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Abstract. Face recognition in presence of either occlusions, illumina-
tion changes or large expression variations is still an open problem. This
paper addresses this issue presenting a new local-based face recognition
system that combines weak classifiers yielding a strong one. The method
relies on sparse approximation using dictionaries built on a pool of local
features extracted from automatically cropped images. Experiments on
the AR database show the effectiveness of our method, which outper-
forms current state-of-the art techniques.

Keywords: Sparse representation, face recognition, face partial occlu-
sions, expression variations, illumination variations, local features.

1 Introduction

Nowadays face recognition (FR) techniques perform very well in controlled con-
ditions [17] but suffer when applied in real-world contexts [13,10]. This is the
frontier we want to investigate in this work. In particular we focus the atten-
tion on three aspects: illumination variations, continuous occlusions, and large
expression variations [12,9]. From the literature it is well known that local-based
methods behave better than holistic ones [8,16] in presence of occlusions. This
consideration can be extended to both light and expression variations which
affect heavily only certain face regions, leaving others less altered [12].

Following these results, we introduce a new Local-based Face Recognition
(LFR) system, namely k-LiMapS_LFR relying on a pool of local features and
on the sparse representation paradigm [16] for classification. In particular, we
adopt the k-LiMapS sparse approximation algorithm [1,2]: an easy and fast
iterative schema based on suitable Lipschitzian type mappings which allows to
capture sparsity in feature subspaces spanned by suitable dictionaries.

The system we propose is tested on face images either manually or automat-
ically cropped, in order to verify the robustness to possible misalignments. In
particular, the automatic cropping is attained adopting the face detector pro-
posed in [14], and augmenting the precision applying the eyes and mouth locator
(EML) presented in [4].
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The proposed technique can be setup adopting any local feature. In this work
we use features which have demonstrated a good discriminative capability, such
as, raw patches randomly extracted (namely Random Tessellation features), LBP
[3], MSLBP [5], Gabor filters [15] and HLAC [6].

The rest of the article is organized as follows: we first recall the general sparse
recovery (or sparse representation, SR) framework and the elements of novelty of
our method; then we briefly recall the rationale of the k-LiMapS algorithm, and
finally we present extensive results obtained on the AR database [7] comparing
our method versus the well known SRC [16] and PFI [11] algorithms, both on
manual and automatic face cropping.

2 Sparse Representation-Based Classification

The mathematical problem statement of SR consists in finding the sparsest rep-
resentation of a vector x ∈ R

n given an overcomplete dictionary Φ = [φ1, . . . , φm]
assumed to be a collection of m > n atoms or vectors in R

n. A sparse represen-
tation for x can be expressed as a linear combination of atoms, i.e. x =

∑
i αiφi,

or equivalently in matricial form

Φα = x, (1)

and is measured in terms of �0 pseudo-norm ‖ α ‖0, simply representing the num-
ber of non-zero elements in α. More generally, it is not sensible to assume that
the available data x obeys to the precise equality (1) with a sparse represen-
tation ‖ α ‖0 = k � n. A more plausible scenario assumes sparse approximate
representation in which there is an ideal noiseless signal x (admitting a sparse
representation) corrupted by noise, leading to the model x = Φα + ε, in which
error or noise ε ∈ R

n gives rise, for instances, to measurements or estimates.
Adopting this noisy setting, the general goal of finding the sparsest decomposi-
tion of the signal x can be rephrased as the constrained minimization problem

min
α∈Rm

‖ x − Φα ‖2 subject to ‖ α ‖0 ≤ k, (P0)

where ‖ · ‖ denotes the �2-norm.
In [16] it has been proposed the SRC algorithm, a pioneering work adopting

SR as FR system. Here we present a local FRS, namely the k-LiMapS_LFR,
which constructs a set of dictionaries based on local features, and combines these
weak classifiers via the majority vote rule. The idea is to characterize faces in
the training set with a large pool of independent local features, in order to have
a sufficiently rich face description even in presence of occlusions or deformations
caused by strong expression variations. The k-LiMapS_LFR system requires as
input face images at least roughly localized. To this end, in the case of automatic
cropping, the images are preprocessed by the face detector proposed in [14], and
the eyes and mouth detector (EML) presented in [4]. The EML, besides the
primary functionality of improving the face alignment, reveals possible occlusions
as mentioned below. In the following we describe our method.



Local Face Recognition by k-LiMapS 33

Suppose we are dealing with c different classes or subjects, labelled 1, . . . , c,
and there are exactly k training samples for each subject s ∈ {1, . . . , c}. Each
training image is characterized applying a pool of features, f1, . . . , fd, to local
subimages or patches cropped around to a fixed set of randomly selected pixels
p1, . . . , ph, thus obtaining d×h dictionaries. According to the i-th feature applied
in the j-th pixel, the dictionary Φi,j ∈ R

n×k c (with n < k c) represents the
entire training set (consisting of k images for each of the c subjects) obtained by
stacking the feature-vectors as columns:

Φi,j =
[
f

(1,1)
i (pj), . . . , f

(c,k)
i (pj)

]
, i = 1, . . . , d, j = 1, . . . , h.

For a given test image I, the FR system extracts the corresponding local
features

zi,j = fi(pj), i = 1, . . . , d, j = 1, . . . , h,

and performs the k-LiMapS algorithm (see next section) to find the sparse vector
α such that Φi,j α ≈ zi,j . In the purpose of solving the membership χi,j of the
local feature zi,j, the algorithm looks for the linear span of the training samples
in Φi,j associated with the subject s ∈ {1, . . . , c} that better approximates the
feature vector zi,j . In other words, by denoting with α̂s the coefficient vector
whose only nonzero entries are the ones in α associated to class s, it classifies
zi,j minimizing its residual with the linear combination Φi,jα̂s, i.e. applying the
following rule:

χi,j = argmin
s∈{1,..,c}

‖zi,j − Φi,j α̂s‖, i = 1, . . . , d, j = 1, . . . , h.

The final classification of I is obtained applying the majority vote rule over
all local classifier results χ1,1, . . . , χd,h. In Algorithm 1 we sketch the whole
algorithm.

3 k-LiMapS Rationale

To solve the underdetermined inhomogeneous system (1) our FRS applies the k-
LiMapS algorithm (k-Coefficients Lipschitzian Mappings for Sparsity)
proposed in [1], which has demonstrated both its efficacy and its low computa-
tional costs. Briefly, for a desired sparsity level k > 0 fixed a priori, the method
iterates a parametric family of nonlinear shrinking mappings along the affine
space AΦ,x = {α ∈ R

m : Φα = x}, associated to the system favoring sparse
near-feasible solutions. To recover in turn admissible sparse solutions, an alter-
nating stage envisages the use of an orthogonal projector P = I −Φ†Φ, where I is
the identity operator and Φ† = (ΦT Φ)−1ΦT the Moore-Penrose pseudo-inverse,
onto the feasible space. The process yields a Cauchy sequence {αt}t≥1 in the
Hilbert space �m

2 for which limit point exists regardless of the initial guess. At
the end of the process, depending on whether the signal under exam x admits
or not a k-sparse representation, an hard thresholding operation is applied to
solution α ∈ R

m so that ‖ α ‖0 = k.
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Algorithm 1. k-LiMapS_LFR
Dictionary construction:
Require: c subjects, k training images per subject, d local features
1: Randomly generate h key points
2: for all Training set images It do
3: EML(Viola-Jones(It))
4: for all Key points pj and Features fi do
5: Compute f t

i (pj)
6: end for
7: end for
8: Dictionaries: Φi,j =

[
f

(t)
i (pj)

]
, t = 1, . . . , c · k

Testing phase on image I :
1: EML(Viola-Jones(I ))
2: Feature extraction: zi,j = fi(pj), i = 1, . . . , d, j = 1, . . . , h
3: Sparse solution α via k-LiMapS algorithm (see next session)
4: Local classifications: χi,j = argmins∈{1,..,c} ‖zi,j − Φi,jα̂s‖.
5: Majority vote on (χ1,1, . . . , χd,h)

To better understand the computation of the final solution, the pseudo-code
of k-LiMapS is reported in Algorithm 2.

Two aspects affecting k-LiMapS performance deserve to be discussed: how to
tune the sparsity level k in problem (P0) and how to define the stop condition
of the while loop of the algorithm. Guided by empirical evidence on the perfor-
mance assessment, we faced the first question by fixing k equal to the number
of images per subject in the training set. In this way very few coefficients are
preserved while the most part is discarded as shown in Figure 1 (left), where the
absolute values of the coefficients are plotted in descent order (blue saved and
red discarded).
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Fig. 1. (Left) Absolute values of the coefficients in descent order with sparsity con-
straint k = 5. The first five coefficients (blue stems) are preserved while the remaining
(red stems) are discarded. (Right) Approximation error in �2-norm referred to some
sparse solutions during the iterations of k-LiMapS.
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Algorithm 2. k-LiMapS
Require: Projector P = I − Φ†Φ, sparsity level k, initial guess ν = Φ†x

1: α ← ν

2: while [ cond ] do
3: α ← α − P α � e−λ|α| <orthogonal projection>

4: σ ← sort (|α|) <descending order coefficients>
5: λ ← 1/σk <sparsity ratio update>

6: αj ← 0 ∀ j s.t. |αj | ≤ σk <thresholding>

7: end while
Ensure: An approx. solution s ≈ Φα s.t. ‖ α ‖0 ≤ k

Secondly, a suitable stop condition for the SR process may be grasped ob-
serving the minimization of the least squares objective function defined in (P0),
under the sparsity constraint forced by the �0-pseudo norm. In Figure 1 (right)
the error variations together with the number of iterations are drawn for some
test images. The graphic captures quite well the typical behavior of k-LiMapS as
minimizer for the problem, highlighting that the local minimum is reached within
very few iterations of the while loop at the heart of Algorithm 2. This suggests a
stop condition for such a loop: end when no cost function reduction is attained.

Notice that the stop condition also influences the time complexity of the
algorithm. Although a fair rule to stop the iterative process does not exist, using
the above stop condition in the most part of the cases the number of iterations
drops to few instances giving a good approximation.

4 Experimental Results

In this section we present the experiments on the k-LiMapS_LFR1. The system
could work referring to any pool of local features. In this work we choose five
features aiming at capturing a wide variety of image information useful in the
FR task: the LBP and its generalization, the MSLBP, are good texture descrip-
tors, while the Gabor filters and the HLAC features capture salient edges and
characteristic shapes. In addiction to these well justified filters, we also use sim-
ple raw data consisting in squared patches (RT) centered in each chosen point
and normalized, aiming at reducing possible illumination problems.

The experiments refer to the AR database [7] which consists of face images of
126 subjects (70 men and 56 women) acquired in two sessions, each one varying
13 different conditions covering both illumination and expression variations as
well as occlusions caused by either scarves or sunglasses. The experiments have
been conducted referring to a pool of 100 subjects (50 men and 50 women),
averaging the results over 50 trials so guaranteeing a high confidence level.
1 MATLAB code of k-LiMapS_LFR and all tests done are available on the website

http://dalab.di.unimi.it/klimaps.

http://dalab.di.unimi.it/klimaps
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For comparison purpose, we run both SRC [16] and PFI [11] algorithms. The
first represents the state-of-the-art in the sparsity framework, while the second
uses a large feature set extracted locally on each image. The SRC algorithm has
been developed to manage possible occlusions, so we apply it directly. On the
contrary, the PFI algorithm has been proposed for non occluded faces, so, in
order to apply it in the occluded case, we discard the corrupted half face (the
lower half for scarf and the upper half for sunglasses).

We setup four kinds of experiments described below. In all cases, the training
sets consist of non occluded images, with k = 5 (the number of images for
subject in training). This is a tradeoff between the necessity of representing
subjects in several conditions (potentially constructing a complete base) and the
requirement to keep k small in order to emulate realistic scenarios.

Sunglasses. Training set: all images of subjects acquired in the first session with
different illumination conditions, with neutral or smiling expression and no
occlusion (labelled as either 1, 2, 5-7). Test set: subjects wearing sunglasses
and acquired in different illumination conditions (AR images labelled as 8-10,
21-23).

Scarf. Training set: as in the previous experiment, that is all images labelled as
either 1, 2, 5-7. Test set: subjects wearing scarves and acquired in different
illumination conditions (images labelled as 11-13, 24-26).

Illuminations. Training set: as in the previous experiment, that is all images
labelled as either 1, 2, 5-7. Test set: images with no occlusion corrupted by
strong illumination variations (images labelled as 14, 15, 18-20).

Expressions. Training set: all images of subjects acquired in the first session,
having different facial expressions (labelled as either 1-4 or 7). Test set:
subjects showing strong expression variations and acquired in the second
session (images labelled as 15-17).

These kinds of experiments involve many issues. In particular, our investi-
gation has been guided by the following questions: “Which is the most critical
condition compromising the FRS performance?”. “Does the feature aggregation
increases the recognition rate?” and, if yes, “Which is the best combination?”.
Secondly: “How much is the amount of inspected local patches influential?” and
finally “How hard is to deal with the misalignment?”.

To answer to these questions, we tested the system behavior increasing both
the number of features from 1 to 5 (considering all possible feature combina-
tions), and the number of characterized points (specifically with N = 50, 100, 150,
200 randomly selected in non occluded regions), and we run all the experiments
on both manual and automatic cropped images.

In Fig. 2 and Fig. 3 we report the performance obtained on manually and
automatically cropped images respectively. In order to highlight the dependency
on the feature pool cardinality and at the same time keeping the results con-
cise, we depict for each feature cardinality the best performance we obtained,
together with the performance of both the SRC and the PFI algorithms (which
are obviously both independent of the value N).
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Fig. 2. Recognition rates achieved by the k-LiMapS_LFR varying the pool of features,
and by the SRC and the PFI, all considering manually cropped images

Such results allow us to draw some conclusions. Firstly, we notice that the FR
task is particularly hard when the eyes are occluded, revealing the high relevance
of such face portion. Secondly, it is evident that the feature aggregation helps
the recognition system. In particular, the highest performance enhancement is
obtained passing from one to two features. Limiting ourselves to the five consid-
ered features, the most characterizing one has turn out to be the MSLBP, while
the best pair corresponds to (MSLBP, RT).

Concerning the choice of the best feature set among all proposed of the same
cardinality, we also notice a desirable property: by adding a new feature to all
l-length subsets (with l ∈ {1, . . . , 4}), the best pool of size l + 1 includes the
previous best pool of size l, so exhibiting good stability and an incremental way
to extend the system. For instance, in the case of manual alignment, passing
from the best pair (MSLBP, RT) to the best triplet, produces the pool (MSLBP,
RT, HLAC), that maintains the best couple.

Naturally, another key parameter conditioning the performance is number of
points or patches N referred by the system. Besides the obvious proportionality
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Fig. 3. Recognition rates achieved by the k-LiMapS_LFR varying the pool of features,
and by the SRC and the PFI, all considering automatically cropped images

between N and the recognition rate (the denser the face description, the better
the performance), we also notice an inverse relationship between N and the
standard deviation of the recognition rate, so providing a good stability according
to the increasing of N .

All these considerations cannot be regarded irrespectively of the computa-
tional costs: each increment of either the number of features or the number
of points N increases the computational time. This implies a tradeoff between
performance and speed. As far as the computational time of the k-LiMapS algo-
rithm is concerned, in case of one feature and N = 50 a test image is processed
in about 0.05 seconds on a Intel R© CoreTM i5 processor at 64 bit, with 3.6 GHz,
and 8 Gb of memory. Naturally, the computational time scales proportionally
increasing either N or the number of features. Furthermore we remark the in-
dependence of both the weak classifiers and the local features, which would
made it possible to evaluate in parallel the weak classifiers merging the results
subsequently.
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Another comment concerns the comparison with the SRC and the PFI sys-
tems. As can be seen in the graphs, k-LiMapS_LFR outperforms SRC even
with a small value of N and adopting only one feature. Regarding the compari-
son with PFI, k-LiMapS_LFR behaves better when setting N = 100 or more,
and adopting at least two features. The only exception is the experiment refer-
ring to subjects varying their expression, where the PFI behaves very well. In
this case the k-LiMapS_LFR obtains the same performance only with N = 200
and four features.

Finally, let us notice that all the systems worsen their performance pass-
ing from manual to automatic cropped images. In particular the average loss
is of about the 17% for the SRC, the 9% for the PFI, and the 7% for the
k-LiMapS_LFR, showing its greater robustness with respect to this critical
aspect.

5 Conclusions

In this paper a new local-FRS has been illustrated. This approach allows to
cope with local alteration of the face images, due to either partial occlusions or
illumination or expression variations. The system refers to a pool of local features
aiming at extracting most of the peculiar uncorrupted information and uses it
to define a pool of weak classifiers. The final recognizer is obtained combining
the weak classifier via the majority rule. The discriminative strategy of the weak
classifier is committed to the sparse recovery paradigm which has recently turned
to be successfully applied in face recognition.

Experimental results prove the system effectiveness and robustness, above all
when compared with the state of the art in this field. The encouraging results
motivate us to investigate this topic furthermore. In particular, we are inter-
ested in exploring some selection rules which would allow to maintain the same
performance retaining only a fewest set of dictionaries.
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