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Background and aims: The measurement of resting energy expenditure (REE) is important to assess in-
dividual total energy requirements in older subjects. The validity of REE prediction equations in this
population has not been thoroughly evaluated and therefore the main aim of this analysis was to assess
the accuracy of REE prediction equations in older subjects.
Methods: Weight, height and body mass index (BMI) were measured. REE was measured by indirect
calorimetry (IC) in 68 older subjects (age: 60e94 years, M/F: 13/55, BMI: 26.3 � 5.0 kg/m2). Measured
REE was compared to 14 equations for the calculation of REE estimates. In addition, two novel ap-
proaches (Aggregate model and meta-regression equations) for the prediction of REE were evaluated.
Paired t test and BlandeAltman method were used to assess the agreement of the equations.
Results: The average measured REE was 1298 � 264 kcal/day. The equation with the smallest bias was
proposed by Muller (Bias � 2SD ¼ þ3 � 294 kcal/day) whereas the Mifflin equation was associated with
the largest error (Bias � 2SD ¼ �172 � 282 kcal/day). The Aggregate, Muller, HarriseBenedict and Fredrix
equations were characterised by a prediction within �10% of measured REE in more than 60% of subjects.
Of the four algorithms, only the Aggregate equation did not show a significant association of the mea-
surement bias with age, BMI and gender.
Conclusions: The Aggregate algorithm was characterised by a higher, overall accuracy for the prediction
of REE in older subjects and its use should be advocated in older subjects. However, due to the large
variability of the estimates, the measurement of REE by IC is still recommended for an accurate
assessment of individual REE.

� 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism.
1. Introduction

The measurement of individual total energy expenditure (TEE)
is a critical component of diagnostic protocols for the assessment of
nutritional status. Resting energy expenditure (REE) contributes to
approximately 70% of the TEE and therefore is routinely used as the
primary step to define total energy requirements after accounting
for physical activity energy expenditure (PAEE) and thermic effect
of food (TEF).1 REE can be precisely measured using indirect calo-
rimetric systems but the instruments are expensive and, as a result,
the measurements are still confined to specialised settings.
).
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Predictive equations based on demographic (age, sex, ethnicity),
anthropometric (weight, height) and body composition variables
(fat free mass, fat mass) have been developed over the last century
to allow simple and rapid calculations of REE.

However, new prediction equations are continuously developed
using a variety of socio-demographic factors (age, ethnicity, BMI,
gender) as predictors and applied in different physiological states
(growth, menopause, physical activity level) and disease processes
(acute and chronic diseases). Therefore, the growing number of
equations makes difficult the selection of a specific equation that
will work well in different contexts.

Ageing-related changes in body composition and cellular en-
ergy metabolism influence total energy expenditure and its sub-
components. The decrease in REE is mainly related to the pro-
gressive, reciprocal changes in higher (fat-free mass (FFM),
utrition and Metabolism.

quations for the measurement of resting energy expenditure in older
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decrease) and less metabolically active (fat mass (FM), increase)
tissues, which appears to be due to a reduction in organ mass and
specific metabolic rates of individual tissues.2 Hence, REE pre-
dictions equations validated in young populations may not be
applicable to older subjects, particularly to the very old (>80 y).
The applications of these equations may lead to an increased
measurement error, inaccurate estimation of energy requirements
and, particularly in frail older individuals, development of inade-
quate nutritional interventions to maintain an optimal nutritional
status. Three prediction equations have been specifically devel-
oped in geriatric populations but the association of the measure-
ment bias with age has not been evaluated. In addition, two novel
approaches have been recently proposed. Wells et al.3 developed
an “Aggregate” approach based on the hypothesis that pooling
together independent REE estimates derived from different algo-
rithms would improve accuracy and reduce error variability. The
Aggregate approach showed greater accuracy compared to other
prediction equations in a population of young women but the
accuracy of this approach has not been evaluated in older subjects.
Secondly, a new array of 20 algorithms taking into account weight,
age (young, old), gender (male, female) and ethnicity (White
Caucasian, African American, Asian, Hispanics) has been derived
from a meta-regression of 47 algorithms published in the litera-
ture.4 Neemalat et al. have recently evaluated the accuracy of REE
predictive equations in hospitalised malnourished older patients
and reported a proportional bias of predictive equations, with
overestimation of low REE values and underestimation of high REE
values.5 The accuracy of the REE algorithms has not been tested in
an independent sample of non-hospitalised older subjects.

The main aim of this study was to evaluate the accuracy of
established (HarriseBenedict,6 Owen,7 Mifflin,8 Bernstein, Muller,9

Fredrix,10 WHO,1 EU,11 Luhrmann,12 De Lorenzo,13 Korth,14 Scho-
field15) and novel equations (Aggregate3 and meta-regression4) for
the measurement of REE in older subjects. We have also evaluated
whether the bias of each individual equation is influenced by age,
gender and BMI.

2. Methods

2.1. Subjects

Subjects were recruited consecutively among patients who
attended the International Center for the Assessment of Nutritional
Status (ICANS, University of Milan) for body composition evaluation
between 2009 and 2010. Eligible for the studywerewhite Caucasian
subjects of both genders fulfilling the following criteria: 1) age�60
years; 2) body mass index (BMI) �50 kg/m2; 3) absence of signifi-
cant cardiovascular or pulmonary diseases, uncontrolled metabolic
disease (diabetes, anaemia or thyroid disease), cancer or inflam-
matory conditions, any use of drugs (corticosteroids, hormones,
etc.) that might interfere with REE 4) absence of weight loss or gain
(>5 kg) in the last year and 5) no treatment with special diets. All
measurements were performed, in the same morning, in 84 sub-
jects, including seven smokers, after an overnight fast. Sixteen
subjects were excluded from the final analysis due to: 1) a respira-
tory quotient outside the expected physiological range (0.71e1.00)
(11 subjects), BMI less than 18.0 kg/m2 (3 subjects) and measured
REE greater than �3SD (2 subjects). Sixty-eight subjects (Male/Fe-
male: 13/55) were included in the final analysis. The higher preva-
lence of female subjects is representative of the higher number of
female subjects attending our outpatient nutritional clinic. The
study procedureswere approved by the local Ethical Committee and
all subjects gave informed consent. The STROBE statement for cross-
sectional studies16 has been adopted to provide detailed informa-
tion on the study design and sample characteristics.
Please cite this article in press as: Siervo M, et al., Accuracy of predictive e
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2.2. Measurements

2.2.1. Anthropometry
Measurements were collected by the same operator, according

to standardised procedures.17 Body weight (WT, Kg) and Height
(HT, cm) were measured to the nearest 0.1 kg and 0.5 cm, respec-
tively. BMI was calculated using the formula: BMI (Kg/m2) ¼ WT
(Kg)/HT2 (m).

2.2.2. Measured REE
An open-circuit ventilated-hood system indirect calorimetry

was used (Sensor Medics 29, Anaheim, CA, USA). Resting VO2 and
VCO2 measurements were taken in the early morning, after an
overnight fast, under standardised conditions, with the person
lying awake and emotionally undisturbed, completely at rest and
comfortably supine on a bed, their head under a transparent
ventilated canopy, in a thermally neutral environment (24e26 �C),
and after at least 8 h of sleep. Respiratory gas samples were taken
by a ventilated hood system, every minute for 30e40 min and the
data collected during the first 5e10 min were discarded, as rec-
ommended by Isbell et al.18 This allowed the subjects to acclimatize
to the canopy and instrument noise. The calorimeter was calibrated
daily before starting the tests, using a two-point calibrationmethod
based on two separate mixtures of known gas content. The flow
rate was calibrated with a 3-liter syringe, according to the calo-
rimeter manufacturer’s instructions. The average of the last 20 min
of measurements was used to determine 24 h REE according to
standard abbreviated Weir equation.19

2.2.3. Predicted REE
ThemeasuredREEwas then compared to the following published

REE prediction equations: 1)HarriseBenedict,6 2) Owen,7 3)Mifflin,8

4) Bernstein,20 5) World Health Organization (WHO),21 6) Fredrix,10

7) Livingston,22 8) Muller,9 9) Luhrmann,12 10) Schofield,15 11) Eu-
ropean Community,11 12) Henry,23 13) Korth,14 14) De Lorenzo.13 In
addition two recent computational approaches based on meta-
regression of data from 47 published studies and on the calculation
of the Aggregate estimates of REE were also evaluated. The first
approach4 provides meta-regression equations with different inde-
pendent factors, including those that only rely on a subset of easily
measured covariates (weight, age, height, gender and race). This
procedure incorporates the coefficients or slopes of previously
developedequations into a single slope. The latter approach3 is based
on the assumption that the REE predictions are independent of one
another; that the individual predictions are based on different un-
derlying assumptions and that these independent predictions are
then aggregated. Under these conditions, the error will not be
correlated across the predictions, but will rather be randomly
distributed across them and hence tend to cancel out, increasing the
accuracy of the REE Aggregate prediction. The algorithm of each
equation for the prediction of REE is reported in Table 1. The differ-
ence betweenmeasured and predicted REE (DREE) was expressed in
absolute values (kcal/day, mean bias) and percentage (%, relative
bias). Relative Bias (%)was calculated as: (DREEMean Bias)/REEMeasured)
*100. A measurement was considered inaccurate when the relative
biaswas greater than�10% ofmeasured REE; the number of subjects
with an inaccurate prediction was calculated together with the
maximal overestimation (MOE) and maximal underestimation
(MUE) for REE. The association between age, BMI and gender with
REE estimates was evaluated to indicate whether these factors had a
significant influence on the measurement bias.

2.2.4. Statistical analysis
The data are reported as mean� SD. The BlandeAltmanmethod

was used to evaluate the agreement between measured and
quations for the measurement of resting energy expenditure in older
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Table 1
Characteristics of equations for the prediction of resting energy expenditure (REE).

Characteristics Prediction equation

REEHarriseBenedict N ¼ 239 (136 M, 103 F)
Age ¼ 29 � 14 y

REE ¼ 655 þ 9.5*WTþ1.9*HT � 4.7*AGE

REEOwen N ¼ 104 (60 M, 44 F)
Age range ¼ 18e82 y

M: REE ¼ WT*10.2 þ 879
F: REE ¼ WT*7.18 þ 795

REEMifflin N ¼ 498 (251 M, 248 F)
N ¼ 264 normal weight (129 M, 135 F),
N ¼ 234 obese (122 M, 112 F)
Age range ¼ 19e78 y, BMI ¼ 17e42 kg/m2

REE ¼ 9.99*WTþ6.25* HT � 4.92*AGE þ 166*SEX � 161

REEBernstein N ¼ 202 (48 M, 154 F)
mean age ¼ 40 y
mean BMI ¼ 37 kg/m2

M: REE ¼ 11.02*WT þ 10.23*HT � 5.8*AGE � 1032
F: REE ¼ 7.48*WT � 0.42*HT � 3*AGE þ 844

REEFredrix N ¼ 40 (18 M, 22 F)
mean age ¼ 65�8 y
mean BMI ¼ 25.9 � 2.5 kg/m2

REE ¼ 1641 þ 10.7*WT � 9*AGE � 203*SEX

REELivingston N ¼ 655 (299 M, 356 F)
age range ¼ 18e95 y
body weight range ¼ 33e278 kg

M: REE ¼ 293*WT0.4330 � 5.92*AGE
F: REE ¼ 248*WT0.4356 � 5.09*AGE

REEWHO Based on Schofield equation.
Large database including w11,000 subjects.

M: REE>60y ¼ 13.5*WT þ 487
F: REE>60y ¼ 10.5*WT þ 596

REEMuller Development: N ¼ 2528 (1027 M, 1501 F)
Cross validation: 1046 (388 M, 658 F)
age 5e80 y
mean BMI ¼ 27 kg/m2

REE ¼ 0.047*WT � 0.01452*AGE þ 1.009*SEX þ 3.21

REELuhrman 179 F (age ¼ 67.8 � 5.7 y, BMI ¼ 26.4 � 3.7 kg/m2)
107 M (age ¼ 66.9 � 5.1 y, BMI ¼ 26.3 � 3.1 kg/m2)

REE ¼ 3169 þ 50.0*BW � 15.3*AGE þ 746*SEX

REESchofield Data from several populations including European,
North American and tropical countries
N ¼ 7173
Mean BMI range of studies: 21e24 kg/m2

M: REE>60y ¼ 11.711*WT þ 587.7
F: REE>60y ¼ 9.082*WT þ 658.5

REEEU3 These equations are based on the WHO and Schofield
equations except for the data on the two older groups
where selected data taken from Schofield have been
amplified by data collected on Scottish and
Italian elderly subjects

M: REE60e74y ¼ 11.9*WT þ 700
F: REE60e74y ¼ 9.2*WT þ 688
M: REE�75y ¼ 8.4*WT þ 819
F: REE�75y ¼ 9.8*WT þ 624

REEHenry N ¼ 10,552 (5794 M, 4702 F).
The data was obtained from 166
separate investigations.

M: REE60e70y ¼ 13*WT þ 567
F: REE60e70y 10.2*WT þ 572
M: REE>70y ¼ 13.7*WT þ 481
F: REE>70y ¼ 10*WT þ 577

REEKorth N ¼ 104 (50 M, 54 F)
age range ¼ 21e68 y
BMI range ¼ 18e41 kg/m2

REE ¼ 41.5*WT þ 35.0*HT þ 1107.4*SEX � 19.1*AGE � 1731.2

REEDe Lorenzo N ¼ 320 (127 M, 193 F)
age range ¼ 18e59 y
BMI range ¼ 17e40 kg/m2

M: REE ¼ 53.284*WT þ 20.957*HT � 23.859*AGE þ 487
F: REE ¼ 46.322*WT þ 15.744*HT � 16.66*AGE � 944

REEMeta Regression The analysis included 47 studies which contained detailed
information for development of meta-regression equations.
Utilising these studies, meta-equations were developed
targeted to 20 specific population groups.

BMR was estimated based on the most appropriate equation
after user-entry of individual age, race, gender and weight.
An online BMR prediction tool is available at: www.sdl.ise.vt.edu/tutorials.html

REEAggregate Based on model proposed by Wells et al. (ref). Average of individual predicted REE of all algorithms included in the database

N ¼ number of subjects; M ¼ male; F ¼ female; BMI ¼ body mass index; WT ¼ weight (kg); HT ¼ height (cm); SEX ¼ Male ¼ 1, Female ¼ 1.
All algorithms calculate REE in kcal/day.
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predicted REE.24 The method entails the calculation of the mean
bias and limits of agreements (�2SD) between measured REE and
predicted REE. The paired t test was used to determine the statis-
tically significant differences between the measured and predicted
REE estimates. Pearson’s correlation was used to assess the asso-
ciation of predicted andmeasured REE and to evaluate whether age
and BMI were significantly associated with mean bias. The analysis
was stratified by age in order to evaluate between-gender differ-
ences in the accuracy of the different equations. SPSS 17.0 for
Windows was used (IBM) to conduct the statistical analysis. Sta-
tistical significance was set at p < 0.05.

3. Results

Sixty-eight older aged men (N ¼ 13) and women (N ¼ 55) were
included in the analysis for the assessment of accuracy of REE
predictions. The mean age was 74.4 � 9.3 years and the mean BMI
Please cite this article in press as: Siervo M, et al., Accuracy of predictive e
subjects, Clinical Nutrition (2013), http://dx.doi.org/10.1016/j.clnu.2013.0
was 26.3 � 5.0 kg/m2. The mean measured REE was
1298 � 264 kcal/day (Table 2). REE was significantly higher in men
than women (1654 � 218 kcal/day vs 1214 � 195 kcal/day,
p < 0.001) but the differences were removed after adjustment for
body weight (20 � 3 kcal/day vs 20 � 2 kcal/day, p > 0.05,
respectively) (data not shown).

The absolute difference between predicted and measured REE
(Table 3) showed that several equations3,4,6e10,12,13,15,23 were char-
acterised by a non-significant bias compared to measured REE. The
Muller’s9 equation was associated with the smallest bias
(Bias � 2SD ¼ þ3 � 294 kcal/day) whereas the Mifflin8 equation
was characterised by the largest bias (Bias � 2SD ¼ �172 �
282 kcal/day, p < 0.001). However, all equations showed wide
limits of agreements (�2SD) which ranged from 279 kcal/day
(Fredrix10) to 345 kcal/day (Bernstein). The analysis of the relative
bias (%) showed a similar agreement pattern and relative bias
ranged from 0.01% (De Lorenzo) to �12.0% (Mifflin) (Fig. 1A). Four
quations for the measurement of resting energy expenditure in older
9.009
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Table 2
Anthropometric characteristics and measured and predicted resting energy
expenditure (REE) in 68 older subjects (F/M ¼ 55/13).

Mean SD Min Max

Age (years) 74.4 9.3 60.0 94.0
Height (m) 158.4 10.3 138.0 184.0
Weight (kg) 66.4 15.7 44.3 115.0
BMI (kg/m2) 26.3 5.0 18.1 48.1
REEIC 1297.9 264.2 756.0 1806.9
REEHarriseBenedict 1271.1 242.8 941.2 2116.0
REEOwen 1271.0 112.9 1113.1 1620.7
REEMifflin 1126.8 223.7 756.2 1806.9
REEBernstein 1184.1 131.1 979.5 1578.1
REEFredrix 1314.4 266.4 899.4 2071.5
REELivingston 1154.2 172.4 856.9 1620.1
REEWHO 1403.9 135.8 1212.6 1821.6
REEMuller 1301.9 257.9 969.9 2062.0
REELuhrman 1281.4 199.4 975.9 1880.6
REESchofield 1290.1 189.8 1060.8 1934.4
REEEU 1329.0 223.3 1058.1 2068.5
REEHenry 1289.9 231.0 1020.0 2062.2
REEKorth 1280.8 321.0 839.0 2222.9
REEDe Lorenzo 1286.8 257.3 923.1 2117.6
REEMeta-Regression 1293.3 277.2 945.0 2092.0
REEAggregate 1271.8 242.8 981.9 1934.3

BMI ¼ Body Mass Index. F¼Female. M ¼ Male. IC ¼ Indirect Calorimetry.
WHO ¼ World Health Organization. REE estimates are in kcal/day.
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equations were characterised by a prediction within �10% of
measured REE in more than 60% of subjects, which include the
Aggregate (63%), Muller (63%), HarriseBenedict (64%) and Fredrix
(66%) algorithms (Fig. 1B). We explored the correlation between
REE bias with age and BMI (Fig. 2A). Six equations showed a lack of
differential bias. The Fredrix and Aggregate equations were the only
two equations of the 4 equations with a higher accuracy that
showed a non-significant association with age (Fredrix: r ¼ �0.05;
Aggregate: r¼ 0.15) and BMI (Fredrix: r¼ 0.18; Aggregate: r¼ 0.06).
However, the REE prediction estimates of the Fredrix’s equation
were significantly influenced by gender since the mean bias was
significant in men and not in women. The Aggregate equation was
instead not significant in both men and women (Fig. 2B). The
Table 3
Calculation of mean absolute (kcal/day) and relative (%) differences (D) to test the
accuracy of the prediction equations against measured Resting Energy Expenditure
(REEIC).

DREE �2SD MUE MOE r

kcal/day

REEHarriseBenedict �26.7 282.4 �387.1 311.6 0.85
REEOwen �26.0 383.9 �439.3 453.0 0.76
REEMifflin �171.5*** 282.1 �566.6 176.5 0.85
REEBernstein �113.9*** 345.0 �494.4 306.2 0.82
REEFredrix 16.5 279.3 �380.0 317.3 0.86
REELivingston �143.8*** 309.6 �489.3 233.0 0.82
REEWHO 105.2*** 366.8 �284.2 577.0 0.76
REEMuller 3.0 294.2 �362.2 364.9 0.84
REELuhrman �16.4 311.1 �361.1 376.0 0.81
REESchofield �7.2 314.5 �292.8 432.5 0.81
REEEU 31.8 291.1 �289.0 441.8 0.83
REEHenry �8.7 305.0 �326.0 407.0 0.81
REEKorth �16.9 350.1 �486.7 522.9 0.84
REEDe Lorenzo �11.9 288.8 �408.7 334.7 0.85
REEMeta-Regression �4.5 314.9 �401.0 351.4 0.83
REEAggregate �26.0 283.3 �364.9 413.0 0.85

WHO ¼ World Health Organization. DREE ¼ REEPredicted-REEIC; MUE ¼ Maximal
DREE underestimation; MOE ¼ Maximal DREE overestimation; r: coefficient of
correlation.
Paired t-test was performed to detect significant differences between measured REE
and predicted. *p < 0.05; **p < 0.01; ***p < 0.001.
All coefficients of correlation are statistically significant at p < 0.001.

Fig. 1. Accuracy of prediction equations for the measurement of REE. A: Percent bias of
Resting Energy Expenditure (REE) prediction equations compared to measured REE.
Mean Relative Bias (%) was calculated as: (DREEPredicted)/REEMeasured)*100. Error bars
are �95% CI. B: Percent of REE estimates with a Mean Relative Bias (%) within �10% of
measured REE for each prediction equation.

Please cite this article in press as: Siervo M, et al., Accuracy of predictive e
subjects, Clinical Nutrition (2013), http://dx.doi.org/10.1016/j.clnu.2013.0
exclusion of the 6 active smokers from the analyses did not modify
the results as the Fredrix and Aggregate equations were associated
with the most accurate REE estimates (data not shown).
4. Discussion

We have conducted a comprehensive analysis of anthro
pometry-based prediction equations for the measurement of REE
in older men and women. Several equations showed a non-
significant absolute (kcal/day) and relative (%) measurement bias
compared to measured REE. However, more detailed analyses of
their predictive accuracy identified four equations as being asso-
ciated with a higher accuracy, calculated as the number of REE
estimates within a �10% level of accuracy. The prediction of REE
using the Fredrix and the Aggregate equations was independent of
age and BMI but Fredrix’s REE estimates were influenced by gender.

This analysis has included anthropometric algorithms
frequently applied in clinical practice and cross-validated in
quations for the measurement of resting energy expenditure in older
9.009



A
B

Fig. 2. Association of REE measurement bias with age, gender and BMI. A: Correlation between Mean Relative Bias (%) with age and Body Mass Index (BMI) is showed for each
prediction equation. Dotted lines indicate threshold for statistical significance of the associations (r ¼ 0.23, n ¼ 68). The results did not change when absolute mean bias was
included in the analyses (results not shown). B: Description of the differences between predicted and measured REE (mean bias) in men and women. The asterisks (*) indicate a
significant difference (p < 0.05) of predicted REE compared to measured REE (paired t test).
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previous research studies. In addition, we have included in our
analyses prediction equations that were: 1) derived in older sub-
jects; 2) included older subjects in the original sample and 3)
frequently applied equations in clinical practice and validation
studies. An important limitation of several predictive equations
which question their applicability in older aged subjects is related
to the small number of older subjects (60 yþ) in the validation
samples (for example the HarriseBenedict6 sample included only 9
subjects over 60 years of age).

The first two equations specifically validated for the prediction
of REE in older subjects were proposed by Arciero25,26 and Fre-
drix.10 However, the former was not included in this analysis since
the formula included parameters (chest skinfold and a measure of
leisure physical activity) that were not measured in this study. The
latter has been consistently identified in previous validation studies
as one of the most accurate equations for the REE prediction in
older subjects. A limitation of Fredrix’s10 equation is the very small
sample size (n ¼ 40) and the age range (age: 51e82 y) which may
introduce some reservations in regards to the statistical robustness
of the equation and the applicability in the oldest old, respectively.
More recently, Luhrmann et al.12 has validated a new equation in
older aged subjects. The study included a large sample size
(n¼ 286) andwas characterised by an age range between 60 and 85
years old. To our knowledge, this is the first study to externally
validate the performance of the Luhrmann’s equation in older aged
subjects.

The Aggregate3 approach pools the prediction estimates of
several equations under the assumption that each independent REE
prediction contributes to minimise the prediction error. Wells
et al.3 validated this approach in a population of young women by
reporting a greater accuracy and less variability of the Aggregate
approach compared to other REE equations. The results have been
essentially confirmed in this analysis since the Aggregate approach
was consistently associated with less variability, higher proportion
of accurate measurements (within�10% of measured REE) and age,
BMI and gender-independent measurement bias. The Fredrix’s10

equation was the only other equation that had a similar perfor-
mance in our sample.

This study has followed a rigorous, phased analytical plan to
identify the various components contributing to the ascertainment
Please cite this article in press as: Siervo M, et al., Accuracy of predictive e
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of the accuracy of a prediction equation. The application of a simple
paired t test showed that several equations were associated with a
non-significantmeasurement bias. However, the results of the t test
can be misleading as they are based on the average of the estimates
and a small measurement bias could be simply the result of large
opposite errors counterbalancing each other. This scenario essen-
tially justifies the application of other methods such as the Blande
Altman method24 (differential bias association with mean REE and
calculation of limits of agreements of the measurement bias
(�2SD)) and the calculation of the proportion of predictive esti-
mates within �10% of measured REE. Using this approach we were
able to identify four accurate equations and we had not anticipated
the presence in this group of the HarriseBenedict6 equation
togetherwith theMuller,9 Fredrix10 and Aggregate3 algorithms. The
accuracy of the HarriseBenedict equation in older aged subjects has
been previously reported in two other studies. Taaffe27 showed that
the mean measurement bias of the HarriseBenedict equation was
about 116 kcal/day in older women. In healthy subjects over 70
years of age the HarriseBenedict showed the lowest mean mea-
surement (�40.9 kcal/day) and the highest predictive accuracy
having 72.4% of the cases within �10% of measured REE. The final
step of the analysis plan was to evaluate the absence of a differ-
ential measurement bias associated with age, BMI and gender.
These analyses identified the Aggregate equations as the most ac-
curate in our population since therewas no evidence of a significant
interaction with the aforementioned, potential confounding
factors.

This analysis is the most comprehensive assessment of the ac-
curacy of recognised REE prediction equations in older aged sub-
jects. Additional strengths are the examination of the validity of
two recently proposed algorithms for the REE prediction (Aggre-
gate3 and Meta-Regression4) and the inclusion of 22 subjects over
80 years of age. The validity of prediction equations in the very old
(aged 70e98 y) was tested in 116 healthy Caucasian subjects. Un-
expectedly the HarriseBenedict6 was more accurate than the
Luhrmann’s12 equation whereas a poor accuracy was reported for
the Owen’7 and Mifflin’s8 equations, which has been replicated in
our analysis.

The results overall have shown that the performance of the
equations, including the Aggregate algorithm, is relatively modest
quations for the measurement of resting energy expenditure in older
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as they were collectively able to provide predictions within�10% of
measured REE in about 65% of subjects. The limits of agreement of
the estimates were also wide (range: 279e350 kcal/day), which has
clear implications for the measurement of individual REE. This
prompts again the canonical recommendation provided in the
conclusions of the majority of previous studies, which essentially
advocated for the direct measurement of energy expenditure by
indirect calorimetry.

By definition, each published equation performed well in the
population in which it was derived, but it may not necessarily
perform well in other population. In the present study, the Fredrix
equation performed well, but we cannot be sure whether this
finding would generalise across other elderly populations. In
contrast, the ability of the Aggregate approach to reduce error by
randomising it across multiple equations indicates that this
approach is expected to generalise across populations more suc-
cessfully. Therefore, we recommend the Aggregate approach as the
best option.

Resting energy expenditure accounts for most of TEE but a large
variability in the contribution to TEE measurement in older aged
subjects can be also attributed to PAEE. This could not be explored in
this analysis but it provides the opportunity to discuss the ap-
proaches currently used for the prediction of total energy re-
quirements.28 Resting energy expenditure is an integral component
of the factorial method to estimate TEE but it is associated with
limitations in the assessment of both components (REE and PAEE).
Goran28 has proposed that a regression approach for TEE could
improve accuracy as well as it could be more evidence based, easier
to apply and more statistically and physiologically more appro-
priate. Prediction equations based on body composition measures
were essentially excluded for two main reasons: 1) anthropometric
equations are more easily applied in clinical practice and 2) a pre-
vious study reported the poor performance of a FFM-derived pre-
diction equation29 in older aged subjects. However, it is possible that
inclusion of equations based on predicted FFM or indices of the fat/
FFM ratio might improve the overall Aggregate approach.

5. Conclusions

The Aggregate3 and Fredrix’s10 equations appear to be the most
accurate equations in older subjects. However, the REE estimates
are still characterised by a large variability and their use should be
limited to measurement of REE at group level and when direct
measurement in not possible at individual level. Advanced statis-
tical modelling techniques may help to refine the Aggregate
approach and offers scope to improve the prediction of REE at in-
dividual level.
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