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Symbolic Trajectories∗

Ralf Hartmut Güting† Fabio Valdés† Maria Luisa Damiani‡

Abstract

Due to the proliferation of GPS enabled devices in vehicles or with people, large amounts
of position data are recorded every day and the management of such mobility data, also
called trajectories, is a very active research field. A lot of effort has gone into discovering
“semantics” from the raw geometric trajectories by relating them to the spatial environ-
ment or finding patterns, e.g., by data mining techniques. A question is how the resulting
“meaningful” trajectories can be represented or further queried.

In this paper, we propose a very simple generic model called symbolic trajectory to cap-
ture a wide range of of meanings derived from a geometric trajectory. Essentially a symbolic
trajectory is just a time dependent label; variants have sets of labels, places, or sets of places.
They are modeled as abstract data types and integrated into a well established framework of
data types and operations for moving objects. Symbolic trajectories can represent, for exam-
ple, the names of roads traversed obtained by map matching, transportation modes, speed
profile, cells of a cellular network, behaviours of animals, cinemas within 2 kms distance, etc.

Besides the model, the core technical contribution of the paper is a language for pattern
matching and rewriting of symbolic trajectories. A symbolic trajectory can be represented as
a sequence of pairs (called units) consisting of a time interval and a label. A pattern consists
of unit patterns (specifications for time interval and/or label) and wildcards, matching units
and sequences of units, respectively, as well as regular expressions over such elements. It
may further contain variables that can be used in conditions and in rewriting. Conditions
and expressions in rewriting may use arbitrary operations available for querying in the host
DBMS environment which makes the language extensible and quite powerful.

We formally define the data model and syntax and semantics of the pattern language.
Query operations are offered to integrate pattern matching, rewriting, and classification of
symbolic trajectories into a DBMS querying environment. Implementation of the model using
finite state machines is described in detail. An experimental evaluation demonstrates the
efficiency of the implementation. In particular, it shows dramatic improvements in storage
space and response time in a comparison of symbolic and geometric trajectories for some
simple queries that can be executed on both symbolic and raw trajectories.

1 Introduction

Due to the wide-spread use of GPS-enabled devices such as smartphones or car navigation
systems the recording of position data has become very easy and huge amounts of such data are
collected every day. In response to this, the research field of trajectory data management, also
termed moving objects databases, has been very active in the last 15 years [46, 19].

A trajectory describes the movement of an entity, for example, a person, a vehicle, or an
animal, over time. At a low level of abstraction, it is a sequence of positions with time stamps,
corresponding to the way data are recorded by devices. At a higher level of abstraction it is a
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continuous function from time into 2D space that may be represented by an abstract data type
moving point [18].

A lot of efforts has gone into data mining on large sets of trajectories [17]. Whereas the
general goal is to discover any kind of interesting phenomena on such data sets, an important
aspect is to associate some meaning with a trajectory as a whole or parts of it. For example,
for a tourist, rather than being at some geographic coordinate in France for an interval of time
we would like to understand that he/she is visiting the Louvre or having dinner at a restaurant.
For a car we want to be aware that it was in a traffic jam during a certain period. For an animal
observation we would like to understand that this is migration behavior, or a bird flying in a
swarm. For a person moving around we would like to know whether she is walking, going by
bicycle or using a bus.

Clearly it is necessary to somehow represent such findings and there is a corresponding trend
to consider “semantic trajectories”. The work of Spaccapietra et al. [35] suggests to view a
trajectory as a sequence of stops and moves. Further work in [36] generalizes the model and
defines a semantic trajectory as an annotated trajectory where annotations have a type, e.g.,
stop/move, and regard the whole trajectory or parts of it.

However, the models proposed under the label “semantic trajectories” are designed as fairly
complex extended entity relationship models that need to be mapped to corresponding sets of
relations. They are not suitable for simple and elegant querying.

In contrast, in this paper we propose a simple and flexible generic model to represent any
kind of semantic information that one might want to associate with a trajectory. Due to its
simplicity it lends itself to elegant and expressive query formulation. We call this model a
symbolic trajectory.

A symbolic trajectory is in its basic form just a time dependent label, that is, a function
from time into label values. Labels are just short character strings. Such a function can be
represented as a sequence of pairs < (i1, l1), ..., (in, ln) > where ij is a time interval and lj a
label. Time intervals are disjoint (possibly adjacent) and the pairs in the sequence are ordered
by time. For example, a simple symbolic trajectory would be1

< ([8:30 - 8:45], walk), ([8:45 - 9:13], train), ([9:13 - 9:19], walk) >

A symbolic trajectory can express any time dependent symbolic information that can be
derived from a geometric trajectory (sometimes called a raw trajectory in the literature). The
symbolic information can be computed from the movement itself or be obtained by relating the
geometric trajectory to its environment, e.g., static geometries or other moving objects. Hence
it is an abstraction that captures certain aspects of a precise geometric trajectory. Here are
some examples of possible interesting aspects:

• Names of roads traversed by a vehicle, obtained by map matching

• Cell identifiers of a cellular network

• Cardinal directions such as north, northwest, ...

• Speed profiles: slow, moderate, fast

• For animals: at home range, migrating, stopover, ...

• Indoor navigation: triples of (building, floor, room)

• Names of countries traversed on a long distance trip

• Activities of a tourist

• For animals: grazing, resting, at feeding station, ...

• Animal movement: valley, level ground, mountain range, descending, climbing

• Transportation mode: car, bus, taxi, bicycle, ...

1This representation is simplified. Time intervals do contain absolute dates. More precise notations for time
intervals are defined later in the paper.
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• Current weather at moving entity: sun, rain, snow, ice, ...

We follow the framework of [18] and represent a symbolic trajectory as a data type called
moving(label), or mlabel for short. The framework has data types such as moving(point) /
mpoint to represent a geometric trajectory, moving(real) / mreal to represent a time dependent
real (e.g. speed, heading, or the distance between two moving objects) and so forth. The new
type is seamlessly integrated into the framework and inherits generic operations (for example
atinstant, to evaluate it at some instant of time, deftime to get the total time interval when
it is defined).

These data types can all be used as attribute types in a relational model, hence one can
construct a relation describing moving objects (each tuple representing one moving object) with
attributes describing geometric together with symbolic information. For example, we may have
a relation schema

Vehicles(Trip: mpoint, RoadName: mlabel, Speed: mlabel)

where the road name is obtained from map matching and the speed from a classification of
speeds. We call this a hybrid or multi-dimensional trajectory. It is of particular interest to
manipulate symbolic trajectories together with their related geometric trajectories. An example
is shown in Section 5.2.

Beyond the basic type moving(label) three more types for symbolic trajectories are provided
that allow one to have time dependent sets of labels, (symbolic references to) places, and sets
of places.

The core technical contribution of this paper is a language for pattern matching and rewriting
of symbolic trajectories. Matching is used to retrieve symbolic trajectories fulfilling a given
pattern. Rewriting can be used to translate a symbolic trajectory into some other form, classify
it into certain categories, or retrieve the parts of a symbolic trajectory matching a pattern.

Here are some simple examples:

* (_ taxi) (_ bus) *

This pattern matches symbolic trajectories containg adjacent pairs (called units) where a transfer
occurs from taxi to bus. A pattern to match a unit is denoted as (x y), x a time interval
specification, y a label specification; the symbol * matches any sequence of units. In contrast,
the pattern

* (monday taxi) X (_ bus) * // duration(X.time) > 20 * minute

requires that the transfer occurs on a Monday and that the bus trip takes more than 20 minutes.
This pattern contains a variable X and a condition.

Patterns can be extended to rules that can be used in rewriting:

* W (monday taxi) X (_ bus) * // duration(X.time) > 20 * minute

=> W X

This rule returns for each input trajectory all symbolic trajectories that can be obtained from
it by selecting two adjacent units matching the pattern

(monday taxi) (_ bus)

Hence one can retrieve all transitions from taxi to bus occurring in the possibly long symbolic
trajectory.

The main contributions of the paper are the following:

• We introduce the concept of symbolic trajectories as a generic representation of meanings
for trajectories.
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• Symbolic trajectories are formalized as abstract data types and integrated into an existing
comprehensive framework of data types for moving objects, inheriting generic operations
from the framework.

• A language for pattern matching and rewriting of symbolic trajectories is defined. In
contrast to earlier work,

– it is not restricted to special cases (e.g., labels of a sequence of areas traversed) but
handles symbolic trajectories in full generality,

– it refers not only to labels but provides sophisticated specification of temporal con-
ditions,

– it provides not only pattern matching but also rewriting and classification of trajec-
tories,

– the language is not closed but connects to the full power of the querying environment,
allowing one to use any available operation for conditions or assignments in rewriting.

• Rigorous formal definitions for the syntax and semantics of pattern matching and rewriting
are provided.

• Efficient implementation of the language is presented in detail using non-deterministic
finite automata.

• An experimental evaluation based on the well-known BerlinMOD benchmark provides
detailed insight about the efficiency of the implementation. It demonstrates the advantages
of using symbolic trajectories over raw trajectories for the aspects covered by the symbolic
trajectory representation.

• The implementation is freely available for experiments and practical use together with the
Secondo DBMS prototype.

The rest of the paper is structured as follows: Section 2 reviews the concepts from [18] that
are later needed for the definition of symbolic trajectories in Section 3. Section 4 presents the
pattern language including formal definitions of syntax and semantics. Section 5 presents as
examples two ways of using symbolic trajectories to represent personal trips; it addresses also
the construction of symbolic from raw trajectories. Section 6 explains in detail data structures
and algorithms for implementing the model and illustrates them by examples. Section 7 first
provides an experimental evaluation of the main query operations for pattern matching, rewrit-
ing, and classification. In a second set of experiments, raw trajectories from the BerlinMOD
benchmark [14] are mapped to symbolic trajectories (for names of roads traversed) and the two
representations are compared with respect to storage consumption and query time. Section 8
discusses related work and Section 9 concludes with an outlook to future work.

2 Preliminaries

The model of symbolic trajectories proposed in this paper fits into and extends a comprehensive
framework for representing and querying moving objects in databases [15, 18, 16]. In this section
we briefly review the essential concepts of this framework needed later.

The general idea is to provide a collection of abstract data types to describe moving objects
and the operations applicable to them. For example, moving point (or mpoint , for short) is a
data type to represent a time dependent location in the Euclidean plane, line is a spatial data
type describing a continuous curve in the plane, and mreal is a type to represent time dependent
real values. Operation trajectory maps a moving point to a line value and operation distance,
applied to two mpoint values, returns their time dependent distance as an mreal . An mpoint
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m may represent the trip of a car, trajectory(m) would be the path in the plane taken, and
distance(m1, m2) may be the time dependent distance between two cars.

This is embedded into a DBMS data model (e.g., an object-relational model) as follows. The
data types can be used as attribute types. Hence we can have a relation describing car trips
with schema:

Vehicles (Id: string, Trip: mpoint)

The operations can be used in queries. For example, one can find pairs of vehicles that have
been closer to each other than 100 meters by a query

select v1.Id, v2.Id

from Vehicles as v1, Vehicles as v2

where minimum(distance(v1.Trip, v2.Trip)) < 0.1

using a further operation minimum that maps an mreal into a real .
Formally, a system of types and operations is a (many-sorted) algebra. It consists of a

signature which provides sorts and operations, defining for each operation the argument sorts
and the result sort. A signature defines a set of terms. To define the semantics, one needs to
assign carrier sets to the sorts and functions to the operations that are mappings on the respective
carrier sets. The signature together with carrier sets and functions defines the algebra.

In the framework discussed, data types are built from some basic types and type constructors.
The type system is itself described by a signature. In this signature, the sorts are so-called kinds
and the operations are type constructors. The terms of the signature are exactly the available
types of the type system. For example, consider a signature

int , real , bool : → BASE
array : BASE → ARRAY

It has kinds BASE and ARRAY and type constructors int , real , bool , and array . The types de-
fined are the terms of the signature, namely, int , real , bool , array(int), array(real), array(bool).
Note that basic types are just type constructors without arguments.

The type system defined in [18] for moving objects is shown in Figure 1.

Type Constructor Signature

int , real , string , bool → BASE
point , points, line, region → SPATIAL
instant → TIME
moving , intime BASE ∪ SPATIAL → TEMPORAL
range BASE ∪ TIME → RANGE

Figure 1: Type system defined in [18]

We first explain the type system informally. It has some basic standard types and some
spatial data types. Type instant represents the continuous domain of time. Type constructor
moving provides for a given static type a corresponding time dependent type. The intime
constructor yields for a static type α a type whose values are pairs of an instant and a value of
type α. The range constructor provides for a given type another type whose values are finite
sets of disjoint intervals over the domain of α.

To provide formally the semantics of the data types, one needs to define their domains, or
carrier sets. An important distinction introduced in [15, 18, 16] is that between an abstract model
and a discrete model. In an abstract model, the domain may be defined in terms of infinite sets.
Such a model is conceptually simple, but not directly implementable. In contrast, in a discrete
model, the possible values of a data type must be defined in terms of finite representations.
These can be mapped to data structures in the implementation.
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For example, a region data type can be defined in an abstract model as a regular closed
subset of the Euclidean plane, whereas in a discrete model it would be defined as a collection of
disjoint polygons each of which may have polygonal holes.

Reference [18] defines an abstract model of data types and operations for moving objects
whereas [16] provides a corresponding discrete model.

Some notations used in defining semantics of types are Aα and Dα to denote the carrier set
of type α in the abstract and discrete model, respectively. When a carrier set Aα contains an
undefined value ⊥, then the notation Āα refers to the carrier set without the undefined value,
i.e., Āα = Aα \ {⊥}. With these notations, the carrier set of the moving type constructor is
defined as follows.2

Definition 2.1 Given a data type α to which type constructor moving is applicable, the carrier
set of type moving(α) is

Amoving(α) := {f |f : Ainstant → Āα is a partial function}

�

Note that the abstract model disregards completely the issue of how such functions can be
represented. A function f : Ainstant → Aα is simply an infinite set of pairs from Ainstant ×Aα.

The discrete model of [16] provides finite representations for all the types of the abstract
model. For types moving(α) the so-called sliced representation is introduced. That means, to
represent a function of time, the time domain is cut into disjoint time intervals (slices) such
that within each slice the development can be represented by some simple function of time.
“Simple” actually means finitely representable. In other words, the function for a slice can be
described by a few parameters rather than an infinite set of pairs. Figure 2 illustrates the sliced
representation for a moving(real) and a moving(point).

t

v

x

y

t

Figure 2: Sliced representations for moving(real) and moving(point)

The representation of a single slice, consisting of the time interval and the function descrip-
tion, is called a unit.

For the given data types, a comprehensive set of operations is defined. Most of them are
generic and applicable to many of the available data types. Two examples are

deftime: moving(α) → periods
atinstant: moving(α) × instant → intime(α)

Here type periods is just an abbreviation of range(instant). Hence operation deftime returns
the set of time intervals when a moving object is defined.

These two example operations are generic because they range over the types generated by
type constructor moving . A second technique to define generic operations used in [18] introduces
so-called spaces, where a space contains point types and point set types. Essentially, a value of
a point type is a single element of some domain (“space”) and a point set type has a set of
values from this domain. Two example spaces are Int and 2D. The Int space has types int and

2The definition in [18] has an additional condition requesting that such a function has only a finite number of
continuous components, omitted here.
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range(int). The first can represent a single int value and the second a set of int values. Hence
int is the point type and range(int) the point set type of space Int. For space 2D, point is the
point type and points, line, region are the point set types (as line and region are viewed as
infinite sets of points from the 2D plane).

Generic operations are then defined to range over point and point set types of any space.
Here π denotes a point type and σ a point set type. In defining semantics of operations, u and v
(respectively U and V ) refer to the first and second argument if it is of a point type (respectively
a point set type). Two operations defined in this way are

Type Constructor Signature Semantics

inside: π × σ → bool u ∈ V
union: σ × σ → σ U ∪ V

One signature covered by this definition is inside: point × line → bool .
Finally, lifting is introduced as a mechanism to make static and related time dependent

operations consistent. Lifting means that for a given static operation each of the arguments
may become time dependent (i.e., replacing in the signature type α by moving(α)) which makes
the result time dependent as well. Furthermore the semantics of the lifted operation is derived
using the semantics of the static operation for every instant of time. Hence by lifting we also
have an operation inside: moving(point) × line → moving(bool).

See [18] for further details and the complete definition of types and operations.

3 Symbolic Trajectories

A symbolic trajectory is intended to capture some time dependent “symbolic” property of a
moving object. Such a property can be derived from the movement itself or it can relate the
movement to some environment (i.e., the space in which the object moves). As such, it is an
abstraction that captures certain aspects of a precise geometric trajectory. Some interesting
aspects (called profiles) are the following:

• Road names: the sequence of road names of roads traversed, obtained by map matching
techniques.

• Speed profile: symbols characterizing the speed such as fast, moderate, slow, or a classifi-
cation into ranges such as 0-20, 20-50, 50-80, ...

• Personal locations: home, work, friend 1, friend 2, cinema, bookstore, ...

• Travel modes: walk, bicycle, car, bus, ...

• Activities: sleeping, eating, watching TV, ...

• Places traversed: the sequence of districts of a city passed, or of the cells of a mobile phone
network.

A symbolic trajectory is in the most simple form just a time dependent symbol, called a
label, where a label is simply a character string. Hence conceptually a symbolic trajectory is a
function

f : Ainstant → Alabel

where instant is the data type representing the continuous domain of time, and label is the type
of labels. Clearly a symbolic trajectory can be represented by a type moving(label).

There are three further variants: a time dependent set of labels, a time dependent place, or
a time dependent set of places. A place is a pair consisting of a label and an integer such as
(cinema, 114) where the integer component is a reference into some repository of geometries.
Geometries can be of data types point , line, or region. Hence a place is a symbolic representation
of an entity in space with a reference to its precise geometric location or extent.

7



Data Types We introduce four data types label , labels, place, and places defined as follows.

Definition 3.1 The carrier sets for the types label , labels, place, and places are defined as:
Alabel := V ∗ ∪ {⊥}, where V is a finite alphabet,
Alabels := 2V

∗ ∪ {⊥},
Aplace := (V ∗ × N) ∪ {⊥},
Aplaces := 2V

∗×N ∪ {⊥} �

Each carrier set contains an undefined value ⊥ consistent with definitions in [18].
We integrate the new types into the type system of [18] as shown in Figure 3, using a new

kind SYMBOLIC.

Type Constructor Signature

int , real , string , bool → BASE
label , labels, place, places → SYMBOLIC
point , points, line, region → SPATIAL
instant → TIME
moving , intime BASE ∪ SYMBOLIC ∪ SPATIAL → TEMPORAL
range BASE ∪ TIME → RANGE

Figure 3: Extended type system

The three further kinds of symbolic trajectories correspond to data types moving(labels),
moving(place), and moving(places). For them as well as for type moving(label) the semantics is
already given in Definition 2.1. We also use abbreviations mlabel , mlabels, mplace, mplaces.

The purpose of the set types is to allow one to associate with a moving object not just one but
several properties or places. We can introduce set operations ∪,∩ and \ on symbolic trajectories.
For example, let f be a symbolic trajectory representing the sequence of roads traversed, and g a
symbolic trajectory representing the transportation mode, then f ∪ g is the symbolic trajectory
representing for each instant of time both the current road and the transportation mode.

Discrete Model So far we have defined symbolic trajectories within the abstract model,
viewing them as functions of time. The discrete model follows from [16] by analogy to the repre-
sentation of types moving(α) with a discrete domain Dα such as moving(int) or moving(bool).
Effectively, a symbolic trajectory is represented at the discrete level as a sequence of units where
each unit consists of a time interval and a value from the respective type (label , labels, place,
places). Within the sequence, the time intervals of units are disjoint (but possibly adjacent) and
units are ordered by time intervals.

Hence a symbolic trajectory may be denoted as u1...un for n ≥ 0 where ui is a unit, or as a
sequence of pairs < (i1, l1), ..., (in, ln) > where ij is a time interval and lj a label (respectively
set of labels, etc.). Time intervals are represented as four-tuples (s, e, lc, rc) where s and e are
instants with s < e, and lc and rc are booleans denoting whether the interval is left-closed
and/or right-closed. This makes it possible to have adjacent but disjoint intervals. See [16] for
full formal definitions.

Hence an example symbolic trajectory of type mlabel is

< ( (2013-01-17-9:02:30, 2013-01-17-9:05:51, T, F), "Queen Anne St"),

( (2013-01-17-9:05:51, 2013-01-17-9:10:16, T, F), "Wimpole St"),

...

( (2013-01-17-9:18:44, 2013-01-17-9:20:10, T, F), "Queen Anne St") >

It represents the sequence of road names of roads traversed by someone who did a round-walk
of a about a quarter of an hour on January 17, 2013.
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In the sequel we follow a convention for representing nested list structures used in LISP and
in the Secondo system (which is the environment for implementation described below). There
a list < a1, a2, ..., an > is represented as (a1 a2 ... an) where each element is either an atom
or a list. Further, we may omit the boolean flags left-closed and right-closed because they are
usually not interesting. The example trajectory then looks as follows:

( ( (2013-01-17-9:02:30 2013-01-17-9:05:51) "Queen Anne St")

( (2013-01-17-9:05:51 2013-01-17-9:10:16) "Wimpole St")

...

( (2013-01-17-9:18:44 2013-01-17-9:20:10) "Queen Anne St") )

Operations on Symbolic Trajectories Due to the integration into the model of [18] we
have already inherited some generic operations. We make one further step by recognizing that
label and labels as well as place and places form spaces as shown in Figure 4.

Space Point Type Point Set Type

Label label labels
Place place places

Figure 4: New types viewed as point or point set types

This means that all operations defined on spaces are inherited. These are also subject to
lifting, hence the time dependent versions are defined as well.

For example, the desired set operations on symbolic trajectories are already formally defined
in [18] (as union, intersection, minus).

As a result we have already an expressive query language for querying trajectories of various
kinds including symbolic trajectories. This is illustrated in the following example.

Example 3.1 Assume we have a relation with symbolic trips of people captured as road profiles
(road names of roads traversed). The schema is

SymTrips (Name: string, Trip: mlabel)

We can formulate the following queries (operations used3 are shown in Figure 5):

• Find all trips passing through Baker street.

select * from SymTrips where Trip passes "Baker St"

• For these trips, determine the time intervals when they were in Baker street.

select Name, deftime(Trip at "Baker St") as AtBaker

from SymTrips

where Trip passes "Baker St"

• In which road was John on January 17, 2013, at 6:30 am?

select val(Trip atinstant theInstant(2013, 1, 17, 6, 30)) as Road

from SymTrips

where Name = "John"

• Find any pairs of people that have been in the same road at the same time. Provide the
parts of the trips where they have been in the same road.

3Operations sometimes and theInstant are not defined in [18]. sometimes is shown to be a derived
operation in [19], Exercise 4.5. theInstant is available in the implementation in the Secondo system.
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select s1.Name, s2.Name, intersection(s1.Trip, s2.Trip) as CommonRoads

from SymTrips as s1, SymTrips as s2

where sometimes(s1.Trip = s2.Trip)
�

The operations used in Example 3.1 are shown in Figure 5 with the specific instantiations
of the generic signature used in the query. For each operator its syntax is specified in the last
column; here # denotes the operator and _ an argument.

Operator Signature Syntax

passes: moving(label) × label → bool _ # _

at: moving(label) × label → moving(label) _ # _

deftime: moving(label) → periods # ( _ )

atinstant: moving(label) × instant → intime(label) _ # _

val: intime(label) → label # ( _ )

intersection: moving(label) × moving(label) → moving(label) # ( _, _ )

=: moving(label) × moving(label) → moving(bool) _ # _

sometimes: moving(bool) → bool # ( _ )

theInstant: int × int × int × int × int → instant # (_,_,_,_,_)

Figure 5: Operations used in queries of Example 3.1

4 Pattern Matching and Rewriting

The generic operations inherited for symbolic trajectories from [18] already permit expressive
queries. Nevertheless we are now interested in making the language even more expressive by
providing a facility to retrieve symbolic trajectories matching a user-defined pattern and to
manipulate trajectories by rewriting them into some other form. For example, rewriting allows
one to extract certain pieces of interest, to aggregate subsequences of units to some higher
level semantics (expressed by a corresponding label), or even to classify the whole trajectory by
assigning an adequate label. Note that rewriting in particular allows one to determine positions
where matches occur — with matching alone this is not possible.

We discuss pattern matching and rewriting for the most simple type mlabel . It is straight-
forward to extend this to the other three types of symbolic trajectories.

4.1 Patterns

In Section 3 we have seen that a symbolic trajectory can be represented as a nested list of the
form

( ((s1 e1 lc1 rc1) l1) ... ((sn en lcn rcn) ln) )

This is a list of units where each unit is a pair consisting of a time interval and a label. The
time interval consists of the four components start, end, left closed and right closed.

A pattern describes such a list with some desired structure or contents by approximating
this notation. As the left closed and right closed flags are not of interest, we can first simplify
the notation and represent the trajectory as

((s1 e1) l1) ... ((sn en) ln) or

(t1 l1) ... (tn ln)

A pattern might look as follows:

(_ a) (_ b) * (_ c) *

10



Here a pair in parentheses denotes a unit pattern, i.e., it matches a unit. The underscore symbol
matches any corresponding element of a unit pair, hence any time intervals are matches. The
label of the pattern matches a unit label if they are equal. The symbol * matches a sequence of
units (0 or more). Hence the pattern matches a sequence (an mlabel value) having first a unit
with label a, then a unit with label b, then an arbitrary sequence of units, then a unit with label
c, then an arbitrary sequence of units.

Beyond the symbol * there are further patterns that can match sequences, for example,
alternatives or repeating subsequences.

[(_ a) | (_ b)]

[(_ a) (_ b)]*

Here the first line denotes a pattern that matches a single unit with label either a or b. The
second matches a sequence with alternating labels a and b. In other words, we support notations
for regular expressions. For them, square brackets are used, as parentheses are already employed
for unit patterns.

We now formalize this, calling it a simple pattern. A pattern will later be a simple pattern
extended by variables.

Definition 4.1 A simple pattern is a sequence of simple pattern elements < p1, ..., pn > where
each pi is a unit pattern or a sequence pattern.

(i) A unit pattern has one of the forms ( t l ), ( l ), ( t ), or (), where t is a time
interval specification, l is a label specification, and is a wildcard symbol. In the most
simple cases, t ∈ Dinstant ×Dinstant and l ∈ Dlabel .

(ii) A sequence pattern has one of the forms *, +, [p], [p1 | p2], [p]+, [p]*, or [p]?, where p,
p1, p2 are simple patterns. �

More complex time or label specifications are addressed in Section 4.5.
Unit patterns and sequence patterns of the forms * and + are called atomic pattern elements.

This notion is relevant in the implementation (Section 6).

Definition 4.2 (pattern matching)

(i) Unit Patterns. Let u = (ut, ul) be a unit of type ulabel .

• ( t l ) matches u :⇔ ut ⊆ t ∧ ul = l.

• ( l ) matches u :⇔ ul = l.

• ( t ) matches u :⇔ ut ⊆ t.

• () matches u.

When a unit pattern p matches a unit u, then it also matches the single unit sequence
U =< u >.

(ii) Sequence Patterns. Let U =< u1, ..., un >,n ≥ 0 be a sequence of units, each ui of type
ulabel .

• * matches U .

• + matches U :⇔ n > 0.

• [p] matches U :⇔ p matches U .

• [p1 | p2] matches U :⇔ p1 matches U ∨ p2 matches U .
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• [p]+ matches U :⇔ there exists a partitioning of U into subsequences U1...Um,m ≥ 1
such that U = U1 ◦ ... ◦ Um and ∀i ∈ {1, ...,m}, p matches Ui.

• [p]* matches U :⇔ [p]+ matches U ∨ n = 0.

• [p]? matches U :⇔ [p] matches U ∨ n = 0.

(iii) Let U =< u1, ..., un >,n ≥ 0 be a sequence of units, each ui of type ulabel . Let P = p1...pm
be a simple pattern.

P matches U :⇔ there exists a partitioning of U into subsequences U1...Um such that
U = U1 ◦ ... ◦ Um and ∀i ∈ {1, ...,m}, pi matches Ui.

�

Example 4.1 In Section 3 we have seen an example trajectory in a database of personal trips:

( ( (2013-01-17-9:02:30 2013-01-17-9:05:51) "Queen Anne St")

( (2013-01-17-9:05:51 2013-01-17-9:10:16) "Wimpole St")

...

( (2013-01-17-9:18:44 2013-01-17-9:20:10) "Queen Anne St") )

The pattern

(_ "Queen Anne St") * (_ "Queen Anne St")

could be used to retrieve all round trips starting and ending in Queen Anne Street, including
the one shown above. �

4.2 Variables

We now add variables to patterns. Their purpose is twofold: (i) to allow us to specify further
conditions on subsequences matched by pattern elements, and (ii) to control rewriting.

Variables are written as words starting with a capital letter (as in Prolog). Usually we
denote them by just one letter. They can be associated with unit patterns or sequence patterns
and accordingly be bound to units or sequences of units. Once they are bound, we can access
properties of the unit or the sequence via attributes of the variables.

We write variables in front of the patterns to which they are associated. For example:

X (_ a) Y (_ b) Z * (_ c) *

The above pattern has 5 elements. If the pattern matches an mlabel , then variable X is bound
to the first unit, variable Y is bound to the second unit, and variable Z is bound to the sequence
of units between the two units with labels b and c. No variables exist for the last two elements
of the pattern.

Because variables are bound to distinct subsequences – even if the labels are equal, the time
intervals differ – it does not make sense to have the same variable more than once in a pattern.
We therefore require that all variables occurring in a pattern are distinct.

Definition 4.3 Let V be a domain of variable names. A pattern is a sequence of pattern
elements P =< e1, ..., en > where each ei is either a pair (vi, pi) of a variable vi ∈ V and a
simple pattern element pi, or just a simple pattern element pi. In the first case, ei is called a
variable element, otherwise a free element. In a variable element (v, p), v is called a unit variable
(a sequence variable) if p is a unit pattern (a sequence pattern). All variables are distinct, that
is, i 6= j ⇒ vi 6= vj .

For a pattern P , simple(P ) denotes the corresponding simple pattern < p1, ..., pn > and
var(P ) denotes the set of variables occurring in P . �
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Definition 4.4 A binding is a set of pairs B = {(v1, U1), ..., (vk, Uk)} where each pair consists
of a variable vi and a sequence of units Ui of type ulabel . All variables are distinct. var(B) =
{v1, ..., vk} denotes the set of variables occurring in B. �

Definition 4.5 (pattern matching with binding) Let U =< u1, ..., un >,n ≥ 0 be a sequence of
units, each ui of type ulabel . Let P =< e1, ..., em > be a pattern and simple(P ) = < p1, ..., pm >.

P matches U with binding B :⇔ there exists a partitioning of U into subsequences U1...Um

such that U = U1 ◦ ... ◦ Um and ∀i ∈ {1, ...,m}, pi matches Ui. The binding is B =
⋃m

i=1Bi

where

Bi =

{
{(vi, Ui)} if ei = (vi, pi)
∅ if ei = pi

�

As mentioned before, once a variable is bound to a unit or a sequence of units, we can access
properties via attributes of the variable. The following definition determines these attributes
and their contents.

Definition 4.6 (attributes) Let B be a binding and b = (v, U) ∈ B.

(i) v is a unit variable and U =< (ut, ul) >, ut = (s, e, lc, rc). Then v has attributes

• label of type label with value ul

• time of type periods with value ut

• start of type instant with value s

• end of type instant with value e

• leftclosed of type bool with value lc

• rightclosed of type bool with value rc

(ii) v is a sequence variable and U =< (t1, l1), ..., (tn, ln) >, n ≥ 1, with ti = (si, ei, lci, rci).
Then v has attributes

• labels of type labels with value {l1, ..., ln}
• time of type periods with value

⋃n
i=1 ti

• card of type int with value n

• start of type instant with value s1

• end of type instant with value en

• leftclosed of type bool with value lc1

• rightclosed of type bool with value rcn

(iii) v is a sequence variable and U =<> (the empty sequence). Then v has the same attributes
as in case (ii) but all values are undefined, e.g. v.labels =⊥.

For an attribute attr of variable v we denote by type(v.attr,B) its type and by val(v.attr,B) its
value. �

Example 4.2 Continuing the previous examples, we now show the complete trajectory:

( ( (2013-01-17-9:02:30 2013-01-17-9:05:51 T F) "Queen Anne St")

( (2013-01-17-9:05:51 2013-01-17-9:10:16 T F) "Wimpole St")

( (2013-01-17-9:10:16 2013-01-17-9:13:48 T F) "Welbeck Way")

( (2013-01-17-9:13:48 2013-01-17-9:18:44 T F) "Welbeck St")

( (2013-01-17-9:18:44 2013-01-17-9:20:10 T F) "Queen Anne St") )
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The pattern

(_ "Queen Anne St") T * A(_ "Queen Anne St")

matches the above trajectory with binding

{ (T, ( (2013-01-17-9:05:51 2013-01-17-9:10:16 T F) "Wimpole St")

( (2013-01-17-9:10:16 2013-01-17-9:13:48 T F) "Welbeck Way")

( (2013-01-17-9:13:48 2013-01-17-9:18:44 T F) "Welbeck St") ),

(A, ( (2013-01-17-9:18:44 2013-01-17-9:20:10 T F) "Queen Anne St") ) }

Attribute values for variable T are

T.labels = {"Wimpole St", "Welbeck Way", "Welbeck St"}

T.time = (2013-01-17-9:05:51 2013-01-17-9:18:44 T F)

T.card = 3

T.start = 2013-01-17-9:05:51, T.end = 2013-01-17-9:18:44

T.leftclosed = true, T.rightclosed = false

�

4.3 Patterns With Conditions

Patterns with variables can now be used to specify additional conditions on the matching of such
a pattern with a symbolic trajectory. Conditions are boolean expressions over attributes of the
variables, constants and database objects using arbitrary operations available on the respective
data types. We write a pattern with conditions in the form

<pattern with variables> // <condition 1>, ..., <condition q>

Example 4.3 For example, we can restrict the previous round trip query to trips taking no
more than twenty minutes:

D(_ "Queen Anne St") * A(_ "Queen Anne St") // (A.end - D.start) < (20 * minute)

where minute is a database object representing a duration of one minute. We can also find round
trips starting and ending at arbitrary streets and passing through no more than 10 different
streets:

D () T * A () // D.label = A.label, T.card <= 9

�

We now formalize these concepts.

Definition 4.7 (databases, constants, and operations)

(i) A database is a set of triples DB ⊆ {(n, t, v) | n ∈ N, t ∈ T, v ∈ dom(t)} where N is the
set of allowed object names, T the set of available data types, and dom(t) the domain of
values of type t ∈ T . Object names are distinct (i.e., there are no distinct triples with the
same object name).

(ii) A domain of constants is a set of triples C = {(c, t, v) | c ∈ Cd, t ∈ T, v ∈ dom(t)} where
Cd is a set of constant denotations. Distinct triples have different constant denotations.

(iii) A set of operations is given as a family of sets Σ = {Σwt|w ∈ T ∗, t ∈ T}. For an operator
σ ∈ Σwt, w = t1...tn are the argument types and t is the result type. The operator’s
evaluation function is fσ : dom(t1)× ...× dom(tn) → dom(t).

�
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Definition 4.8 (expressions over P ) Let P be a pattern and B a binding for the variables in
var(P ). Let DB be a database, C a domain of constants, and Σ a set of operations.

The set of expressions over P denoted E(P ) is defined next. Further, for an expression
e ∈ E(P ) its evaluation for binding B is defined as well, denoted eval(e,B).

(i) (o, t, v) ∈ DB ⇒ o is an expression of type t, and eval(o,B) = v.

(ii) (c, t, v) ∈ C ⇒ c is an expression of type t, and eval(c,B) = v.

(iii) v ∈ var(P ) ∧ attr is an attribute of v of type t ⇒ v.attr is an expression of type t, and
eval(v.attr,B) = val(v.attr,B).

(iv) For m ≥ 0, e1, ..., em are expressions of types t1, ..., tm, respectively, and σ ∈ Σt1,...,tm,t ⇒
σ(e1, ..., em) is an expression of type t, and
eval(σ(e1, ..., em), B) = fσ(eval(e1, B), ..., eval(em, B)).

�

Definition 4.9 A pattern with conditions is a pair (P,C) where P is a pattern and C a set of
expressions of type bool over P . �

Definition 4.10 (pattern matching for patterns with conditions) Let U = < u1, ..., un >,n ≥
0 be a sequence of units, each ui of type ulabel . Let (P,C) be a pattern with conditions. U
matches (P,C) with binding B :⇔ U matches P with binding B and ∀c ∈ C : eval(c,B) = true.

�

4.4 Rewriting

Patterns with variables allow us to rewrite a given trajectory into some other form.

Result Patterns For rewriting we first introduce rules of the form

<pattern> => <result pattern>

<pattern> // <conditions> => <result pattern>

At this point a result pattern is a subsequence of the variables occurring in the pattern. For
example:

X (_ a) Y (_ b) Z * (_ c) * => X Y

For any mlabel value matching this pattern, the rule returns an mlabel value consisting just
of the first two units. Similarly, the rule

X (_ a) Y (_ b) Z * (_ c) * => Z

returns the sequence matched by Z. The result is in any case of type mlabel even if only a single
unit variable is mentioned in the result pattern as in

X (_ a) Y (_ b) Z * (_ c) * => X

Obviously variables that are used neither in conditions nor in result patterns can be omitted,
hence the above three rules could be simplified to

X (_ a) Y (_ b) * (_ c) * => X Y

(_ a) (_ b) Z * (_ c) * => Z

X (_ a) (_ b) * (_ c) * => X

It is obvious that resulting mlabel values have a correct structure because the resulting
sequence of units is just a subsequence of the original sequence of units, which is always correct
(i.e. no unit time intervals overlap and units are ordered by time).
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Assignments and New Variables The values bound to variables in result patterns can also
be changed. This is possible through assignments. Rewrite rules get the general forms:

<pattern> => <result pattern> // <assignments>

<pattern> // <conditions> => <result pattern> // <assignments>

An assignment has the form

<var>.<attr> := <expr>

where the type of the attribute and the type of the expression must be the same. For
example, a complete rule with conditions and assignments may look as follows:

X (_ a) Y (_ b) Z * (_ c) *

// Z.card > 2, X.start > theinstant(2011, 1, 1)

=> X Y

// X.label := "u", Y.label := "v"

Assignments are allowed only to attributes of unit variables. This is because the attributes
of sequence variables describe in general aggregations over the entire matched sequence of units
(labels, time, card); so one cannot assign values to them. For the remaining four attributes
(start, end, leftclosed, rightclosed) corresponding to fields of the first and last matched unit it
would be possible but does not make much sense.

On the other hand, it would certainly be interesting to abstract from a given subsequence
and represent it by a single unit with some other label. This is possible by introducing new
variables not occurring in the pattern. They are by definition unit variables and their attributes
have to be set by assignments (except for leftclosed and rightclosed for which defaults leftclosed
= true, rightclosed = false apply). New variables may be inserted at arbitrary positions into a
result pattern, but like the other variables each new variable may occur only once.

Example 4.4 Continuing the previous examples of a personal trip database, assume we wish to
classify trips into different “semantic” categories. Say, short trips starting and ending at Queen
Anne St are to be classified as “short walk”. This can be done by a rewrite rule:

D(_ "Queen Anne St") * A(_ "Queen Anne St")

// (A.end - D.start) < (20 * minute)

=> X

// X.label := "short walk", X.start := D.start, X.end := A.end

�

To achieve a simple semantics of assignments, the order in which they are written should not
matter. That is, they can be evaluated in any order with the same result. We therefore require
that no two assignments to the same attribute of the same variable occur.

There is a slight complication because the attribute time overlaps with the four attributes
start, end, leftclosed and rightclosed. For example, an assignment to time and an assignment
to start would be conflicting. Hence we further require that in a set of assignments there is no
assignment to the time attribute if there is an assignment to one of the other four.

Of course, the use of assignments may lead to incorrect descriptions of result sequences. In
such a case, the result sequence is simply undefined. In practice, the user will receive an error
message.

We now formalize rewrite rules and their semantics.

Definition 4.11 A rule is a four-tuple R = (P,C,RP,A) where

(i) (P,C) is a pattern with conditions (C may be empty).
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(ii) RP , called the result pattern, is a sequence of variables RP =< Y1, ..., Yl > such that

• ∀i ∈ {1, ..., l}, Yi ∈ var(P ) ∪ V (V the domain of variables),

• i 6= j ⇒ Yi 6= Yj (all variables are distinct)

• P =< e1, ..., en > ∧(∃i, j, u, v : ei = (Yu, pi)∧ej = (Yv, pj)∧ i < j) ⇒ u < v (variables
from the pattern occur in the result sequence in the same order).

(iii) A, called the set of assignments, is A = {a1, ..., ak} such that

• ∀i ∈ {1, ..., k}, ai, called an assignment, is a triple ai = (Y, attr, e), Y ∈ {Y1, ..., Yl},
Y is a unit variable, attr is an attribute of a unit variable of type t, and e is an
expression over P of type t.

• (Xu, attru, eu) ∈ A ∧ (Xv, attrv, ev) ∈ A ∧ (Xu, attru) = (Xv, attrv) ⇒ eu = ev (no
two assignments to the same attribute).

• (Xu, time, eu) ∈ A ⇒ ∀(Xu, attr, e) ∈ A : attr 6= start ∧ attr 6= end ∧ attr 6=
leftclosed ∧ attr 6= leftclosed (no assignments to overlapping attributes).

We denote by A(X) the subset of A for variable X.

�

We define the semantics of a rule in three steps: (i) what does it mean to apply assignments
to a given unit, (ii) checking if a sequence of units is a correct mlabel value, and (iii) defining
the set of symbolic trajectories resulting from applying a rule to a given trajectory.

Definition 4.12 (application of assignments to a unit) Let u = ((s, e, lc, rc), l) be a unit of type
ulabel and B a binding.

(i) Let a = (X, attr, expr) be an assignment. The application of a to u with binding B,
denoted assign(u, a,B), is defined as

• attr = label ⇒ assign(u, a,B) = ((s, e, lc, rc), eval(expr , B))

• attr = time ⇒ assign(u, a,B) = (eval(expr , B), l)

• attr = start ⇒ assign(u, a,B) = ((eval(expr , B), e, lc, rc), l)

• attr = end ⇒ assign(u, a,B) = ((s, eval(expr , B), lc, rc), l)

• attr = leftclosed ⇒ assign(u, a,B) = ((s, e, eval(expr , B), rc), l)

• attr = rightclosed ⇒ assign(u, a,B) = ((s, e, lc, eval(expr , B)), l)

(ii) Let A(X) = {a1, ..., ak} be a set of assignments to attributes of variableX. The application
of A(X) to u with binding B is

assign(u,A(X), B) = assign(...assign(assign(u, a1, B), a2, B)...ak, B)

�

Definition 4.13 (correctness check for a sequence of units) Let U =< u1, ..., un >, n ≥ 0 be a
sequence of units, each ui of type ulabel . The function correct mlabel checks whether U forms a
correct mlabel value, defined as

correct mlabel(U) =


{U} if all unit time intervals are disjoint

and units are ordered by time
∅ otherwise

�
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Definition 4.14 (application of a rule to a symbolic trajectory) Let R = (P,C,RP,A) be a
rule and U =< u1, ..., un >,n ≥ 0 be a sequence of units, each ui of type ulabel . The application
of R to U , denoted apply(R,U), is a set of trajectories defined as follows.

Let B = {B | (P,C) matches U with binding B}. Let RP =< Y1, ..., Yl >.

apply(R,U) =
⋃
B∈B

correct mlabel(seq(Y1, B) ◦ ... ◦ seq(Yl, B))

where ∀i ∈ {1, ..., l}

seq(Yi, B) =


V if (Yi, V ) ∈ B, Yi a sequence variable
assign(u,A(Yi), B) if (Yi, < u >) ∈ B, Yi a unit variable
assign(u⊥, A(Yi), B) if Yi 6∈ var(B)

Here u⊥ denotes the undefined ulabel unit where only the defaults for lc, rc have been set, that
is, u⊥ = ((⊥,⊥, T, F ),⊥).

�

Definition 4.14 can be summarized as follows. For a given pattern with conditions, we
determine all possible bindings. For a given binding, an output sequence of units is constructed
as the concatenation of subsequences, one for each variable in the result pattern. For a sequence
variable, this subsequence is simply the sequence found in the binding. For a unit variable, it
is the unit resulting from applying all existing assignments to the unit of the binding. For any
new variable, it is the unit one obtains from applying existing assignments to an undefined unit.
Finally, the resulting sequence of units is returned, if it is a correct mlabel value, and discarded,
otherwise.

4.5 Unit Patterns in More Detail

Now that the general structure and semantics of our language for pattern matching and rewriting
is clear, we go into more detail on the possible time and label specifications within a unit pattern.
So far, we have only shown the most simple form in Definition 4.1. A unit pattern has the general
form

(<time specification> <label specification>)

where each of the two components may be replaced by a wild card “ ”.
For the first element, the time specification, one of the following time symbols can be entered,

each defining a time interval or a set of time intervals:

• a year, month or day, written as 2010, 2010-07, 2010-07-05, respectively.

• an hour, minute or second on a particular day, e.g. 2010-07-05-14:30

• a range of dates, e.g. 2010∼2011, 2010-07∼2011-03

• a range of times, e.g. 2010-07-05-14:30∼2010-07-09-14

• a halfopen range, e.g. 2005-05∼ or ∼2010-12-06

• a day of the week, i.e. one of {sunday, monday, tuesday, ..., saturday}

• a month of the year, i.e. one of {january, ..., december}

• a time of day such as {morning, afternoon, evening, night}

• a time of the day given by a time interval such as 14:30∼16, 17∼
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• the name of a database object of type periods

• a set of such specifications

Note that semantic descriptions such as monday may be viewed as defining an infinite set of
time intervals.

A unit will match such a pattern if its time interval (viewed as an infinite set of instants) is
a subset of the set of time intervals specified by the time symbol. For a set of specifications, the
unit must fulfill all of them.

The second component of a unit pattern, the label specification, can be:

• A single label

• A set of labels denoted {label1, ..., labeln}

• The name of a database object of type labels.

Hence a label specification in general defines a set of labels. A unit will match such a pattern
if its label is contained in the set.

4.6 Embedding Patterns into the Algebra

4.6.1 Pattern Matching and Rewriting

To make pattern matching and rewriting available for querying, we introduce a data type pattern
and two operators matches and rewrite.

Type pattern is used to represent patterns or rules in an efficient data structure. An auxiliary
operator topattern converts a pattern or rule specified as text into this form.

topattern: text → pattern #

The operator is responsible for parsing the pattern or rule, checking for correctness, and
converting it to a corresponding data structure.

Example 4.5 We can store our example rewrite rule as a value of type pattern by the command:

let short_walk = ’D(_ "Queen Anne St") * A(_ "Queen Anne St")

// (A.end - D.start) < (20 * minute)

=> X // X.label := "short walk", X.start := D.start, X.end := A.end’ topattern

�

The two main operators accept patterns or rules either as a text or as a pattern value. An
advantage of using the representation as a pattern is that in processing a large set of symbolic
trajectories in a query, the overhead of constructing an efficient representation of the pattern
(including a non-deterministic finite automaton, see Section 6) occurs only once.

matches: mlabel × (pattern | text) → bool #

rewrite: mlabel × (pattern | text) → set(mlabel) #( , )

The matches operator returns true if the pattern matches the mlabel value (Definition 4.10).
rewrite returns4 one rewritten version of the argument for each way the pattern matches, in
total the set apply(R,U) for rule R and mlabel value U (Definition 4.14). If the pattern does
not match, the result set is empty.

4The result is specified here as set(mlabel). Technically, in the implementation in Secondo, sets are passed
between operations in pipelined mode which is expressed by a type constructor stream. Hence the actual result
type in the implementation is stream(mlabel). The same holds for further operations defined in this section: In
the implementation, the set type constructor is replaced by stream.
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Example 4.6 Suppose we have a relation with personal trips of schema:

Trips(Id: int, Trip: mlabel)

(1) We can find all trips matching the pattern of the short walk by a query:

select *

from Trips

where Trip matches ’D(_ "Queen Anne St") * A(_ "Queen Anne St")

// (A.end - D.start) < (20 * minute)’

(2) We can also rewrite such trajectories according to the “short walk” rule created in Exam-
ple 4.5:

select Id, rewrite(Trip, short_walk) as Class

from Trips

Here we assume that the SQL environment allows one to define in a select-clause one new
attribute through a function returning a set of values and that for each such value one result
tuple is created, copying the values of the other attributes mentioned in the select-clause. �

4.6.2 Classification

An interesting application of pattern matching is to classify a large number of symbolic trajec-
tories into certain categories, where each category is specified by some pattern. For example, in
a database of personal trips, some categories might be:

• home to work by car

• home to work by bicycle

• piano lesson

• short morning walk

• visit Peter

• downtown shopping

• ...

We assume that categories are specified in a relation with schema

(Description: text, Pattern: text)

Given such a table and a set of symbolic trajectories, the problem is now to determine
for each trajectory the matching patterns. In principle one might check all pairs (trajectory,
pattern), but it is possible to improve this by checking one trajectory in a single step against
all patterns, by preprocessing the set of patterns into a single data structure (a combined finite
automaton, see Section 6). As a result of the classification, each symbolic trajectory will be
associated with the description entries of matching patterns.

To support classification, we introduce a data type classifier and an operation classify.
The data type is used to keep the efficient data structure for the set of patterns. An auxiliary
operation toclassifier is provided to construct it from a table with specifications.

toclassifier: set(tuple([Desc: text , Pattern: text ])) → classifier #

Operation classify takes a symbolic trajectory and a classifier and returns all matching descrip-
tions.
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classify: classifier × mlabel → set(text) #( , )

Example 4.7 Let a table Categories be given with schema

Categories(Desc: text, Pattern: text)

which describes the various kinds of trips occurring in our personal trip database, and let relation
Trips be given as before. We first create a classifier from the table:

let descriptions = (select * from Categories) toclassifier

We can then classify the trips by the query

select Id, classify(Trip, descriptions) as Class

from Trips

�

5 Application Examples

In this section we show two different ways of deriving symbolic trajectories from geometric
trajectories and related queries. Both examples are based on a collection of recorded trips of a
person (as before in the paper). As mentioned in the introduction, the main purpose of this work
is not to support the management of personal trips — the techniques presented are suitable to
represent derived symbolic information for any kind of moving objects and to query and classify
them efficiently. But the domain of personal trips is easy to understand for everybody and
therefore suitable for examples. In contrast, describing interesting patterns in the movement of
roe deer, for example, is a topic for biological experts.

5.1 Personal Trips Based on Locations

Suppose we have a relation with trajectories collected for the trips of a person with schema

Traces(No: int, Trip: mpoint)

The entire movement has been split temporally by months; i.e. each trip covers one month.
There exists also a relation with places the person visits with schema

Locations(Name: label, Area: region)

Some places the person visits are

Home, Work, Church, MusicLesson, Tennis, John, Gabi, CityParking, ...

Each of these places is defined as a small region around the respective location. Beyond manual
construction of such regions it is also possible to import addresses from a personal address book,
map them to geographic coordinates (e.g. using some service by Google) and then compute a
small circle around the location. There is also an entry None containing the difference region of
some large box containing all trips and the other entries in table Locations, i.e., the area of None
is Box−

⋃
l∈Locations, l.Name 6=None l.Area.

5.1.1 Constructing Symbolic Trajectories

Symbolic trajectories are now constructed by intersecting geometric trajectories with these lo-
cation areas. We assume that location areas are disjoint so that a moving object can at any
given time be only within one of the areas. Then an mlabel suffices for representation (if there
were overlapping areas one would use type mlabels). As a result, the symbolic trajectory for the
geometric trajectory shown in Figure 6 will be
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Home

Work

Forest

None

Figure 6: Geometric trajectory passing through locations

(... Home) (... None) (... Forest) (... None) (... Work)

Symbolic trajectories can be constructed as shown in the following, using a few operations
that are already available in the framework of [18] and its Secondo implementation. Operations
used are:

passes: mpoint × region → bool #

at: mpoint × region → mpoint #

components: mpoint → set(mpoint) # ( )

deftime: mpoint → periods # ( )

the unit: periods × label → ulabel # ( )

makemvalue: set(ulabel) → mlabel # ( )

In SQL the construction may be expressed as follows:

let R1 =

select t.No as No, l.Name as Name, components(t.trip at l.Area) as Piece

from Traces as t, Locations as l

where t.Trip passes l.Area;

The query finds pairs of moving point t.T rip and region l.Area such that t.T rip passes through
l.Area. By the at operation, the trip is reduced to the parts when it is inside the area (it may
enter and leave more than once). The components operation splits the remaining trip into
elements such that each element has a single continuous time interval. Such a fragment moving
point is put into a result tuple, together with the number of the trip and the name of the region.

let R2 = select No, the_unit(deftime(Piece), Name) as ULabel from R1;

For each tuple of the previous relation, one unit of an mlabel is constructed based on the time
interval (obtained by deftime) and the name of the location.

let Trips = select No, makemvalue(Piece) as Trip from R2 groupby No;

Finally, trips are grouped by number and the mlabel value is constructed from the units through
operation makemvalue. Hence as a result we have a relation with symbolic trajectories with
schema:

Trips(No: int, Trip: mlabel)

describing the trips of the person.
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5.1.2 Some Queries

Based on this representation, we formulate queries:

Example 5.1 Find parts of trips that went from Home to CityParking and back Home, without
visiting other places.

select No, rewrite(Trip, ’* X [(_ Home) () (_ CityParking) () (_ Home)] * => X’

as PartialTrip

from Trips

�

Example 5.2 Determine for every month (trip) how often the person went to work.

select No, count(rewrite(Trip, ’X [(_ Home) * (_ Work)] => X’)) as Cnt

from Trips

�

Example 5.3 Were there any places visited on the way from Home to Work? Which?

select No, rewrite(Trip,

’(_ Home) * X () * (_ Work) // X.Label # "None" => X’) as Visit

from Trip

�

5.2 Personal Trips Based on Road Names

The second example uses symbolic trajectories containing road names obtained from map match-
ing as in the earlier examples of Section 4. This example is based on real data collected over
several months by one of the authors. All steps described below have been implemented in
Secondo.

5.2.1 Constructing Symbolic Trajectories

Here the construction consists of the two steps:

• Construct a road network from OpenStreetMap data.

• Match geometric trajectories to the road network.

The construction of the road network is beyond the scope of this paper but the interested
reader can find the Secondo script performing this task at [10] The result needed for map
matching is a relation Edges with schema

Edges(Source: int, Target: int, SourcePos: point, TargetPos: point, Curve: line,

RoadName: text, RoadType: text, MaxSpeed: text)

Here Source and Target identify nodes of the road network graph; a tuple of Edges represents
a directed edge. Further attributes include locations of the source and target node, the geometry
of the road along this edge, and textual information such as the road name. The relation is stored
in a B-tree ordered first by Source, then by Target fields. This representation permits efficient
retrieval of successors of a node needed in navigation tasks.

Furthermore, an R-tree index EdgeIndex Box rtree indexing the bounding boxes of the Curve
attributes and a relation EdgeIndex connecting the R-tree with relation Edges are provided.

Input for the map matching is a relation constructed from the GPS observations with schema
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Trips(TrackId: int, Trip: mpoint, Traj: line)

These trips are constructed in such a way that a new trip starts whenever a break in the
observations of more than 5 minutes occurs.

Map matching itself is performed by an operation omapmatchmht. It takes as arguments
the two relations Edges and EdgeIndex and the R-tree EdgeIndex Box rtree as well as one
geometric trajectory of type mpoint . It returns the sequence of edges from Edges obtained by
map matching. Each edge tuple is extended by fields StartTime and EndTime describing when
the moving point entered and left the edge. The operator uses the so-called “multiple hypothesis
technique”. It was implemented by Matthias Roth [31] based on algorithms proposed in [28, 34].

The Secondo command matching the trips from relation Trips is

let MatchedTrips = Trips feed addcounter[No, 1]

extend[Matched:

omapmatchmht(Edges, EdgeIndex_Box_rtree, EdgeIndex, .Trip) aconsume]

consume

It adds to each tuple from Trips a counter value No and a subrelation Matched containing
the sequence of extended edges delivered by omapmatchmht. Hence the result is a nested
relation MatchedTrips.

The next query computes from this representation the symbolic trajectories.

let SymTrips = MatchedTrips feed

extend[SymTrip: compress(

.Matched afeed extend[SymUnit:

the_unit(tolabel(.RoadName), .StartTime, .EndTime, TRUE, FALSE)]

makemvalue[SymUnit])]

remove[Matched]

consume

For each tuple of MatchedTrips, the subrelation Matched is processed. For each tuple of
Matched, a unit of type ulabel is constructed, using the road name for the label and the StartTime
and EndTime fields to define the time interval. This unit is appended to the tuple in field
SymUnit. Finally, the makemvalue operator collects from each arriving tuple the SymUnit
value and puts them all together into a single mlabel value.

Further, operation compress is applied to the mlabel value which is then stored in field
SymTrip. The compress operation merges adjacent fields of a symbolic trajectory that have
adjacent time intervals and the same label value. This is necessary to obtain each road traversed
only once rather than with a label for each edge between two road intersections.

Finally, the subrelation Matched is removed as it is not needed any more.
The resulting relation SymTrips has schema

SymTrips(TrackId: int, Trip: mpoint, Traj: line, No: int, SymTrip: mstring)

Note that it contains in each tuple together its moving point Trip, the spatial projection Traj
and the derived symbolic form SymTrip. Indeed it is usually interesting to consider a symbolic
trajectory not in isolation but together with the geometric trajectory it describes.

5.2.2 Some Queries

Example 5.4 Find round trips starting and ending at “Alte Teichstraße”.

let roundtrip = ’(_ "Alte Teichstraße") + (_ "Alte Teichstraße")’

select * from symtrips where symtrip matches roundtrip
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Figure 7: Round trips starting and ending at “Alte Teichstraße”

The result is shown in Figure 7. �

Example 5.5 Find trips from home to work, i.e., from Alte Teichstraße to Universitätsstraße.

let hometowork = ’(_ "Alte Teichstraße") + (_ "Universitätsstraße")’ ;

select * from symtrips where symtrip matches hometowork

�

Example 5.6 Find trips from home to work that use the highway “Sauerlandlinie”.

let hometowork2 =

’(_ "Alte Teichstraße") * (_ "Sauerlandlinie") * (_ "Universitätsstraße")’ ;

select * from symtrips where symtrip matches hometowork2

�

The results of the last two queries are shown in Figure 8. The first query has retrieved both
routes shown in blue and yellow. The second returns only the blue routes (on top of the yellow
of the first query).
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Figure 8: Trips from home to work

6 Implementation

We have implemented the model of symbolic trajectories and the pattern language within the
Secondo DBMS prototype. In this section, we present the data structures and algorithms
that are used to realize the main operators matches, rewrite, and classify that have been
integrated into Secondo.

Since these operators share several common computation steps, it is not appropriate to detail
them separately. Instead, we first explain the major algorithms of the matches operator in
execution order. Based on these results, the remaining operators, whose complexity is beyond
matches, are described. However, the first subsection of this chapter considers the special
parsing process and the applied data structures.

For a better understanding of the proposed concepts, we adopt the symbolic trajectory from
Example 4.2 and call it M0. Moreover, we define the patterns P0 and P1 (with rewrite rule) as

X * Y [(thursday, morning "Queen Anne St") | (_ "Welbeck St")]+ Z [()]?

// (Y.end - X.start) < 20 * minute

and
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X * Y [(thursday, morning "Queen Anne St") | (_ "Welbeck St")]+ Z [()]?

// (Y.end - X.start) < 20 * minute

=> A Y

// A.time := X.time, A.label := "start of trip"

respectively, all of them serving as continuous examples throughout this section. The pattern P0

refers to all trips passing through Queen Anne St on a Thursday morning or Welbeck St (at any
time) at least once, either exactly before reaching the last unit or at the end of the trajectory,
where the duration of X and Y adds up to less than 20 minutes5. The pattern P1 contains
the same pattern elements and condition as P0 and will extract one result trajectory for each
(multiple) occurrence of Queen Anne St or Welbeck St in the original trajectory, with one unit
prepended containing the temporal information of the trip before passing Queen Anne Street

or Welbeck St (if existing) and the label start of trip. As we will show later, there are three
different result trajectories.

The respective unit items are addressed by mi (the ith unit of M0, starting from 0), pi (the
ith atomic pattern element of P0 and P1, starting from 0), while the sizes of M0 (number of
units) and P0 (number of atomic pattern elements) are denoted by |M0| and |P0|, respectively.

6.1 Data Structures

In the following, we discuss the most important classes of the implementation. Most of the
data are stored during the parsing process that is conducted at the beginning of each operator’s
execution. Further structures will be discussed when they are used.

Class Atomic Pattern Element For every atomic pattern element, the input parser stores
a variable (type string), a set of time intervals (strings), a set of labels (strings) and a wildcard
(either no, star, or plus). Processing the atomic pattern element p1, an object holding a variable
Y, a set of two temporal strings thursday and morning, a set of labels containing only Queen Anne

St, and the wildcard value no is created. Note that the instance containing p2 is also assigned
the variable Y.

Class Condition Each condition object holds its original text (string) and a vector of variables
(string) and attribute codes (integer; cf. Definition 4.6). For the condition from P0, we record
the input (Y.end - X.start) < 20 * minute, the variables Y and X and the types end and start
(encoded as 3 and 2, respectively). Further data being kept for evaluating the condition will be
detailed later.

For a more efficient matching procedure, we distinguish between regular and easy conditions.
In contrast to the former, which are evaluated in a separate process requiring complex prepa-
ration after the basic pattern matching, the latter are checked during the matching itself. If a
condition contains only one variable, and if this variable refers to a unit pattern, the condition
is easy. Note that this class is applied for easy conditions as well as for general conditions.

Class Assignment For each variable in the results section, an assignment instance is created.
It contains the variable (string) and its position in the results (0 for A and 1 for Y in P1) and a
boolean being true if and only if the variable occurs in the pattern elements (false for A, true for
Y in P1). In addition, the assignment commands (one for each attribute) are stored in an array
of strings, along with the corresponding variables and attributes of the right assignment side
which are kept in an array of suitable vectors. We record the assignments in P1 in the string
array’s time and label slot, respectively, and push the information from X.time into the time
vector and the string start of trip into the label vector of A. This class also records evaluation
data.

5minute is defined as a Secondo object of type duration, having a length of 60,000 ms
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Class Pattern The only instance of this class holds the outcome of the parsing process. More
precisely, it contains a vector of atomic pattern elements, one vector of conditions and one of easy
conditions, and a vector of assignments. Considering the input P1, the atomic pattern element
vector contains four elements, the condition vector contains one element, the easy condition
vector remains empty, and the assignment vector holds two elements.

Moreover, the transition function δ of a nondeterministic finite automaton (NFA), forming
the basis of the matching process and being modeled as a vector of mappings from integer to
integer, is kept here. A mapping element i 7→ sk at vector position sj represents a transition
from state sj to state sk, requiring a unit matching the atomic pattern element pi. In the

following, a transition t is denoted as sj
i−→ sk, where sj , i, and sk are referred to as t.source,

t.atom, and t.target, respectively. Moreover, t.elem denotes the number of the pattern element
that the atomic pattern element t.atom belongs to. Finally, δ [s] is the set of transitions going

out from the state s. Regarding P0 or P1, the set δ [0] equals {0 0−→ 0, 0
1−→ 1, 0

2−→ 1}, while δ [2]
is empty. The complete transition function for P0 is presented in Figure 9 (right).

Along with the NFA, this class holds a set of integers to represent the final states.

Class Match This class also has a unique instance keeping a pointer to a pattern and another
to a moving label. In order to compute the bindings of units to variables, which is required for
the condition evaluation and the rewriting of a trajectory, a two-dimensional array of integer
sets is used. The latter is detailed in 6.2.3.

Class Classifier Since the operator classify processes arbitrarily many patterns, the corre-
sponding NFAs have to be stored together for a simultaneous matching. For reasons of efficiency,
we combine all NFAs to a single one by appending the vectors and translating the mappings’
targets.

6.2 Algorithms

In this subsection, first a short overview of the parsing process is given. Subsequently, the major
algorithms that are invoked by the operators matches, rewrite, filtermatches, and classify,
are presented in this order. We also show the algorithms’ behavior if applied to the continuous
example and analyze their computation cost.

6.2.1 Parsing

The translation of the input string into instances and attributes of the abovementioned classes
is done with the help of the tools Flex and Bison and consists of two steps. Initially, the input is
treated as if there were no regular expression symbols like [..|..]+ and [..]? in the pattern, and
all atomic pattern elements, conditions, and assignments are stored as described in Section 6.1.
During this process, we create a new string regEx containing only those regular expression parts
and an integer for each of the atomic pattern elements, starting from 0. For P0, regEx reads
0(1|2)+3?, where + and ? refer to the regular expressions directly preceding them, respectively.
Besides, square brackets are transformed into parentheses. This string is then transformed
into an NFA by an existing Secondo operator, which implements the McNaughton-Yamada-
Thompson algorithm [2, p. 159] to convert a regular expression to an NFA, resulting in the NFA
depicted in Figure 9 (left).

The computation cost of the parsing phase is linear in the number of atomic pattern elements,
thus it hardly affects the overall runtime.
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source atom target

0 0 0

1 1 1

2 2 1

1 1

2 1

3 2

•

•

•

Figure 9: The NFA after parsing P0 in graphical form (left) and as a vector of mappings (right)

6.2.2 Matching Without Conditions

In the following, we detail how the NFA transitions are applied for the matching process, in case
there are no conditions.

Algorithm 1: matchesWithoutCondition

Input: P – a pattern with p atomic pattern elements;
including an NFA δ with n states and a set of final states F ;
M – an mlabel of size m.

Output: true, if a final state of the NFA is active after processing the mlabel; false
otherwise.

1 let S = {0};
2 for i = 0 to m− 1 do // loop over trajectory

3 T = ∅;
4 foreach s ∈ S do T = T ∪ δ[s]; // collect possible transitions

5 if T = ∅ then return false;
6 S = ∅;
7 foreach t ∈ T do // loop over possible transitions

8 if match(mi, pt.atom) then S = S ∪ t.target;

9 return (S ∩ F 6= ∅);

At the beginning of Algorithm 1, we define the set of currently active states S to contain
only 0, which is always the initial state for a single NFA. Inside the main loop over the symbolic
trajectory, first all transitions from each element of S are collected in the set T . If T remains
empty (either because there is no possible transition, or because no state is active), no transition
is available, and the algorithm stops and reports a mismatch. Otherwise, we collect the new
states by performing those transitions from T whose corresponding atomic pattern element
matches the current unit mi. More exactly, the function match on the one hand compares
the user-specified information from the atomic pattern element to the unit (cf. Definition 4.2),
and on the other hand checks whether the easy conditions corresponding to the atomic pattern
element are fulfilled. After the main loop, true is returned if and only if at least one of the final
states is active.

To illustrate the algorithm’s behavior, we apply it to P0 and M0. Since |M0| equals 5, the
outer loop performs five iterations that are detailed subsequently. In the following, we denote
δ [s] as δs.

Iteration 0 Starting from state 0, the transitions T = {0 0−→ 0, 0
1−→ 1, 0

2−→ 1} = δ0 are feasible.
Since the unit m0 is matched by the atomic pattern elements 0 and 1, the states 0 and 1
become active, i.e., S = {0, 1}.
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Iteration 1 In this step, we retrieve T = δ0 ∪ {1 1−→ 1, 1
2−→ 1, 1

3−→ 2} = δ0 ∪ δ1. The match
function returns true only for p0 and p3, so S = {0, 2}.

Iteration 2 Since there is no transition from state 2, T equals δ0. Only p0 matches, conse-
quently we obtain S = {0}.

Iteration 3 Again, T = δ0. Now the states 0 and 1 become active, since p0 and p2 match m3.

Iteration 4 In the final step, T equals δ0 ∪ δ1 as in the first iteration. The last unit is matched
by p0, p1, and p3, so S = {0, 1, 2} at the end.

The result is true, since there is a final state which is active after the loop over the symbolic
trajectory M0.

Obviously, the complexity of Algorithm 1 is linear in m, the number of units of the moving
label. Let p be the number of atomic pattern elements of the considered pattern and n the
number of states of the generated NFA. For each unit, the additional cost is linear in the
average number of active states ∅|S| plus the average number of possible transitions ∅|T |, which
both may be as high as n and p, respectively – assuming that the function match is executed
in constant time, which is true disregarding the number of time and/or label specifications
inside an atomic pattern element. Consequently, the worst case runtime complexity amounts to
O(m(n+p)). However, both n and p do not assume high values, and provided a sensible pattern
definition, ∅|S| and ∅|T | remain below their theoretic maxima.

6.2.3 Matching with Conditions

If processing a pattern with conditions, the latter have to be evaluated if and only if the sequence
of pattern elements matches the symbolic trajectory. Although Algorithm 1 reports whether this
occurs, it is impossible to decide whether a condition is true or false as long as the binding of
the variables is unknown (see Definition 4.4). For the conditions to be verified, we have to find
one binding which fulfills each condition. The approach for the computation of these bindings
entails recording a matching history during the execution of Algorithm 1, that is, which unit
was matched by which pattern element and which are the candidates for matching the next unit.
This is done by applying an adjusted version of the algorithm.

Recording the Matching History Before the outer loop starts, the two-dimensional array
of integer sets A from the Match class, which is later used to retrieve all possible variable
bindings, is initialized with the dimensions m×e, where e is the number of pattern elements (cf.
Definition 4.3). Now consider line 8 of Algorithm 1. In addition to the command after then,
as long as i < m − 1 holds, we collect all feasible transitions T ′ from t.target, where t ∈ T ,
and insert t′.elem, the number of the pattern element containing the atomic pattern element
t′.atom, where t′ ∈ T ′, into the set Ai,t.elem, i.e.,

if (i < m− 1) then Ai,t.elem = Ai,t.elem ∪ {t′.elem|t′ ∈ T ′, t′.source = t.target, t ∈ T}.

In other words, all possible successive pattern element numbers are collected for each atomic
pattern element matching a unit, so the elements of such a set represent pointers to matching
candidates for the next unit. During the final iteration, i.e., when i equals m− 1, the value −1
is stored in Am−1,t.elem if and only if a final state is reached.

For a better understanding of this approach, we present a simple example for which we
assume that every unit is expressed by a lower case letter and an atomic pattern element is
either such a single letter or a + or a *, the two latter having the same meaning as before. Now
consider the symbolic trajectory babbc, consisting of five units, and the pattern X * Y [a|b] Z c.
In the following, we discuss the left hand side of Figure 10 from top to bottom. Since the first
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atomic pattern element is a *, the first unit could match any of the elements * and [a|b]. Hence,
we have connections from the start to the columns of the first two pattern elements in the first
row. The first unit is a b, so it matches the * and the b from the pattern, and possible successive
matches are (again) the elements *, [a|b] (after *) and c (for b), respectively, thus we have three
connections to the second row. This procedure is applied similarly for the remaining rows, and
also for the final unit c, there are two possible matchings, one with * and one with c. However,
only the latter leads to a complete matching. The bold arrows show the only possible path
representing a complete matching, immediately leading us to a binding of the variables. More
exactly, since the first three units match *, the variable X is bound to the unit set {0, 1, 2}.
Similarly, the unit sets {3} and {4} are associated to Y and Z, respectively.

On the right hand side of Figure 10, the matching history is displayed in tabular form.
The pattern elements and the units are represented by their positions, and the set of numbers
inside each cell stands for possibly matching pattern elements of the successive unit. For the
final unit, only −1 is stored in case of a match. This way of presentation is close to the actual
implementation as a two-dimensional array of integer sets.

* [a|b] cstart

b

a

b

b

c

b

a

b

b

b

a

b

b

c c

start: {0, 1}

pattern elements
unit 0 1 2

0 {0, 1} {2} ∅
1 {0, 1} {2} ∅
2 {0, 1} {2} ∅
3 {0, 1} {2} ∅
4 ∅ ∅ {−1}

Figure 10: The recorded matching history for M = babbc and P = * [a|b] c as a graph (left)
and as a table (right)

Now we return to the continuous example M0 and P0, for which in Table 1 we present the
two-dimensional array A0 that is obtained after executing the adjusted version of Algorithm 1.
To ease interpretation of the table, we have added abbreviations for the units (left) as well as for
the pattern elements (above table). Entries in the table are only the integer sets, but we have
added the abbreviations for the matching units that have led to these entries and will be elements
of the bindings to be computed. Hence Table 1 now is a combination of the representations of
the left and right parts of Figure 10.

The computation cost of the extended version of Algorithm 1 includes the initialization cost
for A and the additional transition search, more exactly, the complexity is O(mp+m(n+p2)) =
O(m(p+ n+ p2)) for the worst case. Thus, the runtime is still linear in the trajectory size.

Computation of Bindings A binding is implemented as a mapping from a string to a pair
of integers. In the following, we show how to deduce bindings from the recently computed two-
dimensional array A. As our objective is to find one binding fulfilling every condition – not
necessarily all bindings –, the computation is aborted in case of success. Consider Algorithm 2.
For each pattern element j that enables a transition t starting at state 0 (i.e., t ∈ δ0), Algorithm 3
is executed, receiving the parameters P, 0, j, and B where the latter is still empty. As soon as a
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Table 1: The recorded matching history for M0 and P0 as a two-dimensional array of integer
sets

start: {0, 1}

pattern elements

X * Y [({th, m} QA) | ( WelSt)]+ Z [()]?
unit 0 1 2

QA 0 QA QA
{0, 1} {1, 2} ∅

Wim 1 Wim
{0, 1} ∅ ∅

WelW 2 WelW
{0, 1} ∅ ∅

WelSt 3 WelSt WelSt
{0, 1} {1, 2} ∅

QA 4 QA QA QA
∅ {−1} {−1}

suitable binding is found, and the condition evaluation is completely processed, true is returned.
Details concerning the evaluation of conditions are discussed below.

Algorithm 3 starts at a certain position in the two-dimensional array A and recursively tries
to find a path through A which leads to a final state. If a condition-fulfilling binding is found
(line 9), the process is aborted. At the beginning, if the current pattern element is assigned a
variable v, either the latter is added to B if it does not yet occur in B (in this case, v is bound
only to the current unit; line 6), or the binding of v is extended by one (line 4). The recursion
is processed in lines 11 and 12, where the successive unit number i + 1, the following pattern
element number k (according to the transition), and the adjusted binding B are passed. The
abovementioned binding modifications are undone if no success is reported (lines 13-15).

Algorithm 2: bindingExistsFrame

Input: P – a pattern with e elements;
including an NFA δ;
B – an empty binding, i.e., a mapping from a string to a pair of integers

Output: true, if a binding is found that fulfills every condition; false otherwise.
1 foreach j ∈ {t.elem|t ∈ δ0} do
2 if bindingExists(P, 0, j, B) then return true; // abort if successful

3 return false;

Subsequently, we apply this procedure to our continuous example. In Table 2, each line
corresponds to an invocation of Algorithm 3. The recursion depth is represented by i, the
number of the current unit. The current pattern element is referred to by j. Note that we
iterate over each integer set Ai,j in decreasing order, since reaching a higher pattern element
increases the probability of arriving at a final state.

A complete binding can only be achieved for i = m−1 (which is 4 in this example), as shown
in the bottom row of Table 2. The next step consists in checking whether this binding fulfills
every condition.

As the results of the condition evaluation are unpredictable, we have to determine the compu-
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Algorithm 3: bindingExists

Input: P – a pattern with e elements;
i – the current unit number;
j – the current pattern element number;
B – a binding, i.e., a mapping from a string to a pair of integers.

Output: true, if a complete binding fulfilling every condition is found starting from unit
i and atomic pattern element j; false otherwise.

1 v = pelem(j).getV ar();

2 inserted = false;
3 if ¬(v is empty) then
4 if B contains v then B(v).right++; // extend existing binding

5 else // add new variable to binding

6 B(v) = (i, i);
7 inserted = true;

8 if Ai,j contains − 1 then // complete match

9 if conditionsMatch(P, B) then return true; // abort if successful

10 else
11 foreach k ∈ Ai,j do
12 if bindingExists(P, i+ 1, k, B) then return true; // abort if successful

13 if ¬(v is empty) then
14 if inserted then erase v from B;
15 else B(v).right - -;

16 return false;

tation cost for Algorithm 2 under the assumption that every path through the two-dimensional
array A has to be pursued. Let a be the number of paths leading through A, then we obtain
a runtime complexity of O(a · T (C)), where T (C) is the computation cost of the conditions’
evaluation, being detailed in the next paragraph. The worst case arises given a maximal num-
ber of transitions from each state (e.g., this holds for a pattern of the form * * . . . *) and if
all conditions must always be evaluated (i.e., if the last condition is always false and the others
are always true). Consequently, each integer set Ai,j contains e elements, so a may increase to
O(me−1). This can be established as follows:

If e equals 1, there can be only one path through A. For e = 2, the number of possible paths
increases to m+ 1, since there are m+ 1 ways to bind the first variable (i.e., empty, first unit,
first two units, . . . , whole trajectory). Consequently, every further pattern element increments
the exponent by one, resulting in a total number of paths of O(me−1).

Evaluation of Conditions As mentioned in Subsection 6.1, each condition object contains
data supporting the evaluation. More precisely, during the parsing process, for every condition
we create a Secondo operator tree including one pointer for each expression of a variable and an
attribute, the latter determining the type of the pointed data. Valid data types in this context are
string , periods, instant , bool , int , and labels. Consequently, for the condition Y.end - X.start

< 20 * minute from P0, two pointers to instant values are required. Each of the operator trees
enables Secondo to verify whether the condition is syntactically and semantically correct and,
particularly, whether its result is a boolean value. For example, the input A.start = B.label

would be rejected due to incompatible attributes, and A.card + 3 is invalid since the resulting
data type is not bool .

In the following, we detail the function conditionsMatch which is invoked in line 9 of Algo-

33



Table 2: Execution of algorithm 3 for P0 and M0

i j B at call B updated final proceed undo B

0 1 ∅ {Y 7→ [0, 0]} no yes no
1 2 {Y 7→ [0, 0]} {Y 7→ [0, 0], Z 7→ [1, 1]} no no yes
1 1 {Y 7→ [0, 0]} {Y 7→ [0, 1]} no no yes
0 0 ∅ {X 7→ [0, 0]} no yes no
1 1 {X 7→ [0, 0]} {X 7→ [0, 0], Y 7→ [1, 1]} no no yes
1 0 {X 7→ [0, 0]} {X 7→ [0, 1]} no yes no
2 1 {X 7→ [0, 1]} {X 7→ [0, 1], Y 7→ [2, 2]} no no yes
2 0 {X 7→ [0, 1]} {X 7→ [0, 2]} no yes no
3 1 {X 7→ [0, 2]} {X 7→ [0, 2], Y 7→ [3, 3]} no yes no
4 2 {X 7→ [0, 2], Y 7→ [3, 3]} {X 7→ [0, 2], Y 7→ [3, 3], Z 7→ [4, 4]} yes no no

rithm 3. It loops over the conditions, returning false in case of a negative evaluation result, and
true if all conditions are fulfilled. Before a single condition can be evaluated, we need to update
the data referenced by the condition pointer(s). For each expression of the form v.attr (cf. Def-
inition 4.6), the binding B combined with the symbolic trajectory M provide the appropriate
values.

For our continuous example, we consider the end of the time interval of unit 3 (2013-01-17-
09:18:44) and the start of the time interval of unit 0 (same day, 09:02:30), according to the
binding {X 7→ [0, 2], Y 7→ [3, 3], Z 7→ [4, 4]}. The instant pointers’ targets are set to these values,
and Secondo can execute the condition as a query, returning a result of type bool . In our
case, the result is true, since the difference of the two instants is less than 20 minutes, thus
conditionsMatch also returns true.

Concerning the runtime complexity of the condition evaluation, we observe that it is linear in
c, the number of conditions and in∅ |VC |, the average number of v.attr expressions per condition.
Moreover, since for the attributes time and labels, not only one or two but possibly all units
have to be accessed, the computation cost for the assignment of values must be considered
linear in m. Consequently, the worst case runtime for one invocation of conditionsMatch is in
O(c ·∅ |VC | ·m). For the average case, however, none of the first two values can be expected to
be large, and the factor m is dropped out for most configurations.

6.2.4 Requirements for a Linear Runtime of matches

After the execution of Algorithm 2, the operatormatches terminates after a runtime of O(m(p+
n+p2)+cme−1 ·∅ |VC | ·m) = O(m(p+n+p2)+cme ·∅ |VC |). Now we analyze the requirements
that are necessary for the runtime of matches to be linear in m, the size of the symbolic
trajectory. Obviously, this is the case if e equals 1 or even 0. However, as we are interested
in non-trivial pattern specifications, consider the formula’s non-linear part cme−1 · ∅ |VC | · m,
where me−1 is the maximal number of different bindings and m represents the value assignment
cost.

The first option for a linear value is linearizing the number of bindings, which is successful
if w, the number of the wildcard and regular expression items * and + occurring in the pattern,
is at most two. This is due to the fact that for w = 0, a matching can only occur if the number
of pattern elements equals m, which is unlikely, whereas w = 1 grants a realistic probability for
a matching, which then is unique since the binding of the respective sequence variable depends
on the remaining pattern. For w = 2, however, we may obtain up to m + 1 different bindings.
At the same time, no time or labels attribute may be used along with a sequence variable in
any condition, for the sake of a constant value assignment cost.
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For the second approach, the conditions are freely configurable, while w may only equal 0 or
1, resulting in exactly one binding (or none at all).

As stated in 6.2.2, the computation cost of matches is always linear in m for a pattern
without conditions.

6.2.5 Rewriting a Symbolic Trajectory

If the operator rewrite is called and the result of Algorithm 1 is positive, our objective is
to find every possibility of rewriting the applied symbolic trajectory according to the parsed
assignments (cf. Subsection 6.1). Hence, discovering one binding which fulfills the conditions
– as done previously – does not suffice, instead we need to find all bindings satisfying the
conditions. Consequently, we apply an adjusted version of that algorithm, which returns the
first condition-fulfilling binding, starting from a certain position inside A, the two-dimensional
integer set array. As rewrite returns a stream of trajectories, the current positions – along with
the partial bindings – are pushed on a stack, so the computation can be continued from there.

With this binding, the symbolic trajectory M is rewritten as follows. First, there is an outer
loop over the assignment objects, each represented by one variable in the results section of the
pattern. Inside this loop, we assign new values to the results if necessary. This is done similarly
to 6.2.3, that is, the assignment objects contain one operator tree for each := operation, having
a pointer for each v.attr expression on the right side of the assignment symbol. If any parts
of the necessary information for a result variable are missing in the assignments section, they
are collected from the original symbolic trajectory according to the binding. By this means, a
new unit is created for each result variable (or a sequence of units, for a sequence variable) and
added to the result trajectory M ′. After the end of the outer loop, M ′ is written to the output
stream.

We now consider a rewrite operation for M0 and P1. The first binding which fulfills the
condition is found like in Table 2, while the position data i and j are stored on a stack. For
every backtracking action, i.e., when i does not increase from one line to the next, the current
binding is reset according to Algorithm 3, lines 13-15. The binding {X 7→ [0, 2], Y 7→ [3, 3],
Z 7→ [4, 4]} along with the given assignments results in the following symbolic trajectory:

( ( (2013-01-17-09:02:30 2013-01-17-09:13:48 T F) "start of trip")

( (2013-01-17-09:13:48 2013-01-17-09:18:44 T F) "Welbeck St") )

Starting from the bottom of Table 2, backtracking only one level, i.e., i = 3 and j = 2, and
choosing the element 1 leads to the next binding {X 7→ [0, 2], Y 7→ [3, 4]}. The corresponding
result reads

( ( (2013-01-17-09:02:30 2013-01-17-09:13:48 T F) "start of trip")

( (2013-01-17-09:13:48 2013-01-17-09:18:44 T F) "Welbeck St")

( (2013-01-17-09:18:44 2013-01-17:09:20:10 T F) "Queen Anne St") )

where the last two units belong to (the sequence variable) Y. Finally, the symbolic trajectory

( ( (2013-01-17-09:02:30 2013-01-17-09:13:48 T F) "start of trip")

( (2013-01-17-09:18:44 2013-01-17-09:20:10 T F) "Queen Anne St") )

is the consequence of the binding {X 7→ [0, 3], Y 7→ [4, 4]}, obtained by backtracking until i = 2,
j = 0.

The computation cost for rewriting a trajectory, given a certain binding, is linear in m, since
the size of a resulting symbolic trajectory cannot exceed m, and each unit of the result is created
in constant time – either a unit mi from M is copied, or some data from mi are processed, or
mi is not considered at all. Note that the number of expressions of the form v.attr on the right
side of the assignment symbol is regarded as constant. Thus, we obtain a total computation
cost of O(m(p+ n+ p2) + cme+1 ·∅ |VC |) for rewriting a symbolic trajectory.
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6.2.6 Matching a Stream of Symbolic Trajectories

While the operator matches processes exactly one trajectory, for several applications it is
suitable to compare k symbolic trajectories M0, . . . ,Mk−1 (k ∈ N) to a single pattern P in
an efficient way. The straightforward approach, i.e., executing matches repeatedly on a text
pattern, is less-than-ideal since P has to be parsed k times. It is better to first convert the
pattern text into a value of type pattern and then to use matches with this argument, as
described in Section 4.6.1.

An alternative solution is provided by the operator filtermatches which takes a stream of
tuples containing symbolic trajectories and a pattern text and returns a stream of the tuples with
matching symbolic trajectories. At the beginning, an NFA is produced from the pattern text.
Subsequently, exactly those trajectories passing the matching process are copied to the output
stream. This operator can be used by the query optimizer to translate a matches predicate on
a text argument.

For example, let M0, . . . ,Mk−1 (k ∈ N) be the trajectories (geographic as well as symbolic)
of a person during a long period. In order to display only those trajectories belonging to a
short round trip (less than 20 minutes, starting and ending at a certain location) on a map,
filtermatches can be applied [37].

6.2.7 Classification of a Symbolic Trajectory

The purpose of the operator classify is to distribute a set of symbolic trajectories into not
necessarily disjoint subsets, so-called categories. Along with the trajectory collection, a set of
patterns (with or without conditions) have to be specified, where each pattern must be annotated
with a category description.

First, the operator reads in the patterns and stores them along with their categories. Instead
of computing a separate NFA function for each pattern, we build one multi-automaton for all
of the patterns. Let n0, n1, . . . , nl−1 be the number of states for each of the l patterns. Hence,
the multi-automaton has

∑l−1
i=0 ni states. During the multi-NFA construction, a mapping from

the final states to the respective pattern number is stored.
Subsequently, a modification of Algorithm 1 is applied to the first trajectory of the collection.

For a multiple pattern processing, the initial set of active states must contain l values instead
of one, namely {0, n0, n0 + n1, . . . ,

∑l−2
i=0 ni}. After the main loop, the set of active states

determines the set of patterns matching the processed symbolic trajectory. For each of the
remaining patterns, Algorithm 2 is invoked to check the conditions, and finally, the categories
of the accepted patterns are attached to the trajectory. This procedure is repeated for every
symbolic trajectory from the collection.

6.2.8 Applying a Trajectory Index

So far in this section, each of the described algorithms requires every unit of a symbolic trajectory
to be considered. In the following, we introduce the concept of a trajectory index. Since a
symbolic trajectory M is ordered by the time intervals of its units, an additional structure
is necessary in order to conduct operations like deciding whether a certain label occurs in M
and/or finding a certain label inside M in constant time. Due to the necessity to handle a
set of symbolic trajectories, a trajectory index has to contain information not only about one
trajectory but about arbitrarily many.

Hence, we implemented the operator createtrie which processes a relation containing an
attribute of type mlabel , storing the tuple identifier(s) and unit position(s) of each label into
a trie. Subsequently, this trie is converted into a persistent structure and can be used as a
Secondo database object. The construction cost for the index is linear in the total number of
labels.
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Now we briefly present the use of such an index for matching a pattern against a set of
symbolic trajectories. The operator indexmatches, which computes the same result as filter-
matches, is passed a relation R containing an mlabel attribute, the name of that attribute, the
name of the index object, and a pattern object (or text).

If the pattern has conditions or regular expression items, the index is currently not applied,
and the symbolic trajectories matching this pattern are determined as in 6.2.6, considering each
(tuple of the relation containing a) trajectory in turn. Otherwise, with the help of an index, it
suffices to follow NFA transitions until a final state is active and to track which trajectories are
active at which positions. If a label is found in a unit pattern, it is looked up in the index – which
happens in constant time, assuming labels have constant length –, and only a few units in a few
trajectories remain active. Under convenient circumstances, i.e., if the pattern contains only
wildcards and unit patterns with label specifications, the runtime complexity of indexmatches
is in O(t · |R|), where t is the number of possible transitions of the NFA belonging to the pattern.

An additional operator named indexclassify calculates the same result as classify with
the help of a trajectory index. Similarly to the previous paragraph, its runtime amounts to
O(t′ · |R|), where t′ is the number of possible transitions of the multi-automaton created from
the pattern set.

A trajectory index that contains time information and is applicable for general patterns is a
subject of future work.

7 Experimental Evaluation

This section is devoted to a series of Secondo queries carried out with the operators detailed
in the previous section. All experiments were conducted on an AMD Phenom II X6 3.3 GHz
processor running openSUSE 11.4, with 8 GBytes of main memory. In the first part, we present
runtime graphs of the operators matches, rewrite, filtermatches, classify, and indexclas-
sify, in order to analyze and visualize the impact of certain parameters on the time consumption.
For that purpose, a synthetical dataset was created. The second part details several approaches
of executing matching tasks on a more realistic dataset generated with BerlinMOD [14], a bench-
mark for spatio-temporal database management sytems.

All runtimes were computed by running each query four times and taking the median value
of the durations. The executed queries (patterns) as well as the precise elapsed times are listed
in Appendix B.

7.1 Experiments with a Synthetic Dataset

In order to obtain symbolic trajectories with comparable properties – i.e., having certain sizes
and labels from a static limited collection with similar repetition frequencies –, we decided to
generate synthetic data. All symbolic trajectories applied in this subsection represent trips
through the city of Dortmund, Germany, in randomized but valid order, more exactly, the labels
correspond to the names of the 12 main districts, and the labels of two consecutive units are
adjacent to each other on the map. As the time intervals are irrelevant for the runtime, each
unit has a duration of half an hour, and each symbolic trajectory starts at 2012-01-01-00:00:00.
A relation containing arbitrarily many symbolic trajectories, each of which is a random trip
through Dortmund of a user-defined size, can be produced by the operator createmlrelation.

7.1.1 matches

In Figure 11, we present the performance evaluation of the operator matches with respect to
an increasing symbolic trajectory and different patterns. The left diagram refers to patterns
without conditions, while each of the patterns on the right hand side contains at least one
condition.
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Figure 11: Runtime of the operator matches with (left) and without (right) conditions

The left plot visualizes that the runtime of the operator matches is linear in m if no
conditions are specified, according to our computations concerning Algorithm 1. Since the
pattern P0 causes an early mismatch (after the second unit), its computation cost is constant.
For P1 and P2, we observe a difference in the slopes, caused by the higher number of states that
are active in every iteration of the matching process.

The patterns P4 and P5 on the right-hand diagram confirm the worst case runtime complexity
of algorithm 2. Since the condition of P5 is never fulfilled, every possible binding has to be
computed and evaluated, and the runtime is quadratic in m since P5 contains three wildcards.
Due to the same reason, also P4 causes quadratic computation cost. However, the slope of the
corresponding curve is below that of P5, since only a few bindings have to be computed and
checked until a true configuration is found. For an easy condition, no two-dimensional array and
no binding is required, thus the runtime of P3 is linear in m. Note that the trajectories applied
on the right hand side are considerably shorter than on the left, otherwise the runtime graphs
for P3 and P4 would have been hardly distinguishable.

7.1.2 rewrite

The subsequent test series is conducted with the operator rewrite and analyzes the runtime
for processing single trajectories of different sizes as well as trajectory relations with different
numbers of tuples. The corresponding results are depicted in the left and in the right diagram,
respectively.

Figure 12: Runtime of the operator rewrite for a single trajectory (left) and a trajectory relation
(right, conducted with pattern P9)

As expected, the graph resulting from the pattern P8 in the left hand diagram of Figure 12
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has a quadratic shape due to the three wildcards. Although the pattern P7 contains only two
wildcards, we obtain a quadratic runtime for P7, too, since there are no filtering elements and
one of the sequence variables (A) also occurs in the results section. Due to a higher number
of result trajectories (that is, m + 1 for P7 compared to less than m

20 for P8), induced by the
filtering unit patterns inside P8, the graph of P7 shows a higher slope. Finally, as there is only
one wildcard in P6 and no sequence variable in the results section, the computation cost for the
rewrite operation is linear in m.

On the right hand side, the runtime behavior of rewrite is depicted for relations containing
a mlabel attribute. We varied the number of tuples r of the relations – along the abscissa – and
the size of the trajectories, while the applied pattern set, consisting of the pattern P9, remained
invariant. Inside a relation, all trajectories have the same number of units. Unsurprisingly, the
computation cost is proportional to r, apart from a fractional parsing overhead. Concerning the
different trajectory sizes, the rise is quadratic in m because of the two wildcards, similar to the
graph of P7 on the left.

7.1.3 filtermatches and indexmatches

We proceed to a series of experiments matching a single pattern against a stream or relation of
symbolic trajectories. In the following, the benefit of applying a trajectory index is analyzed in
contrast to the execution without index support.

Figure 13: Runtime of the operators filtermatches and indexmatches

The linear shape of the functions depicted in the left plot of Figure 13 is as expected. Theo-
retically, the runtime of the operator filtermatches should also be proportional to m, which is
not exactly the case. The slight overhead is due to internal Secondo memory administration
reasons, thus not related to the implementation.

In the right diagram, we present the massive influence of a trajectory relation index, reducing
the runtimes by a factor of up to 26. The computation cost is still (almost) linear in r, since
the operator indexmatches has to administrate the active units for each of the r trajectories.
However, the runtime is less than proportional to m, since the trajectories are not completely
processed.

7.1.4 classify and indexclassify

The final test, whose results are depicted in Figure 14, reviews the performance of the operator
classify with regard to the quantity and size of the examined symbolic trajectories. Again, the
efficiency is optimized with the help of an index. The classification task is conducted with three
simple patterns.

From the left plot we deduce that the runtime function of the classify operator is nearly
proportional to the number of trajectories as well as to their sizes, which could be expected,
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Figure 14: Runtime of the operator classify

since only Algorithm 1 is executed. Hence, the construction of the multi-automaton, being inde-
pendent from the set of moving labels, is efficient. In fact, the operator consumes approximately
7 microseconds for processing one unit (for this pattern combination) and an overhead of a few
milliseconds for the automaton.

Applying the trajectory relation index, we are able to reduce the runtime to a high extent,
i.e., by a factor of approximately 15. Similar to the situation in 7.1.3, the computation cost is
linear in r and less than proportional to m.

7.2 Experiments with BerlinMOD Data

In order to obtain a more realistic dataset, we applied the database benchmark system Berlin-
MOD with a scale factor of 1.0. By this means, a relation with 293,000 tuples, each containing
a mpoint attribute, was created. These trips, consisting of 56 million upoints (point units) in
total, refer to the movement data of 2,000 objects collected during a period of 28 days inside the
city of Berlin. Since half of the moving points are stationary, i.e., they contain only one point
unit, we removed them from the dataset and conducted the experiments with the remaining
145,000 trips.

In the following, we present six different approaches of computing which of the trajectories
passed through certain streets. The first uses classical techniques, the remaining five are based
on symbolic trajectories. More exactly, each of the subsequent methods is applied to compute
how many of the trajectories passed

1. Bundesallee

2. Bundesallee and Pariser Platz

3. Bundesallee, Pariser Platz, and Unter den Linden

in the specified order. For each case, arbitrarily many streets may be passed before, between,
and after the respective street names. The trajectories resulting from the third schedule are
depicted in Figure 15.

7.2.1 Evaluation Using Raw Trajectories

Approach 1: Moving Points and a Geometric Index In order to solve the three tasks
in a reasonably efficient way based on raw trajectories, a remarkable preparation effort was
required. First, we created two B-trees over the streets relation for fast access to the routes
themselves (datatype line) and to their bounding boxes. Subsequently, an R-tree containing
the bounding boxes of the 56 million unit point segments was built, consuming more than 37
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Figure 15: The streets of BerlinMOD (thin gray), the three specified streets (thick gray), and
the filtered trajectories (black). Since Pariser Platz and Unter den Linden are adjacent, they
appear as one street (center of the image).

minutes. Regarding the first task, we collected all trajectories having at least one unit whose
bounding box intersects the bounding box of the street Bundesallee, which is done in less than
4 seconds applying the R-tree. The resulting trips had to be processed further, i.e., we checked
whether they contain a unit whose start and end point are located in a small radius around
the line corresponding to Bundesallee. This tolerance is necessary due to numerical issues in
geometric algorithms and – for actually recorded data – to inaccurate GPS signals. After nearly
9 minutes, task 1 is solved.

For the second task, a temporal order had to be queried, so we modified the refinement
function to not only decide whether a certain street is passed or not, but to return the time
instant at which it is first visited. Another function was introduced deciding whether a moving
point passes a certain street after a specified instant of time. With these tools, we were able to
formulate a query providing the solution. A similar, even longer query was applied to solve the
third task. Both were processed in less than one minute, which was clearly faster than for task
1, since the number of result candidates provided by the R-tree was notably smaller (1,000 vs.
16,000).

7.2.2 Evaluation Using Symbolic Trajectories

Construction of Symbolic Trajectories Since the conversion of an mpoint into an mlabel
is a complex procedure, we decided to apply Parallel Secondo [27], available from the Web site
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[26], on a 12 node cluster for this task. After distributing the streets and trips data, we executed
a query matching the center point of each unit point to the nearest street segment and creating
a unit from the associated time interval and the street’s name. The cluster accomplished this
task in a little less than three hours.

The resulting 145,000 moving labels are clearly shorter than the raw trips, since the units of
the latter have a duration of only two seconds, while in a symbolic trajectory, an additional unit
is necessary only if the street name changes. More precisely, the memory consumption of the
145,000 moving labels amounts to 282 MBytes, whereas the associated moving points require
10.8 GBytes. A summary of the achieved runtimes is presented in Table 3.

Approach 2: A Linear Scan The first task was solved elegantly with the help of the passes
operator in only three seconds. For a symbolic trajectory and a label, the predicate passes is
true if and only if the label occurs at least once in the symbolic trajectory.

Similar to Approach 1, we created a function considering the temporal order for solving the
tasks 2 and 3, consuming less than 5 seconds each. This approach is neither user-friendly nor
expressive, since the complexity of the query itself (and of the auxiliary functions) significantly
increases with any additional requirement.

Approach 3: Spatiotemporal Pattern Queries With the help of spatiotemporal pattern
queries [33], available in the Secondo distribution, we conducted the desired filter steps. For
the second and the third task, the constraints were defined applying the operator inside. As
spatiotemporal patterns require as least two mbool predicates, the first task cannot be solved
with this technique in a sensible way.

The time consumption of the respective queries ranged from 8 to 9 seconds.

Approach 4: Working with an Inverted File For a faster processing, we created an
inverted file that returns the tuple id and the unit position for each occurrence of a street name.
This step was completed after 75 seconds. In order to solve the first task, we merely had to look
for Bundesallee inside the inverted file and to count the different tuple ids. For the temporal
order in the two other tasks, a hashjoin and a comparison of unit positions was necessary. The
efficiency of this approach (runtimes clearly below 1 second) makes it suitable for filtering large
trajectory collections before using more sophisticated techniques.

Approach 5: Pattern Matching In this approach, the operator filtermatches (see 6.2.6
for details) was applied. Without any index support, the operator processes all trajectories in
6.6 seconds. As described before, the influence of the number of atomic pattern elements is
vanishingly low compared to that of the number of processed units.

Approach 6: Pattern Matching with a Trajectory Index Finally, a trajectory index
(cf. 6.2.8) was created for the collection of symbolic trajectories. This operation took slightly
more than 3 minutes, leading to a further reduction of the runtime by a factor of approx. 6.
This benefit is inferior compared to the results of 7.1.3, since the number of trajectories causes
a greater proportion of the computation cost of indexmatches than their length.

7.2.3 Summary of BerlinMOD Experiments

Considering Table 3, it is obvious that using symbolic instead of raw trajectories offers substantial
advantages regarding the execution of queries as well as the disk space occupation and the
creation of indexes. For all these quantities, gains in efficiency of several orders of magnitude
can be observed.
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Table 3: Result overview after filtering 145,000 BerlinMOD trajectories

Runtime (seconds) consumed for
Applied Approach Index Task 1 Task 2 Task 3

Based on raw geometric data
(occupying 10.8 GBytes)

1: moving points, geometric index 2249.7 521.5 53.5 58.4

Based on symbolic trajectories
(occupying 282 MBytes)

2: linear scan 3.0 4.5 4.6
3: spatiotemporal pattern queries 8.1 8.0 9.2
4: inverted file 74.8 0.1 0.2 0.5
5: pattern matching 6.6 6.6 6.6
6: pattern matching, trajectory index 185.7 1.1 1.1 1.1

Among the methods based on symbolic trajectories one should compare the techniques with-
out index (2, 3, 5) and the index-based methods (4, 6) separately. In the first case, one can see
that the powerful pattern matching engine achieves similar efficiency as the simple linear scan
or the more complex method of spatio-temporal pattern queries. For the index-based methods,
the inverted file technique is a bit faster than using the trajectory index. At the same time, one
can observe that query formulation is much more difficult and lengthy with the other techniques
(see the queries in Appendix B.2) and simple and elegant with the pattern language. Moreover,
the comparison captures only very simple queries that can be handled by the other techniques
whereas the pattern language is vastly more powerful, enabling the use of regular expressions,
temporal constraints, and expressive conditions, all very inconvenient or even impossible to
express with basic techniques.

8 Related Work

The notion of symbolic trajectory relates to diverse research areas. In what follows we tie in
our work with major research streams focusing, in particular, on pattern matching of sequences
and semantic trajectories.

Pattern matching of sequences. To a first approximation, symbolic trajectories can be seen
as sequences of symbols, i.e. strings. Pattern matching over strings is a well-known problem
in the literature [20]. Given an alphabet Γ, a pattern is, in the simplest case, a finite string
defined over Γ, otherwise it is a regular expression denoting a set of strings of potentially infinite
length [29]. Regular expressions are extremely popular in e.g. programming languages and
operating systems. For example, the syntax that we have chosen to represent our patterns has
been loosely inspired by the Mathematica programming language.6 The algorithms searching
for text matching regular expressions typically employ finite automata, i.e. NFA or DFA, and a
have running time linear in the size of the text [29]; more efficient solutions can be obtained by
using an indexing mechanism over text [5]. These techniques are also employed in our pattern
matching engine. Yet there is a significant difference between the notion of symbolic trajectory
and that of string. In particular symbolic trajectories have a dual dimension, i.e. temporal and

6http://blog.wolfram.com/2008/11/18/surprise-mathematica-70-released-today/
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textual where the temporal data not only serves to force ordering in the sequence as in time
series, but complements the textual information. In addition the symbolic trajectory data model
is embedded into a database system. System design is thus integral part of the solution.

In the database literature, regular expressions are key for querying event streams [32, 11, 1].
An event is an occurrence of interest at a point in time, that has a type and a set of attribute
values; an event stream is a temporally ordered sequence of events that can be acquired one
at a time or being archived. Query languages over event streams include for example SQL-TS
[32] and DejaVu [11]. Despite their syntactic variations, these languages share many features
for pattern matching that we can find in our language such as the use of variables, conditions
and the Kleene operator. Events, however, have a different representation and purpose, while
the query languages do not support full-fledged regular expressions.

Closely related to our work is the research on mobility pattern matching in spatio-temporal
databases. The basis for the present work originates from [13, 12]. In particular, du Mouza and
Rigaux introduce the notion of mobility pattern over trajectories defined in a discrete space (i.e.
the space is not dense) where each region is identified by a symbol. An object’s trajectory is
defined by the sequence of symbols denoting the successive zones crossed by the object. The
trajectories obtained in this way are interrogated using a pattern matching language supporting
variables. Moreover the pattern matching engine relies on an NFA. The expressivity of the
language is, however, limited. In particular variables can be only bound to symbols and not to
time, moreover the language does not allow the specification of conditions on variables.

The assumption of a discrete reference space is also at the basis of the work by Vieira et
al. [38, 39]. The idea is again to support pattern matching over trajectories, but in this case
trajectories are geometric and not symbolic, i.e. a sample query is to find the (geometric)
trajectories that go from region A to region B. The pattern language is rich and includes not
only symbols and variables but also conditions, such as spatial and temporal conditions. This
approach however makes strong assumptions on the underlying reference space, i.e. the space is
partitioned, which seems quite restrictive in practice.

A different and recent line of research regards the querying of hybrid data, i.e. textual
and spatial, where the text is for example a keyword describing a point of interest shared in a
geo-social network, e.g. a place check-in. Current research is however focused on the efficient
processing of conventional queries over textual-spatial objects such as nearest neighbor queries
[7, 9], while trajectories are currently overlooked.

Symbolic trajectories are not restricted to movement in space but can employ any set of la-
bels. Moreover the mobility patterns are expressed in terms of regular expressions with variables
denoting symbols, time intervals and subsequences, whilst the pattern language is embedded into
a database which offers a rich and extensible repertoire of data types and operations that can be
used for formulating a variety of conditions on pattern variables. Further we recall that the lan-
guage not only supports pattern matching but also provides two additional operators: classify to
categorize a set of trajectories through multi-pattern matching; and rewrite to let users extract
and even change trajectory labels in order to enrich the description with further information.
To the best of our knowledge, the expressiveness, flexibility, and variety of operations provided
by our query language are unrivaled.

Semantic trajectories. The second stream of related research focuses on the semantic en-
richment of trajectories. Increasingly, advanced applications need to capture and annotate the
meaning of the movement and not simply its evolution in space and time. This calls for en-
hanced representation models. For example, in diverse applications collecting movement data
for semantic location recognition and recommendation purposes e.g. [25, 45, 8, 44, 6], trajecto-
ries are annotated with the name of the places in which the moving objects stay possibly for a
significant amount of time. Another form of annotation regards the transportation modes, for
example walking, bus, and alike, as in [23, 43]. Sequences of generic activities are represented
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in e.g. [40, 42]. In general, these annotations can be obtained in different ways, i.e. through
analytical techniques, or be specified by the user or be directly acquired from e.g. sensors as
in [21, 22]. Annotations can also be used in place of the geometric data to obtain compressed
representations of e.g. GPS trajectories as in [30].

The definition of a conceptual trajectory model is the first step in the direction of a general
framework for enhanced trajectories representation. The early model proposed by Spaccapietra
et al. [35] is centered on the key concepts of stop and move. This conceptualization is at the
basis of the numerous trajectory data mining techniques following the early work in [3](see [36]).
Generalized versions of this first model are presented in [4, 41, 36]. All of these works rely on
some notion of semantic trajectory. For example in [36], a semantic trajectory is defined as a raw
trajectory enhanced with annotations and episodes. Annotations are descriptions attached to
the whole trajectory or parts of it, while an episode is a sub-trajectory resulting from a trajectory
segmentation. For example stop and moves are two different types of episode. The definition
of semantic trajectory is however not univocal. Moreover, the data model is only defined at a
conceptual level. This means that the data management issues, i.e., how to interrogate large
amounts of semantic trajectories, are ignored. This is exactly where symbolic trajectories fit
into. The symbolic trajectory data model is defined at the logical level, formally defined and
embedded in a moving object database to provide support for the efficient access possibly but
not exclusively in a spatio-temporal context.

9 Conclusions

Capturing and representing the meaning of movement is a challenging issue that calls for novel
solutions. This work presents a comprehensive framework for the generalized representation of
movement in a symbolic space. Inspired by the concept of semantic trajectory, the work departs
from the mere conceptualization to present a rigorous and rich data model embedded into a
database system which significantly advances existing approaches.

We have defined the four data types mlabel , mlabels, mplace, and mplaces, but not explored
the latter three further, focusing instead on the pattern matching and rewriting language. Fu-
ture work will develop the possibilities of these types further such as “abstracting” moving
labels based on classification hierarchies, using hierarchical structures for nested geometries
(e.g., buildings) referred to by mplaces, efficiently managing repositories of geometries, and so
forth.

Another interesting venue for research are more general indexes supporting pattern matching
also for specifications of time intervals and patterns with conditions.

Symbolic trajectories have great application potential. As sequences of temporally annotated
symbols, symbolic trajectories can be used in a variety of domains, not necessarily related to
the geo-spatial context. For example, symbolic trajectories can be obtained from time series,
e.g., health monitoring data, by applying techniques such as [24]. This opens up interesting
opportunities for time series analysis. Discovering the full potential of the data model in non-
spatial domains is a major challenge for future research.

As we have seen, however, symbolic trajectories are primarily motivated by the need of
overcoming the limitations of the classic geometric trajectory data model in a geo-spatial context.
We have also seen that the symbolic and the spatio-temporal dimensions of trajectories can
coexist. For example, in Secondo the movement of an entity can be simply described by
two attributes one of type mpoint (i.e., the geometric trajectory) and one of type mlabel (i.e.,
the symbolic trajectory). In certain circumstances, however, a tighter integration of the two
dimensions might be desirable to enable more efficient query processing and more powerful
queries. Combining the symbolic and more in general the textual dimension with the spatio-
temporal dimension paves the way to challenging research opportunities that, to our knowledge,
have not been explored yet.
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[14] C. Düntgen, T. Behr, and R. H. Güting. Berlinmod: A benchmark for moving object
databases. VLDB Journal, 18(6):1335–1368, 2009.
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[19] R. H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.

[20] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley-Longman, 2001.

[21] H. Hu and D. L. Lee. Semantic location modeling for location navigation in mobile envi-
ronment. In Mobile Data Management’04, pages 52–61, 2004.

[22] C. Jensen, H. Lu, and B. Yang. Indexing the trajectories of moving objects in symbolic in-
door space. In Advances in Spatial and Temporal Databases, 11th International Symposium,
SSTD’09, pages 208–227, 2009.

[23] L. Liao, D. Fox, and H. Kautz. Location-based activity recognition using relational markov
networks. In Proc. of the 19th International Joint Conference on Artificial Intelligence,
IJCAI’05, pages 773–778, 2005.

[24] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with
implications for streaming algorithms. In Proc. of the 8th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, DMKD ’03, pages 2–11, 2003.

[25] J. Liu, O. Wolfson, and H. Yin. Extracting semantic location from outdoor positioning
systems. In Proc. of the 7th International Conference on Mobile Data Management, page 73,
2006.

[26] J. Lu. Parallel Secondo. http://dna.fernuni-hagen.de/Secondo.html/ParallelSecondo/in-
dex.html, 2013.

[27] J. Lu and R. H. Güting. Parallel secondo: Boosting database engines with hadoop. Inter-
national Conference on Parallel and Distributed Systems, 0:738–743, 2012.

[28] F. Marchal, J. Hackney, and K. W. Axhausen. Efficient map matching of large global posi-
tioning system data sets: Tests on speed-monitoring experiment in Zürich. Transportation
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A Pattern Language

In the following, we present the details of our pattern language. A pattern consists of up to four
components. These are pattern elements, conditions, results, and assignments.
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A.1 Atomic Pattern Elements

The first part of a pattern comprises arbitrary many atomic pattern elements which are aligned
in temporal order (aside from regular expression structures). Before we define the contents of
an atomic pattern element, basic temporal concepts have to be introduced.

Let i be an instant. Then i has the form y-m-d-h:min:s.ms, where the year y has at least
four digits and may be negative, the month m, the day d, the hour h and the minute min have
their standard ranges and two digits each, and the millisecond ms has three digits.

Let T be a set of temporal periods, and let i1 and i2 be two instants. An element of T , that
is, a period, can be entered in one of the following ways:

• i1 ∼ i2. As the tilde symbol stands for “until”, the instant on the left of it must not be
greater than the one on the right;

• i1 ∼, meaning the interval from the specified instant until eternity;

• ∼ i1, meaning the interval from the beginning of time until the specified instant;

• i1, meaning the interval from the beginning of i1 until its end;

• the name of a Secondo database object of type periods or interval ;

• a semantic date, i.e., a weekday (monday, . . . , sunday), a daytime (morning, afternoon,
evening, night), or a month (january, . . . , december), each of which can be considered as
an infinite period or a periodically repeating interval.

In each of the first four options, the instants may be abbreviated, resulting in different
interpretations:

• y1 ∼ y2-m2-d2 is an abbreviation for y1-01-01-00:00:00.000 ∼ y2-m2-d2-23:59:59.999;

• y-m ∼ is the shortened form of y-m-01-00:00:00.000 ∼;

• ∼ y-m-d-h abbreviates ∼ y-m-d-h-59:59.999;

• y-m-d is short for y-m-d-00:00:00.000 ∼ y-m-d-23:59:59.999.

Moreover, for the first three cases, the user may omit the year, the month, and the day
in a period specification. The single times may be abbreviated to hours and minutes and are
interpreted as daytimes. Hence, they are treated like semantic dates.

If the user specification is the name of a database object of type periods or interval as well
as a semantic date, the latter has the higher priority.

Let L be a set of labels each of which is entered as a string. Each atomic pattern element may
contain arbitrary many time and label specifications. If T or L have more than one element,
they are interpreted as a logical conjunction (for T ) or disjunction (for L), respectively, and
have to be input as a set of comma-separated components between curly brackets. Otherwise,
the brackets may be omitted.

Applying the recent definitions, each atomic pattern element has one of the following forms:

• (T L), matching exactly one unit (t l) if and only if t ⊂ t′ for every t′ ∈ T and l ∈ L;

• +, matching any non-empty sequence of units;

• *, matching any sequence of units.

If no time and/or label specification is desired, the respective part has to be replaced by an
underscore. The empty atomic pattern element ( ) may be abbreviated by ().

The user may assign a unique variable – starting with a capital letter followed by arbitrary
many letters and/or digits – to each pattern element by prepending it to the element. We discuss
the use of variables in the following subsections.
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A.2 Conditions

The pattern elements are followed by two slashes and any number of comma-separated condi-
tions. A condition is any expression of boolean type which can be evaluated by Secondo and
contains at least one expression of the form v.attr, where v is one of the variables bound to a
pattern element and attr is one of the condition attributes {label, time, start, end, leftclosed,
rightclosed, card, labels}.

Note that a condition is invalid if the data type of one of the chosen attributes is incompatible
with the rest of the expression. Apart from that, the use of the label attribute in a condition is
only allowed if the corresponding variable refers to a unit pattern, whereas card or labels may
only be used in combination with a sequence variable.

While an expression of the form v.label is a string , v.labels has its own data type called
labels. For the latter, Secondo provides the operator contains which checks whether a string
is an element of a labels collection. The other data types (string for label, periods for time,
instant for start and end, bool for leftclosed and rightclosed, and int for card) can be processed
in numerous ways.

A.3 Results

The specification of results is mandatory for the rewrite operator. The result section is sepa-
rated from the conditions by an arrow (=>) and consists of arbitrary many variables. However,
there are several restrictions. For those variables attached to pattern elements, they have to be
arranged in the same order as they are in the pattern elements section. New variables may be
positioned freely, but it is necessary to assign a label and a time interval to them, otherwise the
input is rejected. In addition, all result variables have to be unique.

A.4 Assignments

Finally, the user may assign additional information to the trajectory parts extracted by the
three previous sections. More exactly, this process is optional for variables occurring in the first
section and mandatory for the rest of them. The assignment part consists of arbitrary many
comma-separated assignments. Each of these starts with an expression of the form v.attr and
the assignment symbol :=, where v is one of the variables from the results part and attr is one of
the assignment attributes {label, time, start, end, leftclosed, rightclosed}. Note that assigning
a cardinality or a set of labels is not reasonable and therefore not allowed, i.e., expressions of
the form v.card or v.labels may not occur on the left side of the assignment symbol. Variables
referring to sequence patterns cannot be assigned new values at all.

On the right side of the assignment symbol, the user has to provide an expression which may
contain any number of v.attr terms (see above) and must be evaluable by Secondo. Moreover,
the resulting data type of the right side has to correspond to the data type of the attribute on
the left side. By default, the boolean values leftclosed and rightclosed are set to true and false,
respectively, so it is not necessary to manipulate them for new variables.

A time interval has to be assigned to a variable introduced in the results section by specifying
either a start and an end assignment or a single time assignment.

Finally, it has to be mentioned that in case of an invalid result (e.g., due to overlapping time
intervals), the respective symbolic trajectory is removed from the output stream.

B Experimental Results

In this section, the results of the above experiments are presented in tabular form. Again, all
runtimes are displayed as seconds, and m and r represent the number of units inside a symbolic
trajectory and the number of symbolic trajectories, respectively.
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B.1 Experiments with a Synthetic Dataset

B.1.1 matches

Applied patterns:

P0 (2012-01-01 "Innenstadt-Ost") (_ "Hörde")

P1 () [* | (_ "Hombruch")]+ () *

P2 [(_ "Aplerbeck") | [(_ "Scharnhorst") (january _)]* | (2012-04 "Eving")]*

[(_ "Scharnhorst")]+ ()

P3 {X * Y (2012-01 {"Innenstadt-West", "Innenstadt-Nord", "Innenstadt-Ost"}) Z *

// Y.leftclosed = TRUE

P4 A () B [* | (thursday _)]+ C () D * // B.card > D.card

P5 X + Y (_ "Innenstadt-Ost") * (_ "Hörde") Z + // X.start > Z.end

Table 4: Operator matches; without conditions and with conditions

without conditions with conditions
m P0 P1 P2 m P3 P4 P5

0 0.005 0.003 0.008 0 0.006 0.008 0.007
10,000 0.003 0.047 0.034 400 0.008 0.018 0.014
20,000 0.004 0.088 0.055 800 0.009 0.046 0.04
30,000 0.005 0.133 0.082 1,200 0.009 0.087 0.154
40,000 0.005 0.173 0.11 1,600 0.009 0.148 0.355
50,000 0.005 0.215 0.134 2,000 0.012 0.226 0.666

B.1.2 rewrite

Applied patterns:

P6 X () Y * Z () => Z // Z.start := Y.start

P7 A * B * => A X // X.time := B.time, X.label := "begin of trip"

P8 G * H (_ "Eving") I * J (_ "Hörde") K * => H

P9 A * B [(_ "Brackel") | (_ "Hombruch")] C * => B

B.1.3 filtermatches and indexmatches

Applied pattern:
* (_ "Aplerbeck") * (_ "Hörde") * (_ "Eving") *
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Table 5: Operator rewrite; with a single trajectory and a trajectory relation

single trajectory trajectory relation, P9
m

m P6 P7 P8 r 100 200 300

0 0.004 0.002 0.004 0 0.005 0.003 0.007
400 0.008 0.051 0.007 200 0.274 0.667 1.178
800 0.009 0.169 0.024 400 0.543 1.326 2.351

1,200 0.006 0.37 0.077 600 0.809 1.994 3.561
1,600 0.007 0.649 0.219 800 1.078 2.659 4.707
2,000 0.012 1.021 0.382 1,000 1.348 3.324 5.883

Table 6: Operators filtermatches and indexmatches

m m
r 100 200 300 r 100 200 300

0 0.009 0.005 0.006 0 0.008 0.006 0.007
200 0.11 0.249 0.387 200 0.009 0.013 0.018
400 0.218 0.487 0.766 400 0.015 0.026 0.035
600 0.325 0.728 1.148 600 0.022 0.037 0.049
800 0.429 0.972 1.524 800 0.028 0.047 0.058

1,000 0.536 1.213 1.896 1,000 0.034 0.058 0.073

B.1.4 classify and indexclassify

Applied descriptions and patterns:

• start at Hörde, end at Brackel

(_ "Hörde") * (_ "Brackel")

• start at Innenstadt-West, Lütgendortmund

(_ "Innenstadt-West") (_ "Lütgendortmund") *

• Aplerbeck before Lütgendortmund before Eving

* (_ "Aplerbeck") * (_ "Lütgendortmund") * (_ "Eving") *

Table 7: Operators classify and indexclassify

m m
r 100 200 300 r 100 200 300

0 0.007 0.008 0.015 0 0.007 0.008 0.011
200 0.145 0.287 0.427 200 0.021 0.028 0.038
400 0.281 0.558 0.853 400 0.032 0.044 0.06
600 0.412 0.837 1.271 600 0.038 0.066 0.084
800 0.548 1.108 1.675 800 0.049 0.079 0.115

1,000 0.686 1.382 2.096 1,000 0.062 0.1 0.137
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B.2 Experiments with BerlinMOD Data

Approach 1: Moving Points and a Geometric Index

let strassen2 = strassen feed sortby[Name]

groupby[Name; Line: group feed projecttransformstream[GeoData]

collect_line[TRUE]] consume;

let strassen2_Name_btree = strassen2 feed addid createbtree[Name];

let getbb = fun(SName: string)

bbox(strassen2_Name_btree strassen2 exactmatch[SName] extract[Bbox]);

let units_rtree_2d = SymTrips feed addid projectextendstream[TID; Bbox: units(.MP)]

replaceAttr[Bbox: rectproject(bbox(.Bbox), 1, 2)] sortby[Bbox]

bulkloadrtree[Bbox];

# 2249.7 seconds

let filterendpoints = fun(MPoint: mpoint, SName: string)

units(MPoint) transformstream

projectextend[; Sp: val(initial(.Elem)), Ep: val(final(.Elem))]

filter[distance(.Sp, strassen_Name_btree strassen2

exactmatch[SName] extract[Line]) < 0.03]

filter[distance(.Ep, strassen_Name_btree strassen2

exactmatch[SName] extract[Line]) < 0.03] head[1] count > 0;

query units_rtree_2d windowintersectsS[getbb("Bundesallee")]

sortby[Id] rdup SymTrips gettuples

filter[filterendpoints(.MP, "Bundesallee")] count;

# 521.5 seconds

let getfirsttimeMP = fun(MPoint: mpoint, SName: string)

units(MPoint) transformstream

extend[Sp: val(initial(.Elem)), Ep: val(final(.Elem))]

filter[distance(.Sp, strassen_Name_btree strassen2

exactmatch[SName] extract[Line]) < 0.03]

filter[distance(.Ep, strassen_Name_btree strassen2

exactmatch[SName] extract[Line]) < 0.03]

head[1] projectextend[; End: inst(final(.Elem))] extract[End];

let filterendpointsafter = fun(MPoint: mpoint, SName: string, After: instant)

units(MPoint) transformstream

filter[inst(initial(.Elem)) >= After]

projectextend[; Sp: val(initial(.Elem)), Ep: val(final(.Elem))]

filter[distance(.Sp, strassen_Name_btree strassen2

exactmatch[SName] extract[Line]) < 0.03]

filter[distance(.Ep, strassen_Name_btree strassen2

exactmatch[SName] extract[Line]) < 0.03] head[1] count > 0;

query units_rtree_2d windowintersectsS[getbb("Bundesallee")] sortby[Id] rdup {a}

units_rtree_2d windowintersectsS[getbb("Pariser Platz")] sortby[Id] rdup {b}

hashjoin[Id_a, Id_b, 999997] project[Id_a] SymTrips gettuples

filter[filterendpoints(.MP, "Bundesallee")]

extend[FirstEnd: getfirsttimeMP(.MP, "Bundesallee")]

filter[filterendpointsafter(.MP, "Pariser Platz", .FirstEnd)] count;

# 53.5 seconds

query units_rtree_2d windowintersectsS[getbb("Bundesallee")] sortby[Id] rdup {a}

units_rtree_2d windowintersectsS[getbb("Pariser Platz")] sortby[Id] rdup {b}
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hashjoin[Id_a, Id_b, 999997] {c}

units_rtree_2d windowintersectsS[getbb("Unter den Linden")] sortby[Id] rdup {d}

hashjoin[Id_a_c, Id_d, 999997] project[Id_a_c] SymTrips gettuples

filter[filterendpoints(.MP, "Bundesallee")]

extend[FirstEnd: getfirsttimeMP(.MP, "Bundesallee")]

filter[filterendpointsafter(.MP, "Pariser Platz", .FirstEnd)]

extend[SecondEnd: getfirsttimeMP(.MP, "Pariser Platz")]

filter[filterendpointsafter(.MP, "Unter den Linden", .SecondEnd)] count;

# 58.4 seconds

Construction of Symbolic Trajectories

let CLUSTER_SIZE = 12;

let strassen_dup_dlo = strassen feed

intstream(1, CLUSTER_SIZE) namedtransformstream[DSNo] product

spread[;DSNo, CLUSTER_SIZE, FALSE;]

hadoopMap[DLO,TRUE; . consume];

let strassen_GeoData_rtree_dup_dlo = strassen_dup_dlo hadoopMap[DLO,

TRUE; . feed addtupleid sortby[GeoData] bulkloadrtree[GeoData]];

let Trips_Tripid_dlf = "Trips" ffeed[’’;;] spread[;TripId, TRUE;];

let SymTrips = Trips_Tripid_dlf hadoopMap[ DLF, TRUE; . extend[ML: units(.MP)

transformstream projectextend[; Sp: val(initial(.Elem)),

Ep: val(final(.Elem)),

Si: inst(initial(.Elem)),

Ei: inst(final(.Elem))]

projectextend[Si, Ei; Cp: (.Sp + .Ep) scale[0.5]]

projectextend[Si, Ei; N: para(strassen_GeoData_rtree_dup_dlo)

para(strassen_dup_dlo) distancescan3[.Cp,1] extract[Name]]

projectextend[; U : the_unit(tolabel(.N),.Si,.Ei,TRUE,FALSE)]

makemvalue[U]]] collect[] consume;

# 176 minutes, 48 seconds

Approach 2: A Linear Scan

query SymTrips feed filter[.ML passes tolabel("Bundesallee")] count;

# 3.0 seconds

let getfirsttime = fun(MLabel: mlabel, Name: string)

units(MLabel) transformstream

filter[tostring(val(initial(.Elem))) = Name]

head[1] projectextend[; End: inst(final(.Elem))] extract[End];

let mlpassesnameafter = fun(MLabel: mlabel, Name: string, After: instant)

units(MLabel) transformstream

filter[inst(initial(.Elem)) >= After]

filter[tostring(val(initial(.Elem))) = Name] head[1] count > 0;

query SymTrips feed filter[.ML passes tolabel("Bundesallee")]

extend[FirstEnd: getfirsttime(.ML, "Bundesallee")]

filter[mlpassesnameafter(.ML, "Pariser Platz", .FirstEnd)] count;

# 4.5 seconds

query SymTrips feed filter[.ML passes tolabel("Bundesallee")]

extend[FirstEnd: getfirsttime(.ML, "Bundesallee")]
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filter[mlpassesnameafter(.ML, "Pariser Platz", .FirstEnd)]

extend[SecondEnd: getfirsttime(.ML, "Pariser Platz")]

filter[mlpassesnameafter(.ML, "Unter den Linden", .SecondEnd)] count;

# 4.6 seconds

Approach 3: Spatiotemporal Pattern Queries

query SymTrips feed filter[. stpattern[

BA: .ML inside tolabel("Bundesallee"),

PP: .ML inside tolabel("Pariser Platz");

stconstraint("BA", "PP", vec("aabb", "aa.bb"))]] count;

# 8.0 seconds

query SymTrips feed filter[. stpattern[

BA: .ML inside tolabel("Bundesallee"),

PP: .ML inside tolabel("Pariser Platz"),

UdL: .ML inside tolabel("Unter den Linden");

stconstraint("BA", "PP", vec("aabb", "aa.bb")),

stconstraint("PP", "UdL", vec("aabb", "aa.bb"))]] count;

# 9.2 seconds

Approach 4: Working with an Inverted File

let mltotext = fun(MLabel: mlabel)

units(MLabel) transformstream

projectextend[; Elem: totext(val(initial(.Elem)))]

aggregateB[Elem; fun(a: text, b: text) a+’@’+b; ’’];

let inv = SymTrips feed addid extend[Text: mltotext(.ML)]

createInvFile[Text, TID, FALSE, 1, ’’, "@"];

# 74.8 seconds

query inv searchWord["Bundesallee"] groupby[Tid; Count: group count] count;

# 0.1 seconds

query inv searchWord["Bundesallee"] {a} inv searchWord["Pariser Platz"] {b}

hashjoin[Tid_a, Tid_b, 999997] filter[.WordPos_a < .WordPos_b] count;

# 0.2 seconds

query (inv searchWord["Bundesallee"] {a} inv searchWord["Pariser Platz"] {b}

hashjoin[Tid_a, Tid_b, 999997] filter[.WordPos_a < .WordPos_b])

inv searchWord["Unter den Linden"] {d}

hashjoin[Tid_a, Tid_d, 999997] filter[.WordPos_b < .WordPos_d] count;

# 0.5 seconds

Approach 5: Pattern Matching

query SymTrips feed filtermatches[ML, ’* (_ "Bundesallee") *’] count;

# 6.6 seconds

query SymTrips feed filtermatches[ML,

’* (_ "Bundesallee") * (_ "Pariser Platz") *’] count;

# 6.6 seconds

query SymTrips feed filtermatches[ML,

’* (_ "Bundesallee") * (_ "Pariser Platz") * (_ "Unter den Linden") *’] count;

# 6.6 seconds
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Approach 6: Pattern Matching with a Trajectory Index

let SymTripsIndex = SymTrips createtrie[ML];

# 185.7 seconds

query SymTrips indexmatches[ML, SymTripsIndex, ’* (_ "Bundesallee") *’] count;

# 1.1 seconds

query SymTrips indexmatches[ML, SymTripsIndex,

’* (_ "Bundesallee") * (_ "Pariser Platz") *’] count;

# 1.1 seconds

query SymTrips indexmatches[ML, SymTripsIndex,

’* (_ "Bundesallee") * (_ "Pariser Platz") * (_ "Unter den Linden") *’] count;

# 1.1 seconds
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