�/; Cone.�Œf1�; .kj C 1/Œf1�� Œf2�/;

where the first two correspond to V Cj and V C
j�1

respectively. The quotient function
of z� maps Œf1� to 1 and all other generators of one-dimensional cones to zero.

We now come to the vertex vC . Consider the normal fan of L in R2 and view it
as embedded in R3 by the first two coordinates and denote v D .0; 0; 1/. Then the
fan at vC is given by the cones K�j D Cone.nx̀j � v; nx̀jC1 � v;�v/ and KCj D

Cone.nx̀j � v; nx̀jC1 � v; v/, where j D 1; : : : ; k . The cones K�j correspond to the
polytopes V Cj , hence �v points in the direction of v0 and nx̀j � v in the direction
of vj . Then z� has value n on �v and 0 at all other generators of one-dimensional
cones.

We now check the quotient along nx̀j � v . A basis for the quotient is fŒx̀j �; Œx̀jC1�g.
Notice that Œv� D nŒx̀j �, Œnx̀j�1 � v� D �n.kj C 1/Œx̀j �� nŒx̀jC1� and Œnx̀jC1 � v� D

nŒx̀jC1�� nŒx̀j �. Therefore we have the four cones in the quotient

Cone.�.kj C 1/Œx̀j �� Œx̀jC1�;�Œx̀j �/; Cone.Œx̀jC1�� Œx̀j �;�Œx̀j �/;

Cone.�.kj C 1/Œx̀j �� Œx̀jC1�; Œx̀j �/; Cone.Œx̀jC1�� Œx̀j �; Œx̀j �/;

corresponding to the cones K�
j�1

, K�j , KC
j�1

and KCj respectively. Now the quotient
function maps �Œ j̀ � to 1 and all other generators of one-dimensional cones to zero.
This shows that the functions along the edge from vC to vj coincide at the vertices vC

and vj . Similarly for all other vertices.
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Now we prove that {�0 as defined in (55) is strictly convex. First let us recall some
useful facts. Suppose that † is a complete fan in R3 and that � a piecewise linear
function on †. Let F be a two-dimensional cone of † and C , C 0 two maximal
cones such that F D C \C 0 . Then � restricts to linear maps m and m0 on C and C 0

respectively, such that .m�m0/jF D 0. Now consider a Z3 –basis ff1; f2; f3g of R3 ,
such that f1 and f2 generate the plane containing F and f3 points towards the
interior of C . Then the integer h�.F /D hm�m0; f3i is independent of the chosen
basis. The function � is strictly convex if and only if h�.F / > 0 for every two-
dimensional cone F of †. Clearly we have hN�.F /DN h�.F / for every integer N

and h�C�0.F /D h�.F /C h�0.F /.

The fan at the vertex v0 was unaffected by the subdivision {P 0 . Now recall that if we
consider the space of not necessarily integral, piecewise linear functions on a fan †,
then the strictly convex ones form an open cone inside this space. This implies that {�0

is strictly convex at v0 for sufficiently large N , since {� is strictly convex.

Now consider the vertices vj . Here the fan structure has been changed by the subdivi-
sion. Let † be the fan before the subdivision and †0 the new fan. A two-dimensional
cone F of †0 can be of two types: it either intersects the interior of a maximal cone of †
or it is entirely contained in a two-dimensional cone of †. In the latter case we have
h{�.F / > 0 and therefore for sufficiently large N , h{�0.F /D N h{�.F /C hz�.F / > 0.
In the former case h{�.F /D 0, but it can be easily checked by direct calculation that
hz�.F / > 0 for all such F . Therefore we have again h{�0.F / > 0. The case for the
vertices vC and v� is analogous. This completes the proof.

Corollary 8.6 Suppose that the sets K D fp1; : : : ;pkg and K0 D fp0
1
; : : : ;p0r g of

positive nodes in B are each in a configuration like in Theorem 8.5 such that K and K0

are the corners of S and S 0 respectively. Assume moreover that p1 D p0
1

and that
S \S 0D fp1g. Then the nodes K[K0 are related and can be simultaneously resolved.

Proof To show that the nodes K[K0 are related it is enough to chose orientations
on S and S 0 so that, at the node p1 they are like in Figure 16(a) and then chose the
sign of the vector fields v and v0 so that they coincide in a neighbourhood of p1 .

Let P DL�Œ0;m� and P 0DL0�Œ0;m� be the polytopes of P such that SDL�fm=2g

and S 0 D L0 � fm=2g. Then P and P 0 have only one edge in common, ie the one
containing p1 . Denote it by e1 . Notice that if we carry out the construction explained in
Theorem 8.5 for P or for P 0 we obtain the same subdivision of the two-face {e1 , mirror
of e1 . Denote by v1 and v2 the opposite vertices of {e1 forming the diagonal in such a
subdivision. Also denote by v0 and w0 the vertices mirror to P and P 0 respectively.
Then the vertices of {e1 are v1 , v2 , v0 and w0 . Moreover, emanating from v0 we have
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two edges `C and `� and the integral points vC and v� on them, as in the proof of the
theorem. Let us denote by �C , �� and wC and w� the analogous edges and points
emanating from w0 . Let QC

1
and Q�

1
be the polytopes such that QC

1
\Q�

1
D {e1 .

We subdivide Q˙
1

by the polytopes Conv.v0; v1; v2; v
˙/, Conv.w0; v1; v2; w

˙/ and
the closure of the complement these two. All other polytopes are subdivided as in
Theorem 8.5 applied to P and P 0 . Moreover, the theorem applied to P and P 0 gives
MPL functions z�1 and z�2 on {B respectively. Then we define

{�0 DN {�C z�1C z�2;

which, for sufficiently large N , is strictly convex.

We can also generalise these results to a configuration of nodes as depicted in Figure 19.

SS
S 0

Figure 19

Theorem 8.7 Suppose that the sets K D fp1; : : : ;pkg and K0 D fp0
1
; : : : ;p0r g of

positive nodes in B are each in a configuration like in Theorem 8.5 such that K and K0

are the corners of S and S 0 respectively. Assume moreover that S \ S 0 is an edge
of � having as vertices p0

1
D p1 and p2 D p0

2
. Then the sets of nodes K [K0 and

.K[K0/�fp1;p2g are related and can be simultaneously tropically resolved.

Proof To show that the set of nodes K [K0 is related choose orientations on S

and S 0 so that near the nodes p1 and p2 they are like in Figure 16(b) and then choose
the signs of the vector fields v and v0 so that they coincide near p1 and p2 . To
show that the set of nodes .K [K0/ � fp1;p2g is related, change the orientation
of S . Let P D L � Œ0;m� and P 0 D L0 � Œ0;m� be the polytopes of P such that
S DL� fm=2g and S 0 DL0 � fm=2g. Then, if q1; : : : ; qk are the corners of L and
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q0
1
; : : : ; q0r are the corners of L0 we assume that the nodes pj and p0j correspond to

.qj ;m=2/ and .q0j ;m=2/ respectively. Since we assume that p1 D p0
1

and p2 D p0
2

,
we have that .q1;m=2/ and .q2;m=2/ are identified with .q0

1
;m=2/ and .q0

2
;m=2/ via

an identification of the corresponding 2–dimensional faces of P and P 0 respectively.

`1

w0

v1

`2
v0

`3

`4

`5

v5

v4

v3

�4
�1

w4
w1

w3

�3

Figure 20

Now let us look at the mirror. As in the proof of Theorem 8.5, we denote by QCj
and Q�j the maximal polytopes of P 0 corresponding to the vertices .qj ;m/ and .qj ; 0/

respectively and by RCj and R�j those corresponding to .q0j ;m/ and .q0j ; 0/. Clearly we
have Q˙j D R˙j when j D 1; 2. Also denote by {ej and {dj respectively the square
faces

QCj \Q�j and RCj \R�j :

We also denote the edges j̀ D {ej�1\{ej and �j D
{dj�1\

{dj . Clearly we have {ej D
{dj

for j D 1; 2 and `2 D �2 . We let v0 be the vertex dual to P and w0 the vertex dual
to P 0 . We have that v0 and w0 are connected by the edge `2 . The edges j̀ and �j

emanate from v0 and w0 respectively (see Figure 20) and we denote by vj and wj the
other vertices of j̀ and �j respectively (here j ¤ 2). We assume that v0; w0; w3; v3

are the vertices of {e2 and v0; w0; w1; v1 are the vertices of {e1 . We denote by `C and
`� (resp. �C and �� ) the other two edges emanating from v0 (resp. w0 ) which are
mirror respectively to the faces L� fmg and L� f0g (resp. L0 � fmg and L0 � f0g).
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We let vC and wC (resp. v� and w� ) be the interior integral points on `C and �C

(resp. `� and �� ) which are closest to v0 and w0 respectively.

Let us first smooth the negative nodes lying inside all the faces {ej and {dj except
j D 1; 2. This resolves the set .K [K0/ � fp1;p2g. Subdivide the faces {ej and
{dj , with j ¤ 1; 2, by adding the diagonals from vj to vjC1 and from wj to wjC1 .
We leave {e1 and {e2 as they are for the moment. We extend this subdivision as follows.
The polytopes Q˙j and R˙j with j ¤ 1; 2 are subdivided just like in the proof of
Theorem 8.5, eg QCj is subdivided by taking Conv.v0; vj ; vjC1; v

C/ as one polytope
and the closure of its complement as the other one. We subdivide Q˙

1
(resp Q˙

2
)

by taking Conv.v0; w0; v
˙; w˙; v1; w1/ (resp. Conv.v0; w0; v

˙; w˙; v3; w3/) as one
polytope and the closure of its complement as the other. The fact that the latter is convex
(and hence that the subdivision is well defined) follows from the observation that the
vertices v1 , w1 , v˙ and w˙ are coplanar in Q˙

1
(similarly the vertices v3 , w3 , v˙

and w˙ in Q˙
2

). This is a consequence of the fact that the tangent wedges to Q˙
1

at
the vertices v0 and w0 are smooth cones (since L and L0 are Delzant). Using the
same argument as in Theorem 8.5 we can assume that no parts of the discriminant {�
are affected by this subdivision other than the nodes we want to smooth.

We now define an MPL function z�1 . On the fan at v0 (resp. w0 ), z�1 takes the
value �1 on the primitive, integral tangent vectors to the edges j̀ (resp �j ) and 0 on
the primitive, integral tangent vector to `2 (reps. �2 ). On the primitive tangent vector
to `C (resp �C ), z�1 takes the value �2nC 1 and on the primitive tangent vector
to `� (resp �� ) it takes the value 0. On the fan at vj (resp. wj ), j ¤ 2, z�1 takes
the value 1 on the primitive integral tangent vector to the edge j̀ (resp. �j ) and zero
on all other one-dimensional cones. On the fan at v˙ (resp w˙ ), z�1 takes the value
n on the primitive integral tangent vector to the edge `˙ (resp. �˙ ) and zero on all
other one-dimensional cones. We let the reader check that z�1 is a well-defined, MPL
function with respect to the given decomposition.

To smooth the remaining two nodes, we further subdivide the polytopes Q˙j with
j D 1; 2. We denote by {P 0 the resulting subdivision. For k D 1 or 3, subdivide the
polytopes Conv.v0; w0; vk ; wk ; v

˙; w˙/ as

Conv.v0; w0; vk ; wk ; v
˙; w˙/DConv.v0; w0; wk ; w

˙/[Conv.v0; vk ; wk ; v
˙; w˙/:

This has the effect of subdividing the faces {ej , j D1; 2, with the diagonal from v0 to wj

(see Figure 20). Now notice near w0 the subdivision looks precisely as the one defined
in the proof of Theorem 8.5, in case we wanted to resolve only the nodes p0

1
; : : : ;p0r .

So we can define a function z�2 to be zero outside the polytopes containing w0 and
just as in the proof of Theorem 8.5 on the polytopes which contain w0 .
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Finally, we define
{�0 DN {�C z�1C z�2;

for some positive integer N . As in Theorem 8.5, we can check that for sufficiently
big N , {�0 is strictly convex with respect to {P 0 . This completes the tropical smoothing
of the given set of negative nodes. The discrete Legendre transform defines a tropical
resolution of the mirror positive nodes.

We now prove that also some special configurations of negative nodes can be simul-
taneously resolved. Let .L;PL/ be a two-dimensional smooth tropical manifold
with boundary, such that L is homeomorphic to a disc, and satisfying the following
assumptions.

Assumption 8.8 Denote by v1; : : : ; vk the boundary vertices of L and by �1; : : : ; �k

the boundary edges, such that vj and vjC1 are the vertices of �j . We assume the
following.

(i) At every vertex vj the affine structure is such that the edges �j and �j�1

emanating from vj are colinear.

(ii) Every vertex vj belongs to only one other edge of L besides �j and �j�1 .
Denote it by j .

Consider L� Œ0; 1� with the product tropical structure and let Fj D �j � Œ0; 1� be the
boundary 2–dimensional faces. Suppose there is a 3–dimensional tropical manifold
.B;P; �/ and an embedding of tropical manifolds L� Œ0; 1� ,!B such that every two
face Fj contains a negative node pj of B . In particular Fj \� is the union of the two
segments joining the barycenters of opposite pairs of edges of Fj . Clearly the negative
nodes p1; : : : ;pk are related by the tropical 2–cycle defined by S D L� f1

2
g. The

vector field v in condition (iii) of Definition 7.2 is parallel to edges of type fvj g� Œ0; 1�,
where vj is a vertex of L. Notice that the singular points of L generate edges of �
which intersect S transversely in the interior, giving points as in conditions (ii) and
(ix) of Definition 7.2. We have the following:

Theorem 8.9 The negative nodes p1; : : : ;pk in a configuration as above can be
tropically resolved.

Proof The proof is similar to Theorem 8.5. Since we want to use mirror symmetry to
resolve the nodes we start by describing the mirror. Observe that, if P 2 PL is any
j –dimensional polytope of L .j D 0; 1; 2/, then the mirror of the .j C 1/–polytope
P � Œ0; 1� of B will be a .2� j /–polytope {P , inside {B . All the polytopes {P are
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coplanar. We also have the polytopes P � f1g and P � f0g whose mirrors we denote
by {PC and {P� and their dimension is 3� j . Clearly {PC \ {P� D {P . To indicate
polytopes of L we will use Greek letters for edges .�; ı; ; : : :/, lower case for vertices
.v; c;p; : : :/ and upper case .C;F;N; : : :/ for 2–faces. Every boundary edge �j of L

belongs to a 2–face Cj of L. Moreover, it follows from point (ii) of Assumption 8.8
that Cj intersects CjC1 in jC1 . Clearly the edge {jC1 joins the vertex {Cj to the
vertex {CjC1 . All edges {j enclose a region, homeomorphic to a disc, which we denote
by {L. Notice that if P is a 2–face of L, then {PC and {P� are edges emanating
from {P which lie on a common line passing through {P and transversal to {L. Moreover
the edges of type {PC (or {P� ), with {P a vertex of {L, are pairwise parallel with respect
to parallel transport inside {L.

Given a boundary vertex vj of L, {vj is a 2–face which contains {�j�1 , {j and {�j

as bounding edges. Moreover {�j D {vj \ {vjC1 . Point (i) of Assumption 8.8 implies
that {�j�1 and {�j are parallel edges of {vj . Notice that {�j is mirror to the face Fj ,
therefore the barycenter of {�j is a positive node mirror to the node pj . Moreover the
line inside {vj going from the barycenter of {�j�1 to the barycenter of {vj and then to
the barycenter of {�j is part of the discriminant locus �.

In order to resolve the nodes p1; : : : ;pk , we first define a new decomposition on
. {B; {P; {�/ as follows. There is an open neighbourhood U of the region {L such that
U\� consists only of small intervals containing the points {L\�. We can rescale {B so
that all edges {�j and {C˙ , where C is a 2–face of L, contain at least one interior integral
point inside U . On each of the edges {�j , {CCj and {C�j emanating from {Cj choose the
integral points closest to {Cj and call them tj , qCj and q�j respectively. Now subdi-
vide {vCj in two convex polytopes, one being W Cj DConv.tj�1; tj ; {Cj�1; {Cj ; q

C

j�1
; qCj /

and the other one being the closure of its complement. Similarly subdivide {v�j and let
W �j D Conv.tj�1; tj ; {Cj�1; {Cj ; q

�
j�1

; q�j /. Given any interior vertex v of L, we now
give a subdivision of the 3–polytope {vC . Notice that all vertices of {v are of the
type {C , where C is 2–face of L containing v . Let qC

C
(resp. q�

C
) be the integral

point on {CC (resp. {C� ) closest to {C . Consider the polytope inside {vC given by the
convex hull of all points {C and qC

C
for all 2–faces C containing v . Denote it by W Cv

and subdivide {vC by W Cv and the closure of its complement. Similarly subdivide {v� .
This gives a well-defined decomposition of {B . Notice that W Cv , as a polytope, is just
{v� Œ0; 1�.

Now we need to define a fan structure at the new vertices of the subdivision. This
definition must have the effect of smoothing the positive nodes. Although the fan
structure at {Cj is unchanged, it is convenient to describe it. Let fe1; e2; e3g be an
integral basis of T {Cj

{B such that e3 is tangent to {CCj , e2 is tangent to {�j and e1
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is contained in the tangent wedge to {vjC1 . There are pairs of integers .aj ; bj / and
.ajC1; bjC1/ such that the tangent wedges to {vCj , {vC

jC1
, {v�j , and {v�

jC1
correspond

respectively to

(56) Cone.�aj e1C bj e2; e2; e3/; Cone.ajC1e1C bjC1e2; e2; e3/;

Cone.�aj e1C bj e2; e2;�e3/; Cone.ajC1e1C bjC1e2; e2;�e3/:

Here aj e1C bj e2 and �ajC1e1C bjC1e2 are respectively the primitive generators of
the cones corresponding to {j and {jC1 . Notice that aj and ajC1 will be positive. We
will not need the other cones of the fan structure at {Cj .

Let us define the fan structure at tj . There are eight maximal polytopes meeting at
tj : W Cj , W C

jC1
, W �j , W �

jC1
and their complements. Let ff1; f2; f3g be the standard

basis of R3 . We define the eight cones in the fan structure at tj to be

Cone.ajC1f1� bjC1f2; f2; f2Cf3/; Cone.�ajf1� bjf2; f2; f2Cf3/;

Cone.ajC1f1� bjC1f2; f2;�f3/; Cone.�ajf1� bjf2; f2;�f3/;

Cone.ajC1f1� bjC1f2;�f2; f2Cf3/; Cone.�ajf1� bjf2;�f2; f2Cf3/;

Cone.ajC1f1� bjC1f2;�f2;�f3/; Cone.�ajf1� bjf2;�f2;�f3/;

where the first four correspond respectively to the tangent wedges of W C
jC1

, W Cj , W �
jC1

and W �j . The other four to their complements. In the first cone, f2 is tangent to the
edge from tj to {Cj and therefore, by parallel transport inside W C

jC1
, f2 is a parallel

to �e2 . The primitive integral tangent vector to the edge from tj to qCj corresponds,
in the first cone, to f2C f3 . Notice that this implies that f3 , by parallel transport
inside W C

jC1
, is parallel to e3 . The vector ajC1f1 � bjC1f2 is tangent to the edge

from tj to tjC1 and therefore, by construction, it is parallel to {jC1 with respect to
parallel transport inside W C

jC1
. Similarly �� ajf1 � bjf2 , in the second cone, is

tangent to the edge from tj to tj�1 and it is therefore parallel to {j , with respect to
parallel transport inside W Cj . Notice the crucial fact that in the third cone �f3 is
tangent to the edge from tj to q�j and therefore, by parallel transport inside W �

jC1
, it

is parallel to �e3� e2 . This choice of fan structure guarantees that parallel transport
along a loop going from {Cj to tj passing inside W C

jC1
and then back to {Cj passing

into W Cj is the identity. While moving along a loop going from {Cj to tj passing
inside W C

jC1
and then back to {Cj passing into W �

jC1
gives the monodromy matrix0@ 1 0 0

0 1 1

0 0 1

1A
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computed with respect to the basis fe1; e2; e3g. This corresponds to the smoothing of
the positive node (compare with Section 6.4, in particular with the second construction
of the smoothing).

We now define the fan structure at the points qCj . The tangent wedges to W Cj , W C
jC1

are mapped respectively to the cones

Cone.�ajf1C bjf2; f2Cf3; f3/; Cone.ajC1f1C bjC1f2; f2Cf3; f3/:

Here f3 is tangent to the edge from qCj to {Cj , f2Cf3 is tangent to the edge qCj to tj .
In the first cone, �ajf1Cbjf2 is tangent to the edge from qCj to qC

j�1
. In the second

cone ajC1f1C bjC1f2 is tangent to the edge from qCj to qC
jC1

. The complements
of W Cj and W C

jC1
inside {vCj and {vC

jC1
are mapped respectively to

Cone.�ajf1C bjf2; f2Cf3;�f3/; Cone.ajC1f1C bjC1f2; f2Cf3;�f3/:

The other polytopes meeting in qCj come from the subdivision of {vC , where {v is a
2–face of {L, containing the vertex {Cj . Namely we have W Cv and its complement
inside {vC . Suppose that in the fan structure at {Cj , the tangent wedge of {v at {Cj is
Cone.˛1e1C ˛2e2; ˇ1e1C ˇ2e2/. Then, at qCj , the tangent wedges of W Cv and its
complement are mapped respectively to the cones

Cone.˛1f1C˛2f2; ˇ1f1Cˇ2f2; f3/; Cone.˛1f1C˛2f2; ˇ1f1Cˇ2f2;�f3/:

This defines the fan structure at qCj . Similarly we define the fan structure at q�j .
The fan structure at points of type qC

C
or q�

C
, where {C is an interior vertex of {L

is defined similarly and we leave its definition to the reader. It can be verified that
these fan structures are compatible with the fan structures at all other points which are
unchanged. Moreover this construction produces a smoothing of the positive nodes
mirror to p1; : : : ;pk . In order to complete the resolution of p1; : : : ;pk we need to
find a suitable multivalued strictly convex piecewise linear {�0 . The strategy, as in the
proof of Theorem 8.5, is to define a suitable z� which is “supported in a neighbourhood
of {L”. Then define {�0 as in (55) and prove that it is strictly convex for large N . Here
is how we define z� . Let d be a positive integer. On the fan at tj , let z�.f2/D d and
zero at all other primitive edges. On the fan at {Cj let z�.e2/D z�.e3/D�d and zero at
all other primitive edges. On the fan at qCj and q�j , let z�.f3/D d and zero at all other
primitive edges. We claim that for some choice of d , z� is a well-defined multivalued
piecewise linear function. Let us first explain how to find d . Notice that if we take
d D 1, then z� may not be integral. For instance on the first cone of the list (56), we
would get z�.e1/ D �bj=aj which may not be an integer. Similarly on the second
cone z�.e1/D bjC1=ajC1 . One can check that if we let d be a common multiple of aj

and ajC1 for all j D 1; : : : ; k , then z� will be integral.
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Verifying that z� is well defined is a tedious calculation similar to the one carried out in
Theorem 8.5 and we therefore omit it. Also the argument to show that the function {�0

defined in (55) is strictly convex for large N is the same.

9 Examples

We discuss some examples of compact tropical conifolds where various sets of nodes
can be simultaneously resolved/smoothed. In the first example (and its mirror) we
have slightly modified an example discussed in [9, Section 4] so that it contains 9

nodes. Resolving/smoothing subsets of these nodes produces new examples of compact
tropical manifolds and their mirrors. We know that one of these is associated to a toric
degeneration of a complete intersection in a toric Fano manifold (see discussion in
Section 9.3). We are not sure about the other ones. In the last paragraph we further
generalise these examples.

9.1 First example

As the set P of polytopes we take 18 copies of a triangular prism, ie of

(57) T D Convf.0; 0; 0/; .4; 0; 0/; .0; 4; 0/; .0; 0; 4/; .4; 0; 4/; .0; 4; 4/g:

We divide P in two families of nine prisms each and label prisms in each family
by �jk and �jk respectively, where j ; k are cyclic indices from 1 to 3. The vertices
of �j�1;k�1 and �j�1;k�1 are labelled like in Figure 21.

Pj ;k
Pj ;kC1

Pj ;0

PjC1;k

PjC1;0

PjC1;kC1

Qj ;k Qj ;kC1

Q0;k

QjC1;k

Q0;kC1

QjC1;kC1

Figure 21: The two families of prisms: �j�1;k�1 on the left and �j�1;k�1 on
the right

Notice that some polytopes will have vertices with the same label. We glue polytopes
along 2–dimensional faces by matching vertices with the same label. For instance,
Figure 22 shows the result of gluing �11 , �21 , �31 . The result of identifying polytopes
with this rule gives two (polyhedral) solid tori, one from each family. Now glue the
boundaries of these solid tori along 2–dimensional faces by matching the vertex Qjk
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with the vertex Pjk , for every j ; kD1; 2; 3. This gives the manifold B , homeomorphic
to a 3–sphere, and the polyhedral decomposition P .

Q0;2

Q1;2

Q0;3

Q2;3

Q3;3

Q1;3

Q2;2

Q3;2

Figure 22: Assembling �11 , �21 and �31

We now describe the fan structure at vertices. There are two types of vertices, those
labelled Pk;0 (or Q0;k ), lying in the interior of the solid tori, and those labelled Pj ;k

(which are the same as Qj ;k ) lying on the boundary of the solid tori. We take as
representatives of each type, the vertices P3;0 and P3;1 respectively, and describe the
fan structure there. Vertices of the same type will have the same fan structures, in the
obvious sense.

For the vertex P3;0 , take the fan corresponding to P2 �P1 , whose three-dimensional
cones are

Cone.e1; e2; e3/; Cone.e1;�e1� e2; e3/; Cone.e2;�e1� e2; e3/;

Cone.e1; e2;�e3/; Cone.e1;�e1� e2;�e3/; Cone.e2;�e1� e2;�e3/:

The vertex P3;0 belongs to six 3–dimensional faces of B . Three of these are �11 , �12

and �13 , which intersect on the edge from P3;0 to P2;0 . Identify the tangent wedges
at P3;0 of these three polytopes with the first three cones, in such a way that the
tangent direction to the edge from P3;0 to P2;0 is mapped to e3 . The other three
3–dimensional faces containing P3;0 are �21; �22; �23 , which intersect on the edge
from P3;0 to P1;0 . Identify the tangent wedges at P3;0 of these three polytopes with
the last three cones, in such a way that the tangent direction to the edge from P3;0

to P1;0 is mapped to �e3 .

For the vertex P3;1 , take the fan corresponding to P1�P1�P1 , whose 3–dimensional
cones are the octants of R3 . Notice that there are eight 3–dimensional faces contain-
ing P3;1 : �23 , �22 , �12 , �13 , �23 , �22 , �12 and �13 . The fan structure at P3;1
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identifies the tangent wedges of these eight polytopes respectively with

Cone.�e1;�e2; e3/; Cone.e1;�e2; e3/; Cone.e1; e2; e3/;

Cone.�e1; e2; e3/; Cone.�e1;�e2;�e3/; Cone.e1;�e2;�e3/;

Cone.e1; e2;�e3/; Cone.�e1; e2;�e3/:

This determines the fan structure at P3;1 and similarly for each vertex of the same
type.

(a) (b)

Figure 23: The discriminant locus � (dashed lines)

The discriminant locus �, also depicted in Figure 23, can be described as follows. Inside
square faces with vertices Pj ;0;PjC1;0;Pj ;k and PjC1;k (or Q0;k ;Q0;kC1;Qj ;k

and Qj ;kC1 ), � consists only of the segment joining the barycenter of the edge
from Pj ;0 to Pj ;k (resp. from Q0;k to Qj ;k ) to the barycenter of the edge from PjC1;0

to PjC1;k (resp. from Q0;kC1 to Qj ;kC1 ); see Figure 23(a). Monodromy around this
component of � is given by the matrix

(58)

0@ 1 3 0

0 1 0

0 0 1

1A :
Observe that all these segments together give six disjoint circles, three in the interior
of each solid torus. Moreover each circle has multiplicity 3, as can be seen from the
monodromy. It can be shown that the structure can be modified slightly so that each
circle splits into three, each one with the monodromy of generic-singularities (see for
instance [9, Section 4]). We will ignore this issue here.

Inside square faces with vertices Pj ;k , Pj ;kC1 , PjC1;kC1 and PjC1;k , � has a
quadrivalent vertex; see Figure 23(b). In fact it can be checked that this vertex is a
negative node. Overall there are 9 negative nodes. There are no other components
of �.
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Finally we define a strictly convex piecewise linear function � on .B;P/. It is enough
to specify the function on the fans associated to each vertex. At vertices of type Pk;0

(resp. Q0;k ) the fan is the fan of P2 �P1 . We define � to have value 1 at �e1� e2

and at e3 , and zero at the remaining ones. At vertices of type Pj ;k DQj ;k , the fan is
the fan of P1 �P1 �P1 . Here we take � to have value 1 at �e1 , �e2 and �e3 and
zero at the remaining ones. One can check that .B;P; �/ is a well-defined tropical
conifold with 9 negative nodes.

9.2 The mirror

The discrete Legendre transform of the previous example gives its mirror . {B; {P/. The
polytopes dual to the vertices Pj ;0 or Q0;k are six triangular prisms, ie

Convf.0; 0; 0/; .0; 1; 0/; .1; 0; 0/; .0; 0; 1/; .0; 1; 1/; .1; 0; 1/g;

which we label �j and �k respectively. The polytopes dual to the other 9 vertices are
cubes, ie

Convf.0; 0; 0/; .0; 1; 0/; .1; 0; 0/; .1; 1; 0/; .0; 0; 1/; .1; 0; 1/; .0; 1; 1/; .1; 1; 1/g:

Let us denote the nine cubes by !jk . We label the vertices of these polytopes by the
letters Ejk and Fjk as in Figure 24.

EjC1;3

EjC1;2 EjC1;1

Ej ;3

Ej ;2 Ej ;1

FjC1;k FjC1;kC1

EjC1;k

EjC1;kC1

Fj ;k
Fj ;kC1

Ej ;k Ej ;kC1

F2;k F2;kC1

F3;k F3;kC1

F1;k F1;kC1

Figure 24: The polytopes �j (left), !jk (centre) and �k (right); the dashed
red lines form the discriminant locus � .

The 2–dimensional faces of these polytopes are glued by matching the vertices with
the same labelling. Notice that by first gluing together �1; �2 and �3 on the one hand
and �1; �2 and �3 on the other, we obtain a pair of solid tori. Then, in Figure 24, the
front faces of the cubes !jk are glued to the square faces of �j and the back faces are
glued to the square faces of �k . The final result is again a 3–sphere.

We now need to specify the fan structure at vertices. The fan at every vertex is the
fan of P2 �P1 . In the fan structure at Ej ;k the primitive tangent vectors to the five
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edges going to Ej ;kC1 , to Ej ;k�1 , to Fj ;k , to EjC1;k and to Ej�1;k are mapped
respectively to e1 , e2 , �e1� e2 , e3 and �e3 . Similarly (and symmetrically) we have
the fan structure at the vertex Fk;j . By inspection one can see that the discriminant
locus � is as depicted in Figure 24. In fact monodromy around the edges of �
contained in the union of the �j (or in the union of the �j ) is conjugate to (58). The
remaining edges of �, those which do not intersect the triangular prisms, have standard
generic-singular monodromy. Notice that each edge going from Ej ;k to Fj ;k contains
a positive node. So that . {B; {P/ has 9 positive nodes, which are mirror to the 9 negative
ones in .B;P/. We also have a strictly convex piecewise linear function {� .

9.3 Resolving/smoothing nodes

We now apply the results of Section 8 to simultaneously resolve and smooth certain sets
of nodes in these two examples. We can cut each cube !jk with the unique plane passing
through the four nodes. This gives us a tropical 2–cycle S containing the nodes. Thus
every quadruple of nodes contained in a cube is in a configuration where we can apply
Theorem 8.5, thus it can be resolved. In fact any subset of the 9 nodes which is a union of
such quadruples can be resolved with the criteria of Section 8. For instance the six nodes
inside two cubes sharing a common face (eg !j ;k and !j ;kC1/), are in a configuration
like in Theorem 8.7. Similarly the seven nodes inside a pair of cubes sharing an edge
can be resolved using Corollary 8.6. We can also resolve all 9 nodes, by observing that
we can find tropical 2–cycles S1 , S2 and S3 which are the squares obtained by cutting
the cubes !11 , !22 and !33 (with suitable choices of orientations and vector fields).
The pairwise intersection of the Sj is just a node, therefore Corollary 8.6 applies. The
last case is given by 8 nodes. For instance, take the 8 nodes inside !11 , !22 and !23 .
Then !11 shares one node with !22 and one with !23 , forming configurations as in
Corollary 8.6. The nodes in !22 and !23 are as in Theorem 8.7.

Let us now discuss the smoothing of the nodes in {B . By mirror symmetry, smoothing
nodes corresponds to resolving the mirror ones. So let us look at .B;P/. Consider
for instance the polytopes �11; �21; �31 as in Figure 22. Then the three square faces
of these polytopes which do not contain the vertices Q0;2 and Q0;3 have a negative
node in their barycenter; see also Figure 23(b).

We now construct a tropical 2–cycle containing these three nodes (see Figure 25). Inside
the triangular prism T , given by (57), consider the triangle T \fz D 2g, obtained by
cutting T in the middle by a plane parallel to the triangular faces. Then define the
tropical 2–cycle S as the union of the copies of this triangle contained in �1k ; �2k

and �3k . As the vector field v of Definition 7.2 we take the parallel transport along S

of the tangent vector to the edge from Q0;2 to Q0;3 . Notice that S \� consists of
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Figure 25: The tropical 2–cycle which relates 3–nodes in B

the boundary of S and three other points in the interior. It can be easily verified that
the latter points satisfy condition (ix) of Definition 7.2. Also all other conditions of
Definition 7.2 are satisfied. It can be also verified that Theorem 8.9 applies to this
configuration. The same thing can of course be said about the three nodes in the
union of �j1; �j2 and �j3 . Thus these configurations of nodes can be resolved and the
corresponding mirror nodes in {B can be smoothed.

Inside B , let us consider the nine square faces containing the nine nodes. These form
the boundary of the solid torus formed by the polytopes �jk (or �jk ). Represent the
boundary as a big square subdivided in nine small ones. Then Figure 26 represents
the various possibilities we have of resolving and smoothing nodes in order to obtain
a smooth tropical manifold. The families of nodes which can be resolved are those
which lie on the horizontal or vertical lines of the grid and these are represented by
nodes which are circled (in blue). The nodes which are being smoothed are the ones
whose faces are subdivided by (blue) diagonal lines. In fact these lines represent the
subdivision given by Theorem 8.7. As we can see we have four cases: we can resolve all
nine nodes; smooth 4 and resolve 5; smooth 6 and resolve 3 or smooth all 9 nodes. Thus
we have four different, smooth tropical manifolds. The Gross–Siebert reconstruction
theorem gives four different Calabi–Yau manifolds. Let us denote them respectively by
X0 , X4 , X6 and X9 . Now let us consider the mirror manifolds {X0 , {X4 , {X6 and {X9 .
These are obtained from {B respectively by smoothing all nine nodes; resolving 4 and
smoothing 5; resolving 6 and smoothing 3 or resolving all 9 nodes. We know that
{X0 corresponds to an example of Schoen’s Calabi–Yau [29]. This can be described as

follows. Let f1W Y1! P1 and f2W Y2! P1 be two rational elliptic surfaces with a
section such that for no point x 2 P1 , f �1

1
.x/ and f �1

2
.x/ are both singular. Then

Schoen’s Calabi–Yau is the fibred product Y1 �P1 Y2 . It was proved by Hosono,
Saito and Stienstra in [19] that a family of Calabi–Yau manifolds of this sort can be
represented as a complete intersection inside P1�P2�P2 of hypersurfaces of tridegree
.1; 3; 0/ and .1; 0; 3/. Later Gross showed in [9] that the associated tropical manifold
is precisely {B with all nine nodes smoothed (see also [17] for similar methods). So
we expect that {X0 is homeomorphic to Schoen’s Calabi–Yau; see [9, Theorem 0.1].
Thus we have b2. {X0/D 19, b3. {X0/D 40 and �. {X0/D 0. Now {X4 , {X6 and {X9 are

Geometry & Topology, Volume 18 (2014)



1854 Ricardo Castaño-Bernard and Diego Matessi

related to {X0 by a conifold transition at respectively 4, 6 and 9 Lagrangian spheres
in {X0 . Therefore, applying (23), we obtain �. {X4/D 8, �. {X6/D 12 and �. {X9/D 18.

�.X4/D�8 �.X6/D�12 �.X9/D�18�.X0/D 0

Figure 26: Smoothings and resolutions: the thicker (blue) lines are the subdi-
visions required by the smoothing; the (blue) circles indicate the nodes being
resolved; the darker dots mark the nodes whose vanishing cycles in {X0 from
a basis of the space spanned by the vanishing cycles of all 9 nodes.

Applying the method described in [9], we have computed that the tropical manifold
obtained from B by smoothing all nodes corresponds to a complete intersection in
P3�P3 of polynomials of bidegree .3; 0/, .0; 3/ and .1; 1/. Therefore we expect X9

to be homeomorphic to such a manifold. We have b2.X9/D 14, b3.X9/D 48 (see
also Lu and Tian [22]). Obviously its mirror {X9 has b2. {X9/D 23 and b3. {X9/D 30.
Since {X9 is related to {X0 by a conifold transition at 9 Lagrangian spheres in {X0 ,
from (23) we obtain c D 5 and d D 4. Therefore the vanishing cycles span a space of
dimension 5 in H3. {X0/. We believe, although we have not proved it, that five linearly
independent Lagrangian spheres correspond to the nodes (in the mirror {B ) which are
marked by dark dots in the grid of Figure 26. Indeed, in the previous discussion, we
observed that four nodes contained in a square (of the dashed grid in Figure 26) are
related by one relation. Observe that all 9 vanishing cycles can be obtained from the
given 5 using these relations. In particular, in the case of the four nodes on a square,
we expect c D 3, d D 1. In the case of six nodes on two adjacent squares we expect
c D 4, d D 2, where the 4 linearly independent spheres correspond to the dark dots in
the first two rows of the grid in Figure 26. Therefore, using (23), we conjecture that

b2. {X4/D b2. {X0/C 1D 20; b3. {X4/D b3. {X0/� 6D 34

b2. {X6/D 21; b3. {X6/D 32:

Moreover we also have the mirrors X0 , X4 , X6 and X9 .

It is likely that {X4 , {X6 and {X9 can be obtained as conifold transitions by classical
methods from the equations defining {X0 . However we do not know if the corresponding
tropical manifolds can be obtained from known toric degenerations, such as in toric
Fano manifolds. Moreover we do not know if the mirrors have ever been computed by
more standard methods.
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9.4 More examples

Here we generalise the above example. For every pair of integers .L;M /, ranging
from 3 to 9, we construct a tropical conifold as follows. Take 2LM copies of the
triangular prism T considered in (57) and divide them in two families each contain-
ing LM copies. We denote the two families by �jk and �jk where j ; k are cyclic
indices of order L and M respectively. Now, to form B we do the same as above: we
label the vertices of these prisms like in Figure 21 and we glue the 2–dimensional faces
by matching the vertices with the same labels. Clearly, for LDM D 3 we obtain the
same as above. Observe that assembling �11; �21; : : : ; �L1 with the above rule looks
like the pictures represented in Figure 27 multiplied by the interval Œ0; 4�. Similarly we
can say about �11; �12; : : : ; �1M . As above, the union of all the �jk on the one hand
and of all the �jk on the other gives two solid tori which are again glued together to
form a 3–sphere.

LD 5 LD 6LD 4

�11

�21
�31

�41

.�4;�4/ .0;�4/

.4; 0/

.0; 4/

LD 7 LD 8 LD 9

Figure 27

The fan structures at vertices are defined in a very similar way to the example above. In
fact at points of type Pj ;k , k¤ 0, the fan structure is exactly the same as in the example
above, ie it is the fan of P1�P1�P1 . At a point of type Q0;k (or Pj ;0 ) it is also like
in the example above if LD 3 (resp. if M D 3). Otherwise we define it as follows. For
integers LD 4; : : : ; 9, consider the fan †L in R2 which can be seen at the common
point (ie the origin) of all simplices in Figure 27. The fan †LC1 is the toric blow up
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of the fan †L . Clearly †L has L 2–dimensional cones. Denote them in clockwise
order by C1; : : : ;CL , where C1 is the one generated by f.�1;�1/; .0; 1/g. Then form
the fan in R3 whose cones are CCj D Cj � Œ0;C1/ and C�j D Cj � .�1; 0�. Now,
the 3–dimensional polytopes which contain the point Q0;k are �j ;k�1 and �j ;k�2 ,
with j D 1; : : : ;L. The fan structure at Q0;k identifies the tangent wedge of �j ;k�1

with CCj and of �j ;k�2 with C�j . Similarly we can define the fan structure at points
of type Pj ;0 but with M in place of L and the roles of j and k inverted. Then we
can also define a strictly convex piecewise linear function � , just by suitably choosing
one on each of the two types of fans. This defines our tropical conifold .B;P; �/,
depending on the choice of integers L;M D 3; : : : ; 9. Notice that we cannot go
beyond 9 in this construction, because the polytopes in Figure 27 would lose convexity
and the tropical manifold would not be smooth in the sense of Section 2.9. Discrete
Legendre transform gives the mirror . {B; {P; {�/. Notice that again B has a negative
node on every square face that does not contain a point of type Pj ;0 or Q0;k , ie square
faces that are on the boundary of the solid tori. Therefore, there are LM negative
nodes.

Notice that in . {B; {P; {�/, the polytope mirror to a point Pj ;k , k ¤ 0, is a cube. Just
as in the above example, this cube contains 4 positive nodes which are related in
the sense of Definition 8.2 and can be simultaneously resolved using Theorem 8.5.
The negative nodes in B which are mirror to these 4 nodes are those contained in
the prisms �j�1;k�1 , �j�1;k�2 , �j�2;k�1 , �j�2;k�2 . These can be simultaneously
smoothed. Notice that for every fixed j (or k ) the M (resp. L) nodes contained
in the prisms �j ;1; : : : ; �j ;M (resp. �1;k ; : : : ; �L;k ) are also related (see the example
above), therefore they can be simultaneously resolved. Depending on the choices of
nodes to be simultaneously smoothed/resolved we get diagrams similar to those in
Figure 26, but on an L�M grid. For instance, let us consider the case where LD 3

and M D 4; : : : ; 9 and in B we smooth 2M nodes and resolve the remaining M .
Denote by X2M the corresponding Calabi–Yau. In Figure 28 we have represented the
diagrams for LD 3 and M D 4; 5; 6. We believe that by smoothing all nodes in {B
we still get Schoen’s Calabi–Yau. Therefore, with a similar argument as above, we
conjecture that b2.X2M /D 18�M , b3.X2M /D 38C 2M .

�.X10/D�20 �.X12/D�24�.X8/D�16

Figure 28
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9.5 Tropical cycles and good relations

Here we take a closer look at the structure of good relations among the vanishing
cycles (or exceptional P1 ’s) associated to the nodes in the above examples. Let B be
the tropical conifold constructed in Section 9.4 with LM negative nodes, where L

and M are fixed integers between 3 and 9. We can resolve all LM nodes, obtaining
the Calabi–Yau we denoted X0 or smooth all nodes, obtaining XLM . We also have
the mirrors {X0 and {XLM , obtained from {B , where {X0 is given by smoothing all
(positive) nodes and {XLM by resolving them. In the case L DM D 3 we argued
that the vanishing cycles in {X0 span a lattice of dimension 5 in H3. {X0;Z/ and we
conjectured that a basis of this lattice is given by the vanishing cycles associated to the
nodes depicted in dark dots in Figure 26. On the mirror side, it is the exceptional P1 ’s
of X0 which span a lattice of rank-5 in H2.X0;Z/ and we expect this lattice to be
generated by the P1 ’s over the same dark nodes of Figure 26. On the other hand,
by formulas (23), the vanishing cycles in X9 must span a lattice of dimension 4

in H3.X9;Z/. We conjecture that a basis for this lattice is given by the vanishing
cycles over the complement of the dark nodes in Figure 26. This is again reasonable,
since all other nodes can be obtained from these four using the relation given by tropical
2–cycles bounding horizontal and vertical lines in the grid (pictured in Figure 25).

We now generalise to any pair .L;M /. Label the nodes in {B by Nj ;k , where j ; k

are cyclic indices of order L and M respectively and we assume they are displaced
on the L �M grid so that j denotes the row and k the column. By slight abuse
of notation, Nj ;k denotes also the homology class of the vanishing cycle in {X0

associated to the node. Let us denote by Sj ;k the tropical 2–cycle in {B whose
corners are the nodes Nj ;k , NjC1;k , Nj ;kC1 , NjC1;kC1 . We conjecture that the
lattice spanned by the Nj ;k in H3. {X0;Z/ has rank LCM � 1 and that a basis is
given by fN1;1; : : : ;NL;1;N1;2; : : : ;N1;M g, ie by the first row and first column.

To understand the good relations induced by the tropical 2–cycles, we need to discuss
orientations. Given the tropical cycle Sj ;k , an orientation on the lifts zSj ;k or zS�j ;k
constructed in Theorem 7.3 is given by the vector field v and the choice of an orienta-
tion on Sj ;k . Since all the Sj ;k lie on a two-dimensional submanifold of {B (a two
torus), we can choose the orientation on the Sj ;k to coincide with a fixed orientation
of this submanifold. We also assume that all vector fields v on the Sj ;k point in
the same direction when they meet at the nodes. This fixes the orientations on the
lifts zSj ;k and zS�j ;k . Now consider a node Nj ;k . It is a corner of Sj ;k , Sj�1;k , Sj ;k�1 ,
Sj�1;k�1 . One can prove that the orientation induced on the vanishing cycle at Nj ;k

(resp. exceptional P1 ) by zSj ;k (resp. zS�
j ;k

) is the same as the orientation induced
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by zSj�1;k�1 (resp. zS�j�1;k�1 ) and the opposite of the one induced by

zSj�1;k and zSj ;k�1 .resp. zS�j�1;k and zS�j ;k�1/:

This is the motivation behind Definition 8.1. In fact, if

p DNj ;k ; S1 D Sj ;k ; S2 D Sj�1;k�1 and S3 D Sj�1;k ;

then �S1S2
.p/D 1, while �S1S2

.p/D�1 (see also Figure 16).

On the vanishing cycle at Nj ;k choose the orientation induced by Sj ;k . The above
considerations imply that the good relation induced by Sj ;k is

(59) Nj ;k �NjC1;k �Nj ;kC1CNjC1;kC1 D 0:

The same relation holds if Nj ;k denotes the class of the exceptional P1 in X0 .

Remark 9.1 The relation induced by Sj�1;k is

Nj�1;k �Nj ;k �Nj�1;kC1CNj ;kC1 D 0:

If we let S1DSj ;k and S2DSj�1;k , then the nodes satisfying (54) are precisely those
which do not cancel when we sum the relation (59) induced by S1 and the relation
induced by S2 . More generally, given tropical 2–cycles S1; : : : ;Sr , the nodes which
do not cancel when we sum their corresponding relations are precisely the nodes which
satisfy (54).

Proposition 9.2 Any good relation among the vanishing cycles in {X0 (resp. excep-
tional P1 ’s in X0 ) is a linear combination of the good relations (59). Therefore, in
these examples, !–related implies related.

Proof Let V be the free abelian group generated by the Nj ;k and W the lattice they
span inside H3. {X0;Z/. Then we have the natural map � W V !W . Inside V consider
the elements

(60) Rj ;k DNj ;k �NjC1;k �Nj ;kC1CNjC1;kC1:

Clearly Rj ;k 2 ker� for all j and k . It is enough to show that ker� is generated by
the Rj ;k . It is easy to show that any element of P 2 V can be written as

P DN CR;

where N is a linear combination of the elements fN1;1; : : : ;NL;1;N1;2; : : : ;N1;M g

and R is a linear combination of the Rj ;k . This can be first proved by induction when
P DNj ;k and then extended to any P by linearity. If P 2 ker� , then N D 0, since
fN1;1; : : : ;NL;1;N1;2; : : : ;N1;M g forms a basis of W . The last statement follows
from Remark 9.1.
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Corollary 9.3 A set of vanishing cycles in {X0 satisfies a good relation if and only if
the corresponding exceptional P1 ’s in X0 also satisfy a good relation.

Remark 9.4 Notice that this corollary does not prove that !–related is equivalent to
C–related, as stated in item (i) of Conjecture 8.3. In fact here we have chosen a fixed
resolution of the conifold, one that comes from a resolution of B . In principle there
could be other resolutions which change the topology. We do not know if this is true
for this set of examples. Notice that a good relation on the exceptional P1 ’s which is a
linear combination of relations induced from tropical 2–cycles holds on all resolutions
(the construction in Theorem 7.3 is independent of the resolution). Therefore any
additional good relation which might exist on some other resolution cannot be detected
by tropical 2–cycles.

Let us now return to the case LDM D 3. In this case it is easy to classify all possible
good relations. We look at the 3� 3 grid of Figure 26. It is periodic and it has some
obvious symmetries. We have the following:

Proposition 9.5 If LDM D 3, any good relation among a set of k vanishing cycles
in {X0 is equivalent to one of the following (up to the symmetry of the grid):

k D 4 W R1;1 D 0

k D 6 W R1;1�R1;2 D 0

k D 6 W R1;1�R2;2 D 0

k D 7 W R1;1CR2;2 D 0

k D 8 W R1;1�R1;2CR2;2 D 0

(61)

where Rj ;k is the relation (60) induced by the tropical 2–cycle Sj ;k .

Proof We sketch the proof, leaving the details to the reader. First, for every fixed
k D 1; : : : ; 9 one can classify all possible configurations of k –nodes up to periodicity
and symmetries of the grid. For instance, there are only two configurations of k D 2

nodes: they are either consecutive points on a diagonal or on a line (horizontal or
vertical). There are four configurations of k D 3 nodes: three corners on a square Sj ;k ,
three nodes on a line (horizontal or vertical), three nodes on the diagonal, the config-
uration fN1;1;N1;2;N2;3g. Similarly for all other k . It is then easy to verify which
ones of these configurations gives good relations. For instance, any configuration with
k D 2 or k D 3 nodes gives linearly independent vanishing cycles. For k D 4 the only
configuration which does not give linearly independent vanishing cycles is when the
nodes are the four corners of a square Sj ;k . In this case we obtain the first good relation
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in the list. When k D 5 there is only one configuration whose vanishing cycles are not
linearly independent. It is equivalent to fN1;1;N1;2;N2;1;N2;2;N3;3g. The first three
span a lattice not containing N3;3 , so there cannot be a good relation. Proceeding this
way one obtains only the list above.

We have already discussed how the first, second, fourth and fifth case in the above list
can be resolved using the methods of Section 8. We have not been able to resolve the
third case. The more general case when L or M is greater than 3 is more complicated.
We have not yet attempted a thorough classification.

A similar analysis can be done for the vanishing cycles on X0 . Label them by Ej ;k . We
expect them to span a lattice of rank .L�1/.M�1/ in H3.X0;Z/. We conjecture that a
basis of this lattice is given by the Ej ;k with j 2f1; : : : ;L�1g and k 2f1; : : : ;M�1g.
We have tropical 2–cycles as in Figure 25 giving the relations

Rj
WD

MX
kD1

Ej ;k D 0 and Rk WD

LX
jD1

Ej ;k D 0:

Also in this case we can show that any good relation among the vanishing cycles in X0

(or the exceptional P1 ’s in {X0 ) is a linear combination of the above relations. The
proof is the same as in Proposition 9.2. In the case M DLD 3 we have the following
classification of good relations:

Proposition 9.6 If LDM D 3, any good relation among a set of k vanishing cycles
in X0 is equivalent to one of the following (up to the symmetry of the grid):

k D 3 W Rj
D 0

k D 4 W Rk
�Rj D 0

k D 5 W Rk
CRj D 0

k D 5 W R1
CR2

�R1 D 0

k D 6 W R1
CR2

D 0

k D 6 W R1
�R3

CR1�R3 D 0

k D 6 W R2
�R2�R3

D 0

k D 7 W R1
CR2

CR1 D 0

k D 7 W 3R1
C 2R2

CR3
�R2� 2R3 D 0

k D 8 W 3R1
C 2R2

C 2R3
�R2� 2R3 D 0

k D 9 W R1
CR2

CR3
D 0

(62)
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The proof is just like in Proposition 9.5. In this case, the only sets of nodes we can
resolve using the methods of Section 8 are the first, third, fifth and eighth case in the
above list. We do not know if or how one can resolve the other cases.
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