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The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124

(2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a

system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background),

the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos

22, 033124 (2012)], it was predicted that a transition should take place when the electron density is

increased or the field decreased in such a way that the ratio xp/xc between plasma and cyclotron

frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling

parameter C. Here, we perform numerical computations for a first principles model of N point

electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the

time-autocorrelation function of magnetization. We consider two values of C (0.04 and 0.016) in the

weak coupling regime C� 1, with N up to 512. A transition is found to occur for xp/xc in

the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results

might be of interest for the problem of the breakdown of plasma confinement in fusion machines.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865255]

One of the most relevant open problems of plasma

physics, particularly in connection with the operation of

fusion machines, is the breakdown of magnetic confine-

ment. Catastrophic events, called disruptions, occur

when density exceeds a certain limit, and no general

agreement seems to exist for an explanation.2 It is even

under discussion, at a phenomenological level, on which

parameters should the density limit depend, whether on

the plasma current or on the imposed magnetic field (see

Ref. 3, Fig. 6). In the work,
1

the attention was restricted

to the role of the imposed magnetic field B, and theoreti-

cal indications were given that a bold chaoticity involving

all single electrons should take place for large enough

electron density ne or small enough field B. In fact, the

chaoticity border was predicted to be given by the rela-

tion (in Gauss units)

ne ’
B2

4p mc2
; or equivalently

xp

xc
’ 1; (1)

where m is the electron and c the speed of light, while xp

and xc are the familiar plasma and cyclotron frequen-

cies, to be defined later. In Ref. 1, it was also shown that

law (1) fits pretty well a large set of experimental data for

disruptions in actual fusion machines.

The main idea leading to (1) as a chaoticity threshold

for the motions of the electrons is as follows. Ordered gyra-

tional motions induced by the field obviously prevail when

the mutual interactions among the electrons are negligible,

i.e., for small densities. On the other hand, perturbation

increases with increasing density. Indeed the main perturba-

tion is due to so-called microfield, namely, the sum of the

Coulomb forces acting on each electron and due to all the

other ones. This is a highly fluctuating quantity, whose typi-

cal intensity E was estimated long ago by Iglesias et al.4 to

be given, for a one–component plasma at temperature T and

electron density ne, by

E ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p nekBT

p
; (2)

where kB is the Boltzmann constant. Thus, a threshold should

occur when the microfield and the Lorentz force balance,

i.e., when one has

E? ’ Bv?=c; (3)

where ? denotes transverse part. Using v? ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
,

with (2) and E? ¼
ffiffiffiffiffiffiffiffi
2=3

p
E, this leads for the threshold to

the condition (1), apart from a numerical factor of order 1.

In the present paper, the results of numerical computa-

tions in the weak coupling regime are reported, which appear

to confirm the theoretical prediction (1).

I. INTRODUCTION

The idea that a transition from order to chaos may occur

in dynamical N particle systems and may play some physi-

cally relevant role is a familiar one since the year 1960s, and

was much discussed also in the frame of plasma physics.

Particular attention in plasma physics was given to situations

in which it is the magnetic field itself that exhibits field lines

presenting chaoticity properties, because this should induce

some chaoticity in the motions of the electrons too.5–7
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However, this fact does not explain the disruptions observed

in fusion machines. For another recent attempt see Ref. 8.

In Ref. 1, the idea was advanced that an explanation

may be found in a more global chaoticity phenomenon that

involves each electron, even in the presence of completely

ordered field lines. Moreover, the phenomenon should con-

cern a macroscopic quantity of a great physical relevance,

namely, the system’s magnetization. Indeed indications were

given that, for high enough density or small enough field, the

gyrational character of the electron motions should be lost,

so that magnetization (with its confining feature) would be

no more present. The threshold was estimated to be given by

the law (1), which in particular is independent of the

so–called Coulomb coupling parameter C. The latter is

defined by

C ¼def
e2=akBT; (4)

namely, as the ratio between Coulomb potential energy at

the mean interelectron distance a, and the energy kBT. Here,

e is the modulus of the electron charge.

In the present paper, a check of the theoretical predic-

tion (1) is provided in the so-called weak coupling regime

C� 1. This is obtained through a numerical study on a

one-component plasma in which the time-autocorrelation

function of magnetization is computed. The choice of look-

ing at the time-autocorrelation function of some dynamical

variable is made in the spirit of ergodic theory. Indeed, by

definition a system is chaotic if the time-autocorrelation

functions of all quantities tend to zero when the time t
tends to infinity. Conversely, a system may be said to pres-

ent regular or ordered features up to a given observation
time s, if there exists some physically significant quantity,

the time-autocorrelation of which remains near to its initial

value up to the observation time s. In fact, the quantity we

consider is a macroscopic one which is of paramount rele-

vance in the problem of plasma confinement, namely, mag-

netization (which is just proportional to the system’s

orbital angular momentum). We will show that the numeri-

cal results allow one to give an estimate for a chaoticity

threshold in the sense just mentioned. Moreover, the

threshold turns out to be in fairly good agreement with the

theoretical prediction (1).

In Sec. II, the model is described, and some details about

its numerical implementation are given. The numerical

results are reported in Sec. III. Some further discussions are

given in the conclusive Sec. IV. Finally, an appendix is

devoted to recalling the Ewald procedure for expressing

through rapidly converging series the electric field due to a

periodic configuration of point sources.

II. THE MODEL AND ITS NUMERICAL
IMPLEMENTATION

Let us recall that a one-component plasma model is just

a system of point electrons with mutual Coulomb interac-

tions. Neutrality is guaranteed by the existence of a uniform

positively charged background, which however has no influ-

ence on the motions of the electrons. So, denoting by xi the

position vector of the generic i–th electron, each electron is

subject to the sum of the Coulomb forces due to all the other

ones, and to the Lorentz force ð�e=cÞ _xi � B due to a uniform

stationary external magnetic field B (which we take directed

along the z axis). The electric force on the i–th electron,

which depends on the positions of all the other ones, will be

simply denoted by e2EðxiÞ.
In order to deal with an actually manageable model, we

introduce periodicity conditions, taking as fundamental cell

a cubic box of side L containing N electrons. In order to

guarantee that the solutions of the equations of motion be

spatially periodic, we proceed in the following way. Denote

by xj, j¼ 1,…, N, the position vectors of the electrons in the

fundamental cell, and by n a vector with integer coordinates,

i.e., n¼defðnxex þ nyey þ nxezÞ, with nx, ny, and nz 2 Z, while

ex, ey, and ez, are unit vectors along the axes. Having fixed

arbitrary initial data x0
j ; _x0

j ; j ¼ 1;…;N, for the electrons in

the fundamental cell, we introduce for the other electrons the

initial data x0
jþn ¼ x0

j þ Ln and _x0
jþn ¼ _x0

j . Such initial con-

figurations of the charges produce a spatially periodic force

field, and thus the initial conditions guarantee spatial perio-

dicity of the solutions for all times t, i.e.,

xjþnðtÞ ¼ xjðtÞ þ Ln: (5)

So the motion of the complete system is determined by

the motions of the N electrons in the fundamental cell. In

particular, if at a certain time an electron leaves the funda-

mental cell, then there is a corresponding one entering it.

The spatial periodicity of the solutions allows for another

great simplification, which concerns the expression of the

electric field E(xj) acting on the j–th electron. Indeed, since

the classical work of Ewald9 on the microscopic foundations

of crystal optics, it is well known that, due to the peroidicity

of the configuration, the field E(xj) acting on the j–th elec-

tron can be expressed as the sum of two rapidly converging

series in the form

EðxjÞ ¼
X

n

X
l 6¼j

rl;n

jrl;nj3
erfcðarl;nÞ þ

arl;nffiffiffi
p
p expð�a2r2

l;nÞ
� �

þ 4p
L3

X
k6¼0

X
l

k

jkj2
expð�k2=4a2Þsinðk � rlÞ; (6)

where erfc(x) is the usual complementary error function,

while we have denoted rl¼def
xj � xl and rl;n¼def

xj � xl þ Ln.

Furthermore, a is the Ewald convergence parameter which is

arbitrary, and may be chosen in such a way as to guarantee a

rapid convergence of both series. This formula is by now a

common tool in molecular dynamics simulations (see for

example Ref. 10), and its derivation is here sketched in the

Appendix. For a new application to the original problem for

which the formula was conceived, namely, the microscopic

foundations of crystal optics, see Ref. 11.

In dealing concretely with the problem at hand, it is

expedient to introduce suitable rescaled variables, in terms

of the mean interelectron distance a and of the natural time

unit related to the electron cyclotron frequency xc.

The distance a is defined by a ¼ n�1=3
e , where ne is the

electron density ne given by ne ¼ N=L3. Let us now recall
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the standard definitions of the cyclotron and the plasma fre-

quencies xc, xc, namely,

xc ¼
def

eB=mc ; xp ¼
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p e2ne=m

p
: (7)

We will also refer to the Debye length kD and the Larmor ra-

dius rL, which are defined by

kD ¼
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=nee2

p
; rL ¼

def
v?=xc: (8)

Rescaling time by the electron cyclotron frequency xc,

and position vectors by the mean interparticle distance a,

i.e., introducing s¼def xct and yj¼def
xj/a, the Newton equations

of motion for each of the N electrons take the form

€yj ¼ ez � _yj þ
xp

xc

� �2

EðyjÞ (9)

(the dots denoting derivatives with respect to s). Thus, the

rescaled equations contain only one (dimensionless) parame-

ter, the ratio xp/xc, and in particular do not depend on the

Coulomb coupling parameter C (the latter, however, due to

its dependence on T and on ne, will enter the problem

through the choice of the initial data). Obviously the rescaled

density is equal to 1, and time turns out to be expressed in

units of 1/xc.

In the rescaled units, the electric field acting on the j–th

electron takes the form

EðyjÞ ¼
X

n

X
l 6¼j

rl;n

jrl;nj3
erfcðarl;nÞ þ

arl;nffiffiffi
p
p expð�a2r2

l;nÞ
� �

þ 4p
N

X
k6¼0

X
l

k

jkj2
expð�k2=4a2Þsinðk � rlÞ; (10)

where rl¼def
yj � yl, while rl;n¼def

yj � yl þ Ln=a. For the

Ewald convergence parameter, we chose10 a ¼ p1=2N1=6L�1.

The equations of motion (9), with the electric field in the

Ewald form (10), were integrated numerically, using a sym-

plectic splitting method. Conservation of energy in every run

was better than a part over 103. The integration time was

chosen proportional to xc in order that all different cases be

integrated for the same “physical time.” In any case, the time

was always some hundreds cyclotron periods.

The initial data were chosen in the following way: the

electron positions yj were taken uniformly distributed in the

fundamental cell (of side N1=3), while the velocities were

extracted from a Maxwellian with a given temperature T.

This is the point where the Coulomb coupling parameter C
enters the problem.

For what concerns the number N of electrons in the funda-

mental cell, our computational power allows us to work with a

maximal value of N¼ 512. This induces a lower bound on C,

namely, C�N�2/3. Indeed, in order to correctly simulate the

Coulomb cumulative force acting on an electron, the side of

the fundamental cell has to be at least equal to the Debye

length, which, in our rescaled units, takes the value kD¼C�1/2.

We took C¼N�2/3. Computations were performed both for

N¼ 128 and N¼ 512, which correspond to C¼ 128�2/3’ 0.04

and C ¼ 512�2=3 ¼ 1=64 ’ 0:016, respectively.

III. THE NUMERICAL RESULTS

We now come to the main issue, i.e., whether the motions

are ordered or chaotic, in the sense previously explained.

Obviously what plays the role of the unperturbed system with

completely ordered motions is the limit case with xp/xc¼ 0,

for which the Coulomb interactions disappear and one has

pure Larmor gyrations. The problem then is to determine

whether a transition to chaoticity takes place as the parameter

xp/xc is increased and C is varied. To this end, we considered

the magnetization (along the field) of a cell, namely,

M¼defðe=2mcÞ
X

yj � _yj

� �
z
; (11)

looking at its time-autocorrelation function (normalized by

NkBT)

CMðtÞ ¼
def hMðtÞMð0Þi

NkBT
; (12)

and at its Fourier transform ĈMðxÞ. The latter is a physically

very relevant quantity because, according to linear response

theory (see Refs. 12 and 13, or Appendix B of Ref. 14),

ixĈMðxÞ gives the susceptibility v(x) at frequency x.

In the formula defining the time-autocorrelation CMðtÞ,
the average h�i should in principle be a phase–average with

respect to Gibbs measure; in our computations, however, we

estimated it by the time-average along a single orbit (with

“generic” initial data extracted as previously explained), as

often done in numerical works. We did not investigate the

relations between the two averages. Moreover, the Fourier

transform ĈMðxÞ was estimated by the amplitude of the dis-

crete Fourier transform of CMðtÞ, which will be simply

called the spectrum. So we computed both the time-

autocorrelation CM as a function of t, and the corresponding

spectrum as a function of angular frequency x/xc.

Having fixed C¼ 1/64, by increasing xp/xc we found

that a threshold occurs for xp/xc between 0.25 and 2. This

is exhibited in Fig. 1, where the results are reported for

xp/xc¼ 0.25 on the left and for xp/xc¼ 2 on the right. The

time-autocorrelations are reported in the upper part of the

figure, and the spectra in the lower part.

For xp/xc¼ 0.25, the time-autocorrelation is seen to dis-

play regular oscillations with a decreasing amplitude: we

were unable to follow this relaxation process up to the end.

The oscillations are apparently peaked about the cyclotron

frequency and its low harmonics (as should be, due to the

nonlinearities in the equations of motions). This is clearly

exhibited by the spectrum, with its large peak at x/xc¼ 1,

and the smaller ones about the low harmonics x/xc¼ 2,

3,…. Of special relevance is the peak at x¼ 0, which corre-

sponds to the existence of a nonvanishing static susceptibil-

ity, i.e., to the existence of diamagnetism. There also appears

a continuous component, which accounts for the extremely

slow drift towards equilibrium. This case clearly corresponds

to prevalently ordered motions with a corresponding nonvan-

ishing diamagnetism, and should be interpreted as an indica-

tion that the perturbation due to the Coulomb interactions is

not yet sufficiently large to produce prevalent chaotic

motions.
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The transition to chaos, however, already occurred at

xp/xc¼ 2. Indeed in this case the autocorrelation is seen to

go to zero in an extremely short lapse of time (even shorter

than one cyclotron period 2p/xc), so that the peaks disappear

from the spectrum and only the continuous part remains.

This means that for C¼ 1/64 the threshold in xp/xc lies

between 0.25 and 2.

For C¼ 128�2/3, the corresponding figures (at the same

two values xp/xc) are qualitatively similar to those for

C¼ 1/64 and are not reported here.

IV. CONCLUSIONS

So, we have performed a numerical investigation on the

onset of chaoticity in a one-component plasma immersed in

a uniform stationary external magnetic field. To this end, we

solved numerically the Newton equations of motion for the

corresponding first principles N–particle model in a cell,

with periodic boundary conditions, looking at the behaviour

of the time-autocorrelation function of magnetization and at

the corresponding spectrum.

FIG. 1. Top: Autocorrelation CMðtÞ of magnetization versus time for xp/xc¼ 0.25 (left) and for xp/xc¼ 2 (right). The time units in the two cases were chosen

in such a way that the “physical” time scale is the same in both figures (actually, we chose xc¼ 1 at the right, and xc¼ 8 at the left). Notice the fast decay to

zero at the right. Bottom: Discrete Fourier transform (absolute value) of CMðtÞ versus x/xc for xp/xc¼ 0.25 (left), and for xp/xc¼ 2 (right). Peaks (and thus

also magnetization) have disappeared at the right. Here, C¼ 1/64.
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The results show that, even in the so-called “weak

coupling” regime C� 1 (precisely, at C¼ 128�2/3 ’ 0.04

and C¼ 1/64 ’ 0.016), as xp/xc is increased up to a value of

about 1, the mutual Coulomb interactions among the elec-

trons are already so strong that the motions become chaotic,

losing the prevalent gyrational character, so that magnetiza-

tion disappears within just one cyclotron period.

These numerical results are in rather good agreement

with the theoretical prediction (1) that an onset of chaoticity

should show up at about xp/xc¼ 1. In fact, the theoretical

prediction even says that such a threshold should be inde-

pendent of the value of the Coulomb coupling parameter C.

Notice that this is not at all obvious, notwithstanding the fact

that the only parameter entering the equations of motion (9)

is xp/xc, because the parameter C enters in the choice of the

initial data.

Computations relative to the “strong coupling” regime

C� 1 for exactly the same model of a one–component

plasma discussed here, were performed in the paper.15 In such

a paper, quantities of a different type were observed, namely,

the diffusion coefficients. From the figures reported, one may

surmize that some transition is taking place at about

xp/xc¼ 1. Some preliminary results of ours seem to confirm

this fact. We plan to come back to this point, in the future.

A remark is in order. The idea that the onset of chaotic-

ity should take place when a balance occurs between the two

forces acting on each electron, namely, the confining

Lorentz magnetic force and the microscopic Coulomb field

due to all the other charges (the so called microfield), is a

quite natural one. On the other hand the microfield is in prac-

tice a highly fluctuating random variable. Thus, the really

relevant feature leading to the theoretical prediction (1),

which in particular makes the threshold independent of the

coupling parameter C, is the estimate (2) for the typical value
of the microfield, which is much larger than one might

naively guess. So one might say that our numerical results

are actually providing, at least for a one component plasma

in the weak–coupling regime, a check for the estimate on the

size of the microfield, that was given long ago by Iglesias,

Lebowitz and MacGowan.

As a final remark, one may point out that law (1) has the

same formal aspect as the so-called Brillouin density limit,

which is usually discussed in connection with nonneutral

plasmas16 (i.e., plasmas composed of electrons only).

However, the Brillouin density limit for nonneutral plasmas

has apparently little to do with the chaoticity threshold dis-

cussed here. Indeed, in the frame of nonneutral plasmas the

Brillouin density limit just gives a constraint for the exis-

tence of particular solutions, in which the whole nonneutral

plasma, dealt with in the continuum approximation, performs

rigid rotations about a symmetry axis. Here, instead, the dis-

crete nature of matter plays an essential role. So, when the

mutual interactions are neglected, each electron is perform-

ing a peculiar gyration about its own Larmor center.

Furthermore, in order to take into account the perturbation

due to the Coulomb forces one has to take into consideration

a microscopic force such as the microfield. On the other

hand, such a force, being a highly fluctuating quantity, can-

not be calculated through elementary macroscopic

arguments, and has to be estimated by statistical methods, as

was done in Ref. 4.
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APPENDIX: DEDUCTION OF THE EWALD FORMULA

In this appendix, we sketch the deduction of the Ewald

summation formula without any pretension of mathematical

rigour, taking it almost literally, apart from notations, from

the lectures given by Born at MIT in the winter 1925–1926

(see Ref. 17, pp. 158–161).

For simplicity, consider a lattice of identical charges

located at points xn ¼ Ln (n being a vector with integer com-

ponents), and the (formal) potential V(x) of the field they

produce

VðxÞ ¼
X

n

1

jx� xnj
:

First, using the identity

1=jxj ¼ 1

2p2

ð
dk eik�x=k2;

one reduces such a series to a series over the reciprocal lat-

tice as follows:

VðxÞ ¼
X

n

1

jx� xnj
¼
X

n

1

2p2

ð
dk

eik�ðx�xnÞ

k2

¼ 1

2p2

ð
dk

eik�x

k2

X
n

e�ik�xn ¼ 4p
Vc

X
h

eikh�x

k2
h

;

where in the last line use was made of the identity

X
n

eik�xn ¼ ð2pÞ3

Vc

X
h

dðk� khÞ;

Vc being the cell volume, while kh are the vectors of the re-

ciprocal lattice. We recall that, given a lattice of points xn in

a vector space, the reciprocal lattice kh is the set in the dual

space such that hxn; khi is an integer multiple of 2p. In R3,

if ai, i¼ 1, 2, 3, is a basis for the direct lattice, the vectors

bk ¼ ð2p=VcÞ=ðai � ajÞ constitute a basis for the reciprocal

lattice. In our case, being the lattice cubic, the reciprocal

vectors are again in the form kh ¼ 2ph=L, with h a vector

with integer components.

The series over the reciprocal lattice, when the diver-

gence corresponding to the term h¼ 0 is removed, is only

conditionally convergent, but it can be conveniently split as

follows (a being an arbitrary real parameter):

VðxÞ ¼ 4p
Vc

X
h6¼0

eikh�x e�k2
h=4a2

k2
h

þ 4p
Vc

X
h

eikh�x 1� e�k2
h=4a2

k2
h

;
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where now the first series converges absolutely, while the

second one can be expressed as an absolutely convergent se-

ries by going back to the direct lattice.

In fact, using

1� e�k2
h=4a2

k2
h

¼
ð1=4a2

0

dn e�nk2
h

together with (see below)

4p
Vc

X
h

eikh�x e�nk2
h ¼ 1ffiffiffiffiffiffiffiffiffiffi

4pn3
p X

n

e�
1
4njx�xnj2 ; (A1)

one obtains

4p
Vc

X
h

eikh�x 1� e�k2
h=4a2

k2
h

¼ 1ffiffiffiffiffiffi
4p
p

X
n

ð1=4a2

0

dn

n3=2
e�

1
4njx�xnj2 :

Relation A1 can be rather easily proved by noting that the se-

ries at the rhs. is periodic as a function of x, so that the series

at the lhs. is just its Fourier expansion. One only has to check

that the suitable Fourier coefficients, say ch, turn out to be

exactly given by

ch ¼ e�nh2

:

This requires the evaluation of an elementary Gaussian inte-

gral, which is not performed here.

Then, the change of variable ð1=ð4nÞÞ jx� xnj2 ¼ z2 in

the integrals at the rhs. gives

4p
Vc

X
h

eikh�x 1� e�k2
h=4a2

k2
h

¼
X

n

erfcðajx� xnjÞ
jx� xnj

;

so that in conclusion we arrive at the splitting

VðxÞ ¼ 4p
Vc

X
h6¼0

expð�k2
h=4a2Þ

k2
h

eikh�x þ
X

n

erfcðajx� xnjÞ
jx� xnj

;

which is the Ewald summation formula.

Notice that, while the starting expression for the poten-

tial V(x) was just formal (the series was everywhere diver-

gent), the final expression is mathematically meaningful. It

can be checked that the function defined by the final expres-

sion is analytic and harmonic for x 6¼ xn, while it diverges as

1=jx� xnj for x! xn. Thus, the potential defined by the

Ewald formula is a solution of

DV ¼ 4p
X

n

dðx� xnÞ;

in strict mathematical sense.

The expression for the electric field given in (6) is

obtained simply by summing over the different charges

located in the fundamental cell, and then taking term by term

the gradient of the resulting expression.
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