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Abstract

Data sharing and dissemination play a key role in our information society. Not only do they
prove to be advantageous to the involved parties, but they can also be fruitful to the society
at large (e.g., new treatments for rare diseases can be discovered based on real clinical trials
shared by hospitals and pharmaceutical companies). The advancements in the Information and
Communication Technology (ICT) make the process of releasing a data collection simpler than ever.
The availability of novel computing paradigms, such as data outsourcing and cloud computing,
make scalable, reliable and fast infrastructures a dream come true at reasonable costs. As a
natural consequence of this scenario, data owners often rely on external storage servers for releasing
their data collections, thus delegating the burden of data storage and management to the service
provider. Unfortunately, the price to be paid when releasing a collection of data is in terms of
unprecedented privacy risks. Data collections often include sensitive information, not intended
for disclosure, that should be properly protected. The problem of protecting privacy in data
release has been under the attention of the research and development communities for a long time.
However, the richness of released data, the large number of available sources, and the emerging
outsourcing/cloud scenarios raise novel problems, not addressed by traditional approaches, which
need enhanced solutions.

In this thesis, we define a comprehensive approach for protecting sensitive information when
large collections of data are publicly or selectively released by their owners. In a nutshell, this
requires protecting data explicitly included in the release, as well as protecting information not
explicitly released but that could be exposed by the release, and ensuring that access to released
data be allowed only to authorized parties according to the data owners’ policies. More specifically,
these three aspects translate to three requirements, addressed by this thesis, which can be sum-
marized as follows. The first requirement is the protection of data explicitly included in a release.
While intuitive, this requirement is complicated by the fact that privacy-enhancing techniques
should not prevent recipients from performing legitimate analysis on the released data but, on the
contrary, should ensure sufficient visibility over non sensitive information. We therefore propose



II

a solution, based on a novel formulation of the fragmentation approach, that vertically fragments
a data collection so to satisfy requirements for both information protection and visibility, and we
complement it with an effective means for enriching the utility of the released data. The second
requirement is the protection of data not explicitly included in a release. As a matter of fact, even
a collection of non sensitive data might enable recipients to infer (possibly sensitive) information
not explicitly disclosed but that somehow depends on the released information (e.g., the release of
the treatment with which a patient is being cared can leak information about her disease). To ad-
dress this requirement, starting from a real case study, we propose a solution for counteracting the
inference of sensitive information that can be drawn observing peculiar value distributions in the
released data collection. The third requirement is access control enforcement. Available solutions
fall short for a variety of reasons. Traditional access control mechanisms are based on a reference
monitor and do not fit outsourcing/cloud scenarios, since neither the data owner is willing, nor
the cloud storage server is trusted, to enforce the access control policy. Recent solutions for access
control enforcement in outsourcing scenarios assume outsourced data to be read-only and cannot
easily manage (dynamic) write authorizations. We therefore propose an approach for efficiently
supporting grant and revoke of write authorizations, building upon the selective encryption ap-
proach, and we also define a subscription-based authorization policy, to fit real-world scenarios
where users pay for a service and access the resources made available during their subscriptions.

The main contributions of this thesis can therefore be summarized as follows.

• With respect to the protection of data explicitly included in a release, our original results are:
i) a novel modeling of the fragmentation problem; ii) an efficient technique for computing a
fragmentation, based on reduced Ordered Binary Decision Diagrams (OBDDs) to formulate
the conditions that a fragmentation must satisfy; iii) the computation of a minimal fragmen-
tation not fragmenting data more than necessary, with the definition of both an exact and an
heuristic algorithms, which provides faster computational time while well approximating the
exact solutions; and iv) the definition of loose associations, a sanitized form of the sensitive
associations broken by fragmentation that can be safely released, specifically extended to
operate on arbitrary fragmentations.

• With respect to the protection of data not explicitly included in a release, our original results
are: i) the definition of a novel and unresolved inference scenario, raised from a real case
study where data items are incrementally released upon request; ii) the definition of several
metrics to assess the inference exposure due to a data release, based upon the concepts of
mutual information, Kullback-Leibler distance between distributions, Pearson’s cumulative
statistic, and Dixon’s coefficient; and iii) the identification of a safe release with respect to
the considered inference channel and the definition of the controls to be enforced to guarantee
that no sensitive information be leaked releasing non sensitive data items.

• With respect to access control enforcement, our original results are: i) the management of
dynamic write authorizations, by defining a solution based on selective encryption for effi-
ciently and effectively supporting grant and revoke of write authorizations; ii) the definition
of an effective technique to guarantee data integrity, so to allow the data owner and the users
to verify that modifications to a resource have been produced only by authorized users; and
iii) the modeling and enforcement of a subscription-based authorization policy, to support
scenarios where both the set of users and the set of resources change frequently over time,
and users’ authorizations are based on their subscriptions.
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Introduction

Private companies, public organizations and final users are more and more releasing, sharing,
and disseminating their data, to take reciprocal advantage of the great benefits they can obtain
by making their data available, publicly or selectively, to others. Unfortunately, these benefits
come at the price of unprecedented privacy risks: large collections of data often include sensitive
information, possibly related to users, which should be properly protected. The availability of
effective means for protecting data against privacy violations is then emerging as one of the key
issues to be addressed in such an open and collaborative scenario.

In this thesis, we define a comprehensive approach for protecting sensitive information when
large collections of data are publicly or selectively released by their owners. In the remainder of
this chapter, we discuss the motivations behind the work, our objectives and our contributions.
We finally illustrate the outline of the thesis.

1.1 Motivation

The advancements in the Information and Communication Technology (ICT) have revolutionized
our lives in a way that was unthinkable until few years ago. We live in the Globalization era, where
everything we need to do is available within “one mouse click”. Global infrastructure, digital
infrastructure, digital society are only few examples of terms used to refer to our society. The
term that better represents our society is however information society (or information age) since
information plays a key role in the daily life activities of everyone. Every time we browse Internet,
perform online transactions, fill in forms to, for example, pay bills, taxes or participate in online
games, and spend our time in online social networks, information about us is collected, stored, and
analyzed. At the same time, public and private organizations need to share and disseminate their
information, also due to the benefits that such information sharing brings to them and to their
end users. Such advantages are easy to understand: as an example, consider how medical research
can advance, to the benefits of the entire humanity, thanks to hospitals sharing health information
about their patients with pharmaceutical companies to the aim of improving known treatments
– or even discovering new ones – based on real-world clinical trials. As another example, public,
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private, and governmental organizations might disclose or share their data collections for research
or statistical purposes, for providing services more efficiently and effectively, or because forced by
laws and regulations. Medical, financial, census or demographic, and scientific data are only few
examples of information whose release and exchange can be fruitful to the involved parties and the
society at large. The process of releasing a collection of data can be either public (i.e., data are
published and restrictions are enforced neither on accessing nor on using them) or selective (i.e.,
different portions of the released collection can be accessed by different parties). The emerging
paradigms of data outsourcing and cloud computing indeed facilitates data release. Giving to
users and companies the opportunity to benefit from the lower costs, higher availability, and larger
elasticity that are offered by the rapidly growing market of cloud providers, data owners can easily
release large data collections without the burden of further managing them. As witnessed, for
example, by the seemingly never-ending success of services like Amazon S3 and EC2, enjoying
the benefits of the highly scalable, reliable, fast, and inexpensive infrastructure such providers
offer, users and companies are more and more resorting to honest-but-curious external servers (i.e.,
trusted for managing data but not for reading their content) to store their data and make them
available to others.

The complexity and variety of our information society introduce however new risks, and pose
new research challenges. The vast amount of personal (possibly user-generated) data collected,
stored, and processed, the unclear data ownership, and the lack of control of the users on their
own data are creating unprecedented risks of privacy breaches. The problem of properly protect-
ing the privacy of the users is clearly not new and has received considerable attention from the
research and industrial communities. In the past, the restricted access to information and its ex-
pensive processing represented a basic form of protection that does not hold anymore: with the
rate at which technology is developing, it is now becoming easier and easier to access huge amounts
of data by using, for example, portable devices (e.g., PDAs, mobile phones) and ubiquitous net-
work resources. Moreover, the advancements of the ICT make us available powerful techniques
and technological resources for analyzing and correlating data coming from different sources, and
resorting to cloud/outsourcing solutions makes data owners inevitably lose direct control over their
own data.

Considering that large collections of data often include sensitive information, whose confiden-
tiality must be safeguarded, it is clear that the protection of data against improper disclosure is a
key factor in our information society, and yet a problem far from having a well-defined solution.
The efforts of the scientific community in this direction, and the media coverage on privacy issues,
testify how data protection is a sine-qua-non condition for our society to fully enjoy the benefits
of data sharing and dissemination. However, serious privacy incidents can be right behind the
corner: two well-known examples of privacy violations are the America OnLine (AOL) and Netflix
incidents [7, 90]. AOL is an Internet services and media company that in 2006 released around
20 millions of search records of 650,000 of its customers. To protect the privacy of its customers,
AOL de-identified such records by substituting personal identifiers with numerical identifiers, which
were therefore released together with the term(s) used for the search, the timestamp, whether the
user clicked on a result, and the corresponding visited website. With these data, two reporters
of the New York Times newspaper were able to identify AOL customer no. 4417749 as Thelma
Arnold, a 62 years old widow living in Lilburn [7]. In the same year, the on-line movies renting
service Netflix publicly released 100 millions records, showing the ratings given by 500,000 users
to the movies they rented. The records were released within the “Netflix Prize” competition that
offered $1 million to anyone who could improve the algorithm used by Netflix to suggest movies
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to its customers based on their previous ratings. Also in this case, records were de-identified by
replacing personal identifiers with numerical identifiers. However, some researchers were able to
de-anonymize the data by comparing the Netflix data against publicly available ratings on the
Internet Movie Database (IMDb). For instance, the release of her movie preferences damaged a
lesbian mother since she was re-identified, thus causing the disclosure of her sexual orientation [90].

1.2 Objectives

There are mainly three key aspects to be considered when designing a system for ensuring that no
sensitive information be leaked when releasing a data collection, as briefly outlined in the following.

• Protection of data explicitly involved in a release. Large data collections oftentimes include
sensitive data that should be protected (e.g., medical information about diseases suffered
from patients, financial details about the income of employees, personal information of in-
dividuals such as religious, sexual, or political preferences). However, protecting privacy of
sensitive information should not prevent recipients from performing legitimate analysis on the
released data. In other words, privacy-enhancing techniques should balance between privacy
protection, on one hand, and information visibility, on the other hand. Recent proposals con-
sidering confidentiality and visibility constraints (i.e., requirements on privacy and visibility)
have put forward the promising idea of computing vertical fragments over the original data
structure so that all the constraints are satisfied. To further enrich the utility of the released
data, fragments can be complemented with a sanitized form of the broken sensitive associa-
tions among attributes. To ensure proper protection to data privacy, while maximizing the
visibility over non sensitive information, it is therefore necessary to define novel formulations
of the fragmentation problem, to efficiently and effectively satisfy confidentiality and visi-
bility constraints. Also, it is important to enrich the utility of released data, independently
from the number of released fragments.

• Protection of data not explicitly involved in a release. The release of non sensitive data (and
thus the exclusion of sensitive data from the release), in some scenarios, might only at a
first sight be a safe approach to protect data confidentiality. In fact, sensitive information
that is not published, and should remain protected, may become indirectly available when it
is somehow related to, and deducible from, released non sensitive data (as an example, the
release of the treatment with which a patient is being cared reduces the uncertainty about
the possible disease she suffers from, due to the correlation existing between an illness and its
treatments). Such a problem has been extensively studied in multilevel database management
systems, with solutions that however do not fit the data release scenario. Some attempts
have recently been done in this context offering solutions to block or limit the exposure of
sensitive or private information. However, new scenarios of data publication, coupled with
the richness of published data and the large number of available data sources, raise novel
problems that still need to be addressed. It is therefore of primary importance the design of
novel privacy-preserving techniques able to capture, and protect, sensitive information not
explicitly included in a release that might be exposed as consequence of the release itself.

• Access control enforcement. When the data release process is selective, besides protecting
data privacy, another requirement is that of implementing an access control mechanism, to
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ensure that users can access only the data allowed by the access policy. Traditional access
control architectures are based on the presence of a trusted component, called reference
monitor , in charge of enforcing the policy defined by the data owner. However, as already
mentioned, users and companies are more and more resorting to cloud storage systems to
make their data selectively available to others. In these scenarios, unfortunately, neither the
data owner is willing, nor the cloud storage server is trusted, to enforce the access control
policy. Existing solutions for access control enforcement in outsourcing scenarios have mainly
focused on read access restrictions, while few efforts have been devoted to the management of
write privileges, which becomes a key factor in emerging applicative scenarios (e.g., document
sharing) where the data owner may wish to grant other users the privilege to modify some
of her resources. In addition, we need to consider the proliferation of subscription-based
services, where users dynamically join and leave the system, and access resources based on
their subscriptions. We need therefore to re-consider the current understanding of how access
control is enforced in outsourcing scenarios, to take into account both the management of
write privileges and dynamic subscription-based access policies.

This thesis focuses on the three high-level objectives mentioned above, to the aim of defining a
comprehensive solution to protect data privacy in data release scenarios. In the remainder of this
chapter, we discuss in more details the specific contributions of this work.

1.3 Contributions of the thesis

This thesis addresses the problems related to privacy and security when a data owner wants to
(publicly or selectively) release a large collection of data. The specific contributions of the thesis
focus on the three privacy and security aspects illustrated above, that is, the protection of data
explicitly involved in a release, the protection of data not explicitly involved but possibly exposed
by a release, and the enforcement of access restrictions. In the remainder of this section, we
illustrate the contributions in more details.

1.3.1 Protection of data explicitly involved in a release

The first contribution of this thesis is related to the protection of the privacy of data explicitly
included in a release, while satisfying the needs for information availability of the recipients [29,
30, 41]. The original contribution of our work can be summarized as follows.

Problem modeling. Data release must find a good balance between the need for making certain
information available to others, and the equally strong need to ensure proper protection to sensitive
information. The (vertical) fragmentation of the original data collection can effectively satisfy both
confidentiality constraints, modeling the need for protecting confidential information, and visibility
constraints, modeling the need for information of data recipients [3, 27, 28, 43]. In this thesis, we
build upon the fragmentation approach to define our privacy-enhancing technique for protecting
information confidentiality in data release, while satisfying visibility constraints. The peculiarity
of our solution consists of a novel modeling of the fragmentation problem, which exploits the
representation of confidentiality and visibility constraints as Boolean formulas and that interprets
fragments as truth assignments over the Boolean variables representing the attributes in the original
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relation. This modeling is at the basis of the definition of an efficient solution to the fragmentation
problem.

Efficient fragmentation computation. Thanks to the Boolean formulation of the problem,
the computation of a fragmentation that satisfies a set of confidentiality and visibility constraints
can rely on the efficiency with which Boolean formulas are represented and manipulated. To this
aim, we take advantage of reduced Ordered Binary Decision Diagrams (OBDDs), a canonical form
for representing and efficiently manipulating Boolean formulas [86]. OBDDs are used in practical
applications more often than other classical representations of Boolean formulas because they
have a canonical form that uniquely characterizes a given function, and because operations on
Boolean formulas can be performed efficiently in time and space [74]. We take advantage of our
OBDDs-based formulation to efficiently formulate the correctness conditions that a fragmentation
must satisfy. The efficiency of our proposed OBDDs-based approach is testified by the promising
experimental results illustrated in this thesis.

Minimality. Given a set of confidentiality and visibility constraints, our goal is that of com-
puting a fragmentation that does not split attributes among fragments when it is not necessary
for satisfying confidentiality constraints. The rationale is that maintaining a set of attributes in
the same fragment releases, besides their values, also their associations. Therefore, the utility of
released data for final recipients is higher when releasing a fragmentation composed of fewer frag-
ments, since they also provide recipients with visibility over associations among attributes. To this
aim, we define an exact algorithm for computing a minimal fragmentation (i.e., composed of the
minimum number of fragments). In addition, we define a heuristic algorithm that, as proved by
our experimental results, provides faster computational time while well approximating the minimal
fragmentations computed by the exact algorithm.

Extended loose associations. To enrich the utility of the published fragments, they can be
complemented with loose associations, a sanitized form of the sensitive associations broken by
fragmentation [43]. The definition of loose associations however considers fragmentations composed
of two fragments only. In this thesis, we define loose associations that operate among an arbitrary
set of fragments. We first illustrate how the publication of multiple loose associations between
pairs of fragments of a generic fragmentation can potentially expose sensitive associations. We
then describe an approach for supporting the more general case of publishing a loose association
among an arbitrary set of fragments. In doing so, we provide a general solution, applicable to
real-world scenarios to further fulfill the needs of data recipients while not compromising on data
privacy.

1.3.2 Protection of data not explicitly involved in a release

The second contribution of this thesis is the definition of a technique for capturing and counter-
acting the privacy risks that the release of a collection of non sensitive data can cause. Sensitive
information, despite not appearing in the released dataset, might in fact be derived observing pe-
culiar distribution of the values of the released data [14, 15]. The original contribution of our work
can be summarized as follows.
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Inference model. We identify and model a novel inference scenario, raised from a real case study
that needed consideration where data items are incrementally released upon request. We address
a specific problem related to inferences arising from the dependency of sensitive (not released)
information referred to some entities on other (released) properties regarding such entities. In
particular, we are concerned with the possible inferences that can be drawn by observing the
distribution of values of non sensitive information associated with these entities. Such a problem
of sensitive information derivation becomes more serious as the amount of released data increases,
since external observations will tend to be more representative of the real situations and the
confidence in the external observations will increase.

Inference metrics. We introduce several metrics to assess the inference exposure due to a data
release. Our metrics are based on the concepts of mutual information, which has been widely
used in several security areas ranging from the definition of distinguishers for differential side-
channel analysis (e.g., [8, 18, 61, 110]) to data-hiding and watermarking security (e.g., [21]), and of
distance between the expected and the observed distribution of values of non sensitive information.
More precisely, we evaluate the inference exposure as the mutual information, the Kullback-Leibler
distance between distributions, the Pearson’s cumulative statistic, and the Dixon’s coefficient that,
as proved by our experimental results, particularly fit our scenario.

Release regulation. Based on the identified metrics, we formally define a safe release with
respect to the modeled inference channels. We also describe the controls to be enforced in a scenario
where data items are released one at a time, upon request. The process is regulated so that the
release of data to the external world be safe with respect to inferences. Our experimental results
evaluate the inference exposure (computed as the mutual information, Kullback-Leibler distance
between distributions, Pearson’s cumulative statistic, or Dixon’s coefficient), and the information
loss (i.e., the number of requests not fulfilled) caused by our privacy protection technique, and
compare the results obtained adopting the different metrics, identifying pros and cons of the
proposed metrics, and of their (possible) joint adoption.

1.3.3 Access control enforcement

The third and last contribution of this thesis is a solution for enforcing write access restrictions
and a subscription-based access control policy in data release scenarios. To fit the emerging cloud
computing paradigm, we align our scenario to the current trend toward data outsourcing, and
we assume the owner to rely on honest-but-curious external storage servers to selectively share
her data. According to this, our techniques are based on selective encryption, so that released
resources self-enforce the access restrictions [39, 40]. The original contribution of our work can be
summarized as follows.

Dynamic write authorizations. Traditional solutions for access control enforcement in out-
sourcing scenarios assume data to be read-only, implying write authorizations to be a specific
privilege of the owner. Such an assumption can result restrictive in several scenarios where the
data owner outsourcing the data to an external server may also want to authorize other users to
write and update the outsourced resources (e.g., document sharing scenarios). We address this
limitation by proposing an approach for efficiently and effectively supporting grant and revoke
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of write authorizations. Our solution nicely complements existing techniques for access control
enforcement in outsourcing scenarios, providing a general solution, applicable to scenarios where
read and write authorizations can dynamically change over time. Our solution relies on selective
encryption for enforcing read and write access restrictions having efficiency and manageability as
primary goal, and results appealing for its efficiency and flexibility, as it avoids expensive re-keying
and re-encryption operations.

Data integrity. When managing write authorizations, providing the data owner with a means for
verifying that the server and users are behaving properly (i.e., they do not tamper with resources)
has a double advantage: i) it allows detecting resource tampering, due to the server not performing
the required access control or directly tampering with resources, and ii) it discourages improper
behavior by the server and by the users since they know that their improper behavior can be
easily detected, and their updates recognized as invalid and discarded. We therefore complement
our solution with an integrity check technique to verify that modifications to a resource have been
produced only by authorized users. Our solution is based on HMAC functions, and allows both the
data owned and the users to detect misbehavior (or laziness) by the server as well as misbehavior
by users that can happen with the help of the server (not enforcing the required controls since it
is either colluding with the user herself or just behaving lazily) or without the help of the server
(if the user improperly acquires write privilege for a resource by others).

Subscription-based policy. Traditional solutions for access control enforcement over outsource
data cannot easily support a scenario where both the set of users who can access a resource and
the set of resources change frequently over time. Therefore, they do not fit emerging real-world
scenarios where users pay for a service and then can freely access the resources made available
during their subscriptions such as, for instance, movie rental services. In fact, to access resources
also after the expiration of their subscriptions, users should download the resources for which they
are authorized to their local machine. To address this limitation, we complement our selective
encryption-based solution with the definition of a subscription-based authorization policy. Our
solution avoids the burden of downloading resources to the users, allowing them to maintain the
right to access such resources without the worry that they will lose this right after the expiration
of their subscriptions. Our proposal to enforce the subscription-based authorization policy relies
once again on selective encryption, to guarantee both continuous data availability, and forward and
backward protection requirements, meaning that users can access resources released neither before
the beginning of their subscriptions, nor after their expiration.

1.4 Organization of the thesis

In this chapter, we discussed the motivations behind the work proposed in this thesis, and we
illustrated our high-level objectives and main contributions. The remaining chapters are organized
as follows.

Chapter 2 presents the state-of-the-art of the privacy and security issues arising in data release
scenarios. It presents the most important techniques in the context of privacy-preserving data
publishing, inference control, and access control enforcement in outsourcing scenarios.
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Chapter 3 illustrates our fragmentation-based solution for protecting data privacy while ensur-
ing adequate information visibility in data release scenarios. We provide both a heuristic and an
exact algorithm for computing a minimal fragmentation, based on a novel OBDDs-based formu-
lation. By providing experimental results comparing the execution time and the fragmentations
returned by the exact and heuristic algorithms, we show that the heuristic algorithm has low com-
putation cost and determines a fragmentation close to optimum. To further enrich the utility of
the released fragments, we propose to release loose associations among multiple fragments.

Chapter 4 focuses on the problem of sensitive information leakage deriving from the release of a
collection of non sensitive data. The chapter illustrates our model capturing this inference problem,
where sensitive information is characterized by peculiar value distributions of non sensitive released
data. It then describes how, leveraging on different statistical metrics applied on released data,
the data owner can counteract possible inferences that an observer might otherwise draw. Finally,
it also shows the results of an experimental evaluation of our solution, showing its efficacy and
discussing the applicability of the different metrics in different scenarios.

Chapter 5 addresses the problem of enforcing access restrictions in data release in
cloud/outsourcing scenarios. It first extends selective encryption approaches to the support of
write privileges, proposing a technique able to efficiently enforce updates in the write access policy.
It then illustrates a subscription-based authorization policy, also enforced by means of selective
encryption.

Chapter 6 summarizes the contributions of this thesis, provides our final remarks, and outlines
directions for future works.

Appendix A reports a list of publications related to the work illustrated in this thesis.
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Related work

This chapter illustrates research proposals related to this thesis, which are mainly devoted to the
protection of data and user privacy and to the enforcement of access restrictions in data release
scenarios. We will discuss recent proposals for private data publishing based on syntactic and
semantic privacy definitions, as well as techniques exploiting data fragmentation and solutions
for counteracting inferential disclosure of sensitive information. We will then illustrate available
techniques for enforcing access control in outsourcing scenarios, with particular attention to the
recently proposed strategy of selective encryption.

The remainder of this chapter is organized as follows. Section 2.1 presents syntactic data pro-
tection techniques. Section 2.2 illustrates recent semantic data protection techniques. Section 2.3
discusses fragmentation-based approaches for privacy protection. Section 2.4 presents techniques
developed for counteracting inferential disclosure of sensitive information. Section 2.5 discusses re-
cent approaches for enforcing access control in data release in outsourcing/cloud scenarios. Finally,
Section 2.6 concludes the chapter.

2.1 Syntactic data protection techniques

In this section, we present some of the most important data protection techniques applicable in
data release scenarios based on a syntactic privacy requirement.

Basic concepts and assumptions. Syntactic data protection techniques aim at satisfying a
syntactic privacy requirement, such as “each release of data must be indistinguishably related to
no less than a certain number of individuals in the population”. These techniques assume data
to be released to be in the form of a microdata table (i.e., a table containing detailed information
related to specific respondents) defined on a set of attributes that can be classified as: identi-
fiers (attributes that uniquely identify a respondent, such as SSN); quasi-identifiers (QI, attributes
that, in combination, can be linked with external information to reduce the uncertainty over the
identities to which data refer, such as DoB, Sex, and ZIP); and confidential and non-confidential
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SSN Name DoB Sex ZIP Disease

* * 1970/09/02 M 94152 Hepatitis
* * 1970/09/20 F 94143 Cardiomyopathy
* * 1970/09/12 F 94148 Eczema
* * 1970/09/05 M 94155 Pneumonia
* * 1960/08/01 F 94154 Stroke
* * 1960/08/02 F 94153 Stroke
* * 1960/08/10 M 94140 Stroke
* * 1960/08/20 M 94141 Stroke
* * 1970/08/07 F 94141 High Cholesterol
* * 1970/08/05 F 94142 Erythema
* * 1958/07/09 M 94232 Diabetes
* * 1970/08/25 M 94153 High Cholesterol
* * 1970/08/30 M 94156 Angina Pectoris
* * 1960/09/02 M 94147 Hepatitis
* * 1960/09/05 M 94145 Flu
* * 1960/09/10 F 94158 Angina Pectoris
* * 1960/09/30 F 94159 Cardiomyopathy

(a)

Name Address City ZIP DoB Sex Course School

· · · · · · · · · · · · · · · · · · · · · · · ·
John Doe 100 Park Ave. Sacramento 94232 58/07/09 male Maths High School

· · · · · · · · · · · · · · · · · · · · · · · ·
(b)

Figure 2.1 An example of de-identified microdata table (a) and of publicly available non de-identified
dataset (b)

attributes . Data privacy is protected by applying microdata protection techniques on the QI, typ-
ically guaranteeing data truthfulness [57], while not modifying the sensitive attributes. Syntactic
techniques can counteract either identity disclosure, protecting respondents’ identities, or attribute
disclosure protecting respondents’ sensitive information.

Syntactic data protection techniques are based on the assumption that the release of a microdata
table can put at risk only the privacy of those individuals contributing to the data collection. The
first step for protecting their privacy consists in removing (or encrypting) explicit identifiers before
releasing the table. However, a de-identified microdata table does not provide any guarantee of
anonymity, since the quasi-identifier can still be linked to publicly available information to re-
identify respondents. A study performed on 2000 U.S. Census data showed that 63% of the U.S.
population can be uniquely identified combining their gender, ZIP code, and complete date of
birth [63]. As an example, consider the de-identified table in Figure 2.1(a), including the medical
information of a set of hospitalized patients, and the list of teachers in Sacramento made available
by the local schools in Figure 2.1(b). Quasi-identifying attributes DoB, Sex, and ZIP can be
exploited for linking the tuples in the medical table with the teachers’ list, possibly re-identifying
individuals and revealing their illnesses. In this example, the de-identified medical data include
only one male patient, born on 1958/07/09 and living in 94232 area. This combination, if unique
in the external world as well, uniquely identifies the corresponding tuple as pertaining to John
Doe, 100 Park Ave., Sacramento, revealing that he suffers from diabetes.

In the following, we present syntactic data protection techniques developed for counteracting
identity and attribute disclosure in data release. We first describe the k-anonymity proposal [100],
one of the most popular syntactic privacy definitions developed for protecting a released dataset
against identity disclosure. We then present solutions that protect released data against attribute
disclosure, and overview some enhancements to traditional syntactic techniques introduced to
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remove assumptions characterizing traditional approaches.

k-Anonymity. Samarati [100] proposes the k-anonymity approach, enforcing the well-known
protection requirement, typically applied by statistical agencies, demanding that any released
information should be indistinguishably related to no less than a certain number of respondents.
Since re-identification is assumed to occur exploiting quasi-identifying attributes only, this general
requirement has been translated into the k-anonymity requirement: Each release of data must be
such that every combination of values of quasi-identifiers can be indistinctly matched to at least k
respondents [100]. As each respondent is assumed to be represented by at most one tuple in the
released table and vice-versa (i.e. each tuple includes information related to one respondent only),
a microdata table satisfies the k-anonymity requirement if and only if: i) each tuple in the released
table cannot be related to less than k individuals in the population; and ii) each individual in the
population cannot be related to less than k tuples in the table.

To verify whether a microdata table satisfies the k-anonymity requirement, the data holder
should know in advance any possible external source of information that an observer could exploit
for re-identification. Since this assumption is unfeasible in practice, the k-anonymity requirement
is enforced by taking a safe approach and requiring each respondent to be indistinguishable from
at least k − 1 respondents of the table itself. A table is therefore said to be k-anonymous if each
combination of values of the quasi-identifier appears with either zero or at least k occurrences in
the released table. For instance, the table in Figure 2.1(a) is 1-anonymous if we assume the quasi-
identifier to be composed of DoB, Sex, and ZIP, since different combinations of values appear only
once in the table. The definition of k-anonymous table represents a sufficient (but not necessary)
condition for the k-anonymity requirement. In fact, since each combination of values of quasi-
identifying attributes appears with at least k occurrences: i) each respondent cannot be associated
with less than k tuples in the released table; and ii) each tuple in the released table cannot be
related to less than k respondents in the population.

k-Anonymity is typically achieved by applying generalization and suppression over quasi-
identifying attributes, while leaving sensitive and non sensitive attributes unchanged. General-
ization substitutes the original values with more general values. For instance, the date of birth can
be generalized by removing the day, or the day and the month of birth. Suppression consists in
removing information from the microdata table. The combination of generalization and suppres-
sion has the advantage of reducing the amount of generalization required to satisfy k-anonymity,
thus releasing more precise (although non-complete) information. Intuitively, if a limited number
of outliers (i.e., quasi-identifying values with less than k occurrences in the table) would force
a large amount of generalization to satisfy k-anonymity, these outliers can be more conveniently
removed from the table, improving the quality of released data. For instance, consider the table in
Figure 2.1(a) and assume that the quasi-identifier is composed of attribute ZIP only. Since there is
only one person living in 94232 area (11th tuple), attribute ZIP should be generalized removing the
last three digits to guarantee 4-anonymity. However, if the 11th tuple in the table is suppressed,
4-anonymity can be achieved by generalizing the ZIP code removing only the last digit.

The approaches proposed in the literature to enforce k-anonymity can be classified on the
basis of the granularity at which generalization and suppression operate [31]. More precisely,
generalization can be applied at the cell level (substituting the cell value with a more general value)
or at the attribute level (generalizing all the cells in the column). Suppression can be applied at
the cell , attribute, or tuple level (removing a single cell, a column, or a row, respectively). Most of
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SSN Name DoB Sex ZIP Disease

1970/09/** * 941** Hepatitis
1970/09/** * 941** Cardiomyopathy
1970/09/** * 941** Eczema
1970/09/** * 941** Pneumonia
1960/08/** * 941** Stroke
1960/08/** * 941** Stroke
1960/08/** * 941** Stroke
1960/08/** * 941** Stroke
1970/08/** * 941** High Cholesterol
1970/08/** * 941** Erythema
1970/08/** * 941** High Cholesterol
1970/08/** * 941** Angina Pectoris
1960/09/** * 941** Hepatitis
1960/09/** * 941** Flu
1960/09/** * 941** Angina Pectoris
1960/09/** * 941** Cardiomyopathy

Figure 2.2 An example of 4-anonymous table

the solutions adopt attribute generalization and tuple suppression [9, 75, 100]. Figure 2.2 reports a
4-anonymous version of the table in Figure 2.1(a), obtained adopting attribute-level generalization
(attributes DoB, Sex, and ZIP have been generalized by hiding the day of birth, the sex, and the last
two digits of the ZIP code, respectively) and tuple-level suppression (the 11th tuple related to John
Doe has been removed). Note that symbol ∗ represents any value in the attribute domain. Solutions
adopting cell generalization have recently been investigated, since they cause a reduced information
loss with respect to attribute generalization [76]. These approaches have however the drawback
of producing tables where the values in the cells of the same column may be heterogeneous (e.g.,
some tuples report the complete date of birth, while other tuples only report the year of birth).

Regardless of the different level at which generalization and suppression are applied to enforce
k-anonymity, information loss is inevitable due to the reduction in the details of the released data.
To minimize the loss of information (and maximize the utility of released data for final recipients),
it is necessary to compute a k-anonymous table that minimizes generalization and suppression.
The computation of an optimal k-anonymous table is however NP-hard. Therefore, both exact
and heuristic algorithms have been proposed [31].

�-Diversity. Two attacks that may lead to attribute disclosure in a k-anonymous table are the
homogeneity attack [82, 100] and the external knowledge attack [82].

• Homogeneity attack . The homogeneity attack occurs when, in a k-anonymous table, all the
tuples in an equivalence class (i.e., all the tuples with the same value for the quasi-identifier)
assume also the same value for the sensitive attribute. If a data recipient knows the quasi-
identifier value of an individual represented in the microdata table, she can identify the
equivalence class representing the target respondent, and then infer the value of her sensitive
attribute. For instance, consider the 4-anonymous table in Figure 2.2 and suppose that Alice
knows that her friend Gary is a male, born on 1960/08/10 and living in 94140 area. Since
all the tuples in the equivalence class with quasi-identifier 〈1960/08/**,*,941**〉 have Stroke
as a value for attribute Disease, Alice can infer that Gary had a stroke.

• External knowledge attack . The external knowledge attack occurs when the data recipient
can reduce her uncertainty about the value of the sensitive attribute of a target respondent,
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SSN Name DoB Sex ZIP Disease

1970/**/** M 9415* High Cholesterol
1970/**/** M 9415* Angina Pectoris
1970/**/** M 9415* Hepatitis
1970/**/** M 9415* Pneumonia
1970/**/** F 9414* Cardiomyopathy
1970/**/** F 9414* Eczema
1970/**/** F 9414* High Cholesterol
1970/**/** F 9414* Erythema
1960/**/** F 9415* Stroke
1960/**/** F 9415* Stroke
1960/**/** F 9415* Angina Pectoris
1960/**/** F 9415* Cardiomyopathy
1960/**/** M 9414* Stroke
1960/**/** M 9414* Stroke
1960/**/** M 9414* Hepatitis
1960/**/** M 9414* Flu

Figure 2.3 An example of 4-anonymous and 3-diverse table

exploiting some additional (external) knowledge about the respondent. As an example, con-
sider the 4-anonymous table in Figure 2.2 and suppose that Alice knows that her friend Ilary
is a female, living in 94141 area and born on 1970/08/07. Observing the 4-anonymous table,
Alice can infer that Ilary suffers from either High Cholesterol , Erythema, or Angina Pectoris .
Suppose now that Alice sees Ilary running in the park every day. Since a person suffering
from Angina Pectoris does not run every day, Alice can infer that Ilary suffers from High
Cholesterol or Erythema.

Machanavajjhala et al. [82] propose the definition of �-diversity to counteract homogeneity and
external knowledge attacks, by requiring the presence of at least � well-represented values for the
sensitive attribute in each equivalence class. Several definitions for “well-represented” values have
been proposed. A straightforward approach is to consider � values well-represented if they are
different. Therefore, the simplest formulation of �-diversity requires that each equivalence class be
associated with at least � different values for the sensitive attribute. For instance, consider the 4-
anonymous and 3-diverse table in Figure 2.3 and suppose that Alice knows that her neighbor Ilary
is a female, living in 94141 area and born on 1970/08/07. Observing the table in Figure 2.3, Alice
can infer that Ilary suffers from either Cardiomyopathy, Eczema, High Cholesterol , or Erythema.
Since Alice knows that Ilary goes running every day, Alice can exclude the fact that Ilary suffers
from Cardiomyopathy, but she cannot precisely determine whether Ilary suffers from Eczema, High
Cholesterol , or Erythema.

The problem of computing an �-diverse table minimizing the loss of information caused by
generalization and suppression is computationally hard. It is interesting to note that any algorithm
proposed to compute a k-anonymous table that minimizes loss of information can be adapted to
guarantee also �-diversity, controlling if the condition on the diversity of the sensitive attribute
values is satisfied by all the equivalence classes [82].

t-Closeness. Although �-diversity represents a first step in counteracting attribute disclosure,
this solution may still produce a table that is vulnerable to privacy breaches caused by skewness
and similarity attacks [79].
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• Skewness attack . The skewness attack exploits the possible difference in the frequency dis-
tribution of the sensitive attribute values within an equivalence class, with respect to the
frequency distribution of sensitive attribute values in the population (or in the released mi-
crodata table). In fact, differences in these distributions highlight changes in the probability
with which a respondent in the equivalence class is associated with a specific sensitive value.
As an example, consider the 3-diverse table in Figure 2.3 and suppose that Alice knows that
her friend Gary is a male living in 94140 area and born on 1960/08/10. In the equivalence
class with quasi-identifier 〈1960/**/**,M,9414*〉, two out of four tuples have value Stroke for
attribute Disease. Alice can infer that Gary had a stroke with probability 50%, compared
to a probability of 12.5% of the respondents of the released table.

• Similarity attack . The similarity attack occurs when, in an �-diverse table, the values for the
sensitive attribute associated with the tuples in an equivalence class are semantically similar,
although syntactically different. For instance, consider the 3-diverse table in Figure 2.3 and
suppose that Alice knows that her friend Olivia is a female, living in 94158 area, and born on
1960/09/10. In the equivalence class with quasi-identifier 〈1960/**/**,F,9415*〉, attribute
Disease assumes values Stroke, Angina Pectoris , and Cardiomyopathy. As a consequence,
Alice can discover that Olivia suffers from a cardiovascular disease.

Li et al. [79] propose the definition of t-closeness to counteract skewness and similarity attacks,
requiring that the frequency distribution of the sensitive values in each equivalence class be close
(i.e., with distance smaller than a fixed threshold t) to that in the released microdata table. In
this way, the skewness attack has no effect since the knowledge of the quasi-identifier value for a
target respondent does not change the probability for a malicious recipient of correctly guessing
the sensitive value associated with the respondent. t-Closeness reduces also the effectiveness of the
similarity attack, because the presence of semantically similar values in an equivalence class can
only be due to the presence, with similar relative frequencies, of the same values in the microdata
table.

The enforcement of t-closeness requires to evaluate the distance between the frequency distri-
bution of the sensitive attribute values in the released table and in each equivalence class. Such
distance can be computed adopting different metrics, such as the Earth Mover Distance used by
t-closeness [79].

Other approaches. k-Anonymity, �-diversity, and t-closeness are based on some restrictive as-
sumptions that make them not always suitable for specific scenarios. Some of these (limiting)
assumptions can be summarized as follows: i) each respondent is represented by a single tuple
in the microdata table; ii) all data to be released are stored in a single table; iii) once released,
data are not further modified; iv) all the data that need to be released are available to the data
holder before their release; v) the same degree of privacy is guaranteed to all data respondents;
vi) the released microdata table has a single quasi-identifier, known in advance; and vii) no exter-
nal knowledge (except for that behind linking attacks counteracted by k-anonymity) is available
to recipients. Recently, the scientific community has started to extend the pioneering techniques
illustrated so far in this chapter removing these assumptions, proposing solutions specifically tai-
lored for supporting, among other scenarios: i) multiple tuples per respondent (e.g., [107, 113];
ii) release of multiple tables (e.g., [91, 113]); iii) data republication (e.g., [118]); iv) continuous
data release (e.g., [78, 123, 114]); v) personalized privacy preferences (e.g., [117, 58]); vi) mul-
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Assumption Available techniques
multiple tuples (X,Y )-Privacy [113]
per respondent km-anonymity [107]

multiple tables
(X,Y )-Privacy [113]
MultiR k-anonymity [91]

microdata
m-Invariance [118]

re-publication

data streams
correlation tracking [78]
stream k-anonymity [123]
�-eligibility [114]

personalized privacy (αi,βi)-Closeness [58]
preferences Personalized Privacy [117]

multiple
Butterfly [94]

quasi-identifiers
non-predefined

km-anonymity [107]
quasi-identifiers

external knowledge
Privacy Skyline [22]
ε-Privacy [81]
(c,k)-Safety [85]

Figure 2.4 Syntactic techniques removing traditional assumptions

tiple and/or non-predefined quasi-identifiers (e.g., [94, 107]); vii) adversarial external knowledge
(e.g., [22, 81, 85]). Figure 2.4 summarizes some notable solution recently proposed to extend the
definitions of k-anonymity, �-diversity, and t-closeness removing the above-illustrated assumptions.

2.2 Semantic data protection techniques

In this section, we present some of the most important data protection techniques applicable in
data release scenarios based on a semantic privacy requirement.

Basic concepts and assumptions. Semantic techniques satisfy a semantic privacy requirement
that must be enforced by the mechanism chosen for releasing the data, such as “the result of an
analysis carried out on a released dataset must be insensitive to the insertion or deletion of a
tuple in the dataset”. These protection techniques have recently been proposed to protect the
privacy of both data respondents and individuals who are not included in data undergoing release.
To illustrate, consider the release of a dataset that can be used to compute the average amount
of taxes annually paid by the citizens of Sacramento for each profession, and suppose that this
information was not publicly available before the release. Assume that Alice knows that the taxes
paid by Bob are 1,000$ less than the average taxes paid by teachers living in Sacramento. Although
this piece of information alone does not permit Alice to gain any information about the taxes paid
by Bob, if combined with the released dataset, it allows Alice to infer the taxes paid by Bob. Note
that this leakage does not depend on whether Bob is represented in the released dataset. Differently
from syntactic techniques, semantic data protection approaches typically guarantee data protection
by adding noise to the released data. Noise addition perturbs the original content of the dataset,
thus achieving privacy at the price of data truthfulness.

Semantic techniques operate in both the non-interactive scenario (i.e., consisting in the release
of a privacy-preserving data collection), and the interactive scenario (i.e., consisting in evaluating
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queries over a private data collection managed by the data holder, without revealing any sensitive
information). In the first scenario, protection techniques are used to compute a privacy-preserving
dataset, which is representative of the original data collection. In the latter scenario, protection
techniques are used to guarantee that the query result (also when possibly combined with other
results collected by data recipients) cannot be exploited to gain information that should be kept
secret. Semantic techniques typically add noise to the released data thus possibly compromising
data truthfulness.

In this section we illustrate the differential privacy approach [53], a recent semantic data pro-
tection technique, and present some relaxed definitions and enhanced formulations proposed to
address specific data release scenarios.

Differential privacy. One of the first definitions of privacy states that anything that can be
learned about a respondent from the statistical database should be learnable without access to the
database [35]. Although originally stated for statistical databases, this definition is also well suited
for data release scenario. Unfortunately, only an empty dataset can guarantee absolute protection
against information leakage [53] since, besides exposing the privacy of data respondents, the release
of a microdata table may also compromise the privacy of individuals who are not represented by
a tuple in the released table (as illustrated in the beginning of this section).

Dwork [53] proposes differential privacy to guarantee that the release of a microdata table does
not disclose sensitive information about any individual who may or may not be represented by a
tuple in the table. Differential privacy aims at releasing a dataset that allows data recipients to learn
properties about the population as a whole, while protecting the privacy of single individuals. The
semantic privacy guarantee provided by differential privacy is that the probability that a malicious
recipient correctly infers the sensitive attribute value associated with a target respondent is not
affected by the presence/absence of the corresponding tuple in the released table. Formally, given
two datasets T and T ′ differing only for one tuple, an arbitrary randomized function K (typically,
the release function) satisfies ε-differential privacy if and only if P (K(T ) ∈ S) ≤ exp(ε) ·P (K(T ′) ∈
S), where S is a subset of the possible outputs of function K and ε is a public privacy parameter.
Intuitively, the released dataset satisfies ε-differential privacy if the removal (insertion, respectively)
of one tuple from (into, respectively) the dataset does not significantly affect the result of the
evaluation of function K. As an example, consider an insurance company that consults a medical
dataset to decide whether an individual is eligible for an insurance contract. If differential privacy
is satisfied, the presence or absence of the tuple representing the individual in the dataset does
not significantly affect the final decision taken by the insurance company. It is important to note
that the external knowledge that an adversary may possess cannot be exploited for breaching the
privacy of individuals. In fact, the knowledge that the recipient gains looking at the released
dataset is bounded by the multiplicative factor exp(ε), for any individual either represented or
not in the released microdata table. In other words, the probability of observing a result in S for
the evaluation of function K over T is close to the probability of observing a result in S for the
evaluation of function K over T ′ (i.e., the difference between P (K(T ) ∈ S) and P (K(T ′) ∈ S) is
negligible). Note that the definition of ε-differential privacy does not depend on the computational
resources of adversaries, and therefore it protects a data release against computationally-unbounded
adversaries.

The techniques proposed to enforce the ε-differential privacy definition traditionally add noise
to the released data. The magnitude of the noise is computed as a function of the difference that
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Solution Objective
Scenario

interactive non interactive

matrix mechanism [77]
minimize noise addition, ×consistent query answers

Privlet [119]
reduce error in the result of × ×range-count queries

universal histogram [65]
satisfy consistency constraints ×in different query results

diff. private synthetic data [124]
preserve statistical characteristics ×of synthetic datasets

data summaries [33]
reduce time in computing ×frequency matrices

Figure 2.5 Semantic techniques for specific release scenarios

the insertion/removal of one respondent may cause on the result of the evaluation of function K.
Differential privacy can be enforced in both the interactive and non-interactive scenarios, possibly
adopting different approaches for noise addition [53]. In the interactive scenario, ε-differential pri-
vacy is ensured by adding random noise to the query results evaluated on the original dataset [54].
The typical distribution considered for the random noise is Laplace distribution Lap(∆(f)/ε) with
probability density function P (x) = exp(−|x|/b)/2b, where b = ∆(f)/ε and ∆(f) is the maximum
difference between the query result evaluated over T and over T ′ (which, for example, is equal to
1 for count queries, since T and T ′ differ for at most one tuple). In the non-interactive scenario,
the data holder typically releases a frequency matrix , with a dimension for each attribute and an
entry in each dimension for each value in the attribute domain. The value of a cell in the matrix
is obtained counting the tuples in the table that assume, for each attribute, the value represented
by the entry associated with the cell. Since each cell in the frequency matrix is the result of
the evaluation of a count query on the original dataset, the techniques proposed to guarantee
ε-differential privacy in the interactive scenario can also be adopted to protect the entries of the
released frequency matrix (i.e., to protect the result of the count queries).

Extending differential privacy. The original definition of ε-differential privacy is strict and
imposes very tight constraints on the data that can be released. However, there are different
scenarios where an increased flexibility, to be achieved at the price of a relaxed privacy requirement,
may be accepted by the data holder to provide data recipients with information of higher interest.
Examples of extended techniques, relaxing the original definition of ε-differential privacy, are (ε,δ)-
differential privacy [55] and computational differential privacy [88].

The definition of differential privacy has also been specifically refined to address peculiar data
release scenarios. Figure 2.5 summarizes some recent refinements of differential privacy, which
have been proposed for managing the release of the result of count queries, synthetic data, and
sparse frequency matrices. In the figure, the considered refinements have been classified according
to the scenario in which they operate (i.e., interactive, non-interactive, or both), and the goal they
achieve in data release.
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2.3 Data fragmentation and loose associations

The adoption of well-known generalization and suppression (syntactic data protection techniques)
results in tables that are less complete and less detailed than the original microdata tables. On the
other hand, exploiting noise addition (semantic data protection techniques) perturbs the original
data, compromising their truthfulness. An alternative approach that permits the release of the
exact distribution of the quasi-identifier values and does not compromise data truthfulness, while
guaranteeing to preserve the privacy of the respondents, is based on fragmentation. In a nutshell,
fragmentation consists in splitting the original microdata table in vertical fragments, such that the
attributes composing the quasi-identifier and the sensitive attribute (or, more generally, attributes
that should not be visible in association) are not represented in the same fragment. To prevent the
possibility of reconstructing the sensitive associations broken by fragmentation, fragments should
clearly be disjoint, meaning that no recipient can compute their join. Several strategies have been
proposed in the literature for defining a fragmentation whose fragments cannot be joined. For
instance, the two can keep a secret approach [3] assumes the existence of two non-communicating
servers storing a pair of fragments defined over the original data collection. Since collusion among
servers can compromise the protection of sensitive data, Ciriani et al. [25, 26, 28] propose a joint
adoption of fragmentation and encryption to possibly store multiple fragments on the same server.
The departing from encryption approach [27] is based on the assumption that the data owner is
willing to store a limited portion of the data to protect sensitive associations among them.

In this section, we illustrate Anatomy [116] and loose associations [43], two notable solutions
adopting a fragmentation-based approach to protect privacy in data release while aiming at releas-
ing useful information to the recipients.

Anatomy. Xiao and Tao [116] first proposed a group-based approach to guarante �-diversity in
microdata release, to avoid resorting to generalization. Anatomy first partitions the tuples in the
microdata table in groups that satisfy the �-diversity principle (i.e., each group includes at least �
well-represented values for the sensitive attribute). Each group is then associated with a unique
group identifier and the microdata table is split into two fragments, F1 and F2, including the
attributes composing the quasi-identifier and the sensitive attribute, respectively. For each tuple,
both F1 and F2 report the identifier of the group to which it belongs. For simplicity, each group
in the fragment storing the sensitive attribute has a tuple for each sensitive value appearing in the
group, and reports the frequency with which the value is represented in the group. For instance,
consider the microdata table in Figure 2.6(a) and assume that the data holder is interested in
releasing a 3-diverse table. Figure 2.6(b) illustrates the two fragments F1 and F2 obtained by
partitioning the tuples in the table in Figure 2.6(a) in groups that satisfy 3-diversity. Although a
malicious recipient may know the quasi-identifier value of a target respondent, she can only infer
that the respondent belongs to one group (say, g1) in F1, and that the sensitive value of the target
respondent is one of the values in the group in F2 that is in relation with g1. To illustrate, assume
that Alice knows that her friend Barbara is a female living in 94139 area and born on 1940/04/10.
Alice can easily infer that her friend is represented by the ninth tuple of table F1 in Figure 2.6(b).
However, since the tuples in the third group of F1 are in relation with the tuples in the third group
of F2 in Figure 2.6(b), Alice can only infer that Barbara suffers from either Peptic Ulcer , Broken
Leg, or Stomach Cancer . Note that the privacy guarantee offered by Anatomy is exactly the same
offered by traditional generalization-based approaches. In fact, a malicious data recipient cannot
associate less than � different sensitive values with each respondent in the released table. However,
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DoB Sex ZIP Disease

1950/06/02 F 94141 H1N1
1950/06/20 M 94132 Gastritis
1950/06/12 M 94137 Dyspepsia
1950/06/05 F 94144 Pneumonia
1940/04/01 M 94143 Peptic Ulcer
1940/04/02 M 94142 Peptic Ulcer
1940/04/10 F 94139 Peptic Ulcer
1940/04/20 F 94130 Peptic Ulcer
1940/06/07 M 94130 Broken Leg
1940/06/05 M 94131 Short Breath
1940/06/25 F 94142 Broken Leg
1940/06/30 F 94145 Stomach Cancer
1950/05/02 F 94136 H1N1
1950/05/05 F 94134 Flu
1950/05/10 M 94147 Stomach Cancer
1950/05/30 M 94148 Gastritis

(a)

F1

DoB Sex ZIP GroupID

1940/04/01 M 94143 1
1940/04/02 M 94142 1
1940/06/07 M 94130 1
1940/06/05 M 94131 1
1950/06/02 F 94141 2
1950/06/05 F 94144 2
1950/05/02 F 94136 2
1950/05/05 F 94134 2
1940/04/10 F 94139 3
1940/04/20 F 94130 3
1940/06/25 F 94142 3
1940/06/30 F 94145 3
1950/06/20 M 94132 4
1950/06/12 M 94137 4
1950/05/10 M 94147 4
1950/05/30 M 94148 4

F2

GroupID Disease Count

1 Peptic Ulcer 2
1 Broken Leg 1
1 Short Breath 1

2 H1N1 2
2 Pneumonia 1
2 Flu 1

3 Peptic Ulcer 2
3 Broken Leg 1
3 Stomach Cancer 1

4 Gastritis 2
4 Dyspepsia 1
4 Stomach Cancer 1

(b)

Figure 2.6 An example of microdata table (a) and of two fragments F1 and F2 (b) satisfying 3-diversity
obtained adopting the Anatomy approach

by releasing the exact distribution of the values of the attributes composing the quasi-identifier,
the evaluation of aggregate queries can be more precise [116].

Loose associations. Building on a similar idea, De Capitani di Vimercati et al. [43] propose
a more flexible solution, called loose associations, to guarantee privacy in data publication with-
out adopting generalization. Loose associations have been proposed to protect generic sensitive
associations among the attributes in a data collection. For instance, consider the microdata ta-
ble in Figure 2.6(a) and suppose that attributes SSN, Name, and Treatment are also represented
in the table. A possible set of sensitive associations defined among attributes {SSN,Name,DoB,
Sex,ZIP,Disease,Treatment} could include: i) both the associations between the values of at-
tributes SSN and Disease, and between the values of Name and Disease; ii) the association be-
tween the values of quasi-identifying attributes DoB, Sex, ZIP and the values of sensitive attribute
Disease; iii) the association between the values of attributes Disease and Treatment. Given
a set of sensitive associations defined among the attributes included in a microdata table, they
are broken by publishing a set of different fragments. It is easy to see that the problem of pro-
tecting the association of a sensitive attribute with the respondents’ quasi-identifier, tackled by
Anatomy, can be modeled through the definition of a sensitive association among the sensitive
attribute and quasi-identifying attributes. Like Anatomy, the original microdata table can then
be split in different fragments in such a way that the sensitive attribute is not stored together
with all the attributes composing the quasi-identifier. It is in fact sufficient to store a subset of
the quasi-identifying attributes in a fragment F1, and all the other quasi-identifying attributes in
another fragment F2, together with the sensitive attribute. For instance, consider the microdata
table in Figure 2.6(a). A fragmentation that would protect against identity and attribute disclo-
sures could be composed of the following two fragments: F1(DoB,Sex,ZIP) and F2(Disease). Note
that a fragmentation is not unique: F1(DoB,Sex) and F2(ZIP,Disease) is another solution that
still protects the association between the sensitive attribute and the quasi-identifier (as well as the
other sensitive sensitive associations mentioned above).

To provide the data recipient with some information on the associations in the original relation
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}{
Peptic Ulcer
H1N1}{
Gastritis
Dyspepsia}{
Peptic Ulcer
Pneumonia}{
Broken Leg
Stomach Cancer}{
Peptic Ulcer
H1N1}{
Short Breath
Broken Leg}{
Peptic Ulcer
Stomach Cancer}{
Flu
Gastritis

(a)

F1

DoB Sex ZIP G1

1950/06/02 F 94141 dsz1
1950/06/20 M 94132 dsz1
1950/06/12 M 94137 dsz2
1950/06/05 F 94144 dsz2
1940/04/01 M 94143 dsz3
1940/04/02 M 94142 dsz5
1940/04/10 F 94139 dsz4
1940/04/20 F 94130 dsz6
1940/06/07 M 94130 dsz3
1940/06/05 M 94131 dsz5
1940/06/25 F 94142 dsz6
1940/06/30 F 94145 dsz4
1950/05/02 F 94136 dsz7
1950/05/05 F 94134 dsz7
1950/05/10 M 94147 dsz8
1950/05/30 M 94148 dsz8

A12

G1 G2

dsz1 d1
dsz1 d2
dsz2 d2
dsz2 d3
dsz3 d1
dsz3 d4
dsz4 d5
dsz4 d4
dsz5 d3
dsz5 d6
dsz6 d7
dsz6 d6
dsz7 d5
dsz7 d8
dsz8 d7
dsz8 d8

F2

Disase G2

H1N1 d1
Gastritis d2
Dyspepsia d2
Pneumonia d3
Peptic Ulcer d1
Peptic Ulcer d3
Peptic Ulcer d5
Peptic Ulcer d7
Broken Leg d4
Short Breath d6
Broken Leg d6
Stomach Cancer d4
H1N1 d5
Flu d8
Stomach Cancer d7
Gastritis d8

(b)

Figure 2.7 An example of a 4-loose association (a) and released relations F1, A12, and F2 (b) defined on
the microdata in Figure 2.6(a)

broken by fragmentation, provided a given privacy degree of the association is respected, in [43] the
authors propose to publish a loose association between the tuples composing F1 and F2. The tuples
in F1 and in F2 are independently partitioned in groups of size at least k1 and k2, respectively. Each
group in F1 and in F2 is then associated with a different group identifier. For each tuple, both F1

and F2 report the identifier of the group to which the tuple belongs. The group-level relationships
between the tuples in F1 and in F2 are represented by an additional table A that includes, for
each tuple t in the original microdata table, a tuple modeling the relationship between the group
where t appears in F1 and the group where t appears in F2. For instance, Figure 2.7(a) represents
two fragments F1 and F2 for the microdata table in Figure 2.6(a). Both the fragments have been
partitioned into groups of 2 tuples each and the lines between the tuples in F1 and F2 represent
their relationships in the original microdata table. Figure 2.7(b) illustrates the three relations,
F1, A, and F2 that are released instead of the original microdata. It is easy to see that, even if
a malicious recipient knows the quasi-identifier of a respondent, she can only identify the tuple
related to the target respondent in F1, but not the corresponding Disease in F2. For instance,
assume that Alice knows that her friend Barbara is a female living in 94139 area and born on
1940/04/10. By looking at the released tables, Alice discovers that her friend is represented by
the seventh tuple in F1, which belongs to group dsz4. However, since group dsz4 is associated in
A with two different groups in F2 (i.e., d4 and d5) Alice cannot identify the illness Barbara suffers
from, since it could be either Peptic Ulcer , Broken Leg, Stomach Cancer , or H1N1. It is easy to
see that also the other sensitive associations mentioned above are not exposed by the release of
the loose association.

The partitioning of the tuples in the two fragments should be carefully designed to guarantee
an adequate protection degree. In fact, a loose association enjoys a degree k of protection if every
tuple in A indistinguishably corresponds to at least k distinct associations among tuples in the
two fragments (i.e., it could have been generated starting from k different tuples in the microdata
table). The release of F1, F2, and A satisfies k-looseness , with k ≤ k1 · k2, if for each group g1
in F1 (group g2 in F2, respectively), the union of the tuples in all the groups with which g1 (g2,
respectively) is associated in A is a set of at least k different tuples. Figure 2.7(b) represents an
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example of a 4-loose association. This implies that it is not possible, for a malicious data recipient,
to associate with each quasi-identifier value in F1 less than 4 different diseases in F2.

We note that loose associations are limited to the consideration of fragmentations composed
of a single pair of fragments. In Chapter 3, besides proposing a novel and efficient fragmentation
strategy operating in the multiple fragments scenario, we also extend the loose association definition
to operate on arbitrary sets of fragments.

2.4 Inference control

Inference problems have been extensively studied in the context of multilevel database systems
(e.g., [36, 70, 80, 84]). Most inference research addresses detection of inference channels within a
stored database or at query processing time. In the first case, inference channels are removed by
upgrading selected schema components or redesigning the schema (e.g., [97]). In the second case,
database transactions are evaluated to determine whether they lead to illegal inferences and, if so,
deny the query (e.g., [62, 67, 89, 104]).

One of the first attempts to deal with inference channels is that of Hinke [66], proposing an
approach based on the construction of a semantic relationship graph among data, in order to locate
inference channels in the system. The nodes of the graph are the data items, while the edges of
the graph are the relationships between data. If the graph includes two nodes with more than one
path linking them, among which a user is cleared to follow only one, then an inference channel
is detected. The generic definition of an arc in the graph, representing an arbitrary ‘semantic
relationship’, requires a security analyst to manually check whether the path is really exploitable
by an attacker. When, after the manual analysis, a discovered arc is proved to be a real inference
channel, the next step is to raise the security level of one of the edges of the path leading to the
channel. Smith [104] refines Hinke’s work [66] on semantical relationships graphs, allowing users to
express different types of relationships. In this approach a number of possible types of data items
and relationships between them is identified. Every relationship can be labeled with a security
level. Thuraisingham [108] proposes a more general logic-based framework dealing with inference
problems.

In recent years, many other proposals have been presented to deal with inference channels,
aiming to a general and strong formulation of the problem in order to find formal and automated
models and frameworks to provide protection [19, 36, 38, 50, 69, 83]. Hinke and Delugach [50, 67,
68, 69] propose a solution for an automated analysis of inferences in general purpose databases,
addressing the representation of external knowledge as well. The proposed method is based on
a graph representation to locate inference channels, representing the knowledge needed for the
problem, such as data items, relationships between them, domain knowledge and data sensitivity.
The basic idea is that there is an inference channel if there exists a path going from a low-level
piece of information to a high-level one in the graph representing the system. Brodsky et al. [19]
adopt logic-based techniques to identify inference channels, and propose a way to represent the
database and domain knowledge. In their proposal, they present a security framework called DiMon
(Disclosure Monitor), built upon an access control model based on a security lattice. Their proposal
can be applied in data-dependent mode as well as in data-independent mode (i.e., depending on the
actual data values or not). Another approach is the one proposed by Dawson et al. [36], focusing
on the problem of classifying existing databases. The information is classified by enforcing explicit
data classification as well as inference and association constraints. The computed classification is
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guaranteed to be optimal, that is, it ensures satisfaction of the constraints (free from inference) and
guarantees that the information is not overclassified. The approach is not limited to specific forms
of security lattices, but security classes (security labels) can be taken from any generic lattice.
This proposal allows the definition of lower bound security constraints, whose aim is to prevent
unauthorized downward information flows, and the definition of upper bound security constraints,
whose aim is to set an upper limit for the security level of an attribute, for visibility purposes.

All the solutions mentioned so far operate in the multilevel database scenario. Some solu-
tions have recently been designed to deal with inference channels in data publishing scenarios.
These more recent proposals aim, for example, at destroying the correlation between two dis-
joint and pre-defined subsets of attributes before their publication [106]. The solution in [112]
instead aims at guaranteeing k-anonymity when publicly releasing a microdata table, assuming
that the adversarial knowledge includes functional dependencies among attributes. The first solu-
tion investigating privacy breaches that data dependencies may cause to fragmented data considers
the non-communicating servers scenario [16]. The authors specifically analyze how the possible
a-priori knowledge of dependencies among the data may cause violations to confidentiality con-
straints, when data are stored at two non-communicating servers. The authors propose a solution
for computing a safe fragmentation w.r.t. inference channels exploiting an integer programming
approach. A different analysis of the privacy risks possibly caused by inferences based on ob-
servers’ knowledge has been illustrated in [17], where the authors prove that, for solutions that
depart from encryption, no information can be inferred by an adversary who knows Equality and
Tuple Generating Dependencies (which include both functional and join dependencies).

Despite the above-mentioned attempts to define solutions to counteract inferential disclosure
in data publishing, some scenarios remain unsolved and need further consideration. In Chapter 4,
we consider a scenario where data are incrementally released and sensitive (non released) infor-
mation depend on (and can therefore be inferred from) non sensitive released data. We propose a
model capturing and a solution counteracting this inference problem, where sensitive information
is characterized by peculiar value distributions of non sensitive released data.

2.5 Access control in data outsourcing

When the data release process is selective, different users may have different access privileges on
the released data. Traditional access control architectures are based on the presence of a trusted
component, called reference monitor , that is in charge of enforcing the access control policy defined
by the data owner. However, as already mentioned, users and companies are more and more
resorting to cloud storage systems to make their data and resources selectively available to others.
In these scenarios, unfortunately, neither the data owner (for efficiency reasons) nor the cloud
server storing the data (for privacy reasons) can enforce the access control policy.

In this section we illustrate two approaches, based on selective encryption and attribute-based
encryption respectively, recently proposed for enforcing access control in cloud/outsourcing sce-
narios.

2.5.1 Selective encryption

One of the solutions recently investigated to provide access control enforcement to outsourced data
without relying on the cloud provider and/or on the data owner is based on selective encryption.
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SSN Name ZIP MarStatus Illness

t1 123456789 Ann 22010 single gastritis
t2 234567891 Barbara 24027 divorced neuralgia
t3 345678912 Carl 22010 married gastritis
t4 456789123 Daniel 20100 married gastritis
t5 567891234 Emma 21048 single neuralgia
t6 678912345 Fred 23013 married hypertension
t7 789123456 Gary 22010 widow gastritis
t8 891234567 Harry 24027 widow hypertension

t1 t2 t3 t4 t5 t6 t7 t8
A 1 1 0 1 1 1 1 0
B 1 1 1 1 1 0 0 0
C 1 1 1 0 1 1 0 0
D 0 0 0 1 1 1 0 1

(a) (b)

Figure 2.8 An example of relation (a) and of related access matrix (b)

The intuition is, given a relation schema R to be outsourced, to use different encryption keys for
different tuples and to selectively distribute these keys to authorized users. Each user can decrypt
and have visibility over subsets of tuples, depending on the keys she knows. The authorization
policy regulating which users can read which tuples is defined by the data owner before outsourcing
R (e.g., [39, 42]). The authorization policy can be represented as an binary access matrix M with
a row for each user u, and a column for each tuple t, where: M[ui,tj ]=1 iff ui can access tj ;
M[ui,tj ]=0 otherwise. To illustrate, consider the relation in Figure 2.8(a). Figure 2.8(b) illustrates
an example of access matrix regulating access to the tuples in the relation by users A, B, C, and
D. The jth column of the matrix represents the access control list acl(tj) of tuple tj , for each
j = 1, . . . , |R|. As an example, with reference to the matrix in Figure 2.8(b), acl(t1)=ABC.
Since the storing server is not trusted to access the plaintext data the owner wants to outsource,
tuples are encrypted before being stored according to an encryption policy, which translates and
reflects the authorization policy. The encryption policy, which defines and regulates the set of
keys used to encrypt tuples and manages the key distribution to the users, must be equivalent to
the authorization policy, meaning that they must authorize each user to access the same subset of
tuples.

The first attempt to enforce access control through selective encryption was aimed at protect-
ing access to XML documents (e.g., [87]). Different authorizations for different portions of the
XML document, defined by the document creator, are enforced by using different keys to encrypt
portions of the document regulated by different authorizations. Each user of the system is then
communicated the set of keys used for encrypting the document portions she is authorized to ac-
cess. More recent selective encryption approaches rely on key derivation techniques to reduce the
key management overhead at both the data owner and users side (e.g., [42]). These solutions
aim at defining a translation of the authorization policy into an equivalent encryption policy that
guarantees that each user has to manage only one key and that each tuple is encrypted with only
one key. To fulfill these two requirements, selective encryption approaches rely on key derivation
techniques that permit to compute the value of an encryption key kj starting from the knowledge
of another key ki and (possibly) a piece of publicly available information. To determine which keys
can be derived from which other key, key derivation methods require the preliminary definition of
a key derivation hierarchy. A key derivation hierarchy can be graphically represented as a graph
with a vertex vi for each key ki in the system and an edge (vi,vj) from key ki to key kj iff kj can
be directly derived from ki. Note that key derivation can be applied in chain, meaning that key
kj can be computed starting from key ki if there exists a path (of arbitrary length) from vi to vj
in the key derivation hierarchy.
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A key derivation hierarchy can have different forms, as follows.

• Chain of vertices (e.g., [102]): the key kj associated with a vertex is computed by applying
a one-way function to the key ki of its predecessor in the chain. No public information is
needed.

• Tree hierarchy (e.g., [103]): the key kj associated with a vertex is computed by applying a
one-way function to the key ki of its direct ancestor and a publicly available label lj associated
with kj . Public labels are necessary to guarantee that different children of the same node in
the tree have different keys.

• DAG hierarchy (e.g., [4, 5, 6, 34, 49]): keys in the hierarchy can have more than one direct
ancestor. The derivation process is therefore based on techniques that assign a piece of
publicly available information, called token, to edge in the key derivation hierarchy [5, 6].
Given two keys ki and kj , and the public label lj of kj , token di,j allows for the computation
of kj from ki and lj. Token di,j is computed as di,j=kj⊕f(ki,lj), where ⊕ is the bitwise
xor operator, and f is a deterministic cryptographic function. By means of di,j , all users
knowing (or able to derive) key ki can also derive key kj .

Each of the proposed key derivation hierarchies has advantages and disadvantages. However,
adopting token-based key derivation seems to best fit the outsourcing scenario since it minimizes
the need of re-encryption and/or key re-distribution in case of updates to the authorization policy
(for more details, see Section 5.4.2).

To satisfy the desiderata of limiting the key management overhead, De Capitani di Vimercati et
al. [42] propose to adopt the set containment relationship ⊆ over the set U of users to define a DAG
key derivation hierarchy suited for access control enforcement. Such a hierarchy has a vertex for
each of the elements of the power-set of U , and a path from vi to vj iff the set of users represented
by vi is a subset of that represented by vj . The correct enforcement of the authorization policy
defined by the data owner is guaranteed iff: i) each user ui is communicated the key associated
with the vertex vi representing it; and ii) each tuple tj is encrypted with the key associated with
the set of users in acl(tj). With this strategy, each user has to manage one key only, and each tuple
is encrypted with one key only. Moreover, tuples characterized by the same access control list are
encrypted with the same key. For instance, Figure 2.9(a) illustrates the key derivation hierarchy
induced by the set U={A,B,C,D} of users and the subset containment relationship over it (in the
figure, vertices are labeled with the set of users they represent). Figure 2.9(b) and Figure 2.9(c)
illustrate the keys assigned to users in the system and the keys used to encrypt the tuples in
the relation in Figure 2.8(a), respectively. The encryption policy in the figure enforces the access
control policy in Figure 2.8(b) as each user can derive, from her own key, the keys of the vertices to
which she belongs and hence decrypt the tuples she is authorized to read. For instance, user C can
derive the keys used to encrypt tuples t1, t2, t3, t5, and t6, and then access their content. Since,
as previously mentioned, a path represents a set of tokens, it is easy to see that the encryption
policy induced by such a key derivation hierarchy is equivalent to the authorization policy defined
by the data owner: each tuple can be decrypted and accessed by all and only the users in its access
control list.

Even though this approach correctly enforces an authorization policy and enjoys ease of im-
plementation, it defines more keys and more tokens than necessary. Since tokens are stored in a
publicly available token catalog at the server side, when a user u wants to access a tuple t she



2.5. Access control in data outsourcing 25

�� ��
�� ��AB

���
���

�

��
��

��
��

��
�

�� ��
�� ��A

�������

			
			

	 �� ��
�� ��AC

��
��

��
��

��
�

�� ��
�� ��ABC

���
���

�

�� ��
�� ��B













			
			

	

��
��

��
��

��
�� ��
�� ��AD

���
���

�
�� ��
�� ��ABD

�� ��
�� ��ABCD

�� ��
�� ��C













��
��

��
��

��
�� ��
�� ��BC

�����������

���
���

�
�� ��
�� ��ACD










�� ��
�� ��D













			
			

	 �� ��
�� ��BD

����������� �� ��
�� ��BCD

������������

�� ��
�� ��CD

�����������
�������

user key

A kA

B kB

C kC

D kD

tuple key

t1 kABC

t2 kABC

t3 kBC

t4 kABD

t5 kABCD

t6 kACD

t7 kA

t8 kD

(a) (b) (c)

Figure 2.9 An example of encryption policy equivalent to the access control policy in Figure 2.8(b),
considering the subset {A,B,C,D} of users

needs to interact with the server to visit the path in the key derivation hierarchy from the vertex
representing u to the vertex representing acl(t). Therefore, keeping the number of tokens low
increases the efficiency of the derivation process (and the response time to users). The problem of
minimizing the number of tokens, while guaranteeing equivalence between the authorization and
the encryption policies, is however NP-hard (it can be reduced to the set cover problem) [42]. It
is however interesting to note that: i) the vertices needed for correctly enforcing an authorization
policy are only those representing singleton sets of users (corresponding to user keys) and the ac-
cess control lists of the tuples (corresponding to keys used to encrypt tuples) in R ; ii) when two or
more vertices have more than two common direct ancestors, the insertion of a vertex representing
the set of users corresponding to these ancestors reduces the total number of tokens. Elaborating
on these two intuitions to reduce the number of tokens of the system, in [42] the authors propose a
heuristic approach, proved to efficiently provide good results, to define a key derivation hierarchy.

2.5.2 Policy updates

In case of changes to the authorization policy, the encryption policy must be updated accordingly,
to guarantee that equivalence is preserved. Since the key used to encrypt each tuple t in R depends
on the set of users who can access it, it might be necessary to re-encrypt the tuples involved in the
policy update with a different key that only the users in its new access control lists know or can
derive. A trivial approach to enforce a grant/revoke operation on tuple t requires the data owner to:
i) download the encrypted version of t from the server; ii) decrypt it; iii) update the key derivation
hierarchy if it does not include a vertex representing the new set of users in acl(t); iv) encrypt t with
the key k′ associated with the vertex representing acl(t); v) upload the new encrypted version of
t on the server; and vi) possibly update the public catalog containing the tokens. This approach,
while effective and correctly enforcing authorization updates, leaves the burden to manage the
update at the data owner’s side. Also, re-encryption operations are computationally expensive. To
limit the data owner’s overhead, De Capitani di Vimercati et al. [42] propose an over-encryption
approach, adopting two layers of encryption to partially delegate to the server the management of
grant and revoke operations. Each layer has its key derivation hierarchy, defined on a different set
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of keys.

• The Base Encryption Layer (BEL) is applied by the data owner before storing the dataset
at the server, and encrypts each tuple according to the authorization policy existing at
initialization time. In case of policy updates, the BEL is only updated by possibly inserting
tokens in the public catalog (i.e., edges in the key derivation hierarchy).

• The Surface Encryption Layer (SEL) is applied by the server over the tuples that have already
been encrypted by the data owner at the BEL. It dynamically enforces the authorization
policy updates by possibly re-encrypting tuples and changing the SEL key derivation hierarchy
to correctly reflect the updates.

Intuitively, with the over-encryption approach, a user can access a tuple t only if she knows
both the keys used to encrypt t at BEL and the key used to encrypt it at SEL. At initialization
time, the key derivation hierarchies and the encryption of resources at BEL and SEL coincide, but
they immediately change and become different at each policy update. Grant and revoke operations
operate as follows.

• Grant . When user u is granted access to tuple t, she needs to know the key used to encrypt
t at both BEL and SEL. Hence, the data owner adds a token in the BEL key derivation
hierarchy from the vertex representing u to the vertex whose key is used to encrypt t (i.e.,
to the vertex representing acl(t) at initialization time). The owner then asks the server to
update the key derivation hierarchy at SEL and to possibly re-encrypt tuples. Tuple t in fact
needs to be encrypted, at SEL, with the key of the vertex representing acl(t)∪{u} (which is
possibly inserted into the hierarchy). Besides t, also other tuples may need to be re-encrypted
at SEL to guarantee the correct enforcement of the policy update. In fact, the tuples that
are encrypted with the same key as t at BEL and that user u is not allowed to read must
be encrypted at SEL with a key that u does not know (and cannot derive). The data owner
must then make sure that each tuple ti sharing the BEL encryption key with t are encrypted
at SEL with the key of the vertex representing acl(ti).

• Revoke. When user u loses the privilege of accessing tuple t, the data owner simply asks
the server to re-encrypt (at SEL) the tuple with the key associated with the set acl(t)\{u}
of users. If the vertex representing this group of users is not represented in the SEL key
derivation hierarchy, the server first updates the hierarchy inserting the new vertex, and
then re-encrypts the tuple.

Since the management of (re-)encryption operations at the SEL is delegated to the server, there
is the risk of collusions with a user. In fact, by combining their knowledge, a user and the server
can possibly decrypt tuples that neither the server nor the user can access. Collusion represents
a risk to the correct enforcement of the authorization policy, but this risk is limited, well defined,
and can be reduced at the price of using a higher number of keys at BEL.

2.5.3 Alternative approaches

An alternative solution to selective encryption for access control enforcement is represented by
Attribute-Based Encryption (ABE [64]). ABE is a particular type of public-key encryption that
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regulates access to tuples on the basis of descriptive attributes, associated with tuples and/or users,
and on policies defined over them regulating access to the data. ABE can be implemented either as
Ciphertext-Policy ABE (CP-ABE [115]) or as Key-Policy ABE (KP-ABE [64]), depending on how
attributes and authorization policies are associated with tuples and/or users. Both the strategies
have been recently widely investigated, and several solutions have been proposed in the literature,
as briefly illustrated in the following.

• CP-ABE associates with each user u a key and a set of attributes describing her. Each tuple
t in R is encrypted using a key k, associated with an access structure modeling the access
control policy regulating accesses to the tuple content. The access structure associated with
tuple t represents the sets of attributes that users must possess to derive the key k used to
encrypt t (and then to decrypt and read the tuple content). Graphically, an access structure
is a tree whose leaves represent attributes and whose internal nodes represent logic gates,
such as conjunctions and disjunctions. A user u can access a tuple t only if the set of
attributes associated with her key satisfies the access policy regulating access to t (similarly
to traditional role-based access control). Although CP-ABE effectively and efficiently enforce
access control policies, one of the main concerns in the wide adoption of this technique is
related with the management of attribute revocation. In fact, when a user loses one of her
attributes, she should not be able to access tuples that require the revoked attribute for the
access. The trivial approach to manage this update is computationally expensive as it implies
re-encryption. Yang et al. [120] address this problem proposing an efficient encryption scheme
able to manage attribute revocation, ensuring the satisfaction of both backward security (i.e.,
a revoked user cannot decrypt the tuples requiring the attribute revoked to the user) and
forward security (i.e., a newly joined user with sufficient attributes can access all the tuples
outsourced before her join). Zhiguo et al. [111] define instead a hierarchical attribute-based
solution based on CP-ASBE, an extended version of CP-ABE in which attributes associated
with users are organized in a recursive set structure, and propose a flexible and scalable
approach to support user revocation.

• KP-ABE associates, in contrast to CP-ABE, access structures with users’ keys and sets of
attributes with tuples. User u can decrypt tuple t if the attributes associated with t satisfy
the access structure of the user. To minimize the overhead cause by asymmetric encryption,
the tuple content can be encrypted with a symmetric key. Access to the symmetric key
k used to encrypt t is then protected through KP-ABE [121]. Only authorized users can
remove the KP-ABE encryption layer to retrieve the symmetric key use to encrypt tuples
and access their content. This solution also supports policy updates, and couples ABE with
proxy re-encryption to delegate to the storing server most of the re-encryption operations
necessary to enforce policy updates.

All the solutions described in this section, be them based on selective encryption or on ABE,
focus only on the enforcement of read access privileges and do not support restrictions on write
operations, which are assumed to be an exclusive privilege of the data owner. In the literature,
few works have addressed this issue. Raykova et al. [98] adopt selective encryption to enforce the
data owner’s authorization policy on outsourced data, relying on asymmetric encryption to enforce
both read and write privileges and defining two key derivation hierarchies: one for private keys
(to enforce read privileges) and one for public keys (to enforce write privileges). This solution also
proposes to replicate resources and perform updates on a different copy of the data, to prevent
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unauthorized write operations from destroying valuable data content. De Capitani di Vimercati et
al. [44] adopt selective encryption and write tags to enforce static write privileges on outsourced
data. Zhao et al. [122] combine CP-ABE and Attribute-Based Signature (ABS) techniques to
enforce read and write access privileges, respectively. This approach, although effective, has the
disadvantage of requiring the presence of a trusted party for correct policy enforcement. Ruj et
al. [99] investigate a similar approach based on the combined use of ABE and ABS for supporting
both read and write privileges. This solution has the advantage over the approach in [122] of being
suited also to distributed scenarios. All these approaches, however, do not address the problem
of efficiently supporting changes to the authorization policy, which may require expensive data
re-encryption operations. In Chapter 5, we propose an access control solution, based on selective
encryption, able to efficiently enforce updates in the write access policy, and we complement it
with an effective data integrity control mechanism.

2.6 Chapter summary

The needs for privacy protection and access control enforcement in data release scenarios have
recently been widely recognized by the research community, which have proposed different models
and techniques to ensure appropriate protection of sensitive information not intended for disclosure.
In this chapter, we illustrated some of these well-known approaches, focusing on data protection
techniques (syntactic, semantic and fragmentation-based), on solutions for counteracting inferential
disclosure of sensitive information not explicitly included in the release, and on recent access control
mechanisms suited to cloud/outsourcing scenarios. In the remainder of this thesis, we will study
more in depth the fragmentation-based approach for preserving privacy in data release, proposing a
novel model of the problem and also illustrating a possible way to enhance the utility of the released
data to the recipients. We will then consider a novel, unsolved scenario of inferential disclosure
by proposing a model characterizing the problem and a solution for counteracting possible privacy
breaches. Finally, we will focus on access control enforcement and, leveraging on the selective
encryption approach, we will define a flexible access control model that both enforces dynamic
write privileges, and supports novel subscription-based scenarios.
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Enforcing confidentiality and visibility constraints

The most straightforward understanding of, and the first requirement for, protecting privacy when
releasing a data collection is indeed the protection of sensitive data included in the release. How-
ever, privacy protection should not prevent recipients from performing legitimate analysis on the
released dataset, and should ensure adequate visibility over non sensitive information. In this
chapter, we illustrate a solution allowing a data owner to publicly release a dataset while satisfying
confidentiality and visibility constraints over the data, expressing requirements for information pro-
tection and release, respectively, by releasing vertical views (fragments) over the original dataset.
We translate the problem of computing a fragmentation composed of the minimum number of
fragments into the problem of computing a maximum weighted clique over a fragmentation graph.
The fragmentation graph models fragments, efficiently computed using Ordered Binary Decision
Diagrams (OBDDs), which satisfy all the confidentiality constraints and a subset of the visibility
constraints defined in the system. We then show an exact and a heuristic algorithm for com-
puting a minimal and a locally minimal fragmentation, respectively. By providing experimental
results comparing the execution time and the fragmentations returned by the exact and heuristic
algorithms, we show that the heuristic algorithm has low computation cost and computes a frag-
mentation close to optimum. To further enrich the utility of the released fragments, our solution
complements them with loose associations (i.e., a sanitized form of the sensitive associations broken
by fragmentation), specifically extended to safely operate on multiple fragments.

3.1 Introduction

Information sharing and dissemination are typically selective processes. While on one side, there
is a need - or demand - for making certain information available to others, there is on the other
side an equally strong need to ensure proper protection of sensitive information. It is therefore
important to provide data holders with means to express and enforce possible constraints over their
data, modeling the need for information of the data recipients (visibility constraints) and the need
for protecting confidential information from an improper disclosure (confidentiality constraints).
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Recent proposals considering confidentiality and visibility constraints have put forward the
idea of computing vertical fragments over the original data structure (typically a relation) so that
all the constraints are satisfied [3, 27, 28, 43]. While such proposals have been introduced as a
way of departing from data encryption when relying on external servers for data storage, data
fragmentation results appealing also in data release scenarios. In fact (regardless of whether the
data owner relies on external service providers for data management), data fragments can be
seen as different (vertical) views that a data holder can release to external parties to satisfy their
demand for information, while at the same time guaranteeing that confidential information is not
disclosed. The problem of computing data views taking into consideration both privacy needs
and visibility requirements makes however the data fragmentation problem far from trivial. In
particular, ensuring some meaningful form of minimality of the fragments to be released (to the
aim of avoiding unnecessary fragmentation of attributes), makes the problem NP-hard [43].

To further enrich the utility of the released fragments, a data owner can complement them
with loose associations [43], which permit to partially reconstruct the association between sub-
tuples in fragments, while not precisely disclosing the association among attribute values that are
considered sensitive. Loose associations partition the tuples in fragments in groups and release the
associations between sub-tuples in fragments at the granularity of group (instead of the precise
tuple-level association). Loose associations can then be used for evaluating aggregate queries,
with limited errors in the result, and for data mining. The existing approach operates under
the assumption that a fragmentation includes two fragments only, and produces a single loose
association between this pair of fragments. A fragmentation may however include an arbitrary
number of fragments, and the definition of a loose associations should then consider the presence
of multiple fragments.

The contributions of this chapter are multi-fold. First, we propose a new modeling of the
fragmentation problem that exploits the representation of confidentiality and visibility constraints
as Boolean formulas, and of fragments as truth assignments over Boolean variables corresponding
to attributes in the original relation. In this way, the computation of a fragmentation that satisfies
the given constraints relies on the efficiency with which Boolean formulas are represented and
manipulated. Since the classical methods for operating on Boolean formulas are impractical for
large-scale problems, we adopt reduced Ordered Binary Decision Diagrams (OBDDs), which are
a canonical form for representing and efficiently manipulating Boolean formulas [86]. OBDDs are
used in practical applications more often than other classical representations of Boolean formulas
because they have a canonical form that uniquely characterizes a given function, and because
operations on Boolean formulas can be performed quite efficiently in time and space [74]. The
size of an OBDD does not directly depend on the size of the corresponding formula, and even
though, in the worst case, it could be exponential in the number of variables in the formula,
the majority of Boolean formulas can be represented by compact OBDDs. Our approach then
transforms all the inputs of the fragmentation problem into Boolean formulas, and takes advantage
of their representation through OBDDs to process different constraints simultaneously and to
easily check whether a fragmentation satisfies all the given confidentiality and visibility constraints.
In [29], we presented an early version of our proposal that is here extended by introducing a graph
modeling of the fragmentation problem that permits to reformulate it as the (NP-hard) problem
of computing a maximum weighted clique. Based on this modeling, we then define an exact
and a heuristic algorithm for computing a fragmentation composed of the minimum number of
fragments. We formally analyze the correctness and computational complexity of both our exact
and heuristic algorithms and present a set of experiments for assessing their efficiency (in terms
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of computational time) and the effectiveness of the heuristics (in terms of number of fragments of
the computed fragmentation). The experimental results prove that our heuristics, while providing
faster computational time, well approximates the minimal fragmentations computed by the exact
algorithm. We also propose to adopt loose associations to further enrich the utility of the released
fragments. We first show that the direct adoption of loose associations to generic fragmentations
composed of more than two fragments opens the door to harmful privacy breaches. Moved by this
consideration, we then propose a solution for the definition of loose associations among arbitrary
sets of fragments.

By proposing two efficient techniques for fragmenting a dataset, and a general method to enrich
the utility of the computed fragmentation not limited to any specific number of fragments, we make
a further step toward the realization of concrete privacy-enhancing techniques, easily applicable in
real-world scenarios to balance privacy needs of data owners and visibility needs of data recipients.

3.1.1 Chapter outline

The remainder of this chapter is organized as follows. Section 3.2 introduces confidentiality and vis-
ibility constraints, and describes the fragmentation problem. Section 3.3 presents our modeling of
the problem, defining OBDDs corresponding to constraints, and illustrating how the truth assign-
ments that satisfy the constraints can be composed for computing a solution to the fragmentation
problem. Section 3.4 uses the truth assignments extracted from OBDDs and their relationships to
reformulate the fragmentation problem in terms of the maximum weighted clique problem over a
fragmentation graph. Section 3.5 describes an exact algorithm for computing a minimal fragmenta-
tion, based on the graph modeling of the problem. Section 3.6 illustrates a heuristic approach that
computes a locally minimal fragmentation by iteratively building a clique. Section 3.7 presents
the experimental results comparing the exact and heuristic algorithms. Section 3.8 introduces the
concept of loose association, and illustrates the privacy risks caused by the release of multiple
loose associations over fragmentations composed of more than two fragments. Section 3.9 presents
our extended definition of loose association among an arbitrary set of fragments. Section 3.10
describes the heterogeneity properties ensuring that a loose association satisfies a given privacy
degree. Section 3.11 discusses the advantages and some interesting properties enjoyed by our novel
formulation of loose associations. Finally, Section 3.12 gives our final remarks and concludes the
chapter.

3.2 Preliminary concepts

We consider a scenario where, consistently with other proposals (e.g., [3, 28, 43, 100]), the data
undergoing possible external release are represented with a single relation r over a relation schema
R(a1, . . . , an), and there are no dependencies among the attributes in R . We use standard nota-
tions of relational database theory and, when clear from the context, we use R to denote either
the relation schema R or the set {a1, . . . , an} of attributes in R . We consider two kinds of con-
straints on data: confidentiality constraints , imposing restrictions on the (joint) visibility of values
of attributes in R , and visibility constraints , expressing requirements on data views [28, 43].

Definition 3.1 (Confidentiality constraint). Given a relation schema R(a1, . . . , an), a confiden-
tiality constraint c over R is a subset of {a1, . . . , an}.
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Patients
SSN Name Birth Race ZIP Job InsRate Disease

123-45-6789 Alice 74/01/17 white 24201 nurse 5K diabetes
234-56-7654 Barbara 49/02/21 white 24223 clerk 9K stomach ulcer
345-67-8123 Carol 55/10/01 asian 25273 manager 7K hearth attack
456-78-9876 Donna 68/12/29 white 26134 lawyer 8K gastritis
567-89-0534 Emma 81/10/02 black 24343 chef 6K asthma

C
c1 = {SSN}
c2 = {Name, InsRate}
c3 = {Name, Disease}
c4 = {Birth, Race, ZIP}
c5 = {Job, Disease}

V
v1 = Name∨(Birth∧ZIP)
v2 = Job∧InsRate
v3 = Disease∧(Birth∨Race)

(a) (b) (c)

Figure 3.1 Example of relation (a) and of confidentiality (b) and visibility constraints (c) over it

Confidentiality constraints state that the values of an attribute (singleton constraint) or the
associations among the values of a given set of attributes (association constraint) are sensitive and
should not be visible. More precisely, a singleton constraint {a} states that the values of attribute
a should not be visible. An association constraint {ai1 , . . . , aim} states that the values of attributes
ai1 , . . . , aim should not be visible in association. For instance, Figure 3.1(b) illustrates one singleton
(c1) and four association (c2, . . . , c5) constraints for relation Patients in Figure 3.1(a). The
satisfaction of a confidentiality constraint ci clearly implies the satisfaction of any confidentiality
constraint cj such that ci⊆cj , making cj redundant. A set C of confidentiality constraints is well
defined if ∀ci,cj∈C, i �= j, ci �⊆cj , that is, C does not contain redundant constraints. Note that, while
previous approaches assume that a pre-processing phase removes redundant constraints from C, the
solution proposed in this chapter implicitly transforms C into a well defined set of confidentiality
constraints (see Section 3.3).

Visibility constraints are defined as follows.

Definition 3.2 (Visibility constraint). Given a relation schema R(a1, . . . , an), a visibility con-
straint v over R is a monotonic Boolean formula over attributes in R.

Intuitively, a visibility constraint imposes the release of an attribute or the joint release of a
set of attributes. Visibility constraint v=a states that the values of attribute a must be visible.
Visibility constraint v=vi∧vj states that vi and vj must be jointly visible (e.g., constraint v2 in
Figure 3.1(c) requires the joint release of attributes Job and InsRate since the associations between
their values must be visible). Visibility constraint v=vi∨vj states that at least one between vi and
vj must be visible (e.g., constraint v1 in Figure 3.1(c) requires that the values of attribute Name or
the association between the values of attributes Birth and ZIP be released). Note that negations
are not used in the definition of visibility constraints since they model requirements of non-visibility,
which are already captured by confidentiality constraints.

Confidentiality and visibility constraints can be enforced by partitioning (fragmenting) at-
tributes in R in different sets (fragments). A fragmentation of relation R is a set of fragments, as
formally captured by the following definition.

Definition 3.3 (Fragmentation). Given a relation schema R(a1, . . . , an), a fragmentation F of R
is a set {F 1, . . . ,F l} of fragments, where each fragment F i, i = 1, . . . , l, is a subset of {a1, . . . , an}.

Consistently with the proposal in [43], a fragmentation is not required to be complete, that is,
it does not need to include all the attributes of the original relation. If the data holder is interested
in releasing all the (non sensitive) attributes in R [3, 27], it is sufficient to include an additional
visibility constraint v=a for each attribute a∈R such that there does not exist a constraint c∈C
with c={a}. Given a relation R , a set C of confidentiality constraints, and a set V of visibility
constraints, a fragmentation F of R is correct if it satisfies: i) all the confidentiality constraints in
C, and ii) all the visibility constraints in V. Formally, a correct fragmentation is defined as follows.
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F1

Birth ZIP Disease

74/01/17 24201 diabetes
49/02/21 24223 stomach ulcer
55/10/01 25273 hearth attack
68/12/29 26134 gastritis
81/10/02 24343 asthma

F2

Job InsRate

nurse 5K
clerk 9K
manager 7K
lawyer 8K
chef 6K

Figure 3.2 Example of fragmentation of relation Patients in Figure 3.1(a) satisfying the constraints in
Figures 3.1(b) and 3.1(c)

Definition 3.4 (Correct fragmentation). Given a relation schema R(a1, . . . , an), a set C of con-
fidentiality constraints over R, and a set V of visibility constraints over R, a fragmentation F of
R is correct with respect to C and V iff:

1. ∀c∈C, ∀F∈F : c �⊆F (confidentiality);

2. ∀v∈V, ∃F∈F : F satisfies v (visibility);

3. ∀F i,F j∈F , i �= j: F i∩F j=∅ (unlinkability).

Condition 1 ensures that neither sensitive attributes nor sensitive associations are visible in a
fragment. Condition 2 ensures that all the visibility constraints are satisfied. Condition 3 ensures
that fragments do not have common attributes and therefore that association constraints cannot
be violated by joining fragments. We note that singleton constraints can be satisfied only by not
releasing the involved sensitive attributes. Association constraints can be satisfied either by not
releasing at least one of the attributes in each constraint, or by distributing the attributes among
different (unlinkable) fragments. Visibility constraints are satisfied by ensuring that each constraint
is satisfied by at least one fragment. Figure 3.2 illustrates an example of correct fragmentation of
relation Patients in Figure 3.1(a) with respect to the confidentiality and visibility constraints in
Figure 3.1(b) and in Figure 3.1(c), respectively.

Given a set of confidentiality and visibility constraints, we are interested in a fragmentation
that does not split attributes among fragments when it is not necessary for satisfying confidentiality
constraints. The rationale is that maintaining a set of attributes in the same fragment releases,
besides their values, also their associations. The utility of released data for final recipients is higher
when releasing a fragmentation composed of fewer fragments, since they also have visibility of the
associations among the attributes. Our goal is then to compute a minimal fragmentation, that is,
a fragmentation with the minimum number of fragments. Formally, the problem of computing a
minimal fragmentation is defined as follows.

Problem 3.1 (Minimal fragmentation). Given a relation schema R(a1, . . . , an), a set C of confi-
dentiality constraints over R, and a set V of visibility constraints over R, determine (if it exists)
a fragmentation F={F 1, . . . ,F l} of R such that:

1. F is a correct fragmentation of R with respect to C and V (Definition 3.4);

2. �F ′ such that: i) F ′ is a correct fragmentation of R with respect to C and V, and ii) F ′ is
composed of fewer fragments than F .

The problem of computing a minimal fragmentation is NP-hard, since the minimum hypergraph
coloring problem reduces to it in polynomial time [43]. We therefore adopt a definition of locally
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minimal fragmentation, which can be computed with an efficient heuristic. Such a definition is
based on the following dominance relationship between the fragmentations of relation R .

Definition 3.5 (Dominance relationship). Given a relation schema R(a1, . . . , an) and two frag-
mentations F i and F j of R with

⋃
F∈Fi

F=
⋃

F∈Fj
F , F i dominates F j, denoted F i�F j, iff

F i �=F j, and ∀F j∈F j, ∃F i∈F i such that F j⊆F i, and ∀F i∈F i, ∃{F jh ,. . . ,F jl}∈F j such that
F jh∪. . .∪F jl=F i.

Definition 3.5 states that given two fragmentations F i and F j defined on the same set of
attributes, F i dominates F j if F i can be obtained by merging two (or more) fragments in F j .
We note that fragmentations defined on different subsets of attributes in relation R cannot be
compared with respect to the dominance relationship. As an example, consider relation Patients
in Figure 3.1(a), and fragmentation F1 = {{Birth,ZIP,Disease}, {Job,InsRate}} in Figure 3.2.
F1 dominates fragmentation F2 = {{Birth,ZIP}, {Disease}, {Job,InsRate}} since F1 can be
obtained by merging fragments {Birth,ZIP} and {Disease} in F2.

A locally minimal fragmentation is defined as a correct fragmentation whose fragments cannot
be merged without violating any confidentiality constraint (i.e., a locally minimal fragmentation
cannot be dominated by a correct fragmentation). Note that all the visibility constraints satisfied
by a fragmentation F are also satisfied by any fragmentation F ′ dominating it. The problem of
computing a locally minimal fragmentation is formally defined as follows.

Problem 3.2 (Locally minimal fragmentation). Given a relation schema R(a1, . . . , an), a set C
of confidentiality constraints over R, and a set V of visibility constraints over R, determine (if it
exists) a fragmentation F={F1, . . . ,F l} of R such that:

1. F is a correct fragmentation of R with respect to C and V (Definition 3.4);

2. �F ′ such that: i) F ′ is a correct fragmentation of R with respect to C and V, and ii) F ′�F .

For instance, the fragmentation in Figure 3.2 is locally minimal since merging F 1 with F 2

would violate confidentiality constraint c5.

It is important to note that a locally minimal fragmentation may not be a minimal frag-
mentation, while a minimal fragmentation is also a locally minimal fragmentation. For in-
stance, consider relation Patients in Figure 3.1(a) and the confidentiality and visibility con-
straints over it in Figure 3.1(b) and in Figure 3.1(c), respectively. Fragmentation F = {{Name},
{Race,Disease},{Job,InsRate}} represents a locally minimal, but not a minimal, fragmentation
for relation Patients. Fragmentation F ′ = {{Birth,ZIP,Disease}, {Job,InsRate}} in Figure 3.2
is both locally minimal and minimal since there does not exist a correct fragmentation of relation
Patients composed of one fragment only.

3.3 OBDD-based modeling of the fragmentation problem

We model the fragmentation problem as the problem of managing a set of Boolean formulas that are
conveniently represented through reduced and Ordered Binary Decision Diagrams (OBDDs) [20].
OBDDs allow us to efficiently manipulate confidentiality and visibility constraints, and to easily
compute a minimal (Section 3.5) or locally minimal (Section 3.6) fragmentation.
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B C V
SSN c1 = SSN v1 = Name∨(Birth∧ZIP)
Name c2 = Name∧InsRate v2 = Job∧InsRate
Birth c3 = Name∧Disease v3 = Disease∧(Birth∨Race)
Race c4 = Birth∧Race∧ZIP
ZIP c5 = Job∧Disease
Job
InsRate
Disease

Figure 3.3 Boolean interpretation of the relation schema and of the confidentiality and visibility con-
straints in Figure 3.1

c1=SSN c2=Name∧InsRate c3= Name∧Disease c4=Birth∧Race∧ZIP c5=Job∧Disease

Figure 3.4 OBDDs representing the confidentiality constraints in Figure 3.3

3.3.1 OBDD representation of constraints

In our modeling, attributes in R are interpreted as Boolean variables. Visibility constraints have
already been defined as Boolean formulas (Definition 3.2). Each confidentiality constraint in C can
be represented as the conjunction of the variables corresponding to the attributes in the constraint.
For instance, Figure 3.3 represents the Boolean interpretation of the relation schema (i.e., the set
B of Boolean variables), and of the constraints over it in Figure 3.1.

We use OBDDs as an effective and efficient approach for representing and manipulating Boolean
formulas. An OBDD represents a Boolean formula as a rooted directed acyclic graph with two leaf
nodes labeled 1 (true) and 0 (false), respectively, corresponding to the truth values of the formula.
Each internal node in the graph represents a Boolean variable in the formula and has two outgoing
edges, labeled 1 and 0, representing the assignment of values 1 and 0, respectively, to the variable.
The variables occur in the same order on all the paths of the graph. Also, to guarantee a compact
representation of the Boolean formula, the subgraphs rooted at the two direct descendants of each
internal node in the graph are disjoint, and pairs of subgraphs rooted at two different nodes are not
isomorphic. Figure 3.4 and Figure 3.5 illustrate the OBDDs of the Boolean formulas in Figure 3.3
that model the confidentiality and visibility constraints in Figure 3.1(b) and in Figure 3.1(c),
respectively. For simplicity, in these figures and in the following, attributes are denoted with their
initials, edges labeled 1 are represented by solid lines, and edges labeled 0 are represented by dashed
lines. A truth assignment to the Boolean variables in a formula corresponds to a path from the
root to one of the two leaf nodes of the OBDD of the formula. The outgoing edge of a node in the
path is the value assigned to the variable represented by the node. For instance, in the OBDD of v1
in Figure 3.5, the path traversing nodes N, B, Z, and 1 represents truth assignment [N=0, B=1, Z=1]
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v1=Name∨(Birth∧ZIP) v2=Job∧InsRate v3=Disease∧(Birth∨Race)

Figure 3.5 OBDDs representing the visibility constraints in Figure 3.3

since the edge in the path outgoing from node N is labeled 0, and the edges in the path outgoing
from nodes B and Z are labeled 1. We call one-paths (zero-paths , respectively) all the paths of an
OBDD that reach leaf node 1 (0, respectively), which correspond to the assignments that satisfy
(do not satisfy, respectively) the formula. For instance, path N, B, Z, and 1 is a one-path of the
OBDD of v1 in Figure 3.5. Variables in the formula that do not occur in a path from the root to
a leaf node are called don’t care variables, since their values do not influence the truth value of
the formula. For instance, with respect to one-path N and 1 of the OBDD of v1 in Figure 3.5, B
and Z are don’t care variables. In the remainder of the chapter, we use ‘-’ as value for the don’t
care variables. If there is at least a don’t care variable in a truth assignment, this assignment is
partial (in contrast to complete), since not all the variables in the formula have a value associated
with them. We note that a partial truth assignment with k don’t care variables is a compact
representation of a set of 2k complete truth assignments obtained by assigning to the don’t care
variables value 1 or 0. A complete truth assignment is implicitly represented by a partial truth
assignment if, for each Boolean variable a in the formula, either a is a don’t care variable for the
partial truth assignment or the two truth assignments set a to the same value. For instance, the
OBDD of v1 in Figure 3.5 has two one-paths, corresponding to truth assignments [N=1, B=-, Z=-]
and [N=0, B=1, Z=1]. Partial truth assignment [N=1, B=-, Z=-] is a compact representation for
[N=1, B=0, Z=0], [N=1, B=0, Z=1], [N=1, B=1, Z=0], and [N=1, B=1, Z=1].

3.3.2 Truth assignments

In the Boolean modeling of the fragmentation problem, a fragment F∈F can be interpreted as a
complete truth assignment, denoted IF , over the set B of Boolean variables. Function IF assigns
value 1 to each variable corresponding to an attribute in F , and value 0 to all the other variables in
B. A fragmentation is then represented by a set of complete truth assignments, which is formally
defined as follows.

Definition 3.6 (Set of truth assignments). Given a set B of Boolean variables, a set I of truth
assignments is a set {I1 , . . . , Il} of functions such that Ii :B→{0,1}, i = 1, . . . , l.

With a slight abuse of notation, we use I to denote also the list of truth values assigned by I
to variables in B. For instance, fragmentation F in Figure 3.2 corresponds to the set I={IF1 ,IF2 }
of truth assignments, with IF1

= [S=0, N=0, B=1, R=0, Z=1, J=0, I=0, D=1] and IF2
= [S=0,

N=0, B=0, R=0, Z=0, J=1, I=1, D=0] . Given a Boolean formula f , defined over Boolean variables
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B, and a truth assignment I, I(f) denotes the result of the evaluation of f with respect to truth
assignment I. A set I of truth assignments corresponds to a correct fragmentation (Definition 3.4)
if it satisfies all the confidentiality and visibility constraints and each Boolean variable is set to 1
by at most one truth assignment in I, as formally defined in the following.

Definition 3.7 (Correct set of truth assignments). Given a set B of Boolean variables, a set C
of confidentiality constraints over B, and a set V of visibility constraints over B, a set I of truth
assignments is correct with respect to C and V iff:

1. ∀c ∈ C, ∀I ∈ I: I(c ) = 0 (confidentiality);

2. ∀v∈V, ∃I ∈ I: I(v) = 1 (visibility);

3. ∀Ii ,Ij∈ I, i �= j, ∀a ∈ B with Ii(a ) = 1: Ij (a ) = 0 (unlinkability).

Condition 1 ensures that the evaluation of any confidentiality constraint with respect to any
truth assignment is false (i.e., all fragments satisfy confidentiality constraints). Condition 2 ensures
that, for each visibility constraint, there is at least one truth assignment that makes the visibility
constraint true (i.e., every visibility constraint is satisfied by at least one fragment). Condition 3
ensures that there is at most one truth assignment that sets a variable to true (i.e., fragments do
not have common attributes). It is immediate to see that a set of truth assignments is correct with
respect to C and V iff the corresponding fragmentation is correct with respect to C and V (i.e.,
Definition 3.7 is equivalent to Definition 3.4). OBDDs representing confidentiality and visibility
constraints can be used to efficiently verify if a set I of truth assignments satisfies Condition 1
and Condition 2 in Definition 3.2: i) each assignment I∈I must correspond to a zero-path in all
the OBDDs of the confidentiality constraints; and ii) for each visibility constraint, at least one
assignment I∈I must correspond to a one-path in the OBDD of the constraint. We also note that
Condition 3 in Definition 3.2 can be efficiently verified by simply comparing the truth value assigned
to each variable by the truth assignments in I. For instance, consider the OBDDs of confidentiality
and visibility constraints in Figures 3.4 and 3.5, respectively, and the set I = {IF1

, IF2
}, with IF1

= [S=0, N=0, B=1, R=0, Z=1, J=0, I=0, D=1] and IF2
= [S=0, N=0, B=0, R=0, Z=0, J=1, I=1,

D=0], representing the fragmentation in Figure 3.2. I is correct, since: 1) IF1 and IF2 correspond
to zero-paths of the OBDDs of the confidentiality constraints (confidentiality); 2) IF1

corresponds
to a one-path of the OBDDs of v1 and v3, and IF2

corresponds to a one-path of the OBDD of v2
(visibility); and 3) each variable in B is set to 1 by at most one assignment between IF1

and IF2

(unlinkability).
Problem 3.1 (minimal fragmentation) can be reformulated as the problem of computing a

correct set of truth assignments composed of the minimum number of truth assignments, which is
formally defined as follows.

Problem 3.3 (Minimal set of truth assignments). Given a set B of Boolean variables, a set C
of confidentiality constraints over B, and a set V of visibility constraints over B, determine (if it
exists) a set I of truth assignments such that:

1. I is a correct set of truth assignments (Definition 3.7);

2. �I ′ such that: i) I ′ is a correct set of truth assignments, and ii) I ′ is composed of fewer truth
assignments than I.
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Analogously, the problem of computing a locally minimal fragmentation (Problem 3.2) can be
reformulated as the problem of computing a correct set I of truth assignments such that no pair
of truth assignments Ii and Ij in I can be combined producing a new assignment Iij such that
∀a ∈ B, Iij (a ) = Ii(a) ∨ Ij (a), and all the confidentiality constraints are satisfied. This condition
can be formally formulated by first translating the dominance relationship between fragmentations
into an equivalent dominance relationship between sets of truth assignments as follow.

Definition 3.8 (Dominance relationship). Given a set B of Boolean variables and two sets of
truth assignments Ii and Ij over B, Ii dominates Ij , denoted Ii�Ij , iff Ii �=Ij and ∀Ij∈Ij ,
∃Ii∈Ii such that ∀a ∈B, with Ij (a ) = 1, Ii (a ) = 1 and ∀Ii∈Ii , ∃{Ijh ,. . . ,Ijl }∈Ij such that
∀a ∈B, Ii(a ) = Ijh (a ) ∨ . . . ∨ Ijl (a ).

The problem of computing a locally minimal fragmentation (Problem 3.2) can now be formally
defined as the problem of computing a locally minimal set of truth assignments.

Problem 3.4 (Locally minimal set of truth assignments). Given a set B of Boolean variables, a
set C of confidentiality constraints over B, and a set V of visibility constraints over B, determine
(if it exists) a set I of truth assignments such that:

1. I is a correct set of truth assignments (Definition 3.7);

2. �I ′ such that: i) I ′ is a correct set of truth assignments, and ii) I ′�I.

Our approach to solve the minimal and locally minimal set of truth assignments problems
uses properties of the OBDDs to efficiently check if a set of truth assignments is correct. In
principle, a set of truth assignments should be checked for correctness against each confidentiality
constraint and each visibility constraint. We can cut down on such controls by noting that if a
truth assignment I does not make true any confidentiality constraint, Boolean formula c1∨. . .∨cm
evaluates to false with respect to I. Also, if truth assignment I makes true at least one of the
confidentiality constraints in C, Boolean formula c1∨. . .∨cm evaluates to true with respect to I.
In other words, we can check all the confidentiality constraints together in a single step. Formally,
this observation is expressed as follows.

Observation 1. Given a set B = {a1, . . . , an} of Boolean variables, a set C = {c1, . . . , cm} of
confidentiality constraints over B, and a truth assignment I:

∀ci ∈ C, I(ci) = 0 ⇐⇒ I(c1 ∨ . . . ∨ cm) = 0.

To verify whether a truth assignment I satisfies the given confidentiality constraints, we can
then simply check if I corresponds to a zero-path of the OBDD representing the disjunction of
confidentiality constraints. For instance, consider the confidentiality constraints in Figure 3.3, the
OBDD representing their disjunction in Figure 3.6, and truth assignment IF1

= [S=0, N=0, B=1,
R=0, Z=1, J=0, I=0, D=1], representing fragment F 1 in Figure 3.2. IF1

corresponds to a zero-path
of the OBDD in Figure 3.6, implying that IF1

does not violate any confidentiality constraint.
For each visibility constraint v, a correct set of truth assignments must include at least a

truth assignment I satisfying v, while not violating confidentiality constraints (i.e., I(v)=1 and
I(c1∨. . .∨cm)=0). This is equivalent to say that Boolean formula v∧¬(c1∨. . .∨cm) with respect
to truth assignment I evaluates to true, as formally observed in the following.
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Figure 3.6 OBDD representing the disjunction of the confidentiality constraints in Figure 3.3

Observation 2. Given a set B = {a1, . . . , an} of Boolean variables, a set C = {c1, . . . , cm} of
confidentiality constraints over B, a visibility constraint v over B, and a truth assignment I:

I(v) = 1 and I(c1 ∨ . . . ∨ cm) = 0 ⇐⇒ I(v ∧ ¬(c1 ∨ . . . ∨ cm)) = 1.

In other words, the set of one-paths of the OBDD of Boolean formula vi∧¬(c1∨. . .∨cm) repre-
sents in a compact way all and only the truth assignments that satisfy vi and that do not violate
any confidentiality constraint. In the following, we will use O i to denote the OBDD of Boolean
formula vi∧¬(c1∨. . .∨cm), and Pvi to denote the set of one-paths in O i, which can represent both
complete and partial truth assignments. For instance, consider the confidentiality and visibility
constraints in Figures 3.4 and 3.5, respectively. Figure 3.7 illustrates the OBDDs of formulas
vi∧¬(c1∨. . .∨c5), i = 1, . . . , 3, along with their one-paths. Note that all the variables in B not
appearing in formula vi∧¬(c1∨. . .∨cm) are considered as don’t care variables for the one-paths in
O i, i = 1, . . . , k.

To satisfy Condition 1 (confidentiality) and Condition 2 (visibility) in Definition 3.7, a set of
truth assignments must include, for each v∈V, at least a complete truth assignment implicitly
represented by a (partial) truth assignment corresponding to a one-path in Pv . However, not
all the sets of truth assignments that include at least one complete truth assignment implicitly
represented by a (partial) truth assignment in Pv , for each v ∈ V, are correct, since they may
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v1∧¬(c1∨c2∨c3∨c4∨c5) v2∧¬(c1∨c2∨c3∨c4∨c5) v3∧¬(c1∨c2∨c3∨c4∨c5)

S N B R Z J I D

0 1 0 - - - 0 0
0 0 1 0 1 0 - -
0 1 1 0 - - 0 0
0 0 1 0 1 1 - 0
0 1 1 1 0 - 0 0

S N B R Z J I D

0 0 0 - - 1 1 0
0 0 1 0 - 1 1 0
0 0 1 1 0 1 1 0

S N B R Z J I D

0 0 0 1 - 0 - 1
0 0 1 0 - 0 - 1
0 0 1 1 0 0 - 1

Figure 3.7 OBDDs representing the composition of each visibility constraint in Figure 3.5 with the
negated disjunction of the confidentiality constraints in Figure 3.4, and their one-paths

violate Condition 3 in Definition 3.7 (unlinkability). In the following, we discuss how to combine
truth assignments in Pv1 , . . . ,Pvk to compute a correct set of truth assignments.

3.3.3 Comparison of assignments

Goal of our approach is to compute a correct set of truth assignments that solves either the minimal
or the locally minimal fragmentation problem. To this purpose, we first introduce the concepts of
linkable and mergeable truth assignments.

Definition 3.9 (Linkable truth assignments). Given two assignments Ii and Ij over Boolean
variables B, we say that Ii and Ij are linkable, denoted Ii↔Ij , iff ∃a ∈ B : Ii(a ) = Ij (a ) = 1.

According to Definition 3.9, two assignments are linkable iff there is a Boolean variable in B
such that the truth value of the variable is set to 1 by the two given assignments, that is, the
fragments corresponding to them have an attribute in common. For instance, assignments [S=0,
N=0, B=1, R=0, Z=1, J=0, I=-, D=-] and [S=0, N=0, B=1, R=0, Z=-, J=0, I=-, D=1] are linkable
since they both assign 1 to variable Birth. In the following, we will use the term disjoint , and
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� 0 1 -
0 0 n.a. 0
1 n.a. 1 1
- 0 1 -

Figure 3.8 Assignment merging operator

notation Ii �↔Ij , to refer to two truth assignments Ii and Ij that are not linkable. For instance,
assignments [S=0, N=0, B=0, R=-, Z=-, J=1, I=1, D=0] and [S=0, N=1, B=0, R=-, Z=-, J=-, I=0,
D=0] are disjoint. Note that variables with value 0 and - do not have any impact on the linkability
of two truth assignments.

Definition 3.10 (Mergeable truth assignments). Given two assignments Ii and Ij over Boolean
variables B, we say that Ii and Ij are mergeable, denoted Ii�Ij , iff �a s.t. Ii(a) = 1 and Ij (a) = 0,
or viceversa.

According to Definition 3.10, two truth assignments are mergeable iff the truth value of each
variable a in B in the two assignments is not in contrast, where being in contrast for variable a
means that a is assigned 1 by one assignment and is assigned 0 by the other one. For instance,
the two assignments [S=0, N=0, B=1, R=0, Z=1, J=0, I=-, D=-] and [S=0, N=0, B=1, R=0, Z=-,
J=0, I=-, D=1] are mergeable. While these two assignments are also linkable, linkability and
mergeability are two independent properties and none of them implies the other. For instance,
assignments [S=0, N=0, B=1, R=0, Z=1, J=0, I=-, D=-] and [S=0, N=0, B=1, R=0, Z=-, J=1, I=1,
D=0] are linkable (Birth is set to 1 by both assignments) but not mergeable (there is a conflict on
variable Job), while [S=0, N=0, B=1, R=0, Z=1, J=-, I=-, D=-] and [S=0, N=0, B=-, R=0, Z=-,
J=1, I=1, D=0] are mergeable but not linkable.

It is interesting to note that the sets of complete truth assignments implicitly represented by
mergeable partial truth assignments are overlapping (i.e., they have assignments in common), and
that a complete truth assignment cannot be represented by two different partial truth assignments
with variables in contrast. This is equivalent to say that two partial truth assignments are merge-
able only if they represent at least a common complete truth assignment, as formally observed in
the following.

Observation 3. Given a set B = {a1, . . . , an} of Boolean variables and two truth assignments Ii
and Ij over B:

Ii�Ij ⇐⇒ ∃Ik s.t. ∀a ∈ B, Ik (a )=Ii (a ) or Ii(a )=-, and Ik (a )=Ij (a ) or Ij (a )=-.

For instance, consider mergeable truth assignments [S=0, N=0, B=1, R=0, Z=1, J=0, I=-, D=-]
and [S=0, N=0, B=1, R=0, Z=-, J=0, I=-, D=1]. They both implicitly represent the following two
complete truth assignments: [S=0, N=0, B=1, R=0, Z=1, J=0, I=0, D=1] and [S=0, N=0, B=1,
R=0, Z=1, J=0, I=1, D=1].

Mergeable (partial) assignments can be composed (merged) according to operator � in Fig-
ure 3.8. Merging truth assignments Ii and Ij results in a new truth assignment Iij , where the truth
value of a variable coincides with its truth value in the assignment in which it does not appear as
a don’t care variable. If a variable appears as a don’t care variable in both Ii and Ij , then its value
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in the new assignment remains don’t care. The result of the composition of Ii with Ij represents
in a compact form all the complete truth assignments implicitly represented by both Ii and Ij .
Note that if Ii and Ij are two (partial) truth assignments in the set Pvi and Pvj , respectively,
then Iij=Ii�Ij represents a set of complete truth assignments that satisfies all the confidentiality
constraints and both vi and vj . For instance, with reference to the example in Figure 3.7, [S=0,
N=0, B=1, R=0, Z=1, J=0, I=-, D=-] is a one-path in Pv1 and [S=0, N=0, B=1, R=0, Z=-, J=0,
I=-, D=1] is a one-path in Pv3 . These two assignments are mergeable and the result of their merg-
ing computed through operator � is [S=0, N=0, B=1, R=0, Z=1, J=0, I=-, D=1], which implicitly
represents two complete truth assignments (differing for the value of I) that satisfy both v1 and
v3 and that do not violate any confidentiality constraint. Also, we note that no pair of one-paths
in Pv is mergeable since they are two distinct one-paths of the same OBDD, and therefore differ
by at least one edge, meaning that they are in conflict on at least one variable.

3.4 Graph modeling of the minimal fragmentation problem

To compute a correct set I of truth assignments (i.e., ∀vi ∈ V, I includes at least one complete truth
assignment implicitly represented by a one-path in Pvi , and each pair of truth assignments in I is
disjoint), we propose to model the one-paths of Pvi , for each vi∈V, and their relationships described
in Section 3.3.3 through a fragmentation graph. We then translate the problem of computing a
minimal set of truth assignments into the equivalent problem of computing a maximum weighted
clique of the fragmentation graph.

A fragmentation graph is an undirected graph that implicitly represents all the truth assign-
ments that may belong to a correct set of truth assignments as they satisfy all the confidentiality
constraints and an arbitrary subset of visibility constraints. Edges in a fragmentation graph con-
nect truth assignments that could appear together in a correct set of truth assignments. The
fragmentation graph has therefore a node for each partial truth assignment in the set P� ob-
tained from the closure of P under operator �, where P = Pv1∪. . .∪Pvk is the set of one-paths
extracted from the OBDDs representing vi∧¬(c1∨. . .∨cm), i = 1, . . . , k (see Section 3.3). Note
that each truth assignment in Pvi is explicitly associated with visibility constraint vi. The ratio-
nale is that the truth assignments in Pvi satisfy at least vi, while not violating the confidentiality
constraints. Set P� includes both the truth assignments in P and the truth assignments resulting
from the merging of any subset of mergeable one-paths in P. The merging of two (partial) truth
assignments Ii and Ij generates a (partial) truth assignment Iij that is associated with a set of
visibility constraints computed as the set-theoretic union of those associated with Ii and Ij . We
have therefore the guarantee that P� contains all the (partial) truth assignments that represent
fragments satisfying all the confidentiality constraints and a subset of the visibility constraints.
Each node in the fragmentation graph is modeled as a pair 〈I,V 〉, where I is a truth assignment
in P� and V is the set of the visibility constraints associated with I. Note that a complete truth
assignment that satisfies a set {vi,. . . ,vj}⊆V of visibility constraints is represented by 2n−1 nodes
in the fragmentation graph, with n = |{vi, . . . , vj}|, one for each subset of {vi,. . . ,vj}. Clearly,
the set of nodes in the graph implicitly representing I may also represent other (different) truth
assignments. The edges of the fragmentation graph connect nodes that represent disjoint truth
assignments associated with non-overlapping sets of visibility constraints. Note that we add these
edges because if there exist two nodes ni and nj representing two disjoint partial truth assignments
with overlapping sets of visibility constraints, by construction, P� must include also a node nk
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Figure 3.9 Fragmentation graph representing the one-paths extracted from the OBDDs in Figure 3.7
and their closure under operator �

that represents a partial truth assignment that is mergeable with the truth assignment represented
by ni (nj , respectively) and is associated with a set of visibility constraints non-overlapping with
the set of visibility constraints associated with nj (ni, respectively). The fragmentation graph
therefore has an edge connecting node nk with node nj , thus making the edge between nodes ni

and nj redundant. A fragmentation graph is formally defined as follows.

Definition 3.11 (Fragmentation graph). Given a set B = {a1, . . . , an} of Boolean variables, a
set C = {c1, . . . ,cm} of confidentiality constraints over B, a set V = {v1, . . . , vk} of visibility
constraints over B, and a set P=Pv1∪. . .∪Pvk of one-paths in O1, . . . ,Ok, a fragmentation graph
is an undirected graph GF (NF , EF ) where:

• NF = {〈I,V 〉: I∈P� ∧ V⊆V ∧ ∀v∈V , I(v)=1}, with P� the closure of P under �;

• EF = {(ni,nj): ni,nj∈NF ∧ ni.I �↔nj .I ∧ ni.V ∩nj.V =∅}, with ni.I the truth assignment
represented by node ni, and ni.V the set of visibility constraints associated with ni.I.

Note that nodes with sets of visibility constraints that have at least one visibility constraint
in common are not connected by an edge in GF since, in a correct set of truth assignments, it
is sufficient that each visibility constraint is satisfied by one assignment. In fact, the release of
multiple assignments satisfying the same visibility constraint may imply the release of unnecessary
fragments, that is, of a fragmentation which is not minimal. Figure 3.9 illustrates the fragmentation
graph resulting from the �-closure on Pv1 , Pv2 , Pv3 in Figure 3.7. In this figure and in the
following, for readability purposes, we denote truth assignments by reporting attribute initials
with a different notation, depending on the truth value assigned to the corresponding variable.
More precisely, variables set to 1 are represented in uppercase and boldface (e.g., A), variables set
to 0 are represented in lowercase (e.g., a), and variables set to - are represented in uppercase (e.g.,
A).

We note that a clique in GF that includes, for each v∈V, at least a node n such that v∈n.V
(i.e., n.I is associated with v and satisfies it), represents a correct set I of truth assignments
(Definition 3.7). In fact, by definition of fragmentation graph, the nodes in the clique represent
a set of disjoint (and possibly partial) truth assignments (Condition 3) such that each of them
satisfies all the confidentiality constraints (Condition 1). Also, each visibility constraint v∈V is
satisfied by at least one of the truth assignments in the clique, the one represented by node n
with v∈n.V (Condition 2). Analogously, each correct set I of truth assignments is implicitly
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represented by a clique in GF , and the same clique may represent more than one correct set of
truth assignments. A correct set I of truth assignments is composed of complete truth assignments
only, while the nodes in the fragmentation graph may represent partial truth assignments. Given a
clique in the fragmentation graph, don’t care variables in the truth assignments represented by the
nodes in the clique must be set to either 0 or 1 to obtain one of the correct sets of truth assignments
represented by the clique, with the restriction that no variable can assume value 1 in more than
one fragment. Hence, we conveniently set all the don’t care variables to 0. For instance, nodes
〈snBrZjID,{v1,v3}〉 and 〈snbRZJId,{v2}〉 form a clique for the fragmentation graph in Figure 3.9
such that the corresponding assignments satisfy all the confidentiality and visibility constraints in
Figure 3.3. This clique corresponds to the set of truth assignments I = {[S=0, N=0, B=1, R=0,
Z=1, J=0, I=0, D=1], [S=0, N=0, B=0, R=0, Z=0, J=1, I=1, D=0]}. We note that the clique also
implicitly represents I = {[S=0, N=0, B=1, R=0, Z=1, J=0, I=0, D=1], [S=0, N=0, B=0, R=1,
Z=0, J=1, I=1, D=0]}.

The problem of computing a correct set I of truth assignments can now be reformulated as the
problem of computing a clique C of the fragmentation graph GF such that

⋃
n∈C n.V=V. We are

interested in computing a minimal set of truth assignments (Problem 3.3), which corresponds to a
clique of the fragmentation graph that satisfies all the confidentiality and visibility constraints while
minimizing the number of nodes composing it. The problem of computing a minimal set of truth
assignments (Problem 3.3), or equivalently the problem of computing a minimal fragmentation
(Problem 3.1), is then translated into the problem of computing a maximum weighted clique for
the fragmentation graph, where a weight function w assigns a weight to the nodes of the graph so
to model our minimization requirement. The maximum weighted clique problem has been widely
studied in the literature and is formulated as follows [92, 93].

Problem 3.5 (Maximum weighted clique). Given a weighted undirected graph G(N,E,w), with
w : N → R+, determine a subset C⊆N of nodes in N such that:

1. ∀ni,nj∈C, (ni,nj)∈E (C is a clique);

2. �C′ ⊆ N such that: i) C′ is a clique, and ii)
∑

n∈C′ w(n)>
∑

n∈C w(n) (C has maximum
weight).

To reformulate the minimal set of truth assignments problem into the maximum weighted clique
problem, we define the weight function w in a way that satisfies the following three properties,
which guarantee the equivalence between a maximum weighted clique in GF (if it exists) and a
minimal set of truth assignments.

1. Monotonicity of w with respect to the number of visibility constraints: given two cliques, the
one associated with a higher number of visibility constraints has higher weight.

2. Anti-monotonicity of w with respect to the number of nodes : given two cliques associated
with the same number of visibility constraints, the one composed of fewer nodes has higher
weight.

3. Equivalence of solutions : cliques associated with the same number of visibility constraints
and composed of the same number of nodes have the same weight.

A weight function that satisfies all the properties above is w : NF → N+ with w(n)=(|V| ·
|n.V |) − 1, where |V| is the number of visibility constraints, n is a node in NF , and |n.V | is the
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number of visibility constraints associated with n. The weight of a setN ′
F ⊆ NF of nodes is the sum

of the weights of the nodes composing it, that is, w(N ′
F )=

∑
n∈N ′

F
w(n). We first prove that our

weight function satisfies the properties above, and then we show that such properties guarantee the
equivalence between the minimum set of truth assignments problem and the maximum weighted
clique problem.

Property 3.1 (Weight function). Given a fragmentation graph GF (NF , EF ), a weight function
w : NF → N+ with w(n)=(|V| · |n.V |) − 1, and two cliques of GF , Ci = {ni1 , . . . , nix} and
Cj = {nj1 , . . . , njy}, the following conditions hold:

1.
∑x

k=1 |nik .V | >
∑y

k=1 |njk .V | =⇒ w(Ci)>w(Cj) (monotonicity of w with respect to the num-
ber of visibility constraints);

2.
∑x

k=1 |nik .V | =
∑y

k=1 |njk .V | and x < y =⇒ w(Ci)>w(Cj) (anti-monotonicity of w with
respect to the number of nodes);

3.
∑x

k=1 |nik .V | =
∑y

k=1 |njk .V | and x = y =⇒ w(Ci)=w(Cj) (equivalence of solutions).

Proof:

1. Let us assume, by contradiction, that w(Ci)≤w(Cj), that is
∑x

k=1 w(nik ) ≤
∑y

k=1 w(njk ).
Since w(n) = (|V|·|n.V |) − 1, the above equation can be rewritten as

∑x
k=1(|V| · |nik .V | − 1)

≤
∑y

k=1(|V|·|njk .V |−1), which is equivalent to |V|·
∑x

k=1 |nik .V |−x ≤ |V|·
∑y

k=1 |njk .V |−y.
This equation can be rewritten as |V| · (

∑x
k=1 |nik .V | −

∑y
k=1 |njk .V |)− x+ y ≤ 0. Since, by

assumption,
∑x

k=1 |nik .V | >
∑y

k=1 |njk .V |, we have that |V| · (
∑x

k=1 |nik .V | −
∑y

k=1 |njk .V |)
is greater than |V|. Also, 1 ≤ x ≤ |V| and 1 ≤ y ≤ |V|. As a consequence, considering
the worst case scenario,

∑x
k=1 |nik .V | −

∑y
k=1 |njk .V | = 1, x = |V|, and y = 1, the equation

becomes |V|−|V|+1 ≤ 0, which is a contradiction proving the monotonicity of w with respect
to the number of visibility constraints.

2. Let us now assume, by contradiction, that w(Ci)≤w(Cj), that is |V| ·
∑x

k=1 |nik .V |−x ≤ |V| ·∑y
k=1 |njk .V | − y. Since by assumption

∑x
k=1 |nik .V | =

∑y
k=1 |njk .V |, the above inequality

holds only if x > y, which contradicts our hypothesis and proves the anti-monotonicity of w
with respect to the number of nodes.

3. Let us now assume, by contradiction, that w(Ci)�=w(Cj), that is |V| ·
∑x

k=1 |nik .V | − x
�= |V| ·

∑y
k=1 |njk .V | − y. Since by assumption

∑x
k=1 |nik .V | =

∑y
k=1 |njk .V |, the above

inequality holds only if x �= y, which contradicts our hypothesis and proves the equivalence
of solutions. �

To illustrate Property 3.1, consider the fragmentation graph in Figure 3.9, and
cliques C1={〈snBrZjID,{v1,v3}〉, 〈snbRZJId,{v2}〉}, C2={〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉},
C3={〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉, 〈snbRZjID,{v3}〉}, and C4={〈snBrZJId,{v1,v2}〉,
〈snbRZjID,{v3}〉}, with weight w(C1)=7, w(C2)=4, w(C3)=6, and w(C4)=7, respectively. Ac-
cording to the monotonicity of the weight function with respect to the number of visibility con-
straints, w(C1)=7 > w(C2)=4 since the nodes in C1 are associated with three visibility constraints,
while the nodes in C2 are associated with two constraints only. According to the anti-monotonicity
of the weight function with respect to the number of nodes, w(C1)=7 > w(C3)=6 although C1

(composed of two nodes) and C3 (composed of three nodes) are associated with all the visibility
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constraints in Figure 3.3. According to the equivalence of solutions, w(C1)=w(C4)=7 since the
nodes in C1 and in C4 are associated with all the visibility constraints, and C1 and C4 are composed
of two nodes.

Given a fragmentation graph GF , a clique C of GF represents a correct set of truth assignments
iff C is associated with all the visibility constraints in V. It is interesting to note that, according
to the definition of weight function w of the fragmentation graph GF as w(n)=(|V| · |n.V |)− 1, C
is associated with (and then satisfy) all the visibility constraints only if the weight of C is higher
than or equal to |V| · (|V| − 1). Formally, this property can be formulated as follow.

Property 3.2. Given a fragmentation graph GF (NF , EF ), a weight function w : NF → N+, with
w(n) = (|V| · |n.V |)− 1, and a clique C of GF :

∀v∈V, ∃n∈C s.t. v∈n.V ⇐⇒ w(C)≥|V| · (|V| − 1).

Proof: The weight of a clique C={n1,. . . ,ni} is computed as:
∑i

j=1(|V| · |nj .V | − 1) = |V| ·∑i
j=1 |nj .V | − i. Since, by hypothesis, C includes a node associated with v for each visibility

constraint v∈V then
∑i

j=1 |nj .V | = |V| and therefore w(C) = |V| · |V| − i. In the worst case, each
node in the clique is associated with one visibility constraint and the clique is then composed of
|V| nodes. The weight of the clique is then w(C)=|V| · |V| − |V|=|V| · (|V| − 1). Therefore, by
Property 3.1, all cliques of GF associated with less than |V| visibility constraints have weight lower
than |V| · (|V| − 1). �

Property 3.2 guarantees that it is sufficient to check if the weight of the maximum weighted
clique of GF is higher than or equal to |V| · (|V| − 1) to determine whether a correct set of truth
assignments exists for the considered instance of the problem. To illustrate, consider the frag-
mentation graph in Figure 3.9. Clique C1 = {〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉} is associated
with two out of the three visibility constraints in V, and has weight 2+2=4, which is lower than
3·(3−1)=6. Clique C2 = {〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉, 〈snbRZjID,{v3}〉} is associated
with all the visibility constraints, and has weight 2+2+2=6.

We now formally prove that Properties 3.1 and 3.2 discussed above guarantee that the problem
of computing a minimal set of truth assignments (Problem 3.3) is equivalent to the problem of
computing a maximum weighted clique of a fragmentation graph with weight at least |V| · (|V|−1).

Theorem 3.1 (Problem equivalence). The minimal set of truth assignments problem (Problem 3.3)
is equivalent to the problem of determining a maximum weighted clique of weight at least |V|·(|V|−1)
of the fragmentation graph GF (NF ,EF ) (Definition 3.11), with weight function w : NF → N+ s.t.
w(n)=(|V| · |n.V |)− 1.

Proof: The proof of this theorem immediately follows from Properties 3.1 and 3.2. Indeed, the
maximum weighted clique C = {n1,. . . ,ni} of the fragmentation graph GF satisfies the maximum
number of visibility constraints, according to the monotonicity of w with respect to the number of
visibility constraints associated with the nodes in C. If there are different cliques in GF associated
with the same number of visibility constraints, C is the one composed of the minimum number
of nodes, according to the anti-monotonicity of w with respect to the number of nodes. Let us
now suppose that the set of nodes composing the clique C having maximum weight is associated
with all the visibility constraints. Property 3.2 guarantees that w(C) is, in the worst case, equal
to |V| · (|V| − 1). �
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Since the minimal set of truth assignments problem and the minimal fragmentation problem
are equivalent, the minimal fragmentation problem is also equivalent to the maximum weighted
clique problem on the fragmentation graph with the weight function defined above.

In the following section, we will present an algorithm for computing a minimal set of truth
assignments, exploiting the equivalence proved by Theorem 3.1. In Section 3.6, we will introduce
a heuristic algorithm for computing a locally minimal set of truth assignments.

3.5 Computing a minimal set of truth assignments

The algorithm we propose for computing a minimal set of truth assignments (see Figure 3.10)
takes as input a set B = {a1, . . . , an} of Boolean variables (representing the attributes in R), a set
C = {c1, . . . , cm} of confidentiality constraints, a set V = {v1, . . . , vk} of visibility constraints, and
executes the following three steps: 1) it computes the set of one-paths of the OBDDs representing
Boolean formulas vi∧¬(c1∨. . .∨cm), i = 1, . . . , k; 2) it builds the fragmentation graph; 3) it deter-
mines a maximum weighted clique of the fragmentation graph, and checks if the clique represents
a correct set of truth assignments. In the following, we describe these steps more in details.

Step 1: Compute one-paths. For each visibility constraint vi∈V, the algorithm defines the
OBDD O i representing Boolean formula vi∧¬(c1∨. . .∨cm). Then, it extracts from O i the set Pvi

of one-paths (lines 1–4), i = 1, . . . , k. If, for a given O i, the set Pvi is empty, vi cannot be satisfied
without violating the confidentiality constraints and therefore the algorithm terminates, returning
an empty set of truth assignments (line 5).

Step 2: Build the fragmentation graph. The algorithm first builds an undirected weighted
graph G(N , M∪D, w) such that for each truth assignment I in Pvi , i = 1, . . . , k, there is a node
n ∈ N , with n.I=I, n.V={vi}, and n.weight = (|V| · |n.V |)− 1 (lines 10–14). Then, for each pair
of nodes ni and nj in N , the algorithm inserts edge (ni,nj) in M if ni and nj represent a pair of
mergeable truth assignments that are associated with non-overlapping sets of visibility constraints.
This edge indicates that the one-paths represented by ni and nj can be merged, thus obtaining a
truth assignment associated with both the visibility constraints in ni.V and in nj .V (lines 20–22).
Edge (ni,nj) is inserted in D if ni and nj represent two disjoint truth assignments associated with
non-overlapping sets of visibility constraints. In this case, edge (ni,nj) indicates that the one-paths
represented by ni and nj can belong to the same correct set of truth assignments, and that these
one-paths guarantee the satisfaction of different subsets of visibility constraints (lines 23–25). Note
however that, as already discussed in Section 3.11, the truth assignments associated with ni and
nj may also satisfy additional (possibly overlapping) visibility constraints that are not explicitly
associated with them. If ni and the nodes to which it is connected do not satisfy all the visibility
constraints in V, ni cannot belong to any maximum weighted clique representing a correct set of
truth assignments. In fact, a clique is a solution of the fragmentation problem only when, for each
visibility constraint v in V, there is a node in the clique such that v is associated with such a node.
For this reason, the algorithm removes ni from G (lines 26–29).

The algorithm then transforms the graph G representing the one-paths in P=Pv1∪ . . .∪Pvk

into a fragmentation graph by computing the closure of P (i.e., the nodes in N) under merging
operator �. To this end, the algorithm creates a copy M ′ of the set M of edges and initializes M to
the empty set (lines 31–32). Then, the algorithm iteratively extracts an edge (ni,nj) from M ′, and
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INPUT: B = {a1,. . . ,an}, C = {c1,. . . ,cm}, V = {v1,. . . ,vk} /* Boolean variables and constraints */
OUTPUT: Isol = {I1 ,. . . ,Il} /* minimal set of truth assignments */
MAIN

1: /* Step 1: extract the one-paths from the OBDDs representing constraints */
2: for each vi∈V do
3: let Oi be the OBDD representing vi∧¬(c1∨. . .∨cm)
4: let Pvi

be the set of one-paths of Oi
5: if Pvi

=∅ then return(∅) /* no solution exists */

6: /* Step 2: build the fragmentation graph G */
7: N := ∅ /* set of nodes in G */
8: M := ∅ /* set of edges connecting nodes representing mergeable truth assignments */
9: D := ∅ /* set of edges connecting nodes representing disjoint truth assignments */

10: for each v∈V do /* insert nodes in G */
11: for each I∈Pv do
12: n := 〈I,{v}〉
13: N := N ∪ {n}
14: n.weight := (|V| · |n.V |) − 1

15: N′ := N
16: for each ni∈N do /* insert edges in G */

17: N′ := N′ − {ni}
18: satisfied := ni.V

19: for each nj∈N′ do

20: if ni.I�nj .I ∧ ni.V ∩nj .V =∅ then /* the nodes represent mergeable truth assignments */

21: M := M ∪ {(ni,nj)}
22: satisfied := satisfied ∪ nj .V

23: if ni.I 
↔nj .I ∧ ni.V ∩nj .V =∅ then /* the nodes represent disjoint truth assignments */

24: D := D ∪ {(ni,nj)}
25: satisfied := satisfied ∪ nj .V

26: if satisfied 
=V then /* remove ni from G, since it cannot be part of any solution */
27: M := M − {(ni,nj): nj∈N}
28: D := D − {(ni,nj): nj∈N}
29: N := N − {ni}
30: while M 
=∅ do /* close the one-paths in N w.r.t. � operator */

31: M′ := M
32: M := ∅
33: while M′ 
=∅ do

34: let (ni,nj) be an edge in M′ /* choose a mergeable edge */

35: M′ := M′ − {(ni,nj)}
36: nij := 〈ni.I�nj .I, ni.V ∪nj .V 〉 /* compute the merged node */

37: nij .weight := |V| · |vij.V | − 1 /* weight of the new node */

38: if nij .V =V then /* nij is a clique of size 1 */

39: Isol := {nij .I}
40: assign 0 to don’t care variables in nij .I

41: return(Isol )
42: N := N ∪ {nij} /* insert the node in the fragmentation graph */

43: for each nk∈{n∈N :(n,ni)∈M ∨ (n,nj)∈M} do

44: if nij .I�nk.I ∧ nij .V ∩nk.V =∅ then M := M ∪ {(nij ,nk)}
45: for each nk∈{n∈N :(n,ni)∈D ∨ (n,nj)∈D} do

46: if nij .I 
↔nk.I ∧ nij .V ∩nk.V =∅ then D := D ∪ {(nij ,nk)}
47: for each ni∈N do
48: if

⋃
n.V : n∈{n∈N :(n,ni)∈M∪D} 
=V then /* remove ni from G if it cannot be part of a solution */

49: M := M − {(ni,nj): nj∈N}
50: D := D − {(ni,nj): nj∈N}
51: N := N − {ni}
52: /* Step 3: find the maximum weighted clique */
53: C := FindMaxWeightClique(G)
54: if

∑
n∈Cw(n)<|V| · (|V| − 1) then return(∅) /* no solution exists */

55: Isol := ∅
56: for each n∈C do
57: I := n.I
58: assign 0 to don’t care variables in I
59: Isol := Isol ∪ {I}
60: return(Isol )

Figure 3.10 Algorithm that computes a minimal set of truth assignments
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determines a new node nij such that nij .I=ni.I�nj .I and nij .V=ni.V ∪nj .V (lines 34–36). The
weight nij .weight is set to |V|·|nij .V | − 1 (see Section 3.4), thus reflecting the number of visibility
constraints associated with the node (line 37). Before inserting nij in G, the algorithm checks if
nij satisfies all the visibility constraints (line 38). If this is the case, nij represents a maximum
weighted clique for G. Isol is then set to nij .I, don’t care variables are set to 0, and the algorithm
terminates returning Isol (lines 39–41). Otherwise, node nij is inserted in G, and the algorithm
checks if nodes adjacent either to ni or to nj are also adjacent (with a mergeable or disjoint edge)
to nij , thus possibly inserting in M or in D the corresponding edges (lines 42–46). Note that the
algorithm needs only to check nij against the nodes in N that are mergeable/disjoint with ni.I or
nj.I, since satisfying any of these conditions is a precondition for being mergeable/disjoint with
nij .I. When the set M ′ of edges is empty, the algorithm checks whether there are nodes in N that
can be removed from G since they cannot belong to any maximum weighted clique (lines 47–51).
The algorithm then iteratively repeats the process of removing edges from M (i.e., it creates a
copy M ′ of M and inserts new nodes and edges in N , M , and D, respectively) until the set M of
edges is empty, that is, no edge is inserted in M during the process of merging nodes connected
through the edges in M ′ (i.e., until G is a fragmentation graph).

Step 3: Compute a maximum weighted clique. The algorithm exploits a known algo-
rithm [92] to compute a maximum weighted clique of the fragmentation graph (line 53). Func-
tion FindMaxWeightedClique takes the fragmentation graph as input and returns a maximum
weighted clique. If the weight of the clique is lower than |V| · (|V| − 1), the considered instance of
the problem does not admit a correct set of truth assignments (line 54). Otherwise, if w(C) is at
least |V| · (|V| − 1), the one-paths represented by the nodes in C are inserted in Isol , don’t care
variables are set to 0 (lines 56–59), and Isol is returned (line 60).

Example 3.1. Consider relation Patients and the confidentiality and visibility constraints over
it in Figure 3.1. The execution of the algorithm in Figure 3.10 proceeds as follows.

1) Compute one-paths. The algorithm builds O1, O2, and O3 in Figure 3.7, representing for-
mula vi∧¬(c1∨. . .∨c5), i = 1, 2, 3, and extracts their one-paths, which are listed in Fig-
ure 3.7.

2) Build the fragmentation graph. The algorithm inserts in G a node for every one-path in Pv1 ,
Pv2 , and Pv3 (see Figure 3.11(a)). Figure 3.11(b) shows the graph obtained connecting the
nodes in Figure 3.11(a) that represent mergeable truth assignments (dotted edges) and dis-
joint truth assignments (continuous edges). Nodes 〈sNBRzJid,{v1}〉 and 〈snBRzJId,{v2}〉
in Figure 3.11(a) do not appear in the graph in Figure 3.11(b) since they neither are as-
sociated with v3 nor could be connected with a node that is associated with v3, and there-
fore cannot be part of a clique. The algorithm then computes the closure of the nodes in
G. It first merges nodes 〈snBrZJId,{v1}〉 and 〈snBrZJId,{v2}〉, inserts the resulting node
〈snBrZJId,{v1,v2}〉 in N , and checks if it can be connected by an edge in D with node
〈snbRZjID,{v3}〉 and/or with node 〈sNbRZJid,{v1}〉 (the nodes adjacent to the merged
nodes). Since 〈snBrZJId,{v1,v2}〉 and 〈snbRZjID,{v3}〉 represent disjoint assignments and
are associated with non-overlapping sets of visibility constraints, the algorithm inserts edge
(〈snBrZJId,{v1,v2}〉,〈snbRZjID,{v3}〉) in D, while it does not insert the edge connecting
〈snBrZJId,{v1,v2}〉 with 〈sNbRZJid,{v1}〉 since v1 is associated with both nodes. The re-
sulting graph is illustrated in Figure 3.11(c), where the new node is doubly circled. The
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Figure 3.11 Example of the execution of the algorithm in Figure 3.10 with the inputs in Figure 3.3
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algorithm then merges nodes 〈snBrZjID,{v1}〉 and 〈snBrZjID,{v3}〉, inserts the resulting
node 〈snBrZjID,{v1,v3}〉 in N , and inserts edge (〈snBrZjID,{v1,v3}〉,〈snbRZJId,{v2}〉) in
D. Figure 3.11(d) illustrates the resulting graph, where the new node is doubly circled. Since
there are no more mergeable edges in M , the algorithm checks whether there are nodes in N
that can possibly be removed from G. Node 〈snBrZJId,{v1}〉 is only connected with a node
associated with v3 and has no connections with nodes associated with v2, and therefore it is
removed from G. Figure 3.11(d) illustrates the resulting fragmentation graph.

3) Compute a maximum weighted clique. The algorithm calls function
FindMaxWeightClique that returns one of the two maximum weighted cliques in
G, C={〈snBrZjID,{v1,v3}〉,〈snbRZJId,{v2}〉}. The weight of this clique is w(C) = 7 and
is higher than threshold |V| · (|V| − 1) = 6. Therefore, C represents a solution to the minimal
set of truth assignments problem. The algorithm extracts from C the corresponding set of
truth assignments, and the don’t care variables are set to 0, thus obtaining Isol = {[S=0,
N=0, B=1, R=0, Z=1, J=0, I=0, D=1], [S=0, N=0, B=0, R=0, Z=0, J=1, I=1, D=0]} that
is finally returned. We note that this set of truth assignments corresponds to the minimal
fragmentation F={{Birth,ZIP,Disease}, {Job,InsRate}} in Figure 3.2.

The correctness and complexity of the algorithm in Figure 3.10 are stated by the following
theorems.

Theorem 3.2 (Correctness of the exact algorithm). Given a set B of Boolean variables, a set C
of confidentiality constraints over B, and a set V of visibility constraints over B, the algorithm in
Figure 3.10 terminates and computes (if it exists) a minimal set of truth assignments.

Proof: To prove the correctness of the algorithm in Figure 3.10, we have to show that i) it
terminates; ii) it computes a correct set of truth assignments; iii) if there exists a correct set I of
truth assignments with respect to C and V, the algorithm finds it; and iv) it computes a minimal
set of truth assignments.

Termination. Since the number of confidentiality and visibility constraints is finite, the
for each loop in Step 1 terminates. The first two for each loops in Step 2 (line 10 and line 16,
respectively) terminate since for each v∈V the set Pv of one-paths is finite, and N includes at most
one node for each one-path in Pv1∪. . .∪Pvk . The while loop in Step 2 (line 30) terminates since
the number of nodes that it inserts in N is finite. In fact, let nij be a node obtained through the
combination of ni and nj , which are nodes connected by a mergeable edge: i) nij is inserted in
N only if N does not include a node n associated with a truth assignment and a set of visibility
constraints equal to those of node nij (N is a set); ii) nij is adjacent to neither ni nor nj ; and iii)
edge (ni,nj)∈M is removed from M when node nij is inserted in N . Therefore, at each iteration
of the while loop, at most one node is inserted in N , an edge is removed from M , and a limited
number of edges is inserted in M . Since the number of Boolean variables in B and of visibility con-
straints in V is finite, the number of possible nodes generated by merging nodes in N is finite. As
a consequence, the while loop terminates. Function FindMaxWeightClique in Step 3 (line 53)
terminates since it exploits a classical algorithm for finding a maximum weight clique. The last
for each loop in Step 3 (line 56) terminates since C is a subset of N , which is a finite set of nodes.

Correctness of the set of truth assignments. Isol is correct iff it satisfies the conditions
in Definition 3.7.
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1. ∀c ∈ C, ∀I ∈ Isol : I(c ) = 0 (confidentiality). In the last for each loop of Step 3 (line 56), the
algorithm extracts Isol from the clique C computed by function FindMaxWeightClique
(the don’t care variables in the truth assignments represented by the nodes in C are set to 0).
Since function FindMaxWeightClique does not modify the truth assignments represented
by the nodes in the graph received as input, Isol does not violate confidentiality constraints
iff the nodes in the fragmentation graph resulting from Step 2 represent truth assignments
that do not violate confidentiality constraints. Each node in G either represents a truth
assignment I∈Pvi or a truth assignment resulting from the composition of a subset of one-
paths in Pv1∪. . .∪Pvk under operator �. In the first case, I represents a one-path in the
OBDD modeling Boolean formula v∧¬(c1∨. . .∨cm), v∈V, and therefore it satisfies all the
confidentiality constraints. In the second case, I represents in a compact way the complete
truth assignments implicitly represented by the composed assignments. Since the assignments
composed to generate I satisfy all the confidentiality constraints, also I satisfies all of them.

2. ∀v∈V , ∃I ∈ Isol : I(v) = 1 (visibility). In Step 3, the algorithm checks if the clique C
computed by function FindMaxWeightClique has weight at least |V| · (|V| − 1), which is
equivalent to check if ∀v∈V, ∃n∈C such that v∈n.V as proved by Property 3.2. If the weight
of the clique C is greater than or equal to |V| · (|V| − 1), the algorithm computes a solution
Isol obtained by setting to 0 all the don’t care variables in the truth assignments represented
by the nodes in C. Therefore Isol satisfies all the visibility constraints.

3. ∀Ii ,Ij∈ Isol , i �= j, ∀a ∈ B s.t. Ii(a ) = 1: Ij (a ) = 0 (unlinkability). In the last for each
loop of Step 3 (line 56), the algorithm extracts Isol from the clique C computed by function
FindMaxWeightClique by setting to 0 all the don’t care variables in the truth assignments
represented by the nodes in the clique. Since function FindMaxWeightClique does not
modify the graph received as input, Isol satisfies unlinkability iff C is a clique and G includes
only edges connecting nodes representing unlinkable truth assignments. Since the while loop
in Step 2 of the algorithm (line 30) removes all the edges in M connecting nodes representing
mergeable truth assignments, the graph G given as input to the FindMaxWeightClique
function includes only edges in D, which connect nodes representing disjoint truth assign-
ments. Any pair of nodes in C is then connected by an edge in D (i.e., nodes in C represent
unlinkable assignments).

Completeness. Suppose by contradiction that there exists a correct set I of truth assignments
and that our algorithm returns an empty solution. The algorithm returns an empty solution only if
FindMaxWeightClique returns a clique for which at least one visibility constraint in V remains
unsatisfied (line 54). Since function FindMaxWeightClique implements a known algorithm
for the maximum weighted clique problem and according to Theorem 3.1, the function returns a
clique that does not satisfy all the visibility constraints only if a clique representing a correct set of
truth assignments does not exists in G. However, since we assume that I is a correct set of truth
assignments, I has to be represented by a clique in G.

Suppose now by contradiction that I is not represented by a clique in G. Each I∈I satisfies all
the confidentiality constraints and at least one visibility constraint (otherwise I could be removed
from I preserving its correctness). Let vi1 ,. . .,vik ,∈V be the visibility constraints satisfied by
I. By construction of the OBDDs O i1 , . . . ,O ik , Pi1 , . . . ,Pik must contain at least one one-path
Ii1 , . . . , Iik that implicitly represents I. Since, by Observation 3, truth assignments are mergeable
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only if they represent at least a common complete truth assignment, Ii1 , . . . , Iik are mergeable
(they all implicitly represent I). For each I∈I and for each subset V ⊆ {vi1 ,. . .,vik} of visibility
constraints satisfied by I, the fragmentation graph computed by our algorithm will then include
a node n implicitly representing I, with n.V=V . Since I is a correct set of truth assignments,
there is at least a complete truth assignment I∈I that satisfies v for each v∈V. Therefore, V can
be partitioned in non-empty and non-overlapping subsets Vi, i = 1, . . . , |I|, such that each Ii∈I
is associated with Vi and Vi includes only visibility constraints satisfied by Ii . As a consequence,
there exists a set N of nodes in G with a node ni for each Ii∈I such that ni implicitly represents
Ii and ni is associated with the set Vi of visibility constraints. For each pair Ii ,Ij∈I, Ii and Ij are
neither mergeable nor in conflict. As a consequence, nodes ni and nj in N implicitly representing
Ii and Ij , respectively, are not in conflict (i.e., they do not associate conflicting values to the same
variable) and are then connected by an edge in D. Therefore, N is a clique for G that implicitly
represents I, thus contradicting the initial hypothesis.

Minimality. Suppose by contradiction that the algorithm computes a correct set I of k truth
assignments and that there exists a correct set I′ of k′ < k truth assignments. We prove that, if I ′

exists, the set I of truth assignments computed by our algorithm includes k′ truth assignments. In
the last for each loop of Step 3 (line 56), the algorithm extracts I from the clique C of maximum
weight in G computed by function FindMaxWeightClique by setting to 0 all the don’t care
variables in the truth assignments represented by the nodes in the clique. According to the anti-
monotonicity of the weight function w with respect to the number of nodes (Property 3.1), C is the
clique satisfying all the visibility constraints composed of the minimum number k of nodes. Since
function FindMaxWeightClique implements a known algorithm for the maximum weighted
clique problem, there cannot exist a clique C′ of G satisfying all the visibility constraints and
composed of k′ < k nodes. In other words, there cannot exist a correct set I′ of k′ < k truth
assignments, where for each I∈I′ there exists a node n in G such that n.I implicitly represents I.
However, since we assume that I′ is a correct set of truth assignments, I′ has to be represented
by a clique in G.

Suppose now by contradiction that I′ is not represented by a clique in G. Let I be a complete
truth assignment in I′. Since I′ is correct, I satisfies all the confidentiality constraints. Moreover,
I is associated with (and then satisfies) at least one visibility constraint, otherwise I could be
removed from I′ preserving its correctness, thus contradicting the hypothesis of minimality of I′.
Let vi1 ,. . .,vik ,∈V be the visibility constraints associated with I. By construction of the OBDDs
O i1 , . . . ,O ik , Pi1 , . . . ,Pik must contain at least one one-path Ii1 , . . . , Iik that implicitly represents
I. Since, by Observation 3, truth assignments are mergeable only if they represent at least a com-
mon complete truth assignment, Ii1 , . . . , Iik are mergeable (they all implicitly represent I). The
truth assignment I′ obtained as Ii1 �. . .�Iik implicitly represents I. As a consequence, the fragmen-
tation graph computed by our algorithm will include a node n with n.I=I′ and n.V={vi1 ,. . .,vik}
that implicitly represents I. This is true for each complete truth assignment I∈I ′. Therefore, G
includes a clique that implicitly represents I ′ and composed of k′ nodes. As a consequence, the
clique computed by our algorithm implicitly represents I′. This contradicts the original hypothesis
that our algorithm computes a set of truth assignments that is not minimal. �

Theorem 3.3 (Complexity of the exact algorithm). Given a set B of Boolean variables, a set C
of confidentiality constraints over B, and a set V of visibility constraints over B, the complexity of
the algorithm in Figure 3.10 is O(2

∏
v∈V |Pv |·|B| + (|V| + |C|)2|B|) in time, where Pv is the set of

one-paths of the OBDD representing v∧¬(c1∨. . .∨cm).



54 3. Enforcing confidentiality and visibility constraints

Proof: The construction of the OBDDs in Step 1 can be, in the worst case, exponential in the
number of variables in the formula they represent, that is, O(2|B|). Therefore, the construction
of the OBDDs representing the confidentiality constraints in C, the visibility constraints in V,
and their combination has computational complexity O((|V| + |C|)2|B|). The construction of the
fragmentation graph in Step 2 requires to compute the closure of the set Pv1∪. . .∪Pvk under
operator � since nodes in G represent, in the worst case, all the truth assignments in P�. To
this purpose, the algorithm inserts edges in M and in D, connecting pairs of nodes representing
mergeable or disjoint truth assignments, respectively, that are associated with non-overlapping sets
of visibility constraints. The cost of inserting edges in G is then O(

∏
v∈V |Pv | · |B|) since the cost

of evaluating if two truth assignments are mergeable or disjoint is linear in the number of Boolean
variables composing the truth assignments. Since for each edge in M the algorithm inserts a node
in G, which can only be connected to the nodes adjacent to the incident nodes of the removed
edge, the overall cost of building G is O(

∏
v∈V |Pv | · |B|). Also, G includes at most O(

∏
v∈V |Pv |)

nodes. Function FindMaxWeightClique has exponential cost in the number of nodes of the
input graph (i.e., O(2

∏
v∈V |Pv |·|B|)) since the maximum weighted clique problem is NP-hard. The

last for each loop in Step 3 (line 56) has computational complexity O(|C| · |B|), since it scans all
the nodes in C to set to 0 the don’t care variables in the truth assignments they represent. The
cost of this loop is however dominated by the cost of the previous steps of the algorithm. The
computational complexity of the algorithm is therefore O(2

∏
v∈V |Pv |·|B| + (|V|+ |C|)2|B|). �

The computational cost of the algorithm is obtained as the sum of the cost of building the OB-
DDs, which is O((|V|+ |C|)2|B|), and of the cost of determining Isol by building the fragmentation

graph and searching for its maximum weighted clique, which is O(2
∏

v∈V |Pv |·|B|). We note that the
computational cost of the construction of the OBDDs is exponential in the worst case, but in the
majority of real-world applications OBDD-based approaches are computationally efficient [20, 74].

3.6 Computing a locally minimal set of truth assignments

Since the problem of computing a minimal set of truth assignments is NP-hard, the computational
complexity of any algorithm that finds a solution to the problem is exponential in the size of the
input. In this section, we therefore propose a heuristic algorithm that computes a locally minimal
set of truth assignments (Problem 3.4) with a limited computational effort. The algorithm exploits
Theorem 3.1 to take advantage of the graph modeling of the problem but does not explicitly create
the fragmentation graph. The idea consists in using the relationships between the one-paths
extracted from the OBDDs representing confidentiality and visibility constraints to iteratively
build a clique. The algorithm does not compute the closure of the one-paths in Pv1∪. . .∪Pvk

under operator �, but composes them when necessary. It then starts from an empty clique C
and, at each iteration, tries to insert in C a node n (possibly composing it with nodes in C) that
is associated with a visibility constraint that is not associated with any node already in C. The
algorithm terminates when it finds a clique C of weight at least |V| · (|V| − 1).

Figure 3.12 illustrates the pseudocode of the algorithm that takes as input a set B =
{a1, . . . , an} of Boolean variables (representing the attributes in R), a set C = {c1, . . . , cm} of
confidentiality constraints, and a set V = {v1, . . . , vk} of visibility constraints and computes, if
it exists, a locally minimal set of truth assignments. The algorithm executes four steps: 1) it
extracts the set of one-paths from the OBDDs representing Boolean formulas vi∧¬(c1∨. . .∨cm),
i = 1, . . . , k; 2) it creates a node for each of these one-paths; 3) it iteratively builds a clique of the
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INPUT: B = {a1,. . . ,an}, C = {c1,. . . ,cm}, V = {v1,. . . ,vk} /* Boolean variables, confidentiality and visibility constraints */
OUTPUT: Isol = {I1 ,. . . ,Il} /* locally minimal set of truth assignments */

MAIN
1: /* Step 1: extract the one-paths from the OBDDs representing constraints */
2: for each vi∈V do
3: let Oi be the OBDD representing vi∧¬(c1∨. . .∨cm)
4: let Pvi be the set of one-paths of Oi

5: if Pvi=∅ then return(∅) /* no solution exists */

6: /* Step 2: generate nodes representing the one-paths in Oi, i = 1, . . . , k */
7: N := ∅
8: for each v∈V do /* define a node for each one-path */
9: for each I∈Pv do

10: n := 〈I,{v}〉
11: N := N ∪ {n}
12: /* partition N depending on the visibility constraint that each node satisfies */
13: let Ni = {n∈N : n.V=v}, for all v∈V, with |Ni| > |Nj | iff i > j
14: for each v∈V do
15: order nodes in Ni by decreasing number of don’t care variables in n.I

16: /* Step 3: build a clique for the fragmentation graph */
17: C := DefineClique(∅,1)
18: /* Step 4: minimize the number of truth assignments in Isol */
19: Isol := ∅
20: for each n∈C do assign 0 to don’t care variables in n.I
21: while C �=∅ do
22: ni := ExtractNode(C)
23: Ii := ni.I
24: for each nj∈C do
25: Ij := nj .I
26: if Ii∨Ij satisfies ¬(c1∨. . .∨cm) then
27: Ii := Ii∨Ij
28: C := C − {nj}
29: Isol := Isol ∪ {Ii}
30: return(Isol )

DEFINE CLIQUE(C,i)
31: for j :=1,. . . ,|Ni| do
32: satisfied := true /* true if C includes a node that belongs to Ni */
33: LinkableNodes := {n∈C:n.I↔nj.I} /* nodes in C representing truth assignments linkable to nj .I */
34: C′ := C\LinkableNodes /* remove from C the nodes that represent truth assignments linkable to nj .I */
35: n := nj

36: while satisfied and LinkableNodes �= ∅ do
37: nl := ExtractNode(LinkableNodes) /* extract a node representing a truth assignment linkable to nj .I */
38: if nl.I�n.I then n := 〈nl.I
n.I, nl.V ∪n.V 〉 /* merge the two nodes */
39: else satisfied := false /* n.I is linkable but not mergeable with nl.I, then C′∪{n} cannot be a clique */
40: if satisfied then
41: C′ := C′∪{n}
42: if i=|V| then return(C′) /* C′ represents a clique with weight at least |V| · (|V| − 1) */
43: C′ := DefineClique(C′,i+ 1) /* recursive call */
44: if C′ �=∅ then return(C′) /* C′ represents a clique with weight at least |V| · (|V| − 1) */
45: return(∅)

Figure 3.12 Algorithm that computes a locally minimal set of truth assignments

fragmentation graph; 4) it combines the one-paths represented by the nodes in the clique, if this
combination does not violate confidentiality constraints, to minimize the number of assignments
in the computed set. In the following, we describe these steps more in details.

Step 1: Compute one-paths. Like for the exact algorithm (Section 3.5, step 1), for each vi∈V
the algorithm extracts from the OBDD O i representing Boolean formula vi∧¬(c1∨. . .∨cm) the
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set Pvi of one-paths (lines 2–4). If, for a given O i, the set Pvi is empty, the algorithm terminates
and returns an empty solution (line 5).

Step 2: Generate nodes representing one-paths. The algorithm inserts a node n=〈I,{v}〉 in
graph G for each one-path I∈Pv1∪. . .∪Pvk . Unlike the exact algorithm, it does not explicitly insert
the edges in G connecting pairs of nodes that represent mergeable and disjoint truth assignments.
In contrast, it implicitly considers these relationships in the building process of a clique. The
algorithm then partitions nodes in G according to the visibility constraint associated with them,
and orders the obtained sets of nodes Ni, i = 1, . . . , |V|, by increasing cardinality (lines 10–13).
The reason for this ordering is to consider first the visibility constraints that can be satisfied by a
smaller set of truth assignments (represented by a smaller set of nodes in the graph). Nodes in Ni,
i = 1, . . . , |V|, are ordered by decreasing number of don’t care variables in the truth assignments
they represent (lines 14–15). The intuition is that nodes representing truth assignments with a
higher number of don’t care variables implicitly represent a larger set of complete truth assignments
(where don’t care variables can be set to either 0 or 1) and therefore they impose less constraints
on subsequent choices of the nodes that can be inserted in a clique with them. Indeed, as already
noted in Section 3.3.3, don’t care variables do not affect the linkability or the mergeability of truth
assignments.

Step 3: Build a clique for the fragmentation graph. The algorithm iteratively builds a
clique by calling recursive function DefineClique (line 17). Function DefineClique receives as
input a clique C of the fragmentation graph and an integer number i , 1 ≤ i ≤ k, indicating that C
either includes a node in Nj, j = 1, . . . , (i− 1), or a node resulting from the combination of a node
in Nj with another node in Nl, with l < j (i.e., C includes a node n such that v∈n.V , for each
visibility constraint v associated with the nodes in N1, . . . , Nj). For each node nj in Ni, function
DefineClique verifies whether nj can be inserted in C, that is, if: i) for each node n in C, n.I
and nj .I are disjoint; or ii) nj .I is mergeable with a subset of the truth assignments represented by
the nodes in C and the resulting truth assignment is disjoint from all the other truth assignments
represented by nodes in C. To efficiently check if nj satisfies one of the conditions above, the
function first identifies the set LinkableNodes of nodes in C representing truth assignments linkable
with nj .I (line 33). For each nl in LinkableNodes , if nl.I is mergeable with n.I (with n initialized
to nj), n.I is set to n.I�nl.I, and n.V is set to n.V ∪nl.V (lines 37–39). If nl.I is linkable but
not mergeable with n.I, n cannot be part of clique C since nl.I and n.I are not disjoint (line 39).
We note that nodes in C representing truth assignments that are mergeable and disjoint to nj .I
are not combined in a unique node. In fact, by composing a pair of disjoint truth assignments,
the algorithm would discard, without evaluation, all the correct solutions where the two truth
assignments are represented by distinct nodes. If all the nodes in LinkableNodes can be combined
with nj (i.e., the one-paths they represent are all mergeable), the algorithm then determines a
new clique C′ obtained by removing LinkableNodes from C and inserting n in C′ (lines 40–41). If
i=|V|, C′ satisfies all the visibility constraints, has a weight at least equal to |V| · (|V| − 1), and is
returned (line 42). Otherwise, function DefineClique is recursively called with C′ and i + 1 as
input (line 43). If the clique resulting from this recursive call is not empty, it represents a correct
set of truth assignments and is therefore returned (line 44). If no node in Ni can be inserted in
C, an empty clique is returned and the algorithm looks for a different clique of the fragmentation
graph.
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N1 N2 N3

�� ��
�� ��snbRZJId,{v2} �� ��

�� ��snbRZjID,{v3} �� ��
�� ��sNbRZJid,{v1}

�� ��
�� ��snBrZJId,{v2} �� ��

�� ��snBrZjID,{v3} �� ��
�� ��snBrZjID,{v1}

�� ��
�� ��snBRzJId,{v2} �� ��

�� ��snBRzjID,{v3} �� ��
�� ��sNBrZJid,{v1}

�� ��
�� ��snBrZJId,{v1}

�� ��
�� ��sNBRzJid,{v1}

DefineClique(∅,1)
n1∈N1 := 〈snbRZJId,{v2}〉
LinkableNodes := ∅
n := 〈snbRZJId,{v2}〉
C′ := {〈snbRZJId,{v2}〉}

DefineClique({〈snbRZJId,{v2}〉},2)
n1∈N2 := 〈snbRZjId, {v3}〉
LinkableNodes := ∅
n := 〈snbRZjId, {v3}〉
C′ := {〈snbRZJId,{v2}〉, 〈snbRZjId,{v3}〉}

DefineClique({〈snbRZJId,{v2}〉, 〈snbRZjId,{v3}〉},3)
n1∈N3 := 〈sNbRZJid,{v1}〉
LinkableNodes := ∅
n := 〈sNbRZJid,{v1}〉
C′ := {〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉, 〈snbRZjId,{v3}〉}

(a) (b)

Figure 3.13 Example of the execution of the algorithm in Figure 3.12 with the inputs in Figure 3.3

Step 4: Minimize the number of assignments. The clique C computed by function
DefineClique may represent a correct set of truth assignments that is not locally minimal. In
fact, it may include one-paths that can be combined without violating confidentiality constraints.
Every pair of nodes in C is then checked and their truth assignments are ORed whenever they can
be combined without violating confidentiality constraints (i.e., the algorithm performs the union
of the corresponding fragments). To this purpose, the algorithm first assigns value 0 to don’t care
variables in the truth assignments represented by the nodes in C (line 20). Then, it iteratively
extracts a node ni from C, assigns ni.I to Ii and, for each nj in C, it checks if Ii can be composed
with one-path Ij , with Ij = nj .I without violating confidentiality constraints (lines 21–28). If this
is the case, Ii is set to Ii∨Ij , and nj is removed from C. When the algorithm has checked if Ii
can be combined with all the one-paths represented by nodes in C, it inserts Ii in Isol (line 29).
It is important to note that the algorithm does not check if Ii can be combined with the truth
assignments already in Isol . In fact, all the truth assignments in Isol have already been checked
against all the assignments in C, and therefore also against Ii . Finally, the algorithm returns Isol
(line 30).

Example 3.2. Consider relation Patients and the confidentiality and visibility constraints over
it in Figure 3.1. The execution of the algorithm in Figure 3.12 proceeds as follows.

1) Compute one-paths. The algorithm first builds O1, O2, and O3 in Figure 3.7, representing
vi∧¬(c1∨. . .∨c5), i = 1, 2, 3, and extracts their one-paths, which are listed in Figure 3.7.

2) Generate nodes representing one-paths. The algorithm creates a node for each one-path in
Pv1 , Pv2 , and Pv3 , obtaining the set N of nodes illustrated in Figure 3.13(a). The algorithm
partitions N in three sets N1, N2, and N3 depending on the visibility constraint associated
with each node in N , and orders these sets by increasing cardinality (i.e., |N1| ≤ |N2| ≤ |N3|).
N1 includes the nodes associated with v2, N2 includes the nodes associated with v3, and N3

includes the nodes associated with v1. The nodes in N1, N2, and N3 are then ordered by
decreasing number of don’t care variables, as illustrated in Figure 3.13(a).

3–4) Build a clique for the fragmentation graph and minimize the number of assignments. Fig-
ure 3.13(b) illustrates the recursive calls to function DefineClique showing for each exe-
cution: the value of input parameters C and i; the candidate node nj in N i to insert in
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C; its relationships with nodes already in C; and the computed clique C′. The clique finally
returned by the function includes three nodes: C = {〈sNbRZJid,{v1}〉, 〈snbRZJId,{v2}〉,
〈snbRZjId,{v3}〉}, which cannot be further combined without violating confidentiality con-
straints. The corresponding set of truth assignments is Isol = {[S=0, N=1, B=0, R=0, Z=0,
J=0, I=0, D=0], [S=0, N=0, B=0, R=0, Z=0, J=1, I=1, D=0], [S=0, N=0, B=0, R=1,
Z=0, J=0, I=0, D=1]}, which corresponds to locally minimal fragmentation F = {{Name},
{Job,InsRate}, {Race,Disease}}. We note that this fragmentation is not minimal, since
there exists at least a correct fragmentation composed of two fragments (Example 3.1).

The correctness and complexity of the algorithm in Figure 3.12 are stated by the following
theorems.

Theorem 3.4 (Correctness of the heuristic algorithm). Given a set B of Boolean variables, a set
C of confidentiality constraints over B, and a set V of visibility constraints over B, the algorithm
in Figure 3.12 terminates and computes (if it exists) a locally minimal set of truth assignments.

Proof: To prove the correctness of the algorithm in Figure 3.12, we need to prove that: i) it
terminates; ii) it computes a correct set of truth assignments; iii) if there exists a correct set I of
truth assignments with respect to C and V, the algorithm finds it; and iv) it computes a locally
minimal set of truth assignments.

Termination. Since the number of confidentiality constraints, the number of visibility con-
straints, and the number of one-paths in Pv , with v∈V, is finite, the three for each loops in
Step 1 (line 2) and in Step 2 (line 8 and line 14, respectively) terminate. The recursive call to
function DefineClique in Step 3 (line17) terminates when variable i is greater than or equal to
|V|. We note that at each recursive call of function DefineClique, at most one node is inserted
in C. Therefore, if function DefineClique terminates, C is a finite set. Function DefineClique
terminates because: i) the sets Ni, i = 1, . . . , |V|, of nodes are finite (∀vi∈V, Pvi is a finite set
of one-paths); ii) LinkableNodes is a subset of Isol ; and iii) variable i increases by one at each
recursive call. The for loop and the while loop in function DefineClique (line 31 and line 36, re-
spectively) terminate since the clique C received as input includes at most i nodes and is therefore
finite.

Correctness of the set of truth assignments. Isol is correct iff it satisfies the conditions
in Definition 3.7.

1. ∀c ∈ C, ∀I ∈ Isol : I(c) = 0 (confidentiality). The while loop in Step 4 (line 21) computes
Isol (starting from the one-paths represented by nodes in C) by trying to compose sets of
truth assignments represented by nodes in C through ∨ operator and explicitly checking if
the result of the composition violates confidentiality constraints. Since truth assignments
are composed only if their composition does not violate the confidentiality constraints, Isol
satisfies all the confidentiality constraints iff the truth assignments represented by nodes in the
clique C computed by function DefineClique do not violate the confidentiality constraints.
Function DefineClique inserts a node n in C if n either belongs to Ni (i.e., it represents
a one-path in Pvk) or has been obtained by composing a set of nodes in N1, . . . , Nk (i.e.,
it represents the composition of a subset of one-paths in Pvx ,. . . ,Pvy under operator �).
Since Pv represents the one-paths in the OBDD modeling Boolean formula v∧¬(c1∨. . .∨cm),
v∈V, all the truth assignments in Pv satisfy confidentiality constraints. Also, since the truth
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assignment resulting from the composition of Ii and Ij under � represents, in a compact way,
the set of complete truth assignments implicitly represented by both Ii and Ij , also Ii�Ij
does not violate confidentiality constraints. As a consequence, each node n∈C represents a
truth assignment that satisfies all the confidentiality constraints.

2. ∀v∈V , ∃I ∈ Isol : I(v) = 1 (visibility). Recalling that in Step 4 all the don’t care variables in
truth assignments represented by nodes in C are set to 0 (line 20), and that the algorithm
computes Isol by trying to compose the truth assignments represented by nodes in C without
violating confidentiality constraints (for each loop in line 24), Isol satisfies the visibility
constraints if, at the end of functionDefineClique, ∀v∈V, ∃ n∈C such that v∈n.V . Function
DefineClique is recursively called for i = 1, . . . , |V| and, at each recursive call, it inserts
in C a node nj∈Ni that represents a truth assignment I in Pv . In fact, node nj is either
inserted as a new node in C, or composed with a node n already in C. As already noted, the
node resulting from the composition of nj with n is associated with (and then satisfies) both
the visibility constraints in n.V and in nj .V . Therefore, at the end of the i-th recursive call,
C is associated with (and then satisfies) all the visibility constraints v such that v∈n.V and
n is a node in Nj , with j ≤ i. We can conclude that, at the end of the |V|-th recursive call,
C includes, for each v∈V, at least a node n with v∈n.V .

3. ∀Ii ,Ij∈ Isol , i �= j, ∀a ∈ B s.t. Ii (a ) = 1: Ij (a ) = 0 (unlinkability). Since Step 4 sets to 0
all the don’t care variables in the truth assignments represented by nodes in C, Isol satisfies
unlinkability iff the truth assignments represented by the nodes in C computed by function
DefineClique are disjoint. Function DefineClique tries to insert, at each iteration of the
for loop (line 31), a node nj in C. The function does not insert nj∈Ni in C if there exists
at least a node in C that represents a truth assignment linkable but not mergeable with nj .I,
and composes nj.I with all the linkable and mergeable truth assignments represented by a
node already in C. All nodes in C therefore represent disjoint truth assignments.

Completeness. Completeness is guaranteed if recursive function DefineClique computes, if
it exists, a clique C of the fragmentation graph that satisfies all the visibility constraints in V.
Function DefineClique is recursively called for i = 1, . . . , |V| and, at each recursive call, it inserts
in C a node nj in Ni, which represents a truth assignment in Pv (i.e., a truth assignment associated
with and then satisfying visibility constraint v). If there is no clique in G including C together with
a node in Ni, the function uses a back-track strategy and tries to insert in C a different node from
Ni−1. Note that two nodes are combined (operator �) by function DefineClique iff they represent
linkable truth assignments (i.e., they represent fragments with a common attribute). Indeed, a
correct set of truth assignments cannot contain two linkable truth assignments (Condition 3 in
Definition 3.7). Therefore, the composition performed in this phase is mandatory for finding a
correct set of truth assignments. Nodes representing non linkable but mergeable truth assignments
are not combined in this phase (they will be combined by Step 4 to guarantee local minimality).
Recursive function DefineClique tries all the possible subsets of nodes in G including a node for
each set Ni, i = 1, . . . , k, using the back-track strategy. Thus, if there exist a clique for G, it will
be found by the recursive call.

Local minimality. Isol is locally minimal iff no pair of truth assignments in Isol can be
composed through the ∨ operator without violating confidentiality constraints. Isol is computed
by the while loop in Step 4 (line 21), where the algorithm tries to iteratively combine (∨) the
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truth assignments represented by nodes in C, after all don’t care variables have been set to 0.
Such a combination is performed only if the disjunction of the confidentiality constraints is not
violated. As a consequence, no pair of truth assignments in Isol are combined through the ∨
operator without violating the confidentiality constraints. �

Theorem 3.5 (Complexity of the heuristic algorithm). Given a set B of Boolean variables, a set
C of confidentiality constraints over B, and a set V of visibility constraints over B, the complexity
of the algorithm in Figure 3.12 is O(

∏
v∈V |Pv | · |B|+ (|V|+ |C|)2|B|) in time, where Pv is the set

of one-paths of the OBDD representing v∧¬(c1∨. . .∨cm).

Proof: The construction of the OBDDs in Step 1 can be, in the worst case, exponential in the
number of variables in the formula they represent, that is, O(2|B|). Therefore, the construction
of the OBDDs representing the confidentiality constraints in C and the visibility constraints in
V, and their combination have computational complexity O((|V| + |C|)2|B|). The cost of building
a node n for each one-path in Pv1∪. . .∪Pvk is linear in the number of one-paths. The cost of
partitioning the resulting set of nodes in sets of nodes that are associated with the same visibility
constraint and of ordering these sets by their cardinality is O(

∑
v∈V |Pv | + |V| log |V|). The cost

of further ordering the nodes in each set Ni by decreasing number of don’t care variables in the
one-path they represent is O(

∑
v∈V(|B||Pv |+ |Pv | log |Pv |)), since each set Ni includes |Pv | nodes

(one for each one-path) and each one-path in Pv has |B| variables. The overall cost of Step 2 is
then O(|V| log |V| + |Pv |

∑
v∈V(1 + |B| + log |Pv |)). Recursive function DefineClique is invoked

by the algorithm in Figure 3.12 at most
∏

v∈V |Pv | times, since it needs to evaluate any possible
combination of nodes (truth assignments), including a node from each Ni (a truth assignment from
each Pv , v∈V). The comparison between two truth assignments ni.I and nj .I represented by two
nodes in G has computational complexity O(|B|), since each Boolean variable in B must be checked.
In the worst case, each node in Ni (truth assignment in Pv) is compared with all the nodes in Nj

(truth assignments in all the other sets of one-paths), i �= j. The first for each loop in Step 4 has
computational complexity O(|C| · |B|), since it scans all the truth assignments represented by nodes
in C to set to 0 all the don’t care variables. The while loop in Step 4 has instead computational
complexity O(|C|2 · |B|), since it compares each pair of truth assignments represented by nodes in
C. The computational complexity of the algorithm is therefore O(

∏
v∈V |Pv | · |B|+(|V|+ |C|)2|B|),

since the costs of Step 2 and of Step 4 are dominated by the costs of Step 1 and of Step 3. �

We note that the computational cost of the algorithm includes, like the exact algorithm, the
(exponential) cost of building the OBDDs. Indeed, both the algorithms first transform the input
of the fragmentation problem into a set of one-paths, which represents the input to the problem
of computing a (maximum weighted) clique of the fragmentation graph. The advantage of our
heuristic over the exact algorithm illustrated in Section 3.5 is related to the search of the clique,
which is exponential in the number of one-paths in the exact approach, and polynomial in the
number of one-paths in the heuristic approach.

3.7 Experimental results

The exact and heuristic algorithms presented in Sections 3.5 and 3.6, respectively, have been
implemented as C programs to experimentally assess their behavior in terms of execution time and
quality of the solution. To efficiently manage OBDDs we used the CUDD libraries [105], and to
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Figure 3.14 Average number of one-paths varying the number of attributes

compute the maximum weighted clique of our fragmentation graph we used the implementation of
the algorithm described in [92]. The experiments have been carried out on a laptop equipped with
Intel 2 Duo 2GHz processor, 4 GB RAM, running Windows 7, 32 bit version.

As formally proved by Theorems 3.3 and 3.5, the computational complexity of both the exact
and heuristic algorithms depends on the number of one-paths extracted from the OBDDs repre-
senting the constraints. As a consequence, we compared the execution time and the quality of the
solution computed by the two algorithms varying the number of one-paths in the range between
10 and 30,000. The configurations considered in our experiments have been obtained starting from
a relation schema composed of a number of attributes varying from 10 to 40. For each config-
uration, we randomly generated sets of confidentiality and visibility constraints. The number of
confidentiality and visibility constraints varies from 5 to 25 and from 2 to 10, respectively. Each
confidentiality and visibility constraint includes a number of attributes that varies from 2 to 8 and
from 2 to 4, respectively. In line with real world scenarios, constraints include a limited number
of attributes. Also, the number of visibility constraints is lower than the number of confidentiality
constraints, since this choice reflects most real world scenarios, where the need for privacy imposes
more constraints than the need for data release.

Our experimental results evaluate three aspects: i) the number of one-paths extracted from the
OBDDs representing the constraints; ii) the execution time of the exact and heuristic algorithms;
and iii) the quality of the solution, in terms of number of fragments, computed by the exact and
the heuristic algorithms.

Number of one-paths. One of the main advantages of OBDDs is that the number of their
one-paths is not related to the complexity of the Boolean formulas they represent. Complex
Boolean formulas expressed on a high number of variables may therefore be characterized by an
extremely low number of one-paths. We then experimentally measure the number of one-paths of
configurations with a growing number of attributes and of confidentiality and visibility constraints.
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Figure 3.15 Execution time of the exact and heuristic algorithms

Figure 3.14 illustrates the number of one-paths characterizing configurations with a number of
attributes varying from 10 to 40 (the scale of the y-axis is logarithmic). The results illustrated in the
graph have been computed as the average of the number of one-paths obtained with 30 simulations
for each configuration, where the number of constraints in each configuration varies as explained
above. Note that the overall number of simulations is more than 30 since we discarded the best and
worst cases, and those configurations characterized by visibility constraints that are in contrast
with confidentiality constraints (i.e., configurations that do not admit a solution). As expected,
the average number of one-paths grows more than linearly with the number of attributes. It is
however interesting to note that the number of one-paths remains considerably lower than 2|B| in
all the considered configurations. This is consistent with real world scenarios, where confidentiality
constraints (visibility constraints, respectively) involve a limited number of attributes.

Execution time. As expected from the analysis of the computational complexity of our al-
gorithms (see Theorems 3.3 and 3.5), the heuristic algorithm outperforms the exact algorithm.
Indeed, consistently with the fact that the minimal fragmentation problem is NP-hard, the exact
approach requires exponential time in the number of one-paths, that is, of nodes in the fragmen-
tation graph, which is even higher than the number of one-paths extracted from OBDDs. We run
the exact algorithm only for configurations with at most 1,000 one-paths, since this configuration
is characterized by a fragmentation graph including more than 6,000 nodes and more than 190,000
edges. To further confirm the exponential growth of the computational time required by the exact
algorithm, we compute the fragmentation graph also for larger configurations (up to 5,000 one-
paths, for which the computation of the fragmentation graph takes more than 806.99 seconds).
Figure 3.15 compares the execution time of our heuristic and exact algorithms (for configurations
with up to 1,000 one-paths), varying the number of one-paths represented by the OBDDs (the
scale of both the x-axis and the y-axis is logarithmic). The figure also reports the time required
for computing the fragmentation graph for configurations including between 1,000 and 5,000 one-
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Figure 3.16 Number of fragments of the solution computed by the exact and heuristic algorithms

paths, and the execution time of the heuristic algorithm for configurations including between 5,000
and 30,000 one-paths, highlighting the benefit of the heuristic approach that does not explicitly
build the fragmentation graph.

To better understand the impact of building the OBDDs modeling the constraints and extract-
ing their one-paths, we measure the execution time required by this step, which is common to the
exact and heuristic algorithms. It is interesting to note that the impact of this step on the overall
execution time of both our algorithms is negligible. In fact, it remains under 454 milliseconds in
all the considered configurations.

Quality of the solution. Figure 3.16 reports the comparison between the number of fragments
obtained by the execution of the exact and the heuristic algorithms (the scale of the x-axis is
logarithmic). The comparison shows that, in the majority of the configurations where the compar-
ison was possible (i.e., for configurations with less than 1,000 one-paths), our heuristic algorithm
computes a locally minimal fragmentation that is also minimal since the fragmentations computed
by the two algorithms have the same number of fragments. Figure 3.16 reports the number of
fragments in the locally minimal fragmentations computed by the heuristic algorithm also for con-
figurations with a number of one-paths between 1,000 and 5,000. It is interesting to note that also
for these configurations, characterized by a considerable number of attributes and of confidentiality
and visibility constraints, the number of fragments in the locally minimal fragmentation remains
limited (in our experiments, it varies between 1 and 3 fragments). We can then conclude that
our heuristic algorithm is efficient, computes a solution close to optimum, and can therefore be
conveniently adopted in many scenarios.
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Patients
Name YoB Edu ZIP Job MarStatus Disease

t1 Alice 1974 B.Sc 90015 Assistant Married Flu
t2 Bob 1965 MBA 90038 Manager Widow Diabetis
t3 Carol 1976 Ph.D 90001 Manager Married Calculi
t4 David 1972 M.Sc 90087 Doctor Divorced Asthma
t5 Greg 1975 M.Sc 90025 Doctor Single Flu
t6 Hal 1970 Th.D 90007 Clerk Single Calculi
t7 Eric 1960 Primary 90025 Chef Divorced Diabetis
t8 Fred 1974 Ed.D 90060 Teacher Widow Asthma

(a)

C

c1={YoB, Edu}
c2={ZIP, Job}
c3={Name, Disease}
c4={YoB, ZIP, Disease}
c5={YoB, ZIP, MarStatus}

(b)

F l

Name YoB

l1 Alice 1974
l2 Bob 1965
l3 Carol 1976
l4 David 1972
l5 Greg 1975
l6 Hal 1970
l7 Eric 1960
l8 Fred 1974

Fm

Edu ZIP

B.Sc 90015 m1

MBA 90038 m2

Ph.D 90001 m3

M.Sc 90087 m4

M.Sc 90025 m5

Th.D 90007 m6

Primary 90025 m7

Ed.D 90060 m8

(c)

Figure 3.17 An example of relation (a), a set C of confidentiality constraints over it (b), and a minimal
fragmentation that satisfies the constraints in C (c)

3.8 Enhancing fragmentation with privacy-preserving asso-

ciations

In the following sections we will discuss how a fragmentation, possibly computed with the algo-
rithms we have proposed so far, can be complemented with loose associations to enrich the utility
of the released fragments. Loose associations have been proposed in [43] for fragmentations com-
posed of a single pair of fragments only. In the remainder of the chapter, we first illustrate how the
publication of multiple loose associations between pairs of fragments of a generic fragmentation
can potentially expose sensitive associations, and then describe an approach for supporting the
more general case of publishing a loose association among an arbitrary set of fragments.

3.8.1 k-Looseness

To mitigate information loss caused by the fact that fragmentation breaks the associations in the
original relation, fragments can be complemented with loose associations, introduced in [43] for
fragmentations composed of a single pair of fragments. For instance, Figure 3.17(c), illustrates
a fragmentation composed of two fragments of relation Patients in Figure 3.17(a), satisfying
the constraints in Figure 3.17(b). To release loose associations, tuples in the two fragments are
partitioned in groups, and information on the associations between tuples in fragments is released
at the group (in contrast to tuple) level.

Given a fragmentation F={F l, Fm} and its instance {f l, fm}, tuples in f l and fm are first
independently partitioned in groups of size at least kl and km, respectively. To this aim, the data
owner defines a k-grouping function for each of the two fragments. A k -grouping function partitions
tuples in a fragment instance f in groups of size at least k , by associating a group identifier with
each tuple in f [43].
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Figure 3.18 Graphical representation (a) and corresponding relations (b) of a 4-loose association between
fragments F l and Fm in Figure 3.17(c)

Definition 3.12 (k -Grouping). Given a fragment F i, its instance f i, and a set GIDi of group
identifiers, a k -grouping function over f i is a surjective function Gi:f i→GIDi such that ∀gi ∈
GIDi :| G−1

i (gi) |≥ k.

Notation (kl,km)-grouping denotes a kl-grouping over f l and a km-grouping over fm (note
that kl may be different from km). Once each tuple in f l and in fm is associated with a group
identifier, the group-level relationships between tuples in f l and in fm are represented by an
additional relationA. For each tuple t in the original relation, relationA includes a tuple containing
the group where t [F l] appears in f l and the group where t [Fm] appears in fm. For instance,
Figure 3.18(a) represents a partition in groups of size kl=km=2 of the tuples in fragments f l and
fm in Figure 3.17(c). For simplicity, given a tuple t in the original relation, we denote with l (m ,
resp.) the sub-tuple t [F l] (t [Fm], resp.) in fragment f l (fm, resp.). The edges connecting grey
dots, which correspond to tuples in groups, represent the group-level associations between tuples
in the two fragments implied by relation Patients in Figure 3.17(a). Figure 3.18(b) illustrates
relation A and fragments F l and Fm enriched with an attribute (Gl and Gm, resp.) reporting the
identifier of the group to which each tuple belongs.

The partitioning of the tuples in the two fragments should be carefully designed to guarantee
that sensitive associations cannot be reconstructed exploiting A. Intuitively, a loose association
between a pair of fragments {F l, Fm} enjoys a degree k of protection (referred to as k-looseness)
if every tuple in A indistinguishably corresponds to at least k distinct associations among tuples in
f l and fm with different values for the attributes involved in each confidentiality constraint c such
that c⊆F l∪Fm. In fact, the release of a loose association between F l and Fm only puts at risk
constraints whose attributes are all represented by the two fragments. For instance, the first tuple
in table A in Figure 3.18(b) corresponds to four possible tuples (i.e., 〈l1,m1〉, 〈l1,m5〉, 〈l3,m1〉,
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〈l3,m5〉), all with different values for attributes YoB and Edu composing constraint c1, which is the
only constraint completely covered by F l and Fm. In other words, the release of F l, Fm, and A
satisfies k-looseness for each k ≤ kl · km, if for each group gl in f l (gm in fm, resp.), the union
of the tuples in all the groups with which gl (gm, resp.) is associated in A is a set of at least k
tuples with different values for the attributes in each constraint c⊆F l∪Fm [43]. For instance, the
association in Figure 3.18 satisfies k -looseness for any k ≤ 4.

3.8.2 Exposure risk

Although effective for publishing loose associations between pairs of fragments, the proposal in [43]
cannot be directly applied to the release of multiple loose associations between different pairs of
fragments, since they might disclose sensitive associations. To illustrate the problem, consider
a fragmentation F composed of 3 fragments, say F l, Fm, and F r. A straightforward approach
to release group-level associations among these fragments consists in releasing two distinct loose
associations between two pairs of fragments in F (e.g., one between F l and Fm, and one between
Fm and F r). For instance, consider a fragmentation of relation Patients in Figure 3.17(a) that
satisfies the constraints in Figure 3.17(b), composed of 3 fragments F l={Name, YoB}, Fm={Edu,
ZIP}, and F r={Job, MarStatus, Disease}. Figure 3.19 illustrates a 4-loose association between
F l and Fm (Alm), and a 4-loose association between Fm and F r (Amr) (note that tuples in fm
are partitioned according to two different grouping functions, one for each loose association).

Such an approach clearly releases useful information on the associations between the tuples in
F l and Fm, and between the tuples in Fm and F r. The loose associations between F l and Fm,
and between Fm and F r imply however an induced association between F l and F r: F l can be
loosely joined with Fm, which in turn can be loosely joined with F r. Therefore, each tuple in
f l is associated with a group of tuples in fm, each of which is in turn associated with a group
of tuples in f r. As an example, tuple l7 in fragment f l in Figure 3.19 is associated with tuples
m3, m4, m6, and m7 in fragment fm. In turn, m3 and m6 are associated with r1, r3, r5, and
r6 in f r. Tuples m4 and m7 are instead associated with r2, r4, r7, and r8 in f r. Therefore, l7
is possibly associated with any tuple in f r. The induced association between F l and F r might
then seem to enjoy a protection degree equal to (or even greater than) those enjoyed by Alm and
Amr. However, publishing loose associations Alm and Amr guarantees that sensitive associations
involving only attributes in F l and Fm, and only attributes in Fm and F r are protected. It does
not provide any guarantee on the protection of sensitive associations involving attributes stored
in F l and in F r, which are possibly exposed by the induced association. This is due to the fact
that the loose association between F l and Fm requires tuples in f l (fm, resp.) associated with
each group in fm (f l, resp.) to have different values for the attributes appearing in constraints
c⊆F l∪Fm (c1, in our example). Analogously, the loose association between Fm and F r requires
tuples in fm (f r, resp.) associated with each group in f r (fm, resp.) to have different values for the
attributes appearing in constraints c⊆Fm∪F r (c2, in our example). Constraints c ⊆F l∪Fm∪F r

such that c∩F l �=∅ and c∩F r �=∅ (c3, c4, c5, in our example) are instead ignored. To illustrate,
the release of the fragments and loose associations in Figure 3.19 exposes the sensitive association
between attributes Name and Disease, violating constraint c3 in Figure 3.17(b). In fact, tuple
l1 in f l is associated with tuples m1, m3, m5, and m6 in fm. In turn, m1, m3, m5, and m6

in fm are all associated with tuples r1, r3, r5, and r6 in f r. Thus, the observation of Alm

and Amr reveals that l1 is associated, in the original relation, with one among r1, r3, r5, and
r6, but r1[Disease]=r5[Disease]=Flu and r3[Disease]=r7[Disease]=Calculi. Therefore, either
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Figure 3.19 Graphical representation (a) and corresponding relations (b) of a 4-loose association Alm

between F l and Fm, and a 4-loose association Amr between Fm and F r, with F l, Fm, and F r three
fragments of relation Patients in Figure 3.17(a)

association 〈Alice,Flu〉 or association 〈Alice,Calculi〉 belongs to relation Patients with the same
probability. The degree of protection for constraint c3 offered by the release of the two loose
associations in Figure 3.19 is then 2 (and not 4 as for constraints c1 and c2). Note that the release
of arbitrary loose associations may completely expose sensitive associations. For instance, assume
that r3[Disease]=r6[Disease]=Flu. The released associations would still be 4-loose, but they
reveal that Alice suffers from Flu.

The privacy breach described above represents a serious issue for the data owner since it exposes
sensitive associations that she is not explicitly publishing. She could then be unaware of the fact
that the released fragments and loose associations expose sensitive associations. In the remainder
of this chapter, we illustrate our proposal for counteracting such a privacy problem. Our intuition
is to define a single loose association encompassing all the fragments among which the data owner
needs to publish group-level associations. In this way, we aim at defining one loose association
only that takes into consideration all the confidentiality constraints among attributes stored by
the released fragments. Intuitively, since all the published fragments are involved in the same
loose association, publishing this association does not imply the disclosure of induced associations
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that can be exploited by malicious recipients to precisely reconstruct sensitive associations. As we
will detail in the following sections, starting from this loose association, the data owner may then
choose to either release it as a whole, or use it to build an arbitrary set of loose associations, with
the guarantee that no sensitive association be improperly exposed.

3.9 Loose associations

Given a fragmentation F of a relation S and a set C of confidentiality constraints over S , we define
a loose association among the fragments in F (note that our approach also permits to define a loose
association among an arbitrary subset of fragments in F). For the sake of readability, we refer
the discussion to a fragmentation F={F l, Fm, F r} composed of 3 fragments, while definitions are
formulated on fragmentations composed of an arbitrary number of fragments. In line with previous
works on fragmentation [3, 28, 43], we assume that data recipients do not possess any additional
knowledge besides released fragments, loose associations, and confidentiality constraints defined
by the data owner.

The first step necessary for the definition of a loose association among the fragments in F is the
identification of the subset of confidentiality constraints in C that are relevant for F . A constraint
is relevant for a set {F 1, . . . ,Fn} of fragments if it includes only attributes represented by the
fragments in {F1, . . . ,Fn}. Indeed, any other constraint cannot be violated by the release of a
loose association among fragments in {F 1, . . . ,Fn}.

Definition 3.13 (Relevant constraints). Given a set T = {F 1, . . . ,Fn} of fragments and a set C of
confidentiality constraints, the set CT of relevant constraints for T is defined as CT = {c∈C:c⊆F 1∪
. . . ∪ Fn}.

For instance, the only constraint in Figure 3.17(b) relevant for the set of fragments in Fig-
ure 3.17(c) is c1 as it is the only constraint whose attributes belong to the set {Name, YoB, Edu,
ZIP}.

Given a fragmentation F={F1, . . . ,Fn}, the tuples in each fragment are partitioned according
to different grouping functions, which may adopt different protection parameters (thus generating
groups of different size). A (k1, . . . , kn)-grouping is a set {G1, . . . ,Gn} of grouping functions defined
over fragments in {f 1, . . . , f n} (i.e., a set of ki-groupings over f i, i=1, . . . , n). As an example,
Figure 3.20 illustrates a (2,2,2)-grouping involving fragments F l={Name, YoB}, Fm={Edu, ZIP}
and F r={Job, MarStatus, Disease} of relation Patients in Figure 3.17(a), and the corresponding
group association. It is easy to see that tuple t1 in relation Patients is represented in fragments
F l, Fm, and F r by tuples l1, m1, and r1, respectively. The association among l1, m1, and r1 is
represented by tuple 〈ny1,ez1,jmd1〉 in A, which defines an association among the groups to which
l1, m1, and r1 belong.

A group association A can be safely released only if it cannot be exploited to reconstruct, totally
or in part, sensitive associations among the released fragments. A (kl,km,kr)-grouping guarantees
that each tuple in A corresponds to kl·km·kr different associations among tuples in f l, fm, and
f r. However, some tuples represented by these kl·km·kr associations might have the same values
for the attributes in a relevant constraint, thus reducing in practice the protection degree enjoyed
by the published group association. To guarantee that a group association A does not expose
relevant confidentiality constraints, each tuple in A must refer to k distinct associations among
sub-tuples in fragments that do not have the same values for the attributes in relevant constraints.
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Figure 3.20 Graphical representation (a) and corresponding relations (b) of a 4-loose association among
three fragments F l, Fm, and F r of relation Patients in Figure 3.17(a)

A group association satisfying this property is said to be k-loose. To compare the values assumed
in fragments by the attributes in relevant constraints, we formally introduce the alike relationship
between tuples as follows.

Definition 3.14 (Alike). Given a fragmentation F={F1, . . . ,Fn} with its instance {f 1, . . . , f n},
and the set CF of confidentiality constraints relevant for F , ti,tj∈f z, z = 1, . . . , n, are said to be
alike with respect to a constraint c∈CF , denoted ti�c tj iff c∩F z �=∅ ∧ ti[c∩F z ]=tj[c∩F z ]. Two
tuples are said to be alike with respect to a set CF of relevant constraints, denoted ti�CF tj, if they
are alike with respect to at least one constraint c∈CF .

Definition 3.14 states that given a fragmentation F , two tuples in a fragment instance f i are
alike if they have the same values for the attributes in a constraint relevant for F . For instance, with
reference to the (2,2,2)-grouping in Figure 3.20, r4�c3r8 since r4[Disease]=r8[Disease]=Asthma.
Since we are interested in evaluating the alike relationship w.r.t. the set CF of relevant constraints,
in the following we omit the subscript of the alike relationship whenever clear from the context
(i.e., we write t i�t j instead of t i�CF t j). The alike relationship guides the definition of k -loose
group associations among arbitrary sets of fragments, as formally defined in the following.

Definition 3.15 (k -Looseness). Given a fragmentation F = {F1, . . . ,Fn} with its instance
{f 1, . . . , f n}, the set CF of confidentiality constraint relevant for F , and a group association A
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over {f 1, . . . , f n}, A is said to be k -loose w.r.t. CF iff ∀c∈CF , ∀F i∈F : c∩F i �=∅ and ∀gi∈GIDi,
∃F j∈F : c∩F j �=∅ that satisfies the following condition: let T =

⋃
z{G

−1
j (gz) | (gi, gz) ∈ A[Gi, Gj ]}

=⇒ | T |≥k, and ∀tx,ty∈T , x �= y, tx ��c ty.

k -Looseness guarantees that sensitive associations represented by relevant constraints cannot
be reconstructed with confidence higher than 1/k . According to the definition above, a group asso-
ciation A is k -loose if each tuple in A corresponds to k possible tuples in the original relation that
are not alike w.r.t. any relevant constraint. Note that, however, there are cases in which the alike
requirement can be relaxed. In fact, whenever a value v in the domain of an attribute is considered
not sensitive (e.g., because it characterizes the majority of the tuples in the original relation), the
alike relationship may consider such a value as neutral . In this case, even if t i[Attr]=t j[Attr]=v,
t i ��t j.

The definition of k -looseness translates into the satisfaction of a different condition depending
on whether the considered constraint involves two (like in [43]) or more fragments.

• Constraints between two fragments. k -Looseness requires that, for each group gl in f l, the
union of the tuples in all the groups gm in fm with which gl is associated is a set including at
least k tuples that are not alike w.r.t. c (and viceversa). With reference to the example in
Figure 3.20, c1 cannot be reconstructed since each group in f l is associated with two different
groups in fm including tuples that do not contain duplicates for Edu and viceversa.

• Constraints among more than two fragments. k -Looseness requires to break the association
between at least two of the fragments storing attributes in c to guarantee that the sensitive
association represented by c cannot be reconstructed. We then need to guarantee that, for
each group gl in f l, the union of the tuples in all the groups gm in fm with which gl is
associated or the union of the tuples in all the groups gr in f r with which gl is associated is
a set of at least k tuples that are not alike w.r.t. c . Clearly, this property must hold also for
each group gm in fm and for each group gr in f r. For instance, consider the fragments and
group association in Figure 3.20 and constraint c5 over them. Sensitive associations among
YoB, ZIP, and MarStatus cannot be reconstructed even if group ny2 in f l is associated with
groups jmd1 and jmd2 in f r whose tuples have the same values for attribute MarStatus. In
fact, group ny2 is associated with groups ez1 and ez4 in fm, which do not include tuples that
are alike w.r.t. c5 (i.e., tuples in ez1 and ez4 have all different values for ZIP).

This definition of k -looseness implies that the release of a (kl,km,kr)-grouping induces a k -
loose association with k=min(kl·km, km·kr, kl·kr). In fact, the constraints relevant for {F l,Fm}
({Fm,F r} and {F l,F r}, resp.) enjoy a protection degree klm=kl·km (kmr=km·kr and klr=kl·kr,
resp.). Constraints relevant for {F l,Fm,F r} enjoy the minimum protection degree among klm,
kmr, and klr since, as illustrated above, it is not required that all the associations among the
attributes in the constraints be broken. Figure 3.20(b) illustrates the 4-loose association induced
by the (2,2,2)-grouping in Figure 3.20(a). This association guarantees the same protection degree
k=klm=kmr=klr=4 to each pair of fragments (and then also to F).

3.10 Heterogeneity properties

In this section, we enhance and extend the heterogeneity properties (i.e., group, association, and
deep heterogeneity), originally proposed to guarantee that a group association between two frag-
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ments is k -loose, to provide the same guarantee to group associations defined on an arbitrary
number of fragments.

Group Heterogeneity. This property guarantees that groups do not include tuples with the
same values for the attributes in relevant constraints. In this way, the minimum size ki of the
groups in fragment F i, i = 1, . . . , n, reflects the minimum number of different values in the group
for each subset of attributes that appear together in a relevant constraint.

Property 3.3 (Group heterogeneity). Given a fragmentation F = {F 1, . . . ,Fn} with its instance
{f 1, . . . , f n}, and the set CF of constraints relevant for F , grouping functions Gi over f i, i =
1, . . . , n, satisfy group heterogeneity iff ∀f i∈{f 1, . . . , f n}, ∀tz,tw∈f i: tz�tw =⇒ Gi(tz)�=Gi(tw).

The definition of this property is similar to the one operating on two fragments, as it is local to
the tuples in each fragment. It however operates on a different set of constraints, that is, the set of
constraints relevant for F . For instance, in Figure 3.20 the grouping functions defined for the three
fragments satisfy group heterogeneity for CF={c1, . . . , c5}. On the contrary, the groupings for the
three fragments in Figure 3.19 do not satisfy group heterogeneity for F={F l,Fm,F r} since, for
example, r1�c3r5 and they belong to the same group. However, these groupings satisfy group
heterogeneity for F1={F l, Fm} (where c1 is the only relevant constraint) and for F2={Fm, F r}
(where c2 is the only relevant constraint).

Association Heterogeneity. For loose associations between two fragments, this property re-
quires that A cannot have duplicates. This simple condition is however not sufficient in our (more
general) scenario. In fact, association heterogeneity aims at guaranteeing that, for each constraint
c in CF , each group in f i is associated with at least ki different groups in at least one of the frag-
ments storing attributes in c (i.e., groups in f j such that c∩F j �=∅). If a group in f i is associated
with one group in f j only, it is easier for an observer to reconstruct the correct associations among
the tuples in these two groups (and therefore to violate constraints). This condition implies that
A cannot have two tuples with the same group identifier for all the fragments storing attributes
composing a constraint (for constraints involving more than two fragments, it is sufficient that one
of the values in the tuple be different).

Since we consider minimal fragmentations, there exists at least one relevant constraint for each
pair of fragments in F (i.e., ∀{f i,f j}⊆F , i �= j, ∃c∈C s.t. c⊆F i∪F j , Theorem A.2 in [43]).
Therefore, a group association A satisfies association heterogeneity if it does not have two tuples
with the same group identifier for any pair of fragments in F .

Property 3.4 (Association heterogeneity). A group association A satisfies association hetero-
geneity iff ∀(gi1 , . . . , gin), (gj1 , . . . , gjn) ∈A: iz = jz =⇒ iw �= jw, w = 1, . . . , n and w �= z.

Intuitively, association heterogeneity requires that the projection over A of any subset of two
attributes does not contain duplicate tuples. It is immediate to see that the group association in
Figure 3.20 satisfies association heterogeneity.

Deep Heterogeneity. This property guarantees that a group in f i cannot be associated with dif-
ferent groups in f j including duplicated values for the attributes in a relevant constraint c⊆F i∪F j .
The groups in f j with which a group in f i is associated may be composed of tuples with exactly
the same values for the attributes in c , limiting the protection offered by the loose association.
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For instance, groups jmd1 and jmd3 in Figure 3.20 have the same values for attribute Disease

(i.e., Flu and Asthma). Therefore, a group in f l cannot be associated with both jmd1 and jmd3
because of constraint c3 (otherwise, the association between F l and F r would be 2-loose instead
of 4-loose).

Deep heterogeneity imposes diversity by looking at the values behind the groups. The definition
of deep heterogeneity over pairs of fragments requires that the groups in fragment f i with which
a group in f j is associated in A do not contain alike tuples. A straightforward approach to
extend deep heterogeneity would require diversity over all the fragments storing the attributes
composing the constraint. In other words, considering a constraint c composed of attributes
stored in fragments {F 1, . . . ,Fn}, all the groups in each fragment f i (i = 1, . . . , n) with which a
group in f j (j = 1, . . . , n, i �= j) is associated in A should not contain tuples that are alike w.r.t.
c . This condition is more restrictive than necessary to define a k -loose association. In fact, it is
sufficient, for each fragment F j , to break the association with one of the fragments F i (i = 1, . . . , n,
i �= j) storing the attributes in c . For instance, with reference to the example in Figure 3.20, it is
sufficient that each group in f l be associated with groups of non-alike tuples in either fm or f r to
guarantee that the sensitive association modeled by c5 is not exposed.

Property 3.5 (Deep heterogeneity). Given a fragmentation F = {F1, . . . ,Fn} with its instance
{f 1, . . . , f n}, and the set CF of constraints relevant for F , a group association A over F satisfies
deep heterogeneity iff ∀c∈CF ; ∀F z ∈ F , F z ∩ c �= ∅; ∀ (gi1 ,gi2 . . . gin),(gj1 ,gj2 . . . gjn) ∈ A the
following condition is satisfied:

iw = jw =⇒
∨

l=1,...,n, l 	=w

�tx,ty: tx∈G−1
l (gil), ty∈G−1

l (gjl), tx �c ty.

Given a constraint c whose attributes appear in fragments {F i1 , . . . ,F ij}, deep heterogeneity
is satisfied w.r.t. c if the set of tuples in the groups {gx1 , . . . , gxw} in f ix with which a group gy in
f iy is associated are not alike w.r.t. c , for at least one fragment f ix , x = 1, . . . , j and x �= y. This
property must be true for all the groups in each fragment F ix , x = 1, . . . , j. This guarantees that,
for each constraint, no association can be precisely reconstructed by an observer. An example of
group association that satisfies deep heterogeneity is illustrated in Figure 3.20. Note that deep
heterogeneity is satisfied even though group ny2 in f l is associated with groups jmd1 and jmd2 in
f r, which include tuples r1�c5

r3 and r4�c5
r7. In fact, group ny2 is also associated with groups

ez1 and ez4 in fm that do not include tuples that are alike w.r.t. c5 (i.e., with the same value for
ZIP).

If the three properties above are satisfied by a (k1, . . . , kn)-grouping and its induced group
association, the group association is k -loose with k≤min(ki · kj) ∀i, j = 1, . . . , n, i �= j, as stated
by the following theorem.

Theorem 3.6. Given a fragmentation F = {F 1, . . . ,Fn} with its instance {f 1, . . . , f n}, the set CF
of constraints relevant for F , and a (k1,. . . ,kn)-grouping that satisfies Properties 3.3, 3.4, and 3.5,
the group association A induced by the (k1, . . . , kn)-grouping is k-loose w.r.t. CF (Definition 3.15)
for each k≤min(ki · kj), with i, j = 1, . . . , n, i �= j.

Proof: Let us first consider constraint c in CF , to assess the protection offered by the release of
a (k1,. . . ,kn)-grouping that satisfies Properties 3.3, 3.4, and 3.5.

By Definition 3.12, each group GF a∈GIDi contains at least ki tuples, ∀F (X, i) ∈ F . Hence,
Property 3.4 implies that each group GF a∈GIDi is associated with at least ki different groups in
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GIDj , ∀F (X, j) ∈ F with i �= j. Let us denote with groups jai the tuples in f j composing these
groups. Properties 3.3 and 3.5 guarantee that, for each GF a∈GIDi, there exists at least a fragment
F (X, j) ∈ F , with i �= j, such that groups jai do not contain tuples that are alike w.r.t. constraint
c . As a consequence, each GF a∈GIDi is associated with a total number of tuples in f j greater
than or equal to min(|groups jai |·ki), ∀F (X, j) ∈ F with i �= j, none of which are alike w.r.t. c .
Clearly, |groups jai |≥ kj and therefore |groups jai · ki |≥ kj · ki.

Then, the (k1,. . . ,kn)-grouping satisfying Properties 3.3, 3.4, and 3.5 induces a group association
that is k-loose w.r.t. c for each k≤min(ki · kj) ∀F (X, i), F (X, j) ∈ F . Note that if the attributes
in c are stored at two fragments only, say F (X, i) and F (X, j), the association represented by c is
protected with a privacy degree k=ki · kj .

We then conclude that the (k1,. . . ,kn)-grouping satisfying Properties 3.3, 3.4, and 3.5 induces
a group association that is k-loose w.r.t. CF for each k≤min(ki · kj) ∀F (X, i), F (X, j) ∈ F . �

As a consequence of the above theorem, the protection degree that a (k1, . . . , kn)-grouping that
satisfies Properties 3.3, 3.4, and 3.5 offers may be different for each confidentiality constraint c
in CF . Indeed, the protection degree for a constraint c is min(ki · kj), where F i,F j ∈ {F ∈ F :
F ∩ c �= ∅}.

3.11 Discussion

The consideration of all the constraints relevant for the fragments involved in the loose association
guarantees that no constraint can be violated. Thus, our loose association defined over an arbitrary
set of fragments does not suffer from the confidentiality breach illustrated in Section 3.8.2, mainly
caused by the fact that confidentiality constraints relevant for the fragments involved in induced
associations are ignored. As an example, with reference to the 4-loose association in Figure 3.20,
each tuple in A corresponds to four different associations of (different) values for attributes Name
and Disease. This guarantees that constraint c3 is satisfied, while it is violated by the example
in Figure 3.19.

The release of a k -loose association among a set F of fragments is equivalent to the release
of 2n − n, with n = |F|, k -loose associations (one for each subset of fragments in F). Indeed,
the projection over a subset of attributes in A represents a k -loose association for the fragments
corresponding to the projected attributes.

Observation 4. Given a fragmentation F={F 1,. . . ,Fn}, a subset {F i, . . . ,F j} of F , and a k-
loose association A(G1, . . . , Gn) over F , group association A′(Gi, . . . , Gj) = π(Gi,...,Gj)(A) is a k-loose
association over {F i, . . . ,F j}.

For instance, with reference to the 4-loose association in Figure 3.20, the projection of attributes
Gl, Gm in A is a 4-loose association between F l and Fm.

Since a k -loose association defined over a set F of fragments guarantees that sensitive asso-
ciations represented by constraints in CF are properly protected, the release of multiple loose
associations among arbitrary (and possibly overlapping) subsets of fragments in F provides the
data owner with the same protection guarantee. The data owner can therefore decide to release
either one loose association A encompassing the associations among the fragments in F , or a
subset of loose associations defined among arbitrary subsets of fragments in F by projecting the
corresponding attributes from A.
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Observation 5. Given a fragmentation F={F 1,. . . ,Fn} and a k-loose association A(G1, . . . , Gn)
over it, the release of an arbitrary set of k-loose associations {A1(Gh, . . . , Gi), . . . , Am(Gj , . . . , Gk)}
with {Gh, . . . , Gk}⊆{G1, . . . , Gn} provides the same protection guarantee as the release of A.

For instance, with reference to our examples above, aiming at releasing two distinct 4-loose
associations, the data owner can release the 4-loose associations obtained projecting 〈Gl,Gm〉 and
〈Gm,Gr〉 from the 4-loose association in Figure 3.20. This solution does not suffer from the privacy
breach illustrated in Section 3.8.2, while providing associations between groups of the same size
(i.e., the same utility for data recipients).

The two observations above need to be considered if the data owner is interested in releasing
more than one loose association among arbitrary subsets of fragments in F . On the contrary, if the
loose associations of interest operate on disjoint subsets of fragments (i.e., no fragment is involved
in more than one loose association), they can be defined independently from each other without
risks of unintended disclosure of sensitive associations.

Observation 6. Given a fragmentation F , and a set {F1, . . . , Fn} of subsets of fragments in
F (i.e.., Fi ⊆ F , i = 1, . . . , n), the release of n loose associations Ai, i = 1, . . . , n is safe if
∀i, j = 1, . . . , n with i �= j, Fi∩Fj=∅.

3.12 Chapter summary

In this chapter, we addressed the problem of fulfilling both the needs of properly protecting sen-
sitive data and of guaranteeing visibility requirements in data release scenarios. The proposed
solution relies on a graph-based modeling of the fragmentation problem that takes advantage of
a novel OBDD-based approach compactly representing confidentiality and visibility constraints.
The fragmentation problem is then reformulated in terms of the problem of computing a max-
imum weighted clique over a graph modeling the fragments that satisfy confidentiality and (a
subset of) visibility constraints. The set of fragments in the graph is efficiently computed adopting
OBDDs that represent the Boolean formulas corresponding to confidentiality and visibility con-
straints. We presented both an exact and a heuristic algorithm to solve the fragmentation problem
and experimentally compared their efficiency and the quality of the fragmentations computed by
the heuristics. We also presented an approach for enriching the utility of a released fragmentation
composed of an arbitrary number of fragments, based on loose associations. We first described the
exposure risks that characterize the release of multiple loose associations between pairs of frag-
ments, and then presented an approach supporting the definition of a loose association among an
arbitrary number of fragments. We also discussed some properties of the proposed solution.



4

Counteracting inferences from sensitive value
distributions

At a first sight, excluding sensitive data from the release (i.e., releasing only a collection of non
sensitive data), might seem a safe approach for protecting data confidentiality. Unfortunately, the
possible correlations and dependencies existing among data can introduce inference channels in
the data release process, causing sensitive information to be leaked even if such information is not
explicitly released. In this chapter, we consider a scenario where data are incrementally released
and we address the privacy problem arising when sensitive and non released information depend
on (and can therefore be inferred from) non sensitive released data. We propose a model capturing
this inference problem, where sensitive information is characterized by peculiar value distributions
of non sensitive released data. We then describe how to counteract possible inferences that an
observer can draw by applying different statistical metrics on released data. Finally, we perform
an experimental evaluation of our solution, showing its efficacy.

4.1 Introduction

The problem of releasing data ensuring privacy to sensitive information is complicated by the fact
that the release of a data collection might expose information that is not explicitly included in
the release. As a matter of fact, assuming absence of correlations or dependencies among data
(as assumed by traditional privacy-preserving techniques) does not fit many real-world scenarios,
where data dependencies can be quite common. Data dependencies can cause inference channels
to arise, allowing a recipient to either precisely determine, or reduce the uncertainty about, the
values of sensitive, not released, information that is somehow dependent on the released one. This
problem has been under the attention of researchers for decades and has been analyzed from
different perspectives, resulting in a large body of research that includes: statistical databases and
statistical data publications (e.g., [1]); multilevel database systems with the problem of establishing
proper classification of data, capturing data relationships and corresponding inference channels
(e.g., [37, 70]); ensuring privacy of respondents’ identities or of their sensitive information when
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publishing macro or micro data (e.g., [31, 32]); protection of sensitive data associations due to data
mining (e.g., [2]). Several approaches have been proposed addressing all these aspects, and offering
solutions to block or limit the exposure of sensitive or private information. However, new scenarios
of data release, coupled with the richness of published data and the large number of available data
sources, raise novel problems that still need to be addressed.

In this chapter, we address a specific problem related to inferences arising from the dependency
of sensitive (not released) information referred to some entities on other properties (released)
regarding such entities. In particular, we are concerned with the possible inferences that can be
drawn by observing the distribution of values of non sensitive information associated with these
entities. As an illustrating example, the age distribution of the soldiers in a military location may
permit to infer the nature of the location itself, such as a headquarter (hosting old officials) or a
training campus (hosting young privates), which might be considered sensitive. Such a problem
of sensitive information derivation becomes more serious as the amount of released data increases,
since external observations will tend to be more representative of the real situations and the
confidence in the external observations will increase. Although this problem resembles in some
aspects the classical problem of controlling horizontal aggregation of data, it differs from it in
several assumptions. In particular, we assume a scenario where an external observer could gather
the data released to legitimate users and inference is due to peculiar distributions of data values.
Also, we are concerned not only with protecting sensitive information associated with specific
entities, but also with avoiding possible false positives, where sensitive values may be improperly
associated (by the observers) with specific entities.

The contributions of this chapter are multi-fold. First, as mentioned above, we identify and
characterize a novel inference problem. We then introduce several metrics to assess the inference
exposure due to data release. Our metrics are based on the concepts of mutual information, which
has been widely used in several security areas ranging from the definition of distinguishers for
differential side-channel analysis (e.g., [8, 18, 61, 110]) to data-hiding and watermarking security
(e.g., [21]), and of distance between the expected and the observed distribution of values of non
sensitive information. According to these metrics, we characterize and define a safe release with
respect to the considered inference channel. We describe the controls to be enforced in a sce-
nario where tuples are released one at a time, upon request, and we also present an experimental
evaluation proving the effectiveness of our solution.

4.1.1 Chapter outline

The remainder of this chapter is organized as follows. Section 4.2 introduces our reference scenario
of inference in data release, raised from a real case study that needed consideration. Section 4.3
formally defines the problem of releasing a dataset without leaking (non released) sensitive infor-
mation due to the dependency existing between the frequency distribution of some properties of
the released dataset and the not released information. Section 4.4 describes two possible strategies
that use the mutual information and distance between distributions for counteracting the consid-
ered inference problem. Section 4.5 illustrates how the two strategies proposed can be concretely
implemented by adopting different metrics that determine when a data release is safe with respect
to inference channels that may leak sensitive information. Section 4.6 describes how to control the
on-line release of the tuples in a dataset. Section 4.7 discusses the experimental results proving
the effectiveness of our solution. Finally, Section 4.8 gives our conclusions.
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Figure 4.1 Reference scenario

4.2 Reference scenario and motivation

We consider a scenario (see Figure 4.1) where a data holder maintains a collection of records stored
in a trusted environment. Each record contains different attributes and pertains to a unique data
respondent, who is the only authorized party that can require its release. While the records
individually taken are not sensitive, their aggregation is considered sensitive since it might enable
inferring sensitive information not appearing in the records and not intended for release. We
assume all requests for records to be genuine and communication to data respondents of responses
to their record release requests to be protected. As a consequence, malicious observers are aware
neither of the requests submitted by respondents nor of the data holder answers. We also assume
that the number of records stored at the data holder site is kept secret. However, once records are
released, the data holder has no control on them and therefore external observers can potentially
gather all the records released. This may happen even with cooperation of respondents, in the case
of external servers where released data may be stored.

The data holder must ensure that the collection of records released to the external world be safe
with respect to potential inference of sensitive (not released) information that could be possible by
aggregating the released records. We consider a specific case of horizontal aggregation and inference
channel due to the distribution of values of certain attributes with respect to other attributes. In
particular, inference is caused by a distribution of values that deviates from expected distributions,
which are considered as typical and are known to the observers. In other worlds, a record is released
only if, when combined with records already released, does not cause a deviation of the distribution
of the records released from the expected distribution.
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In the reminder of this chapter, we refer our examples to a real case scenario characterized
as follows. The data holder is a military organization that maintains records on its personnel.
Each record refers to a soldier and reports attributes Name, Age, and Location where the soldier
is on duty. Some of the military locations are headquarters of the army. The information that a
location is a headquarter is considered sensitive and neither appears in the soldiers’ records nor
it is released in other forms. Soldiers’ records can be released upon request of the soldiers. In
addition, the age distribution of soldiers is a distribution that can be considered common and
widely known to the external world and, in general, typically expected at each location. However,
locations where headquarters are based show a different age distribution, characterized by an
unusual peak of soldiers of middle age or older. Such a distribution clearly differs from the expected
age distribution, where the majority of soldiers are in their twenties or thirties. The problem is
therefore that, while single records are considered non sensitive, an observer aggregating all the
released records could retrieve the age distribution of the soldiers in the different locations and
determine possible deviations from the expected age distribution for certain locations, thus inferring
that a given location hosts a headquarter. As an example, consider an insurance company offering
special rates to military personnel. If all the soldiers subscribe to a policy with this company to
take advantage of the discount, the insurance company (as well as any user accessing its data)
has knowledge of the complete collection of released records and can therefore possibly discover
headquarter locations. Our problem consists in ensuring that the release of records to the external
world be safe with respect to such inferences. The solution we describe in the following provides a
response to this problem by adopting different metrics to assess the inference exposure of a set of
records and, based on that, to decide whether a record (a set thereof) can be released.

4.3 Data model and problem definition

We provide the notation and formalization of our problem. Our approach is applicable to a
generic data model with which the data stored at the data holder site could be organized. For
concreteness, we assume data to be maintained as a relational database. Consistently with other
proposals (e.g., [100]), we consider the data collection to be a single relation R characterized by
a given set A of attributes; each record in the data collection is a tuple t in the relation. Among
the attributes contained in the relation, we distinguish a set Y ⊂ A of attributes whose values
represent entities, called targets .

Example 4.1. In our running example, relation R is defined on the set A={Name, Age, Location}
of attributes, with Y={Location}. We assume that the domain of attribute Location includes
values L1, L2, L3, L4, L5, representing five different military locations.

While targets, that is, the entities identified by Y (locations in our example), are non sensitive,
they are characterized by sensitive properties , denoted s(Y ), which are not released. In other
words, for each y ∈ Y the associated sensitive information s(y) does not appear in any released
record. However, inference on it can be caused by the distribution of the values of a subset of
some other attributes X ⊆ A for the specific y. We denote by P (X) the set of relative frequencies
p(x) of the different values x in the domain of X which appear in relation R. Also, we denote
by P (X |y) the relative frequency of each value in the domain of X appearing in relation R and
restricted to the tuples for which Y is equal to y. We call this latter the y-conditioned distribution
of X in R.
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 72 26 38 47 73 256
18-19 151 53 82 140 223 649
20-24 539 147 449 505 736 2376
25-29 452 114 370 418 613 1967
30-34 335 213 234 318 501 1601
35-39 321 238 277 332 538 1706
40-44 128 219 122 162 220 851
45-49 20 205 50 49 76 400
50-54 9 71 28 34 31 173
≥55 2 13 2 2 2 21

Total 2029 1299 1652 2007 3013 10000

(a)

P(Age|Li)
Age L1 L2 L3 L4 L5 P(Age)

<18 3.55 2.00 2.31 2.34 2.42 2.56
18-19 7.44 4.08 4.96 6.98 7.40 6.49
20-24 26.56 11.32 27.18 25.16 24.44 23.76
25-29 22.28 8.78 22.40 20.83 20.35 19.67
30-34 16.51 16.40 14.16 15.84 16.63 16.01
35-39 15.82 18.32 16.77 16.54 17.86 17.06
40-44 6.31 16.86 7.38 8.07 7.30 8.51
45-49 0.99 15.78 3.03 2.44 2.52 4.00
50-54 0.44 5.46 1.69 1.69 1.03 1.73
≥55 0.10 1.00 0.12 0.11 0.05 0.21

(b)

Li P(Li)

L1 20.29
L2 12.99
L3 16.52
L4 20.07
L5 30.13

(c)

Figure 4.2 Number of tuples in relation R by Age and Location (a), Li-conditioned distributions
P(Age|Li), i = 1, . . . , 5, over relation R (b), and location frequencies (c)

Example 4.2. In our running example, s(Y ) is the type of the location (e.g., headquarter). The
sensitive information s(y) of whether a location y is a headquarter (L2, in our example) can be
inferred from the distribution of the age of soldiers given the location. Figure 4.2(a) shows how
tuples stored in relation R are distributed with respect to the values of attributes Age and Location.
For instance, of the 10000 tuples, 2029 refer to location L1, 72 refer to soldiers with age lower than
18. Figure 4.2(b) reports the corresponding relative frequencies of age distributions. In particular,
each column Li, i = 1, . . . , 5, reports the Li-conditioned distribution P (Age|Li) (for convenience
expressed in percentage). For instance, 3.55% of the tuples of location L1 refer to soldiers with
age lower than 18. The last column of the table reports the distribution of the age range regardless
of the specific location and then corresponds to P (Age) (expressed in percentage). For instance, it
states that 2.56% of the tuples in the relation refer to soldiers with age lower that 18. Figure 4.2(c)
reports the distribution of soldiers in the different locations regardless of their age (again expressed
in percentage). For instance, 20.29% of the 10000 soldiers are based at L1.

The existence of a correlation between the distribution of values of attributes X for a given
target y and the sensitive information s(y) is captured by the definition of dependency as follows.

Definition 4.1 (Dependency). Let R be a relation over attributes A, let X and Y be two disjoint
subsets of A, and let s(Y ) be a sensitive property of Y . A dependency, denoted X�Y, represents
a relationship existing between the conditional distribution P (X |y) and the value of the sensitive
property s(y), for any y ∈ Y .

The existence of a dependency between the y-conditioned distribution of X and the sensitive
property s(y) introduces an inference channel, since the visibility on P (X |y) potentially enables
an observer to infer the sensitive information s(y) even if not released. For instance, with respect
to our running example, Age�Location.

Definition 4.1 simply states the existence of a dependency but does not address the issue of
possible leakages of sensitive information. In this chapter, we consider the specific case of leakage
caused by peculiar value distributions that differ from what is considered typical and expected.
We then start by characterizing the expected distribution, formally defined as baseline distribution
as follows.

Definition 4.2 (Baseline distribution). Let A be a set of attributes, and X be a subset of A. The
baseline distribution of X, denoted B(X), is the expected distribution of the different values (or
range thereof) of X.
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Figure 4.3 Histogram representation of the baseline distribution (a) and of the Li-conditioned distribu-
tions P (Age|Li), i = 1, . . . , 5, in Figure 4.2(b)

The baseline distribution is the distribution publicly released by the data holder and can cor-
respond to the real distribution of the values of attributes X in relation R (i.e., B(X)=P (X)) at a
given time or can be a “reference” distribution considered typical. We assume the data holder to
release truthful information and, therefore, that the baseline distribution resembles the distribu-
tion of the values of X in R at a given point in time (note that R may be subject to changes over
time, for example, due to the enrollment of new soldiers and the retirement of old soldiers). This
being said, in the following, for simplicity, we assume the baseline distribution B(X) to coincide
with P (X). When clear from the context, with a slight abuse of notation, we will use P (X) to
denote the baseline distribution.

Example 4.3. The baseline distribution P (Age) corresponds to the values (expressed in percentage)
in the last column of Figure 4.2(b), which is also graphically reported as a histogram in Fig-
ure 4.3(a). Figures 4.3(b)-(f) report the histogram representation of the Li-conditioned distributions
for the different locations in R. As clearly visible from the histograms, while locations L1, L3, L4,
and L5 enjoy a value distribution that resembles the expected baseline, location L2 (the headquarter)
shows a considerably different distribution.

Our goal is to avoid the inference of the sensitive information caused by unusual distributions
of values of X , with respect to specific targets y, in Y that the observer can learn from viewing
released tuples (i.e., the y-conditioned distributions computed over released tuples present some
peculiarities that distinguish it from the baseline distribution). To this purpose, in the following
sections we illustrate a solution that the data holder can adopt for verifying whether the release of
a tuple referred to a target y, together with the previously released tuples, may cause the inference
of the sensitive property s(y) and then whether the release of such a tuple can be permitted or
should be denied.
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4.4 Characterization of the inference problem

In our characterization of the problem, X and Y can be intended as two dependent random vari-
ables, meaning that there is a correlation between the values of X and Y . Due to this dependency,
a potential observer can exploit the distribution of values of X for a given target y (i.e., the y-
conditioned distribution) for inferring sensitive property s(y). To counteract this type of inference,
we obfuscate the dependency between X and Y in the released dataset, by adopting one of the
following two strategies: i) make X and Y appear as two statistically independent random vari-
ables; or ii) minimize the distance between the y-conditioned distribution P (X |y) and the baseline
distribution P (X).

Statistical independence. The first strategy ensures that the joint probability P (X,Y ) be
“similar” to P (X)P (Y ). Since when X and Y are two independent variables the joint probability
P (X,Y ) is equal to P (X)P (Y ), this strategy aims at releasing tuples such that the correlation
between X and Y is not visible. As a consequence, the knowledge of the distribution of X does not
give any information about the sensitive property s(y) for each target y in Y . A classical measure
of the dependency between two random variables is the mutual information, denoted I(X,Y ).
It expresses the amount of information that an observer can obtain on Y by observing X , and
viceversa. The mutual information I(X,Y ) of two random variables X and Y is defined as follows.

I(X,Y ) =
∑

x∈X,y∈Y p(y)p(x|y) log2
p(x|y)
p(x)

The lower the mutual information in the released dataset, the more random variables X and Y
resemble statistical independent variables.

Example 4.4. Consider the distributions of the Age values for the different locations and P (Age)
in Figure 4.2(b), and the values p(Li), i = 1, . . . , 5, reported in Figure 4.2(c). We have:

I(Age, Location) = p(L1)[p(< 18|L1) log2
p(<18|L1)
p(<18) + . . . + p(≥ 55|L1) log2

p(≥55|L1)
p(≥55) ] + . . . +

p(L5)[p(< 18|L5) log2
p(<18|L5)
p(<18) + . . .+ p(≥ 55|L5) log2

p(≥55|L5)
p(≥55) ] = 0.063285

Distance between distributions. The second strategy ensures that when tuples are released,
the y-conditioned distribution of all targets y in Y be “similar” to the baseline distribution. Intu-
itively, this strategy aims at hiding the peculiarities of the distribution of variable X with respect
to a specific y so that an observer cannot infer anything about sensitive property s(y). This strat-
egy is then based on the evaluation of the distance between the baseline distribution P (X) and
the y-conditioned distribution P (X |y). The distance between two distributions can be computed
in different ways. The metrics that will be considered in the following section adopt either the
classical notion of Kullback-Leibler distance between distributions, denoted ∆, or the Pearson’s
cumulative statistic, denoted F .

The Kullback-Leibler distance nicely fits our scenario since it has a straightforward interpreta-
tion in terms of Information Theory. In fact, it represents a possible decomposition of the mutual
information [56]. Given two distributions P (X) and P (X |y) their Kullback-Leibler distance is
defined as follows.

∆(X, y) =
∑

x∈X p(x|y) log2
p(x|y)
p(x)
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It is easy to see that the mutual information represents the weighted average of the Kullback-
Leibler distance for the different targets, where the weight corresponds to the frequency of value
y.

Example 4.5. Consider the distributions of Age values for the different locations and the baseline
distribution P (Age) in Figure 4.2(b). We have:

∆(Age, L1) = p(< 18|L1) log2
p(< 18|L1)

p(< 18)
+ . . .+ p(≥ 55|L1) log2

p(≥ 55|L1)

p(≥ 55)
= 0.047349

Similarly, we obtain: ∆(Age, L2) = 0.358836, ∆(Age, L3) = 0.013967, ∆(Age, L4) = 0.007375, and
∆(Age, L5) = 0.010879.

The Pearson’s cumulative statistic is a well known measure, traditionally used in statistics for
evaluating how much two probability distributions are similar. Given two distributions P (X) and
P (X |y), their Pearson’s cumulative statistic is defined as follows.

F (X, y) =
∑

x∈X
(Oy

x−Ex)
2

Ex

where Oy
x is the frequency of value x for X with respect to y (i.e., the number of tuples in R such

that x = t[X ] and y = t[Y ]), and Ex is the expected frequency distribution of the same value x
for X according to the baseline distribution P (X).

Example 4.6. Consider the distributions of the Age values for the different locations and the
baseline distribution P (Age) in Figure 4.2(b). We have:

F (Age, L1) =

(
OL1

<18 − E<18

)2

E<18
+ . . .+

(
OL1

≥55 − E≥55

)2

E≥55
= 104.532750

Similarly, we obtain: F (Age, L2) = 878.201780, F (Age, L3) = 30.837391, F (Age, L4) = 17.340740,
and F (Age, L5) = 39.875054

The lower the distance between P (X |y) and P (X) in the released dataset, the more the correlation
between variables X and Y has been obfuscated. To determine when the distance between the
y-conditioned distribution P (X |y) and the baseline distribution P (X) can be considered significant
(and then exploited to infer a possible dependency between X and Y ), we can adopt either an
absolute or a relative approach. The absolute approach compares the distance between P (X |y)
and P (X) for each value y of Y with a fixed threshold. The relative approach compares instead
the distance between P (X |y) and P (X) for a given value y, with the distances obtained for the
other values of Y .

Both the strategy based on statistical independence and the strategy based on minimizing the
distance between distributions described above for obfuscating the correlation between X and Y
can be concretely applied through specific metrics. Before describing such metrics in the following
section, it is important to note that an external observer can only see and learn the distribution
of values computed on tuples that have been released. In the remainder of this chapter, we will
then use Rrel to denote the set of tuples released to the external world at a given point in time,
and Prel to denote the value distributions observable on Rrel (in contrast to the P observable on
R). The knowledge of an external observer includes the different observations Prel(X |y) she can
learn by collecting all the released tuples (i.e., Rrel), and the baseline distribution P (X) publicly
available.
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Test Safe release control

Statistical Independence MIS (Section 4.5.1) Irel(X,Y ) < Irc

Distance
Absolute

KLD (Section 4.5.2) ∀y ∈ Y , ∆rel(X, y) < ∆rc(y)
CST (Section 4.5.3) ∀y ∈ Y , Frel(X, y) < Frc

Relative DQT (Section 4.5.4) Qrel(X)<Qrc

Figure 4.4 Statistical tests and safe release control

4.5 Statistical tests for assessing inference exposure

In this section, we describe four statistical tests that can be adopted for verifying whether the
release of a set of tuples is safe, that is, a potential observer can neither identify the entities as-
sociated with a sensitive value (e.g., an observer cannot identify that L2 is a headquarter), nor
improperly associate sensitive values with released entities in the dataset (i.e., false positives). Fig-
ure 4.4 summarizes such tests, classifying them depending on the strategy they follow to obfuscate
the dependency between statistical variables X and Y , as illustrated in Section 4.4.

The statistical tests described in this section are based on the definition of a metric to measure
how much the release of a subset Rrel of tuples of R is exposed to inferences (inference exposure),
and on the computation of a threshold that this measure should not exceed to guarantee that the
data release is safe. In the following, we define different properties that the released dataset should
satisfy to guarantee that a potential observer cannot infer the existence of a dependency between
the random variables X and Y .

4.5.1 Significance of the mutual information

This statistical test aims at ensuring that mutual information Irel(X,Y ) characterizing the released
dataset Rrel is statistically not significant . The rationale is that the mutual information between
X and Y , as illustrated in Section 4.4, measures the average amount of knowledge about Y that an
observer acquires looking at X (and vice-versa). In other words, the mutual information Irel(X,Y )
betweenX and Y quantifies the (linear or non linear) dependency between the considered statistical
variables. When Irel(X,Y ) is close to zero an observer does not have enough confidence on the
existence of a dependency between X and Y in the released dataset Rrel. Hence, the observer
cannot infer anything about the sensitive property s(y) associated with a target y that belongs to
the released dataset.

From a practical point of view, to verify when the release of a given subset Rrel of R can be
considered safe, it is sufficient to check whether the mutual information Irel(X,Y ) of Rrel is below
a predefined threshold Irc close enough to zero. For instance, the release of a set Rrel of tuples
related to a subset of the soldiers in our running example does not disclose information on the
dependency between Age and Location if Irel(Age, Location) < Irc. A safe release is formally
defined as follows.

Definition 4.3 (Safe release w.r.t. Mutual Information – MIS). Let R be a relation over attributes
A, X and Y be two subsets of A such that X�Y, Rrel be a subset of tuples in R, and Irc be the
critical value for the mutual information. The release of Rrel is safe iff Irel(X,Y ) < Irc.
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Figure 4.5 Comparison between the chi-square distribution with 45 degrees of freedom and the distri-
bution of 2Nrel log(2)Irel(Age, Location)

The problem becomes now how to compute Irc. The solution we propose is based on the
following property [23].

Property 4.1. Let R be a relation over attributes A, X and Y be two subsets of A such that
X�Y, and Rrel be a subset of tuples in R. Under the independence hypothesis between X and Y :

2Nrel log(2)Irel(X,Y ) ∼ χ2((NXrel
− 1)NYrel

)

where Nrel=|Rrel| is the number of released tuples, NXrel
is the number of values of X in Rrel,

and NYrel
is the number of values of Y in Rrel.

Property 4.1 states that under the hypothesis of independence between X and Y ,
2Nrel log(2)Irel(X,Y ) is asymptotically chi-square distributed with (NXrel

− 1)NYrel
degrees of

freedom.1

Example 4.7. Figure 4.5 compares the distribution of the rescaled (by factor 2Nrel log(2), with
Nrel = 5000) mutual information Irel(Age, Location) of our dataset, with the chi-square distribu-
tion with (10− 1)5 = 45 degrees of freedom, where 10 is the number of different values for attribute
Age and 5 is the number of different values for attribute Location. The histogram in the figure
has been obtained with 10000 Monte Carlo iterations, considering the baseline distribution P (Age)
and the distribution P (Location) of the sensitive information of our running example. From the
figure, it is easy to see that the approximation of our rescaled mutual information to the chi-square
distribution nicely holds.

Since, by Property 4.1, Irel(X,Y ) is distributed as a chi-square distribution with (NXrel
−

1)NYrel
degrees of freedom, we propose to compute the critical value Irc for the mutual information

1In [23] the mutual information was computed by comparing each y-conditioned distribution P (X|y) with a
sample distribution P (X) estimated on the same dataset. Hence, the number of degrees of freedom was (NXrel

−
1)(NYrel

− 1). In this chapter, the baseline distribution P (X) is assumed to be known to the observer. Coherently,
Property 4.1 is derived under the assumption that the observer tests the mutual information at hand by comparing
it to the case where samples (x,y) are drawn from the distribution P (X,Y ) = P (X)P (Y ). Then, the number of
degrees of freedom increases to (NXrel

− 1)NYrel
.
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by selecting a significance level α (i.e., a residual probability) and imposing P (Irel(X,Y ) > Irc) = α
(i.e., the probability that Irel(X,Y ) is greater than threshold Irc should be equal to α). As a

consequence, Irc can be obtained by constraining
∫ 2Nrel log(2)Irc
0

χ2[(NXrel
−1)NYrel

](x)dx = 1−α.
The significance level α represents the confidence in the result of a statistical analysis. Indeed, the
higher the value of α, the more restrictive the condition that a release must satisfy to be considered
safe. In fact, a lower value for α represents a low probability of error in drawing conclusions starting
from the mutual information measured on the data. The value of the significance level α must be
chosen in such a way to limit the confidence that an observer can have in the test results, thus
preventing the observer from exploiting this test for drawing inferences. For instance, if an observer
can evaluate the statistical test with significance level α = 5%, the inference she can draw from
the result obtained has a high probability of being right (i.e., a high mutual information is due to
chance only in 5% of the cases). The value chosen for α by the data holder should then be higher
than the risk that an observer is willing to take when trying to guess the sensitive property s(y)
of a target y in Y . If the cost of the observer for her attack is low (e.g., the observer is interested
in detecting which location is a headquarter for curiosity), she will be probably willing to take a
high risk of making a wrong guess and she will therefore choose a high significance level for her
analysis. In this case, α should be high to guarantee a better protection of the sensitive property
(e.g., 15%-20%). On the other hand, if the cost of an observer for her attack is high (e.g., the
observer wants to destroy headquarters), she will be probably willing to take a low risk of error,
and α could be lower, thus permitting the release of a larger subset of tuples (e.g., 5% represents
the typical value adopted in statistical hypothesis testing). Since it is unlikely for the data holder
to know the significance level considered by a possible observer in the analysis, the data holder
should estimate it and choose a value for α trying to balance the need for data protection on one
side and the need for data release on the other side. In fact, the released dataset is protected
against those analyses that assume a risk of error lower than α.

Once the data holder has fixed the significance level and computed the critical value Irc for
the mutual information, she can decide whether to release a tuple when its respondent requires it.
Let Rrel be a safe set of released tuples and t be a tuple in R that needs to be released. To decide
whether to release t, it is necessary to check if the mutual information Irel(X,Y ) associated with
Rrel∪{t} is lower than critical value Irc. If this is the case, tuple t can be safely released; otherwise
tuple t cannot be released since it may cause leakage of sensitive information.

Example 4.8. Consider the military dataset in Figure 4.2(a), the release of the subset Rrel of
tuples in Figure 4.6(a), and assume that the data holder chooses a significance level α = 20%. The
mutual information Irel(Age, Location) of Rrel is 0.025522, while the critical value Irc is 0.025527.
Since Irel(Age, Location) < Irc, the release of Rrel is safe.

Consider the release of the whole dataset R in Figure 4.2(a), and assume that the data holder
adopts a less restrictive significance level α = 5%. The mutual information I(Age, Location) of
the whole dataset is 0.063285 (see Example 4.4) and its critical value Irc is 0.004448. Therefore,
as expected, the release of the whole dataset is not safe.

4.5.2 Significance of the distance between distributions

The evaluation of the significance of the distance between distributions aims at verifying whether
there are specific targets in the released dataset that can be considered as outliers , that is, whose
y-conditioned distribution is far from the expected distribution represented by the baseline P (X).
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 9 5 7 8 11 40
18-19 23 11 12 19 29 94
20-24 80 30 68 70 109 357
25-29 71 18 55 58 88 290
30-34 51 30 43 47 74 245
35-39 55 28 46 50 76 255
40-44 25 24 23 25 38 135
45-49 2 10 11 11 13 47
50-54 2 8 4 5 6 25
≥55 1 1 0 0 0 2

Total 319 165 269 293 444 1490

(a)

Prel(Age|Li)
Age L1 L2 L3 L4 L5 Prel(Age)

<18 2.82 3.03 2.60 2.73 2.48 2.68
18-19 7.21 6.67 4.46 6.49 6.53 6.31
20-24 25.08 18.18 25.28 23.89 24.55 23.96
25-29 22.26 10.91 20.45 19.80 19.81 19.46
30-34 15.99 18.18 15.98 16.04 16.67 16.44
35-39 17.24 16.97 17.10 17.06 17.12 17.11
40-44 7.84 14.55 8.55 8.53 8.56 9.07
45-49 0.63 6.06 4.09 3.75 2.93 3.15
50-54 0.63 4.85 1.49 1.71 1.35 1.69
≥55 0.30 0.60 0.00 0.00 0.00 0.13

(b)

Li Prel(Li)

L1 21.41
L2 11.08
L3 18.05
L4 19.66
L5 29.80

(c)

Figure 4.6 Number of tuples by Age and Location in a safe dataset Rrel w.r.t. mutual information
significance with α = 20% (a), Li-conditioned distributions Prel(Age|Li), i = 1, . . . , 5, over Rrel (b), and
location frequencies (c)

The rationale is that peculiarities of the y-conditioned distribution can be exploited for inferring
the sensitive property s(y). This statistical test, operating on the single values y of Y , works at a
finer granularity level than the previous one, based on the mutual information.

As already noted in Section 4.4, a possible way for the data holder to verify whether the y-
conditioned distribution presents some peculiarities consists in computing the Kullback-Leibler
distance ∆rel(X, y) between the y-conditioned distribution Prel(X |y) of the released dataset and
the baseline distribution P (X). Following an approach similar to that illustrated in Section 4.5.1,
the disclosure of the sensitive property s(y) can be prevented by ensuring that ∆rel(X, y) is sta-
tistically not significant , for all targets y in the released dataset.

From a practical point of view, we can verify if the release of a given subset Rrel of R can be
considered safe by checking whether the distance ∆rel(X, y) is smaller than a predefined threshold
∆rc(y) for all targets y. A safe release is formally defined as follows.

Definition 4.4 (Safe release w.r.t. KL Distance – KLD). Let R be a relation over attributes A,
X and Y be two subsets of A such that X�Y, Rrel be a subset of tuples in R, and ∆rc(y) be the
critical value for ∆rel(X, y), for all values y of Y in Rrel. The release of Rrel is safe iff for all
values y of Y in Rrel, ∆rel(X, y) < ∆rc(y).

According to Definition 4.4, if ∆rel(X, y) < ∆rc(y) for all released targets y, the release of Rrel

is safe. If there exists at least a target y′ such that ∆rel(X, y′) ≥ ∆rc(y
′), the release of Rrel is not

safe and y′ is considered exposed.
The approach we propose to compute threshold ∆rc(y) is based on the observation that the

mutual information Irel(X,Y ) is by definition equal to
∑

y∈Y p(y)∆rel(X, y), and that Property 4.1
can be adapted for the Kullback-Leibler distance ∆rel(X, y) as follows.

Property 4.2. Let R be a relation over attributes A, X and Y be two subsets of A such that
X�Y, y be a value of Y , and Rrel be a subset of tuples in R. Under the independence hypothesis
between X and Y :

2Nrel(y) log(2)∆rel(X, y) ∼ χ2(NXrel
− 1)

where Nrel(y) is the number of released tuples with Y = y, and NXrel
is the number of values of

X in Rrel.

Property 4.2 states that under the hypothesis of independence between X and Y ,
2Nrel(y) log(2)∆rel(X, y) is asymptotically chi-square distributed with (NXrel

− 1) degrees of free-
dom.
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Example 4.9. Figures 4.7(a)-(e) compare the distribution of the rescaled (by factor 2Nrel(y) log(2)
with Nrel(L1) = 1014, Nrel(L2) = 649, Nrel(L3) = 826, Nrel(L4) = 1003, and Nrel(L5) = 1506)
Kullback-Leibler distance ∆rel(Age, Li), i = 1, . . . , 5, with the chi-square distribution with 10−1 = 9
degrees of freedom. The histograms in the figures have been obtained with 10000 Monte Carlo
iterations, considering the baseline distribution P (Age) and the distribution P (Location) of the
sensitive information of our running example. From the figures, it is easy to see that our rescaled
∆rel(Age, Li) fit the considered chi-square distribution.

For each target y, Property 4.2 can be used to compute the critical value ∆rc(y) for ∆rel(X, y)
by selecting a significance level α and requiring P (∆rel(X, y) > ∆rc(y)) = α. As a consequence,

∆rc(y) can be obtained by constraining
∫ 2Nrel(y) log(2)∆rel(X,y)

0
χ2(NXrel

− 1)(x)dx = 1 − α. As
already observed for the mutual information, higher values of α guarantee better protection against
inference exposure of the sensitive property.

Once the data holder has fixed the significance level and computed the critical values ∆rc(y) for
each target y, she can decide whether to release a tuple when its respondent requires it. Let Rrel

be a safe set of released tuples and t be a tuple in R whose release has been requested. To decide
whether to release t, it is necessary to check if the distance ∆rel(X, y) for target y = t[Y ], computed
on Rrel∪{t}, is lower than the critical value ∆rc(y). If such a control succeeds, the release of t,
that is, the disclosure of Trel ∪ {t}, is considered safe. Otherwise, target y is considered exposed
(i.e., y is an outlier) and the release of t is blocked. Note that condition ∆rel(X, y) < ∆rc(y) is
certainly satisfied for all the targets different from t[Y ] because Rrel is assumed to be safe.

Example 4.10. Consider the military dataset in Figure 4.2(a) and the release of the subset Rrel

of tuples in Figure 4.8(a), and assume that the data holder adopts a significance level α=20%.
The distances between each Li-conditioned distribution Prel(Age|Li), i = 1, . . . , 5, and the baseline
distribution P (Age) are: ∆rel(Age, L1) = 0.026582, ∆rel(Age, L2) = 0.056478, ∆rel(Age, L3) =
0.028935, ∆rel(Age, L4) = 0.029818, and ∆rel(Age, L5) = 0.014996. The critical values are:
∆rc(L1) = 0.026599, ∆rc(L2) = 0.057343, ∆rc(L3) = 0.028954, ∆rc(L4) = 0.029834, and
∆rc(L5) = 0.015018. Since the distance ∆rel(Age, Li) computed for each location Li, i = 1, . . . , 5,
is lower than the corresponding critical value, the release of Rrel is safe.

Consider the release of the whole dataset R in Figure 4.2(a) and assume that the data holder
adopts a less restrictive significance level α=5%. The distances between each Li-conditioned
distribution and the baseline distribution are: ∆(Age, L1) = 0.047349, ∆(Age, L2) = 0.358836,
∆(Age, L3) = 0.013967, ∆(Age, L4) = 0.007375, and ∆(Age, L5) = 0.010879 (see Example 4.5).
Their critical values are: ∆rc(L1) = 0.006015, ∆rc(L2) = 0.009395, ∆rc(L3) = 0.007388,
∆rc(L4) = 0.006081, and ∆rc(L5) = 0.004051. Since the distance ∆(Age, Li) of each location
Li, i = 1, . . . , 5, exceeds the corresponding critical value, the release of R is, as expected, not safe.

By comparing the two metrics discussed so far, it is easy to see that the metric based on the
mutual information does not distinguish the exposures of the different targets. Hence, if for a
given y, prel(y) represents a small portion of the released dataset, a high value for ∆rel(X, y) has a
limited influence on the decision of whether the release of Rrel is safe or not, since the contribution
of ∆rel(X, y) in the computation of Irel(X,Y ) is limited. On the contrary, the test based on the
Kullback-Leibler distance results more restrictive than the evaluation of the significance of the
mutual information since the safety control is performed at the level of each single target y of Y .
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Figure 4.7 Comparison between the chi-square distribution with 9 degrees of freedom and the distribution
of 2Nrel(L1) log(2)∆rel(Age, L1) (a), 2Nrel(L2) log(2)∆rel(Age, L2) (b), 2Nrel(L3) log(2)∆rel(Age, L3) (c),
2Nrel(L4) log(2)∆rel(Age, L4) (d), and 2Nrel(L5) log(2)∆rel(Age, L5) (e)
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 12 4 6 5 16 43
18-19 25 11 18 18 43 115
20-24 86 29 90 72 141 418
25-29 66 19 65 67 112 329
30-34 56 31 37 49 94 267
35-39 57 29 55 51 115 307
40-44 19 18 19 27 47 130
45-49 9 8 8 4 13 42
50-54 2 4 6 2 7 21
≥55 0 1 1 1 0 3

Total 332 154 305 296 588 1675

(a)

Prel(Age|Li)
Age L1 L2 L3 L4 L5 Prel(Age)

<18 3.61 2.60 1.97 1.69 2.72 2.57
18-19 7.53 7.14 5.90 6.08 7.31 6.87
20-24 25.90 18.83 29.51 24.32 23.98 24.96
25-29 19.89 12.34 21.31 22.64 19.05 19.64
30-34 16.87 20.13 12.13 16.55 15.99 15.94
35-39 17.17 18.83 18.03 17.23 19.56 18.33
40-44 5.72 11.69 6.23 9.12 7.99 7.75
45-49 2.71 5.19 2.62 1.35 2.21 2.51
50-54 0.60 2.60 1.97 0.68 1.19 1.25
≥55 0.00 0.65 0.33 0.34 0.00 0.18

(b)

Li Prel(Li)

L1 19.82
L2 9.20
L3 18.21
L4 17.67
L5 35.10

(c)

Figure 4.8 Number of tuples by Age and Location in a safe dataset Rrel w.r.t. Kullback-Leibler distance
with α = 20% (a), Li-conditioned distributions Prel(Age|Li), with i = 1, . . . , 5, over Rrel (b), and location
frequencies (c)

4.5.3 Chi-square goodness-of-fit test

The chi-square goodness-of-fit test aims at verifying, like the statistical test described in Sec-
tion 4.5.2, whether the released dataset includes a target y that can be considered an outlier .
The chi-square goodness-of-fit test [96] is a well known statistical test, traditionally used to de-
termine whether a probability distribution (Prel(X |y)) fits into another (theoretical) probability
distribution (P (X)), that is, if the two probability distributions are similar. The test is based on
the computation of Pearson’s cumulative statistic Frel(X, y) that measures how “close” the ob-
served y-conditioned distribution Prel(X |y) is to the expected (baseline) distribution P (X). When
Frel(X, y) is close to zero, Prel(X |y) appears as a distribution that fits P (X) (i.e., the values
of Prel(X |y) appear as randomly extracted from the baseline distribution P (X)) and therefore
nothing can be inferred about the sensitive property s(y) associated with target y.

From a practical point of view, we verify if the release of a given subset Rrel of R can be
considered safe by checking whether the Pearson’s cumulative statistic Frel(X, y) is smaller than
a predefined threshold Frc. Formally, a safe release is defined as follows.

Definition 4.5 (Safe release w.r.t. Chi-Square Goodness-of-Fit – CST). Let R be a relation over
attributes A, X and Y be two subsets of A such that X�Y, Rrel be a subset of tuples in R, and
Frc be the critical value for Frel(X, y). The release of Rrel is safe iff for all values y of Y in Rrel,
Frel(X, y) < Frc.

According to Definition 4.5, if all the released targets y satisfy condition Frel(X, y) < Frc, the
release of Rrel is safe; if there exists at least a target y′ that violates the condition, the release of
Rrel is not safe and y′ is considered exposed.

The threshold Frc is computed by exploiting the following statistical property enjoyed by the
chi-square goodness-of-fit test [96].

Property 4.3. Let R be a relation over attributes A, X and Y be two subsets of A such that
X�Y, y be a value of Y , and Rrel be a subset of tuples in R. Under the independence hypothesis
between X and Y :

Frel(X, y) =
∑

x∈X
(Oy

x−Ex)
2

Ex
∼ χ2(NXrel

(y)− 1)

where NXrel
(y) is the number of values of X for the tuples in Rrel with Y = y.

Property 4.3 states that, under the hypothesis of independence between X and Y , the Pear-
son’s cumulative statistic Frel(X, y) is asymptotically chi-square distributed with (NXrel

(y) − 1)
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 13 0 8 6 4 31
18-19 25 1 13 35 35 109
20-24 92 0 80 100 135 407
25-29 74 0 76 94 117 361
30-34 65 3 55 63 98 284
35-39 64 38 48 71 94 315
40-44 32 7 21 29 41 130
45-49 3 3 11 13 18 48
50-54 0 0 3 8 4 15
≥55 0 0 0 0 0 0

Total 368 52 315 419 546 1700

(a)

Prel(Age|Li)
Age L1 L2 L3 L4 L5 Prel(Age)

<18 3.53 0.00 2.53 1.43 0.73 1.82
18-19 6.79 1.92 4.13 8.35 6.41 6.41
20-24 25.00 0.00 25.4 23.87 24.73 23.94
25-29 20.11 0.00 24.13 22.43 21.43 21.24
30-34 17.66 5.77 17.46 15.04 17.95 16.71
35-39 17.39 73.08 15.24 16.95 17.21 18.53
40-44 8.70 13.46 6.67 6.92 7.51 7.65
45-49 0.82 5.77 3.49 3.10 3.3 2.82
50-54 0.00 0.00 0.95 1.91 0.73 0.88
≥55 0.00 0.00 0.00 0.00 0.00 0.00

(b)

Li Prel(Li)

L1 21.65
L2 3.06
L3 18.52
L4 24.65
L5 32.12

(c)

Figure 4.9 Number of tuples by Age and Location in a safe dataset Rrel w.r.t. Chi-Square Goodness-of-
Fit with α = 20% (a), Li-conditioned distributions Prel(Age|Li), i = 1, . . . , 5, over Rrel (b), and location
frequencies (c)

degrees of freedom. Like for the metrics already discussed, we compute the critical value
Frc(y) for the Pearson’s cumulative statistic by selecting a significance level α and requir-
ing P (Frel(X, y) > Frc(y)) = α. As a consequence, Frc(y) can be obtained by constraining
∫∑

x∈X

(Oy
x−Ex)2

Ex
0 χ2(NXrel

(y)−1)(x)dx = 1−α. It is important to note that the number of degrees
of freedom of the chi-square distribution depends on the number NXrel

of values of variable X that
have been released for target y, which may be different from the number of values in the domain
of attribute X (for more details see Section 4.6).

Once the data holder has fixed the significance level and computed the critical value Frc, she
can decide whether to release a tuple when its respondent requires it. Let Rrel be a safe set of
tuples and t be a requested tuple in R. To evaluate whether the release of tuple t is safe, it is
necessary to check whether the Pearson’s cumulate statistic Frel(X, y) for target y=t[Y ], computed
on Rrel∪{t} is lower than the fixed threshold Frc. If this is the case, tuple t can be safely released;
otherwise the release of t is blocked since it reveals that y is an outlier. We note that it is not
necessary to check the Pearson’s cumulate statistics of the other targets in Rrel, since they are not
affected by the release of t, and their associated Frel(X, y) are lower than Frc, as Rrel is supposed
to be safe.

Example 4.11. Consider the military dataset in Figure 4.2(a) and the release of the subset Rrel

of tuples in Figure 4.9(a) and assume that the data holder adopts a significance level α=20%. The
Pearson’s cumulative statistics for the five locations are: Frel(Age, L1) = 8.550683, Frel(Age, L2) =
0.961415, Frel(Age, L3) = 9.717669, Frel(Age, L4) = 8.293681, and Frel(Age, L5) = 8.554984. The
critical values are: Frc(L1) = 8.558059, Frc(L2) = 1.642374, Frc(L3) = 9.803249, Frc(L4) =
11.030091, and Frc(L5) = 8.558059. It is immediate to see that Frel(Age, Li) < Frc(Li), for all
i = 1, . . . , 5. As a consequence, the release of Rrel is safe.

Consider the release of the whole dataset R in Figure 4.2(a) and assume that the data holder
adopts a less restrictive significance level α=5%. The Pearson’s cumulative statistics for the
five locations are: F (Age, L1) = 104.532750, F (Age, L2) = 878.201780, F (Age, L3) = 30.837391,
F (Age, L4) = 17.340740, and F (Age, L5) = 39.875054 (see Example 4.6). The critical values are:
Frc(L1) = 15.507313, Frc(L2) = 16.918978, Frc(L3) = Frc(L4) = Frc(L5) = 15.507313. There-
fore, P (Age|Li), i = 1, . . . , 5, is not close enough to P (Age) and the release of the whole dataset
is not safe. This result is not surprising since none of the Li-conditioned distribution P (Age|Li),
i = 1, . . . , 5, in our running example exactly fits the baseline distribution P (Age).
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Number of elements
Significance 3 4 5 6 7 8 9 10

20% 0.781 0.560 0.451 0.386 0.344 0.314 0.290 0.273
10% 0.886 0.679 0.557 0.482 0.434 0.399 0.370 0.349
5% 0.941 0.765 0.642 0.560 0.507 0.468 0.437 0.412
1% 0.988 0.889 0.780 0.698 0.637 0.590 0.555 0.527

Figure 4.10 Critical values Qc for the Dixon’s Q-test with significance levels 20%, 10%, 5%, 1% and
[3-10] distinct values in Y domain [52]

4.5.4 Dixon’s Q-test

The Dixon’s Q-test, similarly to the statistical tests described in Section 4.5.2 and Section 4.5.3,
aims at verifying whether there is one target in the released dataset that can be considered an
outlier . The Dixon’s Q-test is a well-known solution for outlier detection in a given dataset that
can be adopted whenever there is at most one outlier and at least three targets in the considered
dataset [51]. This statistical test differs from the ones illustrated in Section 4.5.2 and Section 4.5.3
since, instead of comparing each distance between Prel(X |y) and P (X) against a fixed threshold, it
evaluates if one of the distances between Prel(X |y) and P (X) is significantly higher than the others.
The Dixon’s Q-test can be applied considering any definition of distance between distributions (e.g.,
Kullback-Leibler distance, or Pearson’s cumulative statistic). In line with the rest of the chapter,
we apply the Dixon’s Q-test to the Kullback-Leibler distance ∆rel(X, y) between Prel(X |y) and
P (X). We note that different versions of this test have been proposed in the literature, and we
adopt r10 [51]. This test assumes the presence of at most one outlier at the upper hand of the
dataset (i.e., one outlier characterized by a high value for the distance between distributions) and
no outlier at the lower hand of the dataset (i.e., no outlier is characterized by a low distance
between distributions).

The Dixon’s Q-test requires to first organize the values on which it needs to be evaluated (i.e.,
∆rel(X, y) in our scenario) in ascending order. Starting from the last two values in the ordered
sequence (i.e., the two highest values), it computes coefficient Qrel(X) as their relative distance.
More formally, Dixon’s coefficient is computed as:

Qrel(X)= ∆rel(X,yn)−∆rel(X,yn−1)
∆rel(X,yn)−∆rel(X,y1)

,

where ∆rel(X, y1),. . . ,∆rel(X, yn) is the sequence, in ascending order, of distance values.
The Dixon’s Q-test is not able to identify any outlier in the dataset if Qrel(X) is close enough

to zero, since the distance between each pair of subsequent values in the sequence is almost the
same. In this case, there is no target y such that the distance between its y-conditioned distribution
Prel(X |y) and the baseline P (X) stands out from the other distances.

From a practical point of view, we verify if the release of a given subset Rrel of R can be
considered safe by checking whether the Dixon’s coefficient Qrel(X) is smaller than a predefined
threshold Qrc. The critical value Qrc is computed by fixing a significance level α and imposing
P (Qrel(X) > Qrc) = α. Figure 4.10 summarizes the critical values Qrc when the number of
distinct values in the domain of Y ranges between 3 and 10 and the significance level is fixed to
20%, 10%, 5%, and 1%, respectively. If Qr(X) < Qrc, the release of Rrel does not reveal the
presence of any outlier and the release of Rrel is safe. A safe release is formally defined as follows.
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Number of tuples
Age L1 L2 L3 L4 L5 Total

<18 14 3 5 8 15 45
18-19 36 10 10 34 43 133
20-24 104 30 77 84 176 471
25-29 96 18 73 76 134 397
30-34 69 50 48 77 109 353
35-39 64 32 49 64 120 329
40-44 0 36 18 30 42 126
45-49 0 34 17 10 18 79
50-54 3 14 5 6 4 32
≥55 1 3 0 1 0 5

Total 387 230 302 390 661 1970

(a)

Prel(Age|Li)
Age L1 L2 L3 L4 L5 Prel(Age)

<18 3.62 1.30 1.66 2.05 2.27 2.28
18-19 9.30 4.35 3.30 8.72 6.51 6.75
20-24 26.87 13.04 25.50 21.54 26.63 23.91
25-29 24.81 7.83 24.17 19.49 20.27 20.15
30-34 17.83 21.75 15.89 19.74 16.49 17.92
35-39 16.54 13.91 16.23 16.41 18.15 16.70
40-44 0.00 15.65 5.96 7.69 6.35 6.40
45-49 0.00 14.78 5.63 2.56 2.72 4.01
50-54 0.78 6.09 1.66 1.54 0.61 1.63
≥55 0.25 1.30 0.00 0.26 0 0.25

(b)

Li Prel(Li)

L1 19.64
L2 11.68
L3 15.33
L4 19.80
L5 33.55

(c)

Figure 4.11 Number of tuples by Age and Location in a safe dataset Rrel w.r.t. Dixon’s Q-test with
α = 20% (a), Li-conditioned distributions Prel(Age|Li), i = 1, . . . , 5, over Rrel (b), and location frequencies
(c)

Definition 4.6 (Safe release w.r.t. Dixon’s Q-test – DQT). Let R be a relation over attributes A,
X and Y be two subsets of A such that X�Y, Rrel be a subset of tuples in R, and Qrc be a critical
value for Qrel(X). The release of Rrel is safe iff Qr(X) < Qrc.

If condition Qr(X) < Qrc does not hold, an observer can infer that the target y characterized
by the maximum distance ∆rel(X, y) between Prel(X |y) and P (X) is an outlier.

Once the data holder has fixed the significance level and computed the critical value Qrc for
the Dixon’s Q-test, she can decide whether to release a tuple when its respondent requires it. Let
Rrel be a safe set of released tuples and t be a requested tuple in R. To decide whether to release t,
it is necessary to check if Dixon’s coefficient Qr(X) associated with Rrel∪{t} is lower than critical
value Qrc. If this is the case, tuple t can be safely released; otherwise tuple t is not released since
it may cause leakage of sensitive information.

Example 4.12. Consider the military dataset in Figure 4.2(a) and the release of the subset
Rrel of tuples in Figure 4.11(a), and assume that the data holder adopts a significance level
α = 20%. The distance values between Prel(Age|Li), i = 1, . . . , 5, and the baseline P (Age)
are equal to: ∆rel(Age, L1) = 0.209188, ∆rel(Age, L2) = 0.361504, ∆rel(Age, L3) = 0.037932,
∆rel(Age, L4) = 0.018421, and ∆rel(Age, L5) = 0.021103. To apply the Dixon’s Q-test, these dis-
tance values are considered in ascending order and then the Dixon’s coefficient is computed as
Qrel(X) = 0.361504−0.209188

0.361504−0.018421 = 0.443963. Since attribute Location has 5 distinct values in its do-
main, we consider the third column in the table in Figure 4.10 for the definition of critical value
Qrc. In particular, the critical value is fixed to 0.451 for the considered significance level. Since
Dixon’s coefficient is lower than the critical value, the release of Rrel is safe.

Consider the release of the whole dataset R in Figure 4.2(a) and assume that the data holder
adopts a less restrictive significance level α = 5%. The distance values in Example 4.5 are con-
sidered in ascending order and Dixon’s coefficient is computed as Qrel(X) = 0.358836−0.047349

0.358836−0.07375 =
0.886263, which is greater than 0.642. Therefore, the release of the whole dataset of our running
example is not safe, since it discloses that L2 is an outlier.

4.6 Controlling exposure and regulating releases

We now illustrate how the incremental release of tuples is controlled and regulated according to
the metrics discussed in the previous section.
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The data holder first chooses the metric and the significance level α she wants to adopt. Every
time a tuple t is requested, it is necessary to check if the release of t, combined with all the tuples
already released and potentially known to an observer Rrel, may cause the unintended disclosure
of sensitive information. In particular, if Rrel∪{t} satisfies the definition of safe release for the
considered metric (see Section 4.5), t is released. If tuple t cannot be released when it is requested,
its release might simply be denied. However, this choice represents a restrictive solution, since it
does not take into consideration the fact that if a tuple cannot be released when it is requested, it
may be safely released at a later time (i.e., after the release of other tuples in the dataset). Indeed,
the grant or denial of the release of a tuple depends on the set of tuples that has already been
released. Exploiting this observation, we propose to insert the tuples that cannot be released when
requested into a queue. Every time a tuple t is released, the tuples in the queue are analyzed to
check whether a subset of them can be safely released.

Particular attention has to be paid on the release of the first few tuples because they will produce
random value distributions that usually do not resemble the actual distributions existing in the
dataset. Such random distributions may characterize the data release as not safe, thus blocking
any further release and raising many false alarms (since also targets that are not outliers will have
a random initial distribution that will differ from the baseline). However, no observer could put
confidence on statistics computed over a few releases as they cannot be considered accurate and
their distribution can be completely random. With reference to the release of the first few tuples,
it is also important to note that the metrics illustrated in Section 4.5 are based on approximation
properties that hold only when a sufficient number of tuples has been released. There is therefore
a starting time at which the data holder should define an alternative condition for determining if a
release should be considered safe. In the following we discuss, for each of the metrics in Section 4.5,
how to check whether the release of a tuple t is safe when only few tuples have been released.

Significance of the mutual information and significance of the Kullback-Leibler dis-
tance between distributions. The definition of the critical value for the mutual information
described in Section 4.5.1 is based on Property 4.1, which is an asymptotic approximation of
Irel(X,Y ) to a chi-square distribution that holds only if a sufficient number of tuples has been
released. Using the traditional Monte Carlo approach, we propose to compute the critical value
of the mutual information for the release of a small number n of tuples as the α-th percentile
of the mutual information obtained by extracting a sufficient number of samples (10000 in our
experimental evaluation) of n tuples each from a simulated dataset composed of |R| tuples, where
X is distributed following P (X), and X and Y are statistically independent. Indeed, if the mutual
information of the released dataset is close to the mutual information of a sample of the same
size extracted from a dataset where X and Y are statistically independent, the observer cannot
exploit the released tuples for drawing inferences. The remaining aspect to consider is when to
start adopting the critical value computed exploiting Property 4.1. A nice approximation is repre-
sented by 2NXNY tuples (100 in our example), which is confirmed by our experimental evaluation
illustrated in Figure 4.12. In this figure, the curve representing the critical value for the mutual
information, corresponding to the value computed through the Monte Carlo method in the interval
[0-100] and exploiting Property 4.1 in interval [100-10000], presents a smooth trend. This result
also confirms that Property 4.1 holds in our framing of the problem.
The same approach can be adopted for the metric based on the Kullback-Leibler distance since
Property 4.2 derives from Property 4.1, and the mutual information is a weighted average of the
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Figure 4.12 Evolution of the mutual information and its critical value

Kullback-Leibler distances for the different targets y in the dataset.

Chi-square goodness-of-fit test. The approximation on which this statistical test is based
holds on a data collection only if, for each target y and for each x ∈ X , a sufficient number of
tuples (typically 5 [96]) has been released. In other words, considering a target y, for each x ∈ X ,
there must be at least 5 tuples in Rrel with t[Y ] = y and t[X ] = x. If, for a given target y, there
are less than 5 tuples with value x for attribute X , we can combine x with either its preceding
or subsequent value in the domain of X and sum their relative frequencies. With reference to our
example, if only 2 soldiers located at L2 in the age range [20-24] have been released, range [20-24]
for L2 can be combined either with [18-19] or with [25-29] for the same location. Suppose now that
the relative frequency for age range [25-29] is 4. By merging [20-24] with [25-29] for location L2, we
obtain a new value [20-29] of the domain of attribute Age for location L2, with relative frequency
equal to 6. This process is iteratively applied, possibly combining a set of contiguous values for
attribute X , until all the relative frequencies of the values in the domain of X are greater than
or equal to 5. If all the values in X are combined in a unique value, the test cannot be applied
and the release is considered safe. If at least 2 values in the domain of X are maintained, the
test can be evaluated. We note however that when multiple original values of X are combined,
the approximation in Property 4.3 should be revised to consider the correct number of degrees
of freedom, which is equal to the number of values in the domain of X in Rrel after the possible
merge operation. For instance, with reference to our example, suppose that the values for attribute
Age for location L2 have been combined obtaining the following domain values: ≤ 24, [25 − 39],
[40 − 44], [45, 49], ≥ 50. The critical value of Pearson’s cumulative statistic for L2 should be
computed considering a chi-square distribution with 4 (instead of 9) degrees of freedom.

Dixon’s Q-test. As already noted, this statistical test can be applied only on data collections
that include at least 3 elements [51]. In our scenario, it can then be used only if 3 different distances
between the y-conditioned distributions and the baseline can be computed. Consequently, datasets
with less than 3 different distance values are considered safe since an observer could not gain any
information.
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4.7 Experimental results

To evaluate the behavior of the metrics presented in Section 4.5, we implemented the data release
strategy described in Section 4.6 with a Matlab prototype and executed a series of experiments. For
the experiments, we considered the dataset R introduced in Example 4.2, which has been obtained
by randomly extracting 10000 tuples from the baseline distribution P (Age) of the age of soldiers
of the UK Regular Forces as at 1 April 2006 [109] (Figure 4.3(a)). The experiments evaluated
the inference exposure (computed as the mutual information, Kullback-Leibler distance between
distributions, Pearson’s cumulative statistic, or Dixon’s coefficient), and the information loss (i.e.,
the number of tuples not released upon request) caused by our privacy protection technique. We
also compared the results obtained adopting the different metrics.

4.7.1 Inference exposure

We evaluated how the metrics discussed in Section 4.5 vary with the release of tuples and compared
them with the corresponding critical values. The experiments have been conducted on 20 randomly
extracted sequences of 10000 requests each. For the sake of readability, in this section we illustrate
the graphs showing the evolution of the inference exposure and of its critical value for one of the
20 sequences; the results obtained with the other sequences present a similar trend.

Mutual information. Figure 4.12 shows the evolution of both the mutual information, and
the corresponding critical value, varying the number of released tuples (the scale of the axis in
Figure 4.12 is logarithmic). The two curves are close to each other and their distance decreases as
the number of released tuples increases. It is easy to see that the mutual information of released
data is always lower than the critical value. The figure also shows a smooth trend for the curve
representing the critical value, confirming that the approximation in Property 4.1 nicely holds
in our scenario. In fact, the discontinuity in the critical value of the mutual information when
the 100th tuple is released, due to the fact that the critical value is computed using the Monte
Carlo based approach in the interval [1-100] and the approach using Property 4.1 in the interval
[100-10000], is small and cannot be noticed in the figure.

Kullback-Leibler distance. Figures 4.13(a)-(e) show the evolution of both the Kullback-Leibler
distance between Prel(Age|Li) and P (Age), i = 1, . . . , 5, and the corresponding critical values,
varying the number of released tuples (the scale of the axis in Figures 4.13(a)-(e) is logarithmic). It
is not surprising that the trends shown in these figures are similar to that illustrated in Figure 4.12.
Indeed, the mutual information is the weighted average of the Kullback-Leibler distance values of
all the locations in the dataset. It is interesting to note that all the locations present a similar
trend for the evolution of both the Kullback-Leibler distance and its critical value. Also, like for
the mutual information, Figures 4.13(a)-(e) present a smooth trend in the curves representing the
critical values for the five locations, confirming that the approximation in Property 4.2 holds. In
fact, the discontinuity in the critical value of the Kullback-Leibler distance when the 100th tuple
is released cannot be noticed from the figure.

Chi-square goodness-of-fit. Figures 4.14(a)-(e) show the evolution of both the Pearson’s cu-
mulative statistic of each location, and the corresponding critical values, varying the number of
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Figure 4.13 Evolution of the Kullback-Leibler distance between Prel(Age|Li) and P (Age) and its critical
value for each location

released tuples. As discussed in Section 4.5.3, when a sufficient number of tuples have been released
the critical value Frc is the same for all the locations. On the contrary, when a limited number
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Figure 4.14 Evolution of the Pearson’s cumulative statistic and its critical value for each location
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Figure 4.15 Evolution of the Dixon’s coefficient and its critical value

of tuples have been released, the critical value may be different for each location, depending on
the number of distinct values in the domain of attribute X for each location. As it is visible from
Figure 4.14, the curve representing the critical value has different steps. Each step corresponds to
a change in the number of values in the domain of X and therefore a different (higher) number of
degrees of freedom of the chi-square distribution in Property 4.3. When the number of released
tuples does not permit to correctly evaluate if the Chi-square goodness-of-fit test is passed or not,
the release is considered safe since an observer cannot gain knowledge by looking at the released
data. This is the reason why the Pearson’s cumulative statistic and its critical value are not com-
puted for the first few (about 10) released tuples in Figures 4.14(a)-(e). For all the locations, the
value of the Pearson’s cumulative statistic increases while tuples are released. In particular, this
growing trend is more visible when less than 100 tuples have been released. Also in this case, as
expected, the distance between the Pearson’s cumulative statistic and its critical value decreases
while data are released.

Dixon’s Q-test. Figure 4.15 shows the evolution of both the Dixon’s coefficient and the cor-
responding critical value, varying the number of released tuples. The distance between Dixon’s
coefficient and the critical value decreases while tuples are released. As it is visible from Figure 4.15,
the Dixon’s coefficient and its critical value are not reported for the first 5 tuples released. This is
due to the fact that, for the first 5 tuples, it is not possible to compute 3 different distance values
between y-conditioned distributions and the baseline. The curve representing the critical value
presents three steps. Each step corresponds to the release of a tuple that permits to compute an
additional difference. In other words, it corresponds to the release of a tuple t such that t[Y ] is
a target that either was not represented in Rrel or that was characterized by a distance from the
baseline equal to the distance of another target.

We note that, for all the considered metrics, the distance between the exposure and its critical
value decreases as more data are released, since the fluctuations in the value distribution charac-
terize the release of the first few tuples. In fact, as the number of tuples in the released dataset
increases, the impact of the release of a single tuple on the distribution of released values decreases.



4.7. Experimental results 99

Original MIS KLD CST DQT

L1 2029 1156.00 (56.97%) 871.85 (42.97%) 994.55 (49.02%) 1935.85 (95.41%)
L2 1299 705.20 (54.29%) 697.65 (53.71%) 255.35 (19.66%) 1262.65 (97.20%)
L3 1652 1119.00 (67.74%) 1549.75 (93.81%) 1300.00 (78.69%) 1565.45 (94.76%)
L4 2007 1256.95 (62.63%) 1874.75 (93.41%) 1361.85 (67.86%) 1990.20 (99.16%)
L5 3013 1876.65 (62.29%) 2415.65 (80.17%) 1899.25 (63.04%) 3013.00 (100.00%)

Total 10000 6095.78 (60.96%) 7408.67 (74.09%) 5119.88 (51.20%) 9631.55 (96.32%)

(a) α = 20%

Original MIS KLD CST DQT

L1 2029 1187.55 (58.53%) 918.35 (45.26%) 1021.85 (50.36%) 1996.90 (98.42%)
L2 1299 720.05 (55.43%) 713.30 (54.91%) 322.30 (24.81%) 1275.80 (98.21%)
L3 1652 1145.90 (69.36%) 1576.20 (95.41%) 1151.90 (69.73%) 1571.80 (95.15%)
L4 2007 1283.50 (63.95%) 1951.85 (97.25%) 1698.15 (84.61%) 1996.25 (99.46%)
L5 3013 1907.85 (63.32%) 2530.20 (83.98%) 2344.55 (77.81%) 2996.75 (99.46%)

Total 10000 6290.58 (62.91%) 7757.14 (77.57%) 6478.14 (64.78%) 9846.14 (98.46%)

(a) α = 5%

Figure 4.16 Average number of requested tuples released by each metric for the different locations with
α = 20% (a) and α = 5% (b)

4.7.2 Information loss

To evaluate the quality of the results obtained adopting our metrics, we consider the number
of released and discarded tuples. Figures 4.16(a)-(b) summarize the average number of tuples
released by each of our metrics with significance level α equal to 20% and 5%, respectively, for
the 20 sequences of 10000 requests that we generated for our experiments, distinguishing also how
many requests for each location have been fulfilled.

Comparing the results in Figures 4.16(a)-(b) we note that, as expected, a lower significance level
permits to release a higher number of tuples for all the considered metrics. Indeed, most of the cells
in the table in Figure 4.16(b) have higher values than the corresponding cells in Figure 4.16(a). It
is also easy to see that there is not a metric that is always better than the others in terms of the
number of tuples released. For instance, Dixon’s Q-test is less restrictive that the other metrics,
since it releases the highest number of tuples as a whole and for each locations when α = 20%,
and as a whole and for each locations but L3 when α = 5%. From our analysis of the results
reported in the two tables, we can conclude that the considered metrics adopt a different approach
to protect the released data: CST and KLD block the release of the tuples of the outlier, while
MIS and DQT block the release of the tuples from all the locations.

The location with the fewest released tuples is L2 for both MIS and CST metrics, and for DQT
in the case α = 20%. This is a non-surprising result, since L2 is the headquarter (i.e., the outlier
that needs to be protected). On the contrary, metric KLD blocks more tuples from L1 than from
L2, and DQT, for α = 5%, blocks more tuples from location L3 than from L2. The location that
enjoys the largest number of tuples released with α = 20% is L3 for all the metrics but DQT,
which privileges location L5. With α = 5%, the location with the highest percentage of released
tuples is L4 for all the metrics but MIS, which privileges location L3.

It is interesting to note that all the metrics proposed in this chapter to evaluate if a release is safe
permit to release a considerable number of tuples, especially if compared with the (more intuitive)
approach of fitting the baseline distribution within each Li-conditioned distribution. Fitting the
baseline within an Li-conditioned distribution forces a maximum number of tuples that could be
released for each age range in Li, since the relative frequency of the tuples in each age range must
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Figure 4.17 Fitting the baseline distribution within the L2-conditioned distribution

be exactly that of the baseline for each location in the released dataset. For instance, in the baseline
distribution almost 19.67% soldiers are in the range [25-29], while in L2 only 8.78% of tuples (140
tuples) fall in such range. Respecting the baseline distribution requires, even in the case where
all tuples in the range [25-29] of L2 are released to not release tuples in other ranges (so that the
140 tuples above actually correspond to 19.67%). Figure 4.17 graphically depicts this reasoning of
fitting the baseline distribution (in black) within the L2-conditioned distribution (gray going over
the black). For each value range, no more than the number reached by the baseline distribution
should be released. Figure 4.18 summarizes the number of tuples for each location that would
be released adopting the approach of fitting the baseline within each Li-conditioned distribution,
i = 1, . . . , 5. It is easy to see that this approach is far more restrictive than our solution and
blocks the release of a larger number of tuples. Each of the proposed metrics permits to release
a higher number of tuples for most of the locations (but for CST in the case of location L4 with
α = 20% and L3 with α = 5%). In particular, our approach permits to release in most cases more
than twice the number of tuples that would be released by fitting the baseline distribution within
each Li-conditioned distribution. This is mainly due to the fact that, when fitting the baseline
within each P (Age|Li), the presence of a low number of tuples in an age-range for a location (e.g.,
2 soldiers with age greater than 55 in L3, L4, and L5) hardly constraints the release of the tuples
in all the other age ranges. In our example, the two tuples representing soldiers older than 55
must represent the 0.21% of all the tuples released for locations L3, L4, and L5. As a consequence,
the data holder can release at most 952 tuples of L3, L4, and L5. Our metrics try to loosen this
constraint, by evaluating the distance (or its average) between the distributions, instead of the
value that the distribution has at each age value.

4.7.3 Comparison

To further compare the behavior of the metrics proposed, we have randomly generated 100 request
sequences of 5000 tuples each, out of the 10000 in our dataset of the UK Regular Forces. For
each of the metrics proposed in the chapter, and for each of the 100 random request sequences, we
run our algorithm. For this series of experiments, we fixed the significance level α to 20%, which
represents the most restrictive release scenario. We then checked, for each of the metrics, how many
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Original Released

L1 2029 500 (24.6%)
L2 1299 580 (44.6%)
L3 1652 952 (57.7%)
L4 2007 952 (47.5%)
L5 3013 952 (31.6%)

Total 10000 3937 (39.37%)

Figure 4.18 Number of requested tuples released fitting the baseline

MIS KLD CST DQT

MIS 100 0 0 54
KLD 1 100 1 61
CST 0 0 100 45
DQT 0 0 0 100

Figure 4.19 Number of datasets obtained adopting a metric that are safe also with respect to the other
metrics

of the 100 safe releases obtained running our algorithm with the considered metric represents a
safe release also with respect to each of the other three metrics. Figure 4.19 summarizes the
number of datasets obtained adopting each metric (on the row) that are safe also with respect
to the other metrics (on the column). It is immediate to see that DQT is the less restrictive
metric, confirming the results illustrated in the previous subsection. In fact, none of the 100
datasets obtained adopting DQT metric is safe with respect to the other three metrics (fourth row
in Figure 4.19). On the contrary, 54 (61 and 45, respectively) datasets obtained using MIS metric
(KLD and CST metrics, respectively) also satisfy the definition of safe release of Dixon’s Q-test.
The most restrictive metric is instead KLD, since no dataset obtained adopting a different metric
resulted safe with respect to KLD metric (second column in Figure 4.19) while at least one dataset
obtained adopting KLD metric is safe with respect to each of the other three metrics (second row
in Figure 4.19). It is interesting to note that this result is different from the conclusions drawn
in the previous subsection, where we noted that MIS and CST are the metrics that minimize the
release of tuples. It is however not surprising since the analysis illustrated in Figure 4.19 is different
from the one summarized in Figures 4.16(a)-(b). In fact, the results illustrated in Figure 4.19 are
obtained analyzing a dataset that is considered safe by one metric with respect to the other metrics
introduced in Section 4.5. On the contrary, the results in Figures 4.16(a)-(b) are obtained analyzing
the safe datasets produced by each of the metrics of interest, starting from the same original data
collection and considering the same order in the request of tuple. The results in Figure 4.19 confirm
the fact that the considered metrics measure the exposure of the released dataset in different ways
and that the considered metrics obtain a different result if applied to the same sequence of tuple
requests. Each metric is therefore suited for protecting a different statistical characteristic of the
data that could be exploited for inference purposes. For instance, MIS metric is the ideal solution
to protect the released data against attacks that exploit the mutual information between X and Y
(i.e., their statistical dependency) to gain information about the sensitive property. To decide the
metric and the value for α to be adopted for protecting the release of her dataset, the data holder
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needs to estimate the attacks that a possible observer could exploit to gain sensitive information.
If the data holder wants to achieve a higher protection for her data, she can combine (a subset of)
the metrics introduced in Section 4.5. This approach, while better preserving privacy of sensitive
data, has the drawback of limiting the number of tuples released, since the released dataset must
satisfy all the conditions in Figure 4.4 (or a subset thereof). Analogously, to take a safe approach,
the data holder can choose a high value for the significance level.

4.8 Chapter summary

In this chapter, we considered the problem of protecting sensitive information in an incremental
data release scenario, where the data holder releases non sensitive data on demand. As more and
more data are released, an external observer can aggregate such data and infer the sensitive infor-
mation by exploiting the dependency between the distribution of the non sensitive released data
and the sensitive information itself. We presented an approach for characterizing when data can
be released without incurring to such inference. To this purpose, we defined different metrics that
can be considered to determine when the released data can be exploited for inference, and intro-
duced the concept of safe release according to such metrics. We also discussed how to enforce the
information release control at run-time, and provided an experimental evaluation of the proposed
solution, proving its efficacy.
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Enforcing dynamic read and write privileges

As illustrated in Chapter 1, users and companies are more and more resorting on external providers
for storing their data and making them available to others. When the release is selective, meaning
that different users are authorized by the data owner to access different portions of the released
data, there is the problem of ensuring that accesses to resources be allowed to authorized users
only. Recent approaches based on selective encryption provide convenient enforcement of read
privileges over outsourced resources, but are not directly applicable for supporting write privileges.
In addition, they cannot easily support the enforcement of a subscription-based authorization policy
where, due to new subscriptions and the publication of new resources, both the set of users who
can access a resource and the set of resources change frequently over time. In this chapter, we build
upon the selective encryption approach to propose an efficient solution for enforcing dynamic read
and write privileges over outsourced data. We also define an effective mechanism for checking data
integrity. Finally, we enhance our solution to effectively support the definition of subscription-based
authorizations.

5.1 Introduction

The advances in the Information and Communication Technologies (ICTs) have driven the users
into the Globalization era, where the techniques for processing, storing, and accessing information
have radically changed. New emerging computing paradigms (e.g., data outsourcing and cloud
computing) offer enormous advantages to both users and organizations. Users can now subscribe
to a variety of services, and access them anywhere anytime: at home from their laptop, on the
train from their tablet, or while waiting in a queue from their smartphone. Organizations are more
and more resorting to external elastic storage and computational services for creating and running
business over the Internet in new ways. Organizations can then provide large-scale cloud data
services widely accessible to a variety of users. A common requirement is that data should remain
confidential to both unauthorized users and the external server storing them, which is considered
honest-but-curious (i.e., trustworthy for managing resources but not for accessing their content).
To provide such confidentiality guarantee, existing proposals typically assume data to be encrypted
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before being sent to the external server, and associate with the encrypted data additional indexing
information that can be used by the server to perform queries on encrypted data. For efficiency
reasons, encryption is based on symmetric keys. Earlier proposals typically consider data to be
encrypted with a single key, assuming either all users to have complete visibility of the resources
in the data collection, or the data owner to mediate access requests to the data to enforce read
authorizations. More recent proposals, addressing the problem of allowing users to have selective
visibility over the data (so that different sets of users be able to access different resources), have
proposed the application of a ‘selective encryption’ approach. Intuitively, different keys are used to
encrypt different resources, and users have visibility on subsets of resources depending on the keys
they know. Proper modeling and key derivation techniques have been devised to ensure limited
key management overhead in approaches based on selective encryption.

While interesting and promising, traditional solutions remain limited for a variety of reasons.
First, they assume outsourced resources to be read-only. In other words, they assume that only
the owner be authorized to modify resources, while all other users can only read them. Such an
assumption can result restrictive in all those scenarios where a data owner wants to authorize
other users, again selectively, to write and update the outsourced resources. Moreover, traditional
techniques cannot easily support a dynamic subscription-based scenario, where both the set of
users who can access a resource and the set of resources change frequently over time, due to new
subscriptions and the publication of new resources. In this regard, they cannot be directly applied
to emerging real-world scenarios in which, for example, users pay for a service and can access the
resources made available during their subscriptions: to access resources after the expiration of their
subscriptions, users would be forced to download them to their local machine.

In this chapter, we extend selective encryption approaches to overcome these two limitations.
By relying on selective encryption for enforcing both read and write access restrictions, our solution
has efficiency and manageability as primary goals. Before being stored at the external server, re-
sources are encrypted, and an ad-hoc key derivation structure is built to avoid expensive re-keying
and re-encryption operations. Our contribution is therefore multifold. First, we propose an effi-
cient solution for enforcing both read and write authorizations on encrypted resources undergoing
selective release. Second, we complement our solution with the definition of a subscription-based
authorization policy, allowing users to maintain the right to access the resources made available
during their subscriptions without the worry that they will lose this right after the expiration of
their subscriptions (for instance, so that users who have purchased an annual subscription for 2012
for a magazine be able to access all and only the issues of the magazine published in 2012, even
after December 31, 2012). More in details, our contributions can be summarized as follows.

As for the enforcement of read and write authorizations, we build upon an earlier proposal [44]
to support grant and revoke of write authorizations, providing a general solution applicable to
scenarios where static write authorizations may result limiting. A key feature of our solution is
that it delegates the enforcement of updates on the write access control policy to the external
server, reducing the burden left at the data owner side. We also propose a mechanism allowing
both the data owner and the authorized writers to verify the integrity of the resources externally
stored (i.e., to verify that resources have not been modified by unauthorized users or by the server),
applicable also in case of updates to the write access policy.

As for the enforcement of subscription-based authorizations, we take once more advantage of
selective encryption to guarantee that users who subscribe for a service can access all and only
the resources published during their subscriptions, while allowing the resources to self-enforce the
subscription-based restrictions. The key derivation structure is updated whenever new resources
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are published, new subscriptions are received, or users withdraw from their subscriptions.
By taking into consideration different data release scenarios (i.e., both traditional and

subscription-based scenarios), we provide a complete solution for enforcing access restrictions on
externally stored resources, easily applicable by a data owner depending on her specific release
needs.

5.1.1 Chapter outline

The remainder of this chapter is organized as follows. Section 5.2 illustrates some basic concepts
on selective encryption, and motivates the need for enforcing write privileges on selectively released
resources. Section 5.3 illustrates our solution for enforcing write authorizations exploiting selective
encryption. Section 5.4 discusses our approach for enforcing grant and revoke of write privileges.
Section 5.5 presents a mechanism for allowing the data owner and writers to check the write
operations executed and detect possible misbehaviors by the server or by the users. Section 5.6
extends the integrity check mechanism to support updates to the write access policy. Section 5.7
motivates our extended subscription-based scenario, illustrates the specific protection requirements
to be guaranteed, and formalizes the concept of subscription-based policy. Section 5.8 presents
our techniques for enforcing a subscription-based policy. Section 5.9 illustrates how new resources
can be published and subscriptions managed. Finally, Section 5.10 gives our final remarks and
concludes the chapter.

5.2 Basic concepts and problem statement

Our work builds upon traditional proposals (e.g., [42]) for confidential data outsourcing, according
to which a data owner outsourcing data to a honest-but-curious server and wishing to provide
selective visibility over them to other users encrypts resources before sending them to the external
server for storage, and reflects the authorization policy in the encryption itself. Therefore, each
resource o is encrypted with a key to be made known only to the users authorized to read o, that
is, to users who belong to the access control list of o. Symmetric encryption is used and different
keys are assumed: the adoption of a key derivation technique based on public tokens allows users to
access the resources of the system while having to manage only one key. In further detail, each key
ki is identified by a public label li and, given keys ki and kj , token di,j is computed as kj⊕h(ki,lj),
with ⊕ the bitwise xor operator, and h a deterministic cryptographic function. Token di,j permits
to derive key kj from the knowledge of key ki and public label lj [6]. All keys with which resources
are encrypted are then connected in a graph structure, that is, a DAG whose nodes correspond to
keys of the system and whose edges correspond to tokens that ensure that each user can - via a
sequence of public tokens - derive the keys corresponding to the sets to which she belongs. Each
user is then communicated the key of the node representing herself in the graph. Each resource is
encrypted with a key that can be derived only by authorized users according to the access control
policy set by the data owner. Encrypted resources as well as the tokens are outsourced to the
server. In particular, for each resource o, the external server stores the encrypted version of the
resource together with the resource identifier and the label of the key with which the resource is
encrypted. A user authorized to read a resource can, via the tokens available on the server, derive
the key used for encrypting the resource and decrypt it.
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o acl
o1 ABCD
o2 ABCD
o3 ABC
o4 BD

r label o id encr resource
lABCD 1 zKZlJxVcCC0g
lABCD 2 t9qdJqC7ImXU
lABC 3 AxalPH8v37Ts
lBD 4 xwfPJSn.MVqY
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(c) (d)

Figure 5.1 An example of four resources with their acls (a), encrypted resources (b), key derivation
graph (c), and tokens (d)

Example 5.1. Consider a system with four users U={A,B,C,D} and four resources
O={o1,o2,o3,o4}, whose access control lists are reported in Figure 5.1(a). Figure 5.1(b) illus-
trates the encrypted resources stored at the server, where: r label is the label of the key used to
encrypt the resource (i.e., the key associated with its access control list); o id is the resource identi-
fier; and encr resource is the encrypted resource. Figure 5.1(c) illustrates the key derivation graph
enforcing the authorizations. For the sake of readability, in the key derivation graph we denote a
key corresponding to a given acl U (i.e., a key with label lU and value kU ) with U . Figure 5.1(d)
illustrates the tokens corresponding to the key derivation graph in Figure 5.1(c).

The encryption-based model described in this section nicely fits a scenario in which the au-
thorization policy regulates only read access privileges, selectively restricting resource visibility to
subsets of users. The support of read accesses without consideration of write privileges may re-
sult however limiting in emerging data sharing scenarios (e.g., document sharing), where the data
owner may wish to grant other users the privilege to modify some of her resources. Unfortunately,
the keys associated with resources for regulating the read accesses to them cannot be used for
restricting write accesses as well. As a matter of fact, we can imagine that in many situations the
set of users authorized to write a resource is different from (typically being a subset of) the set
of users authorized to read it. A straightforward solution for enforcing write authorizations might
consist in simply outsourcing to the external server the authorization policy (for write privileges)
as is. The server would then perform traditional (authorization-based) access control, adopting
user authentication and policy enforcement. This solution would however present the main draw-
back of requesting a considerable management overhead. Also, it would not be in line with the
goal pursued by outsourcing approaches, aimed at minimizing the server’s involvement and re-
sponsibility in access control enforcement. Our goal is to enforce write privileges following the
same spirit of the proposal in [42]: for this reason, we propose to exploit selective encryption for
the enforcement also of write authorizations. As a matter of fact, having resources tied to access
restrictions by means of cryptographic solutions can provide a more robust and flexible control,
whose enforcement is less exposed to server misbehaviors. However, while the encryption of a
resource with a key known to all and only the users authorized to read it suffices for enforcing read
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authorizations, enforcement of write privileges requires cooperation from the external server. In
the following sections, we will describe an approach, based on selective encryption, for the effective
outsourcing to the external server of the enforcement of both read and write privileges, as well as
of grant and revoke operations.

5.3 Authorization policy

The basic idea of our approach for the enforcement of both read and write privileges consists in
associating each resource with a write tag defined by the data owner, and in adopting selective
encryption techniques to regulate both access to resource contents and to their write tags. Our
intuition is to encrypt the tag of a given resource with a key known only by the users authorized to
write the resource and by the external server. In this way, only the server and authorized writers
will have access to the plaintext write tag of each resource. The server will then accept a write
operation on a resource when the requesting user shows knowledge of the corresponding write tag.
Since the key used for encrypting the write tag has to be shared by the server and the writers, we
leverage on the underlying structure already in place for regulating the necessary read operations.
In this section, we illustrate our key derivation structure for managing the encryption keys of the
system (Section 5.3.1), and we discuss how to use it for enforcing read and write access restrictions
(Section 5.3.2).

5.3.1 Key derivation structure

Elaborating on the approach in [42], and adapting it to our context, we introduce a set-based key
derivation graph as follows.

Definition 5.1 (Set-based key derivation graph). Let U be a set of users and U⊆2U be a family
of subsets of users in U such that ∀u∈U , {u}∈U. A set-based key derivation graph over U and U

is a triple 〈K,L,D〉, with K a set of keys, L the set of corresponding labels, and D a set of tokens,
such that:

1. ∀U∈U, there exist a derivation key kU∈K;

2. ∀u∈U , ∀U∈U\{u} s.t. u∈U , there exists a token d{u},U or a sequence 〈d{u},Ui
, . . . , dUj ,U 〉 of

tokens in D, with dw,z following dx,y in the sequence if y = w.

Definition 5.1 ensures that, for each set U∈U of users, there exists a derivation key, and that
each user u in the system can derive (through either a single token or a chain of tokens) all the
derivation keys of all the groups U∈U to which she belongs.

Since our approach requires each resource to be associated with a write tag that must be
encrypted with a key shared by the server and the authorized writers of the resource, we extend
the set-based key derivation graph in Definition 5.1 with the external server. However, since the
server cannot access the plaintext of the outsourced resources, it cannot be treated the same way
as authorized users (i.e., considering it as an additional user). We then define a key derivation
structure by extending the set-based key derivation graph to include also the keys that will be
shared with the server, and will be used to encrypt the write tags for enforcing write privileges
(see Section 5.3.2). These additional keys are defined in such a way that authorized users can
compute them applying a secure hash function hs to a key they already know (or can derive via
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a sequence of tokens), while the server can derive them through a token specifically added to the
key derivation structure. Compared with the set-based key derivation graph in Definition 5.1, in
the key derivation structure we also distinguish between two kinds of keys (possibly associated
with each set of users): derivation keys and access keys . Access keys are actually used to encrypt
resources, while derivation keys are used to provide the derivation capability via tokens, that
is, tokens can be defined only with derivation keys as starting points. Each set of users in U is
therefore associated with a derivation key k and, when needed, also with an access key ka obtained
by applying a secure hash function ha to k (i.e., ka=ha(k)). The rationale for this evolution is to
distinguish the two roles associated with keys, namely: enabling key derivation (by applying the
corresponding tokens) and enabling access to resources.

Formally, a key derivation structure is defined as follows.

Definition 5.2 (Key derivation structure). Let U be a set of users, S be an external server, U ⊆ 2U

be a family of subsets of users in U such that ∀u∈U , {u}∈U, Us and Ua be two subsets of U, and
〈K′,L′,D′〉 be a set-based key derivation graph over U and U. A key derivation structure implied
by Us and Ua over 〈K′,L′,D′〉 is a triple 〈K,L,D〉, with K a set of keys, L the set of corresponding
labels, and D a set of tokens, such that:

1. K = K′ ∪ {kS} ∪ {kU∪{S}=hs(kU ) | U∈Us} ∪ {kaU=ha(kU ) | U∈Ua}, with hs and ha two
secure hash functions;

2. D = D′ ∪ {dS,U∪{S} | U∈Us}.

A key derivation structure therefore extends a set-based key derivation graph by including: i)
a derivation key kS assigned to the server; ii) a key kU∪{S} shared by the users in U and the
server, for each set U of users in Us; iii) an access key kaU shared by the users in U , for each set U
of users in Ua; and iv) a token dS,U∪{S} that allows the server to derive key kU∪{S} starting from
its key kS , for each set U of users in Us. For each set U of users in Us, both a derivation key kU
and a key kU∪{S} shared with the server belong to K. Analogously, for each set U of users in Ua,
both a derivation key kU and an access key kaU belong to the set K of keys in the key derivation
structure.

Figure 5.2 illustrates function Define Key Derivation Structure that builds a key deriva-
tion structure. The function receives as input a set U of users, an external server S, three families
U, Us, and Ua of subsets of users in U , with Us⊆U and Ua⊆U, and two secure hash functions hs and
ha. It returns the key derivation structure 〈K,L,D〉 implied by Us and Ua over 〈K′,L′,D′〉 (Defi-
nition 5.2). The function operates in two steps: the first step defines the set-based key derivation
graph over U and U; the second step extends the key derivation graph with the server, for defining
the key derivation structure of interest. In the first step, the function leverages on the algorithms
in [42] to define the set-based key derivation graph 〈K′,L′,D′〉. To this aim, for each set U∈U of
users the function generates a derivation key and the corresponding label, and inserts them into
the sets K′ of keys and L′ of labels, respectively (lines 5–8). The function then defines a set D′

of tokens such that, for each user u in the set U , there is a token (or a sequence of tokens) in D′

that permits to derive, starting from ku , all those keys kU associated with a set U∈U of users with
u∈U (lines 10–12). In the second step, function Define Key Derivation Structure extends
the set-based key derivation graph computed in the previous step to obtain the key derivation
structure of interest. To this aim, the function first generates a derivation key kS for the server
and the corresponding label lS , and inserts them into sets K and L, respectively (lines 14–16).
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DEFINE KEY DERIVATION STRUCTURE(U , S, U, Us, Ua, hs, ha)

/* INPUT U : users of the system */
/* S : external server */

/* U ⊆ 2U : family of subsets of users in U */
/* Us ⊆ U, Ua ⊆ U : subsets of U */
/* hs, ha : secure hash functions */

/* OUTPUT 〈K,L,D〉 : key derivation structure implied by Us and Ua over 〈K′,L′,D′〉 */

1: /* Step 1: define the set-based key derivation graph */
2: K′ := ∅
3: L′ := ∅
4: D′ := ∅
5: for each U∈U do /* generate a derivation key for each U∈U (C1 in Def. 5.1) */
6: generate a derivation key kU and a label lU
7: K′ := K′ ∪ {kU}
8: L′ := L′ ∪ {lU}
9: /* define a set of tokens s.t. ∀U∈U and ∀u∈U , kU is derivable from ku iff u∈U (C2 in Def. 5.1) */
10: for each Uj∈U, |Uj | > 1 do
11: coverj := {U1,. . . ,Un ∈ U |

⋃n
i=1Ui=Uj}

12: D′ := D′ ∪ {dUi,Uj
=kUj

⊕h(kUi
,lUj

) | Ui∈coverj}
13: /* Step 2: define a key derivation structure */
14: generate a key kS and a label lS /* generate a key for the external server (C1 in Def. 5.2) */
15: K := K′ ∪ {kS}
16: L := L′ ∪ {lS}
17: D := D′

18: for each U∈Us do /* for each U∈Us, compute kU∪{S} as the result of hs over kU (C1 in Def. 5.2) */
19: kU∪{S} := hs(kU )
20: generate a label lU∪{S}
21: K := K ∪ {kU∪{S}}
22: L := L ∪ {lU∪{S}}
23: D := D ∪ {dS,U∪{S}=kU∪{S}⊕h(kS ,lU∪{S})} /* token from kS to kU∪{S} (C2 in Def. 5.2) */
24: for each U∈Ua do /* for each U∈Ua, compute ka

U as the result of ha over kU (C1 in Def. 5.2) */
25: ka

U := ha(kU )
26: generate a label laU
27: K := K ∪ {ka

U}
28: L := L ∪ {laU }
29: return(〈K,L,D〉)

Figure 5.2 Function that defines a key derivation structure

The set D of tokens is initialized to the set D′ of tokens in the set-based key derivation graph
(line 17). For each set U of users in Us, the function computes key kU∪{S} (shared by the server
and U ) applying secure hash function hs to kU , generates the corresponding label, and inserts
them into the set K of keys and into the set L of labels in the key derivation structure, respectively
(lines 18–22). The set D of tokens is then updated by inserting a token that permits to derive
kU∪{S} from kS for each set U of users in Us (line 23). The function generates an access key
kaU (and the corresponding label) for each set U of users in Ua by applying secure hash function
ha to the derivation key kU associated with the same set of user, and inserts the key and the
label into K and L, respectively (lines 24–28). The function terminates returning the resulting
key derivation structure 〈K,L,D〉 (line 29). The following theorem formally shows that function
Define Key Derivation Structure correctly computes a key derivation structure.

Theorem 5.1 (Correctness of procedure Define Key Derivation Structure). Let U be a
set of users, S be an external server, U⊆2U be a family of subsets of users in U such that
∀u∈U , {u}∈U, and Us and Ua be two subsets of U. Triple 〈K,L,D〉 computed by function
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lB lBD kBD⊕h(kB ,lBD)
lC lAC kAC⊕h(kC ,lAC)
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lAC lABC kABC⊕h(kAC ,lABC)
lBD lABCD kABCD⊕h(kBD ,lABCD)
lABC lABCD kABCD⊕h(kABC ,lABCD)
lS lBS kBS⊕h(kS ,lBS)
lS lACS kACS⊕h(kS ,lACS)
lS lBDS kBDS⊕h(kS ,lBDS)

(c) (d)

Figure 5.3 An example of read and write acls (a), encrypted resources (b), key derivation structure (c),
and tokens (d)

Define Key Derivation Structure in Figure 5.2 is a key derivation structure (Definition 5.2).

Proof: We prove that the triple 〈K,L,D〉 computed by function
Define Key Derivation Structure satisfies all the conditions in Definition 5.2.

• Condition 1 is satisfied since in Step 1 the function generates a key for each set of users in U

and inserts it into K′ (lines 6–7). The set K′ of keys resulting from Step 1 then corresponds to
the set of keys of the set-based key derivation graph. In Step 2, the function generates a key
kS for the server (line 14) and inserts both key kS and all the keys in K′ into K (line 15). For
each set U of users in Us, the function computes the key for U∪{S} as hs(kU ) (lines 18–19),
where hs is a secure hash function, and inserts kU∪{S} into K (line 21). Similarly, for each
set U of users in Ua, the function computes the access key kaU as ha(kU ) (lines 24–25), where
ha is a secure hash function, and inserts kaU into K (line 27).

• Condition 2 is satisfied since in Step 1 the function defines a set D′ of tokens that guarantees
that each key kU in K can be directly derived from a set {kU1 ,. . . ,kUn} of keys in K′ such that
U1 ∪ . . . ∪ Un=U (lines 10–12). As proved in [42], this property is equivalent to Condition 2
in Definition 5.1. Therefore the set of tokens D′ resulting from Step 1 corresponds to the set
of tokens of the set-based key derivation graph. In Step 2 the function inserts into D all the
tokens in D′ (line 17) and, for each set U of users in Us, it defines and inserts into D token
dS,U∪{S} that permits to derive kU∪{S} from kS (line 23). �

Example 5.2. Consider a system with four users U={A,B,C,D}, a family
U={A,B,C,D,AC,BD,ABC,ABCD} of subsets of users, and two subsets Us={B,AC,BD}
and Ua={BD,ABC,ABCD} of U. Figure 5.3(c) illustrates the key derivation structure computed
by function Define Key Derivation Structure in Figure 5.2. In the figure, nodes drawn with
a continuous line represent derivation keys, and nodes drawn with a dotted line represent keys



5.3. Authorization policy 111

shared with the external server (for the sake of readability, access keys are not reported in the
figure). Continuous edges represent tokens, and dotted edges correspond to hash-based derivations
computed via secure hash function hs.

5.3.2 Access control enforcement

We now illustrate our proposal for enforcing both read and write access restrictions. Each resource
o is associated with two (possibly different) access control lists: i) a read access list r[o] reporting
the set of users authorized to read o, and ii) a write access list w[o] reporting the set of users
authorized to write o. Consistently with most real-world scenarios, we assume the users authorized
to write a resource to also read it, that is, ∀o ∈O: w[o]⊆r[o].

Read authorizations are enforced through selective encryption. Each resource o in the set O of
resources is then encrypted with the access key corresponding to the set of users in its read access
list r[o], which is known or can be derived by all and only the users authorized to view the resource
content.

Enforcement of write authorizations, as mentioned at the beginning of this section, relies on the
definition of a write tag for each resource and on the cooperation with the external server. Each
resource o∈O is associated with a write tag tag[o], defined by the data owner using a secure random
function to ensure independence of the tag from both the resource identifier and its content. To
guarantee that only the server S and the set w[o] of authorized writers know the plaintext value
of the write tag of resource o, tag[o] is encrypted with a key that is known or can be derived only
by the users in w[o] and by the server.

Each resource o∈O is stored at the external server in encrypted form, together with the following
metadata.

• r label: label of the key with which the resource is encrypted, which is the access key of
the set r[o] of users authorized to read o (i.e., lar [o]).

• w label: label of the key shared by the set w[o] of users authorized to write o and the server
S (i.e., lw [o]∪{S}).

• encw tag: write tag tag[o] of resource o, which is used by the server to enforce restrictions
on write privileges. The tag is encrypted with the key identified by the label in w label (i.e.,
E(tag[o], kw [o]∪{S}), where E is a symmetric encryption function computed over tag[o] with
key kw [o]∪{S}).

• encr resource: encrypted version of resource o, encrypted with the access key identified by
the label in r label (i.e., E(o, kar [o])).

Given the set U of users and the set O of resources in the system, where each resource is
associated with read and write access control lists as mentioned above, the data owner must
compute keys and tokens composing the key derivation structure before outsourcing resources in
O. To this aim, it calls procedure Initialize System in Figure 5.4, which in turn calls function
Define Key Derivation Structure in Figure 5.2 to properly define the key derivation structure.
The procedure receives as input the set U of users and the set O of resources in the system, an
external server S, and two secure hash functions hs and ha. The procedure first needs to define
three families U, Us, and Ua of subsets of users in U . U corresponds to the set of groups of users
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INITIALIZE SYSTEM(U , O, S, hs, ha)

/* INPUT U : users of the system */
/* O : resources of the system */
/* S : external server */
/* hs, ha : secure hash functions */

1: /* Step 1: define the key derivation structure */
2: Us :=

⋃
o∈Ow[o]

3: Ua :=
⋃

o∈Or[o]

4: U := Us ∪ Ua ∪ {{u} | u∈U}
5: 〈K,L,D〉 := Define Key Derivation Structure(U , S, U, Us, Ua, hs, ha)
6: /* Step 2: distribute keys */
7: for each u∈U do /* communicate derivation keys to users */
8: send ku to u
9: send kS to S /* communicate the derivation key to the server */
10: /* Step 3: outsource resources and tokens */

11: Ok := ∅ /* outsourced relation */
12: for each o∈O do /* define the outsourced relation */
13: create a new tuple t
14: t[r label] := lr[o]

15: t[w label] := lw[o]∪{S}
16: t[o id] := Id(o)
17: randomly generate a value for tag[o]
18: t[encw tag] := E(tag[o],kw[o]∪{S})
19: t[encr resource] := E(o,kr[o])

20: insert t into Ok

21: send relation Ok to the server
22: token := ∅ /* relation storing public tokens */
23: for each di,j∈D do
24: create a new tuple t
25: t[from] := li
26: t[to] := lj
27: t[val] := di,j

28: insert t into token
29: send relation token to the server

Figure 5.4 Procedure that enforces the access control policy defined by the data owner before outsourcing
resources

whose keys must be represented in the system for the correct enforcement of the authorizations. It
then includes the singleton sets {u} of users u in U , and the sets U of users representing read and
write access lists (r[o] and w[o], respectively) of resources o in O. Us is the subset of U representing
those sets of users that have to share a key with the external server. It then includes all the sets
of users corresponding to the write access lists w[o] of resources o in O. Ua is the subset of U
representing those sets of users for which an access key needs to be defined. It then includes all
the sets corresponding to the read access lists r[o] of resources o in O (lines 2–4). The procedure
then calls function Define Key Derivation Structure, which returns a key derivation structure
(line 5). Finally, the procedure:

1. communicates to each user u derivation key ku , and to the external server derivation key kS
(lines 7–9);

2. computes and stores at the external server the encrypted resources and the associated meta-
data (lines 11–21);

3. stores at the external server all the tokens in the key derivation structure (i.e., tokens in D)
as a set of triples of the form 〈li, lj , di,j〉 indicating that the key with label lj can be directly
derived from the key with label li through token di,j (lines 22–29).
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Example 5.3. Consider a system with four users U={A,B,C,D} and four resources
O={o1,o2,o3,o4}, and assume read and write acls of resources to be as in Figure 5.3(a) (read acls
are the same as in Example 5.1). Figure 5.3(c) illustrates the key derivation structure computed as
described in Example 5.2. Figure 5.3(b) and Figure 5.3(d) illustrate the encrypted resources and
associated metadata, and the tokens outsourced to the external server, respectively.

It is easy to see that our approach guarantees: i) correct read authorization enforcement ; ii)
correct write authorization enforcement ; and iii) write control by the server. Read authorization
enforcement is guaranteed as each resource o∈O is encrypted with an access key (i.e., kar [o]) that

only authorized readers in r[o] know or can derive. In fact, each user u can compute any access key
kaU such that u∈U by applying hash function ha to derivation key kU , which u knows or can derive
as she belongs to U . Write authorization enforcement is guaranteed since the write tag tag[o] of
each resource o∈O is encrypted with a key (i.e., kw [o]∪{S}) that only authorized writers in w[o]
(and the server) can derive. Also, the server is assumed to be honest-but-curious and therefore
not interested in tampering with resources (see Sections 5.5 and 5.6). Write control by the server
is guaranteed since the server has visibility over the write tag of all resources, which is encrypted
with a key that the server can directly derive.

The correct enforcement of the authorization policy is formally proved by the following theorem.

Theorem 5.2 (Correct enforcement of authorizations). Let U be a set of users, S be an external
server, O be a set of resources such that ∀o∈O r[o] and w[o] are the read and write access lists of
o, respectively. Our access control system satisfies the following conditions:

1. ∀u ∈ U and ∀o ∈ O, u can decrypt encr resource[o] iff u ∈ r [o] (read authorization
enforcement);

2. ∀u ∈ U and ∀o ∈ O, u can decrypt encw tag[o] iff u ∈ w [o] (write authorization enforce-
ment);

3. ∀o ∈ O, S can decrypt encw tag[o] (write control).

Proof: The proof is based on the fact that, by Theorem 5.1, triple 〈K,L,D〉 computed by
function Define Key Derivation Structure is a key derivation structure. We first note that,
by procedure Initialize System in Figure 5.4, K includes a derivation key ku for each user u∈U ,
and a derivation key kU for each set U of users representing a read or write access list of a resource
o∈O. In fact, function Define Key Derivation Structure is called over U , S, U, Us, Ua, hs, and
ha, with Us the set of write access lists, Ua the set of read access lists, and U the result of Ua∪Us
together with all the singleton sets {u} of users in U (lines 2–5). We now prove that each condition
in Theorem 5.2 holds.

1. u can decrypt encr resource[o] =⇒ u ∈ r [o].
Assume, by contradiction, that u �∈r[o] can decrypt encr resource[o]. Since
encr resource[o] is computed by encrypting o with access key kar [o] (line 19), u can ei-
ther compute or derive kar [o]. D does not include any token that permits to derive access
keys, therefore u needs to know derivation key kr [o]∈K with which kar [o]∈K has been com-

puted. However, D includes a token (or a sequence thereof) from derivation key ku of user
u (lines 7–8) to derivation key kU iff u∈U (Condition 2 in Definition 5.1). This implies that
{u}⊆r[o], which contradicts our hypothesis.
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u∈r[o] =⇒ u can decrypt encr resource[o].
By Condition 2 in Definition 5.1, there exists a token (or a sequence thereof) in D that per-
mits to derive derivation key kU from ku iff u∈U . Therefore, if u∈r[o], there exists a token
(or a sequence thereof) in D from ku to kr [o]∈K. Since u can derive kr [o] and ha is public,
she can also compute access key kar [o]=ha(kr [o]) and decrypt encr resource[o].

2. u can decrypt encw tag[o] =⇒ u ∈ w [o].
Assume, by contradiction, that u �∈w[o] can decrypt encw tag[o]. Since encw tag[o] is com-
puted by encrypting tag[o] with key kw [o]∪{S} (line 18), u can compute or derive kw [o]∪{S}.
Since all tokens in D that permit to derive key kw [o]∪{S} shared with the server have kS as
starting point (Condition 2 in Definition 5.2), u must know (or be able to derive) derivation
kw [o]. However, D includes a token (or a sequence thereof) from derivation key ku of user
u (lines 7–8) to derivation key kU∈K, iff u∈U (Condition 2 in Definition 5.1). This implies
that {u}⊆w[o], which contradicts our hypothesis.

u∈w[o] =⇒ u can decrypt encw tag[o].
By Condition 2 in Definition 5.1, there exists a token (or a sequence thereof) in D that per-
mits to derive derivation key kU from ku iff u∈U . Therefore, if u∈w[o], there exists a token
(or a sequence thereof) in D from ku to kw [o]. Since u can derive kw [o] and hs is public, she
can also compute key kw [o]∪{S}=hs(kw [o]) and decrypt encw tag[o].

3. S can decrypt encw tag[o].
As noted above, encw tag[o] is computed by encrypting tag[o] with key kw [o]∪{S}. Since S
knows key kS and, for each key kU∪{S} in K, D includes token dS,U∪{S} (Condition 2 in
Definition 5.2), S can derive kw [o]∪{S} and decrypt encw tag[o]. �

5.4 Policy updates

Policy updates must be managed with special care in our scenario, since they might require ex-
pensive re-encryption and/or key re-distribution operations by the data owner, thus limiting the
advantages of data outsourcing. The problem of granting and revoking read authorizations with
limited overhead for the data owner has been already investigated, and we can therefore assume
to solve it by using the proposal in [42], which is based on over-encryption. In this section, we will
focus on the management of write privileges, with the goal of outsourcing the enforcement of grant
and revoke operations to the external server. Since both grant and revoke operations translate
into the insertion of keys (and tokens) in the key derivation structure, we first illustrate how to
manage this operation (Section 5.4.1). We then describe how grants and revokes of privileges can
be enforced to correctly reflect updates in the write authorizations (Section 5.4.2).

5.4.1 Updates to the key derivation structure

The basic operations on the key derivation structure necessary to manage grant and revoke oper-
ations consist in the retrieval/insertion of derivation and access keys.

Function Get Key in Figure 5.5 receives as input a set U⊆U of users and returns the derivation
key associated with it. The function first checks whether the set K of keys in the key derivation
structure already includes a derivation key for U (line 1). If this is not the case, the function
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GLOBAL VARIABLES

U : users of the system
S : external server
〈K,L,D〉 : key derivation structure
hs, ha : secure hash functions

GET KEY(U)

1: let kU be the key in K associated with U
2: if kU = NULL then /* if K does not include a derivation key for U */
3: generate kU and label lU
4: ka

U := ha(kU ) /* compute ka
U as the result of ha over kU */

5: generate a label laU
6: K := K ∪ {kU , ka

U }
7: L := L ∪ {lU , laU}
8: let U ′ be the family of subsets of 2U such that ∀U ∈ U ′, kU ∈ K
9: cover := {U1,. . . ,Un ⊆ U ′ |

⋃n
i=1Ui=Uj}

10: for each Ui ∈cover do
11: dUi,U

:= kU⊕h(kUi
,lU )

12: D := D ∪ {dUi,U
}

13: create a new tuple t
14: t[from] := lUi
15: t[to] := lU
16: t[val] := dUi,U

17: insert t into token /* at the server side */
18: return(kU )

GET SHARED KEY(U)

19: let kU∪{S} be the key in K shared by U and S
20: if kU∪{S} = NULL then /* if K does not include a key shared by U and S */
21: kU := Get Key(U) /* retrieve or create the derivation key associated with U */
22: kU∪{S} := hs(kU ) /* compute kU∪{S} as the result of hs over kU */
23: generate a label lU∪{S}
24: K := K ∪ {kU∪{S}}
25: L := L ∪ {lU∪{S}}
26: D := D ∪ {dS,U∪{S}=kU∪{S}⊕h(kS ,lU∪{S})} /* insert into D the token from kS to kU∪{S} */
27: create a new tuple t
28: t[from] := lS
29: t[to] := lU∪{S}
30: t[val] := dS,U∪{S}
31: insert t into token /* at the server side */
32: return(kU∪{S})

Figure 5.5 Pseudocode of functions Get Key and Get Shared Key

generates a new derivation key for the set of users together with its label, and computes the
corresponding access key together with its label. It then inserts keys and labels in the sets K and
L of keys and labels of the key derivation structure (lines 2–7). The function then updates the
set D of tokens in the key derivation structure by inserting the tokens necessary to guarantee that
each user u in U can derive kU from her key ku (lines 8–12). The function then updates relation
token at the server side accordingly (lines 13–17). Finally, the function returns derivation key
kU (line 18).

Function Get Shared Key in Figure 5.5 receives as input a set U⊆U of users and returns
the key shared by the server and U . The function first checks whether the set K of keys already
includes the key of interest (line 19). If this is not the case, the function first retrieves the derivation
key associated with the set U of users by calling function Get Key over U (lines 20–21). It then
computes the hash of kU through secure hash function hs, obtaining kU∪{S} (line 22). The function
then generates the corresponding label and inserts the key into K and the label into L (lines 23–25).
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(a) (b)

Figure 5.6 Key derivation structure (a) and tokens (b) after the insertion of key kABDS in the key
derivation structure in Figure 5.3(c)

The function inserts into D a token that permits the server to derive kU∪{S} from kS (line 26).
The function then updates relation token at the server side accordingly (lines 27–31). Finally,
the function returns kU∪{S} (line 32).

Example 5.4. Consider the key derivation structure of Figure 5.3(c), and assume that a key has to
be shared by the server S and the set ABD of users. Figure 5.6 illustrates the key derivation struc-
ture, and the corresponding set of tokens, resulting from the call to function Get Shared Key
in Figure 5.5 over ABD. Since K does not include a key shared by S and ABD, function
Get Shared Key calls function Get Key over ABD, which inserts derivation key kABD and
access key kaABD into K, labels lABD and laABD into L, and tokens dA,ABD and dBD,ABD into D.
It returns the derivation key of ABD. Function Get Shared Key then computes key kABDS by
applying secure hash function hs to kABD, inserts kABDS into K, the corresponding label lABDS
into L, and token dS,ABDS into D. In Figure 5.6(b) and in the following figures, we denote tokens
inserted by functions Get Key and Get Shared Key with a bullet •.

5.4.2 Grant and revoke

Despite effective for enforcing changes to read authorizations, over-encryption falls short when it
is necessary to grant or revoke write privileges. In fact, in a worst case scenario, users are not
oblivious (i.e., they have the ability to store and keep indefinitely all information they have been
entitled to access), and the users in the write access list of a resource have knowledge of the value
of the corresponding write tag. These users can therefore exploit such knowledge to modify the
resource even when they lost the write privilege. To illustrate, consider a resource o with write
access list w[o] and assume that, at a given point in time, the data owner revokes from user u∈w[o]
the write privilege for o. To enforce the revoke operation, write tag tag[o] should be encrypted
with a key known only to the users in w[o]\{u}. However, since u was previously included in w[o]
she might know the plaintext value of the write tag tag[o]. Even without being able to decrypt
the encrypted write tag sent by the server, user u would then still be able to correctly reply to
the challenge of the server, thus violating the write access policy defined by the data owner. For
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DATA OWNER SERVER

GRANT(u, o)

1: if o 	∈r[o] then grant u read access to o
2: w[o] := w[o]∪{u}
3: kw[o]∪{S} := Get Shared Key(w[o])
4: let lw[o]∪{S} be the label of key kw[o]∪{S}
5: Encrypt Tag(Id(o), lw[o]∪{S})

ENCRYPT TAG(id, lnew)

1: let t be the tuple in Ok s.t. t[o id]=id
2: let told be the tuple in token s.t.

told[from]=lS and told[to]=t[w label]
3: let tnew be the tuple in token s.t.

tnew[from]=lS and tnew[to]=lnew

4: kold := told[val] ⊕ h(kS ,t[w label])
5: knew := tnew[val] ⊕ h(kS ,lnew)
6: tag := D(t[encw tag],kold)
7: t[encw tag] := E(tag,knew)
8: t[w label] := lnew

REVOKE(u, o)

6: w[o] := w[o]\{u}
7: kw[o]∪{S} := Get Shared Key(w[o])
8: let lw[o]∪{S} be the label of key kw[o]∪{S}
9: Create New Tag(Id(o), lw[o]∪{S})

CREATE NEW TAG(id, lnew)

9: let t be the tuple in Ok s.t. t[o id]=id
10: let tnew be the tuple in token s.t.

tnew[from]=lS and tnew[to]=lnew

11: knew := tnew[val] ⊕ h(kS ,lnew)
12: randomly generate a value tag for a write tag
13: t[encw tag] := E(tag,knew)
14: t[w label] := lnew

Figure 5.7 Pseudocode of the procedures operating at the data owner and at the server side to grant
and revoke write privileges

instance, consider the key derivation structure in Figure 5.3(c), and suppose that the data owner
revokes the write privilege over resource o2 from user B. If B already knows the plaintext value of
tag[o2], she can still answer the challenge of the server, and then improperly modify o2. Since this
problem depends on previous knowledge of the revoked user and not on her ability to decrypt the
write tag received from the server, it is necessary to associate a fresh write tag with the revoked
resource to effectively enforce the policy change.

We now illustrate in details how write authorizations can be granted and revoked upon decision
of the data owner.

Grant. We consider the case of the data owner granting user u write privilege over resource o.
Note that, if u is not a reader of o, the access control policy is first modified granting u read access
to o. To ensure that write requests by u are accepted by the server, the data owner must encrypt
the write tag associated with o with a key known to: the server, the authorized writers in w[o],
and the user u who is being granted the write privilege. In other words, tag[o] must be encrypted
with a key shared by the server and the new set w[o]∪{u} of writers. Clearly, if the key derivation
structure does not include a key known by the server and by all and only the users in w[o]∪{u},
then the data owner must first update the key derivation structure to include it.

Procedure Grant in Figure 5.7 receives as input a user u and a resource o and grants u
the privilege of modifying o. The procedure first updates the read access list (if necessary) and
the write access list of the resource (lines 1–2). It then retrieves the derivation key (and the
corresponding label) that will be used to encrypt the write tag of the resource (i.e., the key shared
by the authorized writers of o, including u, and the server) by calling function Get Shared Key
on the updated write access list of the resource (lines 3–4). The procedure then calls procedure
Encrypt Tag, which is executed by the server, to update the representation of the resource at the
server side (line 5). Procedure Encrypt Tag in Figure 5.7 receives as input a resource identifier id
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o r[o] w[o]
o1 ABCD BD
o2 ABCD ABD
o3 ABC AC
o4 BD BD

r label w label o id encw tag encr resource
lABCD lBDS 1 α zKZlJxVcCrC0g
lABCD lABDS 2 ε t9qdJqC7AImXU
lABC lACS 3 γ AxalPH8Kv37Ts
lBD lBDS 4 ζ xwfPJSLn.MVqY

(a) (b)
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(c) (d)

Figure 5.8 Read and write acls (a), encrypted resources (b), key derivation structure (c), and tokens (d)
of Figure 5.3 after B is granted write permission over o2 and D is granted write permission over o4

and a label lnew and encrypts the write tag of the resource identified by id with the key identified
by lnew. To this purpose, it first determines the tuple t in the outsourced table representing
resource o with identifier id (line 1). It then finds the token that permits to derive key kold with
which t[encw tag] is currently encrypted (i.e., the token from lS to t[w label]), and the token that
permits to derive key knew with which the write tag must be encrypted to reflect the policy change
(i.e., the token from lS to lnew) (lines 2–3). The procedure then uses these tokens to derive both
kold and knew (lines 4–5). It decrypts t[encw tag] with kold, re-encrypts the write tag with knew ,
and updates t[w label], setting it to lnew to reflect the policy update (lines 6–8).

Example 5.5. Consider the key derivation structure, outsourced resources, and tokens
in Figure 5.3 and assume that the data owner grants A write privilege over o2 (i.e.,
w[o2]=w[o2]∪{A}=ABD). Since the key derivation structure includes neither a key shared by
ABD and S, nor a derivation key for ABD, the structure is first updated to accommodate the new
keys (see Example 5.4). Then, the write tag of o2 is re-encrypted by the server with kABDS .

Assume now that the data owner grants D write privilege over o4 (i.e., w[o4]=w[o4]∪{D}=BD).
Since the key derivation structure already contains a key for the updated write access list of o4, no
update is necessary to the key derivation structure. Hence, the only operation performed to enforce
this authorization update consists in encrypting the write tag of o4 with key kBDS . Figure 5.8
illustrates the read and write access lists, the encrypted resources, the key derivation structure, and
the tokens after these two grant operations.

Revoke. We consider the case of the data owner revoking from user u the write privilege over
resource o. To ensure that u cannot exploit her knowledge of the plaintext write tag tag[o] of the
revoked resource to perform unauthorized write operations on o, a new write tag must be defined
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for o, whose value must be independent from the former value of tag[o] (i.e., it has to be chosen
adopting a secure random function). Since the server is authorized to know the write tag of each
and every resource in the system to correctly enforce write privileges, the data owner can delegate
to the external server both the generation and encryption with the correct key of the write tag of
resource o. In fact, the data owner does not need to known or keep track of the write tag of her
resources.

Procedure Revoke in Figure 5.7 receives as input a user u and a resource o and revokes u the
privilege of modifying o. The procedure first updates the write access list w[o] of the resource by
removing user u (line 6). It then retrieves the derivation key (and the corresponding label) that
will be used to encrypt the write tag of the resource (i.e., the key shared by the authorized writers
of o, except u, and the server) by calling function Get Shared Key on the updated write access
list of the resource (lines 7–8). The procedure then calls procedure Create New Tag, which is
executed by the server, to generate a new write tag for the resource and update its representation
at the server (line 9). Procedure Create New Tag in Figure 5.7 receives as input the identifier
id of resource o and a label lnew, and generates a new write tag for o, which is then encrypted
with the key identified by lnew. The procedure first determines the tuple t in the outsourced table
representing the resource with identifier id (line 9). It then finds the token that permits to derive
the key knew with which the new write tag must be encrypted to reflect the policy change (i.e., the
token from lS to lnew) (line 10). The procedure uses this token to derive knew (line 11), randomly
generates a value for the write tag (line 12), and encrypts this value with key knew (line 13).
Finally, the procedure updates t[w label], setting it to lnew to reflect the policy update (line 14).

Example 5.6. Consider the key derivation structure, outsourced resources, and tokens in Fig-
ure 5.8, and assume that the data owner revokes from A the write privilege over resource o3 (i.e.,
w[o3]=w[o3]\{A}=C). Since the key derivation structure does not include a key shared by the server
and C, such a key is first computed as the hash of derivation key kC with secure hash function hs.
Then, a new write tag is generated for o3 and encrypted with kCS . Figure 5.9 illustrates the read
an write access lists, the encrypted resources, the key derivation structure, and the tokens after this
revocation.

The following theorem formally proves that procedures Grant and Revoke correctly enforce
updates to the write authorizations in the system.

Theorem 5.3 (Correct enforcement of policy updates). Let U be a set of users, S be an external
server, O be a set of resources with r[o] and w[o] the read and write access lists of o, respectively,
and 〈K,L,D〉 a key derivation structure. Procedures Grant and Revoke in Figure 5.7 guarantee
that the following conditions are satisfied:

1. ∀u ∈ U and ∀o ∈ O, u can decrypt encr resource[o] iff u ∈ r [o] (read authorization
enforcement);

2. ∀u ∈ U and ∀o ∈ O, u can decrypt encw tag[o] iff u ∈ w [o] (write authorization enforce-
ment);

3. ∀o ∈ O, S can decrypt encw tag[o] (write control).

Proof: To prove Theorem 5.3, we must first show that both function Get Key and function
Get Shared Key, which possibly update the key derivation structure, do not compromise its
correctness (Definition 5.2), as proved by the following two lemmas.
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o r[o] w[o]
o1 ABCD BD
o2 ABCD ABD
o3 ABC C
o4 BD BD

r label w label o id encw tag encr resource
lABCD lBDS 1 α zKZlJxVcCrC0g
lABCD lABDS 2 ε t9qdJqC7AImXU
lABC lCS 3 η AxalPH8Kv37Ts
lBD lBDS 4 ζ xwfPJSLn.MVqY

(a) (b)
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lS lABDS kABDS⊕h(kS ,lABDS)

(c) (d)

Figure 5.9 Read and write acls (a), encrypted resources (b), key derivation structure (c), and tokens (d)
of Figure 5.8 after A is revoked write permission over o3

Lemma 5.1 (Correctness of function Get Key). Let U be a set of users, U be a subset of U , S be
an external server, and 〈K,L,D〉 be a key derivation structure. Triple 〈K′,L′,D′〉 resulting from the
execution of function Get Key(U ) in Figure 5.5 is a key derivation structure (Definition 5.2).

Proof: Since we assume that 〈K,L,D〉 is a key derivation structure when function Get Key is
called, we need to consider only the keys and tokens inserted, updated, or removed by the function.

If the key derivation structure already includes a key kU known to all and only the users in U ,
the function does not modify 〈K,L,D〉 and therefore the lemma holds (lines 1–2).

If, on the contrary, kU �∈K, function Get Key inserts it into the key derivation structure. We
then need to prove that such an insertion does not violate the conditions in Definition 5.2.

• Condition 1 is satisfied since function Get Key generates a derivation kU (and a label lU )
and computes the corresponding access key kaU (and a label laU ). It then inserts kU ,kaU into
K and lU ,laU into L (lines 3–7). The function then inserts access key kaU into K only when
the corresponding derivation key kU has been inserted into K.

• Condition 2 is satisfied as the set of tokens inserted into D by function Get Key guarantees
that kU can be directly derived from a set {kU1 ,. . . ,kUn} of keys in K such that U1∪. . .∪Un=U
(lines 8–12). As proved in [42], this property is equivalent to Condition 2 in Definition 5.1.�

Lemma 5.2 (Correctness of function Get Shared Key). Let U be a set of users, U be a subset of
U , S be an external server, and 〈K,L,D〉 be a key derivation structure. Triple 〈K′,L′,D′〉 resulting
from the execution of function Get Shared Key(U ) in Figure 5.5 is a key derivation structure
(Definition 5.2).
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Proof: Since we assume that 〈K,L,D〉 is a key derivation structure when function
Get Shared Key is called, we need to consider only the keys and tokens inserted, updated,
or removed by the function.

If the key derivation structure already includes a key kU∪{S} shared by the users in U and the
external server, the function does not modify 〈K,L,D〉 and therefore the lemma holds (lines 19–20).

If, on the contrary, kU∪{S} �∈K, function Get Shared Key inserts it into the key derivation
structure. We then need to prove that such an insertion does not violate the conditions in Defini-
tion 5.2.

• Condition 1 is satisfied since functionGet Shared Key computes key kU∪{S} as the result of
hash function hs over kU (line 22) and it obtains kU by calling function Get Key (line 21),
which does not compromise the correctness of the key derivation structure (as proved by
Lemma 5.1). Function Get Shared Key then inserts kU∪{S} and the corresponding label
into K and L, respectively (lines 24–25). The function then inserts key kU∪{S} into K only
when derivation key kU has been inserted into K.

• Condition 2 is satisfied since function Get Shared Key inserts a token dS,U∪{S}, which
permits the server to derive kU∪{S} from kS (line 26). �

Having proved that both function Get Key and function Get Shared Key do not compro-
mise the correctness of a key derivation structure (Definition 5.2), we can now proceed with proving
Theorem 5.3, as follows.

Since we assume that all the conditions are satisfied when procedure Grant (Revoke, respec-
tively) is called, we need to consider only users and resources for which the policy changes. Also,
Condition 1 is not affected by procedures Grant and Revoke as they neither modify the read
access list of resources nor re-encrypt resources content.

• Grant(u,R). The procedure inserts u into w[R ] (line 2), therefore Condition 2 is satisfied
iff u can decrypt encw tag[R]. The write tag tag[R ] of resource R is encrypted by proce-
dure Encrypt Tag with the key knew associated with label lnew. Since procedure Grant
calls procedure Encrypt Tag with lw [R ]∪{S} as input, the server encrypts tag[R] with key

kw [R ]∪{S} (line 5). This key belongs to the key derivation structure, since procedure Grant

calls function Get Shared Key with w[R ] as input (line 3). By Lemma 5.2, key kw [R ]∪{S}
can be derived by all and only users in w[R ] and by the server. Therefore, procedure Grant
satisfies both Condition 2 and Condition 3.

• Revoke(u,R). The procedure removes u from w[R ] (line 6), therefore Condition 2 is satisfied
iff u cannot decrypt encw tag[R]. Procedure Create New Tag generates a new tag for R
and encrypts it with the key knew associated with label lnew . Since procedure Revoke calls
procedure Create New Tag with lw [R ]∪{S} as input, the server encrypts the new value

of the tag with key kw [R ]∪{S} (line 9). This key belongs to the key derivation structure,

since procedure Revoke calls function Get Shared Key with w[R ] as input (line 7). By
Lemma 5.2, key kw [R ]∪{S} can be derived by all and only users in w[R ] and by the server.

Therefore, procedure Revoke satisfies both Condition 2 and Condition 3. �
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Figure 5.10 Structure of outsourced resources

5.5 Write integrity control

Although the server can be assumed trustworthy to manage resources and delegated actions, it is
important to provide a means to the data owner to verify that the server and users are behaving
properly. Providing such a control has a double advantage: i) it allows detecting resource tamper-
ing, due to the server not performing the required check on the write tags or directly tampering
with resources, and ii) it discourages improper behavior by the server and by the users since they
know that their improper behavior can be easily detected, and their updates recognized as invalid
and discarded. In this section, we illustrate our approach for providing the data owner with a
means to verify that modifications to a resource have been produced only by users authorized to
write the resource. In the following section, we will extend our solution to the management of
updates to write privileges. As discussed in previous sections, if the server performs the correct
control on the write tags, data integrity is automatically guaranteed. We therefore illustrate how
to perform a write integrity control to detect misbehavior (or laziness) by the server as well as
misbehavior by users that can happen with the help of the server (not enforcing the control on the
write tags since it is either colluding with the user or just behaving lazily) or without the help of
the server (if the user improperly acquires the write tag for a resource by others).

A straightforward approach to provide such a write integrity control would be to apply a
signature-based approach. This requires each user to have a pair 〈private,public〉 of keys and,
when updating a resource, to sign the new resource content with her private key. The data
owner can then check the write integrity by verifying that the signature associated with a resource
correctly reflects the resource content and that it has been produced by a user authorized for the
operation. Such an approach, while intuitive and simple, has however the main drawback of being
computationally expensive (asymmetric encryption is considerably less efficient than symmetric
encryption) and not well aligned with our approach, which - as a matter of fact - exploits symmetric
encryption, tokens, and hash functions to provide efficiency in storage and processing. In the spirit
of our approach, we then build our solution for controlling write integrity on HMAC functions [10].
In fact, for common platforms, the ratio between the execution times of digital signatures and
of HMAC is more than three orders of magnitude. We then associate with each resource the
following three integrity control fields (namely, encw ts, user tag, and group tag) and metadata
field (namely, int label) to the fields introduced in Section 5.3 (see Figure 5.10).

• encw ts: timestamp of the write operation, encrypted with the key kw [o]∪{S} correspond-
ing to the group including the server and all the users in the write access list of o (i.e.,
E(ts, kw [o]∪{S}));

• user tag: HMACH computed with the key ku of the user who performed the write operation
over the resource, concatenated with the user tag u tag′ of the resource prior to the write
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operation,1 and the timestamp ts of the write operation (i.e., H(o||u tag′||ts,ku));

• group tag: HMAC H computed with the access key kaw [o] corresponding to the write access

list of o over the resource, concatenated with the timestamp of the write operation (i.e.,
H(o||ts,kaw [o])).

• int label: label of the key used to compute the group tag (i.e., law [o]).

At time zero, when the data owner outsources her resources to the server, the values of the
user tag and of the group tag are those computed by the owner with her own key for the user tag,
and with the key of the write access list of the resource (to which the owner clearly belongs) for
the group tag. Every time a user updates a resource, it also updates its user tag, group tag,
and int label.

A user tag is considered valid if it matches the resource content and it is produced by a
user in the write access list of the resource. The user tag provides write integrity (meaning the
resource has been written by an authorized user) and accountability of user actions (i.e., the user
cannot repudiate her write actions). In fact, since the data owner knows the key ku of every user
u (which she generated and distributed), she can check the validity of the user tag and detect
possible mismatches, corresponding to unauthorized writes. In addition, every write operation
considered valid (according to the control on the user tag) cannot be repudiated by the user u
whose key ku generated the HMAC. The consideration of group tag extends the ability of checking
the validity of the write operations (i.e., write integrity) also to all the users in the write access list
of the resource. Note that allowing writers to check resource integrity is not less important than
allowing the data owner to perform the check, as it guarantees that, even in cases of data owner
absence, all write operations are performed on resources that have not been improperly modified.
Indeed, before modifying a resource content, the writer will check its integrity to be sure that she
is operating on genuine data.

While we assume the server to be trustworthy and therefore not interested in tampering with
the resources, we note that the user tag would allow also to detect possible tampering of the server
with the resource (since not being an authorized writer, the server will not be able to produce a
valid user tag). The server could also tamper with the write authorizations, by decrypting the
write tag and encrypting it with the key corresponding to a different write access list. However,
the improper inclusion of a user in the write access list does not have any different effect than when
the server does not perform the control, since the user improperly included in the write access list
will not be able to produce a valid user tag. Analogously, the improper removal of a user from
the write access list has the same effects as when the server refuses its services.

Unauthorized write operations, in the case of a well behaving server, can only happen if a
user has improperly acquired or received from other authorized users the write tag of a resource.
Whichever the case, the user will be able to provide neither a valid user tag nor a valid group tag

for the resource. Also, the data owner and any user authorized to write the resource will be able
to detect the invalidity of the group tag, since the key used to compute the HMAC will not
correspond to the access key of w[o].

1The reason for including the user tag of the resource prior to the write operation is to provide the data owner
with a hash chain connecting all the resource versions (we assume the server to never overwrite resources but to
maintain all their versions).



124 5. Enforcing dynamic read and write privileges

5.6 Write integrity control with policy updates

A change in the write authorizations of a resource also requires a change in the write integrity fields
associated with the resource. In particular, when user u gains the privilege of writing resource o
as a consequence of a grant operation, the set w[o]∪{u} of users should be able to generate and
check the group tag of o. If this were not the case, u would not be able to verify the integrity of
the resource before modifying its content. Analogously, when u is revoked the write privilege over
o, the set w[o]\{u} of users should be able to generate and check the group tag of o. If this were
not the case, u could possibly collude with the server to modify the content of resource o without
being detected by the other writers of the resource. A naive strategy to compute a group tag

that guarantees the correct enforcement of integrity checks would require the data owner, when
granting/revoking a write privilege, to: i) download the encrypted resource from the external
server, ii) decrypt its content, iii) compute the HMAC of the resource with the access key of the
new set of writers, and iv) send the new value of the group tag back to the server. However,
this approach causes a high computation and communication overhead for the data owner, who
should interact with the external server at every update of the write authorizations. To reduce
this overhead, we put forward the idea of modifying the key derivation structure to prevent the
re-computation of the group tag, and therefore the need for the data owner to download the
resource at every policy update. In the remainder of this section, we first describe our approach
for efficiently supporting integrity verification in case of policy updates (Section 5.6.1), and we
then discuss its exposure to integrity violations (Section 5.6.2).

5.6.1 Integrity keys

Let us assume that the data owner grants user u the write privilege for resource o. Since the
group tag of o is computed using key kaw [o] that u does neither know nor can derive, a straight-
forward approach that would permit u to verify the integrity of o consists in inserting into the
key derivation structure a token from ku to kaw [o]. This solution has however two drawbacks: i) it

does not handle revoke operations; and ii) it permits u to derive access key kaw [o] used to encrypt

resources o′ with r[o′]=w[o] (and to generate the group tag of resources o′ with w[o′]=w[o]). With
respect to the first drawback, we note that the data owner can always detect the misbehavior of
users who modify revoked resources since they are not able to generate correct user tags for these
resources. With respect to the second drawback, this solution has the side effect of permitting used
u to access the content of resources she is not authorized to read. For instance, with reference to
Example 5.5, granting A write access to o2 causes the insertion of a token from kA to kaBD, used to
compute the group tag of o2. However, k

a
BD is also used to encrypt o4 (r[o4]=BD), which A is not

authorized to read. This confidentiality breach is due to the fact that the same key is used for two
different purposes: protect data confidentiality (when encrypting the content of resources), and
provide integrity guarantees to outsourced data (when computing the group tag of resources). A
simple and effective solution to this problem consists in using two different keys for protecting data
confidentiality and for providing integrity. We then associate an integrity key (and corresponding
label) with a derivation key whenever needed, and we use integrity keys to compute group tags.
We note that, like access keys, integrity keys do not provide derivation capability via tokens (i.e.,
tokens cannot have integrity keys as starting point). Given derivation key kU associated with a
group U of users, the corresponding integrity key kiU is obtained by applying a secure hash function
hi to kU (i.e., kiU=hi(kU )). The group tag of a resource o is then the HMAC, computed with the
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Figure 5.11 Structure of outsourced resources adopting integrity keys

integrity key kiw [o] of the write access list of o, over the resource concatenated with the timestamp

of the write operation (see Figure 5.11). When user u is granted the privilege of modifying o, the
data owner inserts into the key derivation structure a token that permits u to derive integrity key
kiw [o]. With reference to the example above, when A is granted write access to o2, the data owner

inserts a token from kA to kiBD, which permits A to verify the integrity of o2 without compromising
the confidentiality of o4.

It is interesting to note that, when inserting a token from ku to kiU , the set of users who know
or can derive kiU becomes U∪{u}, and is therefore different from the set of users who know or can
derive the corresponding derivation key kU . As a consequence, when granting u write access to o,
the integrity field int label of o remains unchanged and is equal to liU , where U corresponds to
the write access list of resource o before the grant operation (i.e., u /∈U ). To limit this mismatch
between w[o] and the label of the key used for the group tag, at each write operation the user who
modifies the resource content generates a new group tag using the integrity key associated with the
current write access list of the resource, which reflects the grant/revoke operation. For instance,
with reference to Example 5.5, after granting A write privilege over o2 (but before any further
update to o2), integrity field int label for resource o2 has value liBD since the group tag had
been computed using the integrity key of w[o2] before inserting A into the write access list of the
resource. Assume now that user B modifies resource o2. She will compute the group tag for the
resource as H(o2||ts,kiABD) and, when uploading the new resource content and the corresponding
group tag, she will also update the value of int label, setting it to liABD.

5.6.2 Exposure risk

We now discuss two cases of possible exposure of data integrity that might occur as a consequence
of a policy update.

Revoke. According to the mechanism illustrated above, when the data owner revokes u write
access to o neither the group tag of the resource nor the key derivation structure are modified.
As a consequence, u is able to verify and to generate a valid group tag for o till the first update
of the resource content by an authorized writer. In this time window, u is not able to decrypt
encw tag for o but, colluding with the server, she could possibly modify the resource content and
compute a valid group tag for o (i.e., a tag that authorized writers would accept). In fact, u can
derive the integrity key identified by int label, and then compute a group tag that is compliant
with the new resource content, using the key identified by int label. Note that this collusion has
the effect that we have when the server does not check write requests.
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Policy split. A similar situation can happen when a user u is granted the write privilege for a
resource o that has the same write access list of other resources. In fact, the integrity key ki used
to compute the group tag of o is also used to compute the group tag of all the resources o′ with
w[o′]=w[o] before the grant operation. Since u, as a consequence of the grant operation, can derive
ki to verify the integrity of o, she can (as a side-effect) also verify and compute a valid group tag

for all those resources with the same int label. Also in this situation, u can collude with the
server (or exploit the laziness of the server not checking write requests) to modify the content of o
without being detected by authorized users.

The misbehaviors described above for the revoke and policy split cases do not go undetected
by the data owner. In fact, users cannot compute a valid user tag for a resource that she is not
authorized to write. Also, exposure to integrity violations is limited and well identifiable. The data
owner can then counteract them by explicitly recomputing the group tag of the resource subject
to the revoke/grant operation when she considers the communication and computation overhead
worth to protect the exposed resources. The risk of integrity violations caused by policy splits can
be mitigated by a proper organization of the resources, that is, adopting the same integrity key
only if the write access list of the resources is likely to evolve in the same way.

5.7 Supporting user subscriptions

The solution illustrated in the previous sections of this chapter nicely fits a general scenario in
which read authorizations are set by the data holder, and the set of resources of the system
does not undergo frequent updates. In the reminder of this chapter, we complement the solution
illustrated so far with the definition of a subscription-based access control policy regulating access
to resources in a subscription-based scenario. In this section, we motivate our extension and
formalize the concept of subscription-based policy. We then present how to enforce a subscription-
based policy (Section 5.8), and we finally illustrate how resources and subscriptions can be managed
(Section 5.9).

5.7.1 Motivations

In a subscription-based scenario, accesses to resources should be regulated by a subscription-
based access control policy according to which users are authorized to access all and only the
resources that have been published by the resource provider during their subscribed periods. A
peculiarity of those scenarios is that user authorizations remain valid also after the expiration of
their subscriptions. The subscription-based access control policy takes then into consideration both
the subscriptions of the users and the time when resources have been published. Existing solutions
result limited for such a scenario. We can classify existing solutions in two main categories.

• Account-based . Traditional access control solutions (e.g., [101]), including those emerging in
the data outsourcing scenario (e.g., [42]), are based on the assumption that when users leave
the system their authorizations terminate and they cannot access the resources anymore.
Furthermore, access control solutions for data outsourcing cannot easily support a dynamic
scenario where resources are continuously created, and new users can join the system and
old users can leave the system at any time.



5.7. Supporting user subscriptions 127

• Time-based . Temporal-based access control solutions (e.g., [11]) enforce time restrictions
in a way that is different from what we need. In fact, these solutions consider a scenario
where resources are stored and managed by the party who creates them, and assume that
authorizations apply only to specific time intervals and/or that authorizations can be applied
following a periodic pattern (e.g., a user can access a file only during the working days from
8:00 a.m. to 5:00 p.m.).

We then put forward the idea of extending our solution for enforcing access restrictions illus-
trated in the previous sections to enforce a subscription-based access control policy without delegat-
ing it to the cloud storage server, combining authorization-based access control and cryptographic
protection. Our solution should guarantee the correct enforcement of the subscription-based ac-
cess control policy (i.e., users should be able to access the resources made available during their
subscribed periods also after the expiration of their subscriptions) and the forward and backward
protection requirements. Forward protection means that users cannot access resources published
before the beginning of their subscriptions (e.g, users who subscribe to a magazine for 2012 cannot
access the issues of the magazine published before January 1, 2012). Backward protection means
that users cannot access resources published after the expiration of their subscriptions (e.g., users
who subscribe to a magazine for 2012 cannot access the issues of the magazine published during
2013). Like for traditional data outsourcing scenario, with our solution the published resources
are encrypted so that they self-enforce the subscription-based access restrictions. In addition to
the correct enforcement of the subscription-based policy and the satisfaction of the forward and
backward protection requirements mentioned above, our solution should avoid re-encryption of
resources and re-distribution of keys whenever users subscribe to services or withdraw from their
subscriptions.

5.7.2 Subscription-based policy

In our subscription-based scenario, a resource provider offers a service consisting of a period of
publication of resources, and each user subscribing to the service can access all the resources
published during her subscription. We denote with U and O the set of users subscribed to the
service and the set of published resources, respectively. We note that, although in this chapter we
consider time-based subscriptions, our approach can be easily adapted to other scenarios where
subscriptions to a service can be defined on the basis of different criteria (e.g., topic of interest,
geographical region).

Given a time domain (T S,≤), with T S a set of time instants and ≤ a total order relationship
on T S [12], the resource provider assigns to each resource o∈O a timestamp o.t in T S that
represents the time when the resource has been published. The resource provider may combine
contiguous time instants into time windows, defined on arbitrary granularities, forming a time
hierarchy. Intuitively, these time windows represent the periods of time for which the resource
provider allows users to subscribe to the service offered. Formally, a time hierarchy HT is a pair
(T,�), where T is a set of time windows, and � is a partial order relationship over T. A time
window Ti in T is a pair [tsi ,t

e
i ] of time instants and represents the set of time instants t∈T S

such that tsi≤t≤tei . Given two time windows Ti and Tj in T, Ti dominates Tj, denoted Ti�Tj, if
tsi≤tsj and tej≤tei (i.e., the time instants in Tj represent a subset of the time instants in Ti). The
leaves of the time hierarchy correspond to time instants in T S, which can be seen as time windows
with ts=te. The time hierarchy can be graphically represented as a directed acyclic graph with
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Figure 5.12 An example of time hierarchy

vertices representing time windows in T and edges representing direct dominance relationships.
For simplicity, but without loss of generality, in this chapter we assume HT to be a tree. As
an example, consider resource provider Condé Nast, monthly publishing magazine Glamour and
offering the possibility to buy subscriptions for a month (single issue), a trimester, a semester, or
a year. Figure 5.12 illustrates the time hierarchy defined by the resource provider. For the sake
of readability, in the figure we denote leaves with the time instant they represent. Each user u∈U
can subscribe to the service offered by the resource provider for an arbitrary set, denoted u.S, of
time windows in HT (i.e., u.S⊆T).

The timestamps assigned to resources along with the user subscriptions establish the set of
resources that each user can access: user u∈U can access resource o∈O if she subscribed for a time
window including o.t. Formally, the subscription-based policy regulating access to the resources is
defined as follows.

Definition 5.3 (Subscription-based policy). Let HT (T,�) be a time hierarchy defined on time
domain (T S,≤), U be a set of users with u.S⊆T for all u∈U , and O be a set of resources with
o.t∈T S for all o∈O. The subscription-based policy A on U and O grants u∈U access to o∈O iff
∃[ts,te] ∈u.S s.t. ts≤o.t≤te.

Example 5.7. Suppose that three issues of magazine Glamour have been published with times-
tamp Jan’12, Feb’12, and Mar’12, respectively (i.e., O={Glam-01,Glam-02,Glam-03}). Assume
now that two users U={Alice, Barbara} subscribe to the magazine for the first trimester of
2012 ([Jan’12,Mar’12]), and for the first issue of the year ([Jan’12,Jan’12]), respectively. The
subscription-based policy grants Alice access to all the issues of the magazine in O, while it grants
Barbara access only to the first issue Glam-01.

5.8 Graph modeling of the subscription-based policy

Our idea to enforce the subscription-based policy consists in defining a key derivation structure
so that each resource is encrypted only once with a single key, and each user receives only one
key from which she can derive all and only the keys used for encrypting the resources that she
can access according to the subscription-based policy. To fix ideas and make the discussion clear,
we consider the system at a specific point in time when some resources have been published and
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some users have subscribed to the service offered by the resource provider. We first discuss how
resources are encrypted and then describe how to model users’ subscriptions.

Traditional techniques developed for enforcing an access control policy in the data outsourcing
scenario build a key derivation structure on the basis of the sets of users that can access resources
(like our solution illustrated in the previous sections of this chapter, building the key derivation
structure on the access control lists of the resources of the system). In our extended scenario,
such sets of users vary frequently over time, and therefore it is not convenient to exploit them for
building the key derivation structure. We then use the time hierarchy HT defined by the resource
provider as a key derivation structure where each time window is associated with a key, and each
edge corresponds to a token. The timestamp associated with a published resource, therefore,
identifies the time window in the time hierarchy representing the key used to encrypt the resource
itself. The keys associated with time windows including more than a time instant (i.e., internal
vertices) are not used for encrypting resources, but only for derivation purposes. Clearly, not all
the time windows in the time hierarchy are necessary for enforcing the subscription-based policy,
but only those corresponding to the timestamps of published resources along with all the time
windows dominating them. For instance, with respect to Example 5.7, the time windows that
must be represented in the key derivation structure are Jan’12, Feb’12, and Mar’12, which are
the timestamps of the three published resources, and all the time windows dominating them in
the time hierarchy in Figure 5.12, that is, [Jan’12,Mar’12], [Jan’12,Jun’12], and [Jan’12,Dec’12].
In this way, from the knowledge, for example, of the key associated with [Jan’12,Mar’12] we can
derive the keys used for encrypting all the resources published during the first trimester of 2012.

For each user in the system, the resource provider generates a new key and communicates it
to the user. With this unique key, the user should be able to access all and only the resources for
which she is authorized according to her subscriptions. The idea is to “hook the user” through a
token on each time window T for which she subscribed. In this way, the user can adopt her key to
directly derive the key associated with time window T. From this key she can directly or indirectly
derive the keys used to encrypt all and only the resources whose timestamp is included in T. For
instance, according to the subscriptions in Example 5.7, Alice can access all the resources published
in the first trimester of 2012. The resource provider then creates a token from Alice’s key to the
key associated with [Jan’12,Mar’12]. By construction, all resources published in Jan’12, Feb’12,
and Mar’12 will be encrypted with a key derivable from the key associated with [Jan’12,Mar’12],
which Alice can derive. Note that it may happen that a user subscribes for a time window for
which no resource has been published (e.g., a user subscribes to a magazine for April’12 and the
issue of April has not been published yet). The key derivation structure must then include also the
time windows representing users’ subscriptions, along with their ancestors in HT . The resulting
key derivation structure, which we call user and resource graph, can be formally defined as follows.

Definition 5.4 (User and resource graph). Let HT (T,�) be a time hierarchy on time domain
(T S,≤), U be a set of users with u.S⊆T for all u∈U , and O be a set of resources with o.t∈T S for
all o∈O. A user and resource graph over U , O, and HT is a graph G(V,E), with:

• V = Tr ∪ Ts ∪ Tp ∪ U , with Tr=
⋃

o∈O[o.t, o.t], Ts=
⋃

u∈Uu.S, and
Tp= {T ∈ T | ∃T′ ∈ Ts ∪ Tr such that T�T′}

• E = {(u,T) | u∈U ∧ T∈V\U ∧ T∈u.S} ∪
{(Ti,Tj) | Ti,Tj∈V\U ∧ Ti�Tj ∧ (�Tz∈V\U , Ti�Tz�Tj ∧ Tz �=Ti �=Tj)}
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id encr resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)

(b)

from to val
v1.l v2.l v2.k⊕h(v1.k,v2.l)
v2.l v3.l v3.k⊕h(v2.k,v3.l)
v3.l v4.l v4.k⊕h(v3.k,v4.l)
v3.l v5.l v5.k⊕h(v3.k,v5.l)
v3.l v6.l v6.k⊕h(v3.k,v6.l)
v10.l v3.l v3.k⊕h(v10.k,v3.l)
v11.l v4.l v4.k⊕h(v11.k,v4.l)

(a) (c)

Figure 5.13 An example of user and resource graph (a), published resources (b), and token catalog (c)

The vertices in the user and resource graph represent the keys of the system, while the edges
represent the tokens in the token catalog D stored at the external cloud storage server together
with the encrypted resources.

Example 5.8. Consider the time hierarchy in Figure 5.12 and the subscription-based policy in
Example 5.7. Figure 5.13(a) shows the corresponding user and resource graph, where dotted trian-
gles represent subtrees of the time hierarchy that are not associated with a vertex in the graph. For
the sake of clarity, vertices in the graph are associated with a label that is used to refer to the time
windows of interest. Hence, for instance, [Jan’12,Dec’12] is associated with label v1, its key is indi-
cated with v1.k, and its label with v1.l. The figure also reports the published resources, represented
as ovals connected with the vertices in the graph representing their timestamp and whose keys are
used to encrypt them. Figure 5.13(b) shows the encrypted resources stored at the external cloud
storage server, with id the resource identifier and encr resource the encrypted resource (E(r, k)
denotes the encryption of o with k), and Figure 5.13(c) illustrates the token catalog resulting from
the user and resource graph in Figure 5.13(a).

The user and resource graph in Definition 5.4 guarantees the correct enforcement of the
subscription-based policy since each user can decrypt all and only the resources with a times-
tamp included in at least one of the time windows in the user’s subscriptions. This is formalized
by the following theorem.

Theorem 5.4 (Correct enforcement of subscription-based policy). Let HT (T,�) be a time hier-
archy on time domain (T S,≤), U be a set of users with u.S⊆T for all u∈U , and O be a set of
resources with o.t∈T S for all o∈O. The user and resource graph G(V,E) correctly enforces a
subscription-based policy A on U and O when ∀u∈U , ∀o∈O:

∃[ts,te] ∈u.S s.t. ts≤o.t≤te ⇐⇒ 〈u,[o.t,o.t]〉 is a path in G.
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Proof: We first prove that, if ∃T=[ts,te] ∈ u.S s.t. ts≤o.t≤te, then u can decrypt o. User u
knows the key of vertex vu representing herself in G, while o is encrypted with the key of vertex
vr representing [o.t,o.t] in G. User u can derive the key with which a resource o is encrypted (and
then access its content) only if there exists a path in G from vu to vr. The path connecting vu to
vr is composed of two parts: an edge connecting vu to the vertex vT representing the time window
in u.S such that T�[o.t,o.t], and a path from vT to vr.

1. By Definition 5.4, vertex vu representing u belongs to the user and resource graph since G
has a vertex vu for each u∈U .

2. By Definition 5.4, vertex vr representing [o.t,o.t] belongs to the user and resource graph since
G has a vertex for each time window [o.t,o.t] representing the timestamp of a resource o∈O.

3. By Definition 5.4, vertex vT representing T belongs to the user and resource graph since G
has a vertex vT for each time window in u.S for all the users in u∈U .

4. By Definition 5.4, the user and resource graph includes edge (vu,vT ), since G includes an
edge (u,T) for each user u and each time window T∈u.S.

5. We now prove that there exists a path in G from vT to vr. To this purpose we prove, by
induction, that given two time windows Ti and Tj represented by vertices vi and vj in G,
there exists a path from vi to vj iff Ti�Tj.
Base: Ti�Tj and �Tz∈HT s.t. Ti�Tz�Tj and Ti �=Tz �=Tj. By Definition 5.4 edge (vi,vj)
belongs to G.
Induction: let us suppose that, given sequence of n time windows {Tz1,. . . ,Tzn} such
that Tz1�. . .�Tzn and �Tk∈HT s.t. Tzi�Tk�Tzj and Tzi �=Tk �=Tzj , i, j = 1, . . . , n, G
includes a path from vz1 to vzn . Let us now consider a sequence of n + 1 time win-
dows {Tz1 ,. . . ,Tzn ,Tzn+1} such that Tz1�. . .�Tzn�Tzn+1 and �Tk∈HT s.t. Tzi�Tk�Tzj and
Tzi �=Tk �=Tzj , i, j = 1, . . . , n + 1. By assumption, there exists a path from vz1 to vzn . Also,
there exists an edge (vzn ,vzn+1) for the base of the induction. As a consequence, there exists
a path from vz1 to vzn+1 .

We now prove, by contradiction, that if �T=[ts,te] ∈ u.S s.t. ts≤o.t≤te, then u cannot decrypt
o. Let us assume that u can decrypt o, that is, there exists a path from vu to vr. Since �T=[ts,te] ∈
u.S s.t. ts≤o.t≤te, then for all (vu,vT ) in G, time window T represented by vT does not include
o.t by Definition 5.4. As a consequence, u can access o only if there exists a path in G from
vertex vi representing Ti to vertex vj representing Tj such that Ti�Tj. Let us assume that the
path is composed of a sequence of edges (vi,vz1),. . . ,(vzn ,vj). By Definition 5.4, Ti�Tz1, Tzn�Tj,
and for each edge (vzi ,vzi+1) in the sequence, Tzi�Tzi+1 . Therefore, we obtain that Ti�Tj, which
contradicts the initial hypothesis. �

5.9 Management of resources and subscriptions

Whenever there is a change in the subscription-based policy (e.g., a new resource is published,
a user subscribes to a service for a specific time window, or a user decides to withdraw from a
subscription), the user and resource graph has to be updated accordingly. In the following, we
discuss how changes to the policy can be managed in a transparent way for the users.
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PUBLISH RESOURCE(o)
1: O := O ∪ {o}
2: v := Get Vertex([o.t,o.t]) /* retrieve the vertex representing the timestamp of the resource */
3: Encrypt(o,v.k)
4: publish the encrypted resource

GET VERTEX(T)
5: if T∈V then /* T already belongs to G */
6: let v∈V be the vertex with v=T
7: return(v)
8: generate vertex v := T
9: generate encryption key v.k
10: generate public label v.l
11: V := V ∪ {v} /* insert the vertex into the user and resource graph */
12: let Ti∈T: Ti�T ∧ �Tj : Ti�Tj�T, Tj 	=Ti 	=T /* determine the direct ancestor of T in HT */
13: if Ti 	=null then
14: vi := Get Vertex(Ti) /* retrieve the vertex in G that represents Ti */
15: E := E ∪ {(vi,v)} /* insert the edge connecting Ti to T in G */
16: D := D ∪ {v.k⊕h(vi.k,v.l)} /* publish the corresponding token */
17: return(v)

Figure 5.14 Pseudocodes of procedure Publish Resource and function Get Vertex

5.9.1 Resource publishing

At initialization time, the user and resource graph is empty (no key is necessary for resource
encryption) and it is dynamically built as resources are published. Figure 5.14 illustrates the
pseudocode of procedure Publish Resource that the resource provider calls whenever it needs
to publish a resource. The procedure takes a resource o as input and publishes its encrypted
representation. The procedure first calls function Get Vertex on time window T=[o.t,o.t] (line 2).
This function checks whether the vertex representing [o.t,o.t] is in the user and resource graph,
since its key has to be used for encrypting o. If such a vertex exists, the function returns it (lines 5-
7). Otherwise, the function first creates a vertex v representing T, along with the corresponding
encryption key v.k and public label v.l, and inserts v into the set V of vertices of the user and
resource graph (lines 8-11). To guarantee that the time window Ti directly dominating T in the
time hierarchy is represented in the user and resource graph, function Get Vertex recursively
calls itself on Ti, obtaining the vertex vi representing Ti in the graph (lines 12-14). The function
inserts into G edge (vi,v) and publishes the corresponding token (lines 15-16). We note that
the recursive nature of function Get Vertex guarantees that all the ancestors of T in HT are
represented by a vertex in the user and resource graph, and that each vertex is connected to all
its direct descendants represented in the graph. The function then returns vertex v representing
[o.t,o.t] (line 17). Finally, procedure Publish Resource encrypts o with v.k and publishes the
resulting encrypted resource (lines 3-4).

Example 5.9. Consider the user and resource graph, published resources, and token catalog in
Figure 5.13 and assume that Condé Nast publishes the fourth issue of Glamour in April’12. The re-
source provider calls procedure Publish Resource on resource Glam-04 that in turn calls function
Get Vertex on [Apr’12,Apr’12]. The function inserts vertex v8 representing [Apr’12,Apr’12] and
its direct ancestor v7 representing [Apr’12,Jun’12]. Procedure Publish Resource then encrypts
Glam-04 with the key of vertex v8. Assume now that Condé Nast publishes the fifth issue of Glam-
our in May’12, calling procedure Publish Resource on resource Glam-05. Function Get Vertex
inserts vertex v9 representing [May’12,May’12] and directly connects it to [Apr’12,Jun’12], since
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id encr resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k) •
5 E(Glam-05,v9.k) •

(b)

from to val
v1.l v2.l v2.k⊕h(v1.k,v2.l)
v2.l v3.l v3.k⊕h(v2.k,v3.l)
v2.l v7.l v7.k⊕h(v2.k,v7.l) •
v3.l v4.l v4.k⊕h(v3.k,v4.l)
v3.l v5.l v5.k⊕h(v3.k,v5.l)
v3.l v6.l v6.k⊕h(v3.k,v6.l)
v7.l v8.l v8.k⊕h(v7.k,v8.l) •
v7.l v9.l v9.k⊕h(v7.k,v9.l) •
v10.l v3.l v3.k⊕h(v10.k,v3.l)
v11.l v4.l v4.k⊕h(v11.k,v4.l)

(a) (c)

Figure 5.15 User and resource graph (a), published resources (b), and token catalog after Glam-04 and
Glam-05 are published (c)

SUBSCRIBE(u,T)
1: if u 	∈ U then /* u is a new user in the system */
2: U := U ∪ {u}
3: generate vertex vu := u
4: generate encryption key vu .k
5: generate public label vu .l
6: V := V ∪{vu}
7: else let vu∈V be the vertex with vu = u
8: u.S := u.S ∪ {T}
9: vT := Get Vertex(T)
10: E := E ∪ {(vu ,vT )}
11: D := D ∪ {vT .k⊕h(vu .k,vT .l)}
12: let Ti∈T: Ti�T ∧ (�Tj : Ti�Tj�T, Tj 	=Ti 	=T) /* determine the direct ancestor of T in HT */
13: T′ := {Tj∈u.S | Ti�Tj ∧ (�Tz∈T: Ti�Tz�Tj , Ti 	=Tz 	=Tj)}
14: if

⋃
Tj∈T ′Tj=Ti then

15: u.S:= u.S \ T′

16: E := E \ {(vi,vj) | vi=u ∧ vj=Tj , Tj∈T′}
17: D := D \ {vj .k⊕h(vi.k,vj .l) | vi=u ∧ vj=Tj , Tj∈T′}
18: Subscribe(u,Ti)

Figure 5.16 Pseudocode of procedure Subscribe

it is already included in the graph. Resource Glam-05 is encrypted with the key of vertex v9. Fig-
ure 5.15 illustrates the resulting user and resource graph, published resources, and token catalog,
where new resources and tokens are denoted with a bullet •.

5.9.2 New subscription

Both new and existing users can subscribe to a service for a time window at any point in time (i.e.,
before the beginning, during, or even after the expiration of the window). Figure 5.16 illustrates
procedure Subscribe that manages new subscriptions. The procedure takes a user u and a time
window T as input and works as follows. If u is a new user, the procedure creates a vertex vu
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id encr resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k)
5 E(Glam-05,v9.k)

(b)

from to val
v1.l v2.l v2.k⊕h(v1.k,v2.l)
v2.l v3.l v3.k⊕h(v2.k,v3.l)
v2.l v7.l v7.k⊕h(v2.k,v7.l)
v3.l v4.l v4.k⊕h(v3.k,v4.l)
v3.l v5.l v5.k⊕h(v3.k,v5.l)
v3.l v6.l v6.k⊕h(v3.k,v6.l)
v7.l v8.l v8.k⊕h(v7.k,v8.l)
v7.l v9.l v9.k⊕h(v7.k,v9.l)
v10.l v3.l v3.k⊕h(v10.k,v3.l)
v10.l v2.l v2.k⊕h(v10.k,v2.l) •
v11.l v4.l v4.k⊕h(v11.k,v4.l)

(a) (c)

Figure 5.17 User and resource graph (a), published resources (b), and token catalog after Alice subscribes
for [Apr’12,Jun’12] (c)

representing u, her encryption key vu .k, and public label vu .l (lines 1-6). Otherwise, the procedure
identifies the vertex vu representing the user in G (line 7). The procedure then inserts T into
u.S, calls function Get Vertex on T so that the vertex vT representing T and its ancestors are
possibly added to the graph, and inserts edge (vu ,vT) in the user and resource graph, publishing
the corresponding token (lines 8-11). Through this token, the user can directly derive from her
key the key of the time window to which she is subscribing.

To keep the number of tokens under control, the procedure verifies whether the set u.S of sub-
scriptions includes all the time windows directly dominated by Ti that in turn directly dominates T
in HT (e.g., a user may be subscribed for three issues of a magazine that correspond to a trimester).
In this case, instead of maintaining a token from u to all the direct descendants of Ti, it is possible
to replace them with a single token from vertex u to Ti. To this purpose, procedure Subscribe
identifies the direct ancestor Ti of the time window T to which u is subscribing and checks if
u.S includes all the descendants Tj , . . . , Tl of Ti (lines 12-14). In this case, it removes Tj, . . . , Tl

from u.S, the edges connecting vu to the vertices representing them, and the corresponding tokens
(lines 15-17). The procedure then recursively calls itself to subscribe u to Ti to possibly propagate
up in the graph this factorization (line 18).

Example 5.10. Consider the user and resource graph, published resources, and token cata-
log in Figure 5.15, and assume that Alice renews her subscription to Glamour for trimester
[Apr’12,Jun’12]. Since both Alice and [Apr’12,Jun’12] are already in the graph (vertices v10 and
v7, respectively), procedure Subscribe only inserts edge (v10,v7) and publishes the corresponding
token. Renewing her subscription, Alice is now subscribed for the first semester of year 2012.
Procedure Subscribe factorizes the two subscriptions for [Jan’12,Mar’12] and [Apr’12,Jun’12] in
a unique subscription for [Jan’12,Jun’12]. Figure 5.17 illustrates the resulting user and resource
graph, published resources, and token catalog (removed tokens are crossed out). Assume now that
Carol joins the system and subscribes for [Apr’12,Jun’12]. Procedure Subscribe first inserts vertex
v12 representing Carol in the graph, and communicates her the corresponding key. It then inserts
edge (v12,v7) in the graph. Figure 5.18 illustrates the resulting user and resource graph, published
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id encr resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k)
5 E(Glam-05,v9.k)

(b)

from to val
v1.l v2.l v2.k⊕h(v1.k,v2.l)
v2.l v3.l v3.k⊕h(v2.k,v3.l)
v2.l v7.l v7.k⊕h(v2.k,v7.l)
v3.l v4.l v4.k⊕h(v3.k,v4.l)
v3.l v5.l v5.k⊕h(v3.k,v5.l)
v3.l v6.l v6.k⊕h(v3.k,v6.l)
v7.l v8.l v8.k⊕h(v7.k,v8.l)
v7.l v9.l v9.k⊕h(v7.k,v9.l)
v10.l v2.l v2.k⊕h(v10.k,v2.l)
v11.l v4.l v4.k⊕h(v11.k,v4.l)
v12.l v7.l v7.k⊕h(v12.k,v7.l) •

(a) (c)

Figure 5.18 User and resource graph (a), published resources (b), and token catalog after Carol subscribes
for [Apr’12,Jun’12] (c)

resources, and token catalog.

5.9.3 Withdrawal from a subscription

As our system provides high flexibility in defining the time windows available for subscription,
withdrawal from a subscription represents an exception in the working of the system and must
be managed as a special case. In fact, no action is needed when a subscription naturally expires.
When a user withdraws from a subscription for time window [ts,te], starting from time instant t, the
resource provider must guarantee that: i) she cannot access the resources with timestamp in (t,te]
(backward protection), and ii) she continues to access the resources with timestamp in [ts,t]. For
instance, consider Example 5.10. In May’12 Alice could decide to withdraw from her subscription
for the first semester of year 2012. In this case, she should not be able to decrypt the issue of
June of the magazine, while she will continue to access the issues of January, February, March,
April, and May. Clearly, a user can withdraw from her subscription at time t only if no resource
with timestamp in (t,te] has been published yet, since otherwise she could have accessed it before
withdrawal. To guarantee that withdrawals are transparent for all the users and cause a limited
overhead to the resource provider, our approach avoids re-keying and re-encryption operations.

Figure 5.19 illustrates procedure Withdraw Subscription, which takes a user u and a time
instant t as input, and updates the user and resource graph. The procedure first identifies the
vertex vu representing the user in G and the time window [ts,te] in u.S that includes t (lines 1-
2). If such a time window does not exist or if at least a resource with timestamp in (t,te] has
been published, the procedure terminates notifying the problem to the resource provider (line 3).
Otherwise, procedure Withdraw Subscription removes the subscription by first substituting
[ts,te] with [ts,t] in u.S (line 4). Since user u already knows the keys of the vertices along the path
from vertex [ts,te] to t if they are represented in the user and resource graph, the resource provider
must guarantee that all the resources with a timestamp following t will be encrypted with a key
that is not derivable from the keys along this path. To this purpose, the procedure updates the
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WITHDRAW SUBSCRIPTION(u,t)
1: let vu∈V be the vertex with vu = u
2: let T=[ts,te]∈u.S s.t. ts≤t≤te

3: if T=null ∨ (∃o∈O s.t. t<o.t≤te) then exit
4: u.S := u.S\{T} ∪ {[ts,t]} /* update the time window in user subscriptions */
5: let vT∈V be the vertex with vT = T
6: while te 	=t ∧ ts 	=te ∧ T∈V do /* visit the path from T to [t,t] */
7: Tnew := [ts,te]
8: vT := [ts,t] /* update the label of the vertex */
9: vnew := Get Vertex(Tnew) /* create a vertex representing Tnew */
10: E := E ∪ {(vnew,vT )} /* [ts,te] dominates [ts,t] */
11: D := D ∪ {vT .k⊕h(vnew.k,vT .l)}
12: for each (vu,vT ) s.t. vu∈U\{u} do /* update users’ subscriptions */
13: E := E ∪ {(vu,vnew)} \ {(vu,vT )}
14: D := D ∪ {vnew.k⊕h(vu.k,vnew .l)} \ {vT .k⊕h(vu.k,vT .l)}
15: let T=[ts,te]∈T s.t. Tnew�T ∧ ts≤t≤te ∧ �Tj: Tnew�Tj�T, Tj 	=Tnew 	=T
16: let vT∈V be the vertex with vT = T

Figure 5.19 Pseudocode of procedure Withdraw Subscription

time window [tsi ,t
e
i ] that each of these vertices represents by setting tei to t, creates a new set of

vertices representing the time windows that has been changed, and connects them in a path of the
user and resource graph. Also, the procedure inserts an edge between each new vertex [tsi ,t

e
i ] to

vertex [tsi ,t] since [tsi ,t
e
i ] clearly dominates [tsi ,t]. Finally, for each user u such that [tsi ,t

e
i ]∈u.S, the

procedure substitutes the token (and corresponding edge) between u and [tsi ,t] (i.e., the vertex that
represented [tsi ,t

e
i ] before the change performed by procedure Withdraw Subscription) with the

token (and corresponding edge) between u and the new vertex representing [tsi ,t
e
i ], to preserve her

ability to derive all the keys of the time windows dominated by [tsi ,t
e
i ].

Note that the keys along the path from T to t, whose time windows have been updated by pro-
cedure Withdraw Subscription, are not affected. Therefore, users who have already computed
these keys can still use their local copy. The number of additional vertices and edges in the user
and resource graph is limited and is at most h-1 and 2(h-1), respectively, where h is the height of
the time hierarchy. The number of updated edges is |U|-1 in the worst case.

Example 5.11. Consider the user and resource graph, published resources, and token catalog in
Figure 5.18, and assume that Alice withdraws from her subscription in May’12. Procedure With-
draw Subscription updates her subscription for [Jan’12,Jun’12] to [Jan’12,May’12], and visits
the path from vertex v2 (representing [Jan’12,Jun’12]) to the vertex representing [May’12,May’12].
First, it visits vertex v2, updates its time window to [Jan’12,May’12], creates a new vertex v′2 for
time window [Jan’12,Jun’12], and inserts edge (v′2,v2) in the user and resource graph. The pro-
cedure executes the same operations when visiting v7. Since Carol should still be able to access
all the issues of Glamour published in [Apr’12,Jun’12], the procedure substitutes edge (v12,v7) with
edge (v12,v

′
7). From her key Alice can derive, after this update, the keys used to encrypt the issues

published in [Jan’12,May’12], while Carol can still derive keys used to encrypt issues published in
[Apr’12,Jun’12]. Figure 5.20 illustrates the user and resource graph, published resources, and token
catalog after Alice’s withdrawal.
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id encr resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k)
5 E(Glam-05,v9.k)

(b)

from to val
v1.l v2.l v2.k⊕h(v1.k,v2.l)
v1.l v′

2.l v′
2.k⊕h(v1.k,v

′
2.l)

v2.l v3.l v3.k⊕h(v2.k,v3.l)
v2.l v7.l v7.k⊕h(v2.k,v7.l)
v′
2.l v2.l v2.k⊕h(v′

2.k,v2l) •
v′
2.l v′

7.l v′
7.k⊕h(v′

2.k,v
′
7.l) •

v3.l v4.l v4.k⊕h(v3.k,v4.l)
v3.l v5.l v5.k⊕h(v3.k,v5.l)
v3.l v6.l v6.k⊕h(v3.k,v6.l)
v7.l v8.l v8.k⊕h(v7.k,v8.l)
v7.l v9.l v9.k⊕h(v7.k,v9.l)
v′
7.l v7.l v7.k⊕h(v′

7.k,v7.l) •
v10.l v2.l v2.k⊕h(v10.k,v2.l)
v11.l v4.l v4.k⊕h(v11.k,v4.l)
v12.l v7.l v7.k⊕h(v12.k,v7.l)
v12.l v′

7.l v′
7.k⊕h(v12.k,v

′
7.l) •

(a) (c)

Figure 5.20 User and resource graph (a), published resources (b), and token catalog after Alice withdraws
from her subscription in May’12 (c)

5.9.4 Correctness

The procedures described in this section correctly enforce changes to the subscription-based policy.
This is formally stated by the following theorem.

Theorem 5.5 (Correct enforcement of policy updates). Let HT (T,�) be a time hierarchy on time
domain (T S,≤), U be a set of users with u.S⊆T for all u∈U , O be a set of resources with o.t∈T S
for all o∈O, and G(V,E) be the user and resource graph over U , O, and HT .

1. Procedure Publish Resource(o) generates a user and resource graph that correctly enforces
the subscription-based policy on U and O∪{o}.

2. Procedure Subscribe(u,T) generates a user and resource graph that correctly enforces the
subscription-based policy on U∪{u} and O, with u.S∪{T}.

3. Procedure Withdraw Subscription(u,t) generates a user and resource graph that correctly
enforces the subscription-based policy on U and O, with u.S\{[ts,te]}∪{[ts,t]}.

Proof: To prove Theorem 5.5, we first need to prove that function Get Vertex, which possibly
inserts vertices and edges in the user and resource graph, guarantees that the resulting graph is
still a user and resource graph (Definition 5.4) correctly enforcing the subscription-based policy.

Lemma 5.3 (Correctness of function Get Vertex). Let HT (T,�) be a time hierarchy defined on
time domain (T S,≤), U be a set of users with u.S⊆T for all u∈U , O be a set of resources with
R.t∈T S for all R∈O, and G(V,E) be the user and resource graph over U , O, and HT . Given
a time window T, the user and resource graph generated by function Get Vertex(T) satisfies
Definition 5.4.
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Proof: Function Get Vertex is correct if: 1) it terminates; 2) when it returns, graph G satisfies
Definition 5.4; and 3) when it returns, graph G correctly enforces the subscription-based policy.

1. Function Get Vertex terminates since its recursive call operates on the direct ancestor of
time window T in the time hierarchy HT and HT is a finite hierarchy. As a consequence,
HT includes at least a root vertex T� (i.e., a vertex with no ancestors).

2. If there exists a vertex inG representing T, the function does not modifyG. As a consequence,
if G satisfies Definition 5.4 when the function is called, the graph satisfies Definition 5.4 also
when the function returns. If T is not represented by a vertex in G, function Get Vertex
inserts into G a vertex v representing T. To satisfy Definition 5.4, its direct ancestor Ti in HT
should be represented by a vertex vi in G, connected by an edge to v. Function Get Vertex
recursively calls itself on Ti, obtaining vertex vi representing Ti, and inserts edge (vi,v).
Since function Get Vertex correctly connects v to its ancestor, also each ancestor of v is
correctly connected to its ancestor because they are all generated by function Get Vertex.
We conclude that, when function Get Vertex returns, the user and resource graph satisfies
Definition 5.4.

3. Since function Get Vertex does not modify the subscription-based policy of the system,
users should not gain/lose their ability to decrypt resources. Function Get Vertex does
not insert, remove, or modify edges incident to vertices representing users and timestamps
of existing resources; it does not modify the time windows represented by vertices; and
the resulting graph satisfy Definition 5.4. As a consequence, if G correctly enforces the
subscription-based policy when functionGet Vertex is called, it correctly enforces the policy
also when the function returns. �

We are now ready to prove Theorem 5.5, as follows. We prove each of the statements in the
theorem separately. For each procedure, we prove that: 1) it terminates; 2) when it returns, G
satisfies Definition 5.4; 3) when it returns, G correctly enforces the subscription-based policy.

1. Let us first analyze procedure Publish Resource, which inserts R into O.

(a) Procedure Publish Resource terminates since function Get Vertex terminates
(Lemma 5.3).

(b) When the procedure returns, the graph satisfies Definition 5.4, since the procedure does
not modify the graph and function Get Vertex is correct (Lemma 5.3).

(c) Procedure Publish Resource inserts R into O. Since it calls function Get Vertex
on [R .t,R .t], vertex v representing the timestamp of the resource belongs to G. Also,
R is encrypted with the key of v. As a consequence, since G satisfies Definition 5.4, it
correctly enforces the subscription-based policy also after R is published.

2. Let us now consider procedure Subscribe, which grants user u access to the resources in
time window T.

(a) Procedure Subscribe terminates since function Get Vertex terminates (Lemma 5.3)
and its recursive call operates on the direct ancestor of time window T in the time
hierarchy HT , which is a finite hierarchy.
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(b) The procedure possibly inserts a vertex representing u and calls function Get Vertex
over T, which preserves the correctness of the graph (Lemma 5.3). The procedure
inserts an edge from vertex vu, representing u, to vertex vT , representing T, according
to the fact that T is inserted into u.S (Definition 5.4). The procedure modifies the
graph by removing all the edges connecting vertex vu to the vertices representing all the
descendants of a time window Ti, according to the fact that all these time windows are
removed from u.S. The resulting graph then satisfies Definition 5.4.

(c) Procedure Subscribe inserts T into u.S. Since it possibly inserts the vertex representing
u intoG, the user’s key is correctly defined. If all the direct descendants of a time window
Ti belong to u.S, the procedure removes these time windows from u.S. However, it
recursively calls itself on Ti and therefore Ti is inserted into u.S. Since Ti covers the
same time instants as the union of its descendants, a subscription to Ti is equivalent
to a set of subscriptions to all its descendants. As a consequence, since G satisfies
Definition 5.4, it correctly enforces the subscription-based policy also after u subscribed
to T.

3. Finally, let us now consider procedure Withdraw Subscription, which enforces the leave
of user u at time t.

(a) Procedure Withdraw Subscription includes a while loop, with a nested for each
loop. The for each loop terminates, since the number of time windows in a user
subscription is finite, as well as the set of users in the system. The while loop includes,
besides the for each loop, a call to function Get Vertex that, as already proved,
terminates. The while loop stops when either t=te, ts=te or T �∈V , reaching in the
worst case a leaf in G. Since G is acyclic and the while loop visits a path in the graph,
the while loop, and therefore also procedure Withdraw Subscription, terminates.

(b) The user and resource graph obtained when the procedure returns is based on a different
time hierarchy than the original one, HT

′(T ′,�), defined on a different set T ′ of time
windows T ′=T∪Tnew , with Tnew={[ts,t]: ∃[ts,te]∈T ∧ ts≤t≤te}. To guarantee that
G is defined on HT

′, procedure Withdraw Subscription changes the time window
associated with vertices representing a time window [ts,te]∈T with ts≤t≤te by substi-
tuting te with t. For each of these vertices, the procedure calls function Get Vertex
on [ts,te]. As a consequence, G includes a proper subset of time windows in T and all
the time windows in Tnew . The while loop in procedure Withdraw Subscription
changes the end time of all the time windows along a path, reducing these time win-
dows to a subset of the time instants of the original ones. Hence, the edges along this
path correctly reflect the dominance relationship among the time windows represented
by the vertices. As already proved, function Get Vertex guarantees the correct repre-
sentation of dominance relationships. Also, [ts,te] clearly dominates [ts,t], therefore the
edge connecting the new vertex representing [ts,te] with the existing one representing
[ts,t] correctly reflects a direct dominance relationship. The procedure also substitutes
edge (vuvT ) with (vu,vT ′), where vu represents user u, vT represents time window [ts,te]
and is updated to [ts,t], and vT ′ is inserted and represents [ts,te]. This update is not
performed for the user who is withdrawing from a subscription, since her subscription is
updated to u.S\{[ts,te]}∪{[ts,t]}. We can then conclude that, when procedure With-
draw Subscription returns, the user and resource graph satisfies Definition 5.4.
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(c) Procedure Withdraw Subscription updates u.S to u.S\{[ts,te]}∪{[ts,t]}. Since no
resource has been published with timestamp greater than t and the user and resource
graph satisfies Definition 5.4, when the procedure returns G correctly enforces the
subscription-based policy. �

5.10 Chapter summary

In this chapter, we presented an approach for enforcing read and write authorizations in data release
scenarios. Our solution does not require intervention of the data owner for filtering query results
and/or access requests, and efficiently supports updates in the access control policy, minimizing the
overhead of the data owner and resulting transparent to the final users. Data integrity can be easily
verified by the data owner and by the users authorized to write resources, thus providing guarantees
on the fact that resources externally stored have not been tampered with by unauthorized parties
without being detected. The proposed solution relies on the use of symmetric encryption, hashing,
and HMAC functions for enforcing access control and integrity checks in an efficient and effective
way. We have then complemented our solution with a subscription-based policy, proposing a
technique for effectively restricting access to published resources based on the subscriptions of the
users to a service, to take into account scenarios in which user subscriptions and released resources
change dynamically over time. Changes in the subscription-based policy due to the addition of
new users and resources, and to the withdrawal of users from their subscriptions are efficiently
enforced updating the key derivation structure, again in a transparent way to the final users. Our
proposal then performs a step toward the development of solutions actually applicable in real-world
scenarios where efficiency and scalability are mandatory.
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Conclusions

In this thesis, we have addressed the problem of protecting sensitive information in scenarios of data
release (e.g., in cloud/outsourcing contexts). After some introductory remarks and a discussion
of related works, we focused on three specific aspects: the protection of data explicitly published,
the protection of information not explicitly included in a release but possibly exposed to privacy
breaches by the release itself, and the enforcement of access restrictions. In this chapter, we
summarize the contributions of this thesis, we outline possible directions for future works, and we
give our concluding remarks.

6.1 Summary of the contributions

The contribution of this thesis is threefold.

Protection of data explicitly involved in a release. We proposed our solution for protecting
privacy of sensitive information included in a release. The technique is based on the fragmentation
approach, which vertically splits the original data collection in disjoint fragments satisfying both
confidentiality and visibility constraints, respectively modeling requirements for privacy protection
and information visibility. We provided a novel OBDD-based formulation of the fragmentation
problem, and proposed two efficient algorithms (exact and heuristic) for computing a minimal
fragmentation. The efficiency of our OBDD-based approach has been testified by our experimental
results, showing also that the heuristic well approximates the optimal solutions computed by
the exact algorithm while requiring limited computation time. To further increase the utility of
the released data for final recipients, we complemented fragments with loose associations, whose
adoption has been extended to operate on arbitrary fragmentations (thus removing the limiting
assumption of operating on a pair of fragments).
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Protection of data not explicitly involved in a release. We provided our solution for
capturing and counteracting the risk that the release of a collection of non sensitive data can
expose sensitive information that, despite not appearing in the released dataset, can be derived
observing peculiar distribution of the values of the released dataset. We identified and modeled a
novel inference scenario, raised from a real case study that needed consideration. We introduced
several metrics to assess the inference exposure due to a data release, we formally defined a safe
release with respect to the modeled inference channel, and we illustrated the controls to be enforced
in a scenario where data items are released one at a time, upon request. Our solution has been
experimentally evaluated to assess both inference exposure and information loss.

Access control enforcement. We defined an access control solution for enforcing dynamic
write authorizations in data release scenarios. Our proposal is based on selective encryption, origi-
nally designed to enforce read privileges over outsourced data, to fit the emerging cloud computing
paradigm where the storage server is not trusted to enforce access restrictions. Our technique
supports grant and revoke of write authorizations and results appealing for its efficiency and flexi-
bility, as it avoids expensive re-keying and re-encryption operations. We also proposed an integrity
check technique to verify that modifications to a resource have been produced only by authorized
users. We complemented our solution with the definition and enforcement of a subscription-based
authorization policy, to consider emerging real-world scenarios where users pay for a service and
need to access the resources released during their subscriptions at any time. Our proposal avoids to
the users the burden of downloading resources, allowing them to maintain the right to access such
resources without the worry that they will lose this right after the expiration of their subscriptions.

6.2 Future work

The research illustrated in this thesis can be extended along several directions, as we outline in
the following.

6.2.1 Protection of data explicitly involved in a release

Dynamic datasets. In line with traditional protection techniques, our fragmentation and (ex-
tended) loose associations presented in Chapter 3 make the implicit assumption that the original
dataset is static (i.e., it does not change over time). In particular, it assumes that no tuple
(attribute, respectively) be inserted into/removed from the original relation (relation schema, re-
spectively). In particular, updating the schema adding or removing attributes might cause the
violation of one or more constraints: removing attributes from fragments might violate visibil-
ity constraints, while adding attributes to fragments might reveal sensitive associations among
attributes that have not been considered. On the other hand, adding or removing tuples might
compromise the protection degree offered by the published loose associations: removing tuples
from fragments decreases the size of the groups in fragments, while adding a tuple might allow
an adversary to recombine it by concatenating its sub-tuples in each of the fragments (as the
heterogeneity properties might be violated). A future line of work will consist in the definition of
protection techniques able to handle updates at both the schema and instance levels.
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Multiple input relations. A common assumption of traditional protection techniques, which
we also adopted, is that data to be released are organized in a single universal relation. How-
ever, real-world datasets can be composed of several relations, possibly belonging to different
domains, thus complicating the definition of confidentiality constraints for computing a fragmenta-
tion. Intuitively, defining constraints for a relation without consideration of the other ones might
be insufficient for capturing all sensitive associations. Besides, these relations might be related
though integrity constraints (e.g., since they include some common attributes whose values are
related by a dependency) that might be used for re-joining the fragments in which the relations
have been split, possibly enabling the recomposition of sensitive associations. To address this issue,
it is necessary to define a technique for managing multiple input relations.

Attribute dependencies. Our data protection solution is based on the implicit assumption that
there are no dependencies among the attributes in a relation schema. The absence of data depen-
dencies guarantees that a correct fragmentation properly protects sensitive attributes and associa-
tions. However, real-world datasets can be characterized by dependencies among attributes (e.g.,
the treatment with which a patient is cared and her illness are clearly related by a dependency),
which might allow the inference of sensitive data and/or sensitive associations. Given a correct
fragmentation, data dependencies can then be exploited to violate confidentiality constraints by,
for instance, re-joining fragments when two dependent attributes appear in two different fragments.
A future line of work will focus on the definition of solutions for computing fragmentations being
correct and inference-free.

6.2.2 Protection of data not explicitly involved in a release

Different metrics. The metrics adopted to counteract the risk of sensitive information disclosure
have been specifically devised to capture deviations between an observed value distribution (in the
released dataset), and an expected one. They therefore well suit our inference scenario, where
inferences on sensitive information are drawn by observing differences between value distributions.
However, in other scenarios inferences might be enabled by other peculiarities of the observed
distributions (e.g., by observing similarities, rather than differences, with peculiar/specific value
distributions, or by observing specific values in the released dataset). It is important therefore to
define other metrics, able to handle different peculiarities of the released distributions, to address
more variegate scenarios.

Different inference channels. The inference channel modeled in this thesis is based on the
assumption that the background knowledge of a recipient is the baseline value distribution, which
is then considered typical and expected. This is indeed reasonable in real-world scenarios, in which
a given value distribution can be considered publicly available as, for instance, being released by
its owners for statistical purposes. However, a recipient might possess different knowledge she can
exploit to derive sensitive information, such as the expected order in which tuples are requested,
or the typical time between two subsequent releases. For instance, knowing the order in which
tuples are requested and comparing it with the order in which tuples are actually released, a
recipient might infer that delayed requests refer to sensitive information. A future line of work
will investigate other kinds of knowledge a recipient might exploit to draw inferences of sensitive
information.
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6.2.3 Access control enforcement

Multiple owners. Our access control system based on selective encryption operates with the
implicit assumption that all data to be stored at the external server are of the same owner, who
can therefore define a single authorization policy to regulate read and write privileges on the
entire dataset. However, in some collaborative scenarios different owners might be responsible
for different portions of the resources to be made selectively available. A naive solution to enforce
access control in this scenario adopting our technique can require each data owner to define her own
key derivation structure modeling authorizations for her resources. This, however, would require
users to manage one key for each owner authorizing them. Besides, different owners might control
overlapping portions of the same dataset, requiring their policies to be collectively enforced. A
possible direction for future works will explore how to solve these two issues, by defining techniques
able to handle the cases of multiple owners.

Exposure evaluation. The integrity control technique complementing our access control system
assumes the server, in case of resource updates, to never overwrite resources but to maintain all
their versions. This allows, whenever the owner or the users identify an illegal update, to discard
it and restore the previous genuine version of the resource. To avoid the need of keeping all the
different versions of every resource in the system, it will be necessary to define a technique able to
identify an update as illegal before it is enforced, so that it can be discarded without the need of
resorting to previous versions of the resources.

Subscriptions flexibility. In our subscription-based authorization policy, subscriptions are de-
fined based on their beginning and ending time. It therefore fits wells emerging scenarios in which
users pay for a service, and are allowed to access all and only those resources released during their
subscriptions. Our selective encryption strategy might however be adapted to different scenarios,
where subscriptions to a service can be defined on the basis of different criteria (e.g., topic of inter-
est, geographical region) as the hierarchy of subscriptions is not pre-defined, but it is dynamically
created depending on users’ requests. An interesting direction for future research would extend
our technique to allow for more flexibility in the definition of user subscriptions.

6.3 Closing remarks

The work illustrated in this thesis has appeared in the form of conference and journal papers.
Appendix A lists the publications resulting from this PhD work, including their abstracts.
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Abstract: Fragmentation has been recently proposed as a promising approach to protect
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storage. By splitting attributes among different fragments, fragmentation guarantees confi-
dentiality of the associations among these attributes under the assumption that such associa-
tions cannot be reconstructed by re-combining the fragments. We note that the requirement
that fragments do not have attributes in common, imposed by previous proposals, is only
a necessary, but not sufficient, condition to ensure that information in different fragments
cannot be recombined as dependencies may exist among data enabling some form of linka-
bility. In this paper, we identify the problem of improper information leakage due to data
dependencies, provide a formulation of the problem based on anatural graphical modeling,
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Abstract: Users and companies are more and more resorting to external providers for storing
their data and making them available to others. Since data sharing is typically selective (i.e.,
accesses to certain data should be allowed only to authorized users), there is the problem
of enforcing authorizations on the outsourced data. Recently proposed approaches based on
selective encryption provide convenient enforcement of read privileges, but are not directly
applicable for supporting write privileges.
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In this paper, we extend selective encryption approaches to the support of write privileges.
Our proposal enriches the approach based on key derivation of existing solutions and comple-
ments it with a hash-based approach for supporting write privileges. Enforcement of write
privileges and of possible policy updates relies on the - controlled - cooperation of the exter-
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of data are easily available and accessible, leading to growing privacy concerns. The research
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that characterize the modern Information Society. Although several advancements have been
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privacy problem arising when sensitive non released properties depend on (and can therefore
be inferred from) non-sensitive released data. We propose a model capturing this inference
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sensitive released data. We then describe how to counteract possible inferences that an
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ity and visibility constraints expressing requirements for information protection and release,
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mum number of fragments into the problem of computing a maximum weighted clique over a
fragmentation graph. The fragmentation graph models fragments, efficiently computed using
Ordered Binary Decision Diagrams (OBDDs), that satisfy all the confidentiality constraints
and a subset of the visibility constraints defined in the system. We then show an exact
and a heuristic algorithm for computing a minimal and a locally minimal fragmentation,
respectively. Finally, we provide experimental results comparing the execution time and the
fragmentations returned by the exact and heuristic algorithms. The experiments show that
the heuristic algorithm has low computation cost and computes a fragmentation close to
optimum.



157

5. Data Privacy: Definitions and Techniques

(co-authors: S. De Capitani di Vimercati, S. Foresti, P. Samarati)

in International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS),
Vol. 20, No. 6, pp. 793–817, 2012.

Abstract: The proper protection of data privacy is a complex task that requires a careful
analysis of what actually has to be kept private. Several definitions of privacy have been
proposed over the years, from traditional syntactic privacy definitions, which capture the
protection degree enjoyed by data respondents with a numerical value, to more recent se-
mantic privacy definitions, which take into consideration the mechanism chosen for releasing
the data.

In this paper, we illustrate the evolution of the definitions of privacy, and we survey some
data protection techniques devised for enforcing such definitions. We also illustrate some
well-known application scenarios in which the discussed data protection techniques have
been successfully used, and present some open issues.

6. Anonymization of Statistical Data

(co-authors: S. De Capitani di Vimercati, S. Foresti, P. Samarati)

in IT - Information Technology, January, 2011, Vol. 53, No. 1, pp. 18–25, 2011.

Abstract: In the modern digital society, personal information about individuals can be
collected, stored, shared and disseminated much more easily and freely. Such data can be
released in macrodata form, reporting aggregated information, or in microdata form, report-
ing specific information on individual respondents. To ensure proper privacy of individuals
as well of public and private organizations, it is then important to protect possible sensitive
information in the original dataset from either direct or indirect disclosure. In this paper, we
characterize macrodata and microdata releases and then focus on microdata protection. We
provide a characterization of the main microdata protection techniques and describe recent
solutions for protecting microdata against identity and attribute disclosure, discussing some
open issues that need to be investigated.

Refereed papers in proceedings of international conferences

and workshops

1. Extending Loose Associations to Multiple Fragments

(co-authors: S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 27th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security and Privacy (DBSec 2013), Newark, NJ, USA, July 15–17, 2013 (best paper runner-
up award).

Abstract: Data fragmentation has been proposed as a solution for protecting the confiden-
tiality of sensitive associations when publishing data at external servers. To enrich the utility
of the published fragments, a recent approach has put forward the idea of complementing
them with loose associations, a sanitized form of the sensitive associations broken by frag-
mentation. The original proposal considers fragmentations composed of two fragments only,
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and supports the definition of a loose association between this pair of fragments. In this
paper, we extend loose associations to multiple fragments. We first illustrate how the pub-
lication of multiple loose associations between pairs of fragments of a generic fragmentation
can potentially expose sensitive associations. We then describe an approach for supporting
the more general case of publishing a loose association among an arbitrary set of fragments.
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(co-authors: C.A. Ardagna, P. Samarati)

in Proc. of the 15th IEEE International Conference on Computational Science and Engi-
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Abstract: The widespread diffusion of mobile devices integrating location capabilities makes
the location of users yet another type of sensitive information used by service providers in the
provision of accurate and personalized services (location-based services – LBSs). A major
problem in this context is that the privacy of users is increasingly at risk, calling for solutions
balancing the benefits provided by LBSs and the privacy guarantees. In this paper, we study
a novel privacy problem related to inferences of sensitive information caused by the release
of consecutive positions to LBS providers. We provide an approach based on Markov chains
that allows the user to continuously release her location information in a privacy-preserving
way. We then define an approach to counteract different inference channels, addressing users’
preferences in terms of both privacy requirements and quality of service.

3. Enforcing Subscription-based Authorization Policies in Cloud Scenarios

(co-authors: S. De Capitani di Vimercati, S. Foresti, S. Jajodia)

in Proc. of the 26th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security and Privacy (DBSec 2012), Paris, France, July 11–13, 2012.

Abstract: The rapid advances in the Information and Communication Technologies have
brought to the development of on-demand high quality applications and services allowing
users to easily access resources anywhere anytime. Users can pay for a service and access
the resources made available during their subscriptions until the subscribed periods expire.
Users are then forced to download such resources if they want to access them also after
the subscribed periods. To avoid this burden to the users, we propose the adoption of a
subscription-based access control policy that combines a flexible key derivation structure
with selective encryption. The publication of new resources as well as the management of
subscriptions are accommodated by adapting the key derivation structure in a transparent
way for the users.

4. Privacy and Security in Environmental Monitoring Systems

(co-authors: S. De Capitani di Vimercati, V. Piuri, F. Scotti)

in Proc. of the 1st IEEE-AESS Conference in Europe about Space and Satellite Communi-
cations (ESTEL 2012), Rome, Italy, October 2–5, 2012.

Abstract: There is today an increasing interest in environmental monitoring for a variety
of specific applications, with great impact especially on natural resource management and
preservation, economy, and people’s life and health. Typical uses encompass, for example,
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Earth observation, meteorology, natural resource monitoring, agricultural and forest monitor-
ing, pollution control, natural disaster observation and prediction, and critical infrastructure
monitoring. While on one hand these systems play an important role in our society, on the
other hand their adoption can raise a number of security and privacy concerns, representing
a possible obstacle for the development of future environmental applications. In this paper,
we analyze the security and privacy issues characterizing both the environmental monitoring
infrastructures and the data collected and processed by them. We also provide an overview
of possible countermeasures for diminishing the effects of these issues.

5. Privacy in Data Publishing

(co-authors: S. De Capitani di Vimercati, S. Foresti)

in Data Privacy Management and Autonomous Spontaneous Security, J. Garcia-Alfaro, G.
Navarro-Arribas, A. Cavalli and J. Leneutre (eds.), Springer, 2011 (invited).

Abstract: In modern digital society, personal information about individuals can be easily
collected, shared, and disseminated. These data collections often contain sensitive informa-
tion, which should not be released in association with respondents’ identities. Removing
explicit identifiers before data release does not offer any guarantee of anonymity, since de-
identified datasets usually contain information that can be exploited for linking the released
data with publicly available collections that include respondents’ identities. To overcome
these problems, new proposals have been developed to guarantee privacy in data release. In
this chapter, we analyze the risk of disclosure caused by public or semi-public microdata
release and we illustrate the main approaches focusing on protection against unintended dis-
closure. We conclude with a discussion on some open issues that need further investigation.

6. Enforcing Confidentiality and Data Visibility Constraints: An OBDD Approach

(co-authors: V. Ciriani, S. De Capitani di Vimercati, S. Foresti, P. Samarati)

in Proc. of the 25th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security and Privacy (DBSec 2011), Richmond, VA, USA, July 11–13, 2011.

Abstract:The problem of enabling privacy-preserving data releases has become more and
more important in the last years thanks to the increasing needs of sharing and disseminating
information. In this paper we address the problem of computing data releases in the form
of fragments (vertical views) over a relational table, which satisfy both confidentiality and
visibility constraints, expressing needs for information protection and release, respectively.
We propose a modeling of constraints and of the data fragmentation problem based on
Boolean formulas and Ordered Binary Decision Diagrams (OBDDs). Exploiting OBDDs, we
efficiently manipulate Boolean formulas, thus easily computing data fragments that satisfy
the constraints.

7. Protecting Privacy of Sensitive Value Distributions in Data Release

(co-authors: M. Bezzi, S. De Capitani di Vimercati, P. Samarati)

in Proc. of the 6th Workshop on Security and Trust Management (STM 2010), Athens,
Greece, September 23–24, 2010.

Abstract: In today’s electronic society, data sharing and dissemination are more and more
increasing, leading to concerns about the proper protection of privacy. In this paper, we
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address a novel privacy problem that arises when non sensitive information is incrementally
released and sensitive information can be inferred exploiting dependencies of sensitive infor-
mation on the released data. We propose a model capturing this inference problem where
sensitive information is characterized by peculiar distributions of non sensitive released data.
We also discuss possible approaches for run time enforcement of safe releases.
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1. Selective and Private Access to Outsourced Data Centers

(co-authors: S. De Capitani di Vimercati, S. Foresti, P. Samarati)

in Handbook on Data Centers, S.U. Khan and A.Y. Zomaya (eds.), Springer (to appear)

Abstract: The advancements in the Information Technology and the rapid diffusion of novel
computing paradigms have accelerated the trend of moving data to the cloud. Public and
private organizations are more often outsourcing their data centers to the cloud for economic
and/or performance reasons, thus making data confidentiality an essential requirement. A
basic technique for protecting data confidentiality relies on encryption: data are encrypted
by the owner before their outsourcing. Encryption however complicates both the query
evaluation and enforcement of access restrictions to outsourced data. In this chapter, we
provide an overview of the issues and techniques related to the support of selective and private
access to outsourced data in a scenario where the cloud provider is trusted for managing the
data but not for reading their content. We therefore illustrate methods for enforcing access
control and for efficiently and privately executing queries (at the server side) over encrypted
data. We also show how the combined adoption of approaches supporting access control
and for efficient query evaluation may cause novel privacy issues that need to be carefully
handled.

2. Privacy and Security in Environmental Monitoring Systems: Issues and Solutions

(co-authors: S. De Capitani di Vimercati, A. Genovese, V. Piuri, F. Scotti)

in Computer and Information Security Handbook, 2nd Edition, J. Vacca (ed.), Morgan Kauf-
mann, 2013.

Abstract: There is today an increasing interest in environmental monitoring for a variety
of specific applications, with great impact especially on natural resource management and
preservation, economy, and people’s life and health. Typical uses encompass, for example,
Earth observation, meteorology, natural resource monitoring, agricultural and forest monitor-
ing, pollution control, natural disaster observation and prediction, and critical infrastructure
monitoring. While on one hand these systems play an important role in our society, on
the other hand their adoption can raise a number of security and privacy concerns, which
can represent an obstacle for the development of future environmental applications. In this
chapter, we identify the main security and privacy issues characterizing the environmental
data as well as the environmental monitoring infrastructures. We then provide an overview
of possible countermeasures for diminishing the effects of these security and privacy issues.

3. Data Privacy

(co-authors: M. Bezzi, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, P. Samarati)
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in Privacy and Identity Management for Life, J. Camenisch, S. Fischer-Hubner, K. Rannen-
berg (eds.), Springer, 2011.

Abstract: In today’s globally interconnected society, a huge amount of data about indi-
viduals is collected, processed, and disseminated. Data collections often contain sensitive
personally identifiable information that need to be adequately protected against improper
disclosure. In this chapter, we describe novel information-theoretical privacy metrics, neces-
sary to measure the privacy degree guaranteed by a published dataset. We then illustrate
privacy protection techniques, based on fragmentation, that can be used to protect sensitive
data and sensitive associations among them.

4. Protecting Privacy in Data Release

(co-authors: S. De Capitani di Vimercati, S. Foresti, P. Samarati)

in Foundations of Security Analysis and Design VI, A. Aldini, R. Gorrieri (eds.), Springer,
2011.

Abstract: The evolution of the Information and Communication Technology has radically
changed our electronic lives, making information the key driver for today’s society. Every
action we perform requires the collection, elaboration, and dissemination of personal infor-
mation. This situation has clearly brought a tremendous exposure of private and sensitive
information to privacy breaches.

In this chapter, we describe how the techniques developed for protecting data have evolved in
the years. We start by providing an overview of the first privacy definitions (k-anonymity, �-
diversity, t-closeness, and their extensions) aimed at ensuring proper data protection against
identity and attribute disclosures. We then illustrate how changes in the underlying assump-
tions lead to scenarios characterized by different and more complex privacy requirements. In
particular, we show the impact on privacy when considering multiple releases of the same data
or dynamic data collections, fine-grained privacy definitions, generic privacy constraints, and
the external knowledge that a potential adversary may exploit for inferring sensitive infor-
mation. We also briefly present the concept of differential privacy that has recently emerged
as an alternative privacy definition.
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