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Abstract 
 

The study aims to find out the chronological appearance of the ossification centers 

of appendicular skeleton of newborn toy-breed dogs during the first month of life 

and to correlate the data obtained with morphometric measures of the skeleton by 

radiological and anatomical approach. Data obtained were implemented with bone 

mineral density (BMD) analysis of the long bones and histological and 

histochemical analysis of limbs bone sections, to evaluate and quantify the trends 

of the ossification process and the architectural changes of ossification centers. 

The study was carried out in 37 newborn toy-breed dogs <28 days old, 

spontaneously died for unrelated reasons with this study, divided into 4 groups on 

the basis of age (first week, second week, third week and fourth week). The 

forelimbs and the hind limbs have been evaluated by radiological and histological 

analysis. Long bones, cranial and body measurements, both radiological and 

anatomical, were taken and the BMD of radius and ulna and of os femoris was 

calculated. The results have been correlated through statistical analysis and 

compared with standard charts proposed by Literature in order to assess significant 

differences with medium and large breed dogs. 

The appearance of most of the ossification centers reflects the timing of ossification 

of medium and large breed dogs, however the behavior of some ossification centers 

changes and therefore might be considered typical of toy-dog breeds. Femoral 

length could be taken into consideration as a parameter to assess the developmental 

rate and the age of toy-breed dogs during the growing period, particularly in the 

first 4 weeks of age. Increasing BMD is highly correlated with increasing long bones 

length and seems to confirm the space-time relationship between BMD in canine 

newborn skeleton and in long bones growth. 

The radiological, histological and bone mineral density analysis and the correlations 

between long-bones length, skull diameters, age and body mass, might be currently 

appropriate to determine the skeletal age in newborn toy-dog breeds. 
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Introduction 
 
 

Growth and weight gain within normal ranges is considered as part of the 

assessment of the overall health of young children and mammals. These processes 

are usually associated to dramatic changes in the bones and obviously of the whole 

skeletal conformation. 

Bones in mammals develop via two distinct processes. Intramembranous bone 

formation produces many of the craniofacial bones directly from mesenchymal 

condensations (Percival and Richtsmeier, 2013). Conversely, endochondral 

ossification represents the principal process responsible for forming the most of 

the mammalian skeleton and generates bone via a cartilage intermediate (Mackie et 

al., 2011).  

Endochondral bone growth progresses from proliferation, maturation and 

hypertrophy of chondrocytes, organized in ossification centers, to mineralization of 

cartilaginous matrix to form an osseous tissue. In long bones, endochondral bone 

growth and bone elongation are associated with calcium accretion mostly in the 

areas involved in architectural changes during the morphogenesis (Panattoni et al., 

1999; Wongdee et al., 2012).  

Estimation of age-at-death in skeletal remains has a long tradition in forensic 

science, because human skeleton undergoes sequential chronological changes. In 

human being there are numerous marker which can provide archaeologist and 

anthropologist with an estimate age of the deceased. The areas of skeletal remains 

that are commonly studied are cranial suture closure, dentition, epiphyseal closure, 

by means of radiographical analysis and bone microstructure.  Recently, there has 

been increasing request for age estimation of living people undergoing criminal 

proceedings and in unaccompanied minor, when chronological age is not clear. 

Criteria that can be applied to investigate skeletons of children and adolescents are 

teeth mineralization status, length of longitudinal bones measurement and 

developmental status of the epiphysis (Cunha et al., 2009; Schmeling et al., 2007).  
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In living people, determination of the skeletal age of the left hand, through 

radiographic exam, plays a central role until final completion of maturation 

processes, at the age of approximately 18 years, even if age estimation is more 

relevant to first stages of life than in older children/adolescents because error range 

is lower in younger subjects (Cunha et al., 2009). 

In this process, assessment of hand radiographs relies primarily on the stage of 

development of the epiphyseal ossification nuclei, the increase in size of the 

individual bones and of the hand skeleton as a whole, on changes in the shape of 

the various skeletal elements and on ossification of the epiphyseal plates (Schmidt 

et al., 2013b).  

To date, dentition is the most widespread method for age estimation in growing 

dogs, even if literature, throughout the past years, has provided radiographic 

evaluation of the appearance and fusion of ossification centers in limbs bones, 

mainly concerning medium and large breed dogs (German Shepherd Dog (Charjan 

et al., 2002; Elmaz et al., 2008; Gustaffson et al., 1975; Hare, 1961), Greyhound 

(Gustaffson et al., 1975; Riser, 1975; Smith, 1960a, 1964; Smith, 1960b), Beagle 

(Chapman, 1965; Hare, 1961; Mahler and Havet, 1999; Yonamine et al., 1980)). 

Comparison with these studies is not simple due to not homogeneous data 

regarding especially the differences between large breed dogs and small breed toy 

dogs, considering that larger breeds have a longer growth period than smaller 

breeds (Hawthorne et al., 2004). 

Recently, variation in the ossification processes of some long bones has been 

carried out in order to investigate abnormal skeletal development contributing to 

the development of skeletal pathologies (Breit et al., 2004; Mahler and Havet, 1999; 

Todhunter et al., 1997).   

Skeleton of growing dogs has been also investigated with morphometric, 

radiographic photo-densitometric and bone mineral density studies (Delaquerriere-

Richardson et al., 1982; Helmsmuller et al., 2013). 

Morphometric analysis is usually employed during gestational age in order to 

establish the date of birth through ultrasound (Beccaglia et al., 2008b; Beccaglia and 
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Luvoni, 2012; Luvoni and Beccaglia, 2006), while some studies have been 

performed in order to establish breed standard by the measurements of the cranial 

diameters in German Shepherd Dog and in Cavalier King Charles Spaniel (Driver 

et al., 2010; Onar, 1999; Onar and Gunes, 2003; Schmidt et al., 2011),  and to assess 

canine hip joint and stifle in large and giant breed dogs (Doskarova et al., 2010; 

Meomartino et al., 2002; Mostafa et al., 2009; Osmond et al., 2006). 

Finally, single-photon absorptiometry and dual-energy X-ray absorptiometry 

(DEXA) have been employed to quantify long bone-healing in Boxer dogs (Zotti 

et al., 2004) and other breed dogs (Markel et al., 1990; Muir et al., 1995) and to 

determine the bone mineral density variations in different breeds (Markel et al., 

1994), but not to correlate densitometric data with skeletal development and 

biological age. More recently, DEXA has been employed to study vertebral mineral 

density in German Shepherd dog to evaluate the resistance of the canine spine to 

traumatic lesions (Zotti et al., 2011). 

 

Aim of the study 
 

The dog is one of the most common companion animal: its growing processes and 

skeletal development are of major interest for breeders, owners and vets.  Literature 

presents many papers regarding dog skeletal development in physiologic and 

pathologic conditions, but there are no sistematic papers regarding ossification 

centers appearance, allometry and bone mineral density in toy breed dogs. 

  

Several papers have been published for the estimation of the age of growing dogs 

by evaluation of ossification centers, however data are not homogeneous and it is 

difficult to compare them. Most of these studies are focalized on medium and large 

breed dogs, moreover they evaluate subjects of different age and, finally, they 

analyze appearance and fusion of the centers with variable timing. Conversely, there 
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are very few indications concerning morphometry changes of the skeleton and of 

bone mineral density in growing dogs. 

 

Aim of the study was to evaluate the chronological appearance of the ossification 

centers in the limbs of newborn toy-dog breeds during the first month of life and 

to correlate the data obtained with morphometric measures of the skeleton by a 

radiological and anatomical approach. Data obtained were implemented with bone 

mineral density analysis of the long bones and histological and histochemical 

analysis of limbs bone sections, to evaluate and quantify the trends of the 

ossification process and the architectural changes of ossification centers. 

 

The choice to analyze the first month of life is related to the nature of the subjects 

analysed. Unlike previous studies in fact, which have been carried out on live 

animals or culled as part of the experimental design, for this study only animals died 

for reasons not related to the study were considered.  

 

State of the Art 
 
Endochondral ossification 

 

Limb skeletal elements arise from the process of endochondral ossification, where 

cartilage serves as the initial anlage element and is later replaced by bone. This 

process is crucial in determining shape and size of definitive bones in vertebrates 

(Shimizu et al., 2007). Mouse genetic studies have provided several important 

insights about molecules regulating chondrocyte formation, chondrocyte 

maturation, and osteoblast differentiation, which are all key processes of 

endochondral bone development. These include the roles of the secreted proteins 

IHH, PTHrP, BMPs, WNTs, and FGFs, their receptors, and transcription factors 

such as SOX9, RUNX2, and OSX, in regulating chondrocyte and osteoblast biology 

(Long and Ornitz, 2013). Recent evidences suggest that ossification and rudiment 
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morphogenesis of limb bones, as well as other aspect of normal skeletogenesis, such 

tissue patterning during joint formation, require appropriate mechanical stimulation 

generated by embryonic movement (Nowlan et al., 2010), but very little is known 

about how the mechanical signals are integrated with classic biochemical signaling 

(Rolfe et al., 2013).  

The cartilage model of a prospective bone develops as embryonic mesenchymal 

cells, which condense and differentiate into chondrocytes, and the chondrocytes 

secrete the various components of cartilage extracellular matrix (ECM). At the early 

stages of limb development the buds exhibit a paddle shape and consist of 

undifferentiated mesenchymal cells derived from the lateral plate and somatic 

mesoderm, covered by ectoderm (Shum et al., 2003). 

The cartilage model expands through chondrocyte proliferation. Ossification of the 

cartilage model is preceded by hypertrophy of the chondrocytes in the prospective 

mid-shaft of the bone and by deposition of a periosteal bone collar by recently 

differentiated osteoblasts surrounding the mid-shaft. Blood vessels, osteoclasts 

(cartilage- and bone-resorbing cells), as well as bone marrow and osteoblast 

precursors then invade the model from the bone collar and proceed to form the 

primary center of ossification. The primary center expands towards the ends of the 

cartilage model, as the osteoclasts remove cartilage ECM and osteoblasts deposit 

bone on cartilage remnants. Generally, a secondary ossification center subsequently 

forms at each end of the cartilage model, leaving a cartilaginous growth plate 

between the primary and secondary ossification centers, as well as the prospective 

permanent articular cartilages at each end of the bone. The growth plate is 

responsible for longitudinal growth of bones.  

Skeletal maturity occurs when the expanding primary center of ossification meets 

the secondary center of ossification, thus obliterating the growth plate.  

Endochondral ossification starts during fetal life, and continues until the end of 

growth in early adulthood.  Secondary ossification centers develop generally after 

birth. In dog some bones of the limbs develop entirely from one center of 

ossification. Other develop from two or more ossification centers, their appearance 
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and fusion occur in different time (Evans and Miller, 2013). 

 

Ossification centers  

(Hare, 1959b, 1960b, d, 1961; Ticer, 1984) 

There are many papers reporting the ossification centers appearance and fusion in 

different breeds. On textbooks, the most reported data derive from Ticer (Ticer, 

1984) (Tables 1 and 2).  

 

Cingulum membri thoracici 
 

Clavicula  

Clavicula originates in the tendinous intersection of the brachiocephalicus muscle 

on day 28 of gestation and increases in size by the addition of bone formed in 

secondary cartilage. It continues to grow in size after birth as a thin plaque rather 

than as a hooklike nodule of earlier stages.  

 

Scapula 

Scapula develops from 2 principal ossification centers: one for the body (corpus 

scapulae) and one for the tuber scapulae, including coracoid process and tuberculum 

supraglenoidale (supraglenoid tuberosity). The first one derived from three 

ossification perichondral centers that, histologically, were identified at 35 days of 

gestation as a triangular area on the cranial margin of the fossa supraspinata, a short 

bar at the midpoint of the spina scapulae, and a plaque in the central area of the fossa 

infraspinata. They appear by day 40 and form a continuous perichondral collar 

around the scapula, although there is a distinct triangular region on the cranial edge 

of the fossa supraspinata that persists until birth. 

Radiologically, at birth, the first ossification center is present and well developed, 

the second one develops later (Evans and Miller, 2013). 
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 Appearance Fusion 

SCAPULA   

Body Birth 

16-28 Supraglenoid tuberosity (tuberculum supraglenoidale) 49 

Coracoid process(processus coracoideus)  

HUMERUS   

Diaphysis Birth  

Proximal epiphysis 7-14 40-52 

Humeral condyles   to body at 24-32 

Medial condyle 
14-21 

to lateral condyle at 24 

Lateral condyle  

Medial epicondyle (Epicondylus medialis) 42-56 to condyles at 24 

RADIUS   

Diaphysis Birth  

Proximal epiphysis 21- 35 24-40 

Distal epiphysis  14-28 32-48 

ULNA   

Diaphysis Birth  

Proximal epiphysis   

Olecranon 56 24-40 

Distal epiphysis  56 32-48 

CARPUS   

Ulnar carpal bone (os carpi ulnare)  28  

Radial (os carpi radiale) 21-28  

Central (os carpi centrale) 28-35  

Intermediate 21-28  

Intermedioradial carpal bone (os carpi intermedioradiale)   

Accessory carpal bone (os carpi accessorium)   

Body 14  

Epiphysis 49 16 

First carpal bone (os carpale I) 21  

Second carpal bone (os carpale II)  28  

Third carpal bone (os carpale III) 28  

Fourth carpal bone (os carpale IV) 21  

Sesamoid bone 28  

METACARPUS   

Diaphysis birth  

Distal epiphysis (2-5)* 28 24 

Proximal epiphysis (1)* 35 24 

PHALANGES   

First phalanx (Phalanx proximalis)   

Body (1-5)* birth  

Distal epiphysis (2-5)* 28 24 

Distal epiphysis (1)* 42 24 

Second phalanx (Phalanx media)   

Body(2-5)* birth  
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Proximal  epiphysis (2-5)* 35 24 

Second phalanx absent or fused with first in first digit   

Third phalanx (Phalanx distalis)   

Body birth  

Volar sesamoids 60  

Dorsal sesamoids 120  

Table 1 - Appearance (days) and fusion (weeks) of ossification centers of the forelimb in immature dog 
(Ticer "Radiographic technique in veterinary practice") 
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 Appearance Fusion 

HIP BONE (Os coxae)   

Pubis (Os pubis) birth 16-24 

Ilium (Ilium) birth 16-24 

Ischium (Os ischii) birth 16-24 

Acetabular bone (Os acetabulum) 49 20 

Iliac crest (Crista iliaca) 120 1-2 years 

Tuber ischii (Tuber ischiadicum) 90 32-40 

Ischial arch (Arcus ischiadicus) 180 52 

Caudal symphysis pubis 210 5 years 

Symphysis pubis  5 years 

FEMUR (Os femoris)   

Diaphysis  birth  

Proximal epiphysis (head) 14 28-44 

Trochanter major 56 24-40 

Trochanter minor 56 32-52 

Distal epiphysis  to body 32-44 

Femoral trochlea (Trochlea ossis femoris) 14 condyles to trochlea 12 

Medial condyle (Condylus medialis) 21  

Lateral condyle (Condylus lateralis) 21  

PATELLA 56  

TIBIA (Tibia)   

Diaphysis  birth  

Condyles  to body 24-52 

Medial condyle (Condylus medialis) 21  

Lateral condyle (Condylus lateralis) 21  

Tibial tuberosity (Tuberositas tibiae) 56 to condyles 24-48 

 
 

to body 24-52 

Distal epiphysis 21 32-44 

Medial malleolus (Malleolus medialis) 90 20 

FIBULA   

Diaphysis  birth  

Proximal epiphysis 56 32-52 

Distal epiphysis 14-49 28-44 

TARSAL BONES (ossa tarsi)   

Talus  birth-7  

Calcaneus  birth-7  

Tuber calcis 43 12024 

Central tarsal bone (Os tarsi centrale) 21  

First tarsal bone (Os tarsale I) 28  

Second tarsal bone (Os tarsale II) 28  

Third tarsal bone (Os tarsale III) 21  

Fourth tarsal bone (Os tarsale IV) 14  

METATARSUS   
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Metatarsus and pelvic limb phalanges are    

approximately the same as metacarpus    

and pectoral limb phalanges   

SESAMOIDS   

Fabellar 90  

Poplitear 90  

Plantar phalangeal 60  

Dorsal phalangeal 150  

Table 2 - Appearance (days) and fusion (weeks) of ossification centers of the hind limb in immature dog  
(Ticer "Radiographic technique in veterinary practice") 

 

 

Skeleton brachii and antebrachii 
 
The humerus, radius and ulna do not form epiphyses prior to birth.  

Ossification of forefoot bones starts from 36 days of gestation, beginning from the 

metacarpals 2, 3, 4, and 5, which have perichondral ossifications at midshaft, the 

next ossifications occurred in the phalanges distales, followed by phalanges proximales 

and finally by phalanges mediae. Digit II and digit III are the first to ossify. Hind foot 

ossification follows the same order with slight variation. Although ossa metacarpalia 

and phalanges are ossified by the end of gestation, none of the ossa carpi ossify prior 

to birth (Evans and Miller, 2013). 

 
Humerus 

Most authors reported that humerus develops from 5 principals ossification centers: 

one for the body, one for the proximal epiphysis (formed by caput humeri (head), 

tuberculum majus (greater tubercle) and tuberculum minus (lesser tubercle)), 2 for the 

condilus humeri (humeral condyle) in the distal epiphysis (one for the capitulum and 

one for trochlea respectively), and finally one for the epycondylus medialis (medial 

epicondyle).  

 
Radius 

All the Authors indicate that radius develops from 3 principal ossification centers, 

one for the corpus radii (body), one for the caput radii (head) in the proximal epiphysis 

and one for the trochlea radii (trochlea) in the distal epiphysis.  
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Ulna  

Ulna develops from 3 principal ossification centers, one for olecranon and the corpus 

ulnae (body), one for the tuber olecrani (olecranon tuberosity) and one for the caput 

ulnae (head of the ulna), in the distal part of the bone. Few Authors described a 

further ossification center for the anconeal process in different breeds and in the 

Beagle Dog (Chapman, 1965; Hare, 1959b). Recently, the presence of this center 

has been investigated in large breed dogs because its presence can be related to 

elbow dysplasia (Breit et al., 2004; Cook and Cook, 2009; Cross and Chambers, 

1997; Frazho et al., 2010; Gasch et al., 2012; Michelsen, 2013), but its presence in 

toy breed dogs has not been definitely demonstrated.   

 
Skeleton manus 
The skeleton manus is composed by ossa carpi, ossa metacarpalia I-V and ossa digitorum 
manus. 
 

Ossa carpi 

The ossa carpi (carpal bones) are arranged in a proximal and a distal row. The bones 

of the proximal row are os carpi intermedioradiale (intermedioradial carpal bone), os 

carpi ulnare (ulnar carpal bone) and os carpi accessorium (accessory carpal bone). The 

bones of the distal row are os carpale I (first carpal bone), os carpale II (second carpal 

bone), os carpale III (third carpal bone) and os carpale IV (fourth carpal bone). 

Hare reported that carpus develops from 10 ossification centers.  There is just one 

center for the ulnar carpal bone, the first carpal bone, the second carpal bone, the 

third carpal bone and the fourth carpal bone.  

The accessory carpal bone is formed by two centers, one for the basal enlarged 

surface (body of the accessory bone) and one for the free end or epiphysis. 

The intermedioradial carpal bone (os carpi intermedioradiale) represents the fusion of 

3 ossification centers: os carpi radiale, os carpi intermedium and os carpi centrale.  
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As showed in table 1-2, the age and, although slightly, the chronological order of 

appearance at which the carpal centers of ossification appears differs between 

breeds. However, it is generally indicated that the center for the body of the 

accessory bone is the first that appears, and successively the centers for the other 

carpal bones appear and finally the epiphysis of the accessory bone that elaborates 

the cap of the enlarged palmar end of the bone. 

 

Ossa metacarpalia and ossa digitorum manus  

Ossa metacarpalia and ossa digitorum manus will be explained at the end of the chapter 

together with ossa metatarsalia and ossa digitorum pedis. 

 

Cingulum membri pelvini 
 

The pelvic girdle is completely cartilaginous until gestational day 40, when a 

perichondral bone collar develops around os ilium. Several days later (day 45) os ischii 

ossifies and appears shortly before or at birth (day 55 to 60). Os pubis appear until 

several weeks after birth (Evans and Miller, 2013). 

 

The cingulum membri pelvini develops from 8 centers of ossification: one for the body 

(corpus ossis ilii) and the wing (ala ossis ilii) of os ilium, one for the body (corpus ossis 

ischii) and the ramus (ramus ossis ischii), of os ischii; one for the body (corpus ossis pubis) 

and the ramus (ramus ossis pubis) of os pubis; one for the acetabular bone (os acetabulum), 

one for the iliac crest (crista iliaca) and one for the ischiatic tuberosity (tuber 

ischiadicum). The ischial arch (arcus ischiadicus) develops from one or more ossification 

centers. Moreover there is a small center for the interischiaticum bone, a small bone, 

wedge shaped, which develops in the angle of divergence between os ischii and the 

caudal end of the pelvic symphysis. 
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Skeleton femoris and cruris  
 

Os femoris, tibia and fibula ossify first perichondrally as ossa metatarsalia and phalanges 

do. A cartilaginous patella is present in the tendon of the musculus quadriceps femoris 

throughout the second half of gestation. Only talus and calcaneus ossify before birth 

in ossa tarsi.  

 

Os femoris 

Os femoris (femur) develops from 5 center of ossification, one for the corpus ossis 

femoris (body), one for the caput ossis femoris (head), one for the trochanter major (greater 

trochanter), one for the trochanter minor (lesser trochanter) in the proximal epiphysis 

and one for the condylus lateralis (lateral condyle) and the condylus medialis (medial 

condyle) in the distal epiphysis. Moreover, few Authors reported even a sixth 

ossification center in the distal epiphysis for the trochlea ossis femoris (femoral 

trochlea)(Ticer, 1984; Zoetis et al., 2003). 

 

Tibia 

Tibia develops from 5 centers of ossification one for the corpus tibiae (body), one for 

the condylus lateralis and medialis (lateral and medial condyles), one for the tuberositas 

tibiae (tibial tuberosity), one for the malleolus medialis (medial malleolus) and one for 

the cochlea tibiae (distal epiphysis).  

 

Fibula 

Fibula develops from 3 centers of ossification: one for the caput fibulae (head of the 

fibula), one for the corpus fibulae (body of the fibula) and one for malleolus lateralis 

(lateral malleolus). 

 

Skeleton pedis 
 

The skeleton pedis is composed by ossa tarsalia, ossa metatarsalia I-V and ossa digitorum 

pedis. 
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Ossa tarsalia  

Calcaneus and talus make up the proximal row of the ossa tarsalia (tarsal bones), while 

the distal row consists of four bones. Three small bones, os tarsale I, II, III (first, 

second and third tarsal bones), separated from the proximal row by the os tarsi 

centrale (central tarsal bone). Finally, os tarsale IV (fourth tarsal bone) completes, 

laterally, the distal row.  

Each bone develops from a single ossification center, except calcaneus, which 

develops from two different centers, one for body and the processus of calcaneus 

and one for the proximal half of the bone (tuber calcanei). The centers for the body 

and the processus of calcaneus and talus appear before birth, the remaining centers 

appear after birth. 

 
 
Ossa metacarpalia and metatarsalia  

Ossa metacarpalia and metatarsalia II to V (metacarpal and metatarsal bones II to V) 

are the best developed. Each of them develops from 2 ossification centers, one for 

the caput (head) and one for the distal epiphysis and the body. The center for the 

body is well developed at birth, while the center for the head appears in different 

time: the center in the 3rd and 4th bones appears first, the center for the 2nd bone 

appears after the first two and the center of the 5th bone develops later.   The centers 

for the head in the metacarpal bones appear slightly later than those in the 

metatarsal bones. 

The metarcarpal bone I develops from 2 ossification centers, but, in this case, one 

is for the diaphysis and the other one is for the proximal epiphysis.  

Metatarsal bone I varies between individual and breeds. Usually it derives from a 

single ossification center, which appears in different time. 
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Phalanges (ossa digitorum manus and pedis) 

The first or proximal phalanx (phalanx proximalis) and the second or middle phalanx 

(phalanx media) develop from 2 centers of ossification, one for the corpus (body) in 

middle position and the caput (head) in the distal position, and one for the basis, in 

proximal position. 

The basis in the forelimb appears before the one in the pelvic limb and the basis in 

the axial digits before those of the abaxial digits. 

The distal phalanx of each digit develops from a single center of ossification, which 

is present at birth. 

 
Ossa sesamoidea 

Each os sesamoideum (sesamoid bone) develops from a single center of ossification, 

both in pectoral and in pelvic limb in different time (table 1-2). The first to appear 

are located on the palmar/plantar surface of each metacarpophalangeal joint or 

metatarsophalangeal joint. 
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Skeletal evaluation and age determination in forensic sciences 
 

In forensic anthropology, age estimation both on the dead and the living needs still 

updating and organization.  Uniforming methods and procedures is basic both for 

the dead and the living, in fact, aging the dead means to create a biological profile 

that can be compared to missing persons, while aging the living, especially children 

and minors, helps in solving judicial or civil problems (Cunha et al., 2009; Schmeling 

et al., 2007).  

Several reviews on aging have been carried out in the past (Cunha et al., 2009; 

Franklin, 2010; Schmeling et al., 2007) and they said that different methods are 

more or less suitable for aging people of different age and for aging cadavers, 

remains and body parts. There are no methods unanimously accepted because most 

methods suffer from sex and ethnic bias and, regarding aging the dead, even from 

the preservation of bodies or remains. Moreover for most of the methods, a 

standard error in age estimation goes from 6 months to 2 years or more and it is 

neither homogeneous because a lower error occurs in younger subjects, while age 

estimation in adults is more difficult because skeletal and dental development have 

already advanced (Cunha et al., 2009).  

For these reasons, before applying a method, it method must be presented to the 

scientific community by publication in peer-reviewed journals and have 

demonstrated accuracy (Cunha et al., 2009; Schmeling et al., 2007). Information 

about the accuracy of age estimation must be clearly available and in aging the living, 

principles of ethical and medico-legal regulations must to be considered (Cunha et 

al., 2009; Schmeling et al., 2007). The study of dental development and the 

measurements of long bones diaphyseal length represent some methods for aging 

dead newborns, infants and children, while the evaluation of the presence of 

ossification nuclei, of the mineralization of cuspid of first permanent molar and of 

the ossification of the femoral distal epiphysis are useful only in aging dead 

newborn. Maturation of hand and wrist, fusion of the sternal end of the clavicle 

and hormonal variations are some of the methods employed to age subadults, while 
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the observation of physiological degeneration of skeletal and dental structures, the 

evaluation of os coxae, ribs and cranial sutures are more suitable for aging adults 

(Boyne et al., 2010; Cunha et al., 2009; Franklin, 2010). The analysis of osteons, the 

carbon-14 analysis, the study of periodontal diseases and DXA bone densitometry 

are only few examples of the methods used for aging cadavers, remains and body 

parts (Castillo and Ruiz Mdel, 2011; Cunha et al., 2009).  

Aging the living starts from a physical examination and a collection of medical 

information through a complete patient history (which in adults can be completed 

by clinical tests). In children and young adults skeletal and dental evaluation are the 

most used methods, while there are only a few methods that can be employed in 

aging adults, like a general evaluation of physical status (with hormonal dosage for 

women) and the amino acid racemization on dentine (Cunha et al., 2009). 

A radiological examination is often used in forensic anthropology in aging both the 

dead and the living (Cunha et al., 2009). The radiologists look for the ossification 

centers, for their appearance and their fusion and compare the findings with an atlas 

(Cunha et al., 2009; Greulich and Idell Pyle, 1975; Schmidt et al., 2013a). 

Unfortunately, often there isn’t a perfect match between biological and 

chronological age because the growth differs in different ethnic groups and in 

different ages, and it could be influenced by nutritional and individual factors 

(Cunha et al., 2009). Therefore, literature often refers to populations who are 

different from those under examination and the individual biological variability 

must be added to these problems. There are no uniformity of procedures and 

methods employed and it would be valued “if minimum image quality requirements 

were to be drawn up for the various radiographic procedures” (Schmeling et al., 

2007).  

Another method used in forensic anthropology in aging both dead and living 

newborns, infants and children is the measurement of diaphyseal length of long 

bones (Cunha et al., 2009; Franklin, 2010). Furthermore, the most common 

methods employed to estimate subadult age-at-death are based both on metrical 
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and morphological analysis of ossification centers, while new approaches tend to 

quantify even size and shape variation of ossification centers (Franklin, 2010). 

Other Authors reported also that Dual-energy X-ray Absorptiometry (DXA) could 

be employed to investigate the appearance of ossification centers on specimens and 

that “it is a more reliable technique for spatial resolution, precision and accuracy” 

(Panattoni et al., 2000; Panattoni et al., 1999). 

 

Skeletal evaluation and age determination in Veterinary Medicine 
 

In Veterinary Medicine, it’s even more difficult because there are more breeds, often 

affected by different growth and skeletal pathologies (Boulay, 1998; Doskarova et 

al., 2010; Fries and Remedios, 1995; Fujiki et al., 2007; Gasch et al., 2012; Smolders 

et al., 2013). For these reasons every method employed to estimate the biological 

age of a young dog might consider the breed variability. 

Growth and skeletal development, as in human being, are also influenced by 

nutritional and individual factors (Vanden Berg-Foels et al., 2006) and the rapid 

growth is a further difficulty in Veterinary Medicine because dogs become adults in 

a shorter time.  

There are many papers concerning the appearance of ossification centers in dog but 

often they are not homogeneous for the methods and the breeds employed,  the 

ages and the anatomical compartments investigated, and for the reason of the 

investigation (such as skeletal pathologies or delayed ossification). Moreover, some 

studies have been carried out only to compare maturation processes of ossification 

centers in different species and not only in dog (Fukuda and Matsuoka, 1980; 

Kilborn et al., 2002; Zoetis et al., 2003).  

The first paper dealing with the study of mammalian ossification centers through 

dissection and maceration goes back to the 1884 (Lesbre, 1897; Retterer, 1884), 

while the first radiologic papers go back to the 1948 (Seoudi, 1948). Most of the 

papers have been published in the 60’s (Bressou et al., 1957; Chapman, 1965; Hare, 

1959a, b, 1960a, c, d, 1961; Pomriaskinsky- Kobozieff and Kobozieff, 1954; Smith, 
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1960a,b; Sumner-Smith, 1966), while in 1978 Schebitz (Schebitz and Wilkens, 1978) 

showed one of the most complete table dating appearance and fusion of ossification 

centers of forelimb and hind limb in German Shepherd Dog.  However neither the 

breeds or the number of dogs enrolled or the interval of examinations were 

reported, these papers are still cited and used to establish the age of growing dogs 

because from the 70’s Authors focused their attention only on ossification centers 

of the long limb bones and on the pelvis and they correlate the ossification process 

to the development of growing pathologies (Breit et al., 2004; Frazho et al., 2010; 

Fukuda and Matsuoka, 1980; Kilborn et al., 2002; Madsen et al., 1991; Mahler and 

Havet, 1999; Riser, 1973, 1975; Todhunter et al., 1997; Vanden Berg-Foels et al., 

2011; Zoetis et al., 2003). More recently, Authors focused their attention even on 

the nutritional factors that can affect skeletal development and growing pathologies 

(Hedhammar et al., 1974a; Hedhammar et al., 1974b; Vanden Berg-Foels et al., 

2006; Wu et al., 1974) 

Finally, results of some of the previous papers have been collected and reported in 

some textbooks (“Veterinary Radiology” (Carlson, 1967), “Textbook of Small 

Animal Orthopaedics” (Newton, 1985), “Textbook of veterinary anatomy” (Dyce 

et al., 2010), “Radiographic Technique in Veterinary practice”(Ticer, 1984), 

“Diagnostic Radiology of the dog and the cat”(Kealy, 1987), “Small Animal 

Radiology and Ultrasound: A Diagnostic Atlas and Text” (Burk and Feeney, 1996), 

“Handbook of small animal radiology and ultrasound Techniques and differential 

diagnoses” (Dennis et al., 2010)), even if number of dogs nor breeds enrolled nor 

the interval of examinations were always reported.  

Another method used to evaluate skeletal development in growing subjects is 

represented by morphometric analysis.  Anatomical morphometry and radiological 

morphometry are different branches of the same discipline and they are used to 

measure different anatomical parts, repeatedly, in order to correlate them between 

different subjects or breeds and with different parameters. 

There are many papers concerning this topic, especially regarding morphometric 

analysis applied to diagnostic imaging, in order to establish the gestational age of 
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the fetus, both in Human and in Veterinary Medicine (Garmel and D'Alton, 1994; 

Kutzler et al., 2003; Lopate, 2008). Recently, MRI has been proposed as a method 

to evaluate the ossification process and to correlate it with the gestational age of the 

fetus and with the development of skeletal pathologies, both in Human and in 

Veterinary Medicine (Connolly et al., 2004; Nemec et al., 2013). In dog, most of the 

morphometric studies have been carried out to measure cranial diameters in order 

to establish breed parameters, both in fetuses and in adult dogs (Evans and Miller, 

2013; Onar, 1999; Onar and Gunes, 2003; Schmidt et al., 2011). Recently, 

radiological morphometry has been employed to evaluate canine hip joint 

(Doskarova et al., 2010; Meomartino et al., 2002) and skeletal characteristics of 

pelvic limbs in dogs with and without cranial cruciate ligament rupture (Mostafa et 

al., 2009; Osmond et al., 2006) or with and without patellar luxation (Mostafa et al., 

2008).   

There are only a few papers regarding morphometry and skeletal development in 

dogs and both studies have been carried out on Beagle dogs (Delaquerriere-

Richardson et al., 1982; Helmsmuller et al., 2013). In the first study they performed 

a correlation between age, body weight, x-ray morphometrical measurements and 

x-ray photodensitometry of the bones of standardized colony-raised male research 

Beagles of 13 and 21 months (Delaquerriere-Richardson et al., 1982); while the 

second study is a quite extended paper regarding the ontogenetic allometry of the 

Beagle. They monitored the ontogenetic development of 6 Beagle between 9 and 

51 weeks of age to investigate their skeletal allometry and compare these results 

with data from others lines, breeds and species (Helmsmuller et al., 2013).  

 

To our knowledge, there are no papers regarding the employment of Dual-energy 

X-ray Absorptiometry (DXA) to investigate the appearance of ossification centers 

in Veterinary Medicine, but single-photon absorptiometry and dual-energy X-ray 

absorptiometry (DEXA) have been employed to quantify long bone-healing 

(Markel et al., 1990; Muir et al., 1995; Zotti et al., 2004), to determine bone mineral 

density variations in different breeds (Markel et al., 1994), to evaluate the 
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relationship between the “moment of resistance” of the canine spine (Zotti et al., 

2011) and to investigate other pathological conditions (Burton et al., 2010; 

Emmerson et al., 2000; Isola et al., 2005).   
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Materials and methods 
 

37 newborn toy-dog breeds <28 days old,  (body weight < 7kg (Brianza et al., 2006), 

19 females and 18 males), spontaneously died for unrelated reasons with this study 

were enrolled. They derived from the local veterinary clinics and they were supplied 

with the consent of the owners. They were collected and immediately frozen, and 

later they were subjected to radiographic examination, densitometry and 

histological sampling. Based on the age of the subjects, they were divided into 4 

groups: group 1 (till 7 days of age), group 2 (8 to 14 days of age), group 3 (15 to 21 

days of age) and group 4 (from 22 to 28 days of age). For each cadavers, body 

weight was recorded. 

 

Radiographic analysis 
 

Radiographic studies were performed through two CR systems (Agfa ADC 

COMPACT® e FCR Fuji Capsula X) assembled with a radiological unit (ARCOM 

- Simply) with double focal spot (0,6 and 1,3 mm), 32 kW of nominal anode input 

power and inherent filtration of 0,7 mm Al eq. The focal spot-film distance was 100 

cm and the central ray was perpendicular to the film in all the radiographs. When 

the position of the carcasses was not ideal, a wider acquisition field compared to 

the district investigated was employed. For every dog different radiographic 

projection were performed: latero-lateral (LL) and dorso-ventral (DV) of the head, 

medio-lateral (ML) and cranio-caudal (Cr-Cd) of the forelimb, medio-lateral (ML) 

and caudo-cranial (Cd-Cr) of the hindlimb and latero-lateral (LL) and dorso-ventral 

(DV) of the whole body.  

Latero-lateral views of the head and of the whole body were obtained placing the 

dogs on left lateral recumbency  with the forelimbs and the hind limbs 

superimposed and fixing them at the radiographic cassettes with radiolucent 

adhesive tape. The head were placed in lateral position through radiolucent devices 

and fixed at the radiographic cassettes with radiolucent adhesive tape. Dorso-
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ventral views were performed placing the dogs on ventral recumbency and the flexed 

arms externally in contact with the radiographic cassettes and fixing them with 

radiolucent adhesive tape.  

Medio-lateral views of the forelimb were obtained by placing the dogs on the side 

of the radiographed limb. The contralateral limb was carefully moved caudally, 

superimposed with the body and fixed with radiolucent adhesive tape. Cranio-

caudal views were obtained placing the dogs on ventral recumbency, extending the 

radiographed forelimb cranially and fixing it at the radiographic cassettes with 

radiolucent adhesive tape.  

Medio-lateral views of the hindlimb were obtained by placing the dogs on the side 

of the radiographed limb. The contralateral limb was carefully moved cranially, 

superimposed with the body and fixed with radiolucent adhesive tape. Caudo-

cranial views were performed placing the dogs on ventral recumbency, extending the 

radiographed hindlimb caudally and fixing it at the radiographic cassettes with 

radiolucent adhesive tape.  

 

All images were storage in an Apple data base and post processing evaluation and 

measurement were performed by OsiriXPRO software (Apple ®). 

 

Ossification centers 

The standard for evaluation of an ossification center was the appearance of a 

radiopaque area on radiograph  at the level of the corresponding bone (Hare, 

1959b). 

The centers taken into consideration were the following: 

-forelimb: proximal and distal epiphysis of  humerus, radius and ulna, ossa carpi; 

-hindlimb: os ischii, os ilium and os pubis, proximal and distal epiphysis of os femoris, 

tibia and fibula; patella and ossa tarsi (Authors Committee, 2012). 
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Long bones measurements 

Long bones measurements of humeral, radial and ulnar lengths of the left forelimbs 

and of femoral and tibial lengths of the left hindlimbs were measured on the medio-

lateral projections. At birth it’s difficult to measure the lengths of long bones 

because only the diaphysis are radiopaque, therefore for newborn dogs the long 

bones lengths correspond with the lengths of the diaphysis (Riser, 1973). 

 

Craniometric and body length measurements 

The skull, the cranial and the viscero-cranial lengths, the neurocranium and the 

zygomatic widths were measured on the dorso-ventral projections of the head. The 

skull length (SL) was measured from the external occipital protuberance to the 

anterior end of the interincisive suture. The cranial length (CL) from the junction 

on the median plane of the right and left nasofrontal sutures to the external occipital 

protuberance. The viscero-cranial length (VL) from the junction on the median 

plane of the right and left nasofrontal sutures to the anterior end of the interincisive 

suture. The neurocranium width (NW) from the most lateral point of the brain case 

to the one of the other side. The zygomatic width (ZW) was measured from the 

most lateral point of one zygomatic arch to the most lateral point of the other 

(Onar, 1999; Schmidt et al., 2011). Crown-rump and vertebral column lengths were 

measured on the latero-lateral projections of the whole body (Evans and Miller, 

2013). Crown-rump length (CRL) was measured from the junction on the median 

plane of the right and left nasofrontal sutures to the anum. Vertebral column length 

(VCL) was measured from the first cervical vertebra to the end of the tail (Evans 

and Miller, 2013). 

In order to reduce the inaccuracies, each measurement was taken three times by a 

single operator. 
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Densitometric analysis 
 

Bone mineral density (BMD) was calculated on a minimum of two samples for each 

group without the skeletonization of the limbs: 5 specimens of group 1, 4 specimens 

of group 2, 3 specimens of group 3, 2 specimens of group 4. 

The specimens were scanned by means of a DEXA device (Hologic QDR-1000, 

Hologic, Waltham, MA, USA). Each specimen was scanned standing horizontally, 

with a disto-proximal direction and in a medio-lateral projection. Before scanning 

the unit was always calibrated by means of own calibration phantom (Hologic 

Calibration Phantom, Hologic). The general BMD of radius and ulna and of os femoris 

were calculated.  The BMD results were expressed as grams of bone mineral on the 

scanned site area (g/cm2) (Panattoni et al., 1999; Zotti et al., 2011). Each scan was 

performed by the same operator. 

 

Anatomical and histological analysis 
 

Anatomical and histological analysis were performed on the same animals selected 

for densitometric analysis.  

 

Histological analysis  

After skeletonization of the limbs, samples were fixed in buffered 10 % formalin 

(Bio-Optica, Milan, Italy) and further decalcified with 45% formic acid (Sigma 

Chemical Company, St. Louis, USA), for 2-3 days and successively with 15% 0.5 M 

EDTA solution (Sigma Chemical Company, St. Louis, USA) (pH 8.0) for 7 days as 

indicated by Ozaki et al with a slight modification (Ozaki et al., 2010). Subsequently, 

they were dehydrated in graded alcohol and xylene series and embedded in paraffin. 

Serial sections (4μm) were mounted on the glass slides previously treated with 

Vectabond (Vector Laboratories, Burlingame, CA, USA) to enhance the adherence 

of tissue. Sections were stained with ematoxilin-eosin and   Thichrome Staining 

(Masson- Bio-Optica.). 
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Proximal and distal epiphysis of humerus, proximal and distal epiphysis of radius and 

ulna and ossa carpi, proximal and distal epiphysis of os femoris, proximal and distal 

epiphysis of tibia and ossa tarsi were examined. 

 

Long bones measurements  

Humeral, radial, femoral and tibial lengths were measured using a caliber before the 

skeletonization of the limbs. Measures were acquired on the lateral sides of each 

left limbs. The humeral length was measured from the most distal point of the 

trochlea to the most proximal point of the caput humeri, the radial length was measured 

between the most proximal and distal points of the bone, the femoral length was 

measured between the most proximal and distal points of the bone and the tibial 

length was measured between the most proximal and distal points of the bone 

(Alpak et al., 2004). 

 

Craniometric and body length measurements 

Skull length, neurocranium width, (Alpak et al., 2004) crown-rump and vertebral 

column lengths (Evans and Miller, 2013) were measured using a caliber and/or a 

ruler without skeletonization of the cadavers. 

In order to reduce the inaccuracies, each measurement was taken three times by a 

single operator 

 

Statistical analysis 

 
Statistical analyses were performed with the IBM SPSS Statistics 21.0 (IBM SPSS 

Inc., Armonk, USA). 

 

Before any statistical test, data distribution was verified by the mean of Shapiro-

Wilk test. Radiographic and anatomical measurements were compared with 

Friedman’s test to investigate the repeatability of their mean values. 
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Pearson’s correlation coefficient was employed to correlate the radiographic 

measures with body mass and days of age and to correlate the anatomical measures 

with body mass and days of age. 

A non parametric Sperman bivariate correlation was employed to perform the 

correlation between radiographic and anatomical measures for each measurement.  

Sperman bivariate correlation was employed to match the different bone mineral 

densities calculated respectively in the forelimb and in the hindlimb with the radial 

and ulnar lengths, and with the femoral length. 

U-Mann-Whitney test was employed to match the appearance on the radiographs 

of caput humeri with humeral length, the appearance on the radiographs of os pubis 

with femoral length and the appearance on the radiographs of calcaneus and talus 

with femoral and tibial lengths. ANOVA test was employed to match the 

appearance of corpus ossis accessorii with radial and ulnar lengths, the appearance of 

caput ossis femoris with femoral length and to match the appearance of os tarsale IV 

with the tibial length. 
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Results 
 

The sample size was composed of 37 new-born toy-dog breeds <28 days old, (body 

mass < 7kg (Brianza et al., 2006), 19 females and 18 males). The breeds resulted 

Chihuahua, Maltese, Toy Poodle, Shi-Tzu (4 dogs), Miniature Pinscher (2 dogs) and 

Jack Russel Terrier (3 dogs) and the most representative breeds resulted Chihuahua 

(13 dogs), Maltese (8 dogs) and Toy Poodle (7 dogs) (table 3). 

Group 1 (till 7 days of age) was composed of 25 subjects, group 2 (8 to 14 days of 

age) was composed of 7 subjects, group 3 (15 to 21 days of age) was composed of 

3 subjects and group 4 (from 22 to 28 days of age) was composed of 2 subjects 

(table 3).  

The mean body mass was 118,78 g in group 1, 114,71 g in group 2, 161,66 g in 

group 3, 265 g in group 4. 
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Number Group Age (days) Sex Weight (g) Breed 

1 1 1 M 185 Chihuahua 

2 1 1 M 97 Chihuahua 

3 1 1 F 100 Maltese 

4 1 1 M 121 Chihuahua 

5 1 1 M 60 Chihuahua 

6 1 1 F 100 Maltese 

7 1 1 F 80 Miniature Pinscher 

8 1 1 F 130 Chihuahua 

9 1 1 M 160 Chihuahua 

10 1 1 F 250 Jack Russel Terrier 

11 1 1 F 162 Chihuahua 

12 1 1 M 71 Chihuahua 

13 1 1 M 152 Jack Russel Terrier 

14 1 1 F 81,6 Jack Russel Terrier 

15 1 2 M 100 Toy Poodle 

16 1 2 M 96 Toy Poodle 

17 1 3 M 95 Chihuahua 

18 1 3 F 90 Toy Poodle 

19 1 3 F 90 Toy Poodle 

20 1 5 F 165 Toy Poodle 

21 1 5 F 83 Maltese 

22 1 5 M 95 Shi-Tzu 

23 1 5 M 131 Shi-Tzu 

24 1 7 F 125 Chihuahua 

25 1 7 M 150 Shi-Tzu 

26 2 8 F 61 Toy Poodle 

27 2 8 M 71 Toy Poodle 

28 2 10 F 60 Miniature Pinscher 

29 2 10 F 255 Maltese 

30 2 10 F 111 Maltese 

31 2 12 F 130 Maltese 

32 2 13 F 115 Chihuahua 

33 3 15 M 165 Maltese 

34 3 15 M 135 Maltese 

35 3 21 F 185 Shi-tzu 

36 4 25 M 250 Chihuahua 

37 4 28 M 280 Chihuahua 

Table 3 - Sample size, group, age, sex, body mass, breed 
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Radiographic analysis 
 

Evaluation of ossification centers  

All the diaphysis of the limbs were present in all the subjects of the four groups 

(37/37) (fig. 1-2) and no differences between right and left limbs were recorded. 

 

                  

Figure 1 - Medio-lateral projection of the                     Figure 2 - Medio-lateral projection of the  
right forelimb of a 21-days-old Shi-Tzu.                       right hind limb of a 21-days-old Shi-Tzu.  

 
All the diaphysis are evident, in the forelimb clavicula and ossification centers of caput humeri are evident, 

while in the hind limb os pubis, calcaneus and talus are evident. 

 

Humeral proximal epiphysis appeared in 0/25 subjects of group 1, in 3/7 subjects 

of group 2, in 3/3 subjects of group 3, in 2/2 subjects of group 4; trochlea humeri 

appeared in 0/25 subjects of group 1, in 1/7 subjects of group 2, in 1/3 subjects of 

group 3, in 2/2 subjects of group 4 (fig. 3); capitulum humeri  appeared in 0/25 

subjects of group 1, in 1/7 subjects of group 2, in   1/3 subjects of group 3, in 0/2 

subjects of group 4 and epicondylus medialis appeared in 0/25 subjects of group 1, in 

1/7 subjects of group 2, in   0/7 subjects of group 3, in 0/2 subjects of group 4.  



36 
 

 

Figure 3 - Medio-lateral projection of right humerus of a 28-days-old Chihuahua. 
The ossification centers of caput humeri, trochlea humeri and caput radii are evident. 

 

Caput radii appeared in 0/25 subjects of group 1, in 0/7 subjects of group 2, in   0/3 

subjects of group 3, in ½ subjects of group 4 (fig. 3) and trochlea radii appeared in 

0/25 subjects of group 1, in 0/7 subjects of group 2, in 0/3 subjects of group 3, in 

2/2 subjects of group 4.  

Tuber olecrani and caput ulnae did not appear in any subjects analyzed.  

Os carpi radiale appeared in 0/25 subjects of group 1, in 0/7 subjects of group 2, in 

0/3 subjects of group 3, in ½ subjects of group 4; os carpi intermedium appeared in 

0/25 subjects of group 1, in 0/7 subjects of group 2, in 0/3 subjects of group 3, in 

2/2 subjects of group 4; os carpi centrale appeared in 0/25 subjects of group 1, in 0/7 

subjects of group 2, in 0/3 subjects of group 3, in 0/2 subjects of group 4; os carpi 

ulnare appeared in 0/25 subjects of group 1, in 0/7 subjects of group 2, in 0/3 

subjects of group 3, in 2/2 subjects of group 4. Os carpi accessorium appeared in 0/25 

subjects of group 1, in 2/7subjects of group 2, in    1/3 subjects of group 3, in 2/2 

subjects of group 4 and ossa carpi I, II, III, IV  appeared in 0/25 subjects of group 

1, in 1/7 subjects of group 2, in 0/3 subjects of group 3, in ½ subjects of group 4 

(fig. 4) (table 4).  
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Figure 4 – Cranio-caudal projection of right carpus of a 28-days-old Chihuahua.  
The ossification centers of trochlea radii, os carpi radiale, os carpi intermedium,  

os carpi ulnare, the body of os carpi accessorium, ossa carpi I, II, III, IV are evident. 

 

Os ischii was present in all the subjects of the four groups (37/37). 

Os pubis appeared in 8/25 subjects of group 1, in 5/7 subjects of group 2, in 3/3 

subjects of group 3, in 2/2 subjects of group 4. Its appearance was also suspected 

in 5/25 subjects of group 1.  

Trochanter major, trochanter minor, patella, tuberositas tibiae, malleolus medialis tibiae, caput 

fibulae, malleolus medialis fibulae, ossa tarsi I and II were present in none of the subjects 

of the four groups (0/37). 

Caput ossis femoris appeared in 0/25 subjects of group 1, in 1/7 subject of group 2, 

in 1/3 subjects of group 3, in 2/2 subjects of group 4 (fig. 5); the condylus lateralis 

appeared in 0/25 subjects of group 1, in 1/7 subjects of group 2, in 0/3 subjects of 

group 3, in 1/2 subjects of group 4; the condylus medialis appeared in 0/25 subjects 

of group 1, in 1/7 subjects of group 2, in 0/3 subjects of group 3, in 1/2 subjects 

of group 4. Trochlea femoris appeared in ½ subjects of group 4. 
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Figure 5 - Medio-lateral projection of right os femoris of a 28-days-old Chihuahua. 
The ossification centers of caput ossis femoris, femoral condyles and 

tibial proximal epiphysis are evident. 
 

The tibial proximal epiphysis appeared in 0/25 subjects of group 1, in 1/7 subjects 

of group 2, in 0/3 subjects of group 3, in 2/2 subjects of group 4 (figg. 5-6); cochlea 

tibiae appeared in 0/25 subjects of group 1, in 1/7 subjects of group 2, in 0/3 

subjects of group 3, in 1/2 subjects of group 4. 

Calcaneus appeared in 25/25 subjects of group 1, in 5/7 subjects of group 2, in 3/3 

subjects of group 3, in 2/2 subjects of group 4; talus appeared in 12/25 subjects of 

group 1, in 5/7 subjects of group 2, in 3/3 subjects of group 3, in 2/2 subjects of 

group 4;  os tarsi centrale appeared in 0/25 subjects of group 1, in 0/7 subjects of 

group 2, in 0/3 subjects of group 3, in 2/2 subjects of group  4; os tarsale III appeared 

in 0/25 subjects of group 1, in 0/7 subjects of group 2, in 0/3 subjects of group 3, 

in 1/2 subjects of group 4; os tarsale IV appeared in 0/25 subjects of group 1, in 

1/7 subjects of group 2, in 1/3 subjects of group 3, in 2/2 subjects of group 4 (fig. 

6) (Table 5). 
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Figure 6 – Caudo-cranial projection of left tibia and tarsus of a 28-days-old Chihuahua.  
The ossification centers of femoral condyles, tibial proximal epiphysis,  

cochlea tibiae, calcaneus, talus, os tarsi centrale, ossa tarsalia III and IV are evident. 
 

 

 

U-Mann-Whitney test showed high significance between the appearance on 

radiographs of caput humeri and the humeral length, of os pubis and femoral length, 

of talus and femoral and tibial lengths. It showed no significance between the 

appearance on radiographs of calcaneus and femoral and tibial lengths. ANOVA 

showed high significance between the appearance of corpus ossis accessori and both 

radial and ulnar lengths, of caput ossis femoris with femoral length, and between os 

tarsale IV and tibial length. 

 

 

  



40 
 

OC/Age I group (n25) II group (n7) III group (n3) IV group (n2) 

Diaphysis 100% 100% 100% 100% 

Humeral proximal 
epiphysis 

0% 43% 100% 100% 

Trochlea humeri 0% 14% 33% 100% 

Capitulum humeri 0% 14% 33% 0% 

Epicondylus medialis 
humeri 

0% 14% 0% 0% 

Caput radii 0% 0% 0% 50% 

Trochlea radii 0% 0% 0% 100% 

Tuber olecrani 0% 0% 0% 0% 

Caput ulnae 0% 0% 0% 0% 

Os carpi radiale 0% 0% 0% 50% 

Os carpi intermedium 0% 0% 0% 100% 

Os carpi centrale 0% 0% 0% 0% 

Os carpi ulnare 0% 0% 0% 100% 

Os carpi accessorium 0% 29% 33% 100% 

Os carpale 
I, II, III, IV 

0% 14% 0% 50% 

Table 4 - Presence of forelimb ossification centers 
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OC/Age I group (n25) II group (n7) III group (n3) IV group (n2) 

Os ischia 100% 100% 100% 100% 

Os pubis 32% 71% 100% 100% 

Diaphysis 100% 100% 100% 100% 

Caput ossis femoris  0% 14% 33% 100% 

Trochanter major 
femoris 

0% 0% 0% 0% 

Trochanter minor 
femoris 

0% 0% 0% 0% 

Trochlea 0% 0% 0% 50% 

Condylus medialis 
femoris 

0% 14% 0% 50% 

Condylus lateralis 
femoris 

0% 14% 0% 50% 

Patella 0% 0% 0% 0% 

Tibial proximal 
epiphysis 

0% 14% 0% 100% 

Tuberositas tibiae 0% 0% 0% 0% 

Cochlea tibiae 0% 14% 0% 50% 

Malleolus medialis tibiae 0% 0% 0% 0% 

Calcaneus 100% 71% 100% 100% 

Talus 48% 71% 100% 100% 

Os tarsi centrale 0% 0% 0% 100% 

Os tarsale I  0% 0% 0% 0% 

Os tarsale II 0% 0% 0% 0% 

Os tarsale III 0% 0% 0% 50% 

Os tarsale IV 0% 14% 33% 100% 

Table 5 - Presence of hind limb ossification centers 

 

Craniometric and body length measurements 

 

Tables 6-7 show the average values of all the long bones, craniometric and body 
length measurements on radiographs. 
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Number Group SL  (mm) NW  (mm) CRL (mm) VCL (mm) ZW (mm) CL (mm) 

1 1 38,33 25,00 158,53 163,39 25,00 29,00 

2 1 36,45 23,85 131,37 129,63 22,68 30,38 

3 1 34,37 21,63 126,54 126,47 22,21 25,38 

4 1 37,78 27,01 135,85 146,29 25,11 30,46 

5 1 35,00 22,00 119,80 126,20 20,67 27,00 

6 1 34,33 22,67 125,75 130,88 22,00 25,67 

7 1 36,46 22,65 117,09 127,76 20,82 26,50 

8 1 39,63 28,67 135,85 146,29 23,77 30,00 

9 1 39,29 26,32 136,58 158,49 26,20 30,59 

10 1 45,00 25,80 158,53 163,39 27,87 30,60 

11 1 38,05 25,15 150,48 158,49 24,50 28,93 

12 1 37,26 22,80 131,62 135,45 20,96 28,70 

13 1 44,40 25,22 148,79 154,16 25,65 32,28 

14 1 38,73 24,22 128,31 126,22 21,87 27,97 

15 1 40,81 24,95 129,62 132,22 24,10 30,24 

16 1 39,37 25,34 124,43 127,67 24,92 29,76 

17 1 33,63 25,47 119,47 123,09 22,23 27,00 

18 1 40,03 24,32 126,09 128,55 19,93 29,20 

19 1 38,08 22,72 117,09 108,55 19,29 28,29 

20 1 42,53 25,23 156,92 155,31 26,40 30,73 

21 1 36,35 25,75 124,45 129,53 21,73 29,74 

22 1 35,90 27,13 145,51 146,41 25,00 30,52 

23 1 36,75 24,64 140,22 150,75 24,09 30,81 

24 1 43,73 23,33 154,93 158,78 28,60 32,93 

25 1 43,61 31,73 157,33 159,58 29,22 33,81 

26 2 41,85 24,17 121,21 130,09 23,53 30,25 

27 2 40,32 23,85 119,38 128,40 23,84 29,86 

28 2 35,50 25,33 108,54 107,02 21,20 27,67 

29 2 51,33 35,23 177,68 189,63 31,67 39,67 

30 2 43,27 27,09 143,61 149,35 25,86 31,34 

31 2 45,53 30,00 132,62 134,61 24,03 32,13 

32 2 40,00 29,23 134,32 138,75 23,50 29,17 

33 3 43,13 31,87 152,43 150,91 27,07 33,07 

34 3 42,50 36,60 139,82 136,69 30,40 36,10 

35 3 44,01 36,35 168,57 180,50 29,80 35,55 

36 4 58,01 40,96 177,66 166,67 29,49 45,97 

37 4 60,08 46,82 195,17 197,43 39,27 48,60 

Table 6 - Average values of radiographic measurements (part 1) 

SK= skull length, NW= neurocranium width, CRL=crown-rump length, VCL=vertebral column length 
ZW= zigomatic width, CL= cranial length 
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Number Group VL (mm) HL  (mm) RL  (mm) UL  (mm) FL  (mm) TL  (mm) 

1 1 9,33 14,67 11,67 14,00 14,67 12,23 

2 1 6,90 15,38 13,05 14,61 15,44 14,10 

3 1 8,52 13,47 10,54 10,62 14,23 11,44 

4 1 7,17 14,51 11,66 13,58 14,56 13,01 

5 1 8,00 14,00 10,88 12,72 13,39 11,86 

6 1 10,00 13,00 10,00 12,00 13,00 11,00 

7 1 7,70 16,52 12,94 14,49 16,51 11,70 

8 1 7,97 16,00 13,33 16,33 17,00 15,33 

9 1 7,81 16,41 13,80 15,83 16,72 14,25 

10 1 14,40 16,67 13,10 14,67 16,30 14,13 

11 1 8,51 16,95 13,75 15,58 16,67 14,57 

12 1 7,24 15,42 12,40 14,30 14,34 13,55 

13 1 11,39 15,90 13,34 15,49 16,53 14,66 

14 1 6,99 11,69 10,82 12,61 9,90 11,87 

15 1 10,55 15,91 12,36 14,26 16,75 13,85 

16 1 9,66 17,05 13,07 14,82 18,18 14,82 

17 1 5,03 13,17 10,53 11,53 13,33 11,17 

18 1 10,48 17,67 13,62 16,26 17,44 15,41 

19 1 9,76 16,53 13,24 15,14 12,75 15,07 

20 1 11,97 19,63 16,50 18,40 19,87 18,67 

21 1 6,90 15,35 12,73 14,59 15,76 14,08 

22 1 7,84 17,06 13,46 15,52 16,79 14,18 

23 1 6,40 16,03 13,02 14,72 16,46 13,99 

24 1 11,07 15,80 12,93 15,27 16,53 14,73 

25 1 7,98 17,65 14,91 17,38 17,85 15,41 

26 2 9,18 17,97 14,19 15,80 17,28 16,21 

27 2 8,99 17,85 13,97 15,94 17,67 15,99 

28 2 7,60 15,93 12,30 14,93 15,20 13,33 

29 2 12,33 19,33 16,00 20,00 20,00 16,67 

30 2 11,04 16,35 13,07 15,46 16,29 14,44 

31 2 8,00 16,63 14,20 16,33 16,80 16,47 

32 2 10,00 14,40 12,20 13,90 14,23 13,37 

33 3 10,17 16,17 13,67 16,23 17,13 15,20 

34 3 7,83 16,53 14,00 16,43 17,97 15,87 

35 3 7,42 19,85 16,58 19,00 18,35 16,69 

36 4 16,82 30,28 25,80 30,48 32,51 29,84 

37 4 6,86 22,60 18,57 22,56 24,64 20,78 

Table 7 - Average values of radiographic measurements (part 2) 

VL= viscero-cranial length, HL= humeral length, RL= radial length, UL= ulnar length,  
FL= femoral length, TL= tibial length 
 

 
 

Friedman’s test showed that the three measurements of each length and width are 

repeatable and the mean values were employed in the subsequent statistical analysis. 
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Pearson’s correlation coefficient2 was employed to correlate the radiographic 

measures between them and with body mass and days of age. The correlations 

resulted mostly highly significant with P<0,01 (table 8). The correlations between 

viscero-cranial length and cranial length, and between viscero-cranial length and 

crown-rump length resulted significant with P<0,05 (table 8). 

The correlations between viscero-cranial length and age, viscero-cranial length and 

neurocranium width, viscero-cranial length and zigomatic width, viscero-cranial 

length and vertebral column lengths were not significant (table 8). 

 

 A W SL NW CRL VCL ZW CL VL HL RL UL FL TL 

A  Pearson’s 
correlation 

1 ,551** ,761** ,765** ,589** ,488** ,695** ,823** ,195 ,702** ,730** ,747** ,699** ,721** 

p  
 

  ,000 ,000 ,000 ,000 ,002 ,000 ,000 ,248 ,000 ,000 ,000 ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

W Pearson’s 
Correlation 

,551** 1 ,783** ,625** ,924** ,901** ,828** ,768** ,447** ,613** ,649** ,669** ,637** ,583** 

p  
 

,000   ,000 ,000 ,000 ,000 ,000 ,000 ,006 ,000 ,000 ,000 ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

SL Pearson’s 
Correlation 

,761** ,783** 1 ,721** ,806** ,723** ,824** ,935** ,527** ,798** ,827** ,856** ,813** ,825** 

p  
 

,000 ,000   ,000 ,000 ,000 ,000 ,000 ,001 ,000 ,000 ,000 ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

NW Pearson’s 
Correlation 

,765** ,625** ,721** 1 ,589** ,468** ,647** ,793** ,179 ,635** ,672** ,703** ,574** ,658** 

p  
 

,000 ,000 ,000   ,000 ,003 ,000 ,000 ,289 ,000 ,000 ,000 ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

CRL Pearson’s 
Correlation 

,589** ,924** ,806** ,589** 1 ,954** ,881** ,821** ,406* ,623** ,667** ,694** ,656** ,609** 

p  
 

,000 ,000 ,000 ,000   ,000 ,000 ,000 ,013 ,000 ,000 ,000 ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

VCL Pearson’s 
Correlation 

,488** ,901** ,723** ,468** ,954** 1 ,859** ,738** ,305 ,530** ,564** ,595** ,574** ,482** 

p  
 

,002 ,000 ,000 ,003 ,000   ,000 ,000 ,066 ,001 ,000 ,000 ,000 ,003 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 
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ZW Pearson’s 
Correlation 

,695** ,828** ,824** ,647** ,881** ,859** 1 ,873** ,241 ,577** ,608** ,639** ,652** ,567** 

p  
 

,000 ,000 ,000 ,000 ,000 ,000   ,000 ,151 ,000 ,000 ,000 ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

CL Pearson’s 
Correlation 

,823** ,768** ,935** ,793** ,821** ,738** ,873** 1 ,333* ,811** ,845** ,878** ,842** ,828** 

p  
 

,000 ,000 ,000 ,000 ,000 ,000 ,000   ,044 ,000 ,000 ,000 ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

Viscero-
cranial 
L. 

Pearson’s 
Correlation 

,195 ,447** ,527** ,179 ,406* ,305 ,241 ,333* 1 ,534** ,510** ,510** ,519** ,545** 

p  
 

,248 ,006 ,001 ,289 ,013 ,066 ,151 ,044   ,001 ,001 ,001 ,001 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

HL Pearson’s 
Correlation 

,702** ,613** ,798** ,635** ,623** ,530** ,577** ,811** ,534** 1 ,982** ,969** ,963** ,959** 

p  
 

,000 ,000 ,000 ,000 ,000 ,001 ,000 ,000 ,001   ,000 ,000 ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

RL Pearson’s 
Correlation 

,730** ,649** ,827** ,672** ,667** ,564** ,608** ,845** ,510** ,982** 1 ,987** ,949** ,977** 

p  
 

,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,001 ,000   ,000 ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

UL Pearson’s 
Correlation 

,747** ,669** ,856** ,703** ,694** ,595** ,639** ,878** ,510** ,969** ,987** 1 ,943** ,967** 

p  
 

,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,001 ,000 ,000   ,000 ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

FL Pearson’s 
Correlation 

,699** ,637** ,813** ,574** ,656** ,574** ,652** ,842** ,519** ,963** ,949** ,943** 1 ,935** 

p  
 

,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,001 ,000 ,000 ,000   ,000 

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

TL Pearson’s 
Correlation 

,721** ,583** ,825** ,658** ,609** ,482** ,567** ,828** ,545** ,959** ,977** ,967** ,935** 1 

p  
 

,000 ,000 ,000 ,000 ,000 ,003 ,000 ,000 ,000 ,000 ,000 ,000 ,000   

N 37 37 37 37 37 37 37 37 37 37 37 37 37 37 

                           Table 8 - Pearson's correlation radiographic measurements - ** P<0,01 * P<0,05 
 

A= age, W= weight, SK= skull length, NW= neurocranium width, CRL=crown-rump length, 
VCL=vertebral column length ZW= zigomatic width, CL= cranial length, VL= viscero-cranial length, 
HL= humeral length, RL= radial length, UL= ulnar length, FL= femoral length, TL= tibial length 
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Densitometric analysis 
  

Table 9 shows the bone mineral densities obtained from each specimen.  

BMD was calculated on a minimum of two samples for each group: 4 specimens of 

group 1, 2 specimens of group 2, 3 specimens of group 3, 2 specimens of group 4 

(Table 9).  

 

The minimum value of BMD of radius and ulna was 0,0549 g/cm2 and the minimum 

value of BMD of os femoris was 0,0626 g/cm2. These values belong to the youngest 

dog of the study, who is a Chihuahua.  

The maximum value of BMD of radius and ulna was 0,2024 g/cm2 and the 

maximum value of BMD of os femoris was 0,2539 g/cm2. These values belong to 

the oldest dog of the study, who is a 28-days-old Chihuahua.  

The mean BMD of radius and ulna was 0,1068 g/cm2 in group 1, it was 0,0923 

g/cm2 in group 2, it was 0,1372 g/cm2 in group 3 and it was 0,1886 g/cm2 in group 

4. 

The mean BMD of os femoris was 0,1604 g/cm2 in group 1, it was 0,1377 g/cm2 in 

group 2, it was 0,1893 g/cm2 in group 3 and it was 0,2280 g/cm2 in group 4. 

 

Number Group 
BMD Radius-Ulna 

(g/cm2) 
BMD Femur 

(g/cm2) 

5 1 0,0549 0,0626 

29 1 0,125 0,1730 

30 1 0,1381 0,1910 

31 1 0,152 0,2150 

34 2 0,0477 0,0704 

35 2 0,1455 0,2049 

39 3 0,131 0,185 

40 3 0,157 0,167 

41 3 0,1237 0,2158 

42 4 0,173 0,2020 

43 4 0,2042 0,2539 

Table 9 - Bone mineral densities of radius and ulna and os femoris 
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Sperman bivariate correlation showed high significance between the general bone 

mineral density of radius and ulna and both radial and ulnar lengths, and between 

the general bone mineral density of os femoris and femoral length. 

 

Anatomical and histological analysis 
 

Anatomical and histological studies were performed on 5 subjects of group 1, 4 

subjects of group 2, 3 subjects of group 3, 2 subjects of group 4, randomly chosen 

between the total of subjects enrolled (tables 10-11). 

 

Evaluation of ossification centers  

 

Histological and histochemical analysis confirmed the presence of the ossification 

centers of the epiphyses of long bones and of the carpal and tarsal bones identified 

by X-rays images. On the basis of the observation made in this study and of the 

results obtained previously by  Rivas and Shapiro in the rabbit (Rivas and Shapiro, 

2002), they were classified as ossification center type 1 (OCT1), type 2 (OCT2) and 

type 3 (OCT3);  2) described the presence of ossification like centers that were not 

identified by radiographic analysis (ossification center type 0 - OCT0) (fig. 7 A, B, 

C, D). 

 

Ossification center type 0 (OCT0) in fact showed hypertrophic lacunae containing 

hypertrophic or flattened or degenerate chondrocytes. ECM surrounding lacunae 

had occasionally a granular aspect (fig. 7A). 
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Figure 7 - Histological sections showing A(OCT1); B  (OCT2); C (0CT2); D(OCT3). HL(Hypertrophic 
Lacunae); * (granular ECM); V (Vessel); CS (Cartilage Septa); BT(Bone Tissue); BMC(Bone Marrow 
Cells). Masson Trichromic Staining. Scale Bar 100 µm . 

 

In OCT1, chondrocytes and lacunae showed the same aspect of OCT0; some 

lacunae appeared empty and confluent and the vessels of the cartilage canals started 

to invade cell lacunae; (fig 7B); in the long bone OCT1 showed a spherical 

organization and the epiphyseal cartilage immediately peripheral to the enlarged 

lacunae organized the growth plate of the secondary ossification center (fig. 8).  

 
Figure 8 - Fig 2. Histological  longitudinal section through the  

trochlea humeri of a 10-days-old Maltese. EE staining. Scale Bar 1000 µm. 

 

In OCT2, most of the lacunae were fused into larger space of irregular size and 
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orientation, delimited by septa of cartilage ECM surrounding them. Vessels invaded 

lacunae. Occasionally it was possible to observe neo-formed bone tissue closed to 

the septa (fig 7C). Long bones OCT2 showed a spherical organization (fig. 9). 

 

Figure 9 - Histological longitudinal section through the  
caput ossis femoris of a 15-days-old Maltese. EE staining. Scale Bar 1000 µm. 

 

OCT3 was characterized by an interweaving of septa covered by neo formed bone 

tissue and cells of ossification front.  Bone marrows cells were localized inside the 

spaces between the septa (Fig 7D). In  caput humeri and  in caput ossis femuris  there 

was also a change in the shape of the center from spherical to hemispherical (fig. 

10). 

 

Figure 10 - Histological longitudinal section through the  
caput ossis femoris of a 28-days-old Chihuahua. EE staining. Scale Bar 1000 µm. 

 

As indicated in tables 10-11, OCT0, OCT1 OCT2 and OCT3 were variously 

distributed within the bones of the four groups observed.  For each bone a single 

ossification center was identified, with the exception of os carpi intermedioradiale 

where, in the same bone, two OCT2 were encased in a unique cartilagineus mold 
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(fig. 11). 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 11 - Histological dorsal sections of the carpus of a 28-days-old Chihuahua performed at 2 different 
planes. 1(Radius); 2(Ulna); 3 (os carpi intermedioradiale); 4 (os carpi ulnare); 5 (os carpi accessorium); 6 (os carpale 
II); 7 (os carpale III); 8 (os carpale IV); 9 (Metacarpus). Masson trichromic staining. Scale Bar 2000 µm.  
In the intermedioradial carpal boned is visible on of the two ossification centers. 

 

 In both the epiphyses of the long bones and in the ossa carpi and tarsi and the 

appearance of OCT0, OCT1 and OCT2 was preceded by various grades of 

hypertrophy of the chondrocytes (fig. 6B). Finally, in absence of ossification centers 

and hypertrophic condrocytes, cartilage models were formed by rounded and 

proliferative chondrocytes (fig. 12A). 

 

Figure 12 - Histological sections showing A: rounded proliferative chondrocytes;  
B: hypertrophic chondrocytes enclosed in enlarged lacunae. EE Staining. Scale Bar 100 µm. 
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Number 2 17 23 24 25 28 29 31 32 33 34 35 36 37 

Group 1 1 1 1 1 2 2 2 2 3 3 3 4 4 

Humeral proximal epiphysis       OCT2 OCT2 OCT2 OCT2 OCT3 OCT2 OCT3 OCT3 

Trochlea humeri       OCT2    OCT0  0CT2 OCT3 

Capitulum humeri       OCT2    OCT0 OCT2   

Epicondylus medialis humeri       OCT2        

Caput radii             OCT2 OCT2 

Trochlea radii       OCT1      OCT2 OCT2 

Tuber olecrani               

Caput ulnae               

Os carpi radiale        OCT0   OCT0  OCT2 OCT2 

Os carpi intermedium        OCT0   OCT0  OCT2 OCT2 

Os carpi centrale               

Os carpi ulnare             OCT1 OCT1 

Os carpi accessorium       OCT1 OCT1   OCT2  OCT3 OCT3 

Os carpale I,II,III,IV           IV  
I: 

OCT1 

III: 
OCT1, 

IV:OCT2 

Table 10 - Histological analysis of the ossification centers of the forelimb 

OCT0 = ossification center type 0, OCT1 = ossification center type 1, OCT2 = ossification center type 

2, OCT3 = ossification center type 3  
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Number 2 17 23 24 25 28 29 31 32 33 34 35 36 37 

Group  1 1 1 1 1 2 2 2 2 3 3 3 4 4 

Caput ossis femoris       OCT2   OCT1 OCT2  OCT3 OCT3 

Trochanter major femoris               

Trochanter minor femoris               

Trochlea ossis femoris             OCT3  

Condylus lateralis femoris              OCT 3 

Condylus medialis 
femoris 

             OCT3 

Tibial proximal epiphysis               

Tuberositas tibiae               

Malleolus mediali tibiae               

Cochlea tibiae      OCT2       OCT2 OCT2 

Calcaneus OCT2 OCT2 OCT2 OCT2 OCT2 OCT3 OCT2 OCT3 OCT3 OCT3 OCT3 OCT3 OCT3 OCT3 

Talus OCT2  OCT2 OCT2 OCT2 OCT3 OCT2 0CT3 OCT3 OCT3 OCT3 OCT3 OCT3 OCT3 

Os tarsi centrale             OCT2 OCT2 

Os tarsale I               

Os tarsale II               

Os tarsale III             OCT1 OCT1 

Os tarsale IV      OCT1       OCT1 OCT1 

Table 11 - Histological analysis of the ossification centers of the hind limb 

OCT0 = ossification center type 0, OCT1 = ossification center type 1, OCT2 = ossification center type 

2, OCT3 = ossification center type 3  

 

Anatomical measurements 

 

Table 12 shows the average values of all skull length, neurocranium width, crown-

rump, vertebral column, humeral, radial, femoral and tibial lengths of the cadavers 

(table 12).  
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Number Group 
SL 

(mm) 
NW 
(mm) 

CRL 
(mm) 

VCL 
(mm) 

HL 
(mm) 

RL 
(mm) 

FL 
(mm) 

TL 
(mm) 

2 1 40,83 23,77 136,10 141,00 25,60 25,60 24,20 24,60 

17 1 36,63 24,37 124,87 127,17 23,67 17,17 19,53 17,80 

23 1 41,57 25,60 147,33 164,67 23,73 20,73 22,13 24,13 

24 1 45,50 26,27 148,33 168,67 22,43 26,33 22,00 24,50 

25 1 45,00 38,87 152,67 159,67 26,40 24,83 25,17 26,60 

28 2 39,20 24,80 110,67 119,10 19,87 20,00 18,37 20,03 

29 2 56,20 36,67 250,00 199,33 30,47 29,23 26,40 32,13 

31 2 42,70 31,23 126,20 125,43 21,73 19,33 22,67 21,33 

32 2 41,63 30,70 120,60 122,27 18,73 16,90 21,73 19,07 

33 3 49,03 31,53 158,33 155,67 26,30 22,73 24,73 27,90 

34 3 48,73 38,57 142,60 147,40 25,03 24,23 24,17 27,60 

35 3 32,00 35,30 180,67 193,00 29,37 27,50 31,67 29,83 

36 4 63,87 40,30 188,67 185,33 36,53 35,47 35,17 36,47 

37 4 61,87 46,83 203,00 210,00 34,83 37,83 31,27 33,50 

Table 12 - Average values of anatomical measurements 

SK= skull length, NW= neurocranium width, CRL=crown-rump length, VCL=vertebral column length, 
HL= humeral length, RL= radial length, FL= femoral length, TL= tibial length 
 

 

Friedman’s test showed that the three measurements of each length and width are 

repeatable and the mean values were employed in the subsequent statistical analysis.  

Pearson’s correlation coefficient2 was employed to correlate the anatomical 

measurements between them and with body mass and days of age. Most of the 

correlations resulted hightly significant with P<0,01 (table 13). The correlations 

between skull length and crown-rump length, skull length and vertebral-column 

length, skull length and femoral length, skull length and age, neurocranium width 

and crown-rump length, vertebral-column length and age, humeral length and age, 

radial length and age resulted significant with P<0,05. The correlations between 

crown-rump length and age were not significant (table 13). Sperman bivariate 

correlation was employed to correlate radiographic measures with the anatomical 

measurements. The correlations resulted almost hightly significant.  
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  W SL NW  CRL  VCL  HL RL  FL TL A 

W  Pearson’s 
Correlation 

1 ,677** ,819** ,909** ,913** ,894** ,839** ,887** ,897** ,751** 

p  
 

  ,008 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,002 

N 14 14 14 14 14 14 14 14 14 14 

SL  Pearson’s 
Correlation 

,677** 1 ,699** ,644* ,578* ,719** ,758** ,586* ,755** ,568* 

p  
 

,008   ,005 ,013 ,030 ,004 ,002 ,028 ,002 ,034 

N 14 14 14 14 14 14 14 14 14 14 

NW  Pearson’s 
Correlation 

,819** ,699** 1 ,646* ,670** ,742** ,735** ,765** ,777** ,799** 

p  
 

,000 ,005   ,013 ,009 ,002 ,003 ,001 ,001 ,001 

N 14 14 14 14 14 14 14 14 14 14 

CRL  Pearson’s 
Correlation 

,909** ,644* ,646* 1 ,904** ,805** ,765** ,702** ,842** ,467 

p  
 

,000 ,013 ,013   ,000 ,001 ,001 ,005 ,000 ,092 

N 14 14 14 14 14 14 14 14 14 14 

VCL  Pearson’s 
Correlation 

,913** ,578* ,670** ,904** 1 ,845** ,866** ,795** ,881** ,566* 

p  
 

,000 ,030 ,009 ,000   ,000 ,000 ,001 ,000 ,035 

N 14 14 14 14 14 14 14 14 14 14 

HL  Pearson’s 
Correlation 

,894** ,719** ,742** ,805** ,845** 1 ,915** ,914** ,931** ,654* 

p  
 

,000 ,004 ,002 ,001 ,000   ,000 ,000 ,000 ,011 

N 14 14 14 14 14 14 14 14 14 14 

RL  Pearson’s 
Correlation 

,839** ,758** ,735** ,765** ,866** ,915** 1 ,859** ,921** ,661* 

p  
 

,000 ,002 ,003 ,001 ,000 ,000   ,000 ,000 ,010 

N 14 14 14 14 14 14 14 14 14 14 

FL  Pearson’s 
Correlation 

,887** ,586* ,765** ,702** ,795** ,914** ,859** 1 ,907** ,772** 

Sig.  
p  
 

,000 ,028 ,001 ,005 ,001 ,000 ,000   ,000 ,001 

N 14 14 14 14 14 14 14 14 14 14 

TL  Pearson’s 
Correlation 

,897** ,755** ,777** ,842** ,881** ,931** ,921** ,907** 1 ,682** 
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p  
 

,000 ,002 ,001 ,000 ,000 ,000 ,000 ,000   ,007 

N 14 14 14 14 14 14 14 14 14 14 

A  Pearson’s 
Correlation 

,751** ,568* ,799** ,467 ,566* ,654* ,661* ,772** ,682** 1 

p  
 

,002 ,034 ,001 ,092 ,035 ,011 ,010 ,001 ,007   

N 14 14 14 14 14 14 14 14 14 14 

Table 13 - Pearson's correlation between anatomical measurements, age and weight - ** P<0,01 * 
P<0,05  
 
A= age, W= weight, SK= skull length, NW= neurocranium width, CRL=crown-rump length, 
VCL=vertebral column length ZW= zigomatic width, CL= cranial length, VL= viscero-cranial 
length, HL= humeral length, RL= radial length, FL= femoral length, TL= tibial length 
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Discussion 
 

Skeleton evaluation to estimate the age of unidentified people, corpses and 

remains has a long tradition in forensic science. Criteria that can be applied to 

investigate skeletons of children and adolescents are tooth mineralization status, 

length of longitudinal bones measurement and developmental status of the 

epiphysis (Cunha et al., 2009; Schmeling et al., 2007). Even if these criteria 

would be predetermined and standardized, the individual variability should be 

considered, especially in pubertal stage, because at all stages of life there are 

people whose body is biologically younger or older than their chronological age 

(Cunha et al., 2009). This aspect, in human being, is an obstacle almost 

impossible to overcome if the age estimation must be carried out for legal 

purposes. In man, skeletal age assessment by means of a radiograph of the left 

hand is a given common currency in legal practice. Radiograph evaluation relies 

on the recognition of primary and secondary ossification centers, degree of 

epiphyseal plates ossification, their degree of development, increase in size and 

change in shape of each bones, with low exposure of the patient to ionizing 

radiation (Schmidt et al., 2013a). Images are subsequently compared with 

radiographs obtained from children with known age. It’s well known and 

accepted that references are not available for all ethnic groups, and estimation 

of the biological age of a man represents an average age of a man in that group 

of age and of that sex without considering the individual variability(Cunha et al., 

2009; Franklin, 2010).  

These issues are even more important in Veterinary Medicine because as in 

other mammals, physical development of the dog, from puppy to adult, is 

associated with deep skeleton modifications, which quickly occur in a shorter 

period of time. Moreover there are up to 400 breed dogs with great 

heteromorphy to each others: body weight can vary 100-fold from 1-kg 

(Chihuahua) to 115-kg (St. Bernard) (Burger, 1994). The time taken for a 
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growing puppy to achieve adult body weight also varies considerably with larger 

breeds having a longer growth period than smaller breeds. Thus although a toy 

or small-breed dog may be considered an adult from 9 months of age, adulthood 

in the largest breeds is not achieved until 15 months of age (Hawthorne et al., 

2004). Puppies are usually sold at the age of 9-11 weeks and for both the breeder 

and the potential owner the prospective physical development may be relevant 

to choose a puppy.  “Even if during postnatal development growing problems 

may occur, it’s important to have reference values for the postnatal growth” 

(Helmsmuller et al., 2013).  

 

Individual and environmental factors could be considered the same for both 

Human and animals, but in Veterinary Medicine nutritional factors can be 

considered another variable, because bitches can be fed differently between 

different breeders, litters are numerous and every puppy is fed in a different way 

compared with the others (Eilts et al., 2005; Vanden Berg-Foels et al., 2006). 

To date, radiographic evaluation of the appearance and fusion of ossification 

centers in limbs bones is the most widespread method for age estimation in 

growing dogs.   If the technical approach is simple, cheap, repeatable, available 

for mass screening and postmortem too, interpretation of data can be hard due to 

the lack of detailed and standardized references. Previous data in fact are often 

not homogeneous for breeds, anatomical compartments and timing of 

investigation. Textbooks of Veterinary Radiology as well as Veterinary Anatomy 

suggest table of the appearance and fusion of ossification centers. Data from 

different Authors (Chapman, 1965; Hare, 1959a, b, 1960a, c, d, 1961; 

Scholotthaurer, 1952; Smith, 1960a; Smith, 1960b) have been reported in the 

textbook “Veterinary Radiology” by Carlson (Carlson, 1967) and in the 

“Textbook of Small Animal Orthopaedics” (Newton, 1985), and German 

Shepherd dog, Bulldog, Collie and Beagle were considered. The same 

bibliographic sources, implemented by the observations of others Authors 
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(Hare, 1960a, c; Pomriaskinsky- Kobozieff and Kobozieff, 1954; Sumner-

Smith, 1966; Ticer, 1984) have been employed by de Lahunta and Habel (De 

Lahunta and Habel, 1986) in “Applied Veterinary Anatomy” and  subsequently 

reported in  the “Textbook of Veterinary Anatomy” (Dyce et al., 2010).  

A complete table dating appearance and fusion of ossification centers of 

forelimb and hind limb in German Shepherd dog has been presented by 

Schebitz (Schebitz and Wilkens, 1978), starting from previous works, however 

neither the number of dogs enrolled nor the interval of examinations were 

indicated.  

Tables on ossification centers have also been published by Ticer, in 

“Radiographic Technique in Veterinary practice” (Ticer, 1984), they have been 

reported by Kealy in “Diagnostic Radiology of the dog and the cat” (Kealy, 

1987) } and by Burk and Feeney in “Small Animal Radiology and Ultrasound: 

A Diagnostic Atlas and Text” in 1996 (Ronald L. Burk, 1996) but, again, number 

of dogs and the breeds examined were not considered.  Ticer’s observations 

(Ticer, 1984), implemented by observations of Sumner-Smith (Sumner-Smith, 

1966), have been recently included by Dennis et al. (Dennis et al., 2010) in 

“Handbook of Small Animal Radiology and Ultrasound Techniques and 

differential diagnoses”. 

From 1973 most of the Authors focused their attention on ossification centers 

of the long limb bones and on the pelvis. Usually data did not improve previous 

knowledge on age determination, but consolidate previous observations. Most 

of them were aimed to assess the timing of ossification of bones and skeletal 

growth with the onset of pathologies, but this topic has not been the subject of 

this study. Therefore they are focused on single breeds and for the most part, 

on dogs of medium and large size (Conzemius et al., 1994; Hedhammar et al., 

1974b; Madsen et al., 1991; Todhunter et al., 1997; Vanden Berg-Foels et al., 

2011; Vanden Berg-Foels et al., 2006). 
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The most investigated breed is the Beagle (Chapman, 1965; Frazho et al., 2010; 

Fukuda and Matsuoka, 1980; Hare, 1961; Helmsmuller et al., 2013; Yonamine 

et al., 1980; Zoetis et al., 2003) probably because he often is employed as 

laboratory animal. German Shepherd dog has been studied too, probably due 

to the high prevalence and spread of this breed in canine population (Bressou 

et al., 1957; Frazho et al., 2010; Hare, 1961; Schebitz and Wilkens, 1978). Some 

studies have been carried out on Greyhound too (Gustaffson et al., 1975; Smith, 

1960a; Smith, 1960b), while some Authors focused their attention on others 

breeds, but often they enrolled only a small number of subjects or they focused 

their attention only on some anatomical compartments or on the onset of 

skeletal pathologies (Breit et al., 2004; Frazho et al., 2010; Mahler and Havet, 

1999a; Todhunter et al., 1997). 

Literature analysis reported above underlines the lack of systematic papers 

concerning the radiographic appearance of ossification centers and their fusion 

in toy-dog breeds. Moreover there are even less papers regarding this topic in 

newborn dogs. Our work described for the first time the appearance of 

ossification centers in toy-dog breeds during the first month of life. 

Radiographic investigation partially confirm what previously described in 

medium and large size dogs, therefore differences observed must be considered 

as peculiar characteristics of toy-dog breeds.   

Before discussing the results of radiographic investigations, it is necessary to 

discuss the technical approach. In this study, two different computed radiology 

(CR) systems are employed with the same x-ray tube. The spatial resolution of 

the radiological system depends first of all on the size of the focal spot, which 

in the system employed is 0.6 mm. This value is the limit beyond which it is 

better not to go in order to avoid a significant decrease in the quality of the 

images. No difference between two different CR systems employed were 

detected, even if radiographs obtained from FCR CapsulaX (FUJI) showed a 
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slightly better contrast resolution, due to a better performance of the Fuji 

hardware and software systems.  

As showed in table 4-5, we observed that all the diaphysis of the bones of the 

limbs were present in all the subjects of the four groups since their birth, as 

previous studies previously reported (Chapman, 1965; Evans and Miller, 2013; 

Hare, 1961; Ticer, 1984; Yonamine et al., 1980).  

Clavicula showed a very heterogeneous behavior, but it’s not possible to make a 

comparison with data previously reported regarding medium and big size dogs 

because other Authors didn’t mentioned it in their radiographic papers 

(Chapman, 1965; Hare, 1959b, 1961; Smith, 1960a; Smith and Allcock, 1960). 

Only Evans and Miller (Evans and Miller, 2013) reported that it ossifies at 28 

days of pregnancy and that it is one of the frist four bones that appears in the 

embryo. 

The body of scapula was present in all the subjects of the groups, while tuberculum 

supraglenoidale wasn’t evident in this study, in agreement with Literature 

(Chapman, 1965; Hare, 1959b, 1961; Yonamine et al., 1980). 

Humeral proximal epiphysis was constant starting from the third week of age, 

while it was evident in the 43% of the subjects of the second group. These data 

are homogeneous with the data reported in most of the previous studies 

(Chapman, 1965; Fukuda and Matsuoka, 1980; Ticer, 1984; Zoetis et al., 2003), 

while Hare reported its appearance between 3 and 7 days of age in German 

Shepherd dogs and Collie (Hare, 1959b, 1961). Furthermore, increasing age 

humeral head becomes more hemispheric, resembling the final shape of the 

bony epiphysis. 

Trochlea humeri showed a less homogeneous appearance; it was not evident in 

group 1, it was not constant in groups 2 and 3, and it was radiographically and 

histologically evident in 100% of the subjects of group 4. Our radiographic data 

agree with some of the previous papers (Chapman, 1965; Yonamine et al., 1980; 

Zoetis et al., 2003) and with what Hare reported in Collie, Bulldog, Beagle dogs 
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and in dogs of not specified breeds (Hare, 1959b, 1961). Conversely, Hare 

reported a later appearance of this ossification center only in the German 

Shepherd Dog (30-46 days of age) (Hare, 1961).  

Appearance of capitulum humeri showed a similar behavior, but it was less 

homogeneous with data of Literature. In fact, it was not evident in group 1, it 

was not constant in groups 2 and 3, and it was not evident in the subjects of 

group 4. Radiographic data are quite heterogeneous but they agree with what 

reported by Hare, who described its appearance in the German Shepherd dog 

between 30 and 46 days of age (Hare, 1961), and Yonamine et al., who reported 

its appearance between 30 and 60 days of age in the Beagle dog (Yonamine et 

al., 1980).  Nevertheless, other Authors reported an earlier appearance of this 

ossification center (14-21 days of age in different breeds (Hare, 1959b); 10-13 

days of age in Collie, 15-17 days of age in Bulldogs, 14-21 days of age in Beagle 

(Hare, 1961); 18 days of age in Beagle dog (Chapman, 1965), 14-21 days of age 

in non specified breed (Ticer, 1984)). 

Epicondylus medialis wasn’t evident in this study, in agreement with Literature. 

Previous papers, in fact, described a tardive appearance of this ossification 

center (Chapman, 1965; Hare, 1959b, 1961). In our study it was evident only in 

subject n. 29 (10 days old Maltese) that showed an early appearance of most of 

the nuclei observed both in the hind limb and forelimb.  

In a German text book of Anatomy (Ellenberger and Hermann, 1943), and in 

the old work of Lesbre et Al. (Lesbre, 1897) both cited by Hare (Hare, 1961) 

however, it has been described an independent ossification center for the greater 

tubercle, even if the same Author was not able to confirm this information.  

Marcellin-Little was the first Author who investigated humeral distal epiphysis 

in Spaniel breed dogs because these breeds showed high incidence of fractures 

of the distal humeral condyles (Marcellin-Little et al., 1994). Authors 

hypothesized that a heritable condition resulting in incomplete ossification of 

the humeral condyles predisposes several Spaniel breeds to fracture (Marcellin-
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Little et al., 1994). Even in recent times, other Authors employed different 

techniques to better evaluate this condition (Carrera et al., 2008; Martin et al., 

2010; Piola et al., 2012). 

Caput radii appeared only in 50% of the subjects of group 4. This behavior is 

less homogeneous compared with Literature: it agrees with some Authors 

(Alvarado Morillo, 2007; Chapman, 1965; Hare, 1959b; Yonamine et al., 1980), 

while Hare reported that it appears between 15 and 30 days of age in German 

Shepherd dog, between 21 and 26 days of age in Collie and between 21 and 28 

days of age in Beagles, Fukuda and Matsuoka reported that it appears at 14 days 

of age (Fukuda and Matsuoka, 1980; Hare, 1961) and Ticer between 21 and 35 

days of age (Ticer, 1984). 

Trochlea radii was not evident radiographically in groups 1, 2, 3 and it was 

constantly evident starting from the fourth week of age. Its appearance agree 

with data reported by Hare in Bulldog and Beagle dogs (Hare, 1961) and in 

different breeds (Hare, 1959b), and by Ticer (Ticer, 1984). Conversely, 

Pomriaskinsky-Kobozieff and Kobozieff described its appearance between 12 

and 15 days of age in different breeds, Hare described its appearance between 

10 and 22 days of age in German Shepherd dog and between 11 and 21 days of 

age in Collie, Fukuda and Matsuoka reported that it appears at 14 days of age in 

Beagle (Fukuda and Matsuoka, 1980; Hare, 1959b, 1961; Pomriaskinsky- 

Kobozieff and Kobozieff, 1954). 

Tuber olecrani and caput ulnae did not appear in any subjects in this study and these 

data agree completely with Literature, in fact papers reported a later appearance 

of this ossification center (Chapman, 1965; Fukuda and Matsuoka, 1980; Hare, 

1959b, 1961; Pomriaskinsky- Kobozieff and Kobozieff, 1954; Yonamine et al., 

1980). We did not observe any ossification centers in the anconeal process. In 

the oldest work it has been considered only by Hare in 1959 and by Chapman 

in 1965. Hare reported its appearance at 60 days of age in dogs from different 

non specified breeds (Hare, 1959b), while Chapman described its appearance at 
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45 days of age in Beagles (Chapman, 1965). In the last years, the presence of 

this center has been broadly investigated in large breeds (German Shepherd dog, 

Greyhound, Doberman Pinscher, Golden Retriever, Labrador Retriever mix 

and Pit Bull dog) in order to study elbow dysplasia (Breit et al., 2004; Cook and 

Cook, 2009; Cross and Chambers, 1997; Frazho et al., 2010; Gasch et al., 2012; 

Michelsen, 2013). Since there is a variability on the modality of appearance of 

this center (Frazho et al., 2010), its absence in small breeds dog should be 

further investigated, considering dogs older than those examined in this study 

In 2/5 German Shepherd dogs observed by Hare, the distal epiphysis were 

formed by 2 ossification centers that fused rapidly to form the principle center. 

A similar behavior was observed for the proximal epiphysis in 1/5 dog of the 

same breed, however it was not specified which of the two principal ossification 

centers was involved. The same Author observed that the timing in ossification 

centers appearing and development was comparable in German Shepherd, 

Collie and Beagle dogs, while in Bulldog breed (just one dog) it developed later 

(Hare, 1961). 

Regarding carpus, it is generally indicated that the center for the body of the 

accessory bone is the first that appears, successively appear the centers for the 

other carpal bones and finally appears the epiphysis of the accessory bone that 

appears from the 6th-7th week of age and elaborates the cap of the enlarged 

palmar end of the bone (Chapman, 1965; Pomriaskinsky- Kobozieff and 

Kobozieff, 1954; Ticer, 1984).  

Os carpi accessorium showed a non homogeneous appearance, in fact it was not 

evident in group 1, it was not constant in groups 2 and 3, but it was evident in 

all the subjects of group 4. These observations are in agreement with Literature 

(Chapman, 1965a, b). Authors reported in fact that the center appears during 

the second and third week of age (Alvarado Morillo, 2007; Chapman, 1965; 

Hare, 1959b, 1961; Pomriaskinsky- Kobozieff and Kobozieff, 1954; Ticer, 
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1984). The epiphysis of the accessory bone wasn’t radiographically evident in 

this study and these data agree with Literature (Chapman, 1965). 

Regarding os carpale intermedioradiale, Evans and Miller reported that it derives 

from three different ossification centers which develops independently and 

fuses before birth (Evans and Miller, 2013). In this study, os carpi radiale and os 

carpi intermedium were evident starting from the fourth week of age, while os carpi 

centrale wasn’t evident. So we can reasonably speculate that os carpi radiale and os 

carpi intermedium start together their ossification process, during the third week 

of age, while os carpi centrale develops later, confirming what previously reported 

in Literature and adding that in toy-dog breeds it develops after the 28th day of 

age. 

Os carpi radiale appeared only in 50% of subjects of group 4. These data agree 

only with some of the papers (Chapman, 1965; Hare, 1959b; Ticer, 1984) and 

with data reported by Hare in German Shepherd Dog and in Collie (Hare, 1961). 

Other papers instead reported an earlier radiographic appearance of os carpi 

radiale (Alvarado Morillo, 2007; Pomriaskinsky- Kobozieff and Kobozieff, 

1954), or a later appearance, like said Hare about Bulldog (38-45 days of age) 

and Beagle dogs (28-42 days of age) (Hare, 1961).  

Os carpi intermedium appeared constantly on radiographs starting from the fourth 

week of age. These data agree with what reported by Hare in 1959 and Ticer 

(Hare, 1959b; Ticer, 1984). Other papers reported an earlier appearance, like 

Hare said about German Shepherd dog (10-15 days of age) (Hare, 1961), or a 

later appearance, like Hare reported in Bulldog (31-38 days of age), Chapman in 

Beagles (30 days of age) and Yonamine et al. in Beagles (60 days of age) 

(Chapman, 1965; Hare, 1961; Yonamine et al., 1980a). 

Os carpi centrale wasn’t evident in this study and these data agree with what 

reported by some Authors, such as Chapman, Yonamine et al., Ticer and Hare 

in Bulldog and Beagle dogs (Chapman, 1965; Hare, 1961; Ticer, 1984; 

Yonamine et al., 1980). Some Authors, contrariwise, reported the appearance of 
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this center since the third week of age, like Hare in German Shepherd Dog and 

Collie and Pomriaskinsky-Kobozieff and Kobozieff in German Shepherd and 

Cocker (Hare, 1959b, 1961; Pomriaskinsky- Kobozieff and Kobozieff, 1954).  

Os carpi ulnare appeared constantly starting from the fourth week of age. These 

data agree with what reported by some Authors and by Hare in 1961 in German 

Shepherd dog and Collie (Chapman, 1965; Hare, 1959b, 1961; Pomriaskinsky- 

Kobozieff and Kobozieff, 1954; Ticer, 1984), while Hare in 1961 reported a 

later appearance in Bulldog (59-68 days of age) and Beagle dog (28-42 days of 

age)(Hare, 1961). Interestingly, we do not observed any features of hypertrophic 

processes of the chondrocytes, even in the oldest subjects.  

Os carpale I, II, III, IV appeared only in one dog of group 2 and in 50% of the 

subjects of group 4. Literature is not homogeneous regarding these centers, but 

most of the Authors reported the appearance of the carpal bones during the 

third and the fourth week of age (Alvarado Morillo, 2007; Chapman, 1965; Hare, 

1959b, 1961; Pomriaskinsky- Kobozieff and Kobozieff, 1954; Ticer, 1984; 

Yonamine et al., 1980). Only Hare described a later appearance of these centers 

in Bulldog (28-31 days of age) and Beagle dog (21-42 days of age)(Hare, 1961).  

Os ischii and os pubis  were present at birth, according to Literature.  If os ischii  

ossification center was present in all the subjects evaluated, os pubis showed a 

less homogeneous appearance; it was not constant in groups 1 and 2, but 

present in all the subjects of groups 3 and 4., and regarding os pubis  these data 

are quite different from the results of the study (Chapman, 1965b; Hare, 1960c, 

1961; Smith, 1964; Ticer, 1984), even if according to other Authors os pubis 

appear until several weeks after birth in Beagle dog (Evans and Miller, 2013). 

Os acetabulum, crista iliaca, tuber ischiadicum, arcus ischiadicus were not evident in this 

study and these data agree with what reported by previous Authors (Ticer, 

1984). 

Caput ossis femoris appeared in one subject in the second and one subject in the 

third group, and it was constant in group 4.  These data don’t agree completely 
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with Literature because according to most of the papers caput ossis femoris appear 

during the first or at least the second week of age (Chapman, 1965; Hare, 1960a, 

1961; Ticer, 1984; Zoetis et al., 2003). Nevertheless, in group 4 the shape of 

caput ossis femoris becomes more hemispheric, resembling the final shape of the 

bony epiphysis. 

Trochanter major and trochanter minor weren’t radiographically evident in this study 

and these data agree with what reported by previous Authors (Bressou et al., 

1957; Hare, 1960a, 1961);(Chapman, 1965; Fukuda and Matsuoka, 1980; Ticer, 

1984; Zoetis et al., 2003). 

Trochlea femoris appeared in in 50% the subjects of group 4. Regarding this 

ossification centers data from Literature are even more fragmentary, in fact only 

Ticer and Zoetis reported its appearance starting from 14 days of age (without 

specifying in which breeds), (Ticer, 1984; Zoetis et al., 2003). Therefore our data 

are quite different from what previously reported.  

Condylus lateralis and condylus medialis appeared in one of the subjects of group 2 

and in 50% the subjects of group 4.  These data are in agreement with timing 

indicated by Zoetis et al. between 14 and 28 days of age (Zoetis et al., 2003),  

but they differ slightly from  Ticer that indicated a more tardive appearance, 

starting from 21 days of age, (Ticer, 1984) . The subject 29, again, showed an 

early appearance of most of the nuclei observed both in the hind limb and 

forelimb.  

Patella, wasn’t evident in this study and these data agree with what reported by 

previous Authors. Timing of appearance of this small bone is rather variable, 

going from 30 days of age in German Shepherd dog (Hare, 1961) to 180 days 

of age in dogs of different breeds (Hare, 1960a). 

The tibial proximal epiphysis appeared on radiographs in one subject of group 

2 and in all the subjects of group 4. Only Fukuda and Matsuoka (Fukuda and 

Matsuoka, 1980) described the timing of appearance of this ossification center 

and they reported that it can occur at 30 days of age, so, in any case, the 
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appearance of this center is precocious if compared with the appearance in 

Beagle breed. 

Cochlea tibiae appeared in one of the subjects of group 2 and in 50% of the 

subjects of group 4. Previous papers described the timing of appearance of this 

ossification center and they reported that the ossification center appear on 

radiographs between 11 and 31 days of age. Our data suggest that in toy breed 

could be a delay in the appearance of this center, considering the subjects of 

group 3 and 4 (Bressou et al., 1957; Chapman, 1965; Fukuda and Matsuoka, 

1980; Hare, 1960a, 1961; Zoetis et al., 2003).  

Tuberositas tibiae and malleolus medialis weren’t evident in this study and these data 

agree with what reported by previous Authors (Bressou et al., 1957; Chapman, 

1965; Fukuda and Matsuoka, 1980; Hare, 1960a, 1961; Ticer, 1984; Zoetis et al., 

2003). 

Calcaneus was evident in all the subjects of this study, excluding two subjects of 

group 2 and these data confirm the Literature, because calcaneus was present on 

radiographs at birth in all the breeds described (Bressou et al., 1957; Chapman, 

1965; Fukuda and Matsuoka, 1980; Hare, 1960a, 1961; Ticer, 1984; Zoetis et al., 

2003). 

Talus became constant from the third week of age, while its appearance is less 

homogeneous in the first two weeks. These data disagree with Literature, like 

calcaneus, talus too is present at birth in all medium and large dog breeds 

considered (Bressou et al., 1957; Chapman, 1965; Fukuda and Matsuoka, 1980; 

Hare, 1960a, 1961; Ticer, 1984; Zoetis et al., 2003). 

Os tarsi centrale appeared in 100% of the subjects of group 4, confirming data 

reported by Hare in 1960 (Hare, 1960a), again by Hare in 1961, in Beagle (Hare, 

1961) and by Ticer (Ticer, 1984). Hare in 1961 reported that in Bulldog it 

appears between 31 and 38 days of age, while other papers (Bressou et al., 1957; 

Chapman, 1965) and Hare in German Shepherd and Collie (Hare, 1961) 
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described an earlier appearance (10-15 days of age in German Shepherd dog, 

11-17 days of age in Collie).  

Os tarsale III was evident on radiographs only in 50% of the subjects of group 4. 

These data agree with Bressou, Hare (only about German Shepherd dog, Collie 

and Beagle) and Ticer (Bressou et al., 1957; Hare, 1961; Ticer, 1984), while 

others Authors, and Hare in Bulldog, described a later appearance (Chapman: 

30 days of age in Beagle, Hare: 31-38 days of age in Bulldog) (Chapman, 1965; 

Hare, 1960a).  

Os tarsale IV was evident on radiographs in one subject in group 2, one in group 

3 and in 100% of the subjects of group 4. These data disagree with data reported 

by previous Authors because they described an earlier appearance.  Bressou in 

particular, described its appearance starting from 8-9 days of age in GSD, 9-10 

days of age in Cocker, 13 days of age in Epagneul Breton, Chapman from 18 

days of age in Beagle, Hare from 7-15 days of age in GSD, 7-17 in Collie, 11-21 

in Beagle, Ticer from 14 days of age (Bressou et al., 1957; Chapman, 1965; Hare, 

1960a, 1961; Ticer, 1984). 

Os tarsale I and II weren’t radiographically evident, according with Literature. 

Only  Bressou, described the timing of appearance on radiographs of os tarsale I 

and II, at 26 or 25 days of age respectively, and so it can be assumed that they 

are not yet visible in this study (Bressou et al., 1957). 

In conclusion, we can affirm that, generally, the samples examined showed an 

homogeneous behavior within the group. The appearance of most of the 

ossification centers reflects the timing of appearance of medium and large breed 

dogs, however the behavior of some ossification centers change and therefore 

might be considered as typical of  toy-dog breeds.  

 

Radiological analyses demonstrated that the time of appearance of the centers 

of ossification of the limbs was positively correlated with the age, though there 
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was some discrepancy. Morphological analyses confirmed these data and 

showed that, as expected, the grade of ossification inside the centers increased 

with growing age.  

All the samples were well preserved and did not showed morphological 

alteration due to the process of freezing and thawing. 

Endochondral ossification is the process by which the embryonic cartilaginous 

model of bones provides to their growth and is gradually replaced by bone. 

Morphological changes of the chondrocytes occur in the same orderly sequence 

both in primary and secondary centers of ossification (Mackie et al., 2011), but 

the expansion of the two centers is driven by a different spatial organization of 

these cells (Byers and Brown, 2006). First, chondrocytes undergo proliferation, 

which is observed also as the presence of pairs of chondrocytes in a single lacuna 

within the cartilage ECM. Round proliferative chondrocytes synthesize typical 

cartilage ECM components around themselves, in the form a columnar layer in 

the growth plate of the primary ossification center. In rabbit a growth plate has 

been described also during the formation of the secondary centers in long 

bones, but it is arranged around a noodles-like structure of hypertrophic cells 

encased in enlarged lacunae (Rivas and Shapiro, 2002). Chondrocytes gradually 

become hypertrophic, modeling their surrounding ECM as they expand, and 

then mineralizing and subsequently  they undergo physiological death. Septa of 

the cartilage ECM surrounding them are partially removed, allowing entry of 

vessel and the mixture of cells responsible for the expansion of the ossification 

center (Amizuka et al., 2012). These processes occur  in a different manner in 

primary and secondary ossification centers (Pazzaglia et al., 2011). 

In our knowledge, this is the first work that describes the appearance and the 

morphological changes of the ossification centers in the epiphyses of limb 

bones of the dog during the first month of life. As expected, we observed that 

ossifications processes occur as in other species (Burkus et al., 1993) (Lefebvre 

and Bhattaram, 2010) and, as in rabbit, (Rivas and Shapiro, 2002) it possible to 
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categorize the progression of these events into groups. In rabbit, it was 

established that long bone and epiphyseal development progress through 

sixteen structural stages, starting from prenatal life (12 days old embryos) up to 

post natal life (18 month adult animal).  We evaluated only the first month of 

life of the subjects, therefore we identified four structural stages of ossification. 

Interestingly, for OCT 1, 2 and 3 it was possible to establish with a rough degree 

of accuracy, a correlation between the pattern of organization at histological 

level and the radiographic aspect documented by x-rays during the time interval 

of single bone development, according with Pazzaglia (Pazzaglia et al., 2011). 

The presence of hypertrophic chondrocytes and enlarged lacunae (OCT1) 

indicated calcium salt deposition on the cartilage matrix between the cells and 

corresponded the first opacities in the middle of the cartilaginous epiphysis 

observed in the precocious phase of the ossification center. When the same 

assumed a rounded contour, it corresponded to the formation of a more 

structured center with calcified trabeculae and neo-formed bone tissue (OCT2- 

OCT3). Moreover, a further indication of the developmental change of the 

ossification center was its variation from a spherical form (OCT1-2) to 

hemispheric shape (OCT3), becoming more conformed to the final shape of 

the bony epiphysis. This was evident also in radiographic images, mainly in the 

proximal epiphysis of humerus and femur, as previously demonstrated by 

Yonamine et al. (Yonamine et al., 1980) in growing Beagles. The lack of 

correspondence between the morphological appearance of OCT0 and x-rays 

images, although in the presence of hypertrophic chondrocytes, might be to low 

levels of mineralization therefore indicating a very precocious stage of 

ossification. Most of the ossification centers of the forelimb was of type 2 and 

3. At the moment we can only suppose that ossification processes were faster 

in these bones than in most of the bones of the hind limb, however our 

hypotheses must be confirmed on a more homogeneous and consistent number 
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of subjects and by focusing our studies also on the molecules and the 

mechanisms that drive the ossification of the bony limbs.  

Interestingly, morphological analyses confirm the presence of two ossification 

centers in the proximal row of the carpus of the two subjects of the fourth 

group and that they were encased in a unique cartilaginous, corresponding to 

the intermedioradial bone. This is in agreement with the textbook: “Miller's 

anatomy of the dog” where it has been reported that during the fetal life, in the 

Beagle dog “each carpal element chondrifies independently, before loosing its 

identity, the intermediate carpal element fuses with the radial carpal bone and 

the two, in turn, fuse with the central element”. Thus, by 42 days of gestation, 

if not before, there are only seven carpal cartilages, as in adult subjects (Evans 

and Miller, 2013). 

 

Another innovative contribution of this work is the detection of morphometric 

parameters useful to evaluate the growth of the appendicular skeleton in toy-

dog breeds in the first 28 days of life.  There is in fact little research addressing 

morphometric measures of the canine skeleton and the relationship of these 

parameters and the biological age of the subjects. 

In the dog, morphometry is routinely employed in the gestational age in order 

to date the birth through ultrasound (Beccaglia et al., 2008a; Beccaglia et al., 

2008b; Beccaglia and Luvoni, 2006, 2012; Luvoni and Beccaglia, 2006). Only 

recently, a paper has been published regarding Miniature Pinscher breed dog 

and it provides morphological and morphometrical data dealing with 45-days-

old fetuses, showing that they can be employed to evaluate the gestational age of 

the fetuses (de Oliveira Bezerra et al., 2013). 

On adult dogs, most of the studies have been performed to establish breed 

standard of German Shepherd Dog and Cavalier King Charles Spaniel by 

measuring cranial diameters (Driver et al., 2010; Onar, 1999; Schmidt et al., 

2011).  Onar (Onar, 1999) in particular, showed that between 45 and 105 days 
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of age, the skull grows proportionally to the age of the subjects even if the 

neurocranium seems to grow more than the viscero-cranium. Onar and Gunes, 

in 2003, demonstrated that the length of the skull of German Shepherd puppies 

increased more than the width and, accordingly, the skull became narrower and 

longer with age (Onar and Gunes, 2003). 

The skull of Cavalier King Charles Spaniel has been studied for his 

predisposition to Chiari-like malformation and syringomyelia (Schmidt et al., 

2011).  In this contest, Driver et al. (Driver et al., 2010) evaluated  by Magnetic 

Resonance Imaging the skull of Cavalier King Charles Spaniel dogs, with less 

than 2 years of age and with symptoms consistent with syringomyelia, and  the 

skull of dogs of the same breed with more than 5 years of age presenting central 

nervous system symptoms without syringomyelia. The Authors measured and 

compared brain parenchyma with ventricular system volume and they showed 

that in the Cavalier King Charles Spaniel breed, like in human being, the 

overcrowding of the posterior fossa is quite common, due to abnormal skull 

conformation which predisposes to the onset of syringomyelia.  

Radiological morphometry has been employed to evaluate canine hip joint 

through the dorsal acetabular rim view and the center-edge angle (Meomartino 

et al., 2002). Authors performed a prospective comparison with the center-edge 

angle (CE) and the acetabular slope angle (AS) to evaluate the acetabular 

coverage of the femoral head in the dorsal acetabular rim view in a huge number 

(208) of hip joints of large and giant breed dogs. They concluded that the CE 

angle is more reliable than the AS angle and that the dorsal acetabular rim view 

gives valuable data in the early stages of canine hip dysplasia. In 2006, Osmond 

et al. performed a morphometric assessment of the proximal tibia in dogs with 

and without cranial cruciate ligament rupture. They concluded that the 

characterization of the shape of the proximal portion of the tibia contributes to 

understand the pathogenesis of steep tibial plateau slope and helps in optimizing 

the surgical management of dogs with cranial cruciate ligament rupture 
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(Osmond et al., 2006). According with these results, three years later, Mostafa 

et al.  (Mostafa et al., 2009)  through radiographic and tomographic examination 

demonstrated that in Labrador Retrievers the cranial angulation of the proximal 

portion of the tibia, excessive steepness of the tibial plateau and, in addition,  

distal femoral torsion appeared more likely to be associated with CCL deficiency 

than femoral angulation, tibial torsion, intercondylar notch stenosis, and 

increased inclination of the patellar ligament. In 2010, other Authors assess the 

canine hip joint using morphometric evaluation of the acetabular angle of 

retrotorsion. They tried to compare the acetabular angle of retrotorsion (AAR) 

with the Norberg angle (NA) and the hip score (HS) in 387 Leonberger dogs 

and to determine the AAR cut off value in order to differentiate between normal 

and dysplastic dogs. They concluded that AAR can be considered a reliable 

morphometric assessment tool in evaluating the acetabular conformation and 

the grade of hip dysplasia (Doskarova et al., 2010).  

To our knowledge, there are only two papers regarding morphometric studies 

of the skeletal development in dogs. As expected, they were carried out on 

Beagle dogs (Delaquerriere-Richardson et al., 1982; Helmsmuller et al., 2013). 

In the first study Authors performed a correlation between age, body weight, x-

ray morphometrical measurements and x-ray photodensitometry of the bones 

of standardized colony-raised male research Beagles of 13 and 21 months. They 

showed that the total width of os femoris and its optical density increased 

significantly with age and body weight (Delaquerriere-Richardson et al., 1982).  

Interestingly, morphometric analyses carried out through Magnetic Resonance 

Imaging showed that femoral measurements can be employed to evaluate and 

describe fetuses development and growth (Connolly et al., 2004).  

The second study on the dog is a quite extended paper regarding the ontogenetic 

allometry of the Beagle. Authors monitored the ontogenetic development of 6 

Beagle between 9 and 51 weeks of age to investigate their skeletal allometry and 

compare these results with data from others lines, breeds and species. Statistical 
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analysis showed that withers and pelvic height and trunk length have positive 

allometry compared to body mass. Coefficients of segment lengths to body 

mass exhibited positive allometry for scapula, brachium, antebrachium, femur and 

crus. They concluded that a puppy’s size at 9 weeks is a good indicator for its 

final size, although only male siblings were investigated and no considerations 

regarding sex related differences could be drawn. Among siblings, growth 

duration may vary substantially and seems to be not related with the adult size, 

while within breeds, they hypothesized a longer time to reach maturation for 

larger breed dogs, and finally, potential factors which can be responsible for 

variations in the ontogenetic allometry of the mammals need further 

investigations (Helmsmuller et al., 2013). 

In our study, we demonstrated that in toy-dog breeds, categorized in a unique 

group depending on their body weight, there was a very strong correlation 

between the radiographic measures themselves and body mass and age. 

Moreover, age showed the highest correlation with cranial length. Weight 

showed the highest positive correlation with crown-rump length. Diaphyseal 

lengths, included femoral length, were highly and positively correlated between 

them, with age and with skull and cranial lengths.  High positive correlations 

were also evident between cranial length and neurocranium width, between 

zigomatic width and both vertebral column length and crown-rump length.  

Correlations involving viscero-cranial lengths were no significant or showed 

lower level of correlation if compared with those described before. First of all, 

these data may be due to the different skull conformation of the subjects 

enrolled in the study, in fact the differences between brachycephalic, 

mesaticephalic and dolichocephalic breeds were not considered in this work 

(Evans and Miller, 2013).  Moreover, in breeds with a “more rounded” skull, 

like Chihuahua, it is important to consider also the inherent difficulties in 

measuring viscero-cranial length, because, in the radiographic projections taken 
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into consideration, it was quite difficult to identify the junction on the median 

plane of the right and left nasofrontal sutures.  

 

Therefore we can conclude that femoral length could be taken into 

consideration as a parameter to assess the developmental rate and the age of 

toy-dog breeds during the growing period, particularly in the first 4 weeks of 

age. Excluding evaluation involving viscero-cranial length, also skull and cranial 

measurements could be reasonably employed to evaluate these breeds. 

 

We generally observed strong correlations also between radiographic 

measurements and the measurements of the corresponding anatomical 

compartment for long bones, body and skull measures. Moreover, within 

anatomical measures, significance levels were the same described for 

radiographic valuations. Interestingly, the most significant correlations observed 

were between neurocranium width and bones lengths, included femoral length.  

As for radiographic observations, most of the less significant correlations 

involved skull length, and subsequently viscero-cranial lengths.  Other less 

significant correlations involved crown-rump length and vertebral-column 

length. These data may be due to the difficult to find, on the cadavers, the exact 

landmarks to perform the measurements. As consequence, it is possible that 

measures were not precise. A low level of correlation was also described 

between radial length and age.  As previously, the identification of the landmarks 

of these bone was not always manageable because radius is not the only skeletal 

basis of the forearm and the landmarks of the radial proximal epiphysis on the 

cadavers were difficult to achieve through the caliber due to the anatomical 

conformation of the elbow joint. 

 

To better evaluate as skeletal limbs develop during the first month of life in toy-

dog breeds we correlated ossification centers appearance and long bones length. 
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In our knowledge, there are no previous papers, which described these 

correlations. Statistical analysis showed strong significance between the 

radiographic appearance of humeral proximal epiphysis and humeral length, of 

corpus ossis accessori and both radial and ulnar lengths, of os pubis and femoral 

length, of caput ossis femoris and femoral length, of talus and femoral and tibial 

lengths and between os tarsale IV and tibial length.  

Since most of the correlations between ossification centers appearance and long 

bone measurements were highly significant, we could assume that long bone 

length is indicative for the presence of specified ossification centers, and 

indirectly that long bone measurement could have an important role in 

estimation of the age of growing puppies. 

  

To our knowledge, no densitometric study was performed to evaluate the 

ossification in newborn toy-dog breeds and no correlation between bone 

mineral density (BMD) and long bones length is present in literature. Dual-

energy X-ray absorptiometry is “one of the most reliable densitometric 

technique for spatial resolution, precision and accuracy and it allows the analysis 

of small specimens” to evaluate bone density (Panattoni et al., 1999). Therefore, 

it is important to perform accurate positioning to prevent inadvertent alteration 

of bone mineral density as demonstrated in a previously study performed on 

humerus, radius, os femoris and tibia from adult dogs (Markel et al., 1994). 

In Medicine, there are different papers regarding the application of DXA to 

measure bone mineral density in newborns and infants to evaluate skeletal 

development and biological age (Braillon et al., 1992; Brunton et al., 1993; Salle 

et al., 1992; Tsukahara et al., 1993). Panattoni et al.(Panattoni et al., 1999) 

performed a densitometric analysis to study the ossification of human fetal 

skeleton in relation to conceptual age. They observed that in human fetal 

skeleton, BMD is progressively less correlated with conceptual age and suggest 

an individual variability in bone density at term of development and particularly 
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at the level of spongiosa, of proximal and distal end of the bone, the areas mostly 

involved in architectural changes during the morphogenesis of the long bones 

(Panattoni et al., 1999). With the same technical approach and on they same 

samples, they observed a different timing in the appearance of lesser and greater 

trochanter (Panattoni et al., 2000). Recently other Authors presented a review 

regarding considerations and correlations between bone growth, bone calcium 

accretion and bone mineral density.  They concluded that endochondral bone 

growth and bone elongation, in a subregion of the spongiosa, are associated 

with bone calcium accretion, and this accretion leads to an increase in BMD. 

Endochondral bone growth and bone elongation don’t determine peak bone 

mass, which is probably predetermined by genetic factors, but endochondral 

bone growth could determine the size of the skeletal framework (Wongdee et 

al., 2012). 

In dog, dual-energy x-ray absorptiometry has been used to measure bone 

mineral density of healed femora after fracture fixation with a leg-lengthening 

plate. In this context, Muir el al. demonstrated that clinically apparent lameness 

of three of their patients did not constantly appear to be associated with altered 

bone mineral density and it may have been caused by hip osteoarthritis, by screw 

loosening or by a non displaced diaphyseal fracture, associated with extensive 

post-traumatic soft tissue injury (Muir et al., 1995).  

 

In this study, it was calculated the general BMD of the diaphysis of radius and 

ulna, and femur.  Due the small size of the specimens, it would have been difficult 

to choice accurately a precise area in the metaphysis and another one in the 

diaphysis in order to investigate the progression of the ossification in the 

different parts of the bones and to describe possible differences in BMD as 

others authors previously reported in human being (Panattoni et al., 2000; 

Panattoni et al., 1999), and so it was calculated only the general BMD of the 

diaphysis of radius and ulna, and femur. 



78 
 

 

The BMD analysis of radius and ulna, and os femoris showed that general BMD of 

these bones increases increasing the age of the subjects and that these bones 

show a similar trend and behave in the same way. The minimum value of BMD 

of radius and ulna and of os femoris was detected in the youngest subject (subject 

n.1), and the maximum value of BMD of radius and ulna and of os femoris was 

detected in the oldest subject (subjects n. 35). The mean values of the 4 groups 

of the different BMD detected show, in general, an increasing trend of the BMD 

during the time. Moreover, Sperman bivariate correlation showed high 

significance between the general bone mineral density of radius and ulna and 

both radial and ulnar lengths, and between the general bone mineral density of 

os femoris and femoral length. These data confirm that increasing BMD is highly 

correlated with increasing long bones length and seem to confirm the spatio-

temporal relationship between BMD in canine newborn skeleton and in long 

bones growth. Furthermore, long bone growth and BMD, representing 

indirectly endochondral bone growth and bone calcium accretion, confirm what 

previously reported in rats (Wongdee et al., 2012), that these parameters should 

in general show positive correlation.  

 

Only four subjects (n. 26, 27, 29, 35) showed some differences regarding 

ossification centers appearance or BMD. 

Subjects n. 26, 27 and 35 in particular, showed a later appearance of most of the 

ossification centers, while subject n. 29, showed an early appearance of most of 

the ossification center, both in the hind limb and forelimb.  

The role of weight in the appearance of ossification center is unclear. A positive 

correlation between weight and skeletal development at birth was not 

demonstrated (Helmsmuller et al., 2013). According with the Authors, we 

observed that, although this subject (n. 29) had elevated body weight if 

compared with the subjects of the same group, morphometric radiological and 
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anatomical measures did not influence the mean values of the groups. 

Therefore, we supposed that this peculiar behavior could be due to a highest 

skeletal maturity level due to individual and/or breed variability.  

Conversely, dogs number 26, 27 and 35 showed a delayed development respect 

to group where they were enrolled. This “immaturity” could be explained with 

an individual difference, but dogs number 26 and 27 were brothers, and we 

cannot exclude the possibility of a premature day of birth. Pregnancy lifetime 

and nutritional factors could have an important role in the variability of the 

sample and in the growth rate (Eilts et al., 2005; Lopate, 2008). The first days 

of life in fact are the results of the interaction between fetal genotype and uterine 

environment and especially of the size of uterus, mostly in the last days of 

pregnancy. In human being and mice, as well as in dog, it was observed that the 

puppies born in larger litters have lower weight than those born in smaller litters 

(Vanden Berg-Foels et al., 2006). In Labrador breed a negative association was 

also detected between birth weight and age, regarding the ossification of the 

femoral head, and it would seem imputable to skeletal maturity of subjects 

rather than to their body weight (Vanden Berg-Foels et al., 2006). However, it 

is interesting to note that the differences due to body weight decreased with the 

increasing of age, and in Labrador breed dogs these differences are already 

reduced at 8 days after birth and they’re no more detectable at 12 days after 

birth. 

Therefore, if we do not take in account subjects 26 e 27 e 29, e 35 we can 

conclude that generally, calcaneus was present at birth confirming what reported 

Literature for medium and big size dogs while talus and os pubis appears only two 

weeks later.  

Timing of appearance of humeral proximal epiphysis, trochlea radii, most of ossa carpi, 

trochanter major and trochanter minor os femoris, tibial proximal epiphysis and os tarsi 

centrale was comparable with the timing described in large breed dogs.  
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Caput radii, the distal epiphysis of humerus and of os femoris, and caput ossis femoris 

show a non homogeneous behavior compared to the timing described in large 

breed dogs, since they were present only in a small number of subjects due to 

the sample size of group 4.  

Due to the lack of information of the Literature and to the non homogeneus 

behavior of these ossification centers in our study, we cannot perform a 

evaluation regarding the timing of these centers.  

 

Statistical analysis showed no significance between the appearance of calcaneus 

and femoral and tibial length. According to Literature, calcaneus is 

radiographically evident at birth, but in this study, again in subject n.26 and 27, 

it was not evident, and so these data could have turned away the statistical results 

from the expectations, and it could be reasonably assumed that excluding this 

subjects even the correlations between the appearance of calcaneus and femoral 

and tibial length would have shown high significance as the others.  

 

The mean values of BMD of subject n. 29 are higher than BMD values of the 

other subjects of the same group and even of the subjects of group 3. As 

previously reported, the peculiarity of this subject was an elevated body weight. 

It has been demonstrated that a greater height and body mass index (BMI) gain 

in prenatal life and infancy are associated to higher peak bone mass, and greater 

BMI gain in childhood/adolescence are associated to higher peak BMD 

(Tandon et al., 2012). Moreover, even if endochondral bone growth is the first 

mechanism that influences bone morphology and bone mineral accretion, 

nutritional status or patho/physiological conditions or physical activity can 

impact bone microstructure and calcium accumulation (Wongdee et al., 2012). 

Conversely, other Authors, in a study on growing Beagle, reported that the 

lightest dog did not reach its adult mass before the heaviest and vice versa 

(Helmsmuller et al., 2013). A different skeletal maturity level due to individual 



81 
 

and/or breed variability rather than to body weight per se must always be 

considered. 

 

Finally, sex did not seem to influence the appearance of ossification center and 

skeletal development in toy-dog breeds within 28 days of age. Generally, toy 

dog breeds do not show great difference in size between male and female. 

However, even if it should happen, it is possible that these differences will arise 

later in time. Moreover, previous studies showed significant ontogenetic 

differences between sexes only for large breeds, but not for smaller breeds 

(Helmsmuller et al., 2013; Yonamine et al., 1980a). 
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Conclusion 
 

This work describes and characterizes, for the first time, skeletal growth and 

development of newborn toy-dog breeds. Radiographic and histological evaluation 

of the appearance of the ossification centers of the limbs, morphometric evaluation 

of skull, limbs and vertebral column, and bone mineral density of limb bones 

provided practical indications to estimate the age and the skeletal of growing 

puppies of these breeds.  

From this point of view, during the first month of life, newborn toy-dog breeds can 

be considered as a homogeneous population. We could assume that long bone 

length is indicative for the presence of specified ossification centers and that long 

bone measurement could have an important role to assess the developmental rate 

and the age of toy-dog breeds during the growing period, particularly in the first 4 

weeks of age. Skull, cranial and long bone lengths can be reasonably employed to 

evaluate these breeds by X-rays analysis, while the anatomical measurements of 

humeral, femoral and tibial lengths as well as neurocranium width could replace the 

radiographic measure of the corresponding skeletal segment in order to assess the 

growth of toy-breed dogs during the first month of life without exposition to 

ionizing radiation.  

The densitometric analysis shows an increasing trend between BMD of radius, ulna 

and os femoris and it presents a significant correlation with age and long bones growth 

in the first month of life in new-born toy breed dogs and it could reasonably 

consider a valid tool in evaluation of skeletal development in growing puppies. 

Finally, further studies must be undertaken in order to improve the sample size, 

even if these results already take particular relevance because it must be considered  

that the study has not been carried out on the basis of an experimental model and 

only subjects died for unrelated reasons with the study were enrolled.  
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