
Learning on graphs: algorithms
for classification and sequential

decisions

Dipartimento di Matematica “Federigo Enriques”

Dottorato in Matematica e Statistica per le Scienze
Computazionali

Autore: Giovanni Zappella

Relatore: Prof. Nicolò Cesa-Bianchi

Coordinatore MaSSC: Prof. Giovanni Naldi

1

a Laura

ai miei genitori

vi

Ringraziamenti

Questa è la terza tesi che consegno alle segreterie di unimi (cosa non si fa pur
di organizzare qualche festa!) ed ormai so per esperienza che i ringraziamenti
sono sempre una sezione difficile da scrivere.
Questa volta però sento veramente il peso dato dalla fine di un percorso du-
rato tanti anni: luned̀ı non tornerò in via Comelico 39, non vedrò Salvatore
consegnarmi la chiave mentre mi dice “Uee”, niente secondo piano, niente
saluti, insomma avete capito.

Sono grato a molte persone per tutto quello che mi hanno dato in questi
anni, sia sul piano umano che sul piano scientifico. Non voglio ringraziare
tutti, quindi spero di non dimenticare nessuno di quelli che voglio ringraziare
davvero.

Innanzitutto vorrei ringraziare Nicolò, Claudio e Fabio. Con loro ho con-
diviso il lavoro degli ultimi anni, giorno dopo giorno ed a loro sono grato per
tutto quello che mi hanno insegnato. Spero sinceramente di poter lavorare
ancora con voi uno di questi giorni. Un ulteriore grazie va a Nicolò per avermi
introdotto a tutto questo, supportandomi da sin quando ero uno studente con
tante idee ... tutte molto confuse.

Un grazie particolare va a Laura, che con pazienza ed amore ha letteral-
mente sopportato la mia attività di ricerca, mi ha incoraggiato quando le
cose non funzionavano e mi è stata vicina. Ci sarebbero altri mille motivi,
ma non posso davvero elencare tutto. Questo traguardo è anche tuo.

Un grazie alla mia famiglia, per tutto quello che hanno fatto per me.

Non posso certo dimenticare tutti i “giovani colleghi” che nel corso del tempo
sono diventati “meno giovani” amici: chi con me ha condiviso l’ufficio come
Francesco (grazie anche per tutti i consigli ... o meglio, per quelli che non
riguardavano la musica), Giuseppe e Rocco. Chi ha occupato parte dell’ufficio
dove lavoravo (scusa Luigi, ma questa ci stava troppo bene!). Chi con me ha
condiviso le gioie ed i dolori dello studio ad unimi sin dal secondo giorno,
Matteo dove sei stato il primo giorno? sarebbe suonato molto meglio!
... e tutti coloro che tra un caffè ed una pizza hanno condiviso con me la
quotidianità, spesso fornendo fantastici argomenti di discussione.

Grazie a tutti.

Contents

Part I Introduction

1 Introduction . 5
1.1 Outline of the thesis . 8

2 Background . 11
2.1 Node Classification . 12

2.1.1 Related work . 13
2.2 Link Classification . 14

2.2.1 Related work . 14
2.3 Networks of Bandits . 15

2.3.1 Related work . 16

Part II Node Classification

3 Online Node Classification: SHAZOO . 23
3.1 Problem setup . 23
3.2 A lower bound for weighted trees . 24
3.3 The Shazoo algorithm . 25
3.4 Mistake bound analysis and implementation 28
3.5 Multiclass implementation . 30

4 Batch Node Classification: MUCCA . 33
4.1 Basic Framework . 33
4.2 The Graph Transduction Game . 34

4.2.1 The Evolutionary Stable Strategies approach. 36
4.3 A scalable method for the undirected trees 37

5 Node Classification: Experiments . 41
5.1 Algorithms . 41
5.2 Spanning trees . 42

vii

viii Contents

5.3 Datasets . 43
5.4 Results . 44

Part III Link Classification

6 Link Classification . 53
6.1 Problem Setup . 53
6.2 Algorithms and their analysis . 55

6.2.1 Refinements . 59
6.2.2 Complexity analysis and implementation 62

6.3 Experiments . 62
6.3.1 Algorithms . 62
6.3.2 Datasets . 63
6.3.3 Results . 66

Part IV Networks of bandits

7 Network of bandits . 73
7.1 Problem setup . 73
7.2 Algorithm and regret analysis . 75

7.2.1 Regret Analysis . 78
7.3 Experiments . 79

7.3.1 Datasets . 79
7.3.2 Algorithms . 83
7.3.3 Results . 84

Part V Conclusions

7.4 Conclusions and future works . 89
7.4.1 Node Classification . 89
7.4.2 Link Classification . 89
7.4.3 Networks of Bandits . 90

Part VI Appendices

A Node Classification . 93
A.1 Proofs regarding the SHAZOO algorithm 93
A.2 Experimental results . 101

B Link Classification . 109
B.1 Proofs regarding the treeCutter algorithm 109

C Networks of Bandits . 113
C.1 Proofs regarding the GOB.Lin algorithm 113

References . 115

List of Figures

1.1 Graph of political blogs (USA 2004) . 7

3.1 Basic elements used to explain algorithms on trees 26

5.1 Node classification: results on the synthetic datasets 45
5.2 Node classification: results on small real datasets 46
5.3 Node classification: results on large real datasets 47

6.1 treeCutter pseudocode. 58
6.2 extractTreelet pseudocode. 58
6.3 Experimental results on synthetic datasets 64
6.4 Experimental results on real-world datasets 65

7.1 Pseudocode of LinUCB . 75
7.2 Pseudocode of GOB.Lin . 76
7.3 Number of preferences per item in Delicious and Last.fm 81
7.4 Normalized cumulated reward for different levels of graph

noise (expected fraction of perturbed edges) and payoff noise
(largest absolute value of noise term ε) on the 4Cliques
dataset. Graph noise increases from top to bottom, payoff
noise increases from left to right. GOB.Lin is clearly more
robust to payoff noise than its competitors. On the other
hand, GOB.Lin is sensitive to high levels of graph noise.
In the last row, graph noise is 41.7%, i.e., the number of
perturbed edges is 500 out of 1200 edges of the original graph. 82

7.5 Network of bandits: results on real world datasets 84

A.1 Examples of concepts used for the analysis of SHAZOO 95

ix

List of Tables

5.1 Statistics about the datasets used for Nodes Classification 44

7.1 Statistics for the Delicious and Last.fm datasets 81

A.1 Node classification on USPS-0: avg. error rate 102
A.2 Node classification on USPS-10: avg. error rate 103
A.3 Node classification on USPS-25: avg. error rate 104
A.4 Node classification on COAUTHOR: avg. error rate 105
A.5 Node classification on CORA: avg. error rate 106
A.6 Node classification on IMDB: avg. error rate 107
A.7 Node classification on PUBMED: avg. error rate 108

xi

Part I

Introduction

3

You must not fight too often with one enemy,
or you will teach him all your art of war.

– Napoleon Bonaparte

Chapter 1

Introduction

Machine Learning was born as a branch of AI, and has now evolved as an
autonomous discipline focused on the study and creation of new algorithms
that can learn from data. As explained by Mohri et al in [69]: “Machine
learning can be broadly defined as computational methods using experience
to improve performance or to make accurate predictions”. The basic idea is
that the learner wants to generalize the knowledge extracted from its expe-
rience in order to provide good predictions for the future.

Historically, machine learning algorithms have been studied and devel-
oped to deal with examples represented by points in the feature space. In the
simplest case, each of these data points is a vector of features obtained by
physical measures. For example, a vegetable can be described by its weight,
color, size, etc. In the supervised learning case, this feature vector carries a
label such as “tomato” or “pumpkin”. A simple classification task is: given
a vector of features regarding a vegetable, predict if the original vegetable is
a tomato or not. Roughly speaking, a machine learning algorithm for classi-
fication uses a set of labeled points (training set) as “experiences” in order
to create a model to predict the unseen and unlabeled points that will be
presented to it in the future (test set).

Due to the nature of many industrial applications and their scale, nowa-
days in many contexts, even marginal increments of the performances can
lead to significant gain, depending on point of view. This is a big incentive
for researchers to create algorithms that exploit every single bit of informa-
tion that can be extracted from the data. Although many practical problems
can be cast in the framework described above, many others have a richer
structure and the aforementioned classical methods are not appropriate for
dealing with this rich set of inputs. Real-world scenarios often present com-
plex heterogeneous objects interacting with each other and the information
provided by the interactions usually play a crucial role in the structure of the
problem. Developing methods that exploit the structure of the problem may

5

6 1 Introduction

also provide better intuition for domain experts, besides improving predictive
performance.

In the last few decades, we witnessed the enormous growth of this “net-
worked” data that have now become ubiquitous in our life:

• The World Wide Web is probably the biggest collection of connected het-
erogeneous data sources, which provides countless large scale inference
problems with tremendous importance for industrial applications. Just
to cite a few relevant tasks: classification of web-pages, images, video
and audio files; ranking of documents and item recommendation (i.e., see
[63, 19, 2]). Some of these tasks are extremely relevant for online adver-
tisement, nowadays a multi-billion dollar industry.

• Another significant application, which is probably known to a lesser extent
by the general public, that can have a huge impact on our life is bioin-
formatics: for example, a huge amount of data is coming from proteins
interacting with each other and which need to be classified. Clearly it is
impossible for humans to handle data at this scale manually, so machine
learning plays a crucial role in this field of research.

• A major phenomenon of the last few years has been the tremendous dif-
fusion of social networks: just to cite a piece of information, Facebook
reached 1 billion of monthly active users in October 2012. Some of these
social networks such as Facebook, Twitter, Google+, Linkedin are websites
with the only goal of creating, growing and maintaining a network on their
platforms. Other social networks are also available in thematic online ser-
vices, for example: bookmarks (i.e., Delicious), music (i.e., LastFM), books
(i.e., GoodReads), movies (i.e., Netflix, Flixster) and personal communica-
tions (i.e., Whatsapp) or can be inferred from news (i.e., see [4]), resources
sharing (i.e., DropBox, Google Drive) and GPS and geo-located services
(i.e., see [32]).
The impact on politics, social behavior and economics is not well under-
stood yet, but their importance has already been made evident in many
contexts (i.e., see [78, 56]).
There are a number of significant industrial applications raising interest-
ing problems for scientists in opinion mining, community detection, graph
compression, experience personalization, content diffusion and, again, item
recommendation (i.e., see [40, 45, 84, 13, 70]).

All this applicative problems clearly highlight the limitation of represent-
ing data as simple points in the feature space. Moreover, many other sig-
nificant problems can be easily found also in computer vision and natural
language processing.

1 Introduction 7

Fig. 1.1: This image contains a plot of the US political blogsphere (2004).
Nodes are blogs, and they are colored according to the political “area”: blue
nodes are liberal, while reds are conservative. Arcs are links between blogs,
orange arcs go from liberal to conservative, and purple ones from conservative
to liberal. The structure and the colors of the network make self-evident the
homophily phenomenon explained below. The image is taken from [3].

In the following part, we will give a brief outline of the problems addressed
in this thesis.

Node Classification. We investigate a method for labeling the nodes of
a graph. Given an undirected graph and the labels of some nodes, we want
to infer the labels of unlabeled nodes. In order to infer this information, we
assume that well-connected nodes “are similar”, so they have the same label.
This property is widespread in nature and called homophily (see Figure 1.1
for a visual intuition).
Let us assume that we want to classify users in a social network in order
to infer the outcome of the next elections. Some users publicly declare that
they will vote for party A, and some others declare that they will vote for
the party B. We can use a node classification algorithm to estimate which
party the remaining users are going to vote and subsequently, then the final
result of the elections. The algorithm will consider well connected nodes as
similar, so belonging to the same political party. In this way, if a group of
friends is very densely connected, and there are just few connections between
this group and the rest of the network, and one of them votes for the party

8 1 Introduction

B, the algorithm will probably infer that all the people in the group will vote
for the party B.

Link Classification. Since the Fifties, a lot of researchers in graph the-
ory, sociology and political sciences have been studying signed networks. A
signed network is a graph whose edges carry a binary label in order to rec-
ognize the nature (positive or negative) of interactions among two nodes. A
lot of theories have been developed on the structure, and the nature of these
interactions among humans. Roughly speaking, we can summarize the social
theory underlying our work with the popular motto “the enemy of my enemy
is my friend”.
Given an undirected graph and some labels on the edges, a link classification
algorithm will try to infer the labels for the unlabeled edges. Distinguishing
between positive and negative interactions is very useful in many practical
applications related to social networks, e-commerce and in general applica-
tions involving trust and distrust among peers.

Networked bandits. The last part of this thesis is devoted to sequential
decisions in the bandit setting: at each time step the algorithm get a request
for one of the nodes in the network and it has to pick one of the options
among those available at the time, trying to maximize its payoff. Then it
will exploit the networks structure in order to improve its model also for the
other users. This a common problem: for example, at a certain time a user in
a social network requests a webpage, and the algorithm has to choose among
the banners currently available which one to display on the webpage for that
specific user. Then the algorithm will observe if the user clicks (or not) on
the banner an it will update its model. Moreover, the algorithm will exploit
the same homophily property we saw for node classification and it will also
update the models of the other users exploiting the topology of the network.

1.1 Outline of the thesis

The thesis is organized as follows.

In Chapter 2, we summarize the motivations and context for each of the
problems we address. Moreover, we provide references and a brief explana-
tion of the state of the art.

In Chapter 3, we present an online learning algorithm for nodes classification
on trees called Shazoo and its analysis with mistake bounds.
The content of this chapter is based on the paper “See the Tree Through the

1.1 Outline of the thesis 9

Lines: The Shazoo Algorithm”, published at the 25th Conference on Neural
Information Processing Systems (NIPS 2011)[79].

In Chapter 4, we present a fast algorithm for finding a Nash Equilibrium
of the GTG game introduced in [42], for the special case in which the graph
is a tree. The content of this chapter is based on the paper “A Scalable Mul-
ticlass Algorithm for Node Classification” presented at the MLG Workshop
at the 29th International Conference on Machine Learning (ICML 2012) [83].

In Chapter 5 we present a batch experimental comparison on 7 datasets
between the algorithms presented in the previous two chapters and some
well-known algorithms for nodes classification.

In Chapter 6 we present a suite of active learning algorithms for binary link
classification. In the last part of this chapter, we also provide an experimental
comparison between the most practical of this algorithms and some spectral
heuristics. The content of this chapter is based on the paper “A Linear Time
Active Learning Algorithm for Link Classification”, published at the 26th
Conference on Neural Information Processing Systems (NIPS 2012) [24] and
in a pre-print with the same title at the MLG Workshop at the 29th Inter-
national Conference on Machine Learning (ICML 2012).

In Chapter 7, we provide an algorithm for sequential decisions that exploits
the side-observation given by the network structure of the problem. Experi-
ments on both synthetic and real-world datasets are presented in the last part
of this chapter. The content of this chapter is based on the paper “A gang
of Bandits”, recently accepted at the 27th Conference on Neural Information
Processing Systems (NIPS 2013) [28].

Chapter 2

Background

In this chapter we will provide a brief discussion of the problems mentioned
in the previous chapter and useful references to the state of the art.
We start by introducing some terminology about the settings in order to pro-
vide a better overview for inexperienced readers.

Batch vs. Online classification. These settings differ by the way labels
of the points are revealed to the learner. In the batch setting, data are split
into two sets:

1. Training Set : the set of the labeled data then used by the algorithm to
build the classifier

2. Test Set : the set of the unlabeled data which are typically used to evaluate
the performances of the classifier

In the online setting, examples are provided one by one: at each time step the
algorithm receives an example to label, and makes a prediction (estimated
label). It then receives feedback from the environment providing information
about the correct label, which is usually used to update the classifier. In on-
line classification, we do not have a distinction between training set and test
set.

Bandit vs. Full-information feedback. These settings differ in the in-
formation provided by the environment to the classifier regarding the correct
choice. In the classical literature on multi-armed bandits, the bandit problem
is usually introduced with an example: a gambler wants to maximize his pay-
off playing on different slot-machines (also called one-armed bandits). When
played, each machine provides a reward randomly drawn from its internal
unknown distribution. The purpose of the gambler is to understand which is
the machine with the highest expected reward. In this way, he can maximize
his return by always pulling the best arm. This maximization process is not
trivial and involves finding a good trade-off between exploration, for instance
when the gambler tries new slot machines, and exploitation, when he just

11

12 2 Background

exploit its knowledge using its estimations about the slot machines.
In the bandit setting, the outcomes of the non-chosen slot machines are un-
known. Since we assume that the gambler can play only one coin at each
time-step, after he pulls an arm he only knows the outcome of the single
machine he has chosen. In the full information setting, after the gambler
pulls the arm he chose, he can observe the outcome of all the available slot
machines, but of course he will receive only the reward of the selected slot
machine. Clearly, in the full information context, it will be easier for him to
understand which machine is the best one.

Active vs. Passive learning. The difference between active and passive
learning deals with the choice of the labels revealed to the learner. In the ac-
tive learning protocol, the training labels are obtained by querying a desired
subset of examples. In our case, we will query a subset of edges selected with
specific graph-theoretic methods, in this way we can improve the quality and
the speed of the learning process. In the passive setting the set of examples
used for the training phase are provided by the environment (i.e., selected at
random from those available or by an adversary).

All these descriptions are just intended to provide a high-level distinction
between the aforementioned settings, since each of them can be declined in
many different ways. More details about the specific protocols are provided
in the technical chapters.

2.1 Node Classification

A well known problem in the field of machine learning on graphs is the node
classification problem: given a graph, the learner has to classify the nodes
of the graphs using the few known labels and the topology. The common
assumption is that well-connected nodes are somehow similar. In our case,
similar nodes tend to have the same label.
All the algorithms presented in this part of the thesis work in the so called
“transductive setting”. This means that the graph structure is given in ad-
vance and does not change during the learning process. Moreover, in the on-
line setting, predictions and feedback are provided over time but the topology
of the graph does not change.
The first algorithm proposed in the node classification section (shazoo)
works in the online setting, so it can easily be applied to the more stan-
dard train/test (or “batch”) transductive setting. In this way we can also
compare the performances of both the algorithms in the same experimental
setting.

2.1 Node Classification 13

The second algorithm presented in this part (mucca) is based on a strategic
game where each player is a node of the graph and interactions among the
players are regulated by the topology.

2.1.1 Related work

Standard transductive classification methods, such as label propagation [9,
10, 86], work by optimizing a cost function defined on the graph, which in-
cludes the training information as labels assigned to training nodes. Although
these methods perform well in practice, they are often computationally expen-
sive, and have performance guarantees that require statistical assumptions
on the selection of the training nodes.

A general approach to sidestep the above computational issues is to spar-
sify the graph to the largest possible extent, while retaining much of its
spectral properties —see, e.g., [22, 25, 64, 75]. Inspired by [22, 25], we reduce
the problem of node classification from graphs to trees by extracting suit-
able spanning trees of the graph, which can be done quickly in many cases.
The advantage of performing this reduction is that node prediction is much
easier on trees than on graphs. This fact has recently led to the design of
very scalable algorithms with nearly optimal performance guarantees in the
online transductive model, which comes with no statistical assumptions. Yet,
the current results in node classification on trees are not satisfactory. The
TreeOpt strategy of [22] is optimal up to constant factors, but only on
unweighted trees. No equivalent optimality results are available for general
weighted trees. To the best of our knowledge, the only other comparable re-
sult is wta by [25], which is optimal (within log factors) only on weighted
lines. In fact, wta can still be applied to weighted trees by exploiting an idea
contained in [54]. In practice, wtatransforms a weighted tree in a weighted
line with a simple depth-first visit of the tree, and after removing the dupli-
cates, predicts using nearest neighbor on the resulting weighted line. Since
linearization loses most of the structural information of the tree, this ap-
proach yields suboptimal mistake bounds. This theoretical drawback is also
confirmed by empirical performance: throwing away the tree structure nega-
tively affects the practical behavior of the algorithm on real-world weighted
graphs. In Chapter 3, we present shazoo, an algorithm that can be viewed
as a common nontrivial generalization of both TreeOpt and wta.

In Chapter 4 we introduce another algorithm (mucca) based on the game-
theoretic framework presented in [42]. In the same way we saw above, mucca
works on a sparsification of the original graph: a spanning tree. In this way,
it can take advantage of the special nature of the problem and it can find
a Nash Equilibrium even on very large graphs. Realistic scenarios like so-

14 2 Background

cial networks, where each entity in the networks decides only for itself, and
there is little or no coordination between the entities are modeled in the idea
underlying these algorithms. Some experiments for friends recommendation
with an inherent idea were presented in [84].
A similar algorithm with completely different motivations has been indepen-
dently presented in [85].

2.2 Link Classification

A rapidly emerging theme in the analysis of networked data is the study of
signed networks. From a mathematical point of view, signed networks are
graphs whose edges carry a sign representing the positive or negative nature
of the relationship between the incident nodes. For example, in a protein
network two proteins may interact in an excitatory or inhibitory fashion. The
domain of social networks and e-commerce offers several examples of signed
connections: Slashdot users can tag other users as friends or foes, Epinions
users can rate other users positively or negatively, Ebay users develop trust
and distrust towards sellers in the network. More generally, two individuals
that are related because they rate similar products in a recommendation
website may agree or disagree in their ratings.

2.2.1 Related work

The availability of signed networks has stimulated the design of link classifi-
cation algorithms, primarily in the domain of social networks. Early studies
of signed social networks are from the Fifties (i.e., see [51] and [18]) model dis-
like and distrust relationships among individuals as (signed) weighted edges
in a graph. The conceptual underpinning is provided by the theory of social
balance, formulated as a way to understand the structure of conflicts in a
network of individuals whose mutual relationships can be classified as friend-
ship or hostility [52]. The advent of online social networks has revamped the
interest in these theories, and spurred a significant amount of recent work
—see, e.g., [49, 60, 61, 31, 44, 26], and references therein.

Many heuristics for link classification in social networks are based on a
form of social balance summarized by the motto “the enemy of my enemy
is my friend”. This is equivalent to saying that the signs on the edges of a
social graph tend to be consistent with some two-clustering of the nodes. By
consistency we mean the following: the nodes of the graph can be partitioned
into two sets (the two clusters) in such a way that edges connecting nodes
from the same set are positive, and edges connecting nodes from different sets
are negative. Although two-clustering heuristics do not require strict consis-

2.3 Networks of Bandits 15

tency to work, this is admittedly a rather strong inductive bias. Despite that,
social network theorists and practitioners found this to be a reasonable bias
in many social contexts, and recent experiments with online social networks
reported a good predictive power for algorithms based on the two-clustering
assumption [60, 62, 61, 31]. Finally, this assumption is also fairly convenient
from the viewpoint of algorithmic design.

In the case of undirected signed graphs G = (V,E), the best performing
heuristics exploiting the two-clustering bias are based on spectral decompo-
sitions of the signed adjacency matrix. Noticeably, these heuristics run in
time Ω

(
|V |2

)
, and often require a similar amount of memory storage even on

sparse networks, which makes them impractical on large graphs.
In order to obtain scalable algorithms with formal performance guarantees,

we focus on the active learning protocol, where training labels are obtained
by querying a desired subset of edges. Since the allocation of queries can
match the graph topology, a broad range of graph-theoretic techniques can
be applied to the analysis of active learning algorithms. Differently from [26],
labels are generated by a simple stochastic model since in many practical
applications the adversarial labeling may have an overkilling effect. At the
end of the section we report on the results of our experiments on medium-
sized synthetic and real-world datasets, where a simple and fast algorithm
suggested by our theoretical findings is compared against the best performing
spectral heuristics based on the same inductive bias.

2.3 Networks of Bandits

The ability of a website to present personalized content recommendations is
playing an increasingly critical role in achieving user satisfaction. Because of
the appearance of new content, and due to the ever-changing nature of con-
tent popularity, modern approaches to content recommendation are strongly
adaptive, and attempt to match as closely as possible users’ interests by learn-
ing good mappings between available content and users. These mappings are
based on “contexts”, a set of feature vectors that, typically, are extracted
from both contents and users. The need to focus on content that raises the
user interest and, simultaneously, the need of exploring new content in order
to globally improve the user experience creates an exploration-exploitation
dilemma, which is commonly formalized as a multi-armed bandit problem.
Indeed, contextual bandits have become a reference model for the study of
adaptive techniques in recommender systems (e.g, [12, 17, 63] and references
therein).

In many cases, however, the users targeted by a recommender system
form a social network. The network structure provides an important addi-
tional source of information, revealing potential affinities between pairs of
users. Being able to exploit such affinities could lead to a dramatic increase

16 2 Background

in the quality of the recommendations. This is because the knowledge gath-
ered about the interests of a given user may be exploited to improve the
recommendation to the user’s friends.

In Chapter 7, we propose an algorithmic approach to networked contex-
tual bandits which is provably able to leverage user similarities represented
as a graph. Our approach consists in running an instance of a contextual
bandit algorithm at each network node. These instances are allowed to com-
municate during the learning process, sharing contexts and user feedbacks.
Under the modeling assumption that user similarities are correctly reflected
by the network structure, interactions allow to effectively speed up the learn-
ing process that takes place at each node. This mechanism is implemented by
running instances of a linear contextual bandit algorithm in a specific repro-
ducing kernel Hilbert space (RKHS). The underlying kernel, previously used
for solving online multitask classification problems (e.g., [20]), is defined in
terms of the Laplacian matrix of the graph.

The Laplacian matrix provides the information we rely upon to share user
feedbacks from one node to the others, according to the network structure.
Since the Laplacian kernel is linear, the implementation in kernel space is
straightforward. Furthermore, the existing performance guarantees for the
specific bandit algorithm we use, can be directly lifted to the RKHS, and
expressed in terms of spectral properties of the user network.

The principled approach described above may have some possible draw-
backs for the practical usage: scalability and noise in the network. For this
reason, we present two variants of the proposed algorithm where it is com-
bined with nodes clustering. In the last part of Chapter 7, we compare these
algorithms with the state of the art running experiments on a number syn-
thetic datasets and two real-world datasets: one extracted from the social
bookmarking web service Delicious, and the other one from the music stream-
ing platform Last.fm.

2.3.1 Related work

The benefit of using social relationships in order to improve the quality of rec-
ommendations is recognized in the literature of content recommender systems
—see e.g., [12, 50, 73] and the survey [6]. Linear models for contextual bandits
were introduced in [7]. Their application to personalized content recommen-
dation was pioneered in [63], where the LinUCB algorithm was introduced.
An analysis of a two-stages variant of LinUCB was given in the subsequent
work [33].

To the best of our knowledge, this is the first work that combines contex-
tual bandits with the social graph information. After a pre-print of this work
has been made available [29], two papers about multi-armed bandits with
social connections have been published:

2.3 Networks of Bandits 17

• the Mixing Bandits algorithm presented in [16] is a heuristic heavy tailored
on the cold-start problem for recommendation systems. The authors do not
provide any sort of theoretical guarantee on the performances but, on the
other side, a limited feedback diffusion allows the algorithm to scale on
large scale problems.

• in [76] an extension of UCB1[8] to the networked case is presented and the
authors provide regret bounds for the presented algorithm.

Please note that both the aforementioned algorithms are non-contextual
multi-armed bandits: they do not provide the possibility to integrate infor-
mation about the actions (recommended items) in the model. Another non-
contextual model of bandit algorithms running on the nodes of a graph was
studied in [58]. In that work, only one node reveals its payoffs, and the statis-
tical information acquired by this node over time is spread across the entire
network following the graphical structure. The main result shows that the in-
formation flow rate is sufficient to control regret at each node of the network.
Other works, such as [5, 74], consider contextual bandits assuming metric or
probabilistic dependencies on the product space of contexts and actions. A
different viewpoint, where each action reveals information about other ac-
tions’ payoffs, is studied in [17, 65], although without the context provided
by feature vectors. More recently, a new model of distributed non-contextual
bandit algorithm has been presented in [77], where the number of commu-
nications among the nodes is limited, and all the nodes in the network have
the same best action.

Part II

Node Classification

21

A friend to all is a friend to none.
– Aristotle

Chapter 3

Online Node Classification: SHAZOO

In this chapter, we consider a nontrivial extension of TreeOpt and wta to
the case of weighted trees. The weights on the edges are usually very helpful
for predictions, and they allow to embody side information about the nodes.
Moreover, the tree structure is much richer of the line structure and this
gives us an advantage that our algorithm exploits to improve the quality of
the predictions.
The content of this chapter is a joint work with Nicolò Cesa-Bianchi, Claudio
Gentile and Fabio Vitale.

3.1 Problem setup

Let T = (V,E,W) be an undirected and weighted tree with |V | = n nodes,
positive edge weights Wi,j > 0 for (i, j) ∈ E, and Wi,j = 0 for (i, j) /∈ E. A
binary labeling of T is any assignment y = (y1, . . . , yn) ∈ {−1,+1}n of binary
labels to its nodes. We use (T,y) to denote the resulting labeled weighted
tree. The online learning protocol for predicting (T,y) is defined as follows.
The learner is given T while y is kept hidden. The nodes of T are presented to
the learner one by one, according to an unknown and arbitrary permutation
i1, . . . , in of V . At each time step t = 1, . . . , n node it is presented and the
learner must issue a prediction ŷit ∈ {−1,+1} for the label yit . Then yit is
revealed and the learner knows whether a mistake occurred. The learner’s
goal is to minimize the total number of prediction mistakes.

Following previous works [55, 54, 22, 25, 27], we measure the regularity of a
labeling y of T in terms of φ-edges, where a φ-edge for (T,y) is any (i, j) ∈ E
such that yi 6= yj . The overall amount of irregularity in a labeled tree (T,y)
is the weighted cutsize ΦW =

∑
(i,j)∈EφWi,j , where Eφ ⊆ E is the subset

of φ-edges in the tree. We use the weighted cutsize as our learning bias,
that is, we want to design algorithms whose predictive performance scales
with ΦW . Unlike the φ-edge count Φ = |Eφ|, which is a good measure of

23

24 3 Online Node Classification: SHAZOO

regularity for unweighted graphs, the weighted cutsize takes the edge weight
Wi,j into account1 when measuring the irregularity of a φ-edge (i, j). In the
sequel, when we measure the distance between any pair of nodes i and j
on the input tree T we always use the resistance distance metric d, that is,
d(i, j) =

∑
(r,s)∈π(i,j)

1
Wr,s

, where π(i, j) is the unique path connecting i to j.

3.2 A lower bound for weighted trees

In this section we show that the weighted cutsize can be used as a lower
bound on the number of online mistakes made by any algorithm on any
tree. In order to do so (and unlike previous papers on this specific sub-
ject —see, e.g., [25]), we need to introduce a more refined notion of ad-
versarial “budget”. Given T = (V,E,W), let ξ(M) be the maximum num-
ber of edges of T such that the sum of their weights does not exceed M ,

ξ(M) = max
{
|E′| : E′ ⊆ E,

∑
(i,j)∈E′ wi,j ≤M

}
. We have the following

simple lower bound

Theorem 3.1. For any weighted tree T = (V,E,W) there exists a random-
ized label assignment to V such that any algorithm can be forced to make at
least ξ(M)/2 online mistakes in expectation, while ΦW ≤M .

Proof. The proof of this theorem is given in Appendix A.1

Specializing [25, Theorem 1] to trees gives the lower bound K/2 under the
constraint Φ ≤ K ≤ |V |. The main difference between the two bounds is the
measure of label regularity being used: Whereas Theorem 3.1 uses ΦW , which
depends on the weights, [25, Theorem 1] uses the weight-independent quantity
Φ. This dependence of the lower bound on the edge weights is consistent with
our learning bias, stating that a heavy φ-edge violates the bias more than
a light one. Since ξ is nondecreasing, the lower bound implies a number of
mistakes of at least ξ(ΦW)/2. Note that ξ(ΦW) ≥ Φ for any labeled tree
(T,y). Hence, whereas a constraint K on Φ implies forcing at least K/2
mistakes, a constraint M on ΦW allows the adversary to force a potentially
larger number of mistakes.

In the next section we describe an algorithm whose mistake bound nearly
matches the above lower bound on any weighted tree when using ξ(ΦW) as
the measure of label regularity.

1 The weight value Wi,j typically encodes the strength of the connection (i, j). In fact,

when the nodes of a graph host more information than just binary labels, e.g., a vector of
feature values, then a reasonable choice is to set Wi,j to be some (decreasing) function of

the distance between the feature vectors sitting at the two nodes i and j . See also Remark

3.3.

3.3 The Shazoo algorithm 25

3.3 The Shazoo algorithm

In this section we introduce the shazoo algorithm, and relate it to previously
proposed methods for online prediction on unweighted trees (TreeOpt from
[22]) and weighted line graphs (wta from [25]). In fact, shazoo is optimal on
any weighted tree, and reduces to TreeOpt on unweighted trees and to wta
on weighted line graphs. Since TreeOpt and wta are optimal on any un-
weighted tree and any weighted line graph, respectively, shazoo necessarily
contains elements of both of these algorithms.

In order to understand our algorithm, we now define some relevant struc-
tures of the input tree T . See Figure 3.1 (left) for an example. These struc-
tures evolve over time according to the set of observed labels. First, we call
revealed a node whose label has already been observed by the online learner;
otherwise, a node is unrevealed. A fork is any unrevealed node connected to
at least three different revealed nodes by edge-disjoint paths. A hinge node
is either a revealed node or a fork. A hinge tree is any component of the
forest obtained by removing from T all edges incident to hinge nodes; hence
any fork or labeled node forms a 1-node hinge tree. When a hinge tree H con-
tains only one hinge node, a connection node for H is the node contained
in H. In all other cases, we call a connection node for H any node outside H
which is adjacent to a node in H. A connection fork is a connection node
which is also a fork. Finally, a hinge line is any path connecting two hinge
nodes such that no internal node is a hinge node.

Given an unrevealed node i and a label value y ∈ {−1,+1}, the cut
function cut(i, y) is the value of the minimum weighted cutsize of T over
all labellings y ∈ {−1,+1}n consistent with the labels seen so far and such
that yi = y. Define ∆(i) = cut(i,−1) − cut(i,+1) if i is unrevealed, and
∆(i) = yi, otherwise. The algorithm’s pseudocode is given in Algorithm 1.
At time t, in order to predict the label yit of node it, shazoo calculates ∆(i)
for all connection nodes i of H(it), where H(it) is the hinge tree containing
it. Then the algorithm predicts yit using the label of the connection node i
of H(it) which is closest to it and such that ∆(i) 6= 0 (recall from Section 3.1
that all distances/lengths are measured using the resistance metric). Ties
are broken arbitrarily. If ∆(i) = 0 for all connection nodes i in H(it) then
shazoo predicts a default value (−1 in the pseudocode).

If it is a fork (which is also a hinge node), then H(it) = {it}. In this case, it
is a connection node of H(it), and obviously the one closest to itself. Hence, in
this case shazoo predicts yt simply by ŷit = sgn

(
∆(it)

)
. See Figure 3.1 (mid-

dle) for an example. On unweighted trees, computing ∆(i) for a connection
node i reduces to the Fork Label Estimation Procedure in [22, Lemma 13].
On the other hand, predicting with the label of the connection node closest
to it in resistance distance is reminiscent of the nearest-neighbor prediction
of wta on weighted line graphs [25]. In fact, as in wta, this enables to take
advantage of labellings whose φ-edges are light weighted. An important lim-
itation of wta is that this algorithm linearizes the input tree. On the one

26 3 Online Node Classification: SHAZOO

1 2
1

3

2
4

2 1

1

1

2
1

>0>0

<0

+

+

+

+

+

2

4

3

6

1

5

1+a

1+2a

1+(V-1)a

1+3a

Fig. 3.1: Left: An input tree. Revealed nodes are dark gray, forks are doubly
circled, and hinge lines have thick black edges. The hinge trees not contain-
ing hinge nodes (i.e., the ones that are not singletons) are enclosed by dotted
lines. The dotted arrows point to the connection node(s) of such hinge trees.
Middle: The predictions of shazoo on the nodes of a hinge tree. The num-
bers on the edges denote edge weights. At a given time t, shazoo uses the
value of ∆ on the two hinge nodes (the doubly circled ones, which are also
forks in this case), and is required to issue a prediction on node it (the black
node in this figure). Since it is between a positive ∆ hinge node and a neg-
ative ∆ hinge node, shazoo goes with the one which is closer in resistance
distance, hence predicting ŷit = −1. Right: A simple example where the
mincut prediction strategy does not work well in the weighted case. In this
example, mincut mispredicts all labels, yet Φ = 1, and the ratio of ΦW to
the total weight of all edges is about 1/|V |. The labels to be predicted are
presented according to the numbers on the left of each node. Edge weights
are also displayed, where a is a very small constant.

for t = 1 . . . n

Let C
(
H(it)

)
be the set of the connection nodes i of H(it) for which ∆(i) 6= 0

if C
(
H(it)

)
6≡ ∅

Let j be the node of C
(
H(it)

)
closest to it

Set ŷit = sgn
(
∆(j)

)
else

Set ŷit = −1 (default value)

Algorithm 1: shazoo

hand, this greatly simplifies the analysis of nearest-neighbor prediction; on
the other hand, this prevents exploiting the structure of T , thereby causing
logarithmic slacks in the upper bound of wta. The TreeOpt algorithm, in-
stead, performs better when the unweighted input tree is very different from
a line graph (more precisely, when the input tree cannot be decomposed into
long edge-disjoint paths, e.g., a star graph). Indeed, TreeOpt’s upper bound
does not suffer from logarithmic slacks, and is tight up to constant factors on
any unweighted tree. Similar to TreeOpt, shazoo does not linearize the in-

3.3 The Shazoo algorithm 27

put tree and extends to the weighted case TreeOpt’s superior performance,
also confirmed by the experimental comparison reported in Section 7.3.

In Figure 3.1 (right) we show an example that highlights the importance
of using the ∆ function to compute the fork labels. Since ∆ predicts a fork
it with the label that minimizes the weighted cutsize of T consistent with
the revealed labels, one may wonder whether computing ∆ through mincut
based on the number of φ-edges (rather than their weighted sum) could be
an effective prediction strategy. Figure 3.1 (right) illustrates an example of
a simple tree where such a ∆ mispredicts the labels of all nodes, when both
ΦW and Φ are small.

Remark 3.2. We would like to stress that shazoo can also be used to predict
the nodes of an arbitrary graph by first drawing a random spanning tree T
of the graph, and then predicting optimally on T —see, e.g., [22, 25]. The
resulting mistake bound is simply the expected value of shazoo’s mistake
bound over the random draw of T . By using a fast spanning tree sampler [82],
the involved computational overhead amounts to constant amortized time per
node prediction on “most” graphs.

Remark 3.3. In certain real-world input graphs, the presence of an edge link-
ing two nodes may also carry information about the extent to which the
two nodes are dissimilar, rather than similar. This information can be en-
coded by the sign of the weight, and the resulting network is called a signed
graph. The regularity measure is naturally extended to signed graphs by
counting the weight of frustrated edges (e.g.,[57]), where (i, j) is frustrated
if yiyj 6= sgn(wi,j). Many of the existing algorithms for node classification
[86, 54, 55, 22, 53, 25] can in principle be run on signed graphs. However, the
computational cost may not always be preserved. For example, mincut [11] is
in general NP-hard when the graph is signed [67]. Since our algorithm spar-
sifies the graph using trees, it can be run efficiently even in the signed case.
We just need to re-define the ∆ function as ∆(i) = fcut(i,−1)− fcut(i,+1),
where fcut is the minimum total weight of frustrated edges consistent with
the labels seen so far. The argument contained in Section 3.4 for the pos-
itive edge weights (see, e.g., Eq. (3.1) therein) allows us to show that also
this version of ∆ can be computed efficiently. The prediction rule has to be
re-defined as well: We count the parity of the number z of negative-weighted
edges along the path connecting it to the closest node j ∈ C

(
H(it)

)
, i.e.,

ŷit = (−1)zsgn
(
∆(j)

)
.

Remark 3.4. In [22] the authors note that TreeOpt approximates a version
space (Halving) algorithm on the set of tree labellings. Interestingly, shazoo
is also an approximation to a more general Halving algorithm for weighted
trees. This generalized Halving gives a weight to each labeling consistent
with the labels seen so far and with the sign of ∆(f) for each fork f . These
weighted labellings, which depend on the weights of the φ-edges generated by
each labeling, are used for computing the predictions. One can show (details

28 3 Online Node Classification: SHAZOO

omitted due to space limitations) that this generalized Halving algorithm has
a mistake bound within a constant factor of shazoo’s.

3.4 Mistake bound analysis and implementation

We now show that shazoo is nearly optimal on every weighted tree T . We
obtain an upper bound in terms of ΦW and the structure of T , nearly match-
ing the lower bound of Theorem 3.1. We now give some auxiliary notation
that is strictly needed for stating the mistake bound.

Given a labeled tree (T,y), a cluster is any maximal subtree whose
nodes have the same label. An in-cluster line graph is any line graph
that is entirely contained in a single cluster. Finally, given a line graph L, we
set RWL =

∑
(i,j)∈L

1
Wi,j

, i.e., the (resistance) distance between its terminal

nodes.

Theorem 3.5. For any labeled and weighted tree (T,y), there exists a set
LT of O

(
ξ(ΦW)

)
edge-disjoint in-cluster line graphs such that the number of

mistakes made by shazoo is at most of the order of∑
L∈LT

min
{
|L|, 1 +

⌊
log
(
1 + ΦWRWL

)⌋}
.

Proof. The proof of this theorem is given in Appendix A.1

The above mistake bound depends on the tree structure through LT . The
sum contains O

(
ξ(ΦW)

)
terms, each one being at most logarithmic in the

scale-free products ΦWRWL . The bound is governed by the same key quantity
ξ
(
ΦW
)

occurring in the lower bound of Theorem 3.1. However, Theorem 3.5
also shows that shazoo can take advantage of trees that cannot be covered
by long line graphs. For example, if the input tree T is a weighted line graph,
then it is likely to contain long in-cluster lines. Hence, the factor multiplying
ξ
(
ΦW
)

may be of the order of log
(
1 + ΦWRWL

)
. If, instead, T has constant

diameter (e.g., a star graph), then the in-cluster lines can only contain a
constant number of nodes, and the number of mistakes can never exceed
O
(
ξ(ΦW)

)
. This is a log factor improvement over wta which, by its very

nature, cannot exploit the structure of the tree it operates on.2

As for the implementation, we start by describing a method for calculating
cut(v, y) for any unlabeled node v and label value y. Let T v be the maximal

2 One might wonder whether an arbitrarily large gap between upper (Theorem 3.5) and
lower (Theorem 3.1) bounds exists due to the extra factors depending on ΦWRW

L . One
way to get around this is to follow the analysis of wta in [25]. Specifically, we can adapt

here the more general analysis from that paper (see Lemma 2 therein) that allows us to
drop, for any integer K, the resistance contribution of K arbitrary non-φ edges of the line

graphs in LT (thereby reducing RW
L for any L containing any of these edges) at the cost

of increasing the mistake bound by K.

3.4 Mistake bound analysis and implementation 29

subtree of T rooted at v, such that no internal node is revealed. For any
node i of T v, let T vi be the subtree of T v rooted at i. Let Φvi (y) be the
minimum weighted cutsize of T vi consistent with the revealed nodes and such
that yi = y. Since ∆(v) = cut(v,−1) − cut(v,+1) = Φvv(−1) − Φvv(+1), our
goal is to compute Φvv(y). It is easy to see by induction that the quantity
Φvi (y) can be recursively defined as follows, where Cvi is the set of all children
of i in T v, and Yj ≡ {yj} if yj is revealed, and Yj ≡ {−1,+1}, otherwise:3

Φvi (y) =

∑
j∈Cvi

min
y′∈Yj

(
Φvj (y

′) + I {y′ 6= y}wi,j
)

if i is an internal node of T v

0 otherwise.
(3.1)

Now, Φvv(y) can be computed through a simple depth-first visit of T v. In all
backtracking steps of this visit the algorithm uses (3.1) to compute Φvi (y) for
each node i, the values Φvj (y) for all children j of i being calculated during
the previous backtracking steps. The total running time is therefore linear in
the number of nodes of T v.

Next, we describe the basic implementation of shazoo for the on-line
setting. A batch learning implementation will be given at the end of this
section. The online implementation is made up of three steps.

1. Find the hinge nodes of subtree T it . Recall that a hinge-node is
either a fork or a revealed node. Observe that a fork is incident to at least
three nodes lying on different hinge lines. Hence, in this step we perform a
depth-first visit of T it , marking each node lying on a hinge line. In order to
accomplish this task, it suffices to single out all forks marking each labeled
node and, recursively, each parent of a marked node of T it . At the end of this
process we are able to single out the forks by counting the number of edges
(i, j) of each marked node i such that j has been marked, too. The remaining
hinge nodes are the leaves of T it whose labels have currently been revealed.

2. Compute sgn(∆(i)) for all connection forks of H(it). From the
previous step we can easily find the connection node(s) of H(it). Then, we
simply exploit the above-described technique for computing the cut function,
obtaining sgn(∆(i)) for all connection forks i of H(it).

3. Propagate the labels of the nodes of C(H(it)) (only if it is not
a fork). We perform a visit of H(it) starting from every node r ∈ C(H(it)).
During these visits, we mark each node j ofH(it) with the label of r computed
in the previous step, together with the length of π(r, j), which is what we
need for predicting any label of H(it) at the current time step.

The overall running time is dominated by the first step and the calculation
of ∆(i). Hence the worst case running time is proportional to

∑
t≤|V | |V (T it)|.

This quantity can be quadratic in |V |, though this is rarely encountered in
practice if the node presentation order is not adversarial. For example, it is

3 The recursive computations contained in this section are reminiscent of the sum-product

algorithm [59].

30 3 Online Node Classification: SHAZOO

easy to show that in a line graph, if the node presentation order is random,
then the total time is of the order of |V | log |V |. For a star graph the total
time complexity is always linear in |V |, even on adversarial orders.

In many real-world scenarios, one is interested in the more standard prob-
lem of predicting the labels of a given subset of test nodes based on the
available labels of another subset of training nodes. Building on the above
on-line implementation, we now derive an implementation of shazoo for
this train/test (or “batch learning”) setting. We first show that computing
|Φii(+1)| and |Φii(−1)| for all unlabeled nodes i in T takes O(|V |) time. This
allows us to compute sgn(∆(v)) for all forks v in O(|V |) time, and then use
the first and the third steps of the on-line implementation. Overall, we show
that predicting all labels in the test set takes O(|V |) time.

Consider tree T i as rooted at i. Given any unlabeled node i, we perform a
visit of T i starting at i. During the backtracking steps of this visit we use (3.1)
to calculate Φij(y) for each node j in T i and label y ∈ {−1,+1}. Observe now
that for any pair i, j of adjacent unlabeled nodes and any label y ∈ {−1,+1},
once we have obtained Φii(y), Φij(+1) and Φij(−1), we can compute Φji (y) in

constant time, as Φji (y) = Φii(y)−miny′∈{−1,+1}
(
Φij(y

′) + I {y′ 6= y}wi,j
)
. In

fact, all children of j in T i are descendants of i, while the children of i in T i

(but j) are descendants of j in T j . shazoo computes Φii(y), we can compute

in constant time Φji (y) for all child nodes j of i in T i, and use this value for

computing Φjj(y). Generalizing this argument, it is easy to see that in the

next phase we can compute Φkk(y) in constant time for all nodes k of T i such
that for all ancestors u of k and all y ∈ {−1,+1}, the values of Φuu(y) have
previously been computed.

The time for computing Φss(y) for all nodes s of T i and any label y is
therefore linear in the time of performing a breadth-first (or depth-first) visit
of T i, i.e., linear in the number of nodes of T i. Since each labeled node with
degree d is part of at most d trees T i for some i, we have that the total
number of nodes of all distinct (edge-disjoint) trees T i across i ∈ V is linear
in |V |.

Finally, we need to propagate the connection node labels of each hinge tree
as in the third step of the online implementation. Since also this last step
takes linear time, we conclude that the total time for predicting all labels is
linear in |V |.

3.5 Multiclass implementation

Our experiments later in this part of the thesis will be run on multiclass
datasets. The extension of shazoo to the multiclass case is pretty simple
and involves only the labelling of the fork nodes: instead of computing the
mincut with only two classes we should compute the cut for all classes and

3.5 Multiclass implementation 31

then choose the label with the minimum cut instead of the sign of ∆.
The multiclass version of shazoo has a running time that also depends on
the number of classes, but for our purposes this can be considered a constant
factor.

Note that the multiclass problem is harder than the binary problem. It is
easy to show that the generic lower bound on the number of mistakes in the

node classification problem with C classes is (C−1)
C ξ(M).

Chapter 4

Batch Node Classification: MUCCA

In this chapter, we present an algorithm that is intrinsically multiclass and
based on a completely different approach with respect to shazoo. The
method presented in the following pages has been created for a special case
of the strategic game presented in [42]. This “framework” is based on the
idea that networks are made of entities making decisions only for themselves
without coordination, and their only goal is to maximize their own reward.
This may be a good model for many practical applications related to social
networks. The presented algorithm is motivated by the need of scalability
that can not be addressed by the approach introduced in [42], and provides
a simple, but effective, method for finding a Nash Equilibrium of the game.

4.1 Basic Framework

Given a weighted graph G = (V,E,W), a multiclass labelling of G is an
assignment y = (y1, .., yn) ∈ {0, 1, ..., c}n where n = |V |.
We expect our graph to respect a notion of regularity where adjacent nodes
often have the same label: the classic notion of homophily. The learner is
given the graph G, but just a subset of y, that we call training set. The
learner’s goal is to predict the remaining labels minimizing while the number
of mistakes. In [27], the authors introduce an irregularity measure of the graph
G, for the labelling y, defined as the ratio between the sum of the weights of
the edges between nodes with different labels and the sum of all the weights.
Intuitively, we can view the weight of an edge as a similarity measure between
two nodes. We expect highly similar nodes to have the same label, and edges
between nodes with different labels being “light”. Based on this intuition, we
assign unknown labels to nodes in a way that minimizes the weighted cut
induced by this new labelling of the graph.

After these assumptions on the structure of the graph and the labelling,
it is easy to see that we can formalize the binary classification problem as

33

34 4 Batch Node Classification: MUCCA

a standard mincut problem (i.e., see [11]). It is sufficient to add to virtual
nodes, that we will call respectively source and target. The first connected
via new virtual edges to all the nodes with positive labels, and the second
connected to all the nodes with negative labels. The weights of these new
edges will be +∞. In this way we have a standard mincut problem: we want
to isolate the source and the target in two different connected components
removing the smallest set of edges.
Generalizing this approach to the multiclass case, naturally leads us to the
Multiway Cut (or Multiterminal Cut — see [34]) problem. We can use the
same technique used for the binary case and connect all the nodes with the
same label to the same terminal (a new virtual node), avoiding to connect to
the same terminal nodes with different labels. Given a graph and the list of
terminal nodes, the multiway cut problem consists in finding a set of edges
such that, once removed, each terminal belongs to a different component.
The goal is to minimize the sum of the weights of the removed edges.
Unfortunately, multiway cut is proven to be APX-hard when the number
of terminals is bigger than two, and this definitely can not be considered a
viable way (see [36] for more information about the multiway cut problem).

Furthermore, we would like to point our attention on real-world node clas-
sification problem, where it is often not realistic to think of the network as
a big coordinated entity. Usually, entities in the network are dependent on
each other, and each of them makes decisions only for itself, looking only at
its own utility. For example, this is the case when people in a social network
should choose an expensive service, or to adopt a particular behavior.

4.2 The Graph Transduction Game

In this section we describe the strategic interaction game introduced in [42]
that, in a particular sense, aims at distributing among the nodes the cost of
approximating the multiway cut. This is obtained through a non-cooperative
game, and the final label assignment is a Nash Equilibrium of the game. No-
tice that, because this game is non-cooperative, each player maximizes its
own payoff disregarding what it can do to maximize the sum of utilities of all
the players. In non-cooperative game theory, the maximum social welfare is
total utility that a centralized rational entity controlling all the players can
achieve. You will notice that by the construction of this game, the maximum
social welfare is twice the the sum of the weights of the edges minus twice the
value of the multiway cut. Unfortunately, in the general case finding a Nash
Equilibrium does not provide any guarantee about the collective result.
In the Graph Transduction Game (later called GTG), the graph topology is
known in advance and each node of the graph is a player of the aforemen-
tioned game, and each possible label of the nodes is a pure strategy of the

4.2 The Graph Transduction Game 35

players. Because we are working in a batch setting, we will have a train/test
split that induces two kinds of players: determined players(ID) those are
nodes with a known label (provided by the training set), so in our game they
will be players with a fixed strategy (they are not allowed to change their
strategy because we can not change the labels given as training set) and un-
determined players(IU) those that do not have a fixed strategy and can
choose whatever strategy they prefer (we have to predict their labels).

The game is defined as Γ = (I, S, π), where I = {1, 2, ..., n} is the set
of players, S = ×i∈ISi is the joint strategy space (the Cartesian product of
all strategy sets Si ⊆ {1, 2, ...c}), and π : S → Rn is the combined payoff
function which assigns a real valued payoff πi(s) ∈ R to each pure strategy
profile s ∈ S and player i ∈ I.

A mixed strategy of player i ∈ I is a probability distribution x over the
set of the pure strategies of i. Each pure strategy k corresponds to a mixed
strategy where all the strategies but the k-th one have probability equals to
zero.

We define the utility function of the player i as

ui(s) =
∑
s∈S

x(s)πi(s)

where x(s) is the probability of s.
We assume the payoff associated to each player is additively separable

(this will be clear in the following lines). This makes GTG a member of
a subclass of the multi-player games called poly-matrix games. For a pure
strategy profile s = (s1, s2, ...sn) ∈ S, the payoff function of every player
i ∈ I is:

πi(s) =
∑
j∼i

wijI{si=sj}

where i ∼ j means that i and j are neighbours, this can be written in matrix
form as

πi(s) =
∑
j∼i

Aij(si, sj)

where Aij ∈ Rc×c is the partial payoff matrix between i and j, defined as
Aij = Ic×wij , where Ic is the identity matrix of size c and Aij(x, y) represents
the element of Aij at row x and column y. The utility function of each player
i ∈ IU can be re-written as follows:

ui(s) =
∑
i∼j x

T
i Aijxj

=
∑
i∼j wijx

T
i xj

=
∑
i∼j wij

∑c
k=1 xikxjk

where k is an action selected from the player’s set and in case i is a determined
node with training label k, x’s components will be always zeros except the
k-th corresponding to the pure strategy k. Because the utility function of

36 4 Batch Node Classification: MUCCA

each player is linear, it is easy to see that players can achieve their maximum
payoff using pure strategies.

In a non-cooperative game, a vector of strategies SNE is said to be a (pure
strategies) Nash Equilibrium, if ∀i ∈ I, ∀s′i ∈ Si : s′i 6= si ∈ SNE , we have
that

ui(si, S
−i
NE) ≥ ui(s′i, S−iNE)

where ui(si, S
−i) is the strategy configuration S except the i-th one, replaced

by si. In practice, no player i can change its strategy si to an alternative
strategy while improving its payoff.
There are no guarantees that the Nash Equilibrium exists in pure strategies,
but any game with a finite set of players and finite set of strategies has a
Nash Equilibrium in mixed strategies ([71], also see [72]). In this case each
player does not have to choose a strategy but it mixes its choices over its
strategies. Instead of maximizing its payoff, it will maximize its expected
payoff.

With a slight abuse of terminology, we hereafter refer to labels or pure
strategies with the same meaning.

4.2.1 The Evolutionary Stable Strategies approach

In this section we briefly present the approach employed in [42] to find a Nash
Equilibrium. The goal is achieved using the Evolutionary Stable Strategies
(ESS), a well-known approach in the game-theoretic literature (see [80]).
The only aim of this section is to provide the method previously used for
the general case of GTG, and make the comparison in Chapter 5 easier to
understand for the readers.

The ESS approach considers a game played repeatedly; each repetition of
the game is seen as a generation, where an imaginary population evolves
through a selection mechanism that, at each step, gives to the best “choices”
a growing portion of the total population.
The algorithm (later called GTG-ESS), at each generation, updates the prob-
ability associated to every action h of every player i as

xih(t+ 1) = xih(t)
ui(eh)

ui(x(t))

The previous formula is just the discrete version of the so-called multi-
population replicator dynamic:

ẋih = xih(ui(eh, x−i)− ui(x))

4.3 A scalable method for the undirected trees 37

where the dot notation represents the derivative with respect to time, eh is
a vector of zeros except the h-th component that is one, and xih is the h-
th strategy of player i. The fixed points of the previous equations are Nash
Equilibria, and the discrete version has the same properties — for further
details see [42].
The computational cost of finding the Nash Equilibrium is O(k|V |2) where
k is the number of iterations, and to the best of our knowledge does not
exist an upper bound on the number of iterations. Anyway, the authors of
[42] experimentally found that the number of iterations grows linearly with
the number of nodes, so they consider the empirical running time close to
O(|V |3).

4.3 A scalable method for the undirected trees

In many practical sequences, GTG-ESS can not be considered a feasible so-
lution, even if the time complexity of the algorithm were to be shown in the
order of Θ(|V |3).
A possible alternative is to apply some known results about regret mini-
mization, such as those described in [30], to converge to a weaker notion of
equilibrium, for example, the Correlated Equilibrium. Unfortunately, the re-
sults of our preliminary experiments with the Correlated Equilibrium were
not satisfactory.
In this section we present mucca: a Multiclass Classification Algorithm.
The algorithm consists in finding a Nash Equilibrium of the Graph Trans-
duction Game on a special graph: an undirected tree. We will show that in
this way we can achieve both good accuracy and scalability. The rest of this
section will assume that the graph G is a tree.
In the following we will use most of the notions introduced in the previous
chapter: hinge tree, fork node, and so forth. The only three new notions
introduced in this section are:

• Native hinge tree: component of the forest created by removing from G
all the edges incident to revealed nodes. Revealed nodes are intended to
be part of the tree.

• ε-edge: given Pij , the path between i and j, an ε-edge is εij ∈ arg mine∈Pij we,
where we is the weight of the edge e.

• Grafted tree: a tree without hinge nodes connected to just one node on
a hinge line

Endowed of these new notions, we then proceed to describe the simplest
implementation of mucca. We split the algorithmic activity into four phases
to make it even simpler to understand:

1. Mark all the paths between revealed nodes and find all the fork nodes
2. Estimate the label of each fork node

38 4 Batch Node Classification: MUCCA

3. Assign a label to all the nodes on the hinge lines using a min-cut technique
4. Assign a label to all the remaining nodes

The implementation of mucca presented in this paper runs in O(f |V |)
where f is the number of forks, but it is possible to obtain a better imple-
mentation using some strategies explained in the previous chapter. In the
following we will describe in detail all the phases of the algorithm:

1. Starting from each revealed node, mucca does a breadth-first search until
another revealed node or a leaf is found. Then if a revealed node was found,
during the backtracking process, mucca marks the edges on the path to
the starting node with a special flag since they are on an hinge line. After
that, each node with more that has more than two disjoint paths on the
hinge lines to reach a revealed nodes, is a fork.

2. Given a native hinge tree H that contains the fork F , we can categorize its
revealed nodes into c categories using their labels. For each path between
F and each connection node of H, we have an ε-edge as defined before.
The label assigned to F is the same as the category (of the connection
nodes) that has the maximum sum of weights over the distinct ε-edges on
the path between F and the nodes of that category.

3. On every hinge line, we label the nodes using min-cut: in case the hinge
nodes at the beginning and at the end of the line has the same label, all
the nodes on the hinge line will be labelled with that label. Otherwise, all
the nodes before the ε-edge are assigned with the label of the node at the
beginning of the line, and the others with the label of the node at the end
of the line. In case we have more than one edge with the same weight of the
ε-edge (for example, all the edges have the same weight), we use nearest
neighbour to find the closest revealed node to complete the labelling of
nodes in the line.

4. All the remaining nodes are in grafted trees. In this case, we assign the
label of the node on the hinge line (connected to the tree) to all the nodes
in that grafted tree.

Now we have a complete knowledge of all the operations performed by the
algorithm and we can prove that mucca finds a Nash Equilibrium for this
special case of the GTG.

Theorem 4.1. The labelling found by mucca is a Nash Equilibrium of the
Graph Transduction Game when the graph is an undirected tree.

Proof. As we explained in Section 3, a profile of strategies SNE is a Nash
Equilibrium if no one has incentive to deviate from its strategy. This means
that ∀i ∈ I, ui(si, S

−i
NE) ≥ ui(s′i, S

−i
NE). For the purpose of contradiction sup-

pose there is a node j such that it can improve its payoff by changing its
strategy.
j can not be contained within a grafted tree (those labelled in phase 4) be-
cause all the nodes contained in those trees have the same labels, so, whatever

4.3 A scalable method for the undirected trees 39

the label, each of them gets a payoff of
∑
i∼j wij , the maximum possible pay-

off.
j can not be on a hinge line because they are labelled using min-cut, so in the
best case the payoff of each node is already the maximum payoff; in the worst
case the payoff is the maximum minus the weight of the ε-edge. Because the
ε-edge has the minimum weight, there is no chance to improve the payoff.
j can not be a revealed node (obviously).
j can not be a fork. Because we use min-cut to label the hinge lines if the
ε-edge of a hinge line is not incident to the fork, the node adjoining the fork
on that hinge line will have the same label of the fork. In this way the fork
will get the part of payoff given by the edge between it and the adjoining
node. Even if the ε-edges are incident to the fork, the label prediction can
not achieve a payoff better than the one achieved by the majority vote.
Because j can not be a revealed node, nor a fork, nor a node on a hinge line,
nor a node on a tree with just a connection node, it can not be in G, and
this concludes the proof.

Note that the labels of the unlabelled nodes of every native hinge tree can
be predicted using only information about that singular native hinge tree.
In this way, once the tree is split into native hinge trees, the predictions for
the labels contained in every sub tree are independent from the other sub
trees. Predictions can be computed using various threads, processes or even
machines and we just need to retrieve a list node ids and labels. This optional
parallelization is in addition to the already high scalability of mucca.

In the next chapter we report the results of an experimental comparison
on synthetic and real world datasets.

Chapter 5

Node Classification: Experiments

In this chapter, we report the results of an experimental comparison between
the algorithms described in the previous chapters and the state of the art. We
tested the algorithms on four real-world weighted graphs and three artificial
graphs with different levels of noise generated from the well-known USPS
dataset. The tables with all the numerical results are available in Appendix A.

5.1 Algorithms

In this section we briefly describe some of the algorithms used in the following
experiments. Some of them have already been introduced in Chapter 3 and
Chapter 4.

• Evolutionary Stable Strategies for GTG (gtg-ess).
gtg-ess [42] is a batch algorithm that works in framework described in
Chapter 4. It is a generalization of mucca that works on the original
graph. Its time complexity is not guaranteed to be polynomial, but in all
our experiments its running time is comparable with labprop’s.

• Label Propagation (labprop).
labprop [86, 9, 10] is a batch transductive learning method computed by
solving a system of linear equations which requires total time of the order
of |E| × |V |. This relatively high computational cost should be taken into
account when comparing labprop to faster online algorithms.

• Weighted Tree Algorithm (wta).
As explained before, wta can be viewed as a special case of shazoo. When
the input graph is not a line, wta turns it into a line by first extracting
a spanning tree of the graph, and then linearizing it. The implementation
described in [25] runs in constant amortized time per prediction, whenever

41

42 5 Node Classification: Experiments

the spanning tree sampler runs in time Θ(|V |).

• Graph Perceptron algorithm (gpa).
gpa [55] is one of the first algorithms for online learning on graphs that
we include in our comparison as baseline. The algorithm is a kernelized
Perceptron where the kernel is given by the inverse Laplacian matrix1 of
the graph (or tree for the fast implementation).

In our experiments, we combined gpa, mucca, shazoo and wta with
spanning trees generated in different ways and following [55, 25]. We also
ran mucca, shazoo and wta using committees of spanning trees, and then
aggregating predictions via a majority vote. The resulting algorithms are
denoted by k*AlgorithmName, where k is the number of spanning trees
in the aggregation. We used k = 3, 7, 11 since from our experiments on these
datasets k >> 11 gives a very limited advantage, but it will probably help in
the case of bigger datasets.
Unfortunately we could not run committees of gpa predictors due to our
limited computational resources.

5.2 Spanning trees

In this section we briefly explain how we generated the spanning trees used
for the experiments described later in this chapter:

• Random Spanning Tree (rst). Following Chapter 4 of [64], we draw a
weighted spanning tree with probability proportional to the product of its
edge weights.

• Minimum Spanning Tree (mst). This is the spanning tree that mini-
mizes the sum of the resistors on its edges. This tree best approximates
the original graph in terms of the trace norm distance of the corresponding
Laplacian matrices.

• Breadth First Spanning Tree (bfst). This is a classical spanning tree
obtained with a breadth first visit on the graph started from a randomly
selected root.

1 The Laplacian matrix L is defined as L =
[
Li,j

]n
i,j=1

, where Li,i is the degree of node

i (i.e., the number of edges or the sum of the weights of the edges incident to that node)

and, for i 6= j, Li,j equals −wij if (i, j) ∈ E, and 0 otherwise

5.3 Datasets 43

5.3 Datasets

For our experiments, we used four real-world datasets: CORA, COAU-
THORS, IMDB, PUBMED.2.

• CORA3 is a directed graph with 2,708 nodes and 5,429 arcs. Each node
represents a scientific publications classified into one of seven classes: Case
Based, Genetic Algorithms, Neural Networks, Probabilistic Methods, Re-
inforcement Learning, Rule Learning and Theory. Arcs are given by cita-
tions between publications.

• COAUTHORS4 is an undirected graph with 1,711 nodes and 7,507
edges. Each node of the graph represents an author from a subset DBLP,
and each edge represents a collaboration between two authors, weights on
the edges are given by the number of co-authored papers. Authors are
picked in 4 different areas (classes): Machine Learning, Data Mining, In-
formation Retrieval and Databases. Classes are quite balanced since each
class contains about 400 authors.

• IMDB5 is an undirected graph with 17,046 nodes and 993,528 edges.
Each node of the graph represents a movie and each node represents a co-
authorship. Movies are divide in four genres (classes): “Romance”, “Ac-
tion”, “Animation” and “Thriller”.

• PUBMED6 is a graph with 19,717 nodes and 44,338 arcs. Each node of
the graph represents a scientific publication pertaining to diabetes classi-
fied into three different classes.

Most of the presented algorithms work exclusively on undirected graphs,
so we created a symmetrized version of the adjacency matrix A as Asym ←
A + A>. In this way connections are stronger when, in the original graph,
there are reciprocal arcs.

Moreover, we compared the same algorithms on three synthetic datasets
with different levels of noise created from the well-known USPS dataset. All
the following datasets have 9,298 nodes and the first version (without “noisy”
edges) has 68,818 edges. Given two data points in USPS called xi and xj ,

weights on the edges are set as wi,j = exp
(
−‖xi − xj‖2

/
σ2
i,j

)
, if j is one of

the k nearest neighbors of i, and 0 otherwise. To set σ2
i,j , we first computed

the average square distance between i and its k nearest neighbors (call it σ2
i),

2 These datasets have been made available by the authors of [47]
3 http://www.cs.umd.edu/sen/lbc-proj/data/cora.tgz
4 This dataset is extracted from the DBLP database and previously used in [48]
5 http://www.imdb.com/
6 http://www.cs.umd.edu/projects/linqs/projects/lbc/Pubmed-Diabetes.tgz

44 5 Node Classification: Experiments

Datasets Number of Classes Number of Nodes Number of Edges

CORA 7 2708 5069

COAUTHORS 4 1711 7507
IMDB 4 17046 993528

PUBMED 3 19717 44325

Table 5.1: Statistics about the real-world datasets used in the experimental
comparison. The number of edges calculated after the (eventual) symmetriza-
tion.

then we computed σ2
j in the same way, and finally set σ2

i,j =
(
σ2
i + σ2

j

)/
2.

Datasets are the following:

• USPS-0: is a graph created connecting the 10 nearest neighbours of each
data point in the USPS dataset and then symmetrized. The resulting graph
is excellently clustered and it can be considered an easy prediction task
for our algorithms.

• USPS-10: is the USPS-0 dataset with 10,000 more edges created uni-
formly at random and with random weights in (0, 1) on them.

• USPS-25: is the USPS-10 dataset with 15,000 more edges created uni-
formly at random and with random weights in (0, 1) on them.

The noisy versions of the datasets are intended to be used to explore
situations in which the assumptions made about the labels are not respected.
In this way we can observe how the performances degrade when the noise
increase.

5.4 Results

In the below figures, we show the averaged classification error rates (percent-
ages) achieved by the various algorithms on the first four datasets mentioned
above. For each dataset we trained ten times over a random subset of 2.5%,
5%, 10%, 25%, 33,33% and 50% of the total number of nodes and tested on
the remaining ones. We used gtg-ess and labprop as “yardsticks” for our
comparison. Standard deviations are reported in parenthesis.

Our empirical results can be briefly summarized as follows:

• gtg-ess is always the best classifier and its advantage over labprop be-
comes bigger and bigger when the training set is small or the dataset is
noisy. Moreover, the “noisy” edges we added affect only marginally its

5.4 Results 45

 0

 10

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

USPS-0

GTG-ESS
LABPROP
GPA+MST

WTA+MST
SHAZOO+MST
MUCCA+MST

3*WTA+RST
3*SHAZOO+RST
3*MUCCA+RST

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

USPS-10

GTG-ESS
LABPROP
GPA+MST

WTA+MST
SHAZOO+MST
MUCCA+MST

3*WTA+RST
3*SHAZOO+RST
3*MUCCA+RST

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

USPS-25

GTG-ESS
LABPROP
GPA+MST

WTA+MST
SHAZOO+MST
MUCCA+MST

3*WTA+RST
3*SHAZOO+RST
3*MUCCA+RST

Fig. 5.1: Plots of the most interesting results on the USPSs datasets.

46 5 Node Classification: Experiments

 10

 20

 30

 40

 50

 60

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

CORA

GTG-ESS
LABPROP
GPA+MST

WTA+MST
SHAZOO+MST
MUCCA+MST

3*WTA+RST
3*SHAZOO+RST
3*MUCCA+RST

 20

 30

 40

 50

 60

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

COAUTHORS

GTG-ESS
LABPROP
GPA+MST

WTA+MST
SHAZOO+MST
MUCCA+MST

3*WTA+RST
3*SHAZOO+RST
3*MUCCA+RST

Fig. 5.2: Plots of the most interesting results on the CORA and COAU-
THORS datasets: the smallest real-world datasets in this comparison.

5.4 Results 47

 30

 40

 50

 60

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

IMDB

GTG-ESS
LABPROP
GPA+MST

WTA+MST
SHAZOO+MST
MUCCA+MST

3*WTA+RST
3*SHAZOO+RST
3*MUCCA+RST

 20

 30

 40

 10 20 30 40 50

E
R

R
O

R
 R

A
T

E
 (

%
)

TRAINING SET SIZE (%)

PUBMED

GTG-ESS
LABPROP
GPA+MST

WTA+MST
SHAZOO+MST
MUCCA+MST

3*WTA+RST
3*SHAZOO+RST
3*MUCCA+RST

Fig. 5.3: Plots of the most interesting results on the IMDB and PUBMED
datasets, two medium-size real-world networks.

48 5 Node Classification: Experiments

performances.

• When the clusters of the graph are well separated (like in USPS-0) the
tree-predictors perform best using the mst. When the topology of the
graph contains some noise, the tree-based predictors can not rely on a
single tree but they need a committee of spanning trees. In the latter case
the committees of spanning trees provide a great improvement over the
performances of a single tree.

• Committees of predictors on trees are often in the same ballpark of
gtg-ess and labprop. Moreover, gtg-ess, 11*shazoo, 11*mucca and
labprop’s performances come often closer as the training set grows.

• The variance is often too high to determine which is the best predictor
between shazoo and mucca, but it seems that: mucca performs better
on the real datasets, while shazoo performs better on noisy synthetic
datasets. Anyway, usually both of them perform better than wta.

• The wall-clock time is similar for muccaand shazoo, as expected. Com-
mittees of muccamay be up to 15x faster than gtg-ess.

• gpa, as shown in literature, is not a very good option in practice.

Part III

Link Classification

51

All the world is made of faith, and trust, and pixie dust.
– James Matthew Barrie

Chapter 6

Link Classification

In this chapter, we consider the problem of link classification on signed net-
works with stochastic noise. Signed networks are an important emerging topic
in the machine learning community since they are often employed to formal-
ize many practical scenarios, mostly related with trust and distrust among
different users. From a mathematical point of view, these networks are graphs
whose edges are endowed with a sign representing the positive or negative
nature of the relationship between the incident nodes. In the following, we as-
sume that the underlying structure of the graph is composed of two clusters
where inter-cluster edges are negative and intra-cluster edges are positive.
This particular bias is supported and explained by the social balance theory.

The content of this chapter is a joint work with Nicolò Cesa-Bianchi, Claudio
Gentile and Fabio Vitale.

6.1 Problem Setup

We consider undirected and connected graphs G = (V,E) with unknown
edge labeling Yi,j ∈ {−1,+1} for each (i, j) ∈ E. Edge labels can collectively
be represented by the associated signed adjacency matrix Y , where Yi,j = 0
whenever (i, j) 6∈ E. In the sequel, the edge-labeled graph G will be denoted
by (G, Y).

We define a simple stochastic model for assigning binary labels Y to the
edges of G. This is used as a basis and motivation for the design of our
link classification strategies. We assume that the noise in the labeling is
stochastic, in particular that edge’s labels are obtained by perturbing an
underlying labeling which is initially consistent with an arbitrary (and un-
known) two-clustering. More formally, given an undirected and connected
graph G = (V,E), the labels Yi,j ∈ {−1,+1}, for (i, j) ∈ E, are assigned as
follows. First, the nodes in V are arbitrarily partitioned into two sets, and la-

53

54 6 Link Classification

bels Yi,j are initially assigned consistently with this partition (within-cluster
edges are positive and between-cluster edges are negative). Note that the con-
sistency is equivalent to the following multiplicative rule: For any (i, j) ∈ E,
the label Yi,j is equal to the product of signs on the edges of any path con-
necting i to j in G. This is in turn equivalent to say that any simple cycle
within the graph contains an even number of negative edges. Then, given a
nonnegative constant p < 1

2 , labels are randomly flipped in such a way that
P
(
Yi,j is flipped

)
≤ p for each (i, j) ∈ E. We call this a p-stochastic assign-

ment. Note that this model allows for correlations between flipped labels.
A learning algorithm in the link classification setting receives a training

set of signed edges and, out of this information, builds a prediction model for
the labels of the remaining edges. It is quite easy to prove a lower bound on
the number of mistakes that any learning algorithm makes in this model.

Theorem 6.1. For any undirected graph G = (V,E), any training set E0 ⊂
E of edges, and any learning algorithm that is given the labels of the edges
in E0, the number M of mistakes made by A on the remaining E \E0 edges
satisfies EM ≥ p

∣∣E \ E0

∣∣, where the expectation is with respect to a p-
stochastic assignment of the labels Y .

Proof. Let Y be the following randomized labeling: first, edge labels are set
consistently with an arbitrary two-clustering of V . Then, a set of 2p|E|
edges is selected uniformly at random and the labels of these edges are
set randomly (i.e., flipped or not flipped with equal probability). Clearly,
P(Yi,j is flipped) = p for each (i, j) ∈ E. Hence this is a p-stochastic as-
signment of the labels. Moreover, E \ E0 contains in expectation 2p

∣∣E \ E0

∣∣
randomly labeled edges, on which A makes p

∣∣E \E0

∣∣ mistakes in expectation.

In this paper we focus on active learning algorithms. An active learner for
link classification first constructs a query set E0 of edges, and then receives
the labels of all edges in the query set. Based on this training information,
the learner builds a prediction model for the labels of the remaining edges
E \E0. We assume that the only labels ever revealed to the learner are those
in the query set. In particular, no labels are revealed during the prediction
phase. It is clear from Theorem 6.1 that any active learning algorithm that
queries the labels of at most a constant fraction of the total number of edges
will make on average Ω(p|E|) mistakes.

We often write VG and EG to denote, respectively, the node set and the
edge set of some underlying graph G. For any two nodes i, j ∈ VG, P(i, j) is
any path in G having i and j as terminals, and |P(i, j)| is its length (number
of edges). The diameter DG of a graph G is the maximum over pairs i, j ∈ VG
of the shortest path between i and j. Given a tree T = (VT , ET) in G, and
two nodes i, j ∈ VT , we denote by dT (i, j) the distance of i and j within T ,
i.e., the length of the (unique) path PT (i, j) connecting the two nodes in T .
Moreover, πT (i, j) denotes the parity of this path, i.e., the product of edge
signs along it. When T is a rooted tree, we denote by ChildrenT (i) the set of

6.2 Algorithms and their analysis 55

children of i in T . Finally, given two disjoint subtrees T ′, T ′′ ⊆ G such that
VT ′ ∩ VT ′′ ≡ ∅, we let EG(T ′, T ′′) ≡

{
(i, j) ∈ EG : i ∈ VT ′ , j ∈ VT ′′

}
.

6.2 Algorithms and their analysis

In this section, we introduce and analyze a family of active learning algo-
rithms for link classification. The analysis is carried out under the p-stochastic
assumption. As a warm up, we start off recalling the connection to the the-
ory of low-stretch spanning trees (e.g., [41]), which turns out to be useful in
the important special case when the active learner is afforded to query only
|V | − 1 labels.

Let Eflip ⊂ E denote the (random) subset of edges whose labels have
been flipped in a p-stochastic assignment, and consider the following class
of active learning algorithms parameterized by an arbitrary spanning tree
T = (VT , ET) of G. The algorithms in this class use E0 = ET as query
set. The label of any test edge e′ = (i, j) 6∈ ET is predicted as the parity
πT (e′). Clearly enough, if a test edge e′ is predicted wrongly, then either
e′ ∈ Eflip or PT (e′) contains at least one flipped edge. Hence, the number of
mistakes MT made by our active learner on the set of test edges E \ET can
be deterministically bounded by

MT ≤ |Eflip|+
∑

e′∈E\ET

∑
e∈E

I {e ∈ PT (e′)} I {e ∈ Eflip} (6.1)

where I {·} denotes the indicator of the Boolean predicate at argument. A
quantity which can be related to MT is the average stretch of a spanning tree
T which, for our purposes, reduces to

1
|E|

[
|V | − 1 +

∑
e′∈E\ET

∣∣PT (e′)
∣∣] .

A stunning result of [41] shows that every connected, undirected and
unweighted graph has a spanning tree with an average stretch of just
O
(
log2 |V | log log |V |

)
. If our active learner uses a spanning tree with the

same low stretch, then the following result holds.

Theorem 6.2 ([26]). Let (G, Y) = ((V,E), Y) be a labeled graph with p-
stochastic assigned labels Y . If the active learner queries the edges of a
spanning tree T = (VT , ET) with average stretch O

(
log2 |V | log log |V |

)
, then

EMT ≤ p|E| × O
(
log2 |V | log log |V |

)
.

We call the quantity multiplying p |E| in the upper bound the optimality
factor of the algorithm. Recall that Theorem 6.1 implies that this factor
cannot be smaller than a constant when the query set size is a constant
fraction of |E|.

56 6 Link Classification

Although low-stretch trees can be constructed in time O
(
|E| ln |V |

)
, the

algorithms are fairly complicated (we are not aware of available implemen-
tations), and the constants hidden in the asymptotics can be high. Another
disadvantage is that we are forced to use a query set of small and fixed size
|V | − 1. In what follows we introduce algorithms that overcome both limita-
tions.

A key aspect in the analysis of prediction performance is the ability to
select a query set so that each test edge creates a short circuit with a training
path. This is quantified by

∑
e∈E I {e ∈ PT (e′)} in (6.1). We make this explicit

as follows. Given a test edge (i, j) and a path P(i, j) whose edges are queried
edges, we say that we are predicting label Yi,j using path P(i, j) Since (i, j)
closes P(i, j) into a circuit, in this case we also say that (i, j) is predicted
using the circuit.

Theorem 6.3. Let (G, Y) = ((V,E), Y) be a labeled graph with p-stochastic
assigned labels Y . Given query set E0 ⊆ E, the number M of mistakes made
when predicting test edges (i, j) ∈ E \ E0 using training paths P(i, j) whose
length is uniformly bounded by ` satisfies EM ≤ ` p |E \ E0| .

Proof. We have the chain of inequalities

EM ≤
∑

(i,j)∈E\E0

(
1− (1− p)|P(i,j)|)

≤
∑

(i,j)∈E\E0

(
1− (1− p)`

)
≤

∑
(i,j)∈E\E0

` p

≤ ` p |E \ E0| .

For instance, if the input graph G = (V,E) has diameter DG and the
queried edges are those of a breadth-first spanning tree, which can be gen-
erated in O(|E|) time, then the above fact holds with |E0| = |V | − 1, and
` = 2DG. Comparing to Theorem 6.1 shows that this simple breadth-first
strategy is optimal up to constants factors whenever G has a constant diam-
eter. This simple observation is especially relevant in the light of the typical
graph topologies encountered in practice, whose diameters are often small.
This argument is at the basis of our experimental comparison.

Yet, this mistake bound can be vacuous on graph having a larger diameter.
Hence, one may think of adding to the training spanning tree new edges so as
to reduce the length of the circuits used for prediction, at the cost of increasing
the size of the query set. A similar technique based on short circuits has been
used in [26], the goal there being to solve the link classification problem in
a harder adversarial environment. The precise tradeoff between prediction
accuracy (as measured by the expected number of mistakes) and fraction of
queried edges is the main theoretical concern of this paper.

6.2 Algorithms and their analysis 57

We now introduce an intermediate (and simpler) algorithm, called tree-
Cutter, which improves on the optimality factor when the diameter DG

is not small. In particular, we demonstrate that treeCutter achieves a
good upper bound on the number of mistakes on any graph such that
|E| ≥ 3|V |+

√
|V |. This algorithm is especially effective when the input graph

is dense, with an optimality factor between O(1) and O(
√
|V |). Moreover,

the total time for predicting the test edges scales linearly with the number
of such edges, i.e., treeCutter predicts edges in constant amortized time.
Also, the space is linear in the size of the input graph.

The algorithm (pseudocode given in Figure 6.1) is parametrized by a pos-
itive integer k ranging from 2 to |V |. The actual setting of k depends on the
graph topology and the desired fraction of query set edges, and plays a cru-
cial role in determining the prediction performance. Setting k ≤ DG makes
treeCutter reduce to querying only the edges of a breadth-first spanning
tree of G, otherwise it operates in a more involved way by splitting G into
smaller node-disjoint subtrees.

In a preliminary step (Line 1 in Figure 6.1), treeCutter draws an arbi-
trary breadth-first spanning tree T = (VT , ET). Then subroutine extractTreelet(T, k)
is used in a do-while loop to split T into vertex-disjoint subtrees T ′ whose
height is k (one of them might have a smaller height). extractTreelet(T, k)
is a very simple procedure that performs a depth-first visit of the tree T at
argument. During this visit, each internal node may be visited several times
(during backtracking steps). We assign each node i a tag hT (i) representing
the height of the subtree of T rooted at i. hT (i) can be recursively computed
during the visit. After this assignment, if we have hT (i) = k (or i is the
root of T) we return the subtree Ti of T rooted at i. Then treeCutter
removes (Line 6) Ti from T along with all edges of ET which are incident
to nodes of Ti, and then iterates until VT gets empty. By construction, the
diameter of the generated subtrees will not be larger than 2k. Let T denote
the set of these subtrees. For each T ′ ∈ T , the algorithm queries all the la-
bels of ET ′ , each edge (i, j) ∈ EG \ ET ′ such that i, j ∈ VT ′ is set to be a
test edge, and label Yi,j is predicted using PT ′(i, j) (note that this coincides

with PT ′(i, j), since T ′ ⊆ T), that is, Ŷi,j = πT (i, j). Finally, for each pair
of distinct subtrees T ′, T ′′ ∈ T such that there exists a node of VT ′ adja-
cent to a node of VT ′′ , i.e., such that EG(T ′, T ′′) is not empty, we query the
label of an arbitrarily selected edge (i′, i′′) ∈ EG(T ′, T ′′) (Lines 8 and 9 in
Figure 6.1). Each edge (u, v) ∈ EG(T ′, T ′′) whose label has not been previ-
ously queried is then part of the test set, and its label will be predicted as
Ŷu,v ← πT (u, i′) · Yi′,i′′ · πT (i′′, v) (Line 11). That is, using the path obtained
by concatenating PT ′(u, i

′) to edge (i′, i′′) to PT ′(i
′′, v).

The following theorem1 quantifies the number of mistakes made by tree-
Cutter. The requirement on the graph density in the statement, i.e.,

|V | − 1 + |V |2
2k2 + |V |

2k ≤
|E|
2 implies that the test set is not larger than the

1 Due to space limitations long proofs are presented in the supplementary material.

58 6 Link Classification

treeCutter(k) Parameter: k ≥ 2
Initialization: T ← ∅.
1. Draw an arbitrary breadth-first spanning tree T of G
2. Do

3. T ′ ← extractTreelet(T, k), and query all labels in ET ′

4. T ← T ∪ {T ′}
5. For each i, j ∈ VT ′ , set predict Ŷi,j ← πT (i, j)

6. T ← T \ T ′
7. While (VT 6≡ ∅)
8. For each T ′, T ′′ ∈ T : T ′ 6≡ T ′′
9. If EG(T ′, T ′′) 6≡ ∅ query the label of an arbitrary edge (i′, i′′) ∈ EG(T ′, T ′′)
10. For each (u, v) ∈ EG(T ′, T ′′) \ {(i′, i′′)}, with i′, u ∈ VT ′ and v, i′′ ∈ VT ′′
11. predict Ŷu,v ← πT ′ (u, i

′) · Yi′,i′′ · πT ′′ (i′′, v)

Fig. 6.1: treeCutter pseudocode.

extractTreelet(T, k) Parameters: tree T , k ≥ 2.
1. Perform a depth-first visit of T starting from the root.

2. During the visit

3. For each i ∈ VT visited for the |1 + ChildrenT (i)|-th time (i.e., the last visit of i)
4. If i is a leaf set hT (i)← 0

5. Else set hT (i)← 1 + max{hT (j) : j ∈ ChildrenT (i)}
6. If hT (i) = k or i ≡ T ’s root return subtree rooted at i

Fig. 6.2: extractTreelet pseudocode.

query set. This is a plausible assumption in active learning scenarios, and a
way of adding meaning to the bounds.

Theorem 6.4. For any integer k ≥ 2, the number M of mistakes made by

treeCutter on any graph G(V,E) with |E| ≥ 2|V |−2 + |V |
2

k2 + |V |k satisfies
EM ≤ min{4k + 1, 2DG}p|E|, while the query set size is bounded by |V | −
1 + |V |2

2k2 + |V |
2k ≤

|E|
2 .

Proof. By Theorem 6.3, it suffices to show that the length of each path used
for predicting the test edges is bounded by 4k+ 1. For each T ′ ∈ T , we have
DT ′ ≤ 2k, since the height of each subree is not bigger than k. Hence, any
test edge incident to vertices of the same subtree T ′ ∈ T is predicted (Line 5
in Figure 1) using a path whose length is bounded by 2k < 4k + 1. Any test
edge (u, v) incident to vertices belonging to two different subtrees T ′, T ′′ ∈ T
is predicted (Line 11 in Figure 1) using a path whose length is bounded by
DT ′ + DT ′′ + 1 ≤ 2k + 2k + 1 = 4k + 1, where the extra +1 is due to the
query edge (i′, i′′) connecting T ′ to T ′′ (Line 9 in Figure 1).

In order to prove that |V | − 1 + |V |
2

2k2 + |V |2k is an upper bound on the query
set size, observe that each query edge either belongs to T or connects a pair
of distinct subtrees contained in T . The number of edges in T is |V | − 1,

6.2 Algorithms and their analysis 59

and the number of the remaining query edges is bounded by the number of
distinct pairs of subtrees contained in |T |, which can be calculated as follows.
First of all, note that only the last subtree returned by extractTreelet
may have a height smaller than k, all the others must have height k. Note
also that each subtree of height k must contain at least k + 1 vertices of VT ,
while the subtree of T having height smaller than k (if present) must contain
at least one vertex. Hence, the number of distinct pairs of subtrees contained
in T can be upper bounded by

|T |(|T | − 1)

2
≤ 1

2

(|V | − 1

k + 1
+ 1
)(|V | − 1

k + 1

)
≤ |V |

2

k2
+
|V |
k

.

This shows that the query set size cannot be larger than |V | − 1 + |V |
2

2k2 + |V |2k .
Finally, observe that DT ≤ 2DG because of the breadth-first visit gener-

ating T . If DT ≤ k, the subroutine extractTreelet is invoked only once,
and the algorithm does not ask for any additional label of EG \ ET (the
query set size equals |V | − 1). In this case EM is clearly upper bounded by
2DG p|E|.

6.2.1 Refinements

We now refine the simple argument leading to treeCutter, and present
our active link classifier. The pseudocode of our refined algorithm, called
starMaker, follows that of Figure 6.1 with the following differences: Line 1
is dropped (i.e., starMaker does not draw an initial spanning tree), and the
call to extractTreelet in Line 3 is replaced by a call to extractStar.
This new subroutine just selects the star T ′ centered on the node of G having
largest degree, and queries all labels of the edges in ET ′ . The next result shows
that this algorithm gets a constant optimality factor while using a query set
of size O(|V |3/2).

Theorem 6.5. The number M of mistakes made by starMaker on any
given graph G(V,E) with |E| ≥ 2|V |−2 + 2|V | 32 satisfies EM ≤ 5 p|E|, while

the query set size is upper bounded by |V | − 1 + |V | 32 ≤ |E|2 .

Proof. In order to prove the claimed mistake bound, it suffices to show that
each test edge is predicted with a path whose length is at most 5. This is
easily seen by the fact that summing the diameter of two stars plus the query
edge (i′, i′′) that connects them is equal to 2 + 2 + 1 = 5, which is therefore
the diameter of the tree made up by two stars connected by the additional
query edge.

We continue by bounding from the above the query set size. Let Sj be the
j-th star returned by the j-th call to extractStar. The overall number of
query edges can be bounded by |V | − 1 + z, where |V | − 1 serves as an upper

60 6 Link Classification

bound on the number of edges forming all the stars output by extractStar,
and z is the sum over j = 1, 2, . . . of the number of stars Sj′ with j′ > j (i.e.,
j′ is created later than j) connected to Sj by at least one edge.

Now, for any given j, the number of stars Sj′ with j′ > j connected to Sj
by at least one edge cannot be larger that min{|V |, |VSj |2}. To see this, note
that if there were a leaf q of Sj connected to more than |VSj | − 1 vertices
not previously included in any star, then extractStar would have returned
a star centered in q instead. The repeated execution of extractStar can
indeed be seen as partitioning V . Let P be the set of all partitions of V . With
this notation in hand, we can bound z as follows:

z ≤ max
P∈P

|P |∑
j=1

min
{
z2
j (P), |V |

}
(6.2)

where zj(P) is the number of nodes contained in the the j-th element of the

partition P , corresponding to the number of nodes in Sj . Since
∑|P |
j=1 zj(P) =

|V | for any P ∈ P, it is easy to see that the partition P ∗ maximizing the
above expression is such that zj(P

∗) =
√
|V | for all j, implying |P ∗| =

√
|V |.

We conclude that the query set size is bounded by |V |−1+ |V | 32 , as claimed.

Finally, we combine starMaker with treeCutter so as to obtain an
algorithm, called treeletStar, that can work with query sets smaller than
|V | − 1 + |V | 32 labels. treeletStar is parameterized by an integer k and
follows Lines 1–6 of Figure 6.1 creating a set T of trees through repeated
calls to extractTreelet. Lines 7–11 are instead replaced by the following
procedure: a graph G′ = (VG′ , EG′) is created such that: (1) each node in VG′

corresponds to a tree in T , (2) there exists an edge in EG′ if and only if the
two corresponding trees of T are connected by at least one edge of EG. Then,
extractStar is used to generate a set S of stars of vertices of G′, i.e., stars
of trees of T . Finally, for each pair of distinct stars S′, S′′ ∈ S connected
by at least one edge in EG, the label of an arbitrary edge in EG(S′, S′′) is
queried. The remaining edges are all predicted.

Theorem 6.6. For any integer k ≥ 2 and for any graph G = (V,E)

with |E| ≥ 2|V | − 2 + 2
(|V |−1

k + 1
) 3

2 , the number M of mistakes made by
treeletStar(k) on G satisfies

vEM = O(min{k,DG}) p|E|

while the query set size is bounded by |V | − 1 +
(|V |−1

k + 1
) 3

2 ≤ |E|2 .

Proof. If the height of T is not larger than k, then extractTreelet is
invoked only once and T contains the single tree T . The statement then
trivially follows from the fact that the length of the longest path in T cannot
be larger than twice the diameter of G. Observe that in this case |VG′ | = 1.

6.2 Algorithms and their analysis 61

We continue with the case when the height of T is larger than k. We have
that the length of each path used in the prediction phase is bounded by 1
plus the sum of the diameters of two trees of T . Since these two trees are not
higher than k, the mistake bound follows from Theorem 6.3.

Finally, we combine the upper bound on the query set size in the statement
of Theorem 3 with the fact that each vertex of VG′ corresponds to a tree of

T containing at least k + 1 vertices of G. This implies |VG′ | ≤ |V |
k+1 , and the

claim on the query set size of treeletStar follows.

Hence, even if DG is large, setting k = |V |1/3 yields a O(|V |1/3) optimality
factor just by querying O(|V |) edges. On the other hand, a truly constant
optimality factor is obtained by querying as few as O(|V |3/2) edges (pro-
vided the graph has sufficiently many edges). As a direct consequence (and
surprisingly enough), on graphs which are only moderately dense we need
not observe too many edges in order to achieve a constant optimality factor.
It is instructive to compare the bounds obtained by treeletStar to the
ones we can achieve by using the cccc algorithm of [26], or the low-stretch
spanning trees given in Theorem 6.2.

Because cccc operates within a harder adversarial setting, it is easy to
show that Theorem 9 in [26] extends to the p-stochastic assignment model
by replacing ∆2(Y) with p|E| therein.2 The resulting optimality factor is

of order
(

1−α
α

) 3
2
√
|V |, where α ∈ (0, 1] is the fraction of queried edges out

of the total number of edges. A quick comparison to Theorem 6.6 reveals
that treeletStar achieves a sharper mistake bound for any value of α. For
instance, in order to obtain an optimality factor which is lower than

√
|V |,

cccc has to query in the worst case a fraction of edges that goes to one as
|V | → ∞. On top of this, our algorithms are faster and easier to implement
—see Section 6.2.2.

Next, we compare to query sets produced by low-stretch spanning trees.
A low-stretch spanning tree achieves a polylogarithmic optimality factor by
querying |V | − 1 edge labels. The results in [41] show that we cannot hope
to get a better optimality factor using a single low-stretch spanning tree
combined by the analysis in (6.1). For a comparable amount Θ(|V |) of queried
labels, Theorem 6.6 offers the larger optimality factor |V |1/3. However, we can
get a constant optimality factor by increasing the query set size to O(|V |3/2).
It is not clear how multiple low-stretch trees could be combined to get a
similar scaling.

2 This theoretical comparison is admittedly unfair, as cccc has been designed to work in

a harder setting than p-stochastic. Unfortunately, we are not aware of any other general

active learning scheme for link classification to compare with.

62 6 Link Classification

6.2.2 Complexity analysis and implementation

We now compute bounds on time and space requirements for our three al-
gorithms. Recall the different lower bound conditions on the graph density
that must hold to ensure that the query set size is not larger than the test

set size. These were |E| ≥ 2|V | − 2 + |V |2
k2 + |V |

k for treeCutter(k) in

Theorem 6.4, |E| ≥ 2|V | − 2 + 2|V | 32 for starMaker in Theorem 6.5, and

|E| ≥ 2|V | − 2 + 2
(
|V |−1
k + 1

) 3
2

for treeletStar(k) in Theorem 6.6.

Theorem 6.7. For any input graph G = (V,E) which is dense enough to
ensure that the query set size is no larger than the test set size, the total time
needed for predicting all test labels is:

O(|E|) for treeCutter(k) and for all k

O
(
|E|+ |V | log |V |

)
for starMaker

O
(
|E|+ |V |

k
log
|V |
k

)
for treeletStar(k) and for all k.

In particular, whenever k|E| = Ω(|V | log |V |) we have that treeletStar(k)
works in constant amortized time. For all three algorithms, the space required
is always linear in the input graph size |E|.
Proof. The proof is reported in Appendix B.

6.3 Experiments

In this set of experiments we tested the predictive performance of treeCutter(|V |).
This corresponds to querying only the edges of the initial spanning tree T
and predicting all remaining edges (i, j) via the parity of PT (i, j). The span-
ning tree T used by treeCutter is a shortest-path spanning tree generated
by a breadth-first visit of the graph (assuming all edges have unit length).
As the choice of the starting node in the visit is arbitrary, we picked the
highest degree node in the graph. Finally, we run through the adiacency list
of each node in random order, which we empirically observed to improve
performance.

6.3.1 Algorithms

Our baseline is the heuristic ASymExp from [60] which, among the many
spectral heuristics proposed there, turned out to perform best on all our

6.3 Experiments 63

datasets. With integer parameter z, ASymExp(z) predicts using a spectral
transformation of the training sign matrix Ytrain, whose only non-zero entries
are the signs of the training edges. The label of edge (i, j) is predicted using(
exp(Ytrain(z))

)
i,j

. Here exp
(
Ytrain(z)

)
= Uz exp(Dz)U

>
z , where UzDzU

>
z is

the spectral decomposition of Ytrain containing only the z largest eigenvalues
and their corresponding eigenvectors. Following [60], we ran ASymExp(z)
with the values z = 1, 5, 10, 15. This heuristic uses the two-clustering bias as
follows : expand exp(Ytrain) in a series of powers Y ntrain. Then each

(
Y ntrain)i,j

is a sum of values of paths of length n between i and j. Each path has
value 0 if it contains at least one test edge, otherwise its value equals the
product of queried labels on the path edges. Hence, the sign of exp(Ytrain)
is the sign of a linear combination of path values, each corresponding to
a prediction consistent with the two-clustering bias —compare this to the
multiplicative rule used by treeCutter. Note that ASymExp and the other
spectral heuristics from [60] have all running times of order Ω

(
|V |2

)
.

6.3.2 Datasets

We performed a first set of experiments on synthetic signed graphs created
from a subset of the USPS digit recognition dataset. We randomly selected
500 examples labeled “1” and 500 examples labeled “7” (these two classes
are not straightforward to tell apart). Then, we created a graph using a k-NN
rule with k = 100. The edges were labeled as follows: all edges incident to
nodes with the same USPS label were labeled +1; all edges incident to nodes
with different USPS labels were labeled −1. Finally, we randomly pruned
the positive edges so to achieve an unbalance of about 20% between the
two classes.3 Starting from this edge label assignment, which is consistent
with the two-clustering associated with the USPS labels, we generated a p-
stochastic label assignment by flipping the labels of a random subset of the
edges. Specifically, we used the three following synthetic datasets:

DELTA0: No flippings (p = 0), 1,000 nodes and 9,138 edges;

DELTA100: 100 randomly chosen labels of DELTA0 are flipped;

DELTA250: 250 randomly chosen labels of DELTA0 are flipped.

We also used three real-world datasets:

MOVIELENS: A signed graph we created using Movielens ratings.4 We

3 This is similar to the class unbalance of real-world signed networks —see below.
4 www.grouplens.org/system/files/ml-1m.zip.

64 6 Link Classification

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

DELTA0

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

DELTA100

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

DELTA250

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

Fig. 6.3: F-measure against training set size for treeCutter(|V |) and
ASymExp(z) with different values of z on both synthetic and real-world
datasets. By construction, treeCutter never makes a mistake when the la-
beling is consistent with a two-clustering. So on DELTA0 treeCutter does
not make mistakes whenever the training set contains at least one spanning
tree. With the exception of EPINIONS, treeCutter outperforms ASymExp
using a much smaller training set. We conjecture that ASymExp responds to
the bias not as well as treeCutter, which on the other hand is less robust
than ASymExp to bias violations (supposedly, the labeling of EPINIONS).

6.3 Experiments 65

 0.2

 0.4

 0.6

 1 2 3 4 5 6 7 8 9 10

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

MOVIELENS

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

 0.2

 0.4

 0.6

 10 20 30 40 50

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

SLASHDOT

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

 0.2

 0.4

 0.6

 0.8

 10 20 30 40 50

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

EPINIONS

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

Fig. 6.4: F-measure against training set size for treeCutter(|V |) and
ASymExp(z) with different values of z on both synthetic and real-world
datasets. By construction, treeCutter never makes a mistake when the la-
beling is consistent with a two-clustering. So on DELTA0 treeCutter does
not make mistakes whenever the training set contains at least one spanning
tree. With the exception of EPINIONS, treeCutter outperforms ASymExp
using a much smaller training set. We conjecture that ASymExp responds to
the bias not as well as treeCutter, which on the other hand is less robust
than ASymExp to bias violations (supposedly, the labeling of EPINIONS).

66 6 Link Classification

first normalized the ratings by subtracting from each user rating the average
rating of that user. Then, we created a user-user matrix of cosine distance
similarities. This matrix was sparsified by zeroing each entry smaller than 0.1
and removing all self-loops. Finally, we took the sign of each non-zero entry.
The resulting graph has 6,040 nodes and 824,818 edges (12.6% of which are
negative).

SLASHDOT: The biggest strongly connected component of a snapshot of
the Slashdot social network,5 similar to the one used in [60]. This graph has
26,996 nodes and 290,509 edges (24.7% of which are negative).

EPINIONS: The biggest strongly connected component of a snapshot of
the Epinions signed network,6 similar to the one used in [62, 66]. This graph
has 41,441 nodes and 565,900 edges (26.2% of which are negative).

Slashdot and Epinions are originally directed graphs. We removed the re-
ciprocal edges with mismatching labels (which turned out to be only a few),
and considered the remaining edges as undirected.

The following table summarizes the key statistics of each dataset: Neg.
is the fraction of negative edges, |V |/|E| is the fraction of edges queried by
treeCutter(|V |), and Avgdeg is the average degree of the nodes of the
network.

Dataset |V | |E| Neg. |V |/|E| Avgdeg

DELTA0 1000 9138 21.9% 10.9% 18.2
DELTA100 1000 9138 22.7% 10.9% 18.2
DELTA250 1000 9138 23.5% 10.9% 18.2

SLASHDOT 26996 290509 24.7% 9.2% 21.6
EPINIONS 41441 565900 26.2% 7.3% 27.4
MOVIELENS 6040 824818 12.6% 0.7% 273.2

6.3.3 Results

Our results are summarized in Figure 6.3, where we plot F-measure (prefer-
able to accuracy due to the class unbalance) against the fraction of training
(or query) set size. On all datasets, but MOVIELENS, the training set size for
ASymExp ranges across the values 5%, 10%, 25%, and 50%. Since MOVIE-
LENS has a higher density, we decided to reduce those fractions to 1%, 3%,
5% and 10%. treeCutter(|V |) uses a single spanning tree, and thus we
only have a single query set size value. All results are averaged over ten runs
of the algorithms. The randomness in ASymExp is due to the random draw

5 snap.stanford.edu/data/soc-sign-Slashdot081106.html.
6 snap.stanford.edu/data/soc-sign-epinions.html.

6.3 Experiments 67

of the training set. The randomness in treeCutter(|V |) is caused by the
randomized breadth-first visit.

Part IV

Networks of bandits

71

Only a fool learns from his own mistakes.
The wise man learns from the mistakes of others.

– Otto von Bismarck

Chapter 7

Network of bandits

In this chapter, we consider an extension of the Contextual Bandit problem
where there are multiple learners connected by a network, and we assume
that strongly connected nodes are similar. The learners share the feedback
signal with each other, cooperating in this way to improve their future pre-
dictions.
We provide a regret analysis for the presented algorithm and an extensive set
of experiments on synthetic and real-world datasets, comparing the original
algorithm and two its scalable variants with the state of the art in the field.

The content of this chapter is a joint work with Nicolò Cesa-Bianchi and
Claudio Gentile.

7.1 Problem setup

We assume the social relationships over users are encoded as a known undi-
rected and connected graph G = (V,E), where V = {1, . . . , n} represents
a set of n users, and the edges in E represent the social links over pairs
of users. Recall that a graph G can be equivalently defined in terms of its
Laplacian matrix1. Learning proceeds in a sequential fashion: At each time
step t = 1, 2, . . . , the learner receives a user index it ∈ V together with a set
of context vectors Cit = {xt,1,xt,2, . . . ,xt,ct} ⊆ Rd. The learner then selects
some kt ∈ Cit to recommend to user it and observes some payoff at ∈ [−1, 1],
a function of it and x̄t = xt,kt . No assumptions whatsoever are made on the

1 The Laplacian matrix L is defined as L =
[
Li,j

]n
i,j=1

, where Li,i is the degree of node

i (i.e., the number of edges or the sum of the weights of the edges incident to that node)

and, for i 6= j, Li,j equals −wij if (i, j) ∈ E, and 0 otherwise

73

74 7 Network of bandits

way index it and set Cit are generated, in that they can arbitrarily depend
on past choices made by the algorithm.2

A standard modeling assumption for bandit problems with contextual in-
formation (one that is also adopted here) is to assume rewards are generated
by noisy versions of unknown linear functions of the context vectors. That is,
we assume each node i ∈ V hosts an unknown parameter vector ui ∈ Rd, and
that the reward value ai(x) associated with node i and context vector x ∈ Rd
is given by the random variable ai(x) = u>i x+ εi(x), where εi(x) is a condi-
tionally zero-mean and bounded variance noise term. Specifically, denoting by
Et[·] the conditional expectation E

[
·
∣∣ (i1, Ci1 , a1), . . . , (it−1, Cit−1 , at−1)

]
,

we take the general approach of [1], and assume that for any fixed i ∈ V
and x ∈ Rd, the variable εi(x) is conditionally sub-Gaussian with variance
parameter σ2 > 0, namely, Et

[
exp(γ εi(x))

]
≤ exp

(
σ2 γ2/2

)
for all γ ∈ R and

all x, i. This implies Et[εi(x)] = 0 and Vt
[
εi(x)

]
≤ σ2, where Vt[·] is a short-

hand for the conditional variance V
[
·
∣∣ (i1, Ci1 , a1), . . . , (it−1, Cit−1

, at−1)
]

of the variable at argument. So we clearly have Et[ai(x)] = u>i x and
Vt
[
ai(x)

]
≤ σ2. Therefore, u>i x is the expected reward observed at node

i for context vector x. In the special case when the noise εi(x) is a bounded
random variable taking values in the range [−1, 1], this implies Vt[ai(x)] ≤ 4.

The regret rt of the learner at time t is the amount by which the average
reward of the best choice in hindsight at node it exceeds the average reward
of the algorithm’s choice, i.e.,

rt =

(
max
x∈Cit

u>itx

)
− u>it x̄t .

The goal of the algorithm is to bound with high probability (over the noise

variables εit) the cumulative regret
∑T
t=1 rt for the given sequence of nodes

i1, . . . , iT and observed context vector sets Ci1 , . . . , CiT .
We model the similarity among users in V by making the assumption

that nearby users hold similar underlying vectors ui, so that reward signals
received at a given node it at time t are also, to some extent, informative to
learn the behavior of other users j connected to it within G. We make this
more precise by taking the perspective of known multitask learning settings
(e.g., [20]), and assume that ∑

(i,j)∈E

‖ui − uj‖2 (7.1)

is small compared to
∑
i∈V ‖ui‖2, where ‖ ·‖ denotes the standard Euclidean

norm of vectors. That is, although (7.1) may possibly contain a quadratic
number of terms, the closeness of vectors lying on adjacent nodes in G
makes this sum comparatively smaller than the actual length of such vec-

2 Formally, it and Cit can be arbitrary (measurable) functions of past rewards a1, . . . , at−1,

indices i1, . . . , it−1, and sets Ci1 , . . . , Cit−1 .

7.2 Algorithm and regret analysis 75

tors. This will be our working assumption throughout, one that motivates
the Laplacian-regularized algorithm presented in Section 7.2, and empirically
tested in Section 7.3.

7.2 Algorithm and regret analysis

Our bandit algorithm maintains at time t an estimate wi,t for vector ui.
Vectors wi,t are updated based on the reward signals as in a standard linear
bandit algorithm (e.g., [33]) operating on the context vectors contained in
Cit . Every node i of G hosts a linear bandit algorithm like the one described
in Figure 7.1.

Input: Parameter δ;

Init: b0 = 0 ∈ Rd and M0 = I ∈ Rd×d;

for t = 1, 2, . . . , T do
Set wt−1 = M−1

t−1 bt−1;

Get context Ct = {xt,1, . . . ,xt,ct};
Set

kt = argmax
k=1,...,ct

(
w>t−1xt,k + cb(xt,k)

)
where

cb(xt,kt) =
√
x>t,ktM

−1
t−1xt,kt

(
σ

√
ln
|Mt|
δ

+ ‖U‖

)
Set x̄t = xt,kt ;

Observe reward at ∈ [−1, 1];

Update

• Mt = Mt−1 + x̄tx̄>t ,

• bt = bt−1 + atx̄t .

end for

Fig. 7.1: Pseudocode of the linear bandit algorithm sitting at each node i.

The algorithm in Figure 7.1 operating at a given node of G receives in
input an exploration parameter α > 0, setting the exploration-vs-exploitation
trade-off at that node. The algorithm maintains at time t a prototype vector
wt which is the result of a standard linear least-squares approximation to the
unknown paremeter vector u associated with the node under consideration.
In particular, wt−1 is obtained by multiplying the inverse correlation matrix
Mt−1 and the bias vector bt−1. At each time t = 1, 2, . . . , the algorithm
receives context vectors xt,1, . . . ,xt,ct contained in Ct, and must select one
among them. The linear bandit algorithm selects x̄t = xt,kt as the vector in
Ct that maximizes an upper-confidence-corrected estimation of the expected
reward achieved over context vectors xt,k. The estimation is based on the

76 7 Network of bandits

Input: Parameter δ;

Init: b0 = 0 ∈ Rdn and M0 = I ∈ Rdn×dn;
for t = 1, 2, . . . , T do

Set wt−1 = M−1
t−1 bt−1;

Get it ∈ V , context Cit = {xt,1, . . . ,xt,ct};
Construct vectors φit

(xt,1), . . . ,φit
(xt,ct), and modified vectors φ̃t,1, . . . , φ̃t,ct

,

where
φ̃t,k = A

−1/2
⊗ φit

(xt,k), k = 1, . . . , ct;

Set kt = argmax
k=1,...,ct

(
w>t−1φ̃t,k + cb(φ̃t,k)

)
where

cb(φ̃t,k) =

√
φ̃
>
t,kM

−1
t−1φ̃t,k

(
σ

√
ln
|Mt|
δ

+ ‖Ũ‖

)

Observe reward at ∈ [−1, 1] at node it;
Update

• Mt = Mt−1 + φ̃t,kt
φ̃
>
t,kt

,

• bt = bt−1 + atφ̃t,k .

end for

Fig. 7.2: Pseudocode of the GOB.Lin algorithm.

current wt−1, while the upper confidence level cb(x) is suggested by the
standard analysis of linear bandit algorithms —see, e.g., [1, 33, 35, 37]. Once
the actual reward at associated with x̄t is observed, the algorithm uses x̄t
for updating Mt−1 to Mt via a rank-one adjustment, and bt−1 to bt via an
additive update whose learning rate is precisely at. This algorithm can be
seen as a version of LinUCB [33], a linear bandit algorithm derived from
LinRel [7].

We now turn to describing our GOB.Lin (Gang Of Bandits, Linear ver-
sion) algorithm. GOB.Lin lets the algorithm in Figure 7.1 operate on each
node i of G (we should then add subscript i throughout, replacing wt by
wi,t, Mt by Mi,t, and so forth). The updates Mi,t−1 →Mi,t and bi,t−1 → bi,t
are performed at node i through vector x̄t both when i = it (i.e., when node
i is the one which the context vectors in Cit refer to) and to a lesser extent
when i 6= it (i.e., when node i is not the one which the vectors in Cit refer
to). This is because, as we said, the payoff at received for node it is somehow
informative also for all other nodes i 6= it. In other words, because we are
assuming the underlying parameter vectors ui are close to each other, we
should let the corresponding prototype vectors wi,t undergo similar updates,
so as to also keep the wi,t close to each other over time.

With this in mind, we now describe GOB.Lin in more detail. It is conve-
nient to first introduce some extra matrix notation. Let A = In+L, where L
is the Laplacian matrix associated with G, and In is the n×n identity matrix.

7.2 Algorithm and regret analysis 77

Set A⊗ = A ⊗ Id, the Kronecker product3 of matrices A and Id. Moreover,
the “compound” descriptor for the pairing (i,x) is given by the long (and
sparse) vector φi(x) ∈ Rdn defined as

φi(x)> =
(

0, . . . , 0︸ ︷︷ ︸
(i−1)d times

,x>, 0, . . . , 0︸ ︷︷ ︸
(n−i)d times

)
.

With the above notation handy, a compact description of GOB.Lin is pre-
sented in Figure 7.2, where we deliberately tried to mimic the pseudocode of
Figure 7.1.

We now explain how the modified long vectors φ̃t,k = A
−1/2
⊗ φit(xt,k) act

in the update of matrix Mt and vector bt. First, observe that if A⊗ were the
identity matrix then, according to how the long vectors φit(xt,k) are defined,
Mt would be a block-diagonal matrix Mt = diag(D1, . . . , Dn), whose i-th
block Di is the d × d matrix Di = Id +

∑
t : kt=i

xtx
>
t . Similarly, bt would

be the dn-long vector whose i-th d-dimensional block contains
∑
t : kt=i

atxt.
This would be equivalent to running n independent linear bandit algorithms
(Figure 7.1), one per node of G. Now, because A⊗ is not the identity, but
contains graph G represented through its Laplacian matrix, the selected vec-

tor xt,kt ∈ Cit for node it gets spread via A
−1/2
⊗ from the it-th block over all

other blocks, thereby making the contextual information contained in xt,kt
available to update the internal status of all other nodes. Yet, the only re-
ward signal observed at time t is the one available at node it. A theoretical
analysis of GOB.Lin relying on the learning model of Section 7.1 is sketched
in Section 7.2.1.
Intuitively, our algorithm is multitask linear least squares where each node
is a task. Similarity among the tasks (closeness of u vectors) correspond to
the weights on the graph’s edges. Heavy edges mean similar tasks and vice
versa. Moreover, if G is the a clique, then the vectors φt,k (built from xt,k)

are sparse block vectors, but vectors φ̃t,k are dense vectors. In the latter case,
the it-th block in the vector gets multiplied by some fraction of unity and,
in all other blocks, the vector xt,k still occurs, but multiplied by a smaller
fraction of unity. These different multipliers are given by the similarity pro-
vided by the graph and encoden in the matrix A⊗. This forces an update on
all nodes of G, based on the payoff observed at node it, but weighting them
differently. In this specific example, the update at node it is worth roughly√
n times the update made at any other node.

GOB.Lin’s running time is mainly affected by the inversion of the dn × dn
matrix Mt, which can be performed in O

(
(dn)2

)
time per round by using

well-known formulas for incremental matrix inversions. The same quadratic
dependence holds for memory requirements. In our experiments, we observed
that projecting the contexts on the principal components improved perfor-

3 The Kronecker product between two matrices M ∈ Rm×n and N ∈ Rq×r is the block

matrix M⊗N of dimension mq×nr whose block on row i and column j is the q×r matrix

Mi,jN .

78 7 Network of bandits

mance. Hence, the quadratic dependence on the context vector dimension d
is not really hurting us in practice. On the other hand, the quadratic depen-
dence on the number of nodes n may be a significant limitation to GOB.Lin’s
practical deployment. In the next section, we show that simple graph com-
pression schemes (like node clustering) can conveniently be applied to both
reduce edge noise and bring the algorithm to reasonable scaling behaviors.

7.2.1 Regret Analysis

We now provide a regret analysis for GOB.Lin that relies on the high proba-
bility analysis contained in [1] (Theorem 2 therein). The analysis can be seen
as a combination of the multitask kernel contained in, e.g., [20, 68, 43] and a
version of the linear bandit algorithm described and analyzed in [1].

Theorem 7.1. Let the GOB.Lin algorithm of Figure 7.2 be run on graph
G = (V,E), V = {1, . . . , n}, hosting at each node i ∈ V vector ui ∈ Rd.
Define

L(u1, . . . ,un) =
∑
i∈V
‖ui‖2 +

∑
(i,j)∈E

‖ui − uj‖2 .

Being | · | the determinant of the matrix at argument. Let also the sequence
of context vectors xt,k be such that ‖xt,k‖ ≤ B, for all k = 1, . . . , ct, and
t = 1, . . . , T . Then the cumulative regret satisfies

T∑
t=1

rt ≤ 2

√
T

(
2σ2 ln

|MT |
δ

+ 2L(u1, . . . ,un)

)
(1 +B2) ln |MT |

with probability at least 1− δ.

Proof. The proof is given in Appendix C.

Compared to running n independent bandit algorithms (which corresponds
to A⊗ being the identity matrix), the bound in the above theorem has an
extra term

∑
(i,j)∈E ‖ui − uj‖2, which we assume small according to our

working assumption. However, the bound has also a significantly smaller log
determinant ln |MT | on the resulting matrix MT , due to the construction of

φ̃t,k via A
−1/2
⊗ . In order to make this advantage more clear, we report two

extreme cases (similar arguments can be found in [20]):

1. When G has no edges then trace ln |Mt| ≤ dn log(1 + tB2

dn).

2. When G is the complete graph ln |Mt| ≤ dn log(1 + 2tB2

dn (n+1)).

7.3 Experiments 79

The first case represent the independent bandits case, where there are n
instances of LinUCB that do not share the feedback (later called LinUCB-
IND). In the second case we have GOB.Lin with a fully connected graph
where feedback is shared among all the nodes and all the nodes have the
same u. In this case, the determinant is about a factor n smaller than the
corresponding term for the n independent bandit case.

7.3 Experiments

In this section, we present an empirical comparison of GOB.Lin (and its
variants) to linear bandit algorithms which do not exploit the relational in-
formation provided by the graph. For the purpose of our experiments we
approximate cb(x) with acb(x) defined as

acb(x) = α
√
x>M−1

t−1x log(t+ 1)

where the factor α is used as tuning parameter. We did not use cb in our
experiments because the it depends on unknown quantities and since it comes
from an upper bound analysis, it seems to be too conservative. Moreover, we
would like to stress that acb and cb have a very similar dependence on time,
and our preliminary experiments show that this approximation do not affect
the predictive performances of the algorithms (up to a re-tuning of α), while
it speeds up the computation.

7.3.1 Datasets

We tested our algorithm and its competitors on a synthetic dataset and two
freely available real-world datasets extracted from the social bookmarking
web service Delicious and from the music streaming service Last.fm. These
datasets are structured as follows:

• 4Cliques. This is an artificial dataset whose graph contains four cliques
of 25 nodes each to which we added graph noise. This noise consists in
picking a random pair of nodes and deleting or creating an edge between
them. More precisely, we created a n×n symmetric noise matrix of random
numbers in [0, 1], and we selected a threshold value such that the expected
number of matrix elements above this value is exactly some chosen noise
rate parameter. Then we set to 1 all the entries whose content is above the
threshold, and to zero the remaining ones. Finally, we XORed the noise
matrix with the graph adjacency matrix, thus obtaining a noisy version of

80 7 Network of bandits

the original graph.

• Last.fm. This is a social network containing 1,892 nodes and 12,717
edges. There are 17,632 items (artists), described by 11,946 tags. The
dataset contains information about the listened artists, and we used this
information in order to create the payoffs: if a user listened to an artist at
least once the payoff is 1, otherwise the payoff is 0.

• Delicious. This is a network with 1,861 nodes and 7,668 edges. There
are 69,226 items (URLs) described by 53,388 tags. The payoffs were cre-
ated using the information about the bookmarked URLs for each user: the
payoff is 1 if the user bookmarked the URL, otherwise the payoff is 0.

Last.fm and Delicious were created by the Information Retrieval group at
Universidad Autonoma de Madrid for the HetRec 2011 Workshop [15] with
the goal of investigating the usage of heterogeneous information in recommen-
dation systems.4 These two networks are structurally different: on Delicious,
payoffs depend on users more strongly than on Last.fm. In other words, there
are more popular artists, whom everybody listens to, than popular websites,
which everybody bookmarks —see Figure 7.3. This makes a huge difference
in practice, and the choice of these two datasets allow us to make a more real-
istic comparison of recommendation techniques. Since we did not remove any
items from these datasets (neither the most frequent nor the least frequent),
these differences do influence the behavior of all algorithms —see below.

Some statistics about Last.fm and Delicious are reported in Table 7.1. In
Figure 7.3 we plotted the distribution of the number of preferences per item
in order to make clear and visible the differences explained in the previous
paragraphs.5

We preprocessed datasets by breaking down the tags into smaller tags
made up of single words. In fact, many users tend to create tags like “web-
design tutorial css”. This tag has been splitted into three smaller tags corre-
sponding to the three words therein. More generally, we splitted all compound
tags containing underscores, hyphens and apexes. This makes sense because
users create tags independently, and we may have both “rock and roll” and
“rock n roll”. Because of this splitting operation, the number of unique tags
decreased from 11,946 to 6,036 on Last.fm and from 53,388 to 9,949 on Deli-
cious. On Delicious, we also removed all tags occurring less than ten times.6

4 Datasets and their full descriptions are available at www.grouplens.org/node/462.
5 In the context of recommender systems, these two datasets may be seen as representatives

of two “markets” whose products have significantly different market shares (the well-known
dichotomy of hit vs. niche products). Niche product markets give rise to power laws in user

preference statistics (as in the blue plot of Figure 7.3).
6 We did not repeat the same operation on Last.fm because this dataset was already

extremely sparse.

7.3 Experiments 81

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

N
U

M
 P

R
E

F
E

R
E

N
C

E
S

ITEM ID

Preferences per item

DELICIOUS
LASTFM

Fig. 7.3: Plot of the number of preferences per item (users who bookmarked
the URL or listened to an artist). Both axes have logarithmic scale.

Last.fm Delicious

Nodes 1892 1867

Edges 12717 7668

Avg. degree 13.443 8.21

Items 17632 69226

Nonzero payoffs 92834 104799

Tags 11946 53388

Table 7.1: Main statistics for Last.fm and Delicious. Items counts the overall
number of items, across all users, from which Ct is selected. Nonzero pay-
offs is the number of pairs (user, item) for which we have a nonzero payoff.
Tags is the number of distinct tags that were used to describe the items.

The algorithms we tested do not use any prior information about which
user provided a specific tag. We used all tags associated with a single item to
create a TF-IDF context vector that uniquely represents that item, indepen-
dent of which user the item is proposed to. In both datasets, we only retained
the first 25 principal components of context vectors, so that xt,k ∈ R25 for
all t and k.

We generated random context sets Cit of size 25 for Last.fm and De-
licious, and of size 10 for 4Cliques. In practical scenarios, these numbers
would be varying over time, but we kept them fixed so as to simplify the
experimental setting. In 4Cliques we assigned the same unit norm random
vector ui to every node in the same clique i of the original graph (before
adding graph noise). Payoffs were then generated according to the following
stochastic model: ai(x) = u>i x + ε, where ε (the payoff noise) is uniformly
distributed in a bounded interval centered around zero. For Delicious and
Last.fm, we created a set of context vectors for every round t as follows: we

82 7 Network of bandits

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=0% payoff-noise=0

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=0% payoff-noise=0.25

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=0% payoff-noise=0.5

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=8.3% payoff-noise=0

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=8.3% payoff-noise=0.25

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=8.3% payoff-noise=0.5

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=20.8% payoff-noise=0

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=20.8% payoff-noise=0.25

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=20.8% payoff-noise=0.5

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=41.7% payoff-noise=0

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=41.7% payoff-noise=0.25

GOB.Lin
LinUCB-IND
LinUCB-SIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

4Cliques graph-noise=41.7% payoff-noise=0.5

GOB.Lin
LinUCB-IND
LinUCB-SIN

Fig. 7.4: Normalized cumulated reward for different levels of graph noise
(expected fraction of perturbed edges) and payoff noise (largest absolute value
of noise term ε) on the 4Cliques dataset. Graph noise increases from top to
bottom, payoff noise increases from left to right. GOB.Lin is clearly more
robust to payoff noise than its competitors. On the other hand, GOB.Lin is
sensitive to high levels of graph noise. In the last row, graph noise is 41.7%,
i.e., the number of perturbed edges is 500 out of 1200 edges of the original
graph.

first picked it uniformly at random in {1, . . . , n}. Then, we generated con-
text vectors xt,1, . . . ,xt,25 in Cit by picking 24 vectors at random from the
dataset and one among those vectors with nonzero payoff for user it. This is
necessary in order to avoid a meaningless comparison: with high probability,
a purely random selection would result in payoffs equal to zero for all the
context vectors in Cit .

7.3 Experiments 83

7.3.2 Algorithms

In our experimental comparison, we tested GOB.Lin and its variants against
two baselines: a baseline LinUCB-IND that runs an independent instance
of the algorithm in Figure 7.1 at each node (this is equivalent to running
GOB.Lin in Figure 7.2 with A⊗ = Idn) and a baseline LinUCB-SIN, which
runs a single instance of the algorithm in Figure 7.1 shared by all the nodes.
LinUCB-IND turns to be a reasonable comparator when, as in the Deli-
cious dataset, there are many moderately popular items. On the other hand,
LinUCB-SIN is a competitive baseline when, as in the Last.fm dataset, there
are few very popular items. The two scalable variants of GOB.Lin which
we empirically analyzed are based on node clustering,7 and are defined as
follows:

• GOB.Lin.MACRO: GOB.Lin is run on a weighted graph whose nodes
are the clusters of the original graph. The edges are weighted by the num-
ber of inter-cluster edges in the original graph. When all nodes are clus-
tered together, then GOB.Lin.MACRO recovers the baseline LinUCB-SIN
as a special case. In order to strike a good trade-off between the speed of
the algorithms and the loss of information resulting from clustering, we
tested three different cluster sizes: 50, 100, and 200. Our plots refer to the
best performing choice.

• GOB.Lin.BLOCK: GOB.Lin is run on a disconnected graph whose
connected components are the clusters. This makes A⊗ and Mt (Figure
7.2) block-diagonal matrices. When each node is clustered individually,
then GOB.Lin.BLOCK recovers the baseline LinUCB-IND as a special
case. Similar to GOB.Lin.MACRO, in order to trade-off running time
and cluster sizes, we tested three different cluster sizes (5, 10, and 20),
and report only on the best performing choice.

As the running time of GOB.Lin scales quadratically with the num-
ber of nodes, the computational savings provided by the clustering are also
quadratic. Moreover, as we will see in the experiments, the clustering acts as
a regularizer, limiting the influence of noise.

In all cases, the parameter α in Figures 7.1 and 7.2 was selected based
on the scale of instance vectors x̄t and φ̃t,kt , respectively, and tuned across
appropriate ranges.

7 We used the freely available Graclus graph clustering tool, whose interns are described,

e.g., in [39]. We used Graclus with normalized cut, zero local search steps, and no spectral

clustering options.

84 7 Network of bandits

 0

 250

 500

 750

 1000

 1250

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

Last.fm

LinUCB-SIN

LinUCB-IND

GOB.Lin

GOB.Lin.MACRO

GOB.Lin.BLOCK

 0

 25

 50

 75

 100

 125

 150

 0 2000 4000 6000 8000 10000

C
U

M
U

L
A

T
IV

E
 R

E
W

A
R

D

TIME

Delicious

LinUCB-SIN

LinUCB-IND

GOB.Lin

GOB.Lin.MACRO

GOB.Lin.BLOCK

Fig. 7.5: Cumulative reward for all the bandit algorithms introduced in this
section.

7.3.3 Results

Figure 7.4 and Figure 7.5 show the cumulative reward for each algorithm, as
compared (“normalized”) to that of the random predictor, that is

∑
t(at−āt),

where at is the payoff obtained by the algorithm and āt is the payoff obtained
by the random predictor, i.e., the average payoff over the context vectors
available at time t.

Figure 7.4 (synthetic datasets) shows that GOB.Lin and LinUCB-SIN are
more robust to payoff noise than LinUCB-IND. Clearly, LinUCB-SIN is also

7.3 Experiments 85

unaffected by graph noise, but it never outperforms GOB.Lin. When the
payoff noise is low and the graph noise grows GOB.Lin’s performance tends
to degrade.

Figure 7.5 reports the results on the two real-world datasets. Notice that
GOB.Lin and its variants always outperform the baselines (not relying on
graphical information) on both datasets. As expected, GOB.Lin.MACRO
works best on Last.fm, where many users gave positive payoffs to the
same few items. Hence, macro nodes apparently help GOB.Lin.MACRO
to perform better than its corresponding baseline LinUCB-SIN. In fact,
GOB.Lin.MACRO also outperforms GOB.Lin, thus showing the regular-
ization effect of using macro nodes. On Delicious, where we have many mod-
erately popular items, GOB.Lin.BLOCK tends to perform best, GOB.Lin
being the runner-up. As expected, LinUCB-IND works better than LinUCB-
SIN, since the former is clearly more prone to personalize item recommenda-
tion than the latter. In summary, we may conclude that our system is able
to exploit the information provided by the graphical structure. Moreover,
regularization via graph clustering seems to be of significant help.

Future work will consider experiments against different methods for shar-
ing contextual and feedback information in a set of users, such as the feature
hashing technique of [81].

Part V

Conclusions

7.4 Conclusions and future works 89

7.4 Conclusions and future works

In this thesis, we presented three different problems: node classification, link
classifications and networks of bandits, motivated by important industrial ap-
plications. We proposed at least one new algorithm with a strong theoretical
background for each of the proposed problems, and we tested these algo-
rithms on synthetic and real-world datasets, comparing their performances
with the state of the art. In most of the cases our algorithms shown a signif-
icant improvement over the state of the art in accuracy and speed.
Nevertheless, there are multiple possible extensions to the research work we
presented in this thesis.

In general, there are two common extensions to all these problems: the first
extension is the generalization of our algorithms to directed graphs. For the
network of bandit it is trivial, but for the node and link classification problem
is not and requires a significant amount of work. The generalized problem is
interesting from a practical point of view since it will allow to model asym-
metric preferences which are common in online social networks.
The second, is the extension to partially known graph topologies. This setting
has been partially explored in [23] for the node classification problem, but
completely unexplored for the other two problems .

In the following subsections, we describe some of the extensions we consider
among the most interesting in detail.

7.4.1 Node Classification

An important extension, is the generalization of the Shazoo algorithm to the
multiclass case. We conjecture that the upper bound presented for the binary
case can hold also for the multiclass case.
Extensions of Mucca and Shazoo to the multilabel classification and to rank-
ing should be quite easy from the practical point of view, but providing strong
guarantees as for the classification problem is not straightforward.

7.4.2 Link Classification

The link classification problem is still quite unexplored from the machine
learning point of view and allows plenty of different new research directions.
The first possible extension is the generalization of the presented algorithms
to the case of weighted graphs. This will allow to include side information

90

that is usually available in practice into the graph. For example: two users
in a social network may have very few contacts, so in that case their relation
can not be considered as strong as users having daily contacts.
Another interesting extension, partially explored in [14], is the extension to
graphs with multiple labels on the edges. For example, this perfectly models
the reality of users being in contact with each other for different reasons:
business, hobbies, sport, school, etc. and, just to cite an example, it can
provide precious information for the node classification algorithms.

7.4.3 Networks of Bandits

This is probably the most recent among the problems we tackled, and dur-
ing the review phase of this thesis we obtained some interesting preliminary
results. GOB.Lin is relying on the graphical structure provided as input to
improve its predictions, but in some cases the similarity information is not
available in advance or its signal is too noisy. The CLUB algorithm, presented
in [46], learns at the same time a model of each node and the similarity struc-
ture among the nodes. Clearly, the algorithm does not perform better than
GOB.Lin if GOB.Lin has a perfect similarity network available. Moreover,
CLUB requires extra assumptions on the distribution of the data.
At the moment, one of the main problems of GOB.Lin is scalability. The
problem has been addressed only to a certain extent in the current work. An-
other possible extension, is a distributed GOB.Lin-like algorithm that works
with a limited number of updates, exploiting the techniques actually used for
the Selective Sampling setting (i.e. see [21]).

Part VI

Appendices

Appendix A

Node Classification

A.1 Proofs regarding the SHAZOO algorithm

Proof of Theorem 3.1

Proof. Pick any E′ ⊆ E such that ξ(M) = |E′|. Let F be the forest obtained
by removing from T all edges in E′. Draw an independent random label for
each of the |E′|+1 components of F and assign it to all nodes of that compo-
nent. Then any online algorithm makes in expectation at least half mistake
per component, which implies that the overall number of online mistakes is
(|E′| + 1)/2 > ξ(M)/2 in expectation. On the other hand, ΦW ≤ M clearly
holds by construction.

Proof of Theorem 3.5

We first give additional definitions used in the analysis, then we present the
main ideas, and finally we provide full details.

Recall that, given a labeled tree (T,y), a cluster is any maximal subtree
whose nodes have the same label. Let C be the set of all clusters of T . For
any cluster C ∈ C, let MC be the subset of all nodes of C on which shazoo
makes a mistake. Let C be the subtree of T obtained by adding to C all nodes
that are adjacent to a node of C. Note that all edges connecting a node of
C \C to a node of C are φ-edges. Let Eφ

C
be the set of φ-edges in C and let

ΦC =
∣∣Eφ

C

∣∣. Let ΦW
C

be the total weight of the edges in Eφ
C

. Finally, recall

the notation RWL =
∑

(i,j)∈L
1

Wi,j
, where L is any line graph.

Recall that an in-cluster line graph is any line graph that is entirely
contained in a single cluster. The main idea used in the proof below is to
bound |MC | for each C ∈ C in the following way. We partition MC into

93

94 A Node Classification

O(|E′
C
|) groups, where E′

C
⊆ EC . Then we find a set LC of edge-disjoint in-

cluster line graphs, and create a bijection between lines in LC and groups in

MC . We prove that the cardinality of each group is at mostmL = min
{
|L|, 1+⌊

ln
(
1 +ΦWRWL

)⌋}
, where L ∈ LC is the associated line. This shows that the

subset MT of nodes in T which are mispredicted by shazoo satisfies

|MT | =
∑
C∈C
|MC | ≤

∑
C∈C

∑
L∈LC

mL =
∑
L∈LT

mL

where LT =
⋃
C∈C LC . Then we show that∑

C∈C

∑
(i,j)∈E′

C

wi,j = O
(
ΦW
)
.

By the very definition of ξ, and using the bijection stated above, this implies

|LT | =
∑
C∈C
|LC | = O

(∑
C∈C
|E′
C
|

)
= O

(
ξ(ΦW)

)
,

thereby resulting in the mistake bound contained in Theorem 2.
The details of the proof require further notation.
According to shazoo prediction rule, when it is not a fork and C(H(it)) 6≡

∅, the algorithm predicts yit using the label of any j ∈ C
(
H(it)

)
closest to

it. In this case, we call j an r-node (reference node) for it and the pair
{j, (j, v)}, where (j, v) is the edge on the path between j and it, an rn-
direction (reference node direction). We use the shorthand notation i∗ to
denote an r-node for i. In the special case when all connection nodes i of the
hinge tree containing it have ∆(i) = 0 (i.e., C(H(it)) ≡ ∅), and it is not a
fork, we call any closest connection node j0 to it an r-node for it and we say
that {j0, (j0, v)} is a rn-direction for it. Clearly, we may have more than one
node of MC associated with the same rn-direction. Given any rn-direction
{j, (j, v)}, we call r-line (reference line) the line graph whose terminal nodes
are j and the first (in chronological order) node j0 ∈ V for which {j, (j, v)}
is a rn-direction, where (j, v) lies on the path between j0 and j.1 We denote
such an r-line by L(j, v).

In the special case where j ∈ C and j0 /∈ C we say that the r-line is
associated with the φ-edge of Eφ

C
included in the line-graph. In this case

we denote such an r-line by L(u, q), where (u, q) ∈ Eφ
C

. Figure A.1 gives a
pictorial example of the above concepts.

We now cover MC (the subset of all nodes of C ∈ C on which shazoo
makes a mistake) by the following subsets:

• MF
C is the set of all forks in MC .

1 We may also have v ≡ j0.

A.1 Proofs regarding the SHAZOO algorithm 95

1 2
1

3

2
4

2 1

1

1

2
1

f
v

i3

i2

i1

Fig. A.1: We illustrate an example of r-node, rn-direction and r-line. The
numbers near the edge lines denote edge weights. In order to predict yi2 ,
shazoo uses the r-node i1 and the rn-direction {i1, (i1, v)}. After observing
yi2 , the hinge line connecting i1 with i2 (the thick black line) is created,
which is also an r-line, since at the beginning of step t = 2 the algorithm
used {i1, (i1, v)}. In order to predict yi3 , we still use the r-node i1 and the
rn-direction {i1, (i1, v)}. After the revelation of yi3 , node f becomes a fork.

• M in
C is the subset of MC containing the nodes i whose reference node i∗

belongs to C (if i is a fork, then i∗ = i). Note that this set may have a
nonempty intersection with the previous one.

• Mout
C is the subset of MC containing the nodes i such that i∗ does not

belong to C.

Two other structures that are relevant to the proof:

• F is the subset of all forks f ∈ VC such that ∆(f) ≤ 0 at some step t. Since
we assume the cluster label is +1 (see below), and since a fork it ∈ VC is
mistaken only if ∆(it) ≤ 0, we have MF

C ⊆ F .

• CF
′

is the subset of all nodes in MC that, when revealed, create a fork
that belongs to F . Since at each time step at most one new fork can be
created,2 we have |CF ′ | ≤ |F|.

The proof of the theorem relies on the following sequence of lemmas that
show how to bound the number of mistakes made on a given cluster C =
(VC , EC). A major source of technical difficulties, that makes this analysis
different and more complex than those of TreeOpt and wta, is that on a
weighted tree the value of ∆(i) on forks i can potentially change after each
prediction.

2 In step t a new fork j is created when the number of edge-disjoint paths connecting j

to the labeled nodes increases. This event occurs only when a new hinge line π(it, f) is
created. When this happens, the only node for which the number of edge-disjoint paths

connecting it to labeled nodes gets increased is the terminal node j of the newly created

hinge line.

96 A Node Classification

Without loss of generality, from now on we assume all nodes in C are
labeled +1. Keeping this assumption in mind is crucial to understand the
arguments that follow.

For any node i ∈ VC , let ∆(i) be the value of ∆(i) when all nodes in C \C
are revealed.

Lemma A.1. For any fork f of C and any step t = 1, . . . , n, we have ∆(f) ≤
∆(f).

Proof. For the sake of contradiction, assume ∆(f) > ∆(f). Let T f be the
maximal subtree of T rooted at f such that no internal node of T f is revealed.
Now, consider the cut given by the edges of EφC belonging to the hinge lines
of T f . This cut separates f from any revealed node labeled with −1. The
size of this cut cannot be larger than ΦW

C
. By definition of ∆(·), this implies

∆(f) ≤ ΦW
C

. However, also ∆(f) cannot be larger than ΦW
C

. Because

∆(it) ≤
∑

(i,j)∈Eφ
C

Wi,j = ΦW
C

must hold independent of the set of nodes in VC that are revealed before time
t, this entails a contradiction.

Let now ξC be the restriction of ξ on the subtree C, and let DC be the
set of all distinct rn-directions which the nodes of M in

C can be associated
with. The next lemmas are aimed at bounding |F| and |DC |. We first need to
introduce the superset D′C of DC . Then, we show that for any C both |D′C |
and |F| are linear in ξC(ΦW

C
).

In order to do so, we need to take into account the fact that the sign of
∆ for the forks in the cluster can change many times during the prediction
process. This can be done via Lemma A.1, which shows that when all labels in
C \C are revealed then, for all fork f ∈ C, the value ∆(f) does not increase.
Thus, we get the largest set DC when we assume that the nodes in C \C are
revealed before the nodes of C.

Given any cluster C, let σC be the order in which the nodes of C are
revealed. Let also σ′

C
be the permutation in which all nodes in C are revealed

in the same order as σC , and all nodes in C \C are revealed at the beginning,
in any order. Now, given any node revelation order σC , D′C can be defined by
describing the three types of steps involved in its incremental construction
supposing σ′

C
was the actual node revelation order.

1. After the first |C\C| = ΦC steps, D′C contains all node-edge pairs {i, (i, j)}
such that i is a fork and (i, j) is an edge laying on a hinge line of C. Recall
that no node in C is revealed yet.

2. For each step t > 0 when a new fork f is created such that ∆(f) ≤ 0
just after the revelation of yit , we add to D′C the three node-edge pairs
{f, (f, j)}, where the (f, j) are the edges contained in the three hinge lines
terminating at f .

A.1 Proofs regarding the SHAZOO algorithm 97

3. Let s be any step where: (i) A new hinge line π(is, i
∗
s) is created, (ii) node

i∗s is a fork, and (iii) ∆(i∗s) ≤ 0 at time s − 1. On each such step we add
{i∗s, (i∗s, j)} to D′C , for j in π(is, i

∗
s).

It is easy to verify that, given any ordering σC for the node revelation in C,
we have DC ⊆ D′C . In fact, given an rn-direction {i, (i, j)} ∈ DC , if (i, j) lies
along one of the hinge lines that are present at time 0 according to σ′

C
, then

{i, (i, j)} must be included in D′C during one of the steps of type 2 above,
otherwise {i, (i, j)} will be included in D′C during one of the steps of type 2
or type 3.

As announced, the following lemmas show that |D′C | and |F| are both of
the order of ξC(ΦW

C
).

Lemma A.2. (i) The total number of forks at time t = ΦC is O
(
ξ(ΦW

C
)
)
. (ii)

The total number of elements added to D′C in the first step of its construction
is O

(
ξ(ΦW

C
)
)
.

Proof. Assume nodes are revealed according to σ′
C

. Let C ′ be the subtree of

C made up of all nodes in C that are included in any path connecting two
nodes of C \ C. By their very definition, the forks at time t = ΦC are the
nodes of VC′ having degree larger than two in subtree C ′. Consider C ′ as
rooted at an arbitrary node of C \C. The number of the leaves of C ′ is equal
to |C \ C| − 1. This is in turn O

(
ξC(ΦW

C

)
because∑

(i,j)∈Eφ
C

wi,j = O
(
ξC(ΦW

C
)
)
.

Now, in any tree, the sum of the degrees of nodes having degree larger than
two cannot is at most linear in the number of leaves. Hence, at time t = ΦC
both the number of forks in C and the cardinality of D′C are O

(
ξC(ΦW

C
)
)
.

Let now ΓTt be the minimal cutsize of T consistent with the labels seen
before step t+ 1, and notice that ΓTt is nondecreasing with t.

Lemma A.3. Let t be a step when a new hinge line π(it, q) is created such
that it, q ∈ VC . If just after step t we have ∆(q) ≤ 0, then ΓTt −ΓTt−1 ≥ wu,v,
where (u, v) is the lightest edge on π(it, q).

Proof. Since ∆(q) ≤ 0 and π(it, q) is completely included in C, we must have
∆(q) ≤ 0 just before the revelation of yit . This implies that the difference
ΓTt −ΓTt−1 cannot be smaller than the minimum cutsize that would be created
on π(it, q) by assigning label −1 to node q.

Lemma A.4. Assume nodes are revealed according to σ′
C

. Then the cardi-
nality of F and the total number of elements added to D′C during the steps
of type 2 above are both linear in ξC(ΦW

C
).

98 A Node Classification

Proof. Let F0 be the set of forks in VC such that ∆(f) ≤ 0 at some time
t ≤ |V |. Recall that, by definition, for each fork f ∈ F there exists a step tf
such that ∆(f) ≤ 0. Hence, Lemma A.1 implies that, at the same step tf , for
each fork f ∈ F we have ∆(f) ≤ 0. Since F is included in F0, we can bound
|F| by |F0|, i.e., by the number of forks i ∈ VC such that ∆(i) ≤ 0, under
the assumption that σ′

C
is the actual revelation order for the nodes in C.

Now, |F0| is bounded by the number of forks created in the first |C \C| =
ΦC steps, which is equal to O

(
ξ(ΦW

C
)
)

plus the number of forks f created
at some later step and such that ∆(f) ≤ 0 right after their creation. Since
nodes in C are revealed according to σ′

C
, the condition ∆(f) > 0 just after

the creation of a fork f implies that we will never have ∆(f) ≤ 0 in later
stages. Hence this fork f belongs neither to F0 nor to F .

In order to conclude the proof, it suffices to bound from above the number
of elements added to D′C in the steps of type 2 above. From Lemma A.3, we
can see that for each fork f created at time t such that ∆(f) ≤ 0 just after
the revelation of node it, we must have |ΓTt − ΓTt−1| ≥ wu,v, where (u, v) is
the lightest edge in π(it, f). Hence, we can injectively associate each element
of F with an edge of EC , in such a way that the sum of the weights of these
edges is bounded by ΦW

C
. By definition of ξ, we can therefore conclude that

the total number of elements added to D′C in the steps of type 2 is O
(
ξ(ΦW

C
)
)
.

With the following lemma we bound the number of nodes of M in
C \ CF

′

associated with every rn-direction and show that one can perform a transfor-
mation of the r-lines so as to make them edge-disjoint. This transformation
is crucial for finding the set LT appearing in the theorem statement. Observe
that, by definition of r-line, we cannot have two r-lines such that each of them
includes only one terminal node of the other. Thus, let now FC be the forest
where each node is associated with an r-line and where the parent-child rela-
tionship expresses that (i) the parent r-line contains a terminal node of the
child r-line, together with (ii) the parent r-line and the child r-line are not
edge-disjoint. FC is, in fact, a forest of r-lines. We now use mL(j,v) for bound-
ing the number of mistakes associated with a given rn-direction {i, (j, v)}
or with a given φ-edge (j, v). Given any connected component T ′ of FC , let
finally mT ′ be the total number of nodes of M in

C \ CF
′

associated with the
rn-directions {i, (i, j)} of all r-lines L(i, j) of T ′.

Lemma A.5. Let C be any cluster. Then:

(i)The number of nodes in M in
C \ CF

′
associated with a given rn-direction

{j, (j, v)} is of the order of mL(i,j).

(ii)The number of nodes in Mout
C \ CF ′ associated with a given φ-edge (u, q)

is of the order of mL(u,q).
(iii)Let L(jr, vr) be the r-line associated with the root of any connected com-

ponent T ′ of FC . mT ′ must be at most of the same order of

A.1 Proofs regarding the SHAZOO algorithm 99∑
L(j,v)∈L(L(jr,vr))

mL(j,v) + |VT ′ |

where L(L(jr, vr)) is a set of |VT ′ | edge-disjoint line graphs completely
contained in L(jr, vr).

Proof. We will prove only (i) and (iii), (ii) being similar to (i). Let it be a
node in M in

C \ CF
′

associated with a given rn-direction {j, (j, v)}. There are
two possibilities: (a) it is in L(j, v) or (b) the revelation of yit creates a fork f
in L(j, v) such that ∆(f) > 0 for all steps s ≥ t. Let now it′ be the next node
(in chronological order) of M in

C \CF
′

associated with {j, (j, v)}. The length of
π(it′ , it) cannot be smaller than the length of π(it′ , j) (under condition (a))
or smaller than the length of π(f, j) (under condition (b)).

This clearly entails a dichotomic behaviour in the sequence of mistaken
nodes in M in

C \ CF
′

associated with {j, (j, v)}. Let now p be the node in
L(j, v) which is farthest from j such that the length of π(p, j) is not larger
than ΦW . Once a node in π(p, j) is revealed or becomes a fork f satisfying
∆(f) > 0 for all steps s ≥ t, we have ∆(j) > 0 for all subsequent steps
(otherwise, this would contradict the fact that the total cutsize of T is ΦW).
Combined with the above sequential dichotomic behavior, this shows that the
number of nodes of M in

C \CF
′

associated with a given rn-direction {j, (j, v)}
can be at most of the order of

min

{
|L(j, v)|, 1 +

⌊
log2

(
RWL(j,v) + (ΦW)−1

(ΦW)−1

)⌋}
= mL(j,v) .

Part (iii) of the statement can be now proved in the following way. Suppose
now that an r-line L(j, v), having j and j0 as terminal nodes, includes the
terminal node j′ of another r-line L(j′, v′), having j′ and j′0 as terminal nodes.
Assume also that the two r-lines are not edge-disjoint. If L(j′, v′) is partially
included in L(j, v), i.e., if j′0 does not belong to L(j, v), then L(j′, v′) can
be broken into two sub-lines: the first one has j′ and k as terminal nodes,
being k the node in L(j, v) which is farthest from j′; the second one has k
and j′0 as terminal nodes. It is easy to see that L(j, v) must be created before
L(j′, v′) and j0 is the only node of the second sub-line that can be associated
with the rn-direction {j′, (j′, v′)}. This observation reduces the problem to
considering that in T ′ each r-line that is not a root is completely included in
its parent.

Given an r-line L(u, q) having u and z as terminals, we denote by mπ(u,z)

the quantity mL(u,q).
Consider now the simplest case in which T ′ is formed by only two r-

lines: the parent r-line L(jp, vp), which completely contains the child r-line
L(jc, vc). Let s be the step in which the first node u of L(jp, vp) becomes
a hinge node. After step s, L(jp, vp) can be vieved as broken in two edge-
disjoint sublines having {jp, u} and {j0, u} as terminal node sets, where j0 is
one of the terminal of L(jp, vp). Thus,

100 A Node Classification

mT ′ ≤ max
u∈VL(jp,vp)

mπ(jp,u) +mπ(u,j0) + 1 .

Generalizing this argument for every component T ′ of FC , and using the
above observation about the partially included r-lines, we can state that, for
any component T ′ of FC , mT ′ is of the order of

max
u1,...,uN∈VL(jp,vp)

(
mπ(jp,u1) +mπ(uN ,j0) +

N−1∑
k=1

mπ(uk,uk+1) + 2|VT ′ |
)

where N = |VT ′ |−1. This entails that we can define L(L(jr, vr)) as the union

of {π(jp, u1), π(uN , j0)} and
⋃N−1
k=1 π(uk, uk+1), which concludes the proof.

Lemma A.6. The total number of elements added to D′C during steps of type
3 above is of the order of ξC(ΦW

C
).

Proof. Assume nodes are revealed according to σ′
C

, and let s be any type-3
step when a new element is added to D′C . There are two cases: (a) ∆(i∗s) ≤ 0
at time s or (b) ∆(i∗s) > 0 at time s.

Case (a). Lemma A.3 combined with the fact that all hinge-lines created
are edge-disjoint, ensures that we can injectively associate each of these added
elements with an edge of EC in such a way that the total weight of these edges
is bounded by ΦW

C
. This in turn implies that the total number of elements

added to EC is O
(
ξC(ΦW

C
)
)
.

Case (b). Since we assumed that nodes are revealed according to σ′
C

, we
have that ∆(i∗s) is positive for all steps t > s. Hence we have that case
(b) can occur only once for each of such forks i∗s. Since this kind of fork
belongs to F , we can use Lemma A.4 and conclude that (b) can occur at
most |F| = O

(
ξC(ΦW

C
)
)

times.

Lemma A.7. With the notation introduced so far, we have |DC | = O
(
ξC(ΦW

C
)
)
.

Proof. Combining Lemma A.2, Lemma A.4, and Lemma A.6 we immediately
have D′C = O

(
ξC(ΦW

C
)
)
. The claim then follows from DC ⊆ D′C .

We are now ready to prove the theorem.
Proof of Theorem 3.5. Let FT be the union of FC over C ∈ C. Using
Lemma A.7 we deduce |VFC | = ΦC +O

(
ξC(ΦW

C
)
)

= O
(
ξC(ΦW

C
)
)
, where the

term ΦC takes into account that at most one r-line of FC may be associated
with each φ-edge of C.

By definition of ξ(·), this implies |VFT | = O
(
ξ(ΦW)

)
. Using part (i) and

(ii) of Lemma A.5 we have |MT | ≤ |MF
C | + |M in

C | + |Mout
C | ≤ |F| + |CF

′ | +∑
L∈VFT

mL ≤
∑
L∈VFT

mL +O
(
ξ(ΦW)

)
.

Let now T (FT) be the set of components of FT . Given any tree T ′ ∈
T (FT), let r(T ′) be the r-line root of T ′. Recall that, by part (iii) of
Lemma A.5 for any tree T ′ ∈ T (FT) we can find a set L(r(T ′)) of |VT ′ |

A.2 Experimental results 101

edge-disjoint line graphs all included in r(T ′) such that mT ′ is of the order of∑
L∈LT ′ (r(T ′))

mL + |VT ′ |. Let now L′T be equal to ∪T ′∈T (FT)L(r(T ′)). Thus
we have

|MT | = O

 ∑
L∈L′T

mL + |VFT |+ ξ(ΦW)

 = O

 ∑
L∈L′T

mL + ξ(ΦW)

 .

Observe that L′T is not an edge disjoint set of line graphs included in T
only because each φ-edge may belong to two different lines of L′T . By def-
inition of mL, for any line graphs L and L′, where L′ is obtained from
L by removing one of the two terminal nodes and the edge incident to
it, we have mL′ = mL + O(1). If, for each φ-edge shared by two line
graphs of L′T , we shorten the two line graphs so as no one of them in-
cludes the φ-edge, we obtain a new set of edge-disjoint line graphs LT
such that

∑
L∈L′T

mL =
∑
L′∈LT +ξ(ΦW). Hence, we finally obtain |MT | =

O
(∑

L′∈LT mL′ + ξ(ΦW)
)

= O
(∑

L′∈LT mL′

)
, where in the last equality we

used the fact that mL′ ≥ 1 for all line graphs L′. ut

A.2 Experimental results

In this section we report the detailed results of our experiments with node
classification algorithms. Some of these results have been plotted and re-
ported in Chapter 5.
Each table refers to experiments on one dataset, on the first row we reported
the size of the training set. In the first column the name of the algorithm and
concatenated with a “+” the spanning tree (eventually) used in combination
with the algorithm.
Please remember that algorithms are denoted by k*algorithmName are com-
mittees of k spanning trees aggregating predictions via a majority vote.

102 A Node Classification

P
r
e
d
ic
t
o
r
s

2
,5

%
5
%

1
0
%

2
5
%

3
3
%

5
0
%

g
t
g
-e
ss

5
,0

9
(0

,4
)

4
,6

1
(0

,3
)

4
,2

3
(0

,1
5
)

3
,9

8
(0

,1
8
)

3
,9

1
(0

,2
4
)

3
,5

7
(0

,2
4
)

l
a
b
p
r
o
p

7
,0

8
(0

,6
3
)

5
,7

2
(0

,4
)

4
,8

(0
,0

9
)

4
,1

6
(0

,1
8
)

3
,9

9
(0

,2
2
)

3
,6

1
(0

,2
)

g
pa

+
r
st

4
5
,7

3
(8

,6
1
)

4
2
,7

1
(7

,3
1
)

3
2
,8

3
(4

,3
3
)

2
7
,0

1
(3

,8
3
)

2
9
,5

1
(4

,4
4
)

2
3
,5

4
(3

,3
2
)

g
pa

+
m
st

8
,6

1
(3

,8
9
)

1
1
,7

5
(4

,3
5
)

7
,4

5
(1

,4
3
)

9
,2

1
(4

,0
9
)

8
,1

(2
,4

6
)

7
,2

1
(3

,2
7
)

g
pa

+
b
f
st

5
4
,7

3
(2

,8
3
)

4
7
,4

(2
,7

3
)

4
0
,4

5
(4

,9
1
)

3
0
,0

3
(2

,5
4
)

3
0
,1

2
(3

,5
5
)

2
5
,7

1
(1

,9
2
)

w
t
a

+
r
st

3
2
,0

8
(2

,4
9
)

2
6
,5

6
(1

,1
2
)

2
1
,1

5
(0

,8
9
)

1
5
,4

2
(0

,6
7
)

1
3
,8

(0
,4

3
)

1
1
,8

1
(0

,5
5
)

w
t
a

+
m
st

1
1
,5

1
(0

,8
8
)

9
,9

2
(1

,2
9
)

7
,8

5
(0

,5
2
)

5
,9

6
(0

,5
)

5
,4

9
(0

,2
6
)

4
,8

3
(0

,3
2
)

w
t
a

+
b
f
st

4
5
,9

8
(2

,6
9
)

3
8
,2

8
(1

,7
1
)

3
0
,4

6
(0

,7
7
)

2
2
,3

(0
,9

1
)

1
9
,9

6
(0

,7
8
)

1
7
,6

9
(0

,5
8
)

sh
a
z
o
o

+
r
st

2
4
,2

(2
,5

7
)

1
8
,6

2
(0

,9
3
)

1
4
,1

6
(1

,0
2
)

1
0
,4

2
(0

,4
4
)

9
,2

8
(0

,5
6
)

7
,8

9
(0

,5
8
)

sh
a
z
o
o

+
m
st

6
,0

4
(0

,3
)

5
,7

4
(0

,4
1
)

4
,8

2
(0

,3
3
)

3
,8

9
(0

,2
5
)

3
,6

6
(0

,1
7
)

3
,3

2
(0

,2
1
)

sh
a
z
o
o

+
b
f
st

4
2
,8

(1
,8

1
)

3
3
,0

5
(2

,3
6
)

2
3
,7

5
(1

,4
9
)

1
6
,2

4
(1

,1
1
)

1
4
,2

6
(0

,9
8
)

1
2
,2

2
(0

,7
5
)

m
u
c
c
a

+
r
st

2
4
,1

(2
,2

2
)

1
8
,3

8
(1

,2
3
)

1
3
,9

7
(0

,8
5
)

1
0
,0

8
(0

,5
1
)

9
,1

1
(0

,5
6
)

7
,6

7
(0

,5
4
)

m
u
c
c
a

+
m
st

5
,9

2
(0

,4
)

5
,4

7
(0

,3
5
)

4
,5

3
(0

,3
9
)

3
,8

2
(0

,2
2
)

3
,5

2
(0

,2
3
)

3
,2

(0
,2

1
)

m
u
c
c
a

+
b
f
st

4
0
,2

1
(2

,6
)

3
1
,6

6
(2

,7
6
)

2
3
,2

1
(1

,4
1
)

1
5
,9

3
(1

,0
9
)

1
4
,0

9
(1

,0
5
)

1
2
,1

2
(0

,7
5
)

3
*
w
t
a

+
r
st

2
4
,1

5
(1

,5
)

1
7
,4

3
(1

,1
3
)

1
2
,9

6
(0

,5
2
)

9
,2

3
(0

,4
5
)

8
,2

1
(0

,3
4
)

7
,1

4
(0

,3
2
)

3
*
sh

a
z
o
o

+
r
st

1
6
,8

2
(1

,0
7
)

1
1
,9

1
(0

,8
)

8
,8

2
(0

,3
3
)

6
,6

8
(0

,4
2
)

6
,0

8
(0

,2
9
)

5
,4

4
(0

,1
8
)

3
*
m
u
c
c
a

+
r
st

1
6
,6

2
(1

,1
8
)

1
1
,6

9
(0

,6
6
)

8
,5

2
(0

,3
4
)

6
,4

8
(0

,3
7
)

5
,8

8
(0

,2
3
)

5
,3

2
(0

,1
2
)

7
*
w
t
a

+
r
st

1
3
,6

6
(1

,0
1
)

9
,4

5
(0

,4
8
)

7
,1

5
(0

,2
7
)

5
,7

5
(0

,2
3
)

5
,3

3
(0

,2
7
)

4
,7

7
(0

,2
4
)

7
*
sh

a
z
o
o

+
r
st

1
0
,0

1
(0

,7
8
)

7
,3

6
(0

,3
7
)

5
,9

1
(0

,3
1
)

4
,8

6
(0

,2
4
)

4
,5

4
(0

,1
9
)

4
,1

4
(0

,2
3
)

7
*
m
u
c
c
a

+
r
st

9
,8

4
(0

,8
7
)

7
,1

7
(0

,3
7
)

5
,6

(0
,2

4
)

4
,6

8
(0

,2
3
)

4
,3

9
(0

,1
9
)

4
,0

5
(0

,2
8
)

1
1
*
w
t
a

+
r
st

1
0
,3

4
(1

,2
1
)

7
,6

3
(0

,4
8
)

6
,1

2
(0

,2
4
)

4
,8

8
(0

,1
8
)

4
,6

6
(0

,2
1
)

4
,1

6
(0

,2
3
)

1
1
*
sh

a
z
o
o

+
r
st

8
,3

2
(0

,4
9
)

6
,4

1
(0

,4
1
)

5
,3

(0
,2

2
)

4
,4

3
(0

,2
2
)

4
,2

1
(0

,1
5
)

3
,7

8
(0

,2
5
)

1
1
*
m
u
c
c
a

+
r
st

8
,0

7
(0

,5
7
)

6
,2

2
(0

,4
5
)

5
,0

6
(0

,1
9
)

4
,2

7
(0

,1
8
)

4
,0

9
(0

,1
4
)

3
,7

1
(0

,2
7
)

T
ab

le
A

.1
:

In
th

is
ta

b
le

w
e

sh
ow

th
e

av
er

a
g
ed

cl
a
ss

ifi
ca

ti
o
n

er
ro

r
ra

te
s

(p
er

ce
n
ta

g
es

)
a
ch

ie
v
ed

b
y

th
e

va
ri

o
u

s
a
lg

o
ri

th
m

s
o
n

th
e

U
S

P
S

-0
d

at
as

et
.

A
lg

or
it

h
m

s
a
re

tr
a
in

ed
te

n
ti

m
es

ov
er

a
ra

n
d

o
m

su
b

se
t

o
f

2
,5

%
,

5
%

,
1
0
%

,
2
5
%

,
3
3
%

a
n

d
5
0
%

o
f

th
e

to
ta

l
n
u

m
b

er
of

n
o
d

es
an

d
te

st
ed

o
n

th
e

re
m

a
in

in
g

o
n

es
.
g
t
g
-e
ss

a
n

d
l
a
b
p
r
o
p

ar
e

u
se

d
a
s

ya
rd

st
ic

k
s

fo
r

th
e

co
m

p
a
ri

so
n

.
S

ta
n

d
ar

d
d

ev
ia

ti
on

s
ar

e
re

p
o
rt

ed
in

p
a
re

n
th

es
is

.

A.2 Experimental results 103

P
r
e
d
ic
t
o
r
s

2
,5

%
5
%

1
0
%

2
5
%

3
3
%

5
0
%

g
t
g
-e
ss

5
,4

3
(0

,4
)

4
,7

2
(0

,1
8
)

4
,3

1
(0

,1
6
)

4
,0

4
(0

,1
2
)

3
,8

7
(0

,1
4
)

3
,6

6
(0

,1
8
)

l
a
b
p
r
o
p

1
5
,0

7
(4

,2
6
)

6
,7

4
(0

,6
4
)

4
,9

5
(0

,2
3
)

4
,1

9
(0

,1
4
)

3
,9

1
(0

,0
9
)

3
,6

8
(0

,1
5
)

g
pa

+
r
st

7
8
,1

1
(3

,2
8
)

7
5
,7

1
(3

,8
2
)

7
0
,9

7
(4

,0
2
)

5
9
,1

5
(3

,4
1
)

6
0
,1

3
(3

,6
4
)

5
6
,2

2
(3

,4
8
)

g
pa

+
m
st

7
4
,1

4
(2

,0
7
)

6
8

(4
,4

3
)

6
2
,8

(2
,4

1
)

5
4
,1

5
(3

,4
7
)

5
0
,5

7
(3

,5
)

4
7
,8

8
(5

,2
1
)

g
pa

+
b
f
st

7
4
,1

1
(1

,4
2
)

6
9
,5

4
(2

,5
2
)

6
2
,6

8
(1

,7
3
)

5
4
,4

3
(2

,3
9
)

5
1
,6

2
(1

,9
4
)

4
8
,2

8
(3

,3
5
)

w
t
a

+
r
st

6
2
,2

6
(1

,5
9
)

5
3
,4

9
(1

,2
4
)

4
3
,6

6
(1

,0
6
)

3
1
,3

8
(0

,9
4
)

2
7
,6

5
(0

,7
5
)

2
3
,3

7
(0

,6
8
)

w
t
a

+
m
st

6
1
,9

4
(1

,4
5
)

5
3
,9

9
(1

,5
6
)

4
4
,4

6
(0

,9
8
)

3
3
,3

8
(0

,6
2
)

3
0
,3

9
(0

,6
2
)

2
6
,1

4
(0

,4
7
)

w
t
a

+
b
f
st

7
0
,0

3
(1

,7
2
)

6
3
,7

2
(1

,3
6
)

5
5
,5

(1
,5

2
)

4
4
,8

1
(1

,4
2
)

4
2
,1

7
(1

,1
8
)

3
8
,3

(0
,7

9
)

sh
a
z
o
o

+
r
st

5
5
,5

(1
,5

3
)

4
3
,7

1
(1

,6
5
)

3
2
,6

(1
,3

5
)

2
1
,3

5
(0

,6
8
)

1
8
,8

(0
,4

8
)

1
5
,8

3
(0

,5
7
)

sh
a
z
o
o

+
m
st

5
7
,5

7
(2

,3
)

4
6
,6

9
(1

)
3
6
,2

1
(1

,1
3
)

2
4
,3

(0
,5

1
)

2
0
,8

6
(0

,7
)

1
7
,1

9
(0

,5
7
)

sh
a
z
o
o

+
b
f
st

6
3
,7

(2
,8

9
)

5
4
,1

(2
,5

9
)

4
3
,9

1
(1

,3
1
)

3
1
,7

9
(1

,1
1
)

2
9
,7

3
(1

,1
8
)

2
6
,3

9
(0

,8
6
)

m
u
c
c
a

+
r
st

5
4
,9

3
(2

)
4
3
,5

4
(1

,6
)

3
2
,5

3
(1

,1
5
)

2
1
,3

1
(0

,7
)

1
8
,6

5
(0

,6
4
)

1
5
,8

1
(0

,6
2
)

m
u
c
c
a

+
m
st

5
9
,1

4
(2

,1
9
)

4
8
,2

8
(0

,7
2
)

3
7
,5

1
(0

,9
7
)

2
5
,1

3
(0

,6
6
)

2
1
,7

4
(0

,7
2
)

1
7
,8

1
(0

,5
8
)

m
u
c
c
a

+
b
f
st

6
3
,2

(2
,6

9
)

5
3
,5

5
(2

,6
5
)

4
3
,7

5
(1

,1
5
)

3
1
,7

5
(1

,0
6
)

2
9
,6

5
(1

,2
3
)

2
6
,3

7
(0

,8
9
)

3
*
w
t
a

+
r
st

5
4
,2

7
(1

,6
2
)

4
2
,9

9
(1

,0
9
)

3
1
,7

1
(0

,5
)

1
9
,9

7
(0

,5
2
)

1
7
,2

2
(0

,4
7
)

1
3
,6

6
(0

,3
9
)

3
*
sh

a
z
o
o

+
r
st

4
6
,4

4
(2

,4
3
)

3
2
,4

8
(0

,9
3
)

2
1
,6

5
(0

,9
)

1
2
,8

9
(0

,2
7
)

1
1
,0

8
(0

,5
)

9
,0

8
(0

,3
3
)

3
*
m
u
c
c
a

+
r
st

4
5
,7

9
(2

,2
8
)

3
2
,2

9
(0

,8
4
)

2
1
,3

3
(0

,5
6
)

1
2
,7

6
(0

,4
2
)

1
0
,9

1
(0

,3
7
)

8
,9

4
(0

,3
2
)

7
*
w
t
a

+
r
st

3
7
,9

5
(1

,8
)

2
4
,6

8
(0

,9
7
)

1
5
,0

2
(0

,5
6
)

8
,6

9
(0

,3
2
)

7
,5

9
(0

,1
9
)

6
,2

8
(0

,1
3
)

7
*
sh

a
z
o
o

+
r
st

2
8
,1

2
(2

,3
4
)

1
5
,8

8
(0

,7
9
)

9
,6

5
(0

,5
6
)

6
,3

9
(0

,3
4
)

5
,6

9
(0

,2
3
)

5
,0

8
(0

,2
4
)

7
*
m
u
c
c
a

+
r
st

2
7
,3

7
(2

,2
9
)

1
5
,6

9
(0

,9
4
)

9
,3

(0
,5

9
)

6
,2

9
(0

,3
)

5
,6

(0
,2

8
)

4
,9

8
(0

,2
5
)

1
1
*
w
t
a

+
r
st

2
9
,3

9
(1

,2
5
)

1
7
,2

1
(0

,8
3
)

1
0
,1

(0
,3

4
)

6
,3

5
(0

,2
7
)

5
,6

1
(0

,1
4
)

4
,8

9
(0

,1
6
)

1
1
*
sh

a
z
o
o

+
r
st

2
0
,6

6
(1

,8
7
)

1
1
,2

5
(0

,7
5
)

7
,2

7
(0

,3
6
)

5
,1

8
(0

,2
2
)

4
,7

6
(0

,2
3
)

4
,2

5
(0

,1
8
)

1
1
*
m
u
c
c
a

+
r
st

1
9
,8

8
(2

,0
6
)

1
0
,8

6
(0

,8
3
)

6
,9

8
(0

,3
2
)

5
,0

1
(0

,1
7
)

4
,6

6
(0

,2
9
)

4
,1

7
(0

,2
2
)

T
ab

le
A

.2
:

In
th

is
ta

b
le

w
e

sh
ow

th
e

av
er

a
g
ed

cl
a
ss

ifi
ca

ti
o
n

er
ro

r
ra

te
s

(p
er

ce
n
ta

g
es

)
a
ch

ie
v
ed

b
y

th
e

va
ri

o
u

s
a
lg

o
ri

th
m

s
o
n

th
e

U
S

P
S

-1
0

d
at

as
et

.
A

lg
or

it
h

m
s

a
re

tr
a
in

ed
te

n
ti

m
es

ov
er

a
ra

n
d

o
m

su
b

se
t

o
f

2
,5

%
,

5
%

,
1
0
%

,
2
5
%

,
3
3
%

a
n

d
5
0
%

o
f

th
e

to
ta

l
n
u

m
b

er
of

n
o
d

es
an

d
te

st
ed

o
n

th
e

re
m

a
in

in
g

o
n

es
.
g
t
g
-e
ss

a
n

d
l
a
b
p
r
o
p

ar
e

u
se

d
a
s

ya
rd

st
ic

k
s

fo
r

th
e

co
m

p
a
ri

so
n

.
S

ta
n

d
ar

d
d

ev
ia

ti
on

s
ar

e
re

p
o
rt

ed
in

p
a
re

n
th

es
is

.

104 A Node Classification

P
r
e
d
ic
t
o
r
s

2
,5

%
5
%

1
0
%

2
5
%

3
3
%

5
0
%

g
t
g
-e
ss

5
,4

8
(0

,4
6
)

4
,8

(0
,3

5
)

4
,3

7
(0

,2
8
)

4
,0

3
(0

,1
7
)

3
,7

7
(0

,1
4
)

3
,6

7
(0

,2
2
)

l
a
b
p
r
o
p

4
4
,5

6
(7

,8
3
)

1
6
,9

4
(3

,1
7
)

6
,5

(0
,5

4
)

4
,2

4
(0

,1
7
)

3
,9

9
(0

,1
8
)

3
,7

3
(0

,1
9
)

g
pa

+
r
st

8
4
,7

3
(1

,0
9
)

8
2
,2

1
(1

,5
8
)

8
0
,4

4
(2

,0
7
)

7
3
,7

5
(2

,5
8
)

7
3
,6

8
(4

,4
5
)

6
9
,6

8
(3

,6
3
)

g
pa

+
m
st

8
4
,4

7
(1

,8
8
)

8
1
,9

2
(1

,0
8
)

7
8
,2

7
(1

,6
6
)

7
2
,3

5
(2

,3
2
)

7
0
,9

1
(1

,7
8
)

6
7
,5

2
(2

,2
1
)

g
pa

+
b
f
st

7
9
,9

(1
,8

)
7
6
,6

1
(2

,1
2
)

7
2
,7

4
(2

,7
1
)

6
7
,1

(1
,0

9
)

6
4
,4

7
(2

,6
7
)

6
1
,3

9
(2

,1
5
)

w
t
a

+
r
st

7
5
,7

(1
,4

6
)

6
7
,4

6
(1

,4
1
)

5
9
,1

2
(1

,4
4
)

4
5
,2

1
(1

,1
7
)

4
0
,7

2
(1

,0
6
)

3
5
,1

5
(1

,2
5
)

w
t
a

+
m
st

7
8
,5

3
(1

,1
1
)

7
2
,1

6
(0

,9
6
)

6
5
,0

8
(0

,7
)

5
4
,3

1
(0

,7
2
)

5
0
,8

1
(0

,7
9
)

4
6
,4

9
(0

,2
9
)

w
t
a

+
b
f
st

7
7
,5

5
(1

,1
3
)

7
3

(1
,2

)
6
6
,5

(0
,9

9
)

5
8
,7

7
(0

,5
3
)

5
5
,8

7
(0

,7
9
)

5
2
,3

2
(0

,9
6
)

sh
a
z
o
o

+
r
st

7
0
,2

5
(1

,8
5
)

6
0
,4

6
(1

,4
)

4
8
,7

(1
,6

2
)

3
4
,6

2
(1

,0
6
)

3
0
,2

4
(0

,9
6
)

2
5
,4

2
(1

,2
5
)

sh
a
z
o
o

+
m
st

7
5
,7

8
(1

,3
7
)

6
8
,1

2
(0

,8
)

5
8
,9

7
(1

,3
5
)

4
5
,1

3
(0

,6
1
)

4
0
,6

7
(0

,6
6
)

3
4
,9

5
(0

,7
3
)

sh
a
z
o
o

+
b
f
st

7
3
,7

6
(2

,5
2
)

6
5
,2

(1
,9

5
)

5
6
,8

1
(1

,5
7
)

4
5
,1

6
(0

,9
7
)

4
1
,9

1
(0

,9
2
)

3
8
,1

1
(0

,5
3
)

m
u
c
c
a

+
r
st

7
0
,2

7
(2

,1
4
)

6
0
,1

(1
,5

5
)

4
8
,5

6
(1

,5
9
)

3
4
,5

8
(0

,9
7
)

3
0
,2

8
(0

,9
8
)

2
5
,5

(1
,2

9
)

m
u
c
c
a

+
m
st

7
6
,8

1
(1

,2
7
)

6
9
,3

(1
,0

5
)

6
0
,4

4
(1

,5
4
)

4
6
,4

6
(0

,5
7
)

4
1
,8

1
(0

,6
8
)

3
5
,6

6
(0

,6
6
)

m
u
c
c
a

+
b
f
st

7
3
,4

(2
,3

1
)

6
4
,9

7
(1

,9
1
)

5
6
,4

6
(1

,6
1
)

4
5
,0

5
(0

,9
8
)

4
1
,8

1
(0

,8
5
)

3
8
,0

5
(0

,4
8
)

3
*
w
t
a

+
r
st

6
9
,9

9
(0

,9
8
)

6
0
,7

3
(1

,1
7
)

4
9
,3

5
(0

,9
7
)

3
3
,8

7
(0

,7
7
)

2
9
,1

7
(0

,6
1
)

2
3
,5

4
(0

,7
7
)

3
*
sh

a
z
o
o

+
r
st

6
3
,9

1
(1

,6
7
)

5
1
,8

(1
,6

)
3
8
,1

7
(1

,1
1
)

2
3
,5

6
(0

,8
8
)

1
9
,6

3
(0

,5
7
)

1
5
,5

8
(0

,5
1
)

3
*
m
u
c
c
a

+
r
st

6
3
,5

5
(1

,6
9
)

5
1
,6

5
(1

,8
1
)

3
7
,9

9
(1

,0
4
)

2
3
,4

9
(0

,5
9
)

1
9
,7

8
(0

,4
5
)

1
5
,7

3
(0

,5
6
)

7
*
w
t
a

+
r
st

5
9
,7

8
(1

,0
9
)

4
5
,4

5
(1

,0
8
)

3
1
,1

3
(0

,5
5
)

1
6
,7

7
(0

,5
8
)

1
3
,5

2
(0

,2
8
)

1
0
,3

9
(0

,4
9
)

7
*
sh

a
z
o
o

+
r
st

5
0
,9

4
(1

,5
3
)

3
4
,1

2
(1

,4
8
)

2
0
,4

6
(0

,6
6
)

1
1
,0

4
(0

,6
)

9
,0

4
(0

,3
5
)

7
,4

8
(0

,3
2
)

7
*
m
u
c
c
a

+
r
st

5
0
,5

3
(1

,8
4
)

3
3
,7

3
(1

,5
1
)

2
0
,1

6
(0

,7
5
)

1
0
,8

8
(0

,5
6
)

9
,0

4
(0

,3
2
)

7
,5

5
(0

,3
)

1
1
*
w
t
a

+
r
st

5
4
,2

4
(2

,3
9
)

3
7
,3

7
(1

,0
4
)

2
2
,8

2
(0

,5
6
)

1
1
,0

3
(0

,3
6
)

8
,8

5
(0

,4
)

7
,1

4
(0

,3
2
)

1
1
*
sh

a
z
o
o

+
r
st

4
4
,1

9
(2

,1
5
)

2
5
,9

2
(0

,8
3
)

1
4
,2

(0
,4

8
)

7
,7

(0
,4

9
)

6
,4

8
(0

,4
)

5
,5

6
(0

,3
)

1
1
*
m
u
c
c
a

+
r
st

4
3
,7

9
(2

,3
4
)

2
5
,4

(0
,8

6
)

1
3
,9

4
(0

,4
8
)

7
,5

8
(0

,4
5
)

6
,4

(0
,3

3
)

5
,5

5
(0

,2
8
)

T
ab

le
A

.3
:

In
th

is
ta

b
le

w
e

sh
ow

th
e

av
er

a
g
ed

cl
a
ss

ifi
ca

ti
o
n

er
ro

r
ra

te
s

(p
er

ce
n
ta

g
es

)
a
ch

ie
v
ed

b
y

th
e

va
ri

o
u

s
a
lg

o
ri

th
m

s
o
n

th
e

U
S

P
S

-2
5

d
at

as
et

.
A

lg
or

it
h

m
s

a
re

tr
a
in

ed
te

n
ti

m
es

ov
er

a
ra

n
d

o
m

su
b

se
t

o
f

2
,5

%
,

5
%

,
1
0
%

,
2
5
%

,
3
3
%

a
n

d
5
0
%

o
f

th
e

to
ta

l
n
u

m
b

er
of

n
o
d

es
an

d
te

st
ed

o
n

th
e

re
m

a
in

in
g

o
n

es
.
g
t
g
-e
ss

a
n

d
l
a
b
p
r
o
p

ar
e

u
se

d
a
s

ya
rd

st
ic

k
s

fo
r

th
e

co
m

p
a
ri

so
n

.
S

ta
n

d
ar

d
d

ev
ia

ti
on

s
ar

e
re

p
o
rt

ed
in

p
a
re

n
th

es
is

.

A.2 Experimental results 105

P
r
e
d
ic
t
o
r
s

2
,5

%
5
%

1
0
%

2
5
%

3
3
%

5
0
%

g
t
g
-e
ss

4
2
,9

4
(3

,0
4
)

3
6
,1

(2
,7

6
)

3
2
,8

6
(1

,5
6
)

2
4
,4

2
(1

,0
5
)

2
2
,3

5
(1

,4
5
)

1
9
,8

6
(0

,8
5
)

l
a
b
p
r
o
p

5
0
,9

8
(6

,9
8
)

3
9
,1

9
(5

,2
1
)

3
2
,8

3
(3

,5
4
)

2
4
,1

6
(1

,0
3
)

2
2
,0

9
(1

,4
8
)

1
9
,8

1
(0

,6
6
)

g
pa

+
r
st

6
1
,5

2
(5

,0
4
)

4
9
,9

(3
,5

2
)

5
4
,1

9
(7

,6
1
)

4
6
,4

2
(6

,2
)

4
4
,0

1
(3

,2
6
)

4
4
,5

7
(6

,7
1
)

g
pa

+
m
st

5
7
,1

4
(5

,4
4
)

5
3
,4

9
(5

,7
5
)

4
7
,7

7
(7

,3
4
)

4
1
,9

5
(5

,8
5
)

3
9
,6

3
(8

,1
5
)

3
6
,6

7
(5

,2
4
)

g
pa

+
b
f
st

5
9
,3

7
(9

,7
4
)

5
2
,6

2
(8

,1
3
)

5
2
,3

3
(9

,5
4
)

4
5
,1

6
(4

,4
4
)

4
3
,0

1
(7

,6
5
)

3
8
,9

(4
,3

4
)

w
t
a

+
r
st

5
4
,3

9
(3

,3
8
)

4
7
,8

2
(2

,3
1
)

4
2
,2

8
(2

,3
3
)

3
3
,5

6
(1

,1
7
)

3
0
,8

8
(2

,0
1
)

2
7
,7

9
(1

,3
9
)

w
t
a

+
m
st

5
2
,1

3
(3

,6
6
)

4
4
,8

1
(1

,5
3
)

4
1
,2

5
(1

,7
6
)

3
3
,1

9
(1

,4
4
)

3
0
,6

7
(0

,9
7
)

2
6
,5

4
(1

,2
8
)

w
t
a

+
b
f
st

5
4
,7

7
(4

,3
5
)

4
8
,6

8
(2

,5
9
)

4
2
,8

1
(1

,9
7
)

3
5
,0

9
(1

,6
4
)

3
3
,1

8
(1

,2
5
)

2
9
,7

5
(1

,2
2
)

sh
a
z
o
o

+
r
st

4
9
,0

2
(3

,5
7
)

4
0
,9

3
(3

,9
4
)

3
5
,0

4
(1

,8
3
)

2
6
,7

2
(1

,4
3
)

2
4
,6

5
(1

,3
5
)

2
0
,9

8
(0

,8
2
)

sh
a
z
o
o

+
m
st

4
8
,6

5
(4

,9
6
)

4
1
,8

4
(2

,5
2
)

3
7
,4

6
(2

,0
3
)

2
7
,5

5
(1

,0
9
)

2
5
,1

9
(1

,4
9
)

2
1
,5

9
(1

,1
5
)

sh
a
z
o
o

+
b
f
st

5
3
,3

8
(6

,2
7
)

4
4
,5

6
(4

,3
5
)

3
6
,9

1
(2

,4
8
)

2
8
,4

4
(1

,6
8
)

2
6
,6

(1
,3

4
)

2
2
,9

4
(1

,0
4
)

m
u
c
c
a

+
r
st

4
8
,6

5
(3

,0
2
)

4
1
,2

1
(2

,6
7
)

3
5
,4

2
(1

,8
9
)

2
6
,4

8
(1

,2
8
)

2
4
,7

2
(1

,7
6
)

2
1
,1

4
(0

,8
8
)

m
u
c
c
a

+
m
st

4
6
,7

9
(4

,5
3
)

4
1
,2

(2
,0

3
)

3
6
,6

8
(1

,7
8
)

2
7
,6

3
(1

,1
)

2
5
,3

6
(1

,3
6
)

2
1
,6

8
(1

,1
3
)

m
u
c
c
a

+
b
f
st

5
1
,8

6
(5

,6
9
)

4
3
,2

4
(3

,5
9
)

3
6
,9

7
(2

,4
4
)

2
9
,0

1
(1

,8
8
)

2
6
,9

3
(1

,2
1
)

2
2
,9

8
(1

,2
4
)

3
*
w
t
a

+
r
st

4
9
,9

2
(3

,3
2
)

4
2
,9

5
(1

,5
9
)

3
7
,1

5
(1

,7
2
)

2
9
,3

1
(0

,9
4
)

2
6
,2

9
(1

,0
9
)

2
4

(1
,2

7
)

3
*
sh

a
z
o
o

+
r
st

4
8
,9

9
(3

,2
7
)

4
0
,4

3
(3

,2
1
)

3
4
,7

5
(1

,4
6
)

2
6
,1

3
(0

,9
5
)

2
3
,0

2
(1

,1
6
)

2
0
,2

9
(1

,4
6
)

3
*
m
u
c
c
a

+
r
st

4
7

(3
,8

7
)

3
9
,2

9
(3

,4
5
)

3
4
,9

9
(0

,8
1
)

2
6
,2

1
(0

,9
8
)

2
3
,5

1
(1

,0
4
)

2
0
,6

5
(1

,5
3
)

7
*
w
t
a

+
r
st

4
7
,0

8
(3

,0
4
)

3
9
,4

5
(1

,0
4
)

3
3
,7

3
(1

,9
4
)

2
5
,8

8
(1

)
2
3
,6

4
(1

,0
4
)

2
1
,2

1
(1

,0
9
)

7
*
sh

a
z
o
o

+
r
st

4
7
,4

8
(3

,1
6
)

3
9
,4

1
(3

,1
6
)

3
2
,8

8
(1

,9
6
)

2
5
,6

(0
,9

2
)

2
2
,3

8
(0

,8
9
)

1
9
,7

5
(1

,5
8
)

7
*
m
u
c
c
a

+
r
st

4
5
,0

4
(3

,2
2
)

3
7
,8

3
(2

,8
2
)

3
2
,9

9
(1

,8
1
)

2
5
,3

6
(0

,8
7
)

2
2
,6

1
(0

,7
9
)

2
0
,0

1
(1

,5
4
)

1
1
*
w
t
a

+
r
st

4
4
,6

8
(3

,3
6
)

3
8
,0

4
(2

,1
4
)

3
2
,5

8
(1

,4
2
)

2
5
,9

(1
,1

5
)

2
2
,7

8
(0

,7
1
)

2
0
,3

7
(0

,8
3
)

1
1
*
sh

a
z
o
o

+
r
st

4
7
,1

7
(2

,9
1
)

3
8
,0

9
(3

,1
8
)

3
2
,6

6
(1

,6
9
)

2
5
,2

2
(0

,8
1
)

2
2
,3

3
(1

,0
1
)

1
9
,5

8
(1

,4
2
)

1
1
*
m
u
c
c
a

+
r
st

4
4
,0

7
(3

,1
8
)

3
7
,1

8
(2

,5
4
)

3
2
,1

5
(1

,5
1
)

2
5
,1

3
(0

,6
6
)

2
2
,3

3
(0

,8
9
)

1
9
,8

4
(1

,5
)

T
ab

le
A

.4
:

In
th

is
ta

b
le

w
e

sh
ow

th
e

av
er

a
g
ed

cl
a
ss

ifi
ca

ti
o
n

er
ro

r
ra

te
s

(p
er

ce
n
ta

g
es

)
a
ch

ie
v
ed

b
y

th
e

va
ri

o
u

s
a
lg

o
ri

th
m

s
o
n

th
e

C
O

A
U

T
H

O
R

d
at

as
et

.
A

lg
o
ri

th
m

s
a
re

tr
a
in

ed
te

n
ti

m
es

ov
er

a
ra

n
d

o
m

su
b

se
t

o
f

2
,5

%
,

5
%

,
1
0
%

,
2
5
%

,
3
3
%

a
n

d
5
0
%

o
f

th
e

to
ta

l
n
u

m
b

er
of

n
o
d

es
an

d
te

st
ed

o
n

th
e

re
m

a
in

in
g

o
n

es
.
g
t
g
-e
ss

a
n

d
l
a
b
p
r
o
p

a
re

u
se

d
a
s

ya
rd

st
ic

k
s

fo
r

th
e

co
m

p
a
ri

so
n

.
S

ta
n

d
ar

d
d

ev
ia

ti
on

s
ar

e
re

p
or

te
d

in
p

a
re

n
th

es
is

.

106 A Node Classification

P
r
e
d
ic
t
o
r
s

2
,5

%
5
%

1
0
%

2
5
%

3
3
%

5
0
%

g
t
g
-e
ss

3
0
,5

8
(2

,8
)

2
6
,3

3
(2

,1
3
)

2
0
,9

3
(1

,4
7
)

1
7
,3

7
(0

,7
1
)

1
6
,9

3
(1

,0
6
)

1
5
,3

2
(1

,0
3
)

l
a
b
p
r
o
p

4
0
,0

9
(1

6
,5

2
)

2
6
,4

8
(2

,2
)

2
0
,4

5
(1

,6
1
)

1
6
,7

6
(0

,8
)

1
6
,7

2
(0

,8
2
)

1
5
,2

4
(0

,9
1
)

g
pa

+
r
st

6
0
,2

2
(7

,8
1
)

5
8
,6

7
(5

,9
7
)

4
4
,7

7
(5

,9
2
)

4
1
,8

3
(5

,1
6
)

4
1
,6

1
(8

,1
6
)

3
7
,6

4
(4

,8
5
)

g
pa

+
m
st

5
9
,9

1
(6

,3
8
)

5
2
,1

8
(6

,0
7
)

4
5
,3

8
(5

,8
4
)

3
9
,3

5
(3

,8
8
)

3
9
,6

1
(6

,6
)

3
5
,0

4
(5

,2
2
)

g
pa

+
b
f
st

6
0
,2

4
(5

,9
5
)

5
3
,6

5
(4

,1
3
)

4
5
,3

6
(6

,5
8
)

3
9
,2

9
(8

,1
7
)

3
8
,8

3
(7

,1
5
)

3
3
,7

6
(2

,3
4
)

w
t
a

+
r
st

5
0
,7

5
(2

,8
5
)

4
3
,4

5
(2

,1
8
)

3
7
,5

9
(1

,6
1
)

2
9
,5

1
(0

,8
6
)

2
7
,7

4
(0

,8
1
)

2
5
,6

8
(1

,1
6
)

w
t
a

+
m
st

5
4
,9

2
(2

,8
8
)

4
8
,8

5
(2

,5
8
)

4
0
,0

2
(0

,8
5
)

3
1
,8

8
(1

,1
5
)

3
0
,1

8
(1

,2
3
)

2
7
,2

2
(1

,0
2
)

w
t
a

+
b
f
st

5
5
,4

6
(2

,5
3
)

4
8
,1

2
(2

,4
8
)

3
9
,7

1
(2

,4
4
)

3
2
,6

7
(1

,1
8
)

3
0
,1

6
(1

,1
)

2
7
,8

4
(1

,2
7
)

sh
a
z
o
o

+
r
st

4
6
,3

8
(5

,2
)

3
8
,4

(3
,1

6
)

3
1
,7

(1
,6

9
)

2
3
,6

2
(0

,8
2
)

2
1
,9

2
(0

,6
)

1
9
,5

3
(0

,8
5
)

sh
a
z
o
o

+
m
st

5
0
,0

7
(3

,0
6
)

4
2
,2

1
(3

,2
)

3
3
,4

1
(2

,3
2
)

2
4
,2

2
(1

,5
4
)

2
3
,4

4
(1

,7
7
)

2
0
,9

3
(1

)

sh
a
z
o
o

+
b
f
st

5
2
,6

3
(5

,2
5
)

4
1
,5

5
(3

,5
6
)

3
2
,0

7
(2

,1
4
)

2
4
,8

7
(1

,1
8
)

2
3
,0

9
(0

,8
4
)

2
0
,8

(1
,1

8
)

m
u
c
c
a

+
r
st

4
6
,3

6
(4

,9
3
)

3
9
,1

8
(2

,6
1
)

3
1
,6

5
(1

,0
6
)

2
4
,1

6
(0

,9
8
)

2
2
,3

7
(0

,7
)

1
9
,8

8
(1

,1
9
)

m
u
c
c
a

+
m
st

4
8
,0

3
(2

,8
6
)

4
0
,7

6
(2

,9
3
)

3
2
,7

4
(2

,0
2
)

2
4
,5

5
(1

,5
7
)

2
3
,7

7
(1

,8
4
)

2
1
,1

6
(1

,1
3
)

m
u
c
c
a

+
b
f
st

5
1
,6

4
(5

,5
3
)

4
0
,8

5
(3

,2
9
)

3
2
,0

8
(2

,2
2
)

2
5
,0

2
(1

,3
1
)

2
3
,2

4
(0

,9
9
)

2
0
,8

8
(0

,9
2
)

3
*
w
t
a

+
r
st

4
3
,8

3
(3

,1
8
)

3
6
,8

5
(1

,3
2
)

3
1
,0

9
(1

,4
4
)

2
4
,6

7
(1

,0
1
)

2
2
,9

2
(0

,5
5
)

2
0
,7

4
(0

,6
7
)

3
*
sh

a
z
o
o

+
r
st

4
4
,0

6
(4

,4
9
)

3
4
,0

4
(0

,9
)

2
8
,7

1
(1

,2
8
)

2
1
,3

1
(0

,7
5
)

1
9
,7

6
(0

,7
5
)

1
8
,0

4
(0

,8
5
)

3
*
m
u
c
c
a

+
r
st

4
3
,3

2
(4

,5
9
)

3
3
,8

5
(1

,2
2
)

2
8
,6

8
(1

,2
6
)

2
1
,4

9
(0

,9
1
)

1
9
,9

4
(0

,9
7
)

1
8
,1

9
(0

,8
4
)

7
*
w
t
a

+
r
st

3
5
,4

7
(2

,1
4
)

2
9
,3

1
(1

,4
2
)

2
5
,0

2
(0

,3
3
)

2
0
,0

5
(0

,8
6
)

1
8
,6

7
(0

,5
7
)

1
7
,5

7
(1

,0
1
)

7
*
sh

a
z
o
o

+
r
st

3
7
,4

2
(2

,5
4
)

3
0
,1

3
(1

,8
8
)

2
5
,3

(1
,1

7
)

1
9
,2

2
(0

,9
8
)

1
8
,1

3
(0

,7
)

1
6
,5

9
(0

,7
1
)

7
*
m
u
c
c
a

+
r
st

3
5
,4

4
(2

,8
2
)

2
9
,3

7
(1

,7
8
)

2
5
,2

5
(1

,1
8
)

1
9
,2

6
(1

,0
9
)

1
8
,0

7
(0

,8
7
)

1
6
,4

2
(0

,6
2
)

1
1
*
w
t
a

+
r
st

3
1
,6

3
(2

,1
8
)

2
7
,4

2
(2

,0
3
)

2
3
,3

4
(1

,3
4
)

1
8
,7

2
(0

,8
)

1
7
,6

4
(0

,4
6
)

1
6
,5

8
(1

,2
4
)

1
1
*
sh

a
z
o
o

+
r
st

3
6
,0

2
(2

,0
5
)

2
8
,5

4
(2

,0
5
)

2
3
,8

8
(1

,3
)

1
8
,8

8
(0

,9
2
)

1
7
,8

1
(0

,6
5
)

1
6
,4

1
(0

,8
1
)

1
1
*
m
u
c
c
a

+
r
st

3
3
,9

2
(2

,1
)

2
7
,8

8
(1

,9
8
)

2
3
,9

9
(1

,1
4
)

1
8
,7

5
(1

)
1
7
,7

7
(0

,7
8
)

1
6
,2

2
(0

,6
1
)

T
ab

le
A

.5
:

In
th

is
ta

b
le

w
e

sh
ow

th
e

av
er

a
g
ed

cl
a
ss

ifi
ca

ti
o
n

er
ro

r
ra

te
s

(p
er

ce
n
ta

g
es

)
a
ch

ie
v
ed

b
y

th
e

va
ri

o
u

s
a
lg

o
ri

th
m

s
o
n

th
e

C
O

R
A

d
at

as
et

.
A

lg
or

it
h

m
s

a
re

tr
a
in

ed
te

n
ti

m
es

ov
er

a
ra

n
d

o
m

su
b

se
t

o
f

2,
5
%

,
5
%

,
1
0
%

,
2
5
%

,
3
3
%

a
n

d
5
0
%

o
f

th
e

to
ta

l
n
u

m
b

er
of

n
o
d

es
an

d
te

st
ed

o
n

th
e

re
m

a
in

in
g

o
n

es
.
g
t
g
-e
ss

a
n

d
l
a
b
p
r
o
p

ar
e

u
se

d
a
s

ya
rd

st
ic

k
s

fo
r

th
e

co
m

p
a
ri

so
n

.
S

ta
n

d
ar

d
d

ev
ia

ti
on

s
ar

e
re

p
o
rt

ed
in

p
a
re

n
th

es
is

.

A.2 Experimental results 107

P
r
e
d
ic
t
o
r
s

2
,5

%
5
%

1
0
%

2
5
%

3
3
%

5
0
%

g
t
g
-e
ss

3
9
,0

8
(1

,4
4
)

3
7
,9

7
(1

,4
3
)

3
5
,3

4
(0

,7
2
)

3
2
,6

2
(0

,2
7
)

3
1
,9

8
(0

,4
)

3
0
,4

6
(0

,3
2
)

l
a
b
p
r
o
p

5
1
,2

1
(1

,5
3
)

4
7
,4

5
(1

,1
1
)

4
0
,6

(1
,4

2
)

3
4
,2

9
(1

)
3
2
,1

9
(0

,9
5
)

3
0
,2

3
(0

,2
)

g
pa

+
r
st

5
7
,5

3
(2

,2
3
)

5
4
,3

1
(3

,4
2
)

5
3
,2

4
(3

,6
8
)

5
3
,5

7
(5

,4
6
)

5
1
,4

9
(3

,5
5
)

4
9
,0

9
(2

,6
6
)

g
pa

+
m
st

5
8
,4

8
(6

,9
1
)

5
7
,0

5
(5

,4
3
)

5
6
,4

(5
,6

8
)

4
9
,8

(4
,7

6
)

5
6
,9

4
(8

,7
2
)

4
8
,9

4
(6

,2
7
)

g
pa

+
b
f
st

6
0
,4

(5
,1

5
)

5
5
,5

3
(3

,1
1
)

5
4
,1

5
(1

,9
2
)

5
2
,5

2
(4

,8
6
)

5
1
,6

3
(2

,5
9
)

4
9
,7

4
(3

,4
2
)

w
t
a

+
r
st

5
2
,9

7
(1

,3
4
)

5
0
,2

4
(0

,9
6
)

4
7
,7

4
(0

,4
2
)

4
4
,2

8
(0

,3
5
)

4
3
,2

4
(0

,4
5
)

4
1
,8

6
(0

,4
9
)

w
t
a

+
m
st

5
1
,5

2
(1

,5
5
)

4
8
,9

3
(0

,7
4
)

4
6
,0

1
(0

,7
2
)

4
2
,7

4
(0

,4
2
)

4
1
,6

6
(0

,3
4
)

3
9
,3

7
(0

,2
9
)

w
t
a

+
b
f
st

5
6
,0

9
(1

,2
1
)

5
2
,6

8
(0

,8
3
)

5
0
,5

5
(0

,6
8
)

4
7
,3

1
(0

,4
8
)

4
6
,4

6
(0

,6
2
)

4
5
,2

8
(0

,8
2
)

sh
a
z
o
o

+
r
st

5
2
,9

5
(1

,2
4
)

4
8
,2

(0
,8

9
)

4
5
,3

9
(0

,5
7
)

4
1
,0

9
(0

,4
2
)

3
9
,4

6
(0

,5
2
)

3
7
,9

7
(0

,3
9
)

sh
a
z
o
o

+
m
st

5
8
,0

8
(3

,9
5
)

5
3
,4

9
(2

,7
3
)

5
1
,1

5
(2

,8
7
)

4
6
,2

7
(1

,8
6
)

4
4
,9

7
(0

,5
6
)

4
1
,1

9
(0

,9
7
)

sh
a
z
o
o

+
b
f
st

5
3
,1

5
(1

,7
)

4
9
,5

5
(1

,3
7
)

4
5
,5

8
(1

,2
1
)

4
2
,6

1
(0

,6
7
)

4
2
,1

4
(0

,9
3
)

4
0
,7

4
(0

,7
1
)

m
u
c
c
a

+
r
st

5
2
,3

1
(1

,6
7
)

4
7
,7

6
(0

,8
)

4
5
,4

7
(0

,5
8
)

4
1
,2

1
(0

,4
6
)

3
9
,6

7
(0

,4
4
)

3
8
,0

3
(0

,4
6
)

m
u
c
c
a

+
m
st

5
5
,9

3
(3

,5
8
)

5
1
,4

9
(2

,4
1
)

4
9
,3

5
(2

,5
2
)

4
5
,2

2
(1

,7
2
)

4
4
,2

8
(0

,6
)

4
0
,8

2
(1

,0
4
)

m
u
c
c
a

+
b
f
st

5
2
,6

(1
,4

2
)

4
9
,3

3
(1

,2
8
)

4
5
,5

3
(1

,1
4
)

4
2
,6

(0
,6

5
)

4
2
,2

1
(0

,9
5
)

4
0
,7

8
(0

,6
9
)

3
*
w
t
a

+
r
st

5
0
,2

7
(0

,9
)

4
6
,5

1
(0

,8
9
)

4
3
,9

7
(0

,6
5
)

4
0
,1

7
(0

,3
4
)

3
8
,9

7
(0

,3
7
)

3
7
,3

7
(0

,3
2
)

3
*
sh

a
z
o
o

+
r
st

5
0
,6

8
(1

,1
4
)

4
6
,3

3
(1

,3
4
)

4
2
,8

2
(0

,8
)

3
8
,1

3
(0

,3
5
)

3
6
,6

8
(0

,4
2
)

3
5
,1

5
(0

,4
6
)

3
*
m
u
c
c
a

+
r
st

4
9
,5

5
(0

,8
1
)

4
5
,4

9
(1

,0
5
)

4
2
,5

2
(0

,6
)

3
7
,9

9
(0

,3
2
)

3
6
,7

1
(0

,4
1
)

3
5
,1

7
(0

,4
1
)

7
*
w
t
a

+
r
st

4
4
,3

7
(0

,8
6
)

4
1
,2

4
(0

,4
9
)

3
9
,0

7
(0

,4
4
)

3
5
,5

4
(0

,2
6
)

3
4
,4

1
(0

,2
7
)

3
2
,8

9
(0

,3
)

7
*
sh

a
z
o
o

+
r
st

4
7
,0

4
(0

,8
)

4
2
,9

(0
,9

9
)

3
9
,2

6
(0

,6
7
)

3
5
,1

6
(0

,3
8
)

3
3
,8

7
(0

,2
2
)

3
2
,5

2
(0

,3
3
)

7
*
m
u
c
c
a

+
r
st

4
5
,2

3
(0

,7
8
)

4
1
,6

6
(0

,8
5
)

3
8
,7

6
(0

,5
8
)

3
4
,9

7
(0

,3
)

3
3
,8

(0
,2

3
)

3
2
,5

7
(0

,2
7
)

1
1
*
w
t
a

+
r
st

4
2
,7

3
(1

,1
2
)

3
9
,4

4
(0

,7
3
)

3
7
,1

8
(0

,4
2
)

3
4
,1

1
(0

,3
4
)

3
2
,8

7
(0

,2
1
)

3
1
,3

5
(0

,3
4
)

1
1
*
sh

a
z
o
o

+
r
st

4
5
,8

9
(0

,9
2
)

4
1
,6

9
(1

)
3
7
,9

4
(0

,5
3
)

3
4
,2

8
(0

,2
9
)

3
2
,7

8
(0

,3
5
)

3
1
,6

9
(0

,4
7
)

1
1
*
m
u
c
c
a

+
r
st

4
3
,7

5
(0

,9
3
)

4
0
,3

4
(0

,8
7
)

3
7
,3

2
(0

,4
6
)

3
4
,0

4
(0

,2
2
)

3
2
,7

3
(0

,3
3
)

3
1
,6

8
(0

,3
7
)

T
ab

le
A

.6
:

In
th

is
ta

b
le

w
e

sh
ow

th
e

av
er

a
g
ed

cl
a
ss

ifi
ca

ti
o
n

er
ro

r
ra

te
s

(p
er

ce
n
ta

g
es

)
a
ch

ie
v
ed

b
y

th
e

va
ri

o
u

s
a
lg

o
ri

th
m

s
o
n

th
e

IM
D

B
d

at
as

et
.

A
lg

or
it

h
m

s
a
re

tr
a
in

ed
te

n
ti

m
es

ov
er

a
ra

n
d
o
m

su
b

se
t

o
f

2
,5

%
,

5
%

,
1
0
%

,
2
5
%

,
3
3
%

a
n

d
5
0
%

o
f

th
e

to
ta

l
n
u

m
b

er
of

n
o
d

es
an

d
te

st
ed

o
n

th
e

re
m

a
in

in
g

o
n

es
.
g
t
g
-e
ss

a
n

d
l
a
b
p
r
o
p

ar
e

u
se

d
a
s

ya
rd

st
ic

k
s

fo
r

th
e

co
m

p
a
ri

so
n

.
S

ta
n

d
ar

d
d

ev
ia

ti
on

s
ar

e
re

p
o
rt

ed
in

p
a
re

n
th

es
is

.

108 A Node Classification

P
r
e
d
ic
t
o
r
s

2
,5

%
5
%

1
0
%

2
5
%

3
3
%

5
0
%

g
t
g
-e
ss

2
2
,6

2
(0

,6
4
)

2
1
,1

1
(0

,6
4
)

1
9
,6

(0
,3

4
)

1
8
,3

7
(0

,2
7
)

1
8
,1

5
(0

,2
7
)

1
7
,9

1
(0

,3
2
)

l
a
b
p
r
o
p

2
4
,4

9
(0

,9
8
)

2
2
,1

1
(1

,9
6
)

1
9
,7

5
(0

,3
4
)

1
8
,4

(0
,2

9
)

1
8
,1

7
(0

,3
)

1
7
,9

2
(0

,3
2
)

g
pa

+
r
st

5
1
,2

(4
,6

9
)

4
9
,4

5
(7

,6
6
)

4
2
,2

(4
,7

7
)

3
9
,6

2
(5

,7
4
)

3
8
,9

4
(5

,8
6
)

3
5
,6

5
(3

,2
4
)

g
pa

+
m
st

4
3
,1

(4
,7

3
)

4
0
,5

7
(2

,4
6
)

3
5
,8

8
(4

,6
3
)

3
2
,4

4
(2

,1
7
)

2
9
,2

9
(2

,2
1
)

3
0
,0

1
(4

,2
6
)

g
pa

+
b
f
st

4
5
,2

2
(4

,7
9
)

4
2
,3

1
(5

,7
3
)

4
0
,7

6
(3

,9
3
)

3
2
,6

9
(2

,3
7
)

3
1
,0

8
(2

,6
6
)

3
0
,8

(3
,8

2
)

w
t
a

+
r
st

3
7
,8

9
(1

,2
7
)

3
4
,2

6
(0

,7
6
)

3
1
,3

3
(0

,4
4
)

2
7
,0

9
(0

,5
4
)

2
6
,3

5
(0

,3
7
)

2
5
,5

(0
,3

1
)

w
t
a

+
m
st

3
8
,0

2
(1

,3
6
)

3
5
,5

(0
,7

3
)

3
1
,6

1
(0

,5
9
)

2
7
,8

6
(0

,3
5
)

2
7
,1

1
(0

,2
4
)

2
6
,1

2
(0

,3
1
)

w
t
a

+
b
f
st

3
9
,9

4
(1

,6
2
)

3
5
,8

8
(1

,1
6
)

3
2
,6

9
(0

,6
6
)

2
8
,4

(0
,3

)
2
7
,2

6
(0

,5
6
)

2
6
,3

3
(0

,4
7
)

sh
a
z
o
o

+
r
st

4
0
,6

8
(2

,0
9
)

3
2
,3

5
(2

,1
)

2
7
,1

5
(0

,6
9
)

2
2
,1

2
(0

,5
2
)

2
1
,2

8
(0

,3
5
)

2
0
,3

8
(0

,3
8
)

sh
a
z
o
o

+
m
st

3
2
,2

8
(1

,0
6
)

2
9
,3

5
(1

,1
8
)

2
6
,1

6
(0

,5
5
)

2
2
,2

3
(0

,5
5
)

2
1
,4

(0
,3

5
)

2
0
,5

2
(0

,2
5
)

sh
a
z
o
o

+
b
f
st

3
6
,3

5
(2

,2
1
)

3
0
,2

9
(1

,7
7
)

2
7
,3

6
(0

,9
9
)

2
2
,5

7
(0

,4
1
)

2
1
,5

4
(0

,4
1
)

2
0
,8

6
(0

,3
)

m
u
c
c
a

+
r
st

4
0
,4

7
(2

,2
5
)

3
2
,7

4
(1

,6
4
)

2
7
,4

9
(0

,7
6
)

2
2
,3

(0
,5

6
)

2
1
,4

3
(0

,4
)

2
0
,4

9
(0

,4
3
)

m
u
c
c
a

+
m
st

3
2
,4

7
(1

,0
9
)

2
9
,8

2
(1

,1
6
)

2
6
,4

(0
,5

9
)

2
2
,4

4
(0

,5
7
)

2
1
,6

(0
,4

)
2
0
,6

5
(0

,2
8
)

m
u
c
c
a

+
b
f
st

3
6
,3

7
(2

,3
2
)

3
0
,7

4
(1

,6
9
)

2
7
,6

7
(1

,0
5
)

2
2
,7

5
(0

,4
2
)

2
1
,7

5
(0

,4
)

2
0
,9

5
(0

,2
9
)

3
*
w
t
a

+
r
st

3
2
,6

3
(1

,2
8
)

2
8
,9

6
(0

,5
4
)

2
6
,0

5
(0

,3
6
)

2
2
,7

8
(0

,2
8
)

2
2
,2

4
(0

,3
4
)

2
1
,5

3
(0

,4
6
)

3
*
sh

a
z
o
o

+
r
st

3
6
,9

7
(1

,7
9
)

2
8
,1

2
(0

,9
2
)

2
3
,8

9
(0

,4
6
)

2
0
,1

9
(0

,2
2
)

1
9
,9

3
(0

,3
2
)

1
9
,2

3
(0

,4
3
)

3
*
m
u
c
c
a

+
r
st

3
5
,9

6
(1

,5
2
)

2
8

(0
,9

)
2
4
,2

1
(0

,4
4
)

2
0
,3

3
(0

,2
6
)

2
0
,0

5
(0

,3
6
)

1
9
,2

4
(0

,4
2
)

7
*
w
t
a

+
r
st

2
6
,7

(0
,6

9
)

2
4
,4

6
(0

,4
9
)

2
2
,7

3
(0

,2
8
)

2
0
,3

7
(0

,2
1
)

1
9
,7

7
(0

,3
1
)

1
9
,1

4
(0

,3
8
)

7
*
sh

a
z
o
o

+
r
st

3
1
,1

4
(2

,0
3
)

2
4
,4

3
(0

,8
1
)

2
1
,6

4
(0

,3
1
)

1
9
,3

2
(0

,2
2
)

1
9
,1

(0
,3

)
1
8
,6

4
(0

,4
)

7
*
m
u
c
c
a

+
r
st

2
9
,8

1
(1

,4
8
)

2
4
,3

(0
,8

5
)

2
1
,8

(0
,3

)
1
9
,4

3
(0

,2
4
)

1
9
,2

(0
,3

1
)

1
8
,6

5
(0

,3
9
)

1
1
*
w
t
a

+
r
st

2
4
,9

8
(0

,5
7
)

2
3
,1

8
(0

,3
4
)

2
1
,5

1
(0

,2
8
)

1
9
,5

5
(0

,3
4
)

1
9
,1

5
(0

,2
1
)

1
8
,4

3
(0

,4
2
)

1
1
*
sh

a
z
o
o

+
r
st

2
8
,7

5
(1

,8
3
)

2
3
,2

2
(0

,7
9
)

2
0
,9

5
(0

,3
2
)

1
9
,0

5
(0

,2
1
)

1
8
,9

(0
,3

1
)

1
8
,5

5
(0

,4
)

1
1
*
m
u
c
c
a

+
r
st

2
7
,3

8
(1

,5
)

2
3
,1

2
(0

,7
1
)

2
1
,0

5
(0

,3
6
)

1
9
,1

(0
,2

1
)

1
8
,9

3
(0

,2
9
)

1
8
,5

4
(0

,4
1
)

T
ab

le
A

.7
:

In
th

is
ta

b
le

w
e

sh
ow

th
e

av
er

a
g
ed

cl
a
ss

ifi
ca

ti
o
n

er
ro

r
ra

te
s

(p
er

ce
n
ta

g
es

)
a
ch

ie
v
ed

b
y

th
e

va
ri

o
u

s
a
lg

o
ri

th
m

s
o
n

th
e

P
U

B
M

E
D

d
at

as
et

.
A

lg
or

it
h

m
s

a
re

tr
a
in

ed
te

n
ti

m
es

ov
er

a
ra

n
d

o
m

su
b

se
t

o
f

2
,5

%
,

5
%

,
1
0
%

,
2
5
%

,
3
3
%

a
n

d
5
0
%

o
f

th
e

to
ta

l
n
u

m
b

er
of

n
o
d

es
an

d
te

st
ed

o
n

th
e

re
m

a
in

in
g

o
n

es
.
g
t
g
-e
ss

a
n

d
l
a
b
p
r
o
p

ar
e

u
se

d
a
s

ya
rd

st
ic

k
s

fo
r

th
e

co
m

p
a
ri

so
n

.
S

ta
n

d
ar

d
d

ev
ia

ti
on

s
ar

e
re

p
o
rt

ed
in

p
a
re

n
th

es
is

.

Appendix B

Link Classification

B.1 Proofs regarding the treeCutter algorithm

Proof of Theorem 6.4

Proof. A common tool shared by all three implementations is a preprocessing
step.

Given a subtree T ′ of the input graph G we preliminarily perform a visit
of all its vertices (e.g., a depth-first visit) tagging each node by a binary
label yi as follows. We start off from an arbitrary node i ∈ VT ′ , and tag it
yi = +1. Then, each adjacent vertex j in T ′ is tagged by yj = yi · Yi,j . The
key observation is that, after all nodes in T ′ have been labeled this way, for
any pair of vertices u, v ∈ VT ′ we have πT ′(i, j) = yi · yj , i.e., we can easily
compute the parity of PT ′(u, v) in constant time. The total time taken for
labeling all vertices in VT ′ is therefore O(|VT ′ |).

With the above fast tagging tool in hand, we are ready to sketch the
implementation details of the three algorithms.

Part 1. We draw the spanning tree T of G and tag as described above all
its vertices in time O(|V |). We can execute the first 6 lines of the pseudocode
in Figure 5 in time O(|E|) as follows. For each subtree Ti ⊂ T rooted at i
returned by extractTreelet, we assign to each of its nodes a pointer to
its root i. This way, given any pair of vertices, we can now determine whether
they belong to same subtree in constant time. We also mark node i and all
the leaves of each subtree. This operation is useful when visiting each subtree
starting from its root. Then the set T contains just the roots of all the subtree
returned by extractTreelet. This takes O(|VT |) time. For each T ′ ∈ T
we also mark each edge in ET ′ so as to determine in constant time whether
or not it is part of T ′. We visit the nodes of each subtree T ′ whose root
is in T , and for any edge (i, j) connecting two vertices of T ′, we predict in
constant time Yi,j by yi · yj . It is then easy to see that the total time it takes

109

110 B Link Classification

to compute these predictions on all subtrees returned by extractTreelet
is O(|E|).

To finish up the rest, we allocate a vector v of |V | records, each record vi
storing only one edge in EG and its label. For each vertex r ∈ T we repeat
the following steps. We visit the subtree T ′ rooted at r. For brevity, denote by
root(i) the root of the subtree which i belongs to. For any edge connecting
the currently visited node i to a node j 6∈ VT ′ , we perform the following
operations: if vroot(j) is empty, we query the label Yi,j and insert edge (i, j)
together with Yi,j in vroot(j). If instead vroot(j) is not empty, we set (i, j) to
be part of the test set and predict its label as

Ŷi,j ← πT (i, z′) · Yz′,z′′ · πT (z′′, j) = yi · yz′ · Yz′,z′′ · yz′′ · yj ,

where (z′, z′′) is the edge contained in vroot(j). We mark each predicted edge
so as to avoid to predict its label twice. We finally dispose the content of
vector v.

The execution of all these operations takes time overall linear in |E|,
thereby concluding the proof of Part 1.

Part 2. We rely on the notation just introduced. We exploit an additional
data structure, which takes extra O(|V |) space. This is a heap H whose
records hi contain references to vertices i ∈ V . Furthermore, we also create a
link connecting i to record hi. The priority key ruling heap H is the degree
of each vertex referred to by its records. With this data structure in hand, we
are able to find the vertex having the highest degree (i.e., the top element of
the heap) in constant time. The heap also allows us to execute in logarithmic
time a pop operation, which eliminates the top element from the heap.

In order to mimic the execution of the algorithm, we perform the following
operations. We create a star S centered at the vertex referred to by the top
element of H connecting it with all the adjacent vertices in G. We mark as
“not-in-use” each leaf of S. Finally, we eliminate the element pointing to the
center of S from H (via a pop operation) and create a pointer from each
leaf of S to its central vertex. We keep creating such star graphs until H
becomes empty. Compared to the creation of the first star, all subsequent
stars essentially require the same sequence of operations. The only difference
with the former is that when the top element of H is marked as not-in-use, we
simply pop it away. This is because any new star that we create is centered
at a node that is not part of any previously generated star. The time it takes
to perform the above operations is O(|V | log |V |).

Once we have created all the stars, we predict all the test edges the very
same way as we described for treeCutter (labeling the vertices of each star,
using a set T containing all the star centers and the vector v for computing
the predictions). Since for each edge we perform only a constant number of
operations, the proof of Part 2 is concluded.

Part 3. treeletStar(k) can be implemented by combining the imple-
mentation of treeCutter with the implementation of starMaker. In a

B.1 Proofs regarding the treeCutter algorithm 111

first phase, the algorithm works as treeCutter, creating a set T containing
the roots of all the subtrees with diameter bounded by k. We label all the
vertices of each subtree and create a pointer from each node i to root(i).
Then, we visit all these subtrees and create a graph G′ = (V ′, E′) having the
following properties: V ′ coincides with T , and there exists an edge (i, j) ∈ E′
if and only if there exists at least one edge connecting the subtree rooted at
i to the subtree rooted at j. We also use two vectors u and u′, both having
|V | components, mapping each vertex in V to a vertex in V ′, and viceversa.
Using H on G′, the algorithm splits the whole set of subtrees into stars of
subtrees. The root of the subtree which is the center of each star is stored
in a set S ⊆ T . In addition to these operations, we create a pointer from
each vertex of S to r. For each r ∈ S, the algorithm predicts the labels of
all edges connecting pairs of vertices belonging to S using a vector v as for
treeCutter. Then, it performs a visit of S for the purpose of relabeling
all its vertices according to the query set edges that connect the subtree in
the center of S with all its other subtrees. Finally, for each vertex of S, we
use vector v as in treeCutter and starMaker for selecting the query set
edges connecting the stars of subtrees so created and for predicting all the
remaining test edges.

Now, G′ is a graph that can be created in O(|E|) time. The time it takes

for operating with H on G′ is O(|V ′| log |V ′|) = O
(
|V |
k log |V |k

)
, the equality

deriving from the fact that each subtree with diameter equal to k contains at

least k+1 vertices, thereby making |V ′| ≤ |V |k . Since the remaining operations
need constant time per edge in E, this concludes the proof.

Appendix C

Networks of Bandits

C.1 Proofs regarding the GOB.Lin algorithm

Proof of Theorem 7.1

Proof. Define

Ũ = A
1/2
⊗ U and U = (u>1 ,u

>
2 , . . . ,u

>
n)> ∈ Rdn .

Let then t be a fixed time step, and introduce the following shorthand nota-
tion:

x∗t = argmax
k=1,...,ct

u>itxt,k and φ∗t = argmax
k=1,...,ct

Ũ>φ̃t,k .

Notice that, for any k we have

Ũ>φ̃t,k = U>A
1/2
⊗ A

−1/2
⊗ φit(xt,k) = U>φit(xt,k) = u>itxt,k .

Hence we decompose the time-t regret rt as follows:

rt = u>itx
∗
t − u>itxt,kt

= Ũ>φ̃
∗
t − Ũ>φ̃t,kt

= Ũ>φ̃
∗
t −w>t−1φ̃

∗
t +w>t−1φ̃

∗
t + cb(φ̃

∗
t)− cb(φ̃

∗
t)− Ũ>φ̃t,kt

≤ Ũ>φ̃
∗
t −w>t−1φ̃

∗
t +w>t−1φ̃t,kt + cb(φ̃t,kt)− cb(φ̃

∗
t)− Ũ>φ̃t,kt ,

the inequality deriving from

w>t−1φ̃t,kt + cb(φ̃t,kt) ≥ w
>
t−1φ̃t,k + cb(φ̃t,k), k = 1, . . . , ct.

At this point, we rely on [1] (Theorem 2 therein with λ = 1) to show that

113

114 C Networks of Bandits∣∣Ũ>φ̃∗t −w>t−1φ̃
∗
t

∣∣ ≤ cb(φ̃
∗
t) and

∣∣w>t−1φ̃t,kt − Ũ
>φ̃t,kt

∣∣ ≤ cb(φ̃t,kt)

both hold simultaneously for all t with probability at least 1 − δ over the
noise sequence. Hence, with the same probability,

rt ≤ 2cb(φ̃t,kt)

holds uniformly over t. Thus the cumulative regret
∑T
t=1 rt satisfies

T∑
t=1

rt ≤

√√√√T

T∑
t=1

r2
t

≤ 2

√√√√T

T∑
t=1

(
cb(φ̃t,kt)

)2

≤ 2

√√√√T

(
σ

√
ln
|MT |
δ

+ ‖Ũ‖

)2 T∑
t=1

φ̃
>
t,ktM

−1
t−1φ̃t,kt .

Now, using (see, e.g., [38])

T∑
t=1

φ̃
>
t,ktM

−1
t−1φ̃t,kt ≤ (1 + max

k=1,...,ct
‖φ̃t,k‖2) ln |MT | ,

with

max
k=1,...,ct

‖φ̃t,k‖2 = max
k=1,...,ct

φit(xt,k)A−1
⊗ φit(xt,k)

≤ max
k=1,...,ct

‖φit(xt,k)‖2

= max
k=1,...,ct

‖xt,k‖2

≤ B2 ,

along with (a + b)2 ≤ 2a2 + 2b2 applied with a = σ
√

ln |MT |
δ and b = ‖Ũ‖

yields

T∑
t=1

rt ≤ 2

√
T

(
2σ2 ln

|MT |
δ

+ 2‖Ũ‖2
)

(1 +B2) ln |MT | .

Finally, observing that

‖Ũ‖2 = U>A⊗U = L(u1, . . . ,un)

gives the desired bound.

References

1. Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for

linear stochastic bandits. In NIPS, pages 2312–2320, 2011.

2. Jacob Abernethy, Olivier Chapelle, and Carlos Castillo. Graph regularization methods
for web spam detection. Machine Learning, 81(2):207–225, 2010.

3. Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 u.s.

election: divided they blog. In Proceedings of the 3rd international workshop on Link
discovery, LinkKDD ’05, pages 36–43, New York, NY, USA, 2005. ACM.

4. Omar Ali, Giovanni Zappella, Tijl De Bie, and Nello Cristianini. An empirical compar-
ison of label prediction algorithms on automatically inferred networks. In ICPRAM

(2), pages 259–268, 2012.

5. Kareem Amin, Michael Kearns, and Umar Syed. Graphical models for bandit prob-
lems. In Uncertainty in Artificial Intelligence: Proceedings of the Twenty-Seventh

Conference. ACM, 2011.

6. Daniar Asanov. Algorithms and methods in recommender systems, 2011.
7. Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. The

Journal of Machine Learning Research, 3:397–422, 2003.

8. Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2-3):235–256, 2002.

9. Mikhail Belkin, Irina Matveeva, and Partha Niyogi. Regularization and semi-

supervised learning on large graphs. In Learning theory, pages 624–638. Springer,
2004.

10. Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. Label propagation and

quadratic criterion. In Semi-Supervised Learning, pages 193–216. MIT Press, 2006.
11. Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using

graph mincuts. In Proceedings of the 18th International Conference on Machine
Learning. Morgan Kaufmann, 2001.

12. Toine Bogers. Movie recommendation using random walks over the contextual graph.
In CARS’10: Proceedings of the 2nd Workshop on Context-Aware Recommender Sys-
tems, 2010.

13. Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label prop-

agation: A multiresolution coordinate-free ordering for compressing social networks. In
Proceedings of the 20th international conference on World Wide Web, pages 587–596.

ACM, 2011.
14. Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Antti Ukkonen. Chromatic

correlation clustering. In Proceedings of the 18th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 1321–1329. ACM, 2012.

115

116 References

15. Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2nd workshop on information

heterogeneity and fusion in recommender systems (HetRec 2011). In Proceedings of
the 5th ACM Conference on Recommender Systems, RecSys 2011. ACM, 2011.

16. Stéphane Caron and Smriti Bhagat. Mixing bandits: a recipe for improved cold-start

recommendations in a social network. In Proceedings of the 7th Workshop on Social
Network Mining and Analysis, page 11. ACM, 2013.

17. Stéphane Caron, Branislav Kveton, Marc Lelarge, and Smriti Bhagat. Leveraging

side observations in stochastic bandits. In The 28th Conference on Uncertainty in
Artificial Intelligence, pages 142–151, 2012.

18. Dorwin Cartwright and Frank Harary. Structure balance: A generalization of Heider’s
theory. Psychological review, 63(5):277–293, 1956.

19. Carlos Castillo, Debora Donato, Aristides Gionis, Vanessa Murdock, and Fabrizio Sil-

vestri. Know your neighbors: Web spam detection using the web topology. In Pro-
ceedings of the 30th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 423–430. ACM, 2007.

20. Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Linear algorithms for
online multitask classification. Journal of Machine Learning Research, 11:2597–2630,

2010.

21. N. Cesa-Bianchi, C. Gentile, and F. Orabona. Robust bounds for classification via
selective sampling. In Proceedings of the 26th International Conference on Machine

Learning. Omnipress, 2009.

22. Nicolò Cesa-Bianchi, Claudio Gentile, and Fabio Vitale. Fast and optimal prediction
of a labeled tree. In Proceedings of the 22nd Annual Conference on Learning Theory,

2009.
23. Nicolo Cesa-Bianchi, Claudio Gentile, and Fabio Vitale. Predicting the labels of an

unknown graph via adaptive exploration. Theoretical computer science, 412(19):1791–

1804, 2011.
24. Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. A linear

time active learning algorithm for link classification. Advances in Neural Information

Processing Systems, pages 1619–1627.
25. Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Random

spanning trees and the prediction of weighted graphs. In Proceedings of the 27th

International Conference on Machine Learning, 2010.
26. Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. A corre-

lation clustering approach to link classification in signed networks. In Proceedings of

the 25th conference on learning theory (COLT 2012), 2012.
27. Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Random

spanning trees and the prediction of weighted graphs. Journal of Machine Learning
Research, 14:1005–1039, 2013.

28. Nicolò Cesa-Bianchi, Claudio Gentile, and Giovanni Zappella. A gang of bandits. In

NIPS, 2013.
29. Nicolò Cesa-Bianchi, Claudio Gentile, and Giovanni Zappella. A gang of bandits.

arXiv preprint arXiv:1306.0811, 2013.

30. Nicolò Cesa-Bianchi and Gabor Lugosi. Prediction, Learning and Games. Cambidge
University Press, 2006.

31. Kai-Yang Chiang, Nagarajan Natarajan, Ambuj Tewari, and Inderjit S Dhillon. Ex-
ploiting longer cycles for link prediction in signed networks. In Proceedings of the 20th
ACM international conference on Information and knowledge management, pages

1157–1162. ACM, 2011.

32. Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user move-
ment in location-based social networks. In Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 1082–1090.
ACM, 2011.

References 117

33. Wei Chu, Lihong Li, Lev Reyzin, and Robert E Schapire. Contextual bandits with

linear payoff functions. In Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2011.

34. Marie-Christine Costa, Lucas Létocart, and Frédéric Roupin. Minimal multicut and

maximal integer multiflow: a survey. European Journal of Operational Research,
162(1):55–69, 2005.

35. Koby Crammer and Claudio Gentile. Multiclass classification with bandit feedback

using adaptive regularization. Machine Learning, 90(3):347–383, 2013.
36. Elias Dahlhaus, David S Johnson, Christos H Papadimitriou, Paul D Seymour, and

Mihalis Yannakakis. The complexity of multiway cuts. In Proceedings of the twenty-

fourth annual ACM symposium on Theory of computing, pages 241–251. ACM, 1992.
37. Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization

under bandit feedback. In COLT, pages 355–366, 2008.
38. O. Dekel, C. Gentile, and K. Sridharan. Robust selective sampling from single and

multiple teachers. In COLT, pages 346–358, 2010.
39. Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without

eigenvectors a multilevel approach. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 29(11):1944–1957, 2007.
40. David Easley and Jon Kleinberg. Networks, crowds, and markets, volume 8. Cam-

bridge Univ Press, 2010.
41. M. Elkin, Y. Emek, D.A. Spielman, and S.-H. Teng. Lower-stretch spanning trees.

SIAM Journal on Computing, 38(2):608–628, 2010.
42. Aykut Erdem and Marcello Pelillo. Graph transduction as a noncooperative game.

Neural Computation, 24(3):700–723, 2012.
43. Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In

Proceedings of the tenth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, KDD ’04, pages 109–117, New York, NY, USA, 2004. ACM.

44. Giuseppe Facchetti, Giovanni Iacono, and Claudio Altafini. Computing global struc-

tural balance in large-scale signed social networks. Proceedings of the National
Academy of Sciences, 108(52):20953–20958, 2011.

45. Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174,

2010.
46. C. Gentile, S. Li, and G. Zappella. Online Clustering of Bandits. ArXiv e-prints,

January 2014.
47. Quanquan Gu, Charu Aggarwal, Jialu Liu, and Jiawei Han. Selective sampling on

graphs for classification. 2013.
48. Quanquan Gu and Jiawei Han. Towards active learning on graphs: An error bound

minimization approach. In ICDM, pages 882–887, 2012.
49. Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Prop-

agation of trust and distrust. In Proceedings of the 13th international conference on

World Wide Web, pages 403–412. ACM, 2004.
50. Ido Guy, Naama Zwerdling, David Carmel, Inbal Ronen, Erel Uziel, Sivan Yogev,

and Shila Ofek-Koifman. Personalized recommendation of social software items based
on social relations. In Proceedings of the Third ACM conference on Recommender

systems, pages 53–60. ACM, 2009.
51. Frank Harary. On the notion of balance of a signed graph. Michigan Mathematical

Journal, 2(2):143–146, 1953.
52. Fritz Heider. Attitudes and cognitive organization. The Journal of psychology,

21(1):107–112, 1946.
53. Mark Herbster and Guy Lever. Predicting the labelling of a graph via minimum p-

seminorm interpolation. In Proceedings of the 22nd Annual Conference on Learning

Theory. Omnipress, 2009.
54. Mark Herbster, Guy Lever, and Massimiliano Pontil. Online prediction on large diam-

eter graphs. In Advances in Neural Information Processing Systems, pages 649–656,
2008.

118 References

55. Mark Herbster, Massimiliano Pontil, and Sergio R Galeano. Fast prediction on a tree.

In Advances in Neural Information Processing Systems, pages 657–664, 2008.
56. Yuheng Hu, Ajita John, Dorée Duncan Seligmann, and Fei Wang. What were the

tweets about? topical associations between public events and twitter feeds. In ICWSM,

2012.
57. Giovanni Iacono and Claudio Altafini. Monotonicity, frustration, and ordered response:

an analysis of the energy landscape of perturbed large-scale biological networks. BMC

systems biology, 4(1):83, 2010.
58. Soummya Kar, H Vincent Poor, and Shuguang Cui. Bandit problems in networks:

Asymptotically efficient distributed allocation rules. In Decision and Control and
European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pages

1771–1778. IEEE, 2011.

59. Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the
sum-product algorithm. Information Theory, IEEE Transactions on, 47(2):498–519,

2001.

60. Jérôme Kunegis, Andreas Lommatzsch, and Christian Bauckhage. The slashdot zoo:
mining a social network with negative edges. In Proceedings of the 18th international

conference on World wide web, pages 741–750. ACM, 2009.

61. Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and nega-
tive links in online social networks. In Proceedings of the 19th international conference

on World wide web, pages 641–650. ACM, 2010.

62. Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social
media. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 1361–1370. ACM, 2010.
63. Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit

approach to personalized news article recommendation. In Proceedings of the 19th

International Conference on World Wide Web, pages 661–670. ACM, 2010.
64. Russell Lyons and Yuval Peres. Probability on trees and networks, 2005.

65. Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-

observations. In NIPS, pages 684–692, 2011.
66. Paolo Massa and Paolo Avesani. Trust-aware bootstrapping of recommender systems.

In ECAI Workshop on Recommender Systems, pages 29–33. Citeseer, 2006.

67. S Thomas McCormick, MR Rao, and Giovanni Rinaldi. Easy and difficult objective
functions for max cut. Mathematical Programming, 94(2-3):459–466, 2003.

68. Charles A Micchelli and Massimiliano Pontil. Kernels for multi–task learning. In

Advances in Neural Information Processing Systems, pages 921–928, 2004.
69. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine

learning. The MIT Press, 2012.
70. Corrado Monti, Matteo Zignani, Alessandro Rozza, Adam Arvidsson, Giovanni Zap-

pella, and Elanor Colleoni. Modelling political disaffection from twitter data. In

Proceedings of the Second International Workshop on Issues of Sentiment Discovery
and Opinion Mining, page 3. ACM, 2013.

71. John Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–295, 1951.

72. Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, New York, NY, USA, 2007.

73. Alan Said, Ernesto W De Luca, and Sahin Albayrak. How social relationships af-
fect user similarities. In Proceedings of the 2010 Workshop on Social Recommender
Systems, pages 1–4, 2010.

74. Aleksandrs Slivkins. Contextual bandits with similarity information. Journal of Ma-

chine Learning Research – Proceedings Track, 19:679–702, 2011.
75. Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.

SIAM Journal on Computing, 40(6):1913–1926, 2011.
76. BT Swapna, Atilla Eryilmaz, and Ness B Shroff. Multi-armed bandits in the presence

of side observations in social networks. 2013.

References 119

77. Balázs Szörényi, Róbert Busa-Fekete, István Hegedus, Róbert Ormándi, Márk Jelasity,

and Balázs Kégl. Gossip-based distributed stochastic bandit algorithms. In Proceedings
of the 30th International Conference on Machine Learning, 2013.

78. Narseo Vallina-Rodriguez, Salvatore Scellato, Hamed Haddadi, Carl Forsell, Jon

Crowcroft, and Cecilia Mascolo. Los twindignados: The rise of the indignados move-
ment on twitter. In Proceedings of the 2012 ASE/IEEE International Conference on

Social Computing and 2012 ASE/IEEE International Conference on Privacy, Secu-

rity, Risk and Trust, SOCIALCOM-PASSAT ’12, pages 496–501, Washington, DC,
USA, 2012. IEEE Computer Society.

79. Fabio Vitale, Nicolò Cesa-bianchi, Claudio Gentile, and Giovanni Zappella. See the
tree through the lines: The shazoo algorithm. In Advances in Neural Information

Processing Systems, pages 1584–1592, 2011.

80. Jörgen W Weibull. Evolutionary game theory. MIT press, 1997.
81. Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Atten-

berg. Feature hashing for large scale multitask learning. In Proceedings of the 26th

Annual International Conference on Machine Learning, pages 1113–1120. ACM, 2009.
82. David Bruce Wilson. Generating random spanning trees more quickly than the cover

time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing, pages 296–303. ACM, 1996.
83. Giovanni Zappella. A scalable multiclass algorithm for node classification. MLG

Workshop at ICML, 2012.

84. Giovanni Zappella, Alexandros Karatzoglou, and Linas Baltrunas. Games of friends: a
game-theoretical approach for link prediction in online social networks. In Workshops

at the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.
85. Yan-Ming Zhang, Kaizhu Huang, and Cheng-Lin Liu. Fast and robust graph-based

transductive learning via minimum tree cut. In Data Mining (ICDM), 2011 IEEE

11th International Conference on, pages 952–961. IEEE, 2011.
86. Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using

gaussian fields and harmonic functions. In ICML, volume 3, pages 912–919, 2003.

	Part I Introduction
	Introduction
	Outline of the thesis

	Background
	Node Classification
	Related work

	Link Classification
	Related work

	Networks of Bandits
	Related work

	Part II Node Classification
	Online Node Classification: SHAZOO
	Problem setup
	A lower bound for weighted trees
	The Shazoo algorithm
	Mistake bound analysis and implementation
	Multiclass implementation

	Batch Node Classification: MUCCA
	Basic Framework
	The Graph Transduction Game
	The Evolutionary Stable Strategies approach

	A scalable method for the undirected trees

	Node Classification: Experiments
	Algorithms
	Spanning trees
	Datasets
	Results

	Part III Link Classification
	Link Classification
	Problem Setup
	Algorithms and their analysis
	Refinements
	Complexity analysis and implementation

	Experiments
	Algorithms
	Datasets
	Results

	Part IV Networks of bandits
	Network of bandits
	Problem setup
	Algorithm and regret analysis
	Regret Analysis

	Experiments
	Datasets
	Algorithms
	Results

	Part V Conclusions
	Conclusions and future works
	Node Classification
	Link Classification
	Networks of Bandits

	Part VI Appendices
	Node Classification
	Proofs regarding the SHAZOO algorithm
	Experimental results

	Link Classification
	Proofs regarding the treeCutter algorithm

	Networks of Bandits
	Proofs regarding the GOB.Lin algorithm

	References

