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ABSTRACT
Objectives: Randomised controlled trials report
group-level treatment effects. However, an individual
patient confronting a treatment decision needs to know
whether that person’s expected treatment benefit will
exceed the expected treatment harm. We describe a
flexible model for individualising a treatment decision.
It individualises group-level results from randomised
trials using clinical prediction guides.
Methods: We constructed models that estimate the
size of individualised absolute risk reduction (ARR) for
the target outcome that is required to offset
individualised absolute risk increase (ARI) for the
treatment harm. Inputs to the model include estimates
for the individualised predicted absolute treatment
benefit and harm, and the relative value assigned by
the patient to harm/benefit. A decision rule
recommends treatment when the predicted benefit
exceeds the predicted harm, value-adjusted. We also
derived expressions for the maximum treatment harm,
or the maximum relative value for harm/benefit, above
which treatment would not be recommended.
Results: For the simpler model, including one kind of
benefit and one kind of harm, the individualised ARR
required to justify treatment was expressed as required
ARRtarget(i)=ARIharm(i) × RVharm/target(i). A complex model
was also developed, applicable to treatments causing
multiple kinds of benefits and/or harms. We
demonstrated the applicability of the models to
treatments tested in superiority trials (either placebo or
active control, either fixed harm or variable harm) and
non-inferiority trials.
Conclusions: Individualised treatment
recommendations can be derived using a model that
applies clinical prediction guides to the results of
randomised trials in order to identify which individual
patients are likely to derive a clinically important benefit
from the treatment. The resulting individualised
prediction-based recommendations require validation
by comparison with strategies of treat all or treat none.

INTRODUCTION
For questions of treatment and prevention,
randomised controlled trials (RCTs) provide

the most valid evidence concerning the ben-
efits and, often, the harms of the interven-
tion. However, RCTs typically report only
group-level results, whereas treatment effects
may depend importantly on characteristics of
individual patients.

ARTICLE SUMMARY

Article focus
▪ Randomised controlled trials provide relative

group-level estimates of the beneficial and
harmful effects of a treatment. However, the
absolute size of those effects may vary across
individuals according to their baseline risk.

▪ Models have been described previously to indi-
vidualise results of superiority placebo-control
trials in the case of a variable benefit/fixed harm
scenario.

Key messages
▪ We provide a generalised model to individualise

treatment recommendations. We start from the
definition of the Clinically Important Difference:
the size of treatment benefit that offsets the treat-
ment harm, after adjusting for the patient’s
values.

▪ The model applies to a variable benefit and a
fixed or variable harm, and to superiority
(placebo and active control) and non-inferiority
trials. It can accommodate more than one kind
of benefit and/or harm.

▪ Clinical Prediction Guides are used to individual-
ise the predicted risk of the target event and of
the harm at trial entry.

Strengths and limitations of this study
▪ Strengths: the model adopts an individual per-

spective and is flexible and timely. It allows the
calculation of an individual’s maximum predicted
absolute risk increase for the treatment harm, or
the maximum relative value for harm/target, that
would overturn the treatment decision.

▪ Limitations: economic costs are not modelled;
uncertainty will exist for some quantities entering
the model; the model awaits empirical validation.

Marcucci M, Sinclair JC. BMJ Open 2013;3:e003143. doi:10.1136/bmjopen-2013-003143 1

Open Access Research

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187917004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1136/bmjopen-2013-003143
http://dx.doi.org/10.1136/bmjopen-2013-003143


A clinical prediction guide (CPG)1–3 uses patient-
specific risk data to predict the level of risk for a clinical
outcome of interest for an individual patient. CPGs
applied to participants in clinical trials can predict the
individual patient’s level of risk at trial entry (baseline
risk (BLR)) for the target outcome at which the treat-
ment is directed, and also for harm caused by the treat-
ment. If the relative risk reduction for the target
outcome (or relative risk increase for the harm) is con-
stant across the range of BLR, then the absolute treat-
ment effects can be predicted in individual patients:
absolute risk reduction (ARR) for the target outcome
(the treatment benefit) and absolute risk increase (ARI)
for the treatment harm.
But what size of ARR for the target benefit is suffi-

ciently large to justify acceptance of a treatment that
carries with it the potential for benefit and harm? That
depends on the frequency of the harm caused by treat-
ment, and the relative importance of the harm com-
pared to the benefit. The size of treatment benefit that
is large enough to offset the treatment harm is the
patient’s clinically important difference (CID).
The concept of CID has been incorporated in several

prior formulations: the threshold ARR (inverted, the
threshold number needed to treat4), the threshold for
agreeing with treatment,5 the decision threshold
(inverted, the number willing to treat (NWT)).6 Each of
these constructs embodies the concept that for treat-
ment to be justified, the predicted treatment benefit
must exceed the predicted harm for that individual.
Absolute treatment benefits vary directly with BLR for

the target benefit: for an effective treatment, the higher
the BLR, the greater the predicted absolute benefit.
When modelling absolute treatment effects across indivi-
duals, the assumed model usually has incorporated a
variable benefit, but a fixed harm.4–7 However, the abso-
lute size of treatment harms may also vary across indivi-
duals, in which case a variable benefit/variable harm
model would apply. The two models are illustrated in
figure 1.
The objectives of this report were: (1) to derive an

expression for CID that is flexible and applicable to
either fixed or variable treatment harm and (2) to
describe a generalised model for deriving a treatment
recommendation based on CID, using group-level esti-
mates of treatment effects provided by RCTs and CPGs
for prediction of individualised absolute treatment
benefit and harm.

METHODS
We define CID as the size of benefit from the treatment
that offsets the harm of the treatment. We define a benefit
as the reduction of the occurrence of the target outcome,
expressed as the negative outcome, for example, death,
rather than the positive outcome, for example, survival.
When the benefit is defined categorically, CID is the
required ARR for the target outcome (ARRtarget) obtained

with the treatment compared with the control. The
control can be no treatment (or placebo) or an active
control. The model contains parameters for the predicted
individualised treatment benefit, the predicted individua-
lised treatment harm and the patient’s values. The model
accommodates more than one kind of benefit and more
than one kind of harm. No economic cost, either direct or
indirect, is included in the model.
When applied to individualise a treatment recommen-

dation, the model provides an individualised required
ARRtarget. A decision rule recommends the treatment
when the patient’s predicted ARRtarget is greater than
her required ARRtarget.

Data requirements
Table 1 summarises the required quantities for entry
into the model, distinguishing between group-level mea-
sures and individual-level predictions.

Group-level quantities
Most of the shown group-level quantities are used to
generate individualised estimates. For treatment bene-
fits, the required group-level measure is the relative risk
reduction. The data source can be a meta-analysis of
large RCTs or a single large RCT. The required group-
level quantities for the harms depend on the type of
harm, fixed or variable. For fixed harms, we use a
group-level absolute quantity, the ARI (ARIharm). For
variable harms, we use a group-level relative quantity, the
relative risk increase (RRIharm). Whether fixed or vari-
able, the estimate of the treatment effect for harms
comes from a meta-analysis of large RCTs, a single large
RCT or best available observational evidence. Values are
entered as the relative value (RV) of the harm compared
with the target benefit. A group-level RVharm/target can
be derived from formal utility-based analyses, patient
groups or expert opinion.

Individual-level quantities
The individualised treatment benefit is expressed as
ARR (ARRtarget(i)). The individualised treatment harm is
expressed as ARI (ARIharm(i)). For BLR, we mean the
risk in the reference group (the control arm in the
trial), whether it is represented by patients on no treat-
ment or placebo or by patients on an existing treatment.
Table 2 summarises the role of CPGs in individualising
predicted treatment benefits and harms.
▸ Benefits modelling: The model allows the predicted

ARRtarget(i) to increase for increasing BLRs for the
target outcome (BLRtarget(i)), according to the equa-
tion: predicted ARRtarget(i)=RRRtarget×BLRtarget(i). The
group-level RRRtarget is assumed to be constant across
different BLRs. The BLRtarget(i) for the target benefit
is estimable using a validated CPG.

▸ Harms modelling. In the case of a fixed harm, the
group-level estimate (ARIharm(trial)) is used for the
predicted ARIharm(i). No CPG is needed to predict an
individualised harm. When the receipt of the
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treatment per se is modelled as a fixed harm (as with
risk/discomfort), that harm is experienced by every
treated patient, so the ARIharm(trial) for the harm is
constantly equal to 1.0 (100%). In the case of a vari-
able harm across patients, the predicted ARIharm(i) is
calculated by multiplying the group-level RRIharm by
the individualised BLR for that harm (BLRharm(i)).
The group-level RRIharm is assumed to be constant
across different BLRs. The BLRharm(i) can be esti-
mated using a validated CPG.

▸ Values modelling. An individual RV (RVharm/target(i))
assigned by the patient enters the model. We recog-
nise that an RVharm/target(i) may not be ascertained
reliably. Therefore, we modelled a range of RVs
centred on a group-level RV.

When more than one benefit and/or more than one
harm is included, for each benefit and harm the specific
ARRi/ARIi/RVi is separately calculated or assigned as
above.

Figure 1 Models for

individualising treatment. Variable

benefit/fixed harm (A) and

variable benefit/variable harm (B)

models are shown. In each

model, treatment benefit,

modelled as absolute risk

reduction for the target event,

varies directly with baseline risk

for the target event. Treatment

harm is modelled as the absolute

risk increase for the harm of

treatment. Harm is then

value-adjusted based on a

relative value (RV) assigned to

the treatment harm as compared

with the target event prevented.

With a fixed harm (A), the

absolute risk increase for the

harm of treatment is constant.

With a variable harm (B), the

absolute risk increase for the

harm of treatment varies with the

baseline risk for the harm. As

indicated by the arrow in each

panel, the point at which the

value-adjusted treatment harm

intersects the treatment benefit

defines the clinically important

difference (CID) for the treatment

benefit.
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Construction of models for individualising a treatment
recommendation
We constructed two models: a simple model where there
is one kind of treatment benefit and one kind of treat-
ment harm; and a complex model where there is more
than one kind of benefit and/or more than one kind of
harm. In both cases, the model equation is solved for
the required ARRtarget(i) to offset the treatment harm(s),
given the predicted ARIharm(i) and RVharm/target(i). The
same basic equation can then be used to calculate:
1. The maximum ARIharm(i) above which treatment

would not be justified, given the predicted ARRtarget(i)

and RVharm/target(i).
2. The maximum RVharm/target(i) above which treatment

would not be justified, given the predicted ARRtarget(i)

and ARIharm(i).

RESULTS
Algebraic solution to the model
We derived the following equations to describe the
model (see Appendix for algebraic details).

Simple model: one kind of treatment benefit, one kind of
treatment harm
Required ARRtarget(i)
The required size of the ARRtarget that offsets the treat-
ment harm, value-adjusted, for the patient i can be cal-
culated as (Appendix section 1, equations (1) and (2))

Required ARRtargetðiÞ ¼ ARIharmðiÞ � RVharm=targetðiÞ ðm1Þ

The equation includes the particular condition of a
fixed harm when the ARItrial can substitute for the ARIi.
When the treatment receipt is considered the harm, the
ARItrial is 1.0 and so the ARR(target)i is directly predict-
able from the RVharm/target(i) as

RequiredARRtargetðiÞ ¼ RVharm=targetðiÞ ðm2Þ

Decision rule: In case of fixed harm and variable harm,
the treatment would be justified for the patient i when

Predicted ARRtargetðiÞ . required ARRtargetðiÞ ðd1Þ

Table 2 Clinical Prediction Guides (CPG) for individualising treatment effects

Type of trial Type of control

CPG to predict control risk for

target event: population

CPG to predict control risk for harm:

population

Superiority trial Placebo or no

treatment

CPG developed on patients on

placebo or no treatment

Fixed harm: CPG not needed

Variable harm: CPG developed on patients

on placebo or no treatment*

Active control

(EET)

CPG developed on patients on EET† Fixed harm: CPG not needed

Variable harm: CPG developed on patients

on EET

Non-inferiority

trial

Active control

(EET)

CPG developed on patients on EET† Fixed harm: CPG not needed

Variable harm: CPG developed on patients

on EET

*If a validated CPG developed on treated patients is used (see worked example on warfarin), the individualised risk for the harm off treatment
can be obtained by dividing the risk on treatment by the group-level relative risk for the harm with the treatment compared with placebo or no
treatment.
†If a validated CPG developed on patients on placebo or no treatment is used, the individualised risk for the target event while on EET can
be obtained by multiplying the risk off treatment by the group-level relative risk for the target event on EET compared with placebo or no
treatment.
EET, established effective therapy.

Table 1 Quantities required for a generalised model for individualising treatment recommendations

Element Group-level measures Individualised predictions

Quantity Measured as Quantity Predicted as

Benefits RRRtrial 1−RRtrial or 1−HRtrial ARRi RRRtrial×BLRi for benefit*

Harms

fixed

variable

ARItrial
RRItrial

Risktreated−control
RRtrial−1 or HRtrial−1

ARIi
ARItrial used as ARIi
RRItrial×BLRi for harm†

Values RV Vharm/Vbenefit RVi Provide a range of RVs centred on typical group-level RV‡

*Estimate BLRi for benefit using CPG for individualised prediction of outcome comprising the benefit.
†Estimate BLRi for a variable harm using CPG for individualised prediction of outcome comprising the harm.
‡Estimate typical RV from formal utility-based analyses, patient groups or expert opinion.
ARItrial, absolute risk increase for a fixed harm; ARRi, ARIi, BLRi, RVi, individualised predicted estimates; BLR, baseline risk (risk in control
group); CPG, clinical prediction guide; HR, hazard ratio; RR, relative risk; RRItrial, relative risk increase for a variable harm, from RCT(s) or
best evidence; RRRtrial, relative risk reduction observed in RCT(s); RV, relative value.
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Maximum ARIharm(i) and maximum RVharm/target(i)
The maximum ARIharm(i) above which the treatment
would not be justified for the patient i can be calculated as
(Appendix equations (1) and (3))

MaximumARIharmðiÞ ¼ ARRtargetðiÞ=RVharm=targetðiÞ ðm3Þ
Decision rule: The treatment would not be justified for
the patient i when

PredictedARIharmðiÞ . maximumARIharmðiÞ ðd2Þ
where the predicted ARIharm(i) can be fixed (=ARItrial) or
variable.
Similarly, the maximum RVharm/target(i) above which

the treatment would not be justified for the patient i can
be calculated as (Appendix equations (1) and (4))

MaximumRVharm=targetðiÞ ¼ ARRtargetðiÞ=ARIharmðiÞ ðm4Þ
Decision rule: The treatment would not be justified for
the patient i when

Patient's RVharm=targetðiÞ . maximumRVharm=targetðiÞ ðd3Þ
Complex model: multiple treatment benefits, multiple
treatment harms
The model can be generalised to incorporate additional
treatment benefits other than the reduction of the
target outcome, and multiple harms, whether fixed or
variable (Appendix section 2). A harm may have a fixed
as well as a variable component. In that case, the fixed
and variable components would be entered as separate
harms, along with their separate RVs. The size of the
ARRtarget, which is required to offset the value-adjusted
treatment harms and which accounts for other treat-
ment benefits, is calculated for the patient i as
(Appendix equations (5), (6) and (7))

RequiredARRtargetðiÞ ¼
X

ðfor j¼1 to kÞ
ARIharm(j)ðiÞ

� RV(harm(j)=target)ðiÞ

�
X

ðfor j¼2 tomÞ
ARRbenefit(j)ðiÞ

� RV(benefit(j)=target)ðiÞ ðm5Þ

where k is the number of treatment harms, m is the
total number of treatment benefits, and the benefit(2)
to benefit(m) are the benefits other than the target
benefit. Every RV(i) is expressed as the value assigned to
each outcome, prevented or caused by the treatment,
compared with the value of the target benefit.
Decision rule: Similar to the case of only one benefit

and one harm, the treatment would be justified for the
patient i when

Predicted ARRtargetðiÞ . required ARRtargetðiÞ ðd1Þ

The complex model can be used to predict the indivi-
dualised maximum allowed ARI for a target harm and

the maximum RV for the target benefit compared with
a target harm, above which the treatment is not justified.

Applicability of the model
Theoretically, the model is applicable to every situation
tackling the choice between two treatment strategies.
Three examples are proposed to show the applicability
of the model to individualised treatment recommenda-
tions: a superiority trial with a variable benefit/fixed
harm scenario; a superiority trial with a variable
benefit/variable harm scenario and the case of non-
inferiority trials.

Superiority trial: variable benefit, fixed harm. Rosuvastatin
for primary prevention of cardiovascular events
The Justification for the Use of Statins in Prevention
( JUPITER) trial8 evaluated the effect of rosuvastatin
versus placebo for reduction of cardiovascular events in
apparently healthy men and women with low-density
lipoprotein cholesterol levels <3.4 mmol/L and elevated
high-sensitivity C reactive protein. The primary outcome
was a composite of myocardial infarction, stroke, arterial
revascularisation, hospitalisation for unstable angina or
cardiovascular death. The group-level result showed a
substantial relative benefit of rosuvastatin (HR 0.56, 95%
CI 0.46 to 0.69). This is equivalent to an RRRtarget of
0.44 (95% CI 0.31 to 0.54). Nevertheless, the individual’s
absolute benefit with rosuvastatin will vary according to
her BLR (BLRi.). Validated CPGs exist to predict the
BLR for cardiovascular events. The Framingham risk
score,9 for example, predicts the risk of cardiovascular
events at 10 years combining risk factors such as age,
gender, smoking, total and high-density lipoprotein chol-
esterol levels, systolic blood pressure and hypertension.
Dorresteijn et al6 used the group-level quantities pro-
vided by the JUPITER study and CPGs, either existing9 10

or newly developed,6 to individualise the predicted BLRi

and absolute effect of rosuvastatin at 10 years
(ARR(target)i) among JUPITER’s participants. They
found an approximate 20-fold variation in the predicted
BLR(target)i. Thus, the predicted ARR(target)i varied from
about 1–20% at 10 years, with a slightly different patient
stratification depending on the CPG used. Dorresteijn
and colleagues then evaluated the application of these
individualised predictions to recommend the treatment.
They defined the ‘Number Willing to Treat (NWT)’ as
the number of patients one is willing to treat in
exchange for the prevention of one target outcome
event. Its inverse ratio (1/NWT) was defined as the
‘decision threshold’ and is equivalent to the required
ARR(target)i defined for our model. They considered that
the treatment receipt per se constituted the harm (fixed
harm). Thus, the required ARR(target)i (ie, 1/NWT)
equalled the RVharm/target(i) (m2). They examined how
the treatment recommendations varied across a range of
hypothetical values for NWT.
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Superiority trial: variable benefit, variable harm. Warfarin to
prevent cardioembolic events in patients with atrial
fibrillation
Six RCTs compared warfarin versus placebo/no treat-
ment in patients with non-valvular atrial fibrillation to
reduce the occurrence of stroke and systemic cardioem-
bolism. Hart et al11 meta-analysed those RCTs and found
a pooled RRR for cardioembolic events (RRRstroke) of
0.64—or 64%—(95% CI 0.49 to 0.74). On the other
hand, warfarin was associated with a pooled RRI for
major extracranial bleeding (RRIbleed) of 1.3—or 130%
—(95% CI 0.08 to 3.89; note: Hart et al11 included the
intracranial haemorrhages among the strokes in the effi-
cacy analyses).
Several CPGs to predict the risk of stroke and bleeding

have been developed and validated in patients with atrial
fibrillation. Using the individual predictions for the BLR
for stroke (BLRstroke(i)) and for bleeding (BLRbleed(i)),
the absolute beneficial effect and also the absolute
adverse effect with warfarin can be individualised
as ARRstroke(i)=RRRstroke×BLRstroke(i) and ARIbleed(i)=
RRIbleed×BLRbleed(i), respectively. As an example, for the
prediction of the BLRstroke(i), we adopted the CHADS2
score developed on patients off anticoagulation.12 For
the prediction of the BLRbleed(i), we adopted the
HEMORR2HAGES score.13 Since the HEMORR2HAGES
score was developed on patients on warfarin,13 the corre-
sponding BLRbleed(i) off warfarin was calculated by divid-
ing the predicted risk on warfarin by 2.3, which is the
reported relative risk for major bleeding for warfarin
compared with placebo.11 The results are shown in
table 3. The predicted ARRstroke(i) varied from 1.22% to
11.65%/year and the predicted ARIbleed(i) varied from
1.07% to 6.95%/year. Comparing the individualised pre-
dictions for the benefit and the harm, value-adjusted, we
then obtained individualised treatment recommenda-
tions for warfarin. A range of plausible values of the
RVbleed/stroke was examined.

Required ARRstroke(i) to justify warfarin
To justify warfarin, the predicted ARRstroke(i) should be
greater than the required ARRstroke(i) (d1), that is,
greater than ARIbleed(i)×RVbleed/stroke(i) (m1). Table 3
summarises the results of the application of the model
to individualise warfarin recommendation in a hypothet-
ical patient population, according to the coclassification
of patients based on the CHADS2 and
HEMORR2HAGES scores. We arbitrarily chose a group-
level RV for a bleed/stroke of 0.6, an RV calculated from
a lost-utility analysis over a 10-year time frame.4 Table 3
shows the resulting treatment decisions for each of the
42 cells formed according to the CHADS2 and
HEMORR2HAGES scores.
As a base case, the table was obtained using for

RRRstroke the point estimate (0.64).11 Since a treatment
is accepted as superior compared with placebo/no treat-
ment only when the upper bound of the 95% CI for the
relative risk for the target outcome is below 1, we

repeated the example using for RRRstroke a value of 0.49
(corresponding to the upper bound for RRstroke 0.51).
In that case, the predicted ARRstroke(i) is reduced and
slightly fewer patients would be recommended for treat-
ment. For example, a CHADS2 3 and HEMORR2HAGES
4 patient would now not be recommended for warfarin
treatment (results not shown). We also repeated the
example, using for RRIbleed a value of 3.89, correspond-
ing to the upper bound of the 95% CI for RRIbleed.
Now, considerably fewer patients would be recom-
mended for treatment (data not shown). The major dif-
ferences in who would be recommended for treatment
arise primarily from the great uncertainty in the estimate
for ARIbleed in this example. We caution that table 3 is
presented only as a framework for presenting particu-
larised treatment recommendations in a variable
benefit/variable harm scenario. The recommendations
shown there are based only on point estimates, and
should not be accepted without taking into account the
uncertainties in the estimates for ARRstroke and ARIbleed
in deriving the treatment recommendations.

Maximum ARIbleed(i) above which warfarin would not be
justified
Figure 2 shows how the maximum ARIbleed(i) (m3) varies
according to the different CHADS2 scores and different
values of RVbleed/stroke(i) centred on a group-level
RVbleed/stroke of 0.6.

Maximum RVbleed/stroke(i) above which warfarin would not be
justified
Similarly, given the CHADS2 and the HEMORR2HAGES
scores of the patient, the model can calculate which is
the maximum RVbleed/stroke(i) (m4) such that if the
patient assigns an RVbleed/stroke higher than this
maximum, warfarin would not be justified. The variation
of the maximum RVbleed/stroke(i) according to the differ-
ent CHADS2 and HEMORR2HAGES scores is depicted
in figure 3.

Individualising recommendations for a non-inferior treatment
Application of model to non-inferiority trials
The objective of a non-inferiority trial is to show that the
effect of a new treatment on a target outcome is not
worse, compared with an established effective treatment
(EET), by more than a prespecified margin. This ‘non-
inferiority margin’ is the maximum loss of efficacy that
is considered acceptable in exchange for a hypothesised
reduction in harm, value-adjusted. At the design phase,
the non-inferiority margin is expressed as either an abso-
lute or relative increase in the target event rate. A group-
level RVharm/benefit is at least implicit when setting the
specified margin. When interpreting the results of a
non-inferiority trial at the group level, the CI for the
observed treatment effect on the target outcome is com-
pared with the non-inferiority margin. If the bound of
the CI that reflects the maximal estimate for inferiority
is less than the margin (does not ‘cover’ the margin),
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Table 3 Framework for application of prognostic risk scores for variable treatment benefit, variable treatment harm to particularise a treatment recommendation

Risk for stroke (CHADS2)

Score 0 1 2 3 4 5 6

Predicted BLRstroke

(%/year) 1.9 2.8 4.0 5.9 8.5 12.5 18.2

Risk for bleed (HEMORR2HAGES)

Predicted ARRstroke

(95% CI) %/year*

1.22 (0.93

to 1.41)

1.79 (1.37

to 2.07)

2.56 (1.96

to 2.96)

3.78 (2.89

to 4.37)

5.44 (4.17

to 6.29)

8.00 (6.13

to 9.25)

11.65 (8.92

to 13.5)

Score

Predicted

BLRbleed,

%/year

warfarin
Predicted ARIbleed
(95% CI)

%/year†

Required ARRstroke

(95% CI)

@ RVbleed/stroke 0.6

%/year Tentative treatment recommendation‡Yes No

0 1.9 0.83 1.07 (0.07 to 3.23) 0.64 (0.04 to 1.94) T T T T T T T

1 2.5 1.09 1.41 (0.09 to 4.24) 0.85 (0.05 to 2.54) T T T T T T T

2 5.3 2.30 3.00 (0.18 to 8.95) 1.80 (0.11 to 5.37) DT CC T T T T T

3 8.4 3.65 4.75 (0.29 to 14.2) 2.85 (0.17 to 8.52) DT DT DT T T T T

4 10.4 4.52 5.88 (0.36 to 17.6) 3.53 (0.22 to 10.6) DT DT DT T T T T

≥ 5 12.3 5.35 6.95 (0.43 to 20.8) 4.17 (0.26 to 12.5) DT DT DT DT T T T

Example: Warfarin versus placebo for stroke reduction in patients with atrial fibrillation.
*Predicted ARRstroke and 95% CI if RRRstroke is 0.64 (0.49 to 0.74) using warfarin.11

†Predicted ARIbleed and 95% CI if RRIbleed is 1.30 (0.08 to 3.89) using warfarin.11

‡Tentative treatment recommendations are based on predicted point estimates for ARRstroke and ARIbleed. Uncertainties in these estimates, indicated by 95% CIs above, must also be
considered before actual treatment recommendations can be derived.
ARI, absolute risk increase; ARR, absolute risk reduction; BLR, baseline risk; CC, close all; DT, do not treat; RV, relative value; T, treat.
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then it is concluded that the new treatment is non-
inferior to EET.
In non-inferiority trials, the CID for a patient can be

expressed as the required reduction of the harm which
exactly compensates for the allowed increase of the target
outcome, value-adjusted. Thus, for application to non-
inferiority trials, the equation m1 can be rewritten as:

RequiredARRharmðiÞ ¼ ARItargetðiÞ=RVharm=targetðiÞ

Individualisation of the results of a trial demonstrating
group-level non-inferiority
We individualise group-level results by using CPGs, as
applicable (table 2), to predict BLR(i) and thereby abso-
lute treatment effects on the target outcome (ARItarget(i))
and the treatment harm (ARRharm(i)). ARItarget(i) is
derived as BLRtarget(i) × RRItrial. ARRharm(i) is derived as
BLRharm(i) × RRRtrial. We value-adjust the treatment harm
for the RVharm/target(i). We then compare the individualised
predictions of treatment effects on the target outcome

and on the harm to derive individualised treatment
recommendations. A recommendation to treat with the
non-inferior therapy would result when the predicted
reduction in harm, value-adjusted, exceeds the predicted
loss of efficacy, that is, when ARRharm(i) × RVharm/target(i)

> ARItarget(i) (or, holding the same terminology as for
superiority trials, when predicted ARRharm(i) > required
ARRharm(i)).

Figure 3 Maximum RVbleed/stroke for treatment to be justified,

by CHADS2 score and HEMORR2HAGES score. The scatter

plot shows the variation of the maximum RVbleed/stroke

according to CHADS2 and HEMORR2HAGES (abbreviated as

HEMO) scores. The horizontal lines depict three illustrative

maximum relative values. The model predicts the maximum

RVbleed/stroke to vary over a range between 0.1 (ie, a value

assigned to a stroke 10 times higher than that assigned to a

major bleeding) and about 10 (ie, a value assigned to a major

bleeding 10 times higher than that assigned to a stroke). As

examples, the insert zooms in the results for patients with a

CHADS2 score of 0–2 and HEMO scores of 0, 2 and

4. Among patients with a CHADS2 score of 0, warfarin would

be recommended for HEMO 0 patients if their RVbleed/stroke

were <1.1; for HEMO 2 patients, if their RVbleed/stroke were

<0.4; for HEMO 4 patients if their RVbleed/stroke were <0.2. For

patients with a CHADS2 score of 2, warfarin would be

recommended for HEMO 0 patients if their RVbleed/stroke were

<2.3; for HEMO 2 patients if their RVbleed/stroke were <0.8; for

HEMO 4 patients if their RVbleed/stroke were <0.4. RV, relative

value.

Figure 2 Maximum ARIbleed for treatment to be justified, by

CHADS2 score and relative valuestroke/bleed. The scatter plot

shows the maximum ARIbleed (%/year) above which warfarin

would not be justified, according to the CHADS2 score and

different RVbleed/stroke. The horizontal lines depict the predicted

ARIbleed with warfarin for each HEMORR2HAGES score. As

examples: at RVbleed/stroke 0.6, we would treat CHADS2 score 0

patients only if their predicted ARIbleed given warfarin were less

than 2%/year. Accordingly, we would treat HEMORR2HAGES

score 0–1 patients because their predicted ARIbleed (1.1, 1.4%/

year (table 3)) is less than 2%/year. We would not treat

HEMORR2HAGES score ≥2 patients because their predicted

ARIbleed (3–7%/year (table 3)) is greater than 2%/year. Again at

RVbleed/stroke 0.6, we would treat CHADS2 score 2 patients only

if their predicted ARIbleed were less than 4.3%/year. Thus, we

would treat HEMORR2HAGES score 0–2 patients because

their predicted ARIbleed (1.1–3%/year (table 3)) is less than

4.3%/year. We would not treat HEMORR2HAGES ≥3 patients

because their predicted ARIbleed (4.8–7%/year (table 3)) is

greater than 4.3%/year. At the RVbleed/stroke set higher or lower

than 0.6, fewer patients or more patients, respectively, would

be recommended for treatment according to the model. ARI,

absolute risk increase; RV, relative value.
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To examine the worst case, we then repeat the com-
parison of reduction in harm and loss of efficacy by cal-
culating ARItarget(i) using not the point estimate for
RRItrial but the bound of its CI that reflects the maximal
inferiority of the new treatment.

DISCUSSION
We presented an extension of the previously described
models to individualise treatment recommendations,
based on the use of CPGs to predict individual-level
treatment effects, adjusted for the relative importance
assigned by the patient to different outcomes.

Strengths
The adoption of an individual-level perspective repre-
sents the fundamental feature of the model. The indivi-
dualising process requires the conversion of group-level
into individual-level treatment effects and the use of the
patient’s values.14 The model presented here is more
flexible than models for individualising treatment
recommendations described previously.4 5 Either a fixed
or a variable harm is accommodated in our model.
LaHaye et al15 developed a decision aid specifically
designed to individualise antithrombotic therapy in
patients with atrial fibrillation that included a variable
benefit/variable harm scenario and also the patient’s
RVbleed/stroke. However, they did not explicitly conceptu-
alise and generalise the underlying model. We showed
the adaptability of our model to treatments causing mul-
tiple kinds of benefits and harms, as well as to non-
inferiority trials. The concepts of the maximum ARIharm
and maximum RVharm/benefit that would overturn the
clinical decision had not been developed previously.
The model is timely, given the increasing number of
very large RCTs providing precise group-level estimates
of treatment harms as well as treatment benefits, and
the recent rapid rise in validated CPGs, catalogued and
searchable in EvidenceUpdates,3 which makes the indi-
vidualisation of those group-level quantities more
feasible.

Limitations
In our model, we did not include economic costs, either
direct or indirect. Like clinical benefits and harms, eco-
nomic costs can be fixed or variable across patients. This
raises the question of whether a group-level cost-
effectiveness analysis of a treatment can be individua-
lised.16 A step in that direction is to apply prognostic
models to particularise group-level information on cost-
effectiveness according to the predicted risk and patient
subgroup.17 Our model provides a method for individua-
lising the consequences of treatment. However, analyses
of incremental cost-effectiveness or cost-utility at the
individual level are constrained at present by the lack of
reliable individualised data on the incremental direct
and indirect costs of treatment.

Use and appropriateness of CPGs for individualising
recommendations
We generically explained why, how and when model
building requires the use of CPGs. CPGs are developed
for different purposes. A particular application of a CPG
is to individualise risk predictions in the control group
of an RCT. There are some desirable features of a CPG
for this specific application. In box 1, we provide an aid
to guide the user in the search for and the evaluation of
an appropriate CPG for individualising the group-level
results of the RCT of interest.
In the case of a variable benefit/variable harm, we

look for two different CPGs to classify the patients
according to the ‘baseline’ risks for the target event
and for the harm. In this case, the predictions result-
ing from this coclassification might be constrained by
a possible within-patient correlation between the two
variable risks, since the target event and the harm may
share some risk factors or may not be independent
outcomes.

Box 1 How to use a Clinical Prediction Guide (CPG) on
risk prediction to individualise the results of an RCT

Relevance
Will the CPG help me in making individualised risk predictions for
patients in the control group of the randomized controlled trial
(RCT) of interest?
▸ Were the patients on whom the CPG was developed or vali-

dated similar to the RCT’s control group in regard to their clin-
ical characteristics?

▸ Does the treatment status of the patients on whom the CPG
was developed match that of the RCT’s control group, that is,
each on no treatment or placebo; each on established effective
therapy?

▸ Does the CPG provide the absolute risk (or is it at least deriv-
able) for the outcome of interest (target event or harm), in a
specified period of time, according to risk factors/risk score?

Validity
Are the predictions made by the CPG valid?
▸ How was the CPG developed?

Was the CPG developed on a well defined and representative
sample of patients prospectively followed up?

▸ How well did the CPG perform in the population of derivation?
Was the CPG’s calibration tested? How accurate were the pre-
dictions of the absolute risk, that is, how good was the agree-
ment between predictions and observed outcome?
Were the CPG’s discrimination (c-statistic) and reclassification
tested? How good were they?
Did the CPG undergo internal validation to quantify and even-
tually adjust for overfitting/optimism?

▸ Did the CPG undergo external validation?
– Was the CPG’s performance tested in patients different

from those on whom it was developed? How good was it?
Precision

How precise were the predictions of the absolute risk, that is,
how wide was the uncertainty around the provided estimates?
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Uncertainty in group-level estimates and patient values
The results of an RCT are usually provided as point esti-
mates accompanied by a measure of variability (CI).
Often, as shown in the example in table 3, the within-
trial estimates for the harm have been characterised by
high imprecision. However, this situation may be improv-
ing with the increasing reports of very large active-
control RCTs.18

Probably the major source of uncertainty is the
patient’s RVharm/benefit and its elicitation. The scenario
presented to the patient should uniformly include the
major clinical outcomes of the treatment decision,
including death if relevant, and the time frame of the
consequences of the decision. Decision aids, which are
tools specifically designed to prepare the patient to par-
ticipate in the decision process, have been shown to
improve patient knowledge and involvement, especially
when they target explicit values clarification.19

One may embed in the calculation of the individual
quantities a measure of the variance (eg, SE) of the
group-level measures entering the model.20 Additionally,
one may estimate how much that uncertainty can affect
the individual predictions in the most pessimistic direc-
tion, that is, using the CI bounds for the group-level esti-
mate of the treatment effect on target corresponding to
the worst scenario. We proposed an alternative approach
to deal with the uncertainty around the quantities enter-
ing the model. We provided formulas for estimating the
individualised maximum ARIharm and RVharm/benefit

above which the decision to treat would be overturned.

Future research objectives
A. Resolution of uncertainty. In applying our model,

methods are needed to resolve uncertainty arising
from imprecision in the estimates of treatment
benefit and treatment harm derived from group-level
results from RCTs. In this paper, we addressed uncer-
tainty by resorting to sensitivity analyses utilising
bounds of CIs on treatment effects. However, in the
field of cost-effectiveness analysis, investigators pro-
gressed to approaches dealing simultaneously with
the stochastic uncertainty of all the quantities enter-
ing the model. These approaches include non-
parametric bootstrapping, Fieller’s theorem and
Bayesian methods.21 We suggest as a future goal that
such methods be explored for their applicability to
resolution of uncertainty in clinical harm/clinical
benefit analyses.

B. Net benefit and model validation. Vickers et al5 con-
ceived a method to empirically test whether indivi-
dualised recommendations based on CPG-based
predictions of absolute treatment effects, value-
adjusted, would actually result in a greater net benefit
in real life compared with a policy of treating all
patients or treating none. The method utilises the
distribution of predicted individualised treatment
effects in the randomly allocated treatment and
control groups of a large RCT. One combines the

patients whose predicted ARRtarget(i) exceeded the
required ARRtarget(i) who were randomised to the
treatment group, and the patients whose predicted
ARRtarget(i) did not exceed their required ARRtarget(i)

who were randomised to the control group. Those
are the respective patients who would or would not
be recommended for treatment and who used
prediction-based treatment in real life. One then
compares the observed outcomes in the trial of that
combined group with the outcomes for the treat-
ment arm of the RCT. The superiority of the
prediction-based policy is validated if its net benefit
is greater than the net benefit of treat all, or treat
none. The empirical result, in the examples of
Vickers et al5 and later Dorresteijn et al,6 was that a
prediction-based policy was superior, but only within
a limited range of the required ARRtarget(i). If the
required ARRtarget(i) was extreme in either the low or
high direction, a policy of treat all or treat none,
respectively, was preferred.

Vickers et al5 and Dorresteijn et al6 used this approach to
validate individualised recommendations in a fixed harm
scenario, where the harm was receipt of the treatment per
se. Nevertheless, the same approach can be used to valid-
ate individualised recommendations in variable harm
scenarios, and for treatments tested in non-inferiority as
well as superiority trials. As with Vickers’ method in
general, individual-patient trial data must be available to
identify the patients whose predicted ARRtarget(i) did or
did not exceed their required ARRtarget(i).
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APPENDIX: ALGEBRAIC DERIVATION OF THE MODELS
Legend:

Target = target outcome that the treatment can prevent
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Harm = any increase of an adverse outcome due to the treatment
CID = clinically important difference
ARR = absolute risk reduction
ARI = absolute risk increase
V = value
RV = relative value

1. Derivation of the simple model (one benefit, one harm)

The CID corresponds to the ARR for the target benefit sufficiently

large to exactly offset the treatment harm. Allowing for a different

value assigned to the target outcome prevented by the treatment

and to the harm caused by the treatment (Vtarget and Vharm,

respectively), the condition at the CID can be expressed algebraic-

ally as:

ARRtarget � Vtarget ¼ ARIharm � Vharm ð1Þ

1.1. Algebraic solution for the required ARRbenefit to offset
the treatment harm

Dividing each side of the equation (1) by Vtarget

ARRtarget ¼ ARIharm � Vharm=Vtarget !
required ARRtarget ¼ ARIharm � RVharm=target ð2Þ

1.2. Algebraic solution for the maximum ARIharm above
which treatment would not be justified

Dividing each side of the equation (1) by Vharm

ARRtarget � Vtarget=Vharm ¼ ARIharm !
ARRtarget � RVtarget=harm ¼ ARIharm !

maximum ARIharm ¼ ARRtarget � RVtarget=harm ð3Þ

or, expressed in terms of RVharm/target

maximum ARIharm ¼ ARRtarget=RVharm=target

1.3. Algebraic solution for the maximum RVharm/target above
which treatment would not be justified

ARRtarget ¼ ARIharm � Vharm=Vtarget !
ARRtarget ¼ ARIharm � RVharm=target

dividing each side of equation by ARIharm

ARRtarget=ARIharm¼ RVharm=target !
maximum RVharm=target ¼ ARRtarget=ARIharm ð4Þ

2. Derivation of the complex model (multiple benefits,
multiple harms)
Legend:

Benefit = any reduction of an adverse outcome additional to the target
outcome.

At the CID, the sum of treatment benefits offsets the sum of treat-

ment harms. Allowing for different values for every outcome prevented

or caused by treatment, this can be expressed algebraically as:

ARRtarget � VtargetþARRbenefitð2Þ � Vbenefitð2Þþ� � �þARRbenefitðmÞ
�VbenefitðmÞ¼ ARIharmð1Þ � Vharmð1Þþ
� � � þ ARIharmðkÞ � VharmðkÞ

ð5Þ

where m is the total number of treatment benefits, the benefit(2) to

benefit(m) are the benefits other than the target one, and k is the

number of treatment harms. Or, likewise:

ARRtarget � Vtargetþ
P

ðfor j ¼ 2 to mÞ ARRbenefitðjÞ � Vbenefitð jÞ¼
P

ðfor j¼1 to kÞ
ARIharmð jÞ � Vharmð jÞ

ð6Þ

Subtracting
P

ðfor j ¼ 2 to mÞ ARRbenefitð jÞ � Vbenefitð jÞ from both sides and

dividing both sides for Vtarget, we can obtain the required ARRtarget

such that the total treatment benefits offset the total treatment harms:

required ARRtarget ¼
X

ðfor j ¼ 1 to kÞ ARIharmð jÞ � RVharmð jÞ=target

�
X

ð for j ¼ 2 to mÞ ARRbenefitðjÞ � RVbenefitð jÞ=target

ð7Þ

where every RV is expressed as the value of that outcome, prevented

or caused by the treatment, compared with the value assigned to the

target outcome.

REFERENCES
1. Wong SS, Wilczynski NL, Morgan D, et al. Developing optimal

search strategies for detecting sound clinical prediction studies in
MEDLINE. AMIA Annu Symp Proc 2003:728–32.

2. Holland JL, Wilczynski NL, Haynes RB; Hedges Team. Optimal
search strategies for identifying sound clinical prediction studies in
EMBASE. BMC Med Inform Decis Mak 2005;5:11.

3. Website for accessing an up-to-date register of critically-appraised
clinical prediction guides, searchable by topic. http://plus.mcmaster.
ca/evidenceupdates

4. Sinclair JC, Cook RJ, Guyatt GH, et al. When should an effective
treatment be used? Derivation of the threshold number needed to
treat and the minimum event rate for treatment. J Clin Epidemiol
2001;54:253–62.

5. Vickers AJ, Kattan MW, Sargent D. Method for evaluating prediction
models that apply the results of randomized trials to individual
patients. Trials 2007;8:14.

6. Dorresteijn JA, Visseren FL, Ridker PM, et al. Estimating treatment
effects for individual patients based on the results of randomized
trials. BMJ 2011;343:d5888.

7. Glasziou PP, Irwig LM. An evidence-based approach to
individualizing treatment. BMJ 1995;311:1356–9.

8. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent
vascular events in men and women with elevated C-reactive protein.
N Engl J Med 2008;359:2195–207.

9. National Cholesterol Education Program. Executive summary of the
third report of the National Cholesterol Education Program (NCEP)
expert panel on detection, evaluation, and treatment of high blood
cholesterol in adults (Adult Treatment Panel III). JAMA
2001;285:2486–97.

10. Ridker PM, Buring JE, Rifai N, et al. Development and validation of
improved algorithms for the assessment of global cardiovascular risk
in women: the Reynolds risk score. JAMA 2007;297:611–19.

11. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic
therapy to prevent stroke in patients who have nonvalvular atrial
fibrillation. Ann Intern Med 2007;146:857–67.

12. Gage BF, Waterman AD, Shannon W, et al. Validation of clinical
classification schemes for predicting stroke. JAMA
2001;285:2864–70.

13. Gage BF, Yan Y, Milligan PE, et al. Clinical classification schemes
for predicting hemorrhage: results from the National Registry of Atrial
fibrillation (NRAF). Am Heart J 2006;151:713–19.

14. McAlister FA, Straus SE, Guyatt GH, et al. Users’ guides to the
medical literature: XX. Integrating research evidence with the care of
the individual patient. Evidence-Based Medicine Working Group.
JAMA 2000;283:2829–36.

Marcucci M, Sinclair JC. BMJ Open 2013;3:e003143. doi:10.1136/bmjopen-2013-003143 11

Open Access

http://plus.mcmaster.ca/evidenceupdates
http://plus.mcmaster.ca/evidenceupdates


15. LaHaye SA, Gibbens SL, Ball DG, et al. A clinical decision aid for
the selection of antithrombotic therapy for the prevention of stroke
due to atrial fibrillation. Eur Heart J 2012;33:2163–71.

16. Ioannidis JP, Garber AM. Individualized cost-effectiveness analysis.
PLoS Med 2011;8:e1001058.

17. Mark DB, Hlarky MA, Califf RM, et al. Cost-effectiveness of
thrombolytic therapy with tissue plasminogen activator as compared
with streptokinase for acute myocardial infarction. N Engl J Med
1995;332:1418–24.

18. Miller CS, Grandi SM, Shimony A, et al. Meta-analysis of efficacy
and safety of new oral anticoagulants (dabigatran, rivaroxaban,

apixaban) versus warfarin in patients with atrial fibrillation. Am J
Cardiol 2012;110:453–60.

19. Stacey D, Bennett CL, Barry MJ, et al. Decision aids for people
facing health treatment or screening decisions. Cochrane Database
Syst Rev 2011;10:CD001431.

20. Walter SD, Sinclair JC. Uncertainty in the minimum event risk to
justify treatment was evaluated. J Clin Epidemiol 2009;62:
816–24.

21. Glick HA, Briggs AH, Polsky D. Quantifying stochastic uncertainty
and presenting results of cost-effectiveness analyses. Expert Rev
Pharmacoecon Outcomes Res 2001;1:25–36.

12 Marcucci M, Sinclair JC. BMJ Open 2013;3:e003143. doi:10.1136/bmjopen-2013-003143

Open Access


