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Abstract  

The microbial risk for the conservation of seven 16th century parchment manuscripts, which 

showed brown discolouration putatively caused by microorganisms, was evaluated using non-

invasive sampling techniques, microscopy, studies of surface-associated and airborne microflora 

with culture-independent molecular methods, and by measuring repository thermo-hygrometric 

values. Microscopic observations and ATP assays demonstrated a low level of contamination, 

indicating that the discolouration was not related to currently active microbial colonisation. 

Nevertheless, a culture-independent molecular approach was adopted to fully characterise surface-

associated communities searching for biodeteriogens that could grow under appropriate thermo-

hygrometric conditions. Indeed, potential biodeteriogens and microorganisms that are ecologically 

related to humans were found, suggesting the need to control the conservation environment and 

improve handling procedures. Microbial loads of air and thermo-hygrometric measurements 

showed that the repository was not suitable to prevent the microbial deterioration of parchment.  

A holistic approach to the assessment of risk of microbial deterioration of documents and  heritage 

preservation is proposed for the first time.  
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Introduction 

Since early times, humans have strived to transmit thoughts, information and knowledge to other 

people and to future generations. Evidence of the intellectual and cultural efforts of the human race 

can be found in historical documents, including those made of parchment. The major component of 

parchment is collagen, an organic polymer that is susceptible to deterioration by various 

microorganisms, especially bacteria and fungi, and which serves as an energy and carbon source 

(Cappitelli et al. 2005; Michaelsen et al. 2009; Jurado et al. 2010; Sterflinger & Pinzari 2012). The 

microbial degradation of parchment causes various kinds of damage: fungi and bacteria with 

collagenolytic and proteolytic activities can hydrolyze collagen fibres and other proteinaceous 

molecules of parchment, and they can also act by modifying inorganic components or produce 

pigments causing discolouration (Pinzari et al. 2012).  

The biodeterioration of historical parchment is a cause of great concern for libraries and 

archives all over the world (Cappitelli et al. 2010). Although the microbial attack of parchment can 

occur as part of a natural process, today’s scientific research aims at preventive and active 

conservation that is aimed at slowing down the rate of deterioration significantly.  Considering the 

health hazards of microbial contamination, the low cost of prevention compared to recovery costs, 

and human health and environmental concerns raised by the use of chemicals for disinfection 

treatments, the modern trend is to focus on preventive measures (Florian 2002; Cappitelli et al. 

2005). Researchers are united in considering the following key steps as crucial to the assessment of 

the level of actual or potential biological risk, and to properly plan long-term conservation for 

historical documents: i) non-invasive sampling techniques, ii) quantification of microbial 

colonisation and of airborne populations in the conservation environment, iii) identification of 

potential biodeteriogens on surface and air by highly sensitive molecular methods, and iv) control 

of environmental conditions, particularly temperature and relative humidity (Michaelsen et al. 2006; 

Cappitelli et al. 2010; Sterflinger & Pinzari 2012). As the culture-dependent methods traditionally 

used in conservation detect only small amounts of effective surface-colonising and airborne 

organisms (Michaelsen et al. 2006), today’s challenge in microbial investigations on historic 

documents is to characterise both airborne and superficial communities using culture-independent 

molecular approaches that do not affect the documents’ integrity (Cappitelli et al. 2010). To date, no 

work has been done to face the conservation problem with such a holistic approach. In recent years, 

investigations of surface-associated microflora have been focused mainly on paper manuscripts 

(Michaelsen et al. 2006, 2009, 2010, 2012; Principi et al. 2011), while the few studies on parchment 

were conducted using only culture-based approaches (Pinzari et al. 2012; Kraková et al. 2012) or 
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invasive sampling (Jurado et al. 2010). In any case, all these studies were performed without 

considering either climate control or aerobiological investigations.  

The present study evaluated microbial risk in the conservation of seven 16th century 

manuscripts written on finely illuminated parchment, reporting liturgical music used in religious 

ceremonies. An initial inspection of the parchment revealed two types of discolouration putatively 

caused by microbial colonisation: (1) brown stains all over the pages, and (2) brown rings on the 

bottom edges of the sheets (Figure 1).  

The aims of this work were: (a) to clarify any relationship between the presence of an active 

microbial community and discolouration, (b) to study microbial air quality and environmental 

conditions in the repository, and (c) to investigate the relationship between airborne and surface-

associated microbial communities. In this way it was possible to: i) supply exhaustive guidelines for 

the correct conservation of manuscripts and ii) set up, for the first time, a holistic and routine 

method to assess the risk of microbial deterioration in documentary heritage preservation, taking 

into consideration studies of microorganisms on the parchment surface (using non-invasive 

sampling) and in the air, and the environmental parameters of the repository.  

This is the first time that the microbial community on historical parchment has been 

investigated by both non-invasive sampling and fully culture-independent approaches. Furthermore, 

it is the first time that a surface-associated community study was coupled with aerobiological 

monitoring, again by an exclusively biomolecular approach.  

 

 

Materials and Methods  

Sampling  

Thirty-three samples from areas of discolouration, putatively caused by microorganisms, and 

apparently non-discoloured areas (7 samples) were collected by sterile nitrocellulose membranes 

following the non-invasive method reported by Principi et al. (2011), and subjected to molecular 

analysis. In brief: nitrocellulose membranes (Sartorius AG, Göttingen, Germany), 47 mm in 

diameter (corresponding to an area of 17.34 cm2) and handled with sterile forceps, were gently 

pressed for 30 s onto the surface of the manuscript using sterile swabs, then immediately transferred 

into tubes containing phosphate buffered saline (PBS, Sigma Aldrich, Milan, Italy) and transported 

to the laboratory for processing.  

Adhesive tape strip (Fungi TapeTM, DID Milan, Italy) was used to collect samples of 

biological structures from stained and apparently non-discoloured parchment as described by 
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Michaelsen et al. (2012). The adhesive tapes were stored on sterile plates and transferred to the 

laboratory for microscopic analysis.  

Airborne microorganisms were collected at five sites in the repository (Figure 2) in both 

summer and winter. Three replicates of 120 l of air for each sample were collected with a MAS-100 

portable bioaerosol sampler (Merck), flow rate 100 l min-1, onto Petri dishes containing two 

different media viz. plate count agar medium (PCA, Merck) and potato dextrose agar medium 

(PDA, Merck), to determine the microbial charge of aerobic heterotrophic bacteria and fungi 

respectively. The agar plates were kept at 28°C for 48 h. After growth, the colonies were counted 

and the results expressed as colony forming units per cubic meter of air (CFU m-3). Two replicates 

of 275 l of air for each site were collected also with an AGI-30 impinger in 25 ml of sterile PBS, 

rate flow 4.55 l min-1, as reported by Polo et al. (2012), and transported to the laboratory for 

molecular processing.  During the air sampling days, the temperature and relative humidity were 

monitored with the sensor Hygrolog-D (Rotronic AY, Swiss).  

Table 1 shows the details of the samples, code, location, type of discolouration and 

performed analyses. The sample codes are presented in the form XY.Z.(T), where X indicates the 

sample source (P for parchment and A for air), Y represents the manuscript (numbered 1 to 7) for 

samples from parchment, or the sampling season for air samples (S for summer and W for winter), 

Z indicates the sampling page (for samples from parchment) or the sampling sites in the repository 

(for air samples) (see Figure 2). Only for the samples taken from the manuscripts, T represents the 

page number. 

 

Microscopic analysis of the chromatic changes  

Adhesive tape strips were mounted on a microscope glass slide and fixed in 4% paraformaldehyde 

solution (Sigma-Aldrich) in 0.1 M PBS pH 7.2 for 2 h on ice. After three PBS washing steps, a 

portion of the tape confined by in situ frames (1 cm2 area; Eppendorf) was stained with 100 μl of 10 

mM SYTO 9, a green-fluorescent nucleic acid stain (Invitrogen) and 100 μl of 0.4 mg ml-1 

Fluorescent Brightener 28 (Sigma-Aldrich) for 20 min in the dark at room temperature, to label 

bacteria and chitin in the walls of fungi, respectively. After three washes with demineralized water, 

all samples were observed by epifluorescence microscopy with a Leica DM 4000 B (Leica 

Microsystems, Milan, Italy) and images were acquired by the CoolSNAP CF camera (Photometrics 

Roper Scientific, Rochester, USA).  

 

Viability assessment of colonising community  
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The viability of the surface-associated microbial community was assessed in situ by measuring the 

relative light units per second (RLU s-1), using a surface hygiene test kit (Promicol) and a FB 14 

Vega bioluminometer (Berthold Detection Systems). The surfaces studied were 17.34 cm2 for each 

site investigated. The sampling was conducted by means of a circular frame corresponding to the 

area of the cellulose-membrane used for the non-invasive sampling of the discolourations. For each 

manuscript, one site apparently without discolouration was used as a control. The ATP content was 

measured according to the manufacturer’s protocol. The RLU s-1 values were converted to ATP 

concentrations (nmol) using an ATP Standard Kit (Promicol) as standard, and thus in nmol cm-2, by 

dividing by sampled surface values. Viability measures of each site (both with and without 

discolouration) were performed in duplicate. For each manuscript, the mean values, the standard 

error of the mean, and analysis of variance (ANOVA) were calculated using GraphPad Prism 4 to 

assess the significance of differences in nmol ATP cm-2 among several of the surfaces investigated. 

Differences were considered significant with P-values < 0.05. Individual comparisons were made 

post hoc with the Tukey-Kramer test.  

 

DNA extraction and amplification  

On the same day as sampling, the nitrocellulose membrane filters with the sampled cells were 

vortexed for 15 min to detach cells from the membrane, and centrifuged at 6000 rpm for 30 min to 

concentrate cells. The pellet was resuspended in 1ml of lysis buffer (EDTA 40 mM, Tris HCl 50 

mM pH 8, sucrose 0.75 M) and vortexed for 10 min. Both replicates of each air sampled by 

impinger were filtered through a sterile polycarbonate membrane (pore size 0.2 mm), and then put 

into tubes with 1.8 ml of lysis buffer and vortexed for 10 min in order to detach the cells. All 

samples were stored at -20°C. Total DNA was extracted directly from the surface and air samples as 

described by Ausubel et al. (1994), with the addition of three thermal cycles -80°C/ +70°C before 

the addition of lysozyme to break the cellular walls.  

Bacterial communities were analysed by amplifying 16S rRNA gene fragments with primers 

357 F (3’-ACGGGGGGCCTACGGGAGGCAGCAG-3’) and 907 R (5’-

CCGTCAATTCCTTTGATGTTT-3’) with the following chemical conditions: 1X of PCR run 

buffer, 1.8 mM of MgCl2, 0.2 mM of dNTP mix, 0.3 μM of each primer, 2 μg μl-1 of bovine serum 

albumin (BSA) and 1.25 U of Taq DNA polymerase (GoTaq, Promega), and a thermal cycling 

program as reported by Polo et al. (2010). Fungal communities were analysed by amplifying the 

18S rRNA gene fragments by semi-nested PCR performed as follows: a first amplification step 

using the combination of primers NS1 (CCAGTAGTCATATGCTTGTC) and EF3 (5’-

TCCTCTAAATGACCAAGTTTG-3’) with 1X of PCR buffer, 1.8 mM of MgCl2, 0.2 mM of dNTP 
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mix, 0.5 μM of each primer and 0.3125 U of Taq DNA polymerase (GoTaq, Promega); the cycling 

program consisted in an initial denaturation at 94°C for 5 min followed by 35 cycles of denaturation 

at 94°C for 30 s, annealing at 56°C for 45 s and extension at 72°C for 3 min, and a final extension at 

72°C for 10 min. The second amplification step was performed using the first PCR product as 

template, with the primers NS1-GC (5’-CCAGTAGTCATATGCTTGTC -3’ with GC clamp 

CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGCACGGG) and NS2 (5’- 

GAATTACCGCGGCTGCTGGC-3’). The reaction mixture was identical to first-step PCR except 

for 0.625 U of Taq DNA polymerase. The cycling program consisted in an initial denaturation at 

94°C for 4 min followed by 35 cycles of denaturation at 94°C for 45 s, annealing at 50°C for 45 s 

and extension at 72°C for 2 min, and a final extension at 72°C for 10 min. All the PCR were 

performed in a final volume of 25 μl.  

 

Denaturing gradient gel electrophoresis (DGGE) and profile analysis  

The obtained amplicons were analysed by DGGE, as previously described by Polo et al. (2010). 

Amplicons from both superficial and air samples were loaded in the same gel to make the DGGE 

profiles comparable. DGGE gels were performed with 40–60% and 30–55% denaturant gradients 

for the bacterial and fungal communities, respectively. After excising, the DGGE bands were eluted 

in 50 μl milli-Q water by incubation at 37°C overnight and re-amplified with the same conditions as 

above, except for the absence of the GC clamp for primers. Reamplified PCR products of excised 

DGGE bands were purified with a QIAquick PCR purification kit (Qiagen) according to 

manufacturer’s instructions and identified by sequencing (Primm, Milan). The sequences were 

analysed in September 2012 using BLASTN software (www.ncbi.nlm.nih.gov/BLAST).  

The DGGE gels were run simultaneously and 16S rDNA and 18S rDNA band profiles were 

converted into computer digital images using the gel imaging system GelDoc (Biorad). Lanes were 

normalized to contain the same amount of total signal after background subtraction, and individual 

lanes of the gel images were straightened and aligned using Adobe Photoshop (Adobe Systems, Inc. 

Mountain View, CA, USA). The DGGE images were then transformed into line plot profiles using 

the ImageJ software (Rasband 2008), and then imported into an Excel file as x/y values. The X-axis 

represented distance along the line and the Y-axis was the pixel intensity. The matrix of x/y values 

of DGGE line profiles was analyzed using the principal component analysis (PCA). Multivariate 

investigations were conducted by XLSTAT (version 7.5.2 Addinsoft, France). The PCA type used 

during the computations was the Pearson's correlation matrix. The significance of the PCA-analysis 

model was tested by a cross-validation procedure. 
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Results  

Epifluorescence microscopy  

Tape samples from both the discoloured and non-discoloured surfaces showed a few microbial cells 

of filamentous shape. In general, most of the cells were stained with Fluorescent Brightener 28 

(blue fluorescence) ascribable to eukaryotic microorganisms. Figure 3 shows the detail obtained 

from sample P2.139.2 (brown stain) and an apparently non-discoloured area (sample P2.139.1).  

 

Viability assays  

On most of the surfaces of the manuscripts studied,  cellular activity on the discoloured surfaces 

showed no significant changes compared to non-discoloured surfaces (P-values > 0.1), the 

exception being P1.52.1 (brown ring), P5.49.1 and P7.41.1 (brown stains) where the P-values were 

< 0.0312. The ATP values were between 6.9∙102 and 3.0∙103 nmol cm-2.  

 

DGGE, sequencing and community profile analysis  

Figure 4 shows the DGGE profiles and Table 2 reports the strains identified from sampling the 

manuscripts and the air. To assess the role of the microflora evidenced by 16S and 18S DGGE, the 

microbial communities on discoloured and non-discoloured areas were compared by PCA-analysis. 

A plot of the two-dimensional scores for PCA-analysis from superficial samples accounted for 

83.3% of the variability in the input data for bacteria and 60.2% for fungi. The bacterial PCR 

product from discoloured surfaces was obtained only from samples collected on manuscript 1, the 

exception being sample P2.139.2 from manuscript 2. PCA-analysis showed that the bacterial 

communities on discoloured and non-discoloured (control samples P2.139.1 and P1.108.3) surfaces 

were statistically different, the exception being samples P1.10.1 and P2.139.2 (Figure 5a). The 

fungal PCR product was obtained only from 14 samples collected on all the manuscripts. Whilst 

samples from manuscripts 2-7 and control samples from non-discoloured surface presented 

statistically significant similar fungal communities, samples P1.1.1, P1.10.2, P1.21.2, P1.32.1, 

P1.52.2, P1.108.2, P2.139.2 and P3.69.1 presented separate clusters (Figure 5b).  

PCA-analysis of 16S and 18S DGGE profiles from both superficial and air samples was 

adopted to study the relationship between airborne and surface-associated microbial communities. 

The plot of the two-dimensional scores for PCA-analysis from both superficial and air samples 

accounted for 71.8 % of the variability in the input data for bacteria and 73.4% for fungi. Whilst 

control samples and samples P1.32.1, P1.108.1, P2.139.2, AS.2, AW.2, AW.4 and AS.1 presented 

statistically significant similar bacterial communities, the other samples from air and manuscript 1 
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showed statistically different bacterial communities (Figure 6a). No similarity was found between 

fungal airborne and surface associated communities (Figure 6b). 

 

Airborne community charges and microclimatic parameters  

Cultural analyses of airborne communities showed that heterotrophic bacteria and fungi were 

present in the repository air. The microbial airborne loads (CFU m-3), temperature (T °C) and 

relative humidity (RH %) monitored during the air sampling campaigns are reported in Table 3. In 

the semi-confined environment outside the repository (sampling site 1) the microbial airborne loads 

for heterotrophic bacteria and fungi were, respectively, 213±155 and 533±103 CFU m-3 in winter, 

and 486±332 and 869±164 CFU m-3 in summer. Inside the repository (sampling sites 2-5) the 

microbial airborne loads for heterotrophic bacteria were between 73 ±12 and 267±99 CFU m-3 in 

winter, and between 817±92 and 1461±141 CFU m-3 in summer; for fungi they were between 420 

±191 and 480±72 CFU m-3 in winter, and between 211±54 and 481±51 CFU m-3 in summer.  

 

 

Discussion  

In order to assess the role of the microflora dwelling on the discoloured areas, the microbial 

component of discoloured and non-discoloured surfaces was evaluated by microscopic observations 

and an ATP bioluminescence assay. The adhesive tape strip technique was chosen for microscopic 

analysis, as it has been shown to be a useful sampling method for monitoring microbial colonisation 

as well as the spatial distribution of microorganisms (Urzì & De Leo 2001; Villa et al. 2009). 

However adhesive tape could cause the removal of fragments from physically damaged parchment 

(Cappitelli et al. 2010), therefore, for the present study, only three surfaces were chosen as 

representative of the seven manuscripts: P4.1.2 and P2.139.2 as brown stain on page (P2.139.2 was 

the surface with the largest stain) and P2.139.1 as non-discoloured surface. No sample was 

collected by fungal tape from a brown ring as the parchment on the lower-external edges of the 

sheet was physically damaged (Figure 1b). Epifluorescence microscopy showed that, although in 

low number, both filamentous and circular structures, respectively ascribable to fungal hyphae and 

spores, dominated compared with bacteria. The small number of cells detected by epifluorescence 

microscope on both the discoloured and non-discoloured surfaces was the same, demonstrating that 

the discolouration on the surfaces studied was not caused by current microbial colonisation.  

The determination of ATP via the firefly bioluminescence assay has been applied previously in the 

cultural heritage field for the detection of viable fungal spores contaminating paper documents 

(Rakotonirainy et al. 2003) and graphic documents (Rakotonirainy & Arnold 2008). In the present 
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work, no statistically significant differences of ATP content on discoloured and non-discoloured 

surfaces were observed for most of the surface studied. It is important to note that ATP assay kits 

available on the market have been developed essentially for bacteria, from which ATP is more 

easily extracted compared to from fungi (Rakotonirainy et al. 2003). Thus the ATP results are more 

representative of the bacterial component of the community. At present, ATP extraction methods 

for fungal cells have been devised, but have been only applied to artificially contaminated paper or 

fragments cut from old documents (Rakotonirainy et al. 2003; Rakotonirainy & Dubar, 2013). The 

ATP data are in agreement with the few bacterial cells observed by microscopic investigation. 

Although samples P1.52.1, P5.49.1 and P7.41.1 showed cellular activities that were significantly 

higher than the control surfaces, the changes were less than one order of magnitude and the mean 

values of ATP per cm2 did not differ from those detected in the other manuscripts on both 

discoloured and non-discoloured surfaces.  

Microscopy and ATP results confirmed that the discolouration on the parchment was not 

related to current active microbial colonisation as the primary source of damage. However, the 

biological origin of discolouration due to past microbial activity cannot be excluded and it is known 

that microbial attack can result in loss of structure and irreversible distortion and staining 

(Szczepanowska 2013). In addition, the cause of the discolouration may not related to biological 

agents. Prior to the development of the printing press, manuscripts were often written using iron 

gallotannate inks. Iron ions can leach from the ink to the substrate, causing brown discolouration 

(Brown & Clark 2002). Furthermore,  degradation of the iron gallotannate ink complex can 

introduce a yellow to brown colour associated with oxidation to quinoid structures (Ciglanská et al. 

2013). 

Despite the low contamination level, it is important to study microbial communities on 

parchment surfaces as identification can highlight potential biodeteriogens, which could grow under 

favourablethermo-hygrometric conditions (Cappitelli et al. 2010; Principi et al. 2011).  

A culture-independent molecular approach based on PCR-DGGE from DNA directly extracted 

from environmental samples was adopted to fully characterise the surface-associated communities, 

as reported in several works in the cultural heritage field (Michaelsen et al. 2006; Polo et al. 2012). 

Indeed, Jurado et al. (2010) reported the use of a culture-independent molecular method for a 

microbiological study on parchment, but an invasive sampling procedure was applied. In this study, 

nitrocellulose membranes were used to collect cells because they provided a non-invasive sampling 

procedure, which has already been successfully applied on frescoes and paper (Pitzurra et al. 1999; 

Principi et al. 2011). To date, no study coupling a non-invasive membrane-sampling procedure with 

a culture-independent molecular method has been reported for parchment.  The statistical 
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approach based on PCA-analysis was used to study the structural changes in the bacterial and 

fungal communities between discoloured and non-discoloured surfaces evidenced by the 16S and 

18S DGGE profiles, as previously reported by Principi et al. (2011). On manuscript 1, the bacterial 

community of the greater part of the samples from both brown stains and brown rings was 

dissimilar to that of the non-discoloured surface. Fungal communities were detected on all the 

manuscripts, in agreement with the microscopy analysis. Only the fungal samples from manuscript 

1 presented statistically significant differences, compared to the non-discoloured surface. Of the 

manuscripts studied, manuscript 1was the only one that had recently undergone conservation 

treatment. As conservation treatments involving organic materials (eg as adhesives and 

consolidants) could potentially support the growth of microorganisms, thus accelerating the 

biodeterioration process (Cappitelli et al. 2010), the results suggested that the conservation 

treatment might have contributed to conditions favourable for microbial growth. Although in the 

present investigation work no data were available for the microbial communities prior to the 

conservation work, such information should be taken into account in further studies. The sequences 

obtained in this study were phylogenetically most closely related to bacteria belonging to 

Burkholderia thailandensis, Betaproteobacteria, Methylobacterium sp., Microbacterium sp., 

Lactobacillus sp., Sphingomonas sp. and Aeribacillus sp., and fungi belonging to Aspergillus sp. 

and Candida sp.. Although species belonging to Betaproteobacteria have been mainly isolated from 

soil and water (Wongprompitak et al. 2008), Burkholderia thailandensis has been isolated from 

breathing apparatus (Glass et al. 2006), therefore its presence on the surface of manuscript 1 could 

be of human origin. Members of the genus Methylobacterium are aerobic phototrophic bacteria 

distributed in a wide variety of natural habitats, including soil, dust, air and fresh water as well as in 

man-made environments. Because of carotenoid and photopigments production (Hiraishi et al. 

1995), Methylobacterium strains could potentially be responsible for discolouration. Strains 

belonging to the genus Microbacterium have been isolated from coloured stains on historical 

documents made of parchment (Kraková et al. 2012). Furthermore, they have proteolytic properties 

(Kraková et al. 2012) and can colonise subsurface layers along collagen fibres (Petushkova & 

Koesler 1999). Fermenting bacteria belonging to the genus Lactobacillus are common inhabitants 

of the human gastrointestinal tract as well as of the oral cavity (Müller et al. 2001; Walter & Ley 

2011), so their presence on both the sheets and the external edges of the manuscript could be of 

human origin. Sphingomonas have been isolated from biofilm on deteriorated bas-relief walls (Lan 

et al. 2010) and mural paintings (Heyrman & Swings 2001), and they were reported as being 

responsible for the degradation of ceramic tiles covered by a green and/or black patina (Coutinho et 

al. 2013) and waterlogged archaeological wood (Landy et al. 2008; Palla et al. 2013). Bacteria 
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belonging to Aeribacillus sp. have never been isolated on cultural heritage and historical 

documents. However, the role of Aeribacillus spp. in the fermentation of starch, a substance often 

used in parchment conservation, makes these bacteria potentially dangerous (Fratkin & Adams 

1946; Woods 1995). Fungi belonging to the genus Candida are commonly isolated from human 

skin and mucosal surfaces as harmless commensal organisms (Samaranayake & MacFarlane 1990; 

Heo et al. 2011) and their presence on manuscript 1 can be ascribed to the hand of readers as the 

manuscript was in religious ceremonies and has, in the past, been subjected to conservation 

treatment. Aspergillus species are common biodeteriogens of organic and synthetic materials 

(Cappitelli & Sorlini 2005) and are frequently associated with paper spoilage as they are able to 

degrade cellulosic materials and cause discolouration (Pinzari et al. 2006; Zotti et al. 2008; Principi 

et al. 2011). Members of the genus Aspergillus are also known as the most active biodeteriogen 

agents on both ancient and modern parchments (Polacheck et al. 1989; Matè 2002). Aspergillus spp.  

secrete a range of pigments and proteolytic enzymes that respectively cause aesthetic and chemical 

damage, whilst hyphal growth exerts mechanical pressure on the substrate, causing weakness 

(Cappitelli & Sorlini 2005; Michaelsen et al. 2010; Kraková et al. 2012). Aspergillus spp. were 

isolated from both brown stains on all the manuscripts and from the brown rings of manuscript 1.  

Aspergillus fumigatus is one of the most ubiquitous airborne saprophytic fungus. Being a xerophilic 

and xerotolerant fungus, it has often been isolated from the indoor aeromycoflora of libraries 

(Zielinska-Jankiewicz et al. 2008), museums (Gaüzère et al. 2013) and hospitals (O’Gorman, 2011). 

The proteololytic activity of A. fumigatus represents a potential risk for library materials as it might 

hydrolyse different complex proteins available as substrates, including collagen (Lee & 

Kolattukudy, 1995; Farnell et al. 2012). Besides all these potential effects on manuscript, handling 

mould-contaminated objects constitutes a health risk as A. fumigatus is an opportunistic human 

pathogen (O’Gorman, 2011; Pinheiro et al. 2011). Interestingly, there are other case studies in the 

literature reporting the identification of only one fungal genus, i.e. Aspergillus or Penicillium, in the 

air of archives (Borrego et al. 2010; 2012). 

Although in this research the suitability and usefulness of using non-invasive sampling 

methods and molecular techniques to determine the presence and diversity of bacteria and fungi on 

heritage material has been demonstrated, these methods also have some drawbacks. The molecular 

approach can be time-consuming, requires skilled personnel and is often expensive (Cleeland et al. 

2013) and a major intrinsic limitation of non-invasive techniques is that microorganisms growing in 

the substrate without producing emerging structures cannot be collected (Cappitelli et al. 2010). The 

study of the microbial communities on the manuscript surfaces was undertaken together with the 

study of the microbial airborne communities and the environmental conditions in close proximity to 
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where the manuscripts are stored as well as outside the repository. It is widely reported that 

microbial cells reach surfaces mainly through transport in air (Borrego et al. 2010) and that a close 

relationship exists between culturable airborne microorganisms and the microflora colonising paper 

documents (Cappitelli et al. 2010). Aerobiological and thermo-hygrometric investigations of 

conservation environments are therefore helpful in choosing interventions aimed at preventing the 

microbiological deterioration of historical documents. In the present work, the air-sampling 

procedure and the study of airborne microbial community was carried out without any cultivation 

step, in order to fully investigate the source of surface-associated biodeteriogens. This is the first 

time that such an approach has been proposed for historical document repositories. The microbial 

community fingerprints from DGGE gels were compared by PCA-analysis to investigate the 

relationship between surface-associated and airborne communities. The analysis showed the lack of 

a clear relationship between bacterial communities in air and on manuscript 1, and although some 

samples from both the brown stains and the rings were similar to some airborne communities 

detected inside and outside the repository during both winter and summer, most samples showed no 

such similarity. In addition, PCA-analysis excluded the presence of a relationship between fungal 

communities in air and on manuscript surfaces. This lack of similarity was in contrast to data based 

on conventional cultural-dependent methods (Cappitelli et al. 2010). Indeed, Polo et al. (2012) in a 

culture-independent investigation excluded a close similarity between airborne and surface-

associated microflora on stone surfaces in an outdoor environment. There could be several reasons 

for this: the culture-based approach greatly limits the microflora that can be studied; the diluted 

concentrations of airborne microorganisms make detection difficult; environmental factors cause 

important quantitative and qualitative changes of airborne communities in space and time and the 

chemical and physical features of surfaces select colonising microorganisms.  

The sequencing of bands of airborne microflora demonstrated that in addition to 

microorganisms belonging to Burkholderia, Betaproteobacteria, Methylobacterium, 

Microbacterium, Sphingomonas and Aeribacillus identified on the discoloured surfaces, airborne 

communities also included bacteria belonging to Mesorhizobium. Mesorhizobium sp. is a soil 

bacterium (Gonzàlez-Lòpez et al. 2005) and is most likely present because the repository is located 

in a rural area. Aspergillus was the only fungal genus detected inside and outside the repository in 

both winter and summer. Aspergillus spp. have been isolated from the air of indoor and outdoor 

environments (Arya et al. 2001; Borrego et al. 2010; Vanhee et al. 2010; Docampo et al. 2011; 

Borrego et al. 2012), and are considered primary colonizers: when the relative humidity increases, 

and indoor environments are without ventilation for long periods of time, conidia can be deposited 

quickly over documents and deteriorate them (Borrego et al. 2012).  
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Airborne Methylobacterium, Microbacterium, Sphingomonas and Aspergillus spp. are 

potential biodeteriogens. However, air microbiota are known to coexist with document collections 

without causing significant damage under suitable conditions of temperature and relative humidity. 

However, if there is an increase in thermohygrometric values, microorganisms can accelerate 

deterioration (Cappitelli et al. 2009; Borrego et al. 2012). Furthermore, parchment absorbs water, 

expanding when the relative humidity rises and shrinking when it falls (Pavlogeorgatos 2003; 

Giacometti et al. 2012). Therefore suitable thermo-hygrometric conditions inside the repository are 

crucial. The UNESCO program ‘Memory of the World’ (UNESCO 1995) suggests 18 °C 

(maximum daily variability of 2°C) and 50-60% relative humidity (maximum daily variability of 

5%) as optimal values to prevent the deterioration of parchment (UNESCO 2000). At present, the 

repository environment is not suitable to protect the parchment as in both winter and summer the 

temperatures are respectively below and above the threshold values. In addition, the microclimatic 

parameters are subject to marked seasonal change, possibly because the windows of the repository 

are not fully insulated, allowing the outdoor environment to contribute to temperature and humidity 

fluctuations. 

Microbial loads inside and outside the repository (confined and semi-confined environment, 

respectively) were determined, because current museum regulations consider only microbial load 

thresholds in order to establish air contamination. Indeed, the museum standards set down by the 

Italian Ministry of Cultural Heritage (MIBAC 1998) recommend less than 750 CFU m-3 of 

heterotrophic bacteria and less than 150 CFU m-3 of fungi for museum indoor environments. The 

aerobiological monitoring that was carried out showed that in winter, the bacterial loads did not 

exceed the limits either inside or outside the repository; instead the fungal loads always exceeded 

the threshold values at all the sampling sites (both in the semi-confined and confined environment). 

During the summer, the microbial load (both bacteria and fungi) exceeded the threshold values at 

every sampling site, with the exception of the bacterial load outside the repository door. The 

microbial load outside the repository door during both summer and winter were about one order of 

magnitude less than that reported by other similar investigations conducted in outdoor environments 

(Cappitelli et al. 2009). Instead, inside the repository the microbial counts agreed with those 

reported in investigations conducted in other indoor environments (Cappitelli et al. 2009; Borrego et 

al. 2012).  

In summary, microscopic and viability assays currently demonstrate that biodeterioration 

does not represent a threat to the conservation of the manuscripts. Nevertheless, to ensure long-

lasting conservation of the manuscripts, the marked differences in the presence of microbes between 

winter and summer (probably due to inadequate controlled environmental conditions), the presence 
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of potential biodeteriogens and an opportunistic human pathogen and the retrieval of 

microorganisms related to the human body led to the following proposals: i) environmental 

remediation of the repository; ii)  routine monitoring of air and surfaces; and iii) improvement of 

handling procedures. In order to prevent seasonal fluctuations in thermo-hygrometric conditions, 

the door and windows of the repository should be insulated and adequate climate control equipment 

installed. Furthermore the microclimatic parameters and the microbial contamination on the surface 

of heritage objects, and the surrounding air should be monitored from both the quantitative and 

qualitative points of view at least twice a year, corresponding to the winter and summer seasons. 

Finally, from now on, the manuscripts should be handled only using gloves. 

While in this specific case study the number of microorganisms detected was only small, it is 

possible that there could be extensive colonization of  parchment surfaces by a microbial 

community that could actively attack collagen. To obtain information about the biodegradation 

potential of the microbial communities present on objects, molecular techniques could be used. 

Indeed, bacteria and fungi capable of degrading parchment produce a group of enzymes called 

collagenases (Talwar & Srivastava 2003). A molecular approach, based on the use or design of 

primer/probe sets specific for collagenase gene identification could be adopted to evaluate the 

potential ability of the community to degrade collagen (Tsuruoka et al. 2003; Sadikot et al. 2005). 

Today, the need for integrated microbiological risk management, supported by well-managed 

information, is crucial to collection institutions where human and financial resources are often 

limited. The coupling of the fast detection of viable microbial colonization with more selective 

molecular techniques has proved effective for a quick and exhaustive inspection of both surfaces 

and air quality. In this respect, the present work promotes the proposal of guidelines for the correct 

management of historical documents, in order to preserve them from microbiological attack and, in 

turn, to ensure long-lasting conservation.  
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Figure 1. Brown stain on pages (a) and brown ring on lower-external edges of sheets (b). 
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Figure 2. Repository plan. The rectangle inside the repository indicates the bookcase. Numbers 

indicate the air sampling sites both outside (1) and inside (2-5) the repository door. 
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Figure 3. Cells stained with Fluorescent Brightener 28 (blue fluorescence) and SYTO 9 (green 

fluorescence) on tape samples: bright field (a) and epifluorescence (b) microscope images of 

apparently non-discoloured area (sample P2.139.1); bright field (c) and epifluorescence (d) 

microscope images of P2.139.2 showing brown stain.  

 

 

 

 

 

Figure 4. 16S (a) and 18S rRNA gene (b) DGGE profiles of the samples (P2.139.2, P1.21.1, 

P1.21.2, P1.32.2, P1.42.1, P1.103.3, P1.52.1, P1.52.2, P1.108.1, P1.108.2, AW.1, AW2, AW.3, 

AW.4, AW.5, AS.1, AS.2, AS.3, AS.4, AS.5, P1.108.3 and P2.139.1 for 16S DGGE profiles; 

P2.139.2, P3.69.1, P6.1.3, P5..49.1, P4.1.1, P6.1.2, P2.139.1, P1.10.1, P1.1.1, P1.21.2, P1.32.1, 

P1.52.2, P1.108.2, AW.1, AW.2, AW.3, AW.4, AW.5, AS.1, AS.2, AS.3, AS.4 and AS.5 for 18S 

DGGE profiles).  
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Figure 5. bacterial (a) and fungal (b) DGGE band patterns from samples collected on parchment 

surface. In panel (a)  represents sample P1.108.3 from the non-discoloured surface of manuscript 

1 and P2.139.1 from manuscript 2; in panel (b)  represents the samples from non-discoloured 

surface of the manuscripts from 1 to 7. 
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Figure 6. PCA-analysis of bacterial (a) and fungal (b) DGGE band patterns from parchment surface 

and air samples. In panel (a)  represents the sample P1.108.3 from the non-discoloured surface of 

manuscript 1 and P2.139.1 from manuscript 2; in panel (b)  represents the samples from non-

discoloured surfaces of the manuscripts from 1 to 7.  
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Table 1. Samples collected for microbiological analyses: sample code, type of discolouration, 

location and analyses. The sample codes are presented in the form XY.Z.(T), where X indicates the 

sample source (P for parchment and A for air), Y represents the manuscript (numbered 1 to 7) for 

samples from parchment, or the sampling season for air samples (S for summer and W for winter), 

Z indicates the sampling page (for samples from parchment) or the sampling sites in the repository 

(for air samples). Only for the samples taken from the manuscripts, T represents the page number. 
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TYPE OF SAMPLE (CODE XY.Z.(T)), POSITION AND ALTERATION TYPE OF ANALYSIS 

SURFACE AIR 

MICROSCOPY 
CELL 

VIABILITY 
MOLECULAR 

METHODS 
MICROBIAL 

LOAD 
ON THE PAGE 

LOWER-EXTERNAL EDGES OF 

SHEET 
 

NON-
DISCOLOURED 

SURFACE 
BROWN STAIN BROWN RING  

  

P1.1.1  P1.10.1  P1.21.1  P1.32.1  
P1.42.1  P1.52.1  P1.108.1  P2.1.2  
P2.139.3  P3.69.3  P4.1.1  P5.30.2  
P5.49.2  P6.1.1  P7.41.2  P7.77.22 

  X X  

 

P1.10.2  P1.10.3  
P1.21.2  P1.32.2  
P1.52.2  P1.108.2  
P2.1.1  P3.69.1  

P3.69.2  P5.30.1  
P5.49.1  P6.1.2  
P7.41.1  P7.77.1 

   X X  

 P2.139.2  P4.1.2   X X X  

P2.139.1    X X X  

P1.108.3  P3.69.4  
P4.1.3  P5.30.3 
P6.1.3  P7.77.3 

    X X  

   

AS.1  AS.2  AS.3  
AS.4  AS.5  AW.1  

AW.2  AW.3  
AW.4 AW.5 

  X X 
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Table 2. Identification of 16S and 18S gene sequences of DGGE profiles from brown stains (BS) 

and brown ring (BR) on several manuscripts (P1-P7), and air during summer and winter, both inside 

(in) and outdoors (out) of the repository. (B) indicates the control sample from a non- discoloured 

area. X and - indicate, respectively, presence or absence of the strain.  
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Samples  BlastN reference strains  RDP tassonomic Classifier 

P1  P2  P3  P4  P5  P6  P7 
Air 

summer 
Air 

winter 
B  Closest relative strain 

Accession 
number 

Similarity  
(%) 

Most probable 
taxon 

Similarity 
(%) 

B
S 

B
R
 

B
S 

B
R
 

B
S 

B
R
 

B
S 

B
R
 

B
S 

B
R
 

B
S 

B
R
 

B
S 

B
R
 

in
 

o
u
t 

in
 

O
u
t 

           

X  X                              X     
Burkholderia 
thailandensis  DQ388537  99  Burkholderia  100 

  X                              X  X   
Uncultured 

Betaproteobacterium  JQ937380  98  Betaproteobacteria  100 

                                X  X   
Uncultured 

Methylobacterium sp.  HM565053  96  Rhizobiales  100 

                                X  X   
Uncultured 

Mesorhizobium sp.  GU271769  96  Rhizobiales  100 

X  X                              X  X    Methylobacterium sp.  EU303272  99  Methylobacterium  100 

X  X                                X    Microbacterium sp.  JF279926  99  Microbacteriaceae  100 

X  X                                   
Lactobacillus 

sanfranciscensis  JN863669  98  Lactobacillus  87 

X  X                                X    Microbacterium sp.  JX434128  98  Micrococcineae  100 

  X                          X    X      Sphingomonas sp.  JQ917912  99 
Sphingomonadacea

e  100 

X  X                            X  X     
Uncultured 

Methylobacterium sp.  JF274019  98  Methylobacterium  100 

X  X                            X  X      Aeribacillus sp.  KC551235  100  Aeribacillus  98 

X  X  X    X    X    X    X    X    X  X  X  X  X 
Uncultured Aspergillus 

sp. 
AJ635506  99   

 

X  X                                    Candida sp.  HM161746  99   
 

  X                                    Aspergillus sp.  HE814598  99     

X  X                          X  X  X      Aspergillus fumigatus  JQ665711  100   
 

X  X                                    Candida albicans  JN940588  99   
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Table 3. Microbial airborne loads (CFU m-3), Temperature (T°C) and Relative Humidity (RH%) 

values registered at the air sampling sites (see Figure 2) during sampling days in winter and 

summer. 

Sampling 
site 

Winter Summer 

Bacteria 
(CFU m-3) 

Fungi 
(CFU m-3) 

T 
(°C) 

UR 
(%) 

Bacteria 
(CFU m-3) 

Fungi 
(CFU m-3) 

T 
(°C) 

UR 
(%) 

1 213±155 533±103 6.7 27.4 486±332 869±164 24.5 67.7 
2 73±12 420±191 5.2 45.5 1461±141 481±51 24.3 64.6 
3 147±81 480±72 4.0 49.9 1292±258 394±5 24.3 62.4 
4 207±136 440±80 2.1 61.2 1397±59 364±34 27.7 60.8 
5 267±99 420±92 4.1 54.6 817±92 211±54 24.4 62.9 

 


