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Abstract 

 

Faithful chromosome segregation during mitosis requires the dynamic interaction between spindle 

microtubules and kinetochores, multiprotein complexes built on chromosomal loci named 

centromeres. 

A group of kinetochore proteins associates with centromeres throughout the cell cycle and is thus 

named constitutive centromere-associated network (CCAN). Biochemical and functional analyses 

indicate that, rather than forming a single stable complex, CCAN proteins are organized in sub-

complexes. However, the exact protein composition and organization of these sub-complexes has 

not been fully elucidated to date. Moreover, investigations on kinetochore localization 

dependencies of CCAN proteins have revealed an extremely complicated network of relationships. 

A thorough mapping of the direct interactions that take place among CCAN proteins is an essential 

condition to deconvolute such an intricate picture. 

The aim of my project has been the biochemical reconstitution of CCAN sub-complexes and their 

structural and functional characterization. I have been interested in investigating interactions 

among different CCAN sub-complexes, other kinetochore proteins and centromeric chromatin. In 

particular, this dissertation dwells upon the results I have obtained regarding three different but 

intrinsically related topics. 

First, I present a biochemical and structural characterization of the CCAN protein CENP-M 

(centromere protein M), which displays the fold, but not the enzymatic activity of a G protein. In 

addition, I disclose its unprecedented role in the context of a quaternary complex with CENP-H, 

CENP-K and CENP-I and provide information about the spatial organization of this complex. The 

first steps towards an in vivo validation of these results are also described. 

Second, I report the discovery of a direct interaction of CENP-H / CENP-K complex with CENP-C 

and discuss its implications for the kinetochore recruitment of these proteins. 

Third, I have been involved in establishing in the laboratory techniques for the in vitro reconstitution 

of recombinant nucleosomes. The production of material of good quality and quantity has recently 

been achieved, supporting the analysis of in vitro interactions between nucleosomes and 

kinetochore components. Specifically, I illustrate some preliminary observations concerning a direct 

interaction of Mis12 complex with nucleosomes. 
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1 Introduction 

 

1.1 Overview of kinetochore organization and function 

 

Mitosis is the process through which a eukaryotic mother cell equally distributes its duplicated 

chromosomes to two daughter cells, so that each of them is provided with a full complement of the 

genome. The accuracy of this process is crucial for cellular viability as its perturbation leads to 

aberrations in chromosome number, called aneuploidies, which often result in birth defects and / or 

cancers1,2. 
Faithful chromosome segregation during mitosis requires the dynamic interaction between spindle 

microtubules and kinetochores, multiprotein complexes built on chromosomal loci named 

centromeres3. We can thus state that the primary function of kinetochores is to create load-bearing 

attachments between chromosomes and microtubules in a dividing mother cell. 

The first insights into the organization of vertebrate kinetochores came from electron microscopy 

studies4, which revealed that kinetochores have a trilaminar morphology (Figure 1), with electron 

dense inner and outer plates and an electron lucent middle layer. In the absence of microtubules, a 

fibrous corona is visible as a dense array of fibres extending outward from the outer plate. Although 

such distinct layers are not as apparent using modern sample preparation techniques5, the concept 

of an overall layered geometry has been supported by studies showing an arrangement of protein 

complexes along the inner-outer kinetochore axis. 

This organization reflects the main functions of kinetochores, which can be grouped under four 

modules. The first module, in the inner kinetochore plate, forms an interface with centromeric 

chromatin6. The second module, in the outer kinetochore plate, contributes a microtubule-binding 

interface7. The fibrous corona contains microtubule motors and components of the spindle 

assembly checkpoint8, which represents the third module. This provides a feedback control 

mechanism that monitors the state of kinetochore-microtubule attachments and coordinates it with 

the progression of the cell cycle. In particular, it delays the entry into anaphase until all sister 

chromatids are properly aligned along the metaphase plate and attached to opposite spindle poles. 

This condition, called bi-orientation or amphitelic orientation, is crucial for the equal distribution of 

sister chromatids to the two daughter cells at anaphase. Finally, the fourth module discerns correct 
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from improper kinetochore-microtubule attachments, selectively stabilizing the former and favouring 

the correction of the latter9,10. 

 

 

Figure 1 - Vertebrate kinetochore ultrastructure. 

Left panel: schematic representation of a mitotic chromosome. The sister chromatid on the right is attached to microtubules, 

while the sister chromatid on the left is unattached. Right panel: electron micrograph of a human kinetochore (image 

courtesy of Dong Y. and McEwen B., State University of New York at Albany, USA). The micrograph represents a single 

slice from a tomographic volume of a high‐pressure frozen mitotic cell. Scale bar: 100 nm. Adapted from Cheeseman I. M. 

and Desai A., Nat Rev Mol Cell Biol, 200811. 

 

 

1.2 Conserved and divergent features of kinetochores across evolution 

 

The aforementioned major themes in kinetochore organization and function are conserved 

throughout eukaryotes, but significant differences in kinetochore arrangement exist among species. 

Given the relevance of the topic in the context of this dissertation, an overview of conserved and 

divergent features of kinetochores across evolution is provided below. 

Microtubules are polymers of α/β-tubulin dimers. They are extremely conserved cytoskeletal 

elements and the amino acidic sequences of α and β tubulin are over 80 % identical from yeast to 

human. The number of microtubules attached to each kinetochore instead varies among species: 

from 1 in budding yeast, to 2 - 4 in fission yeast, to about 25 - 40 in human. Despite these 

differences, the microtubule-binding interface of the kinetochore is largely conserved at the 

molecular level. It principally comprises the so-called KMN network, where the acronym stands for 

Knl1 complex, Mis12 complex and Ndc80 complex. Ndc80 complex directly contacts microtubules 

through its Ndc80 and Nuf2 subunits12. Although the amino acidic sequences of Ndc80 are only 22 
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% identical from yeast to human, human Ndc80 can complement the deletion of its yeast 

ortholog13. In addition, structural studies have revealed a conserved calponin-homology domain in 

the N-terminal region of Ndc8014, further highlighting its structural and functional conservation 

despite low sequence identity. 

In the past few decades, a number of complementary approaches have been employed to 

elucidate kinetochore composition in human and in model organisms, resulting in the identification 

of over 80 kinetochore proteins in human and over 60 in budding yeast. The majority of kinetochore 

proteins are organized into multiprotein sub-complexes15-20, which can be isolated from cellular 

extracts as intact entities using affinity purifications and can be produced as soluble complexes by 

coexpressing their subunits in heterologous systems such as bacteria or insect cells. The 

kinetochore localization codependencies of these proteins usually reflect such physical 

interactions. These complexes appear to be conserved from budding yeast to human, apart from 

few exceptions (e.g. most notably the CBF3 and Dam1 complexes, which are present in budding 

yeast but not in human)21-23. Systematic sequence analyses of kinetochore proteins have led to the 

identification of numerous orthologs across species24,25. This work is complicated by the fact that 

most kinetochore proteins appear to have structural roles, rather than catalytic ones, which allows 

a more rapid evolution of protein sequence. As previously stated, structural and functional 

conservation, which are often not immediately evident from the amino acidic sequence, are usually 

the norm26. In this respect, biochemical and structural studies are extremely valuable to elucidate 

kinetochore organization at various levels of complexity and detail, ranging from its overall 

conformation to high-resolution atomic contacts. 

The basis on which the kinetochore is built, the centromeric chromatin, represents a fascinating 

paradox in genetic inheritance: centromeres possess an extremely conserved function in 

chromosome segregation, while displaying a highly divergent organization and a rapidly evolving 

DNA sequence27. This topic is more extensively addressed in the next paragraph. 

 

 

1.3 Centromere structure and specification 

 

On the basis of their overall structure, centromeres can be classified into three categories. Point 

centromeres represent the simplest case and are limited to a subset of fungi, among which 
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Saccharomyces cerevisiae. They consist of a defined DNA sequence of about 125 bp, which wraps 

around a single centromeric nucleosome and is sufficient to specify kinetochore formation. 

Kinetochores built on point centromeres bind to a single microtubule21. Conversely, regional 

centromeres occupy much longer DNA regions, ranging from about 10 - 40 kb in 

Schizosaccharomyces pombe to millions of bases in human. They assemble kinetochores that bind 

to multiple microtubules, ranging from 2 - 4 in S. pombe to about 25 - 40 in human28. Finally, 

holocentric chromosomes exist in a few organisms, including Caenorhabditis elegans. They are 

characterized by centromeres, and thus kinetochores, that extend all along chromosome length29. 

A more detailed description of centromeric DNA sequences is here provided (Figure 2). 

Centromere function in S. cerevisiae, as already said, is specified by a 125 bp DNA sequence21. 

This comprises three centromere DNA elements (CDEs): CDEI, CDEII and CDEIII. CDEIII recruits 

a complex, called Cbf3 complex, containing sequence-specific DNA-binding proteins (Cep3, Ctf13, 

Ndc10 and Skp1). This complex in turn determines the assembly of a single centromeric 

nucleosome, containing the CENP-A ortholog Cse4, over the AT-rich CDEII. Additionally, at least 

one Cbf3 subunit, Ndc10, is also found in association with CDEII. CDEI recruits a dimer of Cbf1, a 

helix-turn-helix protein that runs a parallel life as a transcription factor.  

Regional centromeres instead comprise long arrays of repetitive DNA sequences30. Centromeres of 

S. pombe extend for about 10 - 40 kb. They consist of a central domain, with a non-conserved core 

sequence situated between a pair of inverted repeats (called imr, for innermost repeats). The 

central domain is flanked by outer repeats assembled into heterochromatin. Human centromeric 

regions comprise megabase arrays of repetitive α-satellite DNA. In particular, this consists of a 

core of thousands of copies of a 171 bp sequence known as αI-satellite, framed on either side by 

divergent repetitive sequences and retrotransposons, referred to as αII-satellite DNA. At the 

outskirts, centromeric chromatin becomes rich in long interspersed element 1 (LINE-1) repeats. 

The αI-satellite DNA contains a 17 bp sequence called CENP-B box, which binds in a sequence-

specific manner to the CENP-B protein and facilitates, but is not strictly required for, kinetochore 

formation. Usually, human centromeres form on a small subdomain of the αI-satellite DNA, but 

centromeric DNA is neither necessary nor sufficient to support centromere function. In fact, 

occasionally, so-called neo-centromeres form on DNA devoid of α-satellite repeats31. Also, in stably 

transmitted dicentric chromosomes, one of the two centromeres is functionally inactivated, 

indicating that the presence of centromeric DNA does not necessarily lead by itself to the formation 
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of a functional centromere32. The main implication of these observations is that centromere 

specification does not strictly depend on the underlying DNA sequence. This in turn hints at the 

existence of epigenetic mechanisms regulating the establishment and maintenance of centromere 

identity and, therefore, the formation of kinetochores. 

 

 

Figure 2 - Organization of centromeres across evolution. 

A) Centromere function in S. cerevisiae is specified by only 125 bp of DNA. This comprises three centromere DNA elements 

(CDEs): CDEI, CDEII and CDEIII. A single centromeric nucleosome, containing the CENP-A ortholog Cse4, is assembled 

over the AT-rich CDEII. B) Centromeres of S. pombe extend for about 10 - 40 kb. They consist of a central domain, with a 

non-conserved core sequence situated between a pair of inverted repeats (called imr, for innermost repeats). The central 

domain is flanked by outer repeats assembled into heterochromatin. C) Human centromeric regions comprise megabase 

arrays of repetitive α-satellite DNA. The α-satellite DNA contains a 17 bp sequence called CENP-B box, which binds in a 

sequence-specific manner to the CENP-B protein. Regional centromeres, such as the ones present in S. pombe and 

human, contain multiple CENP-A nucleosomes interspersed with H3 nucleosomes. Adapted from Santaguida S. and 

Musacchio A., EMBO J, 20093. 

 

Extensive work over the past years has defined CENP-A, a centromere-specific histone H3 variant, 

as the primary epigenetic determinant of centromeric chromatin. Point centromeres in S. cerevisiae 

include a single CENP-A nucleosome33, called Cse4 in budding yeast, while regional centromeres 

contain multiple CENP-A nucleosomes interspersed with H3 nucleosomes34. Despite this 

difference, CENP-A invariably represents a hallmark of active centromeres, while it is not present 

at inactive ones35. Furthermore, deletion of CENP-A is lethal36-39. In particular, in the absence of 

CENP-A, cells fail to localize kinetochore proteins and show evident chromosome segregation 
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defects, indicating that CENP-A is necessary for kinetochore formation. Overexpression of CENP-A 

in human cells40 results in its faulty incorporation into widely dispersed non-centromeric sites and in 

the recruitment of a subset of kinetochore components, including CENP-C. In fact, CENP-A seems 

to reside at the top of the centromere and kinetochore assembly hierarchy. 

 

 

1.4 Characteristic features of CENP-A nucleosomes 

 

CENP-A is a highly divergent histone H3 variant (Figure 3). It possesses a variable N-terminal tail, 

which ranges from 20 to 200 amino acids in size and shows essentially no sequence homology 

across eukaryotes, with the exception of some arginine-rich motifs, or to the N-terminal tail of 

histone H341. Also, the histone fold domain, which is an ancient structural element comprising three 

α-helices connected by loops42, shares only an average 48 % identity across evolution and to 

histone H341. Moreover, CENP-A displays a poorly conserved C-terminal tail43. These observations 

indicate that CENP-A evolves rapidly, in contrast with the high conservation of histone H3 and the 

other canonical histones.  

 

 

Figure 3 - CENP-A is a highly divergent histone H3 variant. 
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Sequence comparison of the N-terminal tail (A) and the histone fold domain (B) of CENP-A proteins from different species. 

The sequence of human histone H3 is shown at the bottom for comparison. Arginine-rich motifs are highlighted in A. 

Secondary structure elements of the histone fold domain are indicated in B. The position of the so-called CATD (CENP-A 

targeting domain) is also displayed. Adapted from Torras-Llort M. et al., EMBO J, 200941. 

 

Despite sequence variability, CENP-A possesses some peculiar characteristics that are conserved 

across evolution. In particular, the crystal structure of an in vitro reconstituted human CENP-A 

nucleosome44 revealed that, although its overall arrangement resembles that of the canonical H3 

nucleosome45, in the CENP-A nucleosome structure only the central 121 bp of the DNA are visible 

and 13 bp from both ends of the DNA are disordered, while in the H3 nucleosome structure 146 bp 

of DNA are visible. Thus, the DNA regions at the entrance and exit of the CENP-A nucleosome lack 

a fixed conformation. This is consistent with previous biochemical studies performed in various 

organisms, which showed that the DNA segments at the entrance and exit of the CENP-A 

nucleosome are more flexible and accessible to nuclease digestion than those of the canonical H3 

nucleosome46,47.  

Moreover, a characteristic property of CENP-A is the so-called CENP-A targeting domain (CATD)48-

50. It comprises loop 1 and helix α2, in the histone fold domain. The CATD contains the cis-acting 

determinants for CENP-A centromeric deposition. In fact, when grafted onto H3, the CATD is 

sufficient to restrict the localization of the H3CATD chimera to centromeres and to complement the 

lethality of CENP-A depletion50,51. Nevertheless, the CATD is not sufficient to assemble a fully 

functional kinetochore and determine a long-term rescue52. The incorporation of CENP-A 

specifically in the centromeric chromatin and in a cell cycle-dependent manner requires HJURP 

(Holliday junction recognition protein), a CENP-A-specific histone chaperone53. The CATD is crucial 

for CENP-A binding to HJURP. The crystal structure of HJURP bound to a CENP-A / H4 

heterodimer has provided high-resolution insights into this interaction54. Also, the crystal structure 

of the corresponding budding yeast complex, consisting of Scm3 bound to a CENP-A / H4 

heterodimer, has revealed a substantial conservation, hinting at a common mechanism by which 

CENP-A is recognized by its specific chaperons and deposited at centromeres55. In addition, the 

CCAN protein CENP-N has been reported to directly bind to CENP‐A nucleosomes, but not H3 

nucleosomes56. The CATD appears to mediate this interaction because the H3CATD chimera is 

sufficient for CENP-N binding57. 

A consistent feature of CENP-A is the presence of a 2 - 6 amino acid insertion in loop 1 of the 
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histone fold domain, which is part of the CATD. The crystal structure of human CENP-A 

nucleosome44 shows that CENP-A loop 1 protrudes from the nucleosome and that the 2 amino acid 

insertion (Arg 80 and Gly 81) is located at the tip of the loop, in a solvent-accessible region. 

Experiments of deletion and mutation of these residues indicate that they are critical for stable 

CENP-A retention at centromeres and suggest that they may represent a binding site for trans-

acting factors. 

Despite the aforementioned high divergence of the CENP-A N-terminal tail in terms of length and 

sequence, an interesting conserved feature is a significant enrichment in arginines with respect to 

histone H341. This region is not required for centromere targeting of CENP-A49,58, while it was 

shown to be involved in proper loading of the DNA binding protein CENP-B52. Also, recent 

investigations on post-translational modifications of the CENP-A N-terminal tail have proposed a 

role for methylated Arg 37 in S. cerevisiae in the recruitment of kinetochore components59. 

The CCAN protein CENP-C binds directly and specifically to CENP-A nucleosomes57. Recent high-

resolution structural studies employing both nuclear magnetic resonance (NMR) and 

crystallography have defined the molecular determinants of this interaction43. In particular, two 

unstructured regions of CENP-C, the so-called central region (residues 426 - 537 of human CENP-

C) and the CENP-C motif (residues 736 - 758 of human CENP-C), display the ability to bind to 

CENP-A nucleosomes. They both employ the same recognition mode, which involves docking onto 

the acidic patch of histone H2A and H2B through electrostatic interactions and binding to the 

CENP-A C-terminal tail through hydrophobic interactions. The central region of CENP-C is 

conserved in most mammals and the CENP-C motif is conserved from budding yeast to human. On 

the contrary, the C-terminal tail of CENP-A is divergent. Nevertheless, it retains a common property 

across evolution: it displays a remarkably higher hydrophobicity than the C-terminal tail of H3. In 

essence, it has been proposed that the interaction of CENP-C with CENP-A nucleosomes occurs 

via a conserved mechanism, in which disordered CENP-C peptides (the central region and the 

CENP-C motif) bind to the CENP-A C-terminal tail through hydrophobic interactions facilitated by 

an electrostatic docking onto the nucleosome core. 
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1.5 Debated nature of CENP-A nucleosomes 

 

During DNA replication in S phase, parental H3 nucleosomes are distributed randomly to daughter 

strands and new H3 nucleosomes are deposited on both strands, enabling the propagation of 

parental chromatin structures to both daughter cells60. Studies in human cells have shown that 

CENP-A nucleosomes are also equally partitioned to sister centromeres during S phase, but the 

incorporation of new CENP-A nucleosomes is uncoupled from DNA replication61 and, specifically, it 

occurs in late mitosis (telophase) and subsequent G1 phase62. Consistent with this, the deposition 

of new CENP-A nucleosomes takes place during anaphase in Drosophila syncytial embryonic 

nuclear divisions, which cycle between S and M phases without G1 or G2 phases63. 

The incorporation of new CENP-A nucleosomes during late mitosis and G1 phase has a significant 

impact on our understanding of centromeric chromatin30. First, it implies that the amount of CENP-

A at centromeres is halved after DNA replication and through G2 and M phases. This raises 

questions about the composition of centromeric chromatin during this period, which includes the 

time of kinetochore assembly and function. One possibility is that the CENP-A gaps generated 

during DNA replication and nucleosome segregation in S phase are initially filled with, for example, 

H3 nucleosomes. At the end of mitosis and in G1 phase such H3 nucleosomes might be again 

replaced with CENP-A nucleosomes. Another option is that the CENP-A gaps remain nucleosome-

free. Alternatively, CENP-A nucleosomes might be split during replication, forming half-

nucleosomes that are reconstituted as octamers during late mitosis and G1 phase. 

In vitro reconstitution of both human and yeast CENP-A nucleosomes yields a standard assembly, 

composed by a histone octamer containing two copies of CENP-A, H2A, H2B and H4 histones, 

with DNA wrapped in a left-handed orientation around the octamer44,64. 

Canonical octameric nucleosome has been described as the predominant form of CENP-A 

nucleosome in budding yeast64, Drosophila65 and human66,67 centromeric chromatin in vivo.  

Despite strong evidence in support of octameric CENP-A nucleosomes, tetrameric nucleosomes 

containing only one copy of CENP-A, H2A, H2B and H4 histones have been proposed to exist in 

Drosophila68 and human cells69. The existence of a tetrameric nucleosome structure was 

essentially derived from three observations: failure to detect species consistent with an octameric 

histone arrangement after cross-linking treatment; protection of only approximately 120 bp of DNA 

from nuclease digestion; evidence from atomic force microscopy for a structure half the height of 
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typical nucleosomes. It has been recently suggested70 that the failure to cross-link an octamer 

could be simply due to the fact that the cross-linker which was used specifically reacts with primary 

amines, which are absent from the region that is predicted to hold together the two halves of a 

putative Drosophila octameric CENP-A nucleosome. Moreover, as already mentioned, in the crystal 

structure of an in vitro reconstituted human CENP-A nucleosome44, containing an octameric 

histone assembly, only the central 121 bp of the DNA are visible, suggesting that the DNA 

segments at the entrance and exit of the CENP-A nucleosome are flexible and more accessible to 

nuclease digestion than those of the canonical H3 nucleosome. Finally, it was recently shown that 

octameric CENP-A nucleosomes assembled in vitro exhibit reduced heights in atomic force 

microscopy measurements with respect to canonical octameric H3 nucleosomes, indicating that 

they possess distinct physical properties71. These considerations would eliminate the need to 

invoke the presence of tetrameric nucleosomes to explain the aforementioned observations. On the 

other hand, the possibility that CENP-A nucleosomes undergo cell cycle-dependent structural 

transitions in vivo has recently been proposed72,73, which would go some way to reconcile the 

contrasting data reported in the literature about the structure and composition of CENP-A 

nucleosomes. 

Moreover, the ability of Scm3, a CENP-A-specific histone chaperone in budding yeast, to displace 

H2A / H2B dimers from CENP-A-containing histone octamers in vitro led to the hypothesis that the 

centromeric nucleosome could possess an hexameric core containing two copies of CENP-A, H4 

and Scm374. As already mentioned, the crystal structure of Scm3 bound to a CENP-A / H4 

heterodimer55, together with the crystal structure of the corresponding human complex comprising 

HJURP bound to a CENP-A / H4 heterodimer54, provided high-resolution insights into this 

interaction. Specifically, structural data would exclude the hexameric model, as Scm3 binding to 

CENP-A / H4 heterodimer yields a trimeric complex that is incompatible with CENP-A / H4 

tetramerization and with DNA binding to the histones. The same holds true for the HJURP / CENP-

A / H4 trimeric complex. This in turn suggests that the various chaperone-bound species described 

in vivo, rather than representing stable nucleosome structures, most likely depict intermediates in 

the nucleosome assembly process67. 
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1.6 The constitutive centromere-associated network (CCAN) 

 

As discussed in the previous sections, CENP-A has been defined as the primary epigenetic 

determinant of centromeric chromatin and, as such, it possesses the ability to specify centromere 

identity across the cell cycle and to ensure its faithful inheritance through successive cell 

generations by self-templating the deposition of newly expressed CENP-A during each cell cycle. 

Following CENP-A incorporation into chromatin, the information encoded by this mark must be 

recognized and translated into the generation of a functional centromere. In this respect, a crucial 

role is performed by the so-called constitutive centromere-associated network (CCAN).  

The centromere-associated protein complex was first described about ten years ago by a study 

which included the isolation of CENP-A chromatin from HeLa interphase nuclei through chromatin 

immunoprecipitation using a monoclonal antibody against CENP-A, followed by a systematic 

analysis of its components by mass spectrometry. This led to the identification of approximately 40 

proteins, including previously reported centromere proteins as well as proteins of unknown 

function16. Stemming from this finding, a few years later, three almost simultaneous studies 

employed different approaches in human and chicken cells to isolate additional proteins that 

associate with centromeres throughout the cell cycle17,18,75. At the same time, bioinformatic 

analyses identified potential orthologs of many CCAN components across evolution, suggesting 

that this protein complex is conserved24. 

Studies of localization dependencies show that all CCAN proteins are recruited downstream of 

CENP-A deposition at centromeres17,76,77. This poses CENP-A at the top of the centromere and 

kinetochore assembly hierarchy. On the other hand, there are several studies that suggest the 

involvement of at least some CCAN components in the establishment of CENP-A chromatin18,78,79. 

Biochemical and functional analyses indicate that, rather than forming a single stable complex, 

CCAN proteins are organized in sub-complexes (Figure 4). These include: CENP-C, CENP-L / 

CENP-N group, CENP-H / CENP-I / CENP-K group, CENP-M, CENP-T / CENP-W / CENP-S / 

CENP-X group, CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R group. A brief overview of each 

of them is provided below. 
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Figure 4 - Model of the molecular organization of kinetochores in metazoans. 

Centromeric chromatin, comprising both CENP-A and H3 nucleosomes, lies at the basis of kinetochore. CENP-A 

nucleosomes function as epigenetic marks for centromere specification. CCAN components are involved in recognizing the 

information encoded by this mark and generating a functional centromere. CCAN proteins are organized in sub-complexes. 

The CCAN, in the inner kinetochore (light green), contacts the outer kinetochore (light blue), which comprises components 

of the KMN network, that contributes a microtubule-binding interface, and of the spindle assembly checkpoint. Adapted from 

Hori T. and Fukagawa T., Chromosome Res, 201280. 

 

Many CCAN proteins are not essential in yeast. Moreover, some organisms, like Caenorhabditis 

elegans and Drosophila melanogaster, appear to have lost most CCAN subunits and to rely solely 

on CENP-A and CENP-C as inner kinetochore components. This suggests that these organisms 

might assemble simpler versions of kinetochores that retain the basic chromosome segregation 

function, whereas robustness and high-fidelity are achieved in higher eukaryotes through the 

assembly of a more complex and redundant machinery22. 

As already mentioned, the CCAN comprises proteins that associate with the centromere throughout 

the cell cycle, as opposed to kinetochore components that are only transiently recruited during 

mitosis, such as the microtubule-binding KMN network. Recent evidence supports a more dynamic 

view of the CCAN as a group of proteins that are regulated in a cell cycle-dependent manner and 

respond to the mechano-structural state of the kinetochore. For example, CENP-I and a fraction of 

CENP-H are stably bound to the centromere during the whole cell cycle81. CENP-U is instead 

absent from the kinetochore in anaphase because it is targeted for degradation in a polo-like 
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kinase 1 (Plk1)-dependent manner82. Moreover, kinetochore levels of CENP-O are reduced by 40 

% in metaphase compared to interphase83. Also, CENP-N is bound to kinetochores during S phase 

and G2, but largely absent during mitosis and G184. The dynamic behaviour of some CCAN 

subunits adds a new layer of complexity and definitely requires further investigation to get a better 

understanding of kinetochore biology. 

 

1.6.1 CENP-C 

CENP-C was the first protein discovered to be part of the kinetochore by immunoelectron 

microscopy85 and then shown by antibody microinjection to be required for kinetochore assembly86. 

CENP-C orthologs are found widely across evolution87-90, including S. cerevisiae (where it is named 

Mif2), S. pombe (where it is named Cnp3), D. melanogaster and C. elegans (where it is named 

HCP4). 

Depletion studies in different organisms have located CENP-C quite high in the centromere and 

kinetochore assembly hierarchy. Indeed, it is required for the recruitment of various CCAN proteins 

(such as CENP-K91 and CENP-L92) and also of components of the outer kinetochore (such as 

Mis12 complex76,91,93 and Ndc80 complex76,93) and of the spindle assembly checkpoint (such as 

Mad176, Mad276,91,93, Bub176, BubR176,93). CENP-C recruitment seems to be mainly dependent on 

CENP-A40. A role of the CENP-H / CENP-I / CENP-K group in CENP-C localization has also been 

suggested93 (Table 1). 

Direct interacting partners of CENP-C described in the literature so far are Mis12 complex, CENP-A 

nucleosomes and CENP-C itself. In particular, CENP-C is predicted to be mostly unstructured and 

some relevant known features of this protein are the N-terminal region (residues 1 - 21), which is 

sufficient for direct binding to Mis12 complex94,95; the central domain (residues 422 - 537) and the 

so-called CENP-C motif (residues 736 - 758), which are involved in direct binding to CENP-A 

nucleosomes43,57, as described in a previous section of this dissertation; and finally the C-terminal 

region (residues 890 - 943), which is responsible for protein dimerization96 and comprises a cupin 

domain, whose crystal structure has been determined for the budding yeast ortholog of CENP-C97 

(Figure 5).  

Recent evidence points to CENP-C and CENP-T as major players in kinetochore assembly, 

connecting inner and outer kinetochore. In particular, experiments of ectopic targeting of these 

proteins in human and chicken cells have shown their ability to generate kinetochore-like foci that 
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can recapitulate various functions of normal kinetochores, such as the recruitment of various inner 

and outer kinetochore components, the presence of microtubule attachments and the microtubule-

sensitive recruitment of spindle assembly checkpoint proteins79,98. 

 

1.6.2 CENP-L / CENP-N group 

CENP-N and CENP-L were first identified as members of the CENP-A nucleosome associated 

complex  (NAC) and CENP-A nucleosome distal (CAD) complex, respectively17. 

Orthologs of these proteins have been found in yeast24,25. In particular, CENP-L is called Iml3 or 

Mcm19 in S. cerevisiae and Fta1 in S. pombe, while CENP-N is called Chl4 in S. cerevisiae and 

Mis15 in S. pombe. 

As already mentioned, CENP-N has been reported to directly bind in vitro to CENP‐A 

nucleosomes, but not H3 nucleosomes56. CENP-N and CENP-C recognize different regions of the 

CENP-A nucleosome and their binding is not competitive57.  

The C-terminus of CENP-N, which is not required for the interaction with CENP-A nucleosomes, 

directly binds to CENP-L56. A recent study has determined the crystal structures of an Iml3 (CENP-

L) homodimer and of a heterodimer of Iml3 (CENP-L) and the C-terminal region of Chl4 (CENP-N) 

from S. cerevisiae99. The structure of Iml3 displays a central β-sheet with ten β-strands that wrap 

around two α-helices, while four α-helices decorate the outside of this core. In the Iml3 homodimer, 

the β-sheets of two Iml3 molecules associate to form a continuous β-sheet comprising twenty β-

strands. The C-terminal Chl4 construct includes four β-strands and two α-helices. The Iml3 / Chl4 

heterodimer (Figure 5) relies on β-augmentation at the same surface that mediates Iml3 

homodimerization; homodimer and heterodimer formations are therefore mutually exclusive. 

Moreover, the same study has shown that the budding yeast Iml3 (CENP-L) / Chl4 (CENP-N) 

complex directly binds to Mif2 (CENP-C). This interaction requires the central region of Mif2 and 

the N-terminal domain of Chl4, which is sufficient to support Mif2 binding99. In addition, Fta1, the 

fission yeast ortholog of CENP-L, has been suggested to directly interact with Cnp3, the fission 

yeast ortholog of CENP-C92. If conserved, this molecular link between CENP-L / CENP-N complex 

and CENP-C would provide a possible explanation to the fact that CENP-C localization is reduced 

upon CENP-N depletion in HeLa cells56 and the observation that CENP-N is found at kinetochore-

like foci specified by the ectopic targeting of CENP-C and CENP-T, in the absence of CENP-A98. 

The CENP-L / CENP-N group is also closely related to the CENP-H / CENP-I / CENP-K group and 
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to CENP-M. Indeed, they are often found associated in immunoprecipitations against one of 

them17,18 and show mutual localization dependencies17,18,56,100 (Table 1). A better understanding of 

the direct interactions among these proteins is crucial to shed light on the molecular mechanisms 

that underlie such a complex network of relationships. 

 

1.6.3 CENP-H / CENP-I / CENP-K group 

CENP-H was initially identified as a constitutive centromeric protein because it was observed to 

colocalize with known centromeric components, such as CENP-A and CENP-C, throughout the cell 

cycle101,102. In the same studies, it was predicted to be mainly composed of coiled-coils. Orthologs 

of CENP-H have been found in yeast24. In particular, CENP-H is called Mcm16 in S. cerevisiae and 

Fta3 in S. pombe. 

CENP-I was first described as a constitutive component of the centromere because of its ability to 

colocalize with CENP-A, CENP-C and CENP-H throughout the cell cycle103. In the same study, 

yeast orthologs of CENP-I were identified in the S. cerevisiae protein Ctf3 and the S. pombe protein 

Mis6. 

CENP-K was initially found to be a member of the CENP-A nucleosome distal (CAD) complex17. 

Like CENP-H, it is predicted to be enriched in coiled-coils. Yeast orthologs of CENP-K have been 

identified in the S. cerevisiae protein Mcm22 and the S. pombe protein Sim425. 

CENP-H, CENP-I and CENP-K were soon defined as a CCAN sub-group because they are usually 

found closely associated in immunoprecipitation experiments and because they share a similar 

pattern of localization dependencies18 (Table 1). In particular, their kinetochore localization is 

downstream of CENP-A. In turn, although their depletion does not affect CENP-A molecules 

already present at the centromere, they seem to have a role in the incorporation of newly 

synthesized CENP-A18. Also, as already mentioned, the CENP-H / CENP-I / CENP-K group, the 

CENP-L / CENP-N group and CENP-M display mutual localization dependencies17,18,56,100. 

Contrasting data can be found in the literature regarding the role of CENP-T77 and CENP-C57,91 in 

the kinetochore recruitment of the CENP-H / CENP-I / CENP-K group. In turn, a role of the CENP-H 

/ CENP-I / CENP-K group in CENP-C localization has also been suggested93. Moreover, the 

centromeric localization of the CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R group of proteins 

was shown to be dependent on the CENP-H / CENP-I / CENP-K group, but not the 

opposite18,100,104. In addition, the CENP-H / CENP-I / CENP-K group of proteins contributes to the 
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recruitment of outer kinetochore components18,93,104,105. 

The only direct interaction described so far involving these proteins is the formation of a 1 : 1 

complex between CENP-H and CENP-K106. 

 

1.6.4 CENP-M 

CENP-M was initially discovered as proliferation-associated nuclear element 1 (PANE1), highly 

expressed in proliferating cells such as activated lymphoid cells and tumours107,108. A few years 

later, CENP-M was identified as inner kinetochore component in three studies, which, in particular, 

defined it as interphase centromere complex (ICEN) component ICEN3975, as well as a member of 

the CENP-A nucleosome associated complex  (NAC)17, and finally as part of the CENP-H / CENP-I-

associated group of proteins18. 

No CENP-M orthologs have been identified so far in yeast25, Drosophila and C. elegans. 

In terms of localization dependencies, CENP-M influences the kinetochore recruitment of the 

CENP-H / CENP-I / CENP-K group17,18,75, the CENP-L / CENP-N group17,18 and the CENP-O / 

CENP-P / CENP-Q / CENP-U / CENP-R group18. In turn, CENP-M localization has been reported to 

depend on all of them17,18 and on CENP-T17 (Table 1). 

No direct binding partners of CENP-M have been described to date. It is worth pointing out once 

more that only a thorough mapping of the direct interactions involving CENP-M and the 

aforementioned groups of proteins will allow an understanding of the intricate localization 

dependencies that have been observed. 

 

1.6.5 CENP-T / CENP-W / CENP-S / CENP-X group 

CENP-T was originally identified as a component of the CENP-A nucleosome associated 

complex   (NAC)17. Subsequently, CENP-W was discovered as a CENP-T-associated CCAN 

protein77. CENP-S was initially described as a member of the CENP-A nucleosome distal (CAD) 

complex17. CENP-X was afterwards identified as a CENP-S-associated CCAN component109. 

CENP-S and CENP-X, also named MHF1 and MHF2, run a parallel life as part of the Fanconi 

Anaemia nuclear core complex, which is involved in DNA repair110. The relation, if any, between 

this role of CENP-S and CENP-X and their function in the context of the kinetochore is currently 

unknown. 

Orthologs of these proteins have been identified in yeast25. In particular, CENP-T is Cnn1 in S. 
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cerevisiae and SPBC800.13/Cnp20 in S. pombe, CENP-W is YDR374W-A in S. cerevisiae and 

SPAC17G8.15 in S. pombe, CENP-S is YOL086W-A in S. cerevisiae and SPBC2D10.16 in S. 

pombe and CENP-X is YDL160C-A in S. cerevisiae and SPCC576.12c in S. pombe. 

CENP-T possesses a long N-terminal tail and a histone fold domain at its C-terminus77. CENP-W, 

CENP-S and CENP-X are small proteins entirely represented by a histone fold domain77,111. The 

presence of a histone fold domain in non-histone proteins is not unprecedented: some examples 

include members of the TFIID complex112, a major interacting partner of RNA polymerase II, and 

transcription factors, like negative cofactor 2 (NC2a/NC2b)113. CENP-T and CENP-W associate into 

a 1 : 1 dimer, while CENP-S and CENP-X bind as a 2 : 2 tetramer, but, when incubated in 

equimolar amounts with CENP-T and CENP-W, they form a 1 : 1 : 1 : 1 CENP-T / CENP-W / 

CENP-S / CENP-X tetramer. The crystal structure of these three complexes has recently been 

determined111 (Figure 5). 

Like canonical histones, these proteins have retained the ability to interact with DNA and CENP-T / 

CENP-W / CENP-S / CENP-X complex was shown to protect approximately 100 bp of DNA from 

MNase digestion in vitro. Stemming from this observation, it was proposed that this complex forms 

a novel nucleosome-like structure at the centromere111. Additional biochemical and structural 

characterization of the association of CENP-T / CENP-W / CENP-S / CENP-X complex with DNA, 

as well as an assessment of its interactions with centromeric components, both in vitro and in vivo, 

are required to clarify this point further. This is especially important in light of a previous report 

showing that CENP-T / CENP-W complex associates  with H3 nucleosomes,  but not with CENP-A 

nucleosomes, in centromeric regions77. 

The formation of the CENP-T / CENP-W heterodimer through their histone fold domains is required 

for their kinetochore recruitment both in human and yeast25,111. Also, CENP-T possesses two α-

helices that extend beyond the histone fold domain and are positioned away from the predicted 

DNA-interacting interface. The sequence of these two α-helices is highly conserved, suggesting a 

functional relevance of this region. Indeed, deletion of these helices abolishes centromere 

localization of CENP-T111. The kinetochore localization of CENP-S and CENP-X is interdependent 

and also requires CENP-T / CENP-W109. On the contrary, the formation of the CENP-T / CENP-W / 

CENP-S / CENP-X heterotetramer is not strictly required for the recruitment of CENP-T, as it is 

present at kinetochores in the absence of CENP-S. However, the observation that CENP-S- and 

CENP-X-deficient cells display reduced Ndc80 levels at kinetochores and a perturbed outer plate 
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structure suggests that CENP-T is not fully functional in these cells109. In the kinetochore assembly 

hierarchy, it seems that CENP-T / CENP-W is upstream77, while CENP-S / CENP-X is 

downstream109 of the CENP-H / CENP-I / CENP-K group. Centromeric targeting of CENP-S / 

CENP-X and CENP-C appear to be independent, as CENP-S / CENP-X localization is not affected 

in the absence of CENP-C77 and vice versa109. The relationship between CENP-T / CENP-W and 

CENP-C is instead a matter of debate. On one hand, knock-out analyses in chicken DT40 cells 

showed that CENP-T / CENP-W and CENP-C localize independently to centromeres77; on the 

other hand, CENP-T recruitment was reported to occur downstream of CENP-C based on RNAi 

experiments in human cells57. A summary of localization dependencies of CCAN components is 

presented in table 1. 

Like CENP-C, CENP-T also functions as a bridge between the centromere and the outer 

kinetochore. In fact, while the C-terminal histone fold domain of CENP-T is embedded in the 

centromeric chromatin, the N-terminal region of the protein directly binds to the Ndc80 complex. 

This interaction is dependent on the phosphorylation of CENP-T by cyclin-dependent kinase 1 

(CDK1)98,114. Also in budding yeast, the CENP-T ortholog Cnn1 was shown to be a centromere 

receptor for the Ndc80 complex25,115. 

 

1.6.6 CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R group 

These proteins were first identified as part of the CENP-A nucleosome associated complex  (NAC) 

and CENP-A nucleosome distal (CAD) complex17. CENP-U and CENP-O were also defined as 

ICEN (Interphase Centromere Complex) components, with the names of ICEN24 and ICEN36, 

respectively75. 

Yeast orthologs have been found for all of them, except for CENP-R24,25,100. In particular, CENP-O 

is Mcm21 in S. cerevisiae and Mal2 in S. pombe, CENP-P is Ctf19 in S. cerevisiae and Fta2 in S. 

pombe, CENP-Q is Okp1 in S. cerevisiae and Fta7 in S. pombe, CENP-U is Ame1 in S. cerevisiae 

and Mis17 in S. pombe. 

Coexpression in bacteria followed by an affinity purification step and a size-exclusion 

chromatography showed that CENP-O, CENP-P, CENP-Q and CENP-U form a complex and can 

associate with CENP-R116. Recently, the crystal structure of a sub-complex comprising a Mcm21 

(CENP-O) / Ctf19 (CENP-P) heterodimer from Kluyveromyces lactis has revealed that these two 

proteins possess similar structures, as they both contain double-RWD domains, which together 
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form a Y-shaped assembly with flexible N-terminal extensions117 (Figure 5). The RWD domain was 

named after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-

containing proteins, and yeast DEAD (DEXD)-like helicases. The first high-resolution structure 

determination of an RWD domain revealed that it consists of a α + β sandwich fold, comprising a 

four-stranded antiparallel β-sheet flanked by three α-helices, with a αββββαα topology118. The 

RWD domain has been so far observed in six kinetochore proteins, namely Mcm21 (CENP-O), 

Ctf19 (CENP-P), Csm1 (a subunit of the S. cerevisiae monopolin complex)119, Spc24, Spc2514,120, 

and Mad1121, suggesting that this fold is a recurring feature of kinetochore molecular architecture. 

CENP-Q, CENP-U and CENP-R are predicted to be mainly composed by α-helices forming coiled-

coils. In CENP-U, this region seems to be preceded by an N-terminal disordered tail22.  

Knock-outs of each of these proteins in DT40 cells are all viable and show mild mitotic defects, 

including a slower proliferation and a less organized metaphase plate with respect to control cells. 

CENP-O, CENP-P, CENP-Q and CENP-U are interdependent for their centromere localization, 

while CENP-R appears to be located downstream in the kinetochore assembly hierarchy18,116. Also, 

their recruitment requires the CENP-H / CENP-I / CENP-K group, while the contrary is not 

true18,100,104, and shows interdependency with CENP-M18 (Table 1). 

A direct interaction between CENP-U and Ndc80 was recently described122. In addition, CENP-U 

was observed to bind to microtubules directly and also to display cooperative microtubule binding 

with Ndc80 in vitro122. Moreover, CENP-U phosphorylation by Aurora B was shown to negatively 

regulate CENP-U binding to Ndc80 in vitro and kinetochore-microtubule interactions in vivo, 

suggesting that this mechanism contributes to the error correction function of Aurora B122. CENP-Q 

was also reported to directly bind to microtubules in vitro123. 
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Figure 5 - Conservation and structural features of CCAN proteins. 

Left panels: schematic representations of CCAN proteins indicate the distribution of predicted secondary structure elements 

(JPRED), disordered regions (DISOPRED) and coiled-coil domains (COILS). Conservation scores between human and 

yeast proteins, based on multiple sequence alignments, are plotted above the schemes. The cupin domain of CENP-C and 

the histone fold domains of CENP-T, CENP-W, CENP-S and CENP-X are highlighted. Right panels: cartoon representations 

and respective PDB IDs of crystal structures of CCAN proteins, which have been described in the main text. Adapted from 

Westermann S. and Schleiffer A., Trends in Cell Biology, 201322. 
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CCAN sub-groups Centromeric recruitment depends on 
CENP-C CENP-L / CENP-N group56 

CENP-H / CENP-I / CENP-K group93 

CENP-L / CENP-N group CENP-C92,98 

CENP-H / CENP-I / CENP-K group17,18 

CENP-M17,18 

CENP-H / CENP-I / CENP-K group CENP-H / CENP-I / CENP-K are interdependent18 

CENP-C57,91 

CENP-L / CENP-N group17,18 

CENP-M17,18 

CENP-T77 

CENP-M CENP-L / CENP-N group17,18 

CENP-H / CENP-I / CENP-K group17,18 

CENP-T17 

CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R group18 

CENP-T / CENP-W / CENP-S / CENP-X group 

CENP-T / CENP-W 

 

 
CENP-S / CENP-X 

 

CENP-T and CENP-W are interdependent25,111, while the 
interaction with CENP-S / CENP-X is not strictly required109 
 
CENP-C (debated57,77) 

CENP-S and CENP-X are interdependent and dependent on 
CENP-T / CENP-W109 
 
CENP-H / CENP-I / CENP-K group109 

CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R group CENP-O / CENP-P / CENP-Q / CENP-U are interdependent, 
while CENP-R appears to be downstream18,116 
 
CENP-H / CENP-I / CENP-K group18,100,104 

CENP-M18 

 

Table 1 - Summary of dependencies of CCAN components for their recruitment at centromeres. 

For each CCAN sub-group (left column), a synthetic list of CCAN components that are involved in its centromeric 

recruitment is provided (right column). In addition, it has been shown that all CCAN proteins are recruited downstream of 

CENP-A deposition at centromeres17,76,77. A more detailed description of the localization dependencies of CCAN 

components is provided in the main text. 
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1.7 The Knl1 complex, Mis12 complex, Ndc80 complex (KMN) network 

 

After the centromere has been specified by CENP-A and centromeric chromatin has been 

established by the CCAN, the kinetochore must build robust interactions with spindle microtubules 

to achieve accurate chromosome segregation during mitosis. In particular, the microtubule-binding 

interface is provided by the outer kinetochore plate, which is primarily composed of a highly 

conserved group of 10 kinetochore proteins referred to as the KMN network (Figure 6). This 

acronym stands for Knl1 complex, Mis12 complex and Ndc80 complex.  KMN network components 

start to localize to kinetochores around the G2 phase and dissociate at the end of mitosis11. 

Ndc80 complex comprises four proteins, namely Ndc80, Nuf2, Spc24 and Spc2519. The crystal 

structure of an engineered version of the complex revealed that it has a dumbbell-like shape with a 

long coiled-coil region and globular domains at both ends14. The globular domains of Spc24 and 

Spc25 tightly interact with Mis12 complex20, while those of Ndc80 and Nuf2 directly bind to 

microtubules12. Microtubule binding is mediated by electrostatic interactions and is negatively 

regulated by phosphorylation of the N-terminal region of Ndc80 by Aurora B, consistently with the 

role of this kinase in de-stabilizing improper kinetochore-microtubule attachments124. 

Mis12 complex also contains four proteins, specifically Nnf1, Mis12, Dsn1 and Nsl1. Recent 

biochemical and structural analyses showed that the four subunits of Mis12 complex arrange as a 

rod-shaped unit20. Mis12 complex has been defined as a protein interaction hub crucial for 

kinetochore assembly. In fact, a direct interaction between Mis12 complex and the N-terminal 

region of CENP-C has recently been described94,95. In addition, as already mentioned, it binds to 

Ndc80 complex20. Furthermore, it interacts, through the C-terminal tail of its Nsl1 subunit, with the 

C-terminal region of Knl120. 

Knl1 is a large protein (~300 kDa in human), predicted to be mostly unstructured. The C-terminal 

region of Knl1 binds to Zwint125 and to Mis12 complex20, while a direct interaction between Knl1 

and Ndc80 complex has not been described to date. Knl1 has also been shown to possess 

microtubule-binding activity in vitro124,126. In addition, the N-terminal region of Knl1 binds to protein 

phosphatase 1 (PP1). PP1 recruitment at the kinetochore is required to counteract Aurora B activity 

by de-phosphorylating its substrates and, consequently, to stabilize kinetochore-microtubule 

attachments127. Moreover, the N-terminus of Knl1 has also been shown to interact with the spindle 

assembly checkpoint kinases Bub1 and BubR1125,128. 
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Figure 6 - Model of the molecular architecture of the KMN network. 

With the exception of CENP-T / CENP-W complex (abbreviated as T and W) and CENP-C (indicated as C), all subunits of 

the CCAN have been omitted. CENP-T / CENP-W complex associates with H3 nucleosomes (indicated as H3), whereas 

CENP-C associates with CENP-A nucleosomes (abbreviated as CA). The N-terminal region of CENP-T is an extended, 

largely disordered polypeptide chain that makes contacts with Mis12 complex (MIS12-C) and Ndc80 complex (NDC80-C). 

The N-terminal region of CENP-C is probably also disordered and binds to MIS12-C. Knl1 complex (KNL1-C), which 

comprises Knl1 and Zwint (indicated as Zwi), might contain a microtubule-binding site in the N-terminal region of Knl1. The 

C-terminal region of Knl1 directly interacts with MIS12-C. The Spc24 and Spc25 subunits of NDC80-C interact with MIS12-

C, whereas the Ndc80 (also called Hec1) and Nuf2 subunits bind to microtubules. Adapted from Deluca J. G. and 

Musacchio A., Curr Opin Cell Biol, 20127. 
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2 Results 

 

2.1 Section 1 – CENP-M 

 

2.1.1 Determination of CENP-M1-171 crystal structure 

 

Given that the structure of CENP-M was unknown, I sought to determine it by X-ray 

crystallography. Human CENP-M was produced by recombinant expression in Escherichia coli. 

Affinity purification through a cleavable GST-tag and additional chromatographic steps led to the 

purification of an apparently monodisperse sample (Figure 7 A). Unfortunately, all my attempts to 

crystallize this full-length construct were unsuccessful. According to the results of a limited 

proteolysis experiment, I then generated a construct lacking nine amino acids at the C-terminus of 

the protein (CENP-M1-171) for crystallographic purposes. As CENP-M full-length, also CENP-M1-171 

was expressed in bacteria and purified to homogeneity (Figure 7 B). I was able to obtain and 

optimize crystals of this protein construct. In particular, CENP-M1-171 (~10 mg/ml) was crystallized 

by sitting drop vapour diffusion. Numerous commercially available crystallization screens were 

tested, but protein crystals were obtained only in one condition (JCSG+ suite condition F6: 0.1 M 

Bicine pH 9.0, 10 % MPD) (Molecular Dimensions). Diffraction-quality crystals were produced by 

optimizing the initial condition in hanging drops. Typically, crystals formed within 48 h and reached 

full-size in about one week. Most of them grew as bundles, tangled up with precipitated protein, 

and only a minority of single rod-shaped crystals were present. Single crystals were transferred to 

a cryobuffer containing the reservoir liquor supplemented with 15 % Glycerol and were flash-frozen 

in liquid nitrogen. A selenomethionine (SeMet)-derivative of the protein was crystallized under 

similar conditions. X-ray diffraction data were collected with synchrotron radiation yielding high-

resolution datasets. The structure of CENP-M1-171 was solved by SAD (Single-wavelength 

Anomalous Diffraction) phasing and then refined at 1.5 Å resolution. It represented a particularly 

challenging case due to a problem of merohedral twinning affecting all analysed crystals. For this 

reason, it is worth spending a few words on how I succeeded in determining CENP-M1-171 structure. 
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Figure 7 - Final step of CENP-M and CENP-M1-171 purifications. 

Size-exclusion chromatography (SEC) elution profiles from Superdex 75 columns and SDS-PAGE analyses of purified 

recombinant CENP-M (A) and CENP-M1-171 (B). In both cases, the protein migrates as a monomer and a good level of purity 

(> 95 %) has been achieved. Bands visible on gels below purified CENP-M or CENP-M1-171 represent degradation forms. 

 

All analysed crystals displayed an apparent hexagonal crystal system but an evaluation of data 

quality and crystal defects using phenix.xtriage129 revealed that they were all affected by twinning, a 

pathological situation often hampering crystal structure solution. A conventional non-twinned crystal 

consists of the repetition of the same unit cell, with the same orientation, in the three dimensions. A 

twinned crystal instead consists of the repetition of the same unit cell, with different orientations, in 

the three dimensions. Each domain of a twinned crystal gives rise to its own diffraction pattern and 

what is measured is a superposition of the various patterns, with diffraction intensities weighted 

according to the fraction of the crystal contributing to each domain130. In particular, all CENP-M1-171 

crystals displayed the so-called merohedral twinning, implying that reflections from different twin 

domains perfectly overlap131. In order to deconvolute the diffraction pattern of a twinned crystal, two 

parameters need to be taken into account: the twin law, which is the symmetry operator relating 

twin domains, and the twin fraction, which is the fraction of the crystal contributing to each domain. 

Concerning the twin law, in our case we needed to discern, from the apparent six-fold symmetry of 

crystals, if this was due to a crystallographic two-fold axis plus a three-fold axis as twin law or the 
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opposite. 

In order to tackle the problem, I first tried to avoid or at least reduce twinning occurrence during the 

crystallogenesis phase. A number of crystallization optimization attempts were performed with this 

aim. In particular, I tested different crystallization temperatures, vapour diffusion rate control with 

oils, additive screens132, lysine methylation133, addition of the starting crystallization condition to 

screens, microseeding and in-screen microseeding134. Unfortunately, no improvements were 

obtained concerning twinning. 

Given that I did not succeed in eliminating the problem, I then sought to solve the structure of 

CENP-M1-171 using twinned datasets and try to overcome the obstacle from a computational point 

of view. The main challenge I had to face was phasing. One possibility is to detwin the diffraction 

data and then use such detwinned data for structure solution. However, the extent to which this 

deconvolution procedure is advantageous is matter of debate131, as it may introduce significant 

errors. Moreover, potential improvements significantly depend on the accuracy of the originally 

measured intensities as well as on the correctness of the choice of the twin law and on the 

accuracy of the estimation of the twin fraction. In my case, this approach was not beneficial. 

Phasing by molecular replacement was attempted, employing a model of human CENP-M structure 

predicted by the server Phyre2135 with high confidence. Nevertheless, the model did not yield any 

phasing solution. 

As I was also able to crystallize a SeMet-derivative of the protein, I tested a number of these 

crystals, until I could collect a good SAD dataset (Table 2). Specifically, it displayed high 

completeness, redundancy and I/sigma (signal to noise ratio), low Rsym (indicating a good 

agreement among the independent measurements of symmetry-related reflections in a 

crystallographic dataset, where symmetry-related reflections should have identical intensities) and 

lower estimated twin fraction with respect to the majority of the datasets that I had previously 

obtained. On this dataset I tried several indexing possibilities. In particular: 

- P6, the apparent spacegroup, given the apparent six-fold symmetry. 

- P2, a plausible real spacegroup. This would imply an interpretation of the apparent six-fold 

symmetry as determined by a crystallographic two-fold axis plus a three-fold axis as twin 

law.  

- P3, another plausible real spacegroup. This would imply an interpretation of the apparent 

six-fold symmetry as determined by a crystallographic three-fold axis plus a two-fold axis 
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as twin law.  

P3 proved to be the correct spacegroup. Indeed, it resulted in the identification of heavy atom sites. 

The subsequent steps of phasing and density modification produced an interpretable electron 

density map. Model building was then carried out combining automatic building of protein 

fragments by various programs and manual building. This preliminary model was then used for 

molecular replacement with a native dataset at higher-resolution (1.5 Å). Iterative model building 

and refinement yielded a final model covering the full asymmetric unit. During refinement, model 

parameters are modified in order to describe the experimental data as accurately as possible. In 

order to do so, twinning has to be taken into account. Most of the currently available refinement 

programs, such as phenix.refine129, are able to deal with twinning and refine model parameters, 

including the twin fraction, once provided with the appropriate twin law. Spacegroup P3 can give 

rise to twinning through three possible symmetry operations: (-h, -k, l), (k, h, -l), (-k, -h, -l). In my 

case, I reasoned that the twin law was (-h, -k, l), because it represents a two-fold axis parallel to 

the three-fold axis of P3 and thus results in an apparent six-fold symmetry, precisely the situation 

observed with my crystals. Moreover, programs for analysis of data quality and crystal defects, 

such as phenix.xtriage129, suggested that (-h, -k, l) was the most likely twin law, while the other two 

possible ones for P3 were estimated as negligible. The refinement process resulted in a final model 

displaying good statistics (Table 2), suggesting that twinning was properly handled. 
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Data collection Native Derivative 
Beamline ESRF ID14-4 SLS X06DA (PXIII) 

Spacegroup P3 P3 
Unit cell parameters (Å) a = b = 104.50, c = 33.59 a = b = 104.03, c = 33.56 
                                 (°) α = β = 90, γ = 120 α = β = 90, γ = 120 

Wavelength (Å) 0.91970 0.97942 
Resolution limits (Å) 52.25 – 1.49 (1.54 – 1.49)* 31.45 – 2.00 (2.06 – 2.00)* 

Reflections observed / unique 607786 / 64606 419456 / 27271 

Completeness (%) 98.3 (96.3)* 99.9 (98.9)* 
Rsym

§ (%) 5.6 (36.1)* 9.4 (75.2)* 
<I> / <σI> 26.3 (6.4)* 24.1 (3.9)* 

Redundancy 9.4 (8.8)* 15.4 (13.9)* 

SAD phasing   
BAYES-CC  49.1 + / - 18.5 

Se sites found / expected  5 / 6 
FOM before solvent flattening and density 

modification 
 0.35 

FOM after solvent flattening and density 

modification 
 0.69 

Refinement   
Resolution limits (Å) 52.25 – 1.49 (1.52 – 1.49)*  

Reflections for Rcryst / for Rfree 59806 / 4800  
Rcryst

‡ (%) 12.4 (20.6)*  
Rfree

‡ (%) 16.4 (23.0)*  
No. of protein atoms / water atoms 2307 / 297  

Average B factor protein atoms / water atoms 

(Å2) 

21.67 / 35.34  
RMSD bond lengths (Å) 0.005  
RMSD bond angles (°) 0.854 

 

 
Twin fraction (operator -h, -k, l) 0.49 

 

 

Ramachandran Plot Statistics#   

Favoured region (%) 99.3  
Outliers (%) 0.0  

 
BAYES-CC: Bayesian estimate of the correlation coefficient (CC) between the experimental map and an ideal map, reported 

as CC * 100 + / - 2 standard deviations 

FOM: figure of merit 

RMSD: root mean square deviation 

* Values in parentheses refer to the highest resolution shell 

§ Rsym = ΣhΣi | Ih,i - < Ih > | / ΣhΣi Ih,i 

‡ Rcryst and Rfree = Σ | Fobs - Fcalc | / Σ Fobs; Rfree calculated for a 7.4 % subset of reflections not used in the refinement 

# Calculated using MOLPROBITY within the PHENIX suite 

Table 2 - Data collection, phasing and refinement statistics. 
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2.1.2 CENP-M displays the fold of a small G protein 

 

The structure of CENP-M1-171 exhibits a globular assembly, comprising a core of five parallel β-

strands forming a β-sheet surrounded by six α-helices. A search of the protein structures database 

(PDB, Protein Data Bank) using the Dali server136, which aims to identify similarities in protein 

topology between a query structure and known structures, revealed a structural similarity of CENP-

M to members of the Ras superfamily of small GTPases. 

To explore this in detail, I employed the PDBeFold server137 together with manual inspection and 

performed a multiple 3D structure alignment of CENP-M1-171 and known members of the Ras 

superfamily of small GTPases. In particular, I chose H-Ras (PDB ID: 2CLD), as the chief 

representative of the superfamily; Rad (PDB ID: 2DPX), the best structure hit from the Dali server; 

Arl2 (PDB ID: 1KSH), which I then employed for biochemical comparisons with CENP-M; and Ran 

(Ras-related nuclear protein) (PDB ID: 3GJ0), which constitutes a subfamily involved in nuclear 

transport, control of DNA synthesis and cell cycle progression and which I then employed for 

functional comparisons with CENP-M. 

In figure 8, the cartoon representations and the topology diagrams of the structures of CENP-M1-171 

(left) and H-Ras/GDP (right) emphasize the similarity of protein folds. Secondary structure 

elements that are only present in CENP-M1-171 but not in H-Ras/GDP are highlighted in red. These 

include an extremely short central α-helix and a C-terminal one, which is situated beyond the C-

terminus of H-Ras/GDP crystal structure. Conversely, secondary structure elements that are 

present in H-Ras/GDP but not in CENP-M1-171 are indicated in green. In particular, strand β2 is 

missing in CENP-M1-171 and helix α2 is not visible, probably because of the flexibility of this region 

in CENP-M1-171 crystals. 
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Figure 8 - CENP-M displays the fold of a small G protein. 

Cartoon representations (upper panel) and topology diagrams (lower panel) of CENP-M1-171 (left) and H-Ras/GDP (right) 

aligned structures. Secondary structure elements that are present in CENP-M1-171 but not in H-Ras/GDP are highlighted in 

red, while those present in H-Ras/GDP but not in CENP-M1-171 are indicated in green. 
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2.1.3 CENP-M lacks the characteristic motifs of the G domain and does not 

bind to adenine and guanine nucleotides in vitro 

 

Despite overall low sequence similarity, G proteins are characterized by five conserved fingerprint 

sequence motifs138, which are indicated in the structure alignment shown in figure 9 A. In particular, 

the sequence GxxxxGKS/T represents the so-called P-loop, which is involved in phosphate 

binding; T and DxxGQ/H/T represent switch I and II, respectively, which make contacts with the γ-

phosphate of GTP and can undergo important conformational changes upon hydrolysis of GTP to 

GDP; N/TKxD and S/CAK/L/I are the major determinants of guanine base binding specificity. From 

the structure alignment is evident that CENP-M lacks all these functionally relevant conserved 

motifs, suggesting that it does not possess GTPase activity or even GTP binding activity. 

To test this possibility, I monitored CENP-M binding to adenine and guanine nucleotides in vitro 

(Figure 9 B). N-methylanthraniloyl (MANT)-labelled nucleotides (ADP, ATP, GDP, GTP) were 

employed139. Protein-nucleotide interactions were detected exploiting the environmental sensitivity 

of MANT, as its fluorescence quantum yield increases in nonpolar solvents and upon binding to 

proteins. Arl2, a member of the Ras superfamily of small GTPases, was used as control. In this 

assay, CENP-M did not bind to any of the tested nucleotides, in accordance with the fact that 

CENP-M lacks the characteristic motifs of the G domain.  

Therefore, we conclude that CENP-M displays the fold, but not the enzymatic activity of a G 

protein. 
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Figure 9 - CENP-M does not display the enzymatic activity of a G protein. 

A) CENP-M lacks the characteristic motifs of the G domain. Multiple 3D structure alignment of CENP-M and members of the 

Ras superfamily of small GTPases, such as H-Ras (2CLD), Ran (3GJ0), Rad (2DPX) and Arl2 (1KSH). Colour by 

percentage identity is applied; the characteristic motifs of the G domain are indicated below the alignment. B) CENP-M does 

not bind to adenine and guanine nucleotides in vitro. CENP-M binding to adenine and guanine nucleotides was tested in 

vitro employing N-methylanthraniloyl (MANT)-labelled nucleotides (ADP, ATP, GDP, GTP). Arl2 was used as control. CENP-

M did not display binding to any of the tested nucleotides. 

 

 

2.1.4 CENP-H / CENP-K complex is a 1 : 1 assembly predicted to possess an 

elongated structure enriched in coiled-coils 

 

As already introduced, CENP-M appears to play a central role in the centromeric localization of a 

number of CCAN components, including the CENP-H / CENP-I / CENP-K group17,18,75, the CENP-L 

/ CENP-N group17,18 and the CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R group18. In turn, 

CENP-M localization has been shown to depend on all of these protein groups17,18 and on CENP-

T17. Stemming from these observations, I sought to gain a better understanding of the molecular 

mechanisms underlying these relationships by investigating direct interactions involving CENP-M 

and different CCAN subunits. 

I was first able to obtain human CENP-H / CENP-K complex106 by recombinant coexpression in 

insect cells and to purify it to homogeneity by an affinity purification through a cleavable His-tag on 

the CENP-K subunit and additional chromatographic steps (Figure 10). The complex, whose 

theoretical molecular weight is about 60 kDa, migrates in SEC in close proximity to the 158 kDa 

marker protein, either suggesting that it forms oligomers or that it has an elongated structure. A 
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static light scattering analysis estimated the molecular weight of the complex to be compatible with 

a 1 : 1 assembly (data not shown), thus excluding the first hypothesis. In favour of the second 

possibility is the fact that protein structure prediction servers, such as I-TASSER140 and Phyre2135, 

predict CENP-H and CENP-K to possess an elongated structure, enriched in coiled-coils. This is in 

agreement with the output of the program COILS141, designed for the prediction of coiled-coil 

regions in proteins. 

 

 

Figure 10 - Final step of CENP-H / HisCENP-K complex purification. 

SEC elution profile from a Superdex 200 column and SDS-PAGE analysis of purified recombinant CENP-H / HisCENP-K 

complex. The complex, whose theoretical molecular weight is about 60 kDa, migrates in close proximity to the 158 kDa 

marker protein. The most likely reason is that it possesses an elongated structure. 

 

 

2.1.5 CENP-I is predicted to possess an α-solenoid fold, similarly to the 

members of the Importin-β family of proteins 

 

Various protein structure prediction servers (such as I-TASSER140, Phyre2135 and Robetta142) 

model CENP-I structure (Figure 11 A) as displaying an α-solenoid fold, which consists of α-helices 

arranged in a curved pattern, and invariably use structures of so-called karyopherins as threading 
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templates. Karyopherins represent a class of proteins involved in the nucleocytoplasmic transport 

of molecules through the nuclear pore complex (NPC) in eukaryotic cells143. Remarkably, structures 

including the karyopherin Importin-β rank among the top templates chosen by those structure 

prediction servers. Importin-β has been previously shown to interact with the small G protein 

Ran144. The structural similarity of CENP-I with Importin-β and of CENP-M with Ran raised the 

hypothesis that CENP-M could directly interact with CENP-I (Figure 11 B) in a similar fashion to 

Ran interacting with Importin-β (Figure 11 C). 

The structure of members of the Importin-β family consists of a tandem series of HEAT repeats, 

which derive their name from the approximately forty-residue tandem sequence repeats first 

recognized in Huntingtin, elongation factor 3, PR65/A subunit of protein phosphatase 2A and 

kinase TOR. Each HEAT repeat comprises two antiparallel α-helices linked by a turn. HEAT 

repeats stack together to form two C-shaped arches that ultimately generate a helicoidal molecule. 

The relative orientation of the two arches differs among members of the family and is also 

influenced by the binding of interacting partners145. 
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Figure 11 - CENP-M might interact with CENP-I in a similar fashion to Ran interacting with Importin-β . 

A) I-TASSER model of CENP-I structure (red). CENP-I is predicted to possess an α-solenoid fold, which consists of α-

helices arranged in a curved pattern. To estimate the accuracy of structure predictions, a scoring function (C-score) is 
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associated with I-TASSER models. C-score is typically in a range from -5 to 2, where a higher score reflects a model of 

better quality. Both false positive and false negative rates are estimated to be below 0.1 when a C-score > -1.5 is 

displayed140. Specifically, the CENP-I model shown above was associated with a C-score of -1. B) I-TASSER model of 

CENP-I structure (red) and CENP-M crystal structure (green). The position of CENP-I and CENP-M was modelled by 

superposition on the structure of Importin-β (pink) and Ran (light blue), which is depicted in C. This was performed using the 

Secondary Structure Matching (SSM) superposition tool in Coot137. All protein structures are displayed as cartoon 

representations.  

 

 

2.1.6 CENP-I57-281 and CENP-H / CENP-K assemble into a ternary complex, 

which does not bind to CENP-M 

 

In order to investigate the hypothesis that CENP-M directly interacts with CENP-I, I first tried to 

express and purify recombinant human CENP-I. Either the full-length version or various truncated 

constructs, designed according to structure predictions, were tested. Also, different expression 

systems, such as bacteria and insect cells, were employed. The only available CENP-I cDNA clone 

contained the 5’ moiety of the coding region, but was lacking the segment encoding amino acids 

523 - 756 (C-terminus). Thus, I ordered a synthetic full-length CENP-I cDNA, codon-optimized for 

expression in bacteria as well as insect cells. After a number of attempts, the only CENP-I 

construct that could be produced in a soluble and well-behaved fashion was the one comprising 

residues 57 - 281. In particular, it was produced as a C-terminal fusion to a non-cleavable His-tag. 

This construct is predicted to comprise a first domain of HEAT repeats in the models of CENP-I 

structure.  

Analytical size-exclusion chromatography (SEC) migration shift assays were performed to test in 

vitro the binding of this CENP-I construct to other inner kinetochore proteins that we were able to 

recombinantly produce and purify in the laboratory. In particular, CENP-I57-281 was incubated with 

approximately stoichiometric amounts of candidate binding partners and the migration of the 

resulting species in SEC was observed, as a read-out of the formation of larger protein assemblies. 

In the context of this dissertation, it is relevant to point out that CENP-I57-281 did not bind to CENP-M 

(Figure 12 A), while it formed an apparently stoichiometric ternary complex with CENP-H / CENP-K 

(Figure 12 B). Also, CENP-M did not interact with CENP-H / CENP-K complex (Figure 12 C).  

The subsequent step was the attempt to coexpress in insect cells CENP-H / CENP-K and various 
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constructs of CENP-I, hoping that this approach could stabilize longer CENP-I fragments. 

Unfortunately, this was not the case and CENP-H / CENP-K / CENP-I57-281 was the only soluble 

and well-behaved construct that could be produced. Further analytical SEC migration shift assays 

confirmed that, even when assembled in a ternary complex, CENP-H / CENP-K / CENP-I57-281 do 

not display any binding to CENP-M (Figure 12 D). 

 



 51 

 

Figure 12 - CENP-I57-281 and CENP-H / CENP-K assemble into a ternary complex, which does not bind to CENP-M. 

A) SEC elution profiles and SDS-PAGE analyses of CENP-M (red), HisCENP-I57-281 (blue) and their stoichiometric 

combination (green). No direct binding of these two proteins is observed. B) Same experimental setting as in A, but using 
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HisCENP-I57-281 and CENP-H / HisCENP-K complex. Upon their combination, the formation of a ternary complex occurs. C) 

No interaction between CENP-M and CENP-H / CENP-K complex is detected. D) CENP-M is not incorporated in CENP-H / 

CENP-K / CENP-I57-281 complex. 

 

 

2.1.7 CENP-H, CENP-K, CENP-I57-C and CENP-M assemble into a quaternary 

complex 

 

Another series of coexpression tests in insect cells was then performed, including also CENP-M. 

Coexpression with GST-CENP-M resulted in the solubilisation of a longer CENP-I construct, 

comprising residues 57 - C-terminus. Coinfection with a virus expressing His-tagged CENP-K and 

CENP-H proved beneficial for further stabilizing this protein assembly and yielded a well-behaved 

quaternary CENP-H / CENP-K / CENP-I57-C / CENP-M complex. This discovery was followed by the 

generation of a unique virus encoding these four proteins and the scale up of expression and 

purification efforts (Figure 13). 

 

 

Figure 13 - Final step of CENP-H / CENP-K / CENP-I57-C / CENP-M complex purification. 

SEC elution profile from a Superose 6 column and SDS-PAGE analysis of purified recombinant CENP-H / CENP-K / CENP-

I57-C / CENP-M complex. The migration of the complex in SEC suggests that it is a 1 : 1 : 1 : 1 globular assembly. 
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2.1.8 Effects of point mutations in CENP-M sequence on its interaction with 

CENP-I 

 

In order to validate the direct interaction between CENP-M and CENP-I in vitro and to elucidate 

which residues of CENP-M mediate the binding, I tested the effects of several point mutations in 

CENP-M sequence. Mutations were designed taking into account both sequence conservation and 

structural information. In particular, my rationale was to mutate highly conserved residues exposed 

on the protein surface and rather preserve amino acids buried in the protein core and most likely 

involved in determining the protein fold. Also, I tried to hit various areas of the protein and decided 

for single or double alanine or charge reversal mutations depending on the chemical surroundings 

of the selected residues. Specifically, the following CENP-M mutants were devised: R60A + R62A, 

L94A + L163E, R145E + R148A, K119E, K75E, H87A + D89A. Their position along CENP-M 

sequence and their evolutionary conservation, as well as their location in CENP-M structure are 

depicted in Figure 14. 
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Figure 14 - Overview of CENP-M mutants. 

Upper panel: the MUSCLE server146 was employed to perform a multiple sequence alignment of CENP-M orthologs. Default 

Clustal colour scheme is applied. Residue numbers above the alignment refer to the human CENP-M sequence. Secondary 

structure elements are illustrated. CENP-M mutations are indicated above the alignment. Lower panel: the ConSurf server147 

was employed to display evolutionary conservation on CENP-M structure. Colour by percentage identity is applied and five 

discrete conservation bins (from white to blue) are defined. CENP-M structure is represented as a cartoon, where residues 

selected for the mutational analysis are highlighted as sticks. 

 

First of all, I ascertained that CENP-M mutants did not affect the protein structural integrity. With 

this aim, CENP-M wild type (wt) and mutants were all expressed in bacteria and purified employing 

the same procedure. Afterwards, approximately the same amount of each protein was separately 

loaded on an analytical SEC column and the various chromatographic profiles were compared 

(Figure 15). CENP-M wt and mutants displayed a uniform behaviour, suggesting that in all these 

cases the protein fold is preserved. 
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Figure 15 - CENP-M mutants maintain the protein structural integrity. 

SEC elution profiles from Superdex 200 5/150 column and SDS-PAGE analyses of purified recombinant CENP-M wt and 

mutated constructs. All CENP-M mutants behave as the wt protein, thus indicating that the protein fold is preserved. 

 

I then sought to verify the effects of these mutations on the interaction between CENP-M and 
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CENP-I. With this aim, I coexpressed in insect cells GST-CENP-M wt or mutants with CENP-I57-C 

and performed a coinfection with a virus expressing His-tagged CENP-K and CENP-H. The 

experimental setting then included a GST-pull-down, where samples of total lysate, supernatant, 

beads before elution, and elution were analysed by SDS-PAGE and Coomassie blue staining and 

by Western blotting against the four proteins of interest.  

As already mentioned, coexpression of GST-CENP-M wt with CENP-I57-C, HisCENP-K and CENP-

H results in the formation of a quaternary complex (Figure 16 A). As expected, when CENP-M is 

absent, CENP-I57-C, HisCENP-K and CENP-H are expressed but are not found on the beads before 

elution and in the elution, indicating that they do not interact with GST and do not display unspecific 

binding to Glutathione Sepharose beads (Figure 16 B). Also, when CENP-I57-C is absent, GST-

CENP-M, HisCENP-K and CENP-H are expressed, but HisCENP-K and CENP-H do not interact 

with GST-CENP-M, in line with analytical SEC results, and, therefore, are not present on the beads 

before elution and in the elution (Figure 16 C).  

Coming to CENP-M mutants, some of them (in particular, R60A + R62A, H87A + D89A, K119E, 

K75E) do not impair CENP-M binding to CENP-I57-C and allow the formation of a quaternary 

complex with HisCENP-K and CENP-H (Figure 16 D - G). Conversely, two of the tested CENP-M 

mutants (in particular, L94A + L163E and R145E + R148A) completely abolish CENP-M binding to 

CENP-I57-C. Thus, CENP-I57-C, HisCENP-K and CENP-H, despite being expressed, are not present 

on the beads before elution and in the elution (Figure 16 H - I). L163, located in helix α5’, and L94, 

situated in a nearby loop, are part of a hydrophobic patch; R145 and R148 stem in a parallel 

orientation from helix α5 and contribute to the formation of a positively-charged basic patch. These 

two patches on CENP-M surface are quite close in space, thus suggesting that this area of the 

protein is crucial for the binding to CENP-I. 
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Figure 16 - Effects of point mutations in CENP-M sequence on its interaction with CENP-I. 

GST-pull-down experiments on GST-CENP-M wt or mutants coexpressed in insect cells with CENP-I57-C, HisCENP-K and 

CENP-H. Samples of total lysate, supernatant, beads before elution and elution were analysed by SDS-PAGE and 

Coomassie blue staining (left panels) and by Western blotting against the four proteins of interest (right panels). A) 

Formation of a quaternary complex upon coexpression of GST-CENP-M, CENP-I57-C, HisCENP-K and CENP-H. B) When 

CENP-M is absent, CENP-I57-C, HisCENP-K and CENP-H do not interact with GST and do not display unspecific binding to 

Glutathione Sepharose beads. C) When CENP-I57-C is absent, HisCENP-K and CENP-H are not pulled-down by GST-

CENP-M. D to G) Four of the tested CENP-M mutants do not impair its binding to CENP-I57-C and, thus, allow the formation 

of the quaternary complex with HisCENP-K and CENP-H. H - I) Two of the tested CENP-M mutants abolish the binding of 

CENP-M to CENP-I. 
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2.1.9 Experiments of cross-linking coupled with mass spectrometry provide 

insights into the spatial organization of CENP-H / CENP-K / CENP-I57-C / 

CENP-M complex 

 

Chemical cross-linking coupled with mass spectrometry is a recent low-resolution structural 

technique for the characterization of the architecture of protein complexes148. Specifically, the 

method exploits the ability of the bifunctional reagent BS2G (bis[sulfosuccinimidyl]glutarate) to 

cross-link primary amines of lysines situated within a distance compatible with the length of the 

cross-linker (7.7 Å). Therefore, this approach provides information about the spatial proximity of 

lysine residues that become cross-linked in protein complexes in solution. 

CENP-H / CENP-K / CENP-I57-C / CENP-M complex was subjected to this analysis, in order to 

obtain information about its spatial organization (Figure 17 A). Also, samples of CENP-H / CENP-K 

/ CENP-I57-281 complex (Figure 17 B) and of CENP-H / CENP-K complex (Figure 17 C) were 

investigated for comparison purposes. Finally, CENP-M was analysed to validate the results of 

cross-linking coupled with mass spectrometry (Figure 17 D) by comparing them with the protein 

structure determined by X-ray crystallography. The analyses were performed thanks to a 

collaboration with Dr. Franz Herzog’s laboratory at the Ludwig Maximilian University in Munich. 
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Figure 17 - Experiments of cross-linking coupled with mass spectrometry. 



 62 

CENP-H / CENP-K / CENP-I57-C / CENP-M complex (A), CENP-H / CENP-K / CENP-I57-281 complex (B), CENP-H / CENP-K 

complex (C) and CENP-M (D) were analysed by cross-linking coupled with mass spectrometry in order to obtain information 

about their spatial organization. Protein sequences are displayed and residues are coloured with a rainbow gradient ranging 

from red at the N-terminus to violet at the C-terminus. Amino acid numbers are indicated every 50 residues. Lysines are 

highlighted with red dots. Cross-links between lysine pairs are represented as lines, whose thickness is proportional to the 

identification score of the corresponding peptide pair by mass spectrometry. Intra-molecular cross-links are coloured in red, 

while inter-molecular cross-links are coloured in violet.  

 

Without dwelling upon details, a few considerations can be derived from these experiments. First, 

they clearly indicate that CENP-H and CENP-K are in close spatial proximity to the first ∼350 amino 

acids of CENP-I, but not to the rest of this protein. In fact, not only in CENP-H / CENP-K / CENP-

I57-281 complex, but also in CENP-H / CENP-K / CENP-I57-C / CENP-M complex all the inter-

molecular cross-links between CENP-I and CENP-H and / or CENP-K occur within the first ∼350 

amino acids of CENP-I. This is in line with the fact that coexpression experiments in insect cells 

with CENP-H and CENP-K could not stabilize CENP-I constructs longer than the one comprising 

amino acids 57 - 281. 

The coexpression with CENP-M was instead the key to solubilizing a CENP-I construct extending 

up to the C-terminus of the protein. Consistently, inter-molecular cross-links can be detected 

between CENP-M and two regions of CENP-I, one towards its N-terminus and one towards its C-

terminus, which are distant in its sequence but might come close in its structure, as suggested by 

the presence of intra-molecular cross-links between them. 

In addition, no inter-molecular cross-links are found between CENP-M and CENP-H and / or 

CENP-K in the context of CENP-H / CENP-K / CENP-I57-C / CENP-M complex. This is in agreement 

with the fact that I could not detect any interaction between CENP-M and CENP-H / CENP-K 

complex both in analytical SEC migration shift assays and in GST-pull-downs. 

Regarding CENP-M alone, the two observed intra-molecular cross-links are consistent with the 

distances between lysines that can be measured in the crystal structure of CENP-M. 
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2.1.10 Analysis of CENP-M interactions in vitro with other kinetochore 

components and nucleosomes through analytical SEC migration shift 

assays and with microtubules through a cosedimentation assay 

 

As already introduced, CENP-M plays a critical function in the recruitment of a number of CCAN 

components to the centromere. In the previous sections I have disclosed its role as a direct 

interacting partner of CENP-I and in the context of a quaternary complex including also CENP-H 

and CENP-K. In the search for other direct interactions involving CENP-M, I tested its binding to 

other known kinetochore components and nucleosomes in vitro through analytical SEC migration 

shift assays. 

CENP-M was reported to be a member of the so-called CENP-A nucleosome associated complex  

(NAC)17, as it associated uniquely with CENP-A but not with H3 nucleosomes after multiple tandem 

affinity purifications from HeLa cell lines expressing either TAP-tagged CENP-A or H3. I therefore 

assessed CENP-M binding to in vitro reconstituted mononucleosomes containing either H3 or 

CENP-A. Given that nucleosome cores possess a two-fold symmetry axis, I decided to combine 

nucleosomes and CENP-M in the binding reaction using a 1 : 2 molarity ratio. In both cases, no 

interaction with CENP-M was observed (Figure 18 A and B). This result is in line with the fact that 

no binding of CENP-M to CENP-A nucleosomes in vitro was detected by electrophoretic mobility 

shift assays56. 
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Figure 18 - CENP-M does not bind to H3 and CENP-A mononucleosomes in vitro. 

A) SEC elution profiles and SDS-PAGE analyses of CENP-M (red), H3 mononucleosomes (blue) and their combination 

(green). B) Same experimental setting as in A, but using CENP-A mononucleosomes. In both cases, no direct interaction 

between nucleosomes and CENP-M is observed. 

 

I then hypothesized that the association of CENP-M with CENP-A nucleosomes17 might be indirect 

and mediated by proteins which in turn directly interact with CENP-A nucleosomes, such as CENP-

C57 and CENP-N56.  

So far, in the laboratory we have been unable to produce and purify recombinant full-length CENP-

C in a soluble and well-behaved fashion. However, various CENP-C constructs that overall 

encompass the whole protein sequence could be obtained. CENP-N was reported to form a 

complex with CENP-L56 and in the laboratory we indeed succeeded in producing the CENP-L / 

CENP-N complex, overcoming the difficulties that we were facing in obtaining these two proteins 

singularly. 

Analytical SEC migration shift assays did not reveal any direct interaction of CENP-M with any of 

the various CENP-C constructs (Figure 19 A to C) or with CENP-L / CENP-N complex (Figure 19 

D). 
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Figure 19 - CENP-M does not bind to various CENP-C constructs and CENP-L / CENP-N complex in vitro. 



 66 

A to C) SEC elution profiles and SDS-PAGE analyses of CENP-M (red), various CENP-C constructs (blue) and their 

combination (green). No direct binding is observed. D) Same experimental setting as in A, but using CENP-L / CENP-N 

complex. Also in this case, no interaction with CENP-M occurs. 

 

CENP-M has been shown to be required for the centromeric localization of the CENP-O / CENP-P / 

CENP-Q / CENP-U / CENP-R group of proteins, while in turn depending on them for its own 

recruitment18. 

In the laboratory we accomplished the production of a quaternary CENP-O / CENP-P / CENP-Q / 

CENP-U complex and of CENP-O / CENP-P and CENP-Q / CENP-U sub-complexes. Also, CENP-

R can be obtained singularly, but it does not become incorporated into CENP-O / CENP-P / CENP-

Q / CENP-U complex. 

Therefore, I tested if any of these samples has the ability to bind to CENP-M in vitro, but no direct 

interaction could be detected (Figure 20 A to D). 
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Figure 20 - CENP-M does not bind to the CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R group of proteins in vitro. 

A) SEC elution profiles and SDS-PAGE analyses of CENP-M (red), CENP-O / CENP-P complex (blue) and their 
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combination (green). B to D) Same experimental setting as in A, but using CENP-Q / CENP-U complex, CENP-O / CENP-P 

/ CENP-Q / CENP-U complex or CENP-R, respectively. In all four cases, no direct binding to CENP-M occurs. 

 

CENP-T was reported to be a member of the so-called CENP-A nucleosome associated complex  

(NAC)17, together with CENP-C, CENP-H, CENP-M, CENP-N and CENP-U. Interestingly, 

suppression of CENP-T by siRNA resulted in the loss of CENP-M at centromeres. Also, CENP-S 

was initially identified in CENP-M and CENP-U affinity purifications and was thus considered part of 

the CENP-A-nucleosome distal (CAD) complex17. 

As already described, CENP-T forms a complex with CENP-W77. In addition, CENP-T / CENP-W 

complex associates with CENP-S / CENP-X complex109 to form a stable CENP-T / CENP-W / 

CENP-S / CENP-X assembly111. I was able to produce and purify both recombinant CENP-T / 

CENP-W and CENP-S / CENP-X complexes. I then assessed their binding to CENP-M in vitro, but 

analytical SEC migration shift assays did not reveal any direct interaction with CENP-M (Figure 21 

A and B). Also, when incubated all together, CENP-T / CENP-W and CENP-S / CENP-X associate 

in a quaternary complex, as expected, while CENP-M does not become incorporated (Figure 21 C). 

Cdk1 phosphorylation of CENP-T, particularly of its N-terminal tail, has been shown to be crucial for 

kinetochore assembly in human cells, at both endogenous and ectopic loci98,114. Therefore, I also 

tested if recombinant CENP-T / CENP-W complex phosphorylated by Cdk1 would bind to CENP-M 

in vitro, but this was not the case (Figure 21 D). 
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Figure 21 - CENP-M does not bind to the CENP-T / CENP-W / CENP-S / CENP-X group of proteins in vitro. 

A) SEC elution profiles and SDS-PAGE analyses of CENP-M (red), CENP-T / CENP-W complex (blue) and their 

combination (green). B) Same experimental setting as in A, but using CENP-S / CENP-X complex. In both cases, no direct 

binding to CENP-M occurs. C) Upon incubation of CENP-M, CENP-T / CENP-W complex and CENP-S / CENP-X complex 

all together, CENP-T / CENP-W / CENP-S / CENP-X assemble into a complex, as reported in the literature111, while CENP-

M is not incorporated. D) Even when phosphorylated by Cdk1, CENP-T / CENP-W complex does not interact with CENP-M. 

On the right side of the panel, samples of CENP-T / CENP-W complex before and after phosphorylation by Cdk1 are 
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analysed by SDS-PAGE. The increase in molecular weight of CENP-T after the phosphorylation reaction indicates that this 

worked properly and CENP-T became phosphorylated, as expected. 

 

Depletion of CENP-M by siRNA results in reduced levels of Ndc80 at kinetochores, suggesting that 

CENP-M also affects the assembly of the outer kinetochore18. This effect is probably indirect, as 

CENP-M does not exhibit any binding to purified recombinant Mis12 complex, Ndc80 complex, 

Knl12000-2311 (the longest Knl1 fragment available in the laboratory) and Zwint in vitro (Figure 22 A to 

D). Also, the incubation of all these proteins together yields the formation of a single complex 

comprising the so-called KMN network, while CENP-M is not incorporated (data not shown). 
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Figure 22 - CENP-M does not bind to Mis12 complex, Ndc80 complex, Knl12000-2311 and Zwint in vitro. 
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A) SEC elution profiles and SDS-PAGE analyses of CENP-M (red), Mis12 complex (blue) and their combination (green). B 

to D) Same experimental setting as in A, but using Ndc80 complex, Knl12000-2311 or Zwint. In all cases, no direct binding to 

CENP-M occurs. 

 

For the sake of completeness, I also assessed the ability of CENP-M to interact with microtubules 

in vitro in a microtubules cosedimentation assay. As expected, no binding was detected (Figure 

23). 

 

 

Figure 23 - CENP-M does not bind to microtubules in vitro. 

Partition of CENP-M in supernatant (S) and pellet (P) fractions in a cosedimentation assay with polymeric tubulin. CENP-M 

is retained in the supernatant fraction both in the absence and in the presence of microtubules, indicating that CENP-M 

does not interact with microtubules in vitro. 

 

 

2.1.11 First steps towards the validation and characterization of the 

interaction between CENP-M and CENP-I in vivo 

 

I recently started, with the collaboration of expert cell biologists in the laboratory, to address the 

validation and characterization of the interaction between CENP-M and CENP-I in vivo. Even if only 

preliminary results have been obtained so far, I include them in this dissertation to provide a 

glimpse of what is being pursued in this direction. 

The first step was the generation of an inducible GFP-CENP-M HeLa cell line. We initially 

characterised it by Western blotting using a commercially available monoclonal antibody against 

CENP-M and compared it with an inducible HeLa cell line expressing GFP only. We could verify 
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that endogenous CENP-M was expressed in both cell lines at comparable levels regardless of the 

addition of Doxycycline, the expression inducer. Conversely, the appearance of a band at the 

expected molecular weight of GFP-CENP-M only occurred in the GFP-CENP-M cell line upon 

induction with Doxycycline (Figure 24). 

 

 

Figure 24 - Characterization of an inducible GFP-CENP-M HeLa cell line in comparison with an inducible GFP HeLa 

cell line by Western blotting against CENP-M. 

Lower band: endogenous CENP-M. Middle band: GFP-CENP-M, only expressed in the GFP-CENP-M cell line upon 

induction with Doxycycline. Upper band, marked with an asterisk: unspecific band recognised by the anti CENP-M antibody. 

 

We then verified that GFP-CENP-M localizes at centromeres in both mitosis (Figure 25 A) and 

interphase (Figure 25 B), as expected for a CCAN component. To observe GFP-CENP-M 

localization in interphase, we treated cells with RO-3306, a Cdk1 inhibitor, which arrests cells in a 

G2-like phase149. 
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Figure 25 - GFP-CENP-M localizes at centromeres in both mitosis and interphase. 

GFP-CENP-M expression was induced by the addition of Doxycycline to an inducible GFP-CENP-M HeLa cell line. Its 

localization was assessed in both mitotic cells (A) and cells arrested in a G2-like phase by the Cdk1 inhibitor RO-3306 (B). 

DAPI was employed to stain DNA and CREST was used as centromeric marker. 

 

As a control, we also generated an inducible CENP-M-GFP HeLa cell line and verified that CENP-

M displays a similar behaviour regardless of whether the GFP-tag is fused at the N- or C-terminus 
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of the protein (data not shown). 

We next produced inducible GFP-CENP-M HeLa cell lines for four of the CENP-M mutants that I 

had previously tested for their binding to CENP-I in vitro. In particular, we chose the two mutants 

that abolish CENP-M interaction with CENP-I (L94A + L163E and R145E + R148A) and two of the 

mutants that retain the ability to bind to CENP-I (R60A + R62A and H87A + D89A) in vitro. We first 

asked if these mutations have any effect on the centromeric localization of GFP-CENP-M. Mutants 

L94A + L163E (Figure 26 B) and R145E + R148A (Figure 26 C) lose the ability to localize at 

centromeres. We hypothesize that, as they are unable to interact with CENP-I in vitro, they are 

most likely incapable of doing so also in vivo and, consequently, are not recruited to the 

centromere, in agreement with the dependency of CENP-M on CENP-I for its kinetochore 

localization18. Interestingly, also mutant R60A + R62A hampers the localization of GFP-CENP-M at 

centromeres (Figure 26 D). This mutant retains the ability to interact with CENP-I in vitro and, 

therefore, we suppose that its inability to localize at centromeres in vivo is due to the loss of 

interaction with some other kinetochore component on which CENP-M depends for its recruitment. 

In particular, this mutant contains two amino acid substitutions in the region of CENP-M structure 

that corresponds to the switch II of G proteins, which is often involved in interactions with their 

partners150. Mutant H87A + D89A instead exhibits centromeric localization (Figure 26 E), as GFP-

CENP-M wt (Figure 26 A). It is worth mentioning that all these experiments were carried out in the 

presence of endogenous CENP-M and we believe this is the reason why endogenous CENP-I 

could always be detected at centromeres. 
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Figure 26 - Cellular localization of GFP-CENP-M wt and mutants. 

The expression of GFP-CENP-M wt or mutants was induced by the addition of Doxycycline to the respective inducible HeLa 

cell lines; DAPI was employed to stain DNA; CREST was used as centromeric marker; endogenous CENP-I was detected 

using a polyclonal antibody against CENP-I. GFP-CENP-M wt (A) and mutant H87A + D89A (E) exhibit centromeric 

localization. On the contrary, GFP-CENP-M mutants L94A + L163E (B), R145E + R148A (C) and R60A + R62A (D) lose the 

ability to localize at centromeres. Endogenous CENP-I is recruited at centromeres in all these cases, most likely because of 

the presence of endogenous CENP-M. 

 

As already pointed out, this section was simply meant to represent a brief description of some 

reagents that we have generated and of preliminary results that we have obtained to validate and 

characterize the interaction between CENP-M and CENP-I in vivo. A more detailed description of 

our future plans in this direction is provided in the “Discussion” chapter. 
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2.2 Section 2 – CENP-H / CENP-K complex 

 

2.2.1 CENP-H / CENP-K complex interacts with CENP-C in vitro 

 

As already described, during the first year of my PhD I was able to produce and purify recombinant 

human CENP-H / CENP-K complex. I thus sought to investigate interactions of this complex with 

other kinetochore components.  

The formation of a quaternary complex with CENP-I and CENP-M has been discussed in detail in 

the previous “Results" section.  

Contrasting data can be found in the literature regarding the role of CENP-T77 and CENP-C57,91 in 

the kinetochore recruitment of CENP-H and CENP-K. In order to tackle this issue, I performed 

analytical SEC migration shift assays with purified recombinant versions of these proteins, to 

assess direct interactions in vitro. The same experimental setting as described for CENP-M was 

applied. 

No binding of CENP-H / CENP-K complex to CENP-T / CENP-W complex was observed (Figure 27 

A). This was also the case with CENP-T / CENP-W complex phosphorylated in vitro by Cdk1 

(Figure 27 B). The possible binding of CENP-H / CENP-K / CENP-I57-C / CENP-M quaternary 

complex to CENP-T / CENP-W complex still has to be addressed. 
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Figure 27 - CENP-H / CENP-K complex does not bind to CENP-T / CENP-W complex in vitro. 

A) SEC elution profiles and SDS-PAGE analyses of CENP-H / HisCENP-K complex (red), CENP-T / CENP-W complex 

(blue) and their combination (green). B) Same experimental setting as in A, but using CENP-T / CENP-W complex 

phosphorylated by Cdk1. In both cases, no direct binding of CENP-H / CENP-K complex to CENP-T / CENP-W complex 

occurs. On the right side of the figure, samples of CENP-T / CENP-W complex before and after phosphorylation by Cdk1 

are analysed by SDS-PAGE. The increase in molecular weight of CENP-T after the phosphorylation reaction indicates that 

this worked properly and CENP-T became phosphorylated, as expected. 
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I instead observed the formation of an apparently stoichiometric ternary complex upon incubation 

of CENP-H / CENP-K complex with CENP-C1-544His (Figure 28).  

 

 

Figure 28 - CENP-H / CENP-K complex binds to CENP-C1-544 in vitro. 

SEC elution profiles and SDS-PAGE analyses of CENP-H / CENP-K complex (red), CENP-C1-544His (blue) and their 

combination (green). The formation of an apparently stoichiometric ternary complex is observed. 

 

After discovering that CENP-H and CENP-K are part of a quaternary complex with CENP-I57-C and 

CENP-M, it was natural to ask if this is compatible with CENP-C binding. Indeed, the quaternary 

CENP-H / CENP-K / CENP-I57-C / CENP-M complex binds to CENP-C1-544His (Figure 29). 
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Figure 29 - CENP-H / CENP-K / CENP-I57-C / CENP-M complex binds to CENP-C1-544 in vitro. 

SEC elution profiles and SDS-PAGE analyses of CENP-H / CENP-K / CENP-I57-C / CENP-M complex (red), CENP-C1-544His 

(blue) and their combination (green). A direct interaction between CENP-H / CENP-K / CENP-I57-C / CENP-M complex and 

CENP-C1-544His occurs. 

 

 

2.2.2 Experiments of cross-linking coupled with mass spectrometry provide 

insights into the spatial organization of CENP-H / CENP-K / CENP-C1-544 

complex 

 

It is worth remembering that CENP-H and CENP-K are predicted to possess an elongated structure 

enriched in coiled-coils, while CENP-C1-544 is predicted to be mostly unstructured. In order to get an 

indication about the spatial arrangement of CENP-H / CENP-K / CENP-C1-544 complex, an 

experiment of cross-linking coupled with mass spectrometry was carried out (Figure 30 A). CENP-

H / CENP-K complex was also subjected to the same analysis for comparison purposes (Figure 30 

B). As already mentioned, this approach provides information about the spatial proximity of lysine 

residues that become cross-linked in protein complexes in solution and could be performed thanks 
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to a collaboration with Dr. Franz Herzog’s laboratory. 

 

 

 

 

Figure 30 - Experiments of cross-linking coupled with mass spectrometry. 
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CENP-H / CENP-K / CENP-C1-544 complex (A) and CENP-H / CENP-K complex (B) were analysed by cross-linking coupled 

with mass spectrometry in order to obtain information about their spatial organization. Protein sequences are displayed and 

residues are coloured with a rainbow gradient ranging from red at the N-terminus to violet at the C-terminus. Amino acid 

numbers are indicated every 50 residues. Lysines are highlighted with red dots. Cross-links between lysine pairs are 

represented as lines, whose thickness is proportional to the identification score of the corresponding peptide pair by mass 

spectrometry. Intra-molecular cross-links are coloured in red, while inter-molecular cross-links are coloured in violet. The 

image of CENP-H / CENP-K complex is the same as shown in Figure 17 C. 

  

Without dwelling upon details, it is apparent that CENP-H and CENP-K display a large number of 

inter-molecular cross-links, which involve most of their sequence length. Conversely, only few inter-

molecular cross-links are observed between CENP-C1-544 and CENP-H and / or CENP-K. 

Specifically, they are all restricted to the region of CENP-C between residues ∼200 - 400. 

 

 

2.2.3 First steps towards the identification of CENP-C regions that are 

necessary and / or sufficient for binding to CENP-H / CENP-K complex 

 

The cross-linking analysis paved the way for the design of shorter CENP-C constructs, in order to 

identify regions of this protein that are necessary and / or sufficient for binding to CENP-H / CENP-

K complex. Specifically, a construct comprising CENP-C residues 1 - 400 proved sufficient for this 

interaction (Figure 31 A), while CENP-C residues 402 - 544 did not display any binding to CENP-H 

/ CENP-K complex (Figure 31 B). 

These only represent the first steps towards the characterization of the interaction between CENP-

C and CENP-H / CENP-K complex. A more detailed description of our future plans in this direction 

is provided in the “Discussion” chapter. 
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Figure 31 - CENP-H / CENP-K complex binds to CENP-C1-400 but not to CENP-C402-544 in vitro. 

A) SEC elution profiles and SDS-PAGE analyses of CENP-H / CENP-K complex (red), CENP-C1-400His (blue) and their 

combination (green). B) Same experimental setting as in A, but using CENP-C402-544. CENP-C1-400 is sufficient for binding to 

CENP-H / CENP-K complex, while CENP-C402-544 is not. 

 

 

2.2.4 Analysis of interactions of CENP-H / CENP-K complex in vitro with 

other kinetochore components through analytical SEC migration shift 

assays 

 

The centromeric localization of members of the CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R 

group of proteins was shown to be dependent on the CENP-H / CENP-I / CENP-K group, but not 

the opposite18,100,104. 

As previously mentioned, in the laboratory we accomplished the production of a quaternary CENP-

O / CENP-P / CENP-Q / CENP-U complex and of CENP-O / CENP-P and CENP-Q / CENP-U sub-

complexes. Also, CENP-R can be obtained singularly, but it does not become incorporated into 
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CENP-O / CENP-P / CENP-Q / CENP-U complex. 

Therefore, I tested if CENP-H / CENP-K complex has the ability to interact with any of these 

samples in vitro. Specifically, CENP-H / CENP-K complex does not bind to CENP-O / CENP-P / 

CENP-Q / CENP-U complex (Figure 32 A) or to CENP-R (Figure 32 B), not even when all proteins 

are incubated together (data not shown). Likewise, no binding is observed when assessing 

interactions of CENP-H / CENP-K complex with CENP-O / CENP-P and CENP-Q / CENP-U sub-

complexes separately (data not shown). Moreover, the quaternary CENP-H / CENP-K / CENP-I57-C 

/ CENP-M complex also does not bind to any of these samples (data not shown). 

 

 

Figure 32 - CENP-H / CENP-K complex does not bind to the CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R group 

of proteins in vitro. 

A) SEC elution profiles and SDS-PAGE analyses of CENP-H / CENP-K complex (red), CENP-O / CENP-P / CENP-Q / 

CENP-U complex (blue) and their combination (green). B) Same experimental setting as in A, but using CENP-R. In both 

cases, no binding to CENP-H / CENP-K complex occurs. 

 

In addition, the CENP-H / CENP-I / CENP-K group of proteins contributes to the recruitment of 

outer kinetochore components18,93,104,105. In particular, an interaction between CENP-H and Ndc80 
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has been suggested by yeast two-hybrid analyses and by coimmunoprecipitation experiments in 

chicken DT40 cells105. However, I did not detect any direct binding of CENP-H / CENP-K complex 

to Ndc80 complex in vitro (Figure 33). This was also the case when incubating CENP-H / CENP-K / 

CENP-I57-C / CENP-M complex with Ndc80 complex (data not shown). These observations do not 

exclude an indirect role of CENP-H / CENP-K / CENP-I / CENP-M complex in the kinetochore 

recruitment of Ndc80 complex in vivo, but suggest that there is no direct physical interaction 

between these proteins. Also, a thorough investigation of possible interactions of CENP-H / CENP-

K / CENP-I57-C / CENP-M complex with the whole KMN network is foreseen. 

 

 

Figure 33 - CENP-H / CENP-K complex does not bind to Ndc80 complex in vitro. 

SEC elution profiles and SDS-PAGE analyses of CENP-H / HisCENP-K complex (red), Ndc80 complex (blue) and their 

combination (green). No binding of CENP-H / CENP-K complex to Ndc80 complex occurs. 
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2.3 Section 3 – Histone H3- and CENP-A-containing nucleosomes 

 

2.3.1 In vitro reconstitution of histone H3- and CENP-A-containing 

mononucleosomes 

 

As already introduced, kinetochores are multiprotein complexes built on centromeres. No specific 

DNA sequence is strictly required for centromere specification and kinetochore assembly in most 

organisms. Instead, a hallmark of functional centromeres is a specialized nucleosome containing 

the histone H3 variant CENP-A, hinting at an epigenetic mechanism for centromere specification30. 

In particular, centromeric chromatin is characterized by the presence of CENP-A nucleosomes 

interspersed among H3 nucleosomes34. 

In the context of the collaborative effort of the laboratory towards the in vitro reconstitution of the 

human kinetochore from purified recombinant components, a crucial goal in the last few years has 

been the establishment of techniques for the recombinant expression and purification of histones 

and for the in vitro reconstitution of both H3-containing mononucleosomes (H3-MN)151 and CENP-

A-containing mononucleosomes (CA-MN)152. I was involved in pursuing this task together with a 

technical assistant and the precious collaboration of Prof. Daniela Rhodes’ laboratory at the 

Medical Research Council in Cambridge, who helped us to get started with the reconstitution of 

canonical H3-MN, and Prof. Aaron F. Straight’s laboratory at Stanford University, who assisted us 

on issues more specifically related to CA-MN. 

We have recently achieved the production of both H3-MN (Figure 34 A) and CA-MN (Figure 34 B) 

of sufficient quality and quantity to begin to address their in vitro interactions with kinetochore 

components. To provide a glimpse of what is being pursued in this direction, I will illustrate some 

preliminary observations concerning a direct interaction of Mis12 complex with nucleosomes. 
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Figure 34 - Quality assessments of in vitro reconstituted H3-MN (A) and CA-MN (B). 

Upper panels: native agarose gels with Midori green staining of free 601-167bp DNA (left lanes) and reconstituted H3-MN or 

CA-MN (right lanes). Both H3-MN and CA-MN migrate as a sharp band, indicating that the samples are homogeneous, and 

only a minor amount of free DNA is left. Lower panels: SEC elution profiles from a Superdex 200 column and SDS-PAGE 

analyses of reconstituted H3-MN or CA-MN. In both cases, mononucleosomes elute as a symmetric peak, again denoting 

the homogeneity of the samples. 

 

 

2.3.2 H3 and CENP-A mononucleosomes interact with Mis12 complex in vitro 

 

With the aim of identifying direct interacting partners of H3-MN and CA-MN, I recently started 

performing analytical SEC migration shift assays with various purified recombinant human 

kinetochore proteins available in the laboratory. 

The formation of a larger assembly could be observed after incubation of H3-MN with Mis12 
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complex (Mis12 C), which comprises the Nnf1, Mis12, Dsn1 and Nsl1 subunits. In particular, Mis12 

C seems to bind to H3-MN in a 2 : 1 ratio (Figure 35), in agreement with the fact that nucleosome 

cores possess a two-fold symmetry axis. 

 

 

Figure 35 - Mis12 C binds to H3-MN in vitro. 

Left panel: SEC elution profiles and SDS-PAGE analyses of Mis12 C (red), H3-MN (blue) and their combination in a 1 : 1 

(light green) or 2 : 1 (dark green) ratio. The shift in the elution profile observed upon combination of Mis12 C and H3-MN 

indicates the formation of a larger protein assembly. In particular, a double peak is observed upon combination of Mis12 C 

and H3-MN in a 1 : 1 ratio (light green), while a complete shift occurs upon their combination in a 2 : 1 ratio (dark green), 

suggesting that two Mis12 C can simultaneously bind to one H3-MN, in agreement with the two-fold symmetry of 

nucleosome cores. This analysis was performed on a Superdex 200 5/150 column. Right panel: the same experiment using 

Mis12 C (red), H3-MN (blue) and their combination in a 2 : 1 ratio (dark green) was also run on a Superose 6 5/150 column, 

which then became the column of choice for analytical SEC migration shift assays involving mononucleosomes, given that it 

displays a better resolution at high molecular weights with respect to a Superdex 200 5/150 column. 
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Likewise, incubation of Mis12 C with CA-MN in a 2 : 1 ratio resulted in the formation of a complex 

(Figure 36). 

 

 

Figure 36 - Mis12 C binds to CA-MN in vitro. 

SEC elution profiles and SDS-PAGE analyses of Mis12 C (red), CA-MN (blue) and their combination in a 2 : 1 ratio (green). 

The shift in the elution profile observed upon combination of Mis12 C and CA-MN indicates the formation of a larger protein 

assembly.  

 

Recombinant Mis12 C was purified from both bacteria and insect cells. I carried out the above 

experiments using Mis12 C produced in bacteria. I then tested Mis12 C produced in insect cells, to 

verify if the post-translational modifications added by a eukaryotic system such as insect cells 

influence the ability of Mis12 C to interact with nucleosomes in vitro. I obtained comparable results, 

suggesting that the observed binding is not appreciably regulated by post-translational 

modifications of Mis12 C, or at least by those introduced in insect cells (Figure 37 A and B). 
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Figure 37 - Mis12 C produced in insect cells binds to H3-MN and CA-MN in vitro. 

A) SEC elution profiles and SDS-PAGE analyses of Mis12 C produced in insect cells (red), H3-MN (blue) and their 

combination in a 2 : 1 ratio (green). B) Same experimental setting as in A, but using CA-MN. In both cases, a direct 

interaction between Mis12 C and mononucleosomes is observed. Samples of purified recombinant Mis12 C produced either 

in bacteria or in insect cells display a similar behaviour in terms of nucleosome binding. 

 

 

2.3.3 The C-terminal region of Nsl1 is necessary for nucleosome binding in 

vitro 

 

It is known from the literature that the C-terminal region of the Nsl1 subunit of Mis12 C is unstable 

in the absence of binding partners and undergoes spontaneous proteolysis during purification and 

subsequent storage20. I noticed that, in the context of my SEC migration shift assays, the portion of 

Mis12 C displaying Nsl1 degradation was not shifting to a lower retention volume, indicating that it 

was not forming a complex with mononucleosomes; on the contrary, Mis12 C engaged in 

interactions with mononucleosomes showed a stabilized Nsl1 C-terminal tail. Thus, I asked if this 

region of Nsl1 is involved in nucleosome binding. Indeed, a version of recombinant Mis12 C 

containing a proteolitically stable segment of Nsl1, consisting of residues 1 - 258 (Nsl11-258) and 
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lacking 23 residues at its C-terminus, loses the ability to bind to nucleosomes, revealing that the C-

terminal tail of Nsl1 is necessary for nucleosome binding (Figure 38 A and B). 

 

 

Figure 38 - A Mis12 C construct lacking the C-terminal region of Nsl1 does not bind to H3-MN and CA-MN in vitro. 

A) SEC elution profiles and SDS-PAGE analyses of Mis12 C containing Nsl11-258 (red), H3-MN (blue) and their combination 

in a 2 : 1 ratio (green). B) Same experimental setting as in A, but using CA-MN. In both cases, this truncated Mis12 C 

construct loses the ability to bind to nucleosomes, revealing that the C-terminal tail of Nsl1 is necessary for nucleosome 

binding. 

 

 

2.3.4 The C-terminal region of Nsl1 is sufficient for nucleosome binding in 

vitro 

 

I then sought to verify if this region of Nsl1 is also sufficient for nucleosome binding. For this 

purpose, I employed a construct encompassing Nsl1 residues 250 - 281 as a C-terminal fusion to 

GST. This proved sufficient for nucleosome binding (Figure 39 A and B). In order to check that the 

observed binding was mediated by the Nsl1 tail and not, unspecifically, by GST, I also tested a 

synthetic peptide comprising Nsl1 residues 256 - 281 and obtained comparable results (data not 
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shown). 

 

 

Figure 39 - The C-terminal region of Nsl1 binds to H3-MN and CA-MN in vitro. 

A) SEC elution profiles and SDS-PAGE analyses of GST-Nsl1250-281 (red), H3-MN (blue) and their combination in a 2 : 1 ratio 

(green). B) Same experimental setting as in A, but using CA-MN. In both cases, the C-terminal tail of Nsl1 retains the ability 

to bind to nucleosomes, revealing that this region of Nsl1 is sufficient for nucleosome binding. 

 

 

2.3.5 The binding of Mis12 complex to nucleosomes is sensitive to salt 

 

The analytical SEC migration shift assays presented above were carried out in a buffer containing 

10 mM Hepes pH 7.5, 50 mM NaCl and 1 mM TCEP. Such a low ionic strength is the characteristic 

end point of salt gradient dialysis methods for in vitro reconstitution of nucleosomes. 

In order to assess the salt sensitivity of the interaction between Mis12 C and mononucleosomes, I 

repeated the assay at progressively increasing NaCl concentrations. Specifically, the binding of 

Mis12 C to mononucleosomes still takes place in 100 mM NaCl (Figure 40 A), while it is not 

observed in 200 mM NaCl (Figure 40 B), suggesting that electrostatic interactions might be 

important. Interestingly, the SEC elution profile of mononucleosomes varies in different NaCl 
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concentrations, in agreement with previous reports of salt-dependent changes in nucleosome 

conformation153. 

 

 

 

Figure 40 - The interaction of Mis12 C with H3-MN and CA-MN in vitro is sensitive to salt. 

A) SEC elution profiles and SDS-PAGE analyses of Mis12 C (red), mononucleosomes (blue) and their combination in a 2 : 1 
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ratio (green). H3-MN are displayed in the left panel and CA-MN in the right panel. A buffer containing 10 mM Hepes pH 7.5, 

100 mM NaCl and 1 mM TCEP was employed. B) Same experimental setting as in A, but with a buffer containing 10 mM 

Hepes pH 7.5, 200 mM NaCl and 1 mM TCEP. The binding of Mis12 C to mononucleosomes still occurs in 100 mM NaCl, 

while it is not observed in 200 mM NaCl. 

 

 

2.3.6 The binding of Mis12 complex to nucleosomes is mediated by contacts 

with the nucleosome core particle 

 

As already detailed in the “Introduction” chapter, 146 bp of DNA are visible in the crystal structure 

of the canonical H3 nucleosome, while only the central 121 bp are visible in the CENP-A 

nucleosome structure and 13 bp from both ends of the DNA are disordered. This indicates that the 

DNA regions at the entrance and exit of the CENP-A nucleosome lack a fixed conformation. 

Unlike sequence-specific DNA-binding proteins, histones seem to have evolved to largely minimize 

DNA sequence discrimination, a property that allows them to be distributed all over the genome. 

Nevertheless, sequence-dependent attributes influence the interaction of DNA with the histone 

octamer in terms of curvature, flexibility and affinity154. Together with other determinants, like for 

example chromatin composition and chromatin remodelling factors, DNA sequence regulates 

nucleosome dynamics and positioning in vivo, imparting sophisticated regulatory features that are 

critical for genomic functions.  

Various DNA constructs, differing with respect to length and sequence composition, have 

classically been employed for in vitro reconstitution of nucleosomes. We decided to reconstitute 

nucleosomes with the widely used 601 DNA sequence. This was identified in a SELEX experiment 

designed to find a DNA sequence able to bind to the histone octamer with high affinity and with a 

unique position155, thus yielding a homogeneous population of reconstituted nucleosomes. In 

particular, all the experiments that I presented above were carried out with mononucleosomes 

reconstituted in vitro using the 601 - 167 bp DNA, thus possessing some “linker” DNA extending 

from both ends of the minimal positioning sequence. In addition, I repeated the SEC migration shift 

assays described above employing mononucleosomes reconstituted in vitro using the 601 - 145 bp 

DNA sequence154. I obtained comparable results (data not shown), suggesting that the observed 

binding of Mis12 C to nucleosomes is mediated by contacts with the nucleosome core particle. 
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3 Discussion 

 

In this study, I have presented a biochemical and structural characterization of the CCAN protein 

CENP-M and I have disclosed its unprecedented role in the context of a quaternary complex that 

also includes CENP-H, CENP-K and CENP-I. Specifically, the crystal structure of CENP-M has 

revealed that it possesses a G protein-like fold. However, CENP-M does not display the enzymatic 

activity of a G protein. This can already be inferred from CENP-M sequence22, which lacks all of the 

five characteristic motifs of the G domain. Indeed, I could also prove with biochemical experiments 

that CENP-M is unable to bind to guanine and adenine nucleotides in vitro. 

In this respect, after performing a multiple sequence alignment of CENP-M orthologs (Figure 41), it 

was interesting to notice that the most distant CENP-M orthologs that could be found (namely, in 

Nematostella vectensis, Capsaspora owczarzaki and Mucor circinelloides) seem to retain the P-

loop motif, while lacking the other four functionally relevant motifs of the G domain. This 

observation raises the interesting hypothesis that CENP-M sequence might have progressively lost 

the determinants of the G domain during evolution. Reasoning along these lines and considering 

that no CENP-M ortholog has been so far identified in yeast through sequence homology 

searches25, it is intriguing to postulate that an actual G protein might fulfil CENP-M function in 

yeast, thus representing a case of structural and functional conservation, rather than of sequence 

conservation. Further investigations are clearly needed to address this possibility. In particular, in 

order to narrow down the list of potential candidates, I envision that bioinformatic analyses will 

prove valuable to understand which are the closest G protein relatives of CENP-M. Complementary 

information would be possibly provided by genetic, proteomic and biochemical approaches aiming 

at highlighting any yeast G protein that appears to be associated with kinetochore biology. 
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Figure 41 - Multiple sequence alignment of CENP-M orthologs. 

The MUSCLE server146 was employed to perform the alignment. Default Clustal colour scheme is applied. Residue numbers 

above the alignment refer to the human CENP-M sequence. Secondary structure elements are illustrated. The P-loop motif 

of the G domain is indicated below the alignment. 

 

This study also represents a successful case of “from structure to function” workflow, where the 

determination of CENP-M structure, which possesses a G protein-like fold, together with the 

prediction of CENP-I structure, which displays an Importin-β-like fold, paved the way for 

understanding CENP-M role as a direct interacting partner of CENP-I. In particular, my results 

speak in favour of a model where CENP-M is embraced by CENP-I, similarly to how Ran is 

encircled by Importin-β, and acts as a chaperone-like protein for CENP-I, stabilizing its 

conformation. In addition, I speculate that CENP-H and CENP-K, both predicted to have an 

elongated structure enriched in coiled-coils, might lie on a region comprising about 350 amino 

acids at the N-terminus of CENP-I (Figure 42). 
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Figure 42 - Model of the structural organization of CENP-H / CENP-K / CENP-I / CENP-M complex. 

The I-TASSER model of CENP-I structure (red) and the crystal structure of CENP-M (green) are displayed as cartoon 

representations. The position of CENP-I and CENP-M with respect to each other was modelled by superposition on the 

structure of Importin-β in complex with Ran (PDB ID: 1IBR). CENP-H (blue) and CENP-K (light blue) are depicted as having 

an elongated structure and lying on the N-terminal region of CENP-I. 

 

This tentative model of the structural organization of CENP-H / CENP-K / CENP-I / CENP-M 

complex takes into account the information that I could derive from the behaviour of different 

protein constructs, the results of analytical SEC migration shift assays and GST-pull-downs, and 

the experiments of cross-linking coupled with mass spectrometry.  

Indeed, CENP-I57-281 is the only CENP-I construct that could be obtained in a soluble and well-

behaved fashion in the absence of any binding partners, in agreement with the fact that it is 

predicted to comprise a first domain of HEAT repeats in the model of CENP-I structure. The 

coexpression with CENP-H and CENP-K was insufficient to stabilize longer CENP-I constructs. 

Accordingly, cross-linking coupled with mass spectrometry analyses confirmed that CENP-H and 

CENP-K are in close spatial proximity to the first ∼350 amino acids of CENP-I, but not with the rest 

of this protein. 

The coexpression with CENP-M was instead the key to solubilizing a longer CENP-I construct 

extending up to the C-terminus of the protein. The view that CENP-M might literally be embraced 

by CENP-I is in agreement with the fact that inter-molecular cross-links could be detected between 
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CENP-M and two regions of CENP-I, one towards its N-terminus and one towards its C-terminus, 

which are distant in its sequence but might come close in its structure, as suggested by the 

presence of intra-molecular cross-links between them. 

In addition, it appears that CENP-M, which I expect to be located in the concave surface of CENP-I, 

does not establish any direct contact with CENP-H and CENP-K, which I imagine to be laid on the 

convex surface of CENP-I. This is indicated by the results of my analytical SEC migration shift 

assays and GST-pull-down experiments, in which CENP-M and CENP-H / CENP-K complex do not 

display any binding, and is confirmed by the fact that no inter-molecular cross-links could be 

detected between CENP-M and CENP-H and / or CENP-K in the context of the quaternary 

complex.  

Another interesting observation is that CENP-H / CENP-K complex displays a SEC elution profile 

suggestive of an elongated structure, as its theoretical molecular weight is about 60 kDa, but it 

migrates in close proximity to the 158 kDa marker protein. CENP-H / CENP-K / CENP-I57-C / CENP-

M complex instead elutes from SEC slightly before the 158 kDa marker protein, in accordance with 

its theoretical molecular weight of about 160 kDa, thus denoting a globular assembly. 

It emerges from these considerations that significant information can already be inferred about the 

structural organization of CENP-H / CENP-K / CENP-I57-C / CENP-M complex. Nevertheless, 

medium- or high-resolution structural analyses on this complex are obviously foreseen. These will 

possibly include electron microscopy, small-angle X-ray scattering (SAXS) and X-ray 

crystallography studies. 

As previously mentioned, the localization dependencies of CCAN proteins have been extensively 

investigated. Such dependencies were identified mainly through protein deletion and / or depletion 

experiments and are consistent with an extremely complicated network of relationships. It has 

recently become evident that a thorough mapping of the direct interactions that take place among 

these proteins is an essential condition to deconvolute such an intricate picture. In light of these 

considerations, the discovery of a quaternary complex comprising CENP-H / CENP-K / CENP-I / 

CENP-M and the elucidation of the direct interactions occurring within this complex represent an 

important step forward in this direction, as they substantiate the observation that these proteins 

display mutual dependencies for their kinetochore recruitment18. 

Obviously, a number of additional experiments are needed to validate and characterize the 

interaction between CENP-M and CENP-I in vivo. First of all, given that the commercially available 
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monoclonal antibody against CENP-M is only suitable for Western blotting, but not for 

immunofluorescence, I recently generated a polyclonal antibody raised against recombinant 

purified full-length human CENP-M that performs well in both applications. This will allow us to 

characterize not only the levels but also the localization of endogenous CENP-M in HeLa cells 

throughout the cell cycle and to verify that the GFP-CENP-M inducible HeLa cell line displays a 

similar behaviour. Also, we are currently developing a protocol for the effective depletion of 

endogenous CENP-M by RNAi. The next step will be to compare GFP-CENP-M wt and mutants, in 

a background of endogenous CENP-M depletion by RNAi, in terms of ability to localize at 

centromeres and to recruit other kinetochore components, such as CENP-I, as direct interacting 

partner of CENP-M, and other CCAN members whose centromeric localization has been reported 

to be dependent on CENP-M. Specifically, we plan to address this both via immunofluorescence 

experiments, which allow to obtain information about colocalization, and via immunoprecipitation 

experiments against GFP, in order to assess differences in the interactome of GFP-CENP-M wt in 

comparison with the mutants. 

A few preliminary considerations can already be drawn from our initial experiments regarding the 

localization of GFP-CENP-M wt and mutants, although they were carried out in the presence of 

endogenous CENP-M. Specifically, mutants L94A + L163E and R145E + R148A lose the ability to 

localize at centromeres. We hypothesize that, as they are unable to interact with CENP-I in vitro, 

they are most likely incapable of doing so also in vivo and, consequently, are not recruited to the 

centromere, in agreement with the dependency of CENP-M on CENP-I for its kinetochore 

localization18. Interestingly, also mutant R60A + R62A hampers the localization of GFP-CENP-M at 

centromeres. This mutant retains the ability to interact with CENP-I in vitro and, therefore, we 

suppose that its inability to localize at centromeres in vivo is due to the loss of interaction with 

some other kinetochore component on which CENP-M depends for its recruitment. In particular, 

this mutant contains two amino acid substitutions in the region of CENP-M structure that 

corresponds to the switch II of G proteins, which is often involved in interactions with their 

partners150. My analysis of CENP-M binding to putative interacting partners among known 

centromere and kinetochore components in vitro through analytical SEC migration shift assays did 

not reveal any further direct interaction other than the one with CENP-I. A possible explanation is 

that CENP-M is involved in low affinity interactions with other kinetochore proteins, for which SEC 

is not a suitable detection method. It is plausible that, by reconstituting more complex protein 
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assemblies, CENP-M might be incorporated, maybe even in the absence of CENP-I, thanks to the 

contributions of multiple low affinity interactions to an overall higher binding affinity. Another option 

is that CENP-M, upon binding to CENP-I, undergoes conformational changes that are required for 

other interactions. 

Moreover, the novel finding of a direct interaction of CENP-H / CENP-K complex with the N-

terminal half of CENP-C provides a molecular corroboration to previous studies reporting a 

dependency of CENP-H and CENP-K on CENP-C for their centromeric localization57,91. A number 

of experiments are in the pipeline to better characterize this interaction. Specifically, the design of 

shorter CENP-C constructs will be instrumental in identifying regions of this protein that are 

necessary and / or sufficient for binding to CENP-H / CENP-K complex. A more detailed point 

mutation analysis of conserved residues is then foreseen. Moreover, given that the quaternary 

CENP-H / CENP-K / CENP-I57-C / CENP-M complex also binds to CENP-C1-544His, a possible 

contribution of CENP-I to CENP-C binding will also be assessed. This will include a comparison of 

the behaviour of CENP-H / CENP-K complex and CENP-H / CENP-K / CENP-I57-C / CENP-M 

complex in analytical SEC migration shift assays with various CENP-C constructs and the 

measurement of binding affinities, for example through microscale thermophoresis (MST) or 

isothermal titration calorimetry (ITC). Given the results of my SEC migration shift assays, a 

contribution of CENP-M to CENP-C binding seems instead unlikely, although it cannot be 

completely excluded at this stage. Also, high-resolution structural studies are being pursued. In 

particular, limited proteolysis experiments on single proteins and complexes are underway, in order 

to identify minimal interacting regions and take advantage of this information to design constructs 

possibly amenable to X-ray crystallography. Structural studies by small-angle X-ray scattering 

(SAXS) and single particle electron microscopy are also envisaged. In addition, the validation and 

characterization of CENP-H / CENP-K binding to CENP-C in vivo is foreseen. A possible way of 

addressing this point would be, similarly to what is being performed for CENP-M, the generation of 

inducible GFP-CENP-C HeLa cell lines for wt and mutated constructs, designed according to 

results obtained in vitro. This would allow us to test the ability of relevant CENP-C constructs to 

sustain or impair the centromeric recruitment of CENP-H and CENP-K, and eventually of other 

CCAN components that depend on them for their kinetochore localization. 

In fact, I believe that a valuable aspect of our approach resides in the possibility to rely on 

molecular details about protein structures and direct interactions obtained through in vitro 
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investigations to then design tailored in vivo experiments. This provides a means to dissect the role 

of specific protein regions or even residues and, eventually, to substantiate and deconvolute the 

usually broader and more complicated effects observed when deleting and / or depleting entire 

proteins. 

In Figure 43 I propose a model of the molecular architecture of human CCAN, which takes into 

account the discoveries presented in this study and positions them in the context of prior 

knowledge reported in the literature. 

 

 

Figure 43 - Model of the molecular architecture of human CCAN. 

Centromeric chromatin, including both canonical H3 and centromere-specific CENP-A nucleosomes34, lies at the basis of 

kinetochore. CENP-C directly binds to CENP-A nucleosomes43,57 and represents a bridge with the outer kinetochore94,95. The 

evidence that CENP-C possesses two nucleosome binding regions (the CENP-C central domain and the CENP-C motif) 

and the fact that it dimerizes through its C-terminal region have been omitted in this model for simplicity. CENP-N also 

directly interacts with CENP-A nucleosomes as well as with CENP-L56. CENP-T / CENP-W / CENP-S / CENP-X associate 

through their histone fold domains to form a quaternary complex111, whose relationship with centromeric chromatin is 

currently a matter of debate. The N-terminal region of CENP-T reaches the outer kinetochore25,114,115. My study has revealed 

the existence of a quaternary CENP-H / CENP-K / CENP-I / CENP-M complex, which, through its CENP-H, CENP-K and 
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possibly CENP-I subunits, directly binds to the N-terminal half of CENP-C. Further investigations are required to better 

elucidate the relationships among this complex, the CENP-L / CENP-N group, the CENP-T / CENP-W / CENP-S / CENP-X 

group and the CENP-O / CENP-P / CENP-Q / CENP-U / CENP-R group of proteins. 

 

As already mentioned, a collaborative effort is in progress in our group with the aim to reconstitute 

the human kinetochore in vitro from purified recombinant components. Within this framework, in the 

last few years I have been committed to the establishment in the laboratory of techniques for the 

recombinant expression and purification of histones and for the in vitro reconstitution of both H3-

containing mononucleosomes (H3-MN) and CENP-A-containing mononucleosomes (CA-MN). The 

production of material of good quality and quantity has recently been achieved, allowing us to start 

analysing their in vitro interactions with kinetochore components. Obviously, one of our priorities is 

to be able to reproduce the direct interactions of CENP-C43,57 and CENP-N56 with CA-MN, which 

have already been described in the literature, and to characterize them in the context of our 

reconstitution endeavours. Also, the nature of the proposed interaction of CENP-T / CENP-W / 

CENP-S / CENP-X complex with centromeric chromatin111 is still a matter of debate and definitely 

requires further investigations. 

During my initial experiments aimed at testing interactions of H3-MN and CA-MN with kinetochore 

components in vitro though analytical SEC migration shift assays, I observed an unprecedented 

direct binding of Mis12 complex (Mis12 C) to nucleosomes. Specifically, my preliminary results 

suggest that Mis12 C is capable of binding to both H3-MN and CA-MN in vitro with a 2 : 1 

stoichiometry, which reflects the fact that nucleosomes possess a two-fold symmetry axis. The 

interaction seems to involve the nucleosome core particle, as it occurs also in the absence of DNA 

tails extending from the minimal DNA region that is wrapped around the histone octamer. Also, it 

appears that the C-terminal region (residues ∼250 to 281) of the Nsl1 subunit of Mis12 C is both 

necessary and sufficient for the binding. This is in agreement with the fact that Nsl1 was shown to 

associate with centromeric chromatin independently of the other Mis12 C subunits and of CENP-C 

in Xenopus laevis sperm91. Moreover, the binding is sensitive to the concentration of salt used in 

the reaction buffer, suggesting that electrostatic interactions play a major role. 

The significance of this observation and its relevance in the context of kinetochore biology remain 

to be understood. First of all, the interaction of Mis12 C with nucleosomes needs to be analysed in 

the context of known Mis12 C interactions. In particular, it is well established that Mis12 C is part of 



 105 

the so-called KMN network20, which is essential to form load-bearing end-on attachments to spindle 

microtubules. Thus, it is crucial to ask if the observed binding of Mis12 C to nucleosomes is 

compatible with its additional interactions within the KMN network. Specifically, as a starting point 

in this direction, I considered that Mis12 C directly binds to the C-terminal region of Knl1 and the C-

terminal tail of Nsl1 is necessary and sufficient for this interaction. A preliminary experiment that I 

performed suggests that a pre-formed complex comprising the C-terminal tails of Nsl1 and Knl1, 

specifically Nsl1256-281 bound to Knl12091-2311, is not able to simultaneously bind to H3-MN (data not 

shown), while I still have to repeat this experiment using CA-MN. Thus, it seems that the C-terminal 

tail of Nsl1 is not able to contemporarily bind to the C-terminal region of Knl1 and to H3-MN. 

However, the C-terminal tail of Nsl1 does not fully recapitulate the binding of full-length Mis12 C to 

the C-terminal region of Knl1, which displays a significantly higher overall binding affinity20. 

Therefore, it is important to verify if the use of Mis12 C full-length instead of the C-terminal tail of 

Nsl1 makes any difference in the context of my assay. 

Moreover, it is known that Mis12 C directly binds, probably through its Mis12 subunit, to the N-

terminal region of the CCAN component CENP-C94. Also, the central domain of CENP-C (residues 

422 - 537) and the so-called CENP-C motif (residues 736 - 758), directly bind to CA-MN and, 

although with reduced affinity, to H3-MN43,57. Thus, an investigation on the relationships between 

Mis12 C binding to CENP-C and the nucleosome binding properties of these proteins is also 

foreseen. 

As previously mentioned, Nsl1 was shown to associate with centromeric chromatin independently 

of the other Mis12 C subunits and of CENP-C in Xenopus laevis sperm91. In light of this 

consideration, I can hypothesize that Nsl1 is recruited to the kinetochore through a direct binding to 

centromeric chromatin, while CENP-C, through the interaction of its N-terminal region with the 

Mis12 subunit, could contribute additional binding affinity for the kinetochore recruitment of the 

whole Mis12 C. This might determine the formation of a stable chromatin-bound load-bearing basis 

on which, during mitosis, the whole KMN network could be reconstituted. I envision that, during 

mitosis, the kinetochore localization of Mis12 C could be maintained through its binding to CENP-C 

and thus to CA-MN. Therefore, the Nsl1 C-terminal tail might become dispensable for the 

kinetochore localization of Mis12 C and be available for the interaction with the C-terminal region of 

Knl1. 

In addition, one of our priorities is certainly the confirmation of the stoichiometry of the interaction 
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between Mis12 C and nucleosomes and the measurement of binding affinities, for example through 

isothermal titration calorimetry (ITC) or microscale thermophoresis (MST). In particular, a crucial 

point is the comparison of the binding affinities of Mis12 C for H3-MN and CA-MN. This will allow 

us to understand if there is a preference for one of these two nucleosome types, as is the case for 

CENP-C, and, on this basis, speculate about possible mechanisms involved in determining binding 

specificity. Also, it will be important to clarify if the C-terminal tail of Nsl1 is sufficient to completely 

recapitulate the binding of Mis12 C full-length to nucleosomes or if other Mis12 C regions contribute 

to the overall binding affinity. 

To gain further understanding of the regions involved in the interaction, experiments of cross-

linking coupled with mass spectrometry will be valuable. 

Furthermore, high-resolution structural studies can be envisioned. In particular, the C-terminal tail 

of Nsl1 (residues ∼250 to 281) bound to mononucleosomes may represent an appropriate 

crystallographic target. An interesting feature of this region of Nsl1 is the presence of an extremely 

conserved arginine in position 258 and of a conserved arginine in position 26720. This consideration 

raises the intriguing hypothesis that the C-terminal tail of Nsl1 may bind to the acidic patch of 

histones H2A-H2B with a similar arginine-dependent mechanism to the one observed for Kaposi’s 

sarcoma-associated Herpesvirus LANA (Latency-Associated Nuclear Antigen) peptide156, RCC1 

(Regulator of Chromosome Condensation 1) chromatin factor157, Sir3 BAH domain158, and the 

aforementioned CENP-C motif43, which are among the few published crystallographic structures of 

nucleosome-bound proteins. As a complementary approach, structural studies by single particle 

electron microscopy on the whole Mis12 C bound to mononucleosomes are foreseen. 

To confirm Mis12 C interaction with mononucleosomes in vivo, we are also planning FRET assays 

with H3-MN in comparison to CA-MN, which will be carried out in collaboration with Prof. Stephan 

Diekmann’s laboratory at the Fritz Lipmann Institute in Jena. 
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4 Materials and methods 

 

4.1 Plasmids, protein expression and purification 

 

4.1.1 CENP-M, CENP-M1-171 and CENP-M mutants 

A cDNA segment encoding human CENP-M isoform 1, the canonical one, was subcloned in pGEX-

6P-2rbs vector, a dicistronic derivative of pGEX-6P vector generated in house, as a C-terminal 

fusion to GST, with an intervening 3C protease site. The construct CENP-M1-171 was created by 

insertion of a stop codon using the QuikChange Mutagenesis kit (Stratagene). Constructs were 

sequence verified. The expression and purification procedure was the same for both CENP-M 

constructs. Escherichia coli C41 (DE3) cells harbouring vectors expressing GST-CENP-M or GST-

CENP-M1-171 were grown in Terrific Broth at 37°C to an OD600 of 0.6 - 0.8, then 0.2 mM IPTG was 

added and the culture was grown at 18°C overnight. Cell pellets were resuspended in lysis buffer 

(50 mM Tris/HCl pH 7.4, 300 mM NaCl, 5 % Glycerol, 1 mM DTT) supplemented with protease 

inhibitor cocktail (Serva), lysed by sonication and cleared by centrifugation at 48000 g at 4°C for 1 

h. The cleared lysate was applied to Glutathione Sepharose 4 Fast Flow beads (GE Healthcare) 

pre-equilibrated in lysis buffer, incubated at 4°C for 2 h, washed with 70 volumes of lysis buffer and 

subjected to an overnight cleavage reaction with 3C protease. Resource S cation exchange 

chromatography column (GE Healthcare) was pre-equilibrated in a mixture of 95 % buffer A (20 

mM MES pH 6.0, 5 % Glycerol, 1 mM DTT) and 5 % buffer B (20 mM MES pH 6.0, 1 M NaCl, 5 % 

Glycerol, 1 mM DTT). The eluate from Glutathione beads was diluted with buffer A to reach a final 

concentration of 50 mM NaCl, loaded onto the Resource S column and eluted with a linear gradient 

of buffer B from 50 to 500 mM NaCl in 10 bed column volumes. Fractions containing CENP-M were 

concentrated in 10 kDa molecular weight cut-off Vivaspin concentrators (Sartorius) and loaded onto 

a Superdex 75 size-exclusion chromatography (SEC) column (GE Healthcare) pre-equilibrated in 

SEC buffer (10 mM MES pH 6.0, 150 mM NaCl, 1 mM TCEP). SEC was performed under isocratic 

conditions at a flow rate of 0.5 ml/min. Fractions containing CENP-M were concentrated, flash-

frozen in liquid nitrogen and stored at -80°C. Mutant CENP-M constructs were created by site-

directed mutagenesis using the QuikChange Mutagenesis kit (Stratagene). Constructs were 
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sequence verified. The expression and purification procedure was the same as already described, 

except for the omission of the cation exchange chromatography step. 

 

4.1.2 CENP-H / CENP-K complex 

A cDNA segment encoding human CENP-K was subcloned in pFH vector as a C-terminal fusion to 

His-tag, with an intervening TEV protease site, while a cDNA segment encoding human CENP-H 

was subcloned in pUCDM vector, without any tag. Constructs were sequence verified. The two 

vectors were then fused via in vitro Cre-loxP recombination. Viral production and protein 

expression were then performed as in159. Cell pellets were resuspended in lysis buffer (50 mM 

Tris/HCl pH 8.0, 300 mM NaCl, 20 mM Imidazole, 5 % Glycerol, 2 mM β-mercaptoethanol) 

supplemented with protease inhibitor cocktail (Serva), lysed by sonication and cleared by 

centrifugation at 48,000 g at 4°C for 1 h. The cleared lysate was applied to Ni-NTA Agarose beads 

(QIAGEN) pre-equilibrated in lysis buffer, incubated at 4°C for 2 h and washed with 70 volumes of 

lysis buffer. Bound proteins were eluted with lysis buffer supplemented with 200 mM imidazole and 

then dialysed against 50 mM Tris/HCl pH 8.0, 150 mM NaCl, 5 % Glycerol, 0.5 mM EDTA, 1 mM 

DTT at 4°C overnight. During this dialysis step, tag cleavage with TEV protease was also 

performed. Resource Q anion exchange chromatography column (GE Healthcare) was pre-

equilibrated in a mixture of 92.5 % buffer A (50 mM Tris/HCl pH 8.0, 5 % Glycerol, 0.5 mM EDTA, 1 

mM DTT) and 7.5 % buffer B (50 mM Tris/HCl pH 8.0, 1 M NaCl, 5 % Glycerol, 0.5 mM EDTA, 1 

mM DTT). The dialysed sample was diluted with buffer A to reach a final concentration of 75 mM 

NaCl, loaded onto the Resource Q column and eluted with a linear gradient of buffer B from 75 to 

500 mM NaCl in 10 bed column volumes. Fractions containing CENP-H / CENP-K complex were 

concentrated in 10 kDa molecular weight cut-off Vivaspin concentrators (Sartorius) and loaded onto 

a Superdex 200 SEC column (GE Healthcare) pre-equilibrated in SEC buffer (10 mM Hepes pH 

7.5, 150 mM NaCl, 1 mM TCEP). SEC was performed under isocratic conditions at a flow rate of 

0.5 ml/min. Fractions containing CENP-H / CENP-K complex were concentrated up to 10 mg/ml, 

flash-frozen in liquid nitrogen and stored at -80°C. 

 

4.1.3 CENP-T / CENP-W complex and CENP-S / CENP-X complex 

A cDNA segment encoding human CENP-T isoform 1, the canonical one, was subcloned in pGEX-

6P-2rbs vector as a C-terminal fusion to GST, with an intervening 3C protease site. A cDNA 
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segment encoding human CENP-W was subcloned in the second cassette of the same vector. 

Similarly, a synthetic cDNA segment encoding human CENP-X isoform 1, the canonical one, 

codon-optimised for expression in bacteria as well as insect cells, was subcloned in pGEX-6P-2rbs 

vector as a C-terminal fusion to GST, with an intervening 3C protease site. Also, a cDNA segment 

encoding human CENP-S isoform 1, the canonical one, was subcloned in the second cassette of 

the same vector. Constructs were sequence verified. The expression and purification procedure 

was the same for CENP-T / CENP-W and CENP-S / CENP-X complexes. Escherichia coli BL21 

Rosetta cells harbouring vectors expressing GST-CENP-T / CENP-W or GST-CENP-X / CENP-S 

were grown in Terrific Broth at 37°C to an OD600 of 0.6 - 0.8, then 0.3 mM IPTG was added and the 

culture was grown at 20°C overnight. Cell pellets were resuspended in lysis buffer (25 mM Tris/HCl 

pH 7.5, 300 mM NaCl, 10 % Glycerol, 1 mM DTT) supplemented with protease inhibitor cocktail 

(Serva), lysed by sonication and cleared by centrifugation at 48000 g at 4°C for 1 h. The cleared 

lysate was applied to Glutathione Sepharose 4 Fast Flow beads (GE Healthcare) pre-equilibrated 

in lysis buffer, incubated at 4°C for 2 h, washed with 70 volumes of lysis buffer and subjected to an 

overnight cleavage reaction with 3C protease. Heparin column (GE Healthcare) was pre-

equilibrated in a mixture of 85 % buffer A (20 mM Tris/HCl pH 7.5, 5 % Glycerol, 1 mM DTT) and 

15 % buffer B (20 mM Tris/HCl pH 7.5, 2 M NaCl, 5 % Glycerol, 1 mM DTT). The eluate from 

Glutathione beads was directly loaded onto the heparin column and eluted with a linear gradient of 

buffer B from 300 to 1200 mM NaCl in 10 bed column volumes. Fractions containing CENP-T / 

CENP-W or CENP-S / CENP-X complex were concentrated in 10 kDa molecular weight cut-off 

Vivaspin concentrators (Sartorius) and loaded onto a Superdex 200 size-exclusion chromatography 

(SEC) column (GE Healthcare) pre-equilibrated in SEC buffer (20 mM Hepes pH 7.5, 300 mM 

NaCl, 5 % Glycerol, 1 mM TCEP). SEC was performed under isocratic conditions at a flow rate of 

0.5 ml/min. Fractions containing CENP-T / CENP-W or CENP-S / CENP-X complex were 

concentrated, flash-frozen in liquid nitrogen and stored at -80°C. 

 

4.1.4 Other purified recombinant proteins 

Mis12 complex (full-length and deletion mutants) and C-terminal region of Knl1 - Expression and 

purification were performed according to the protocol described in reference20. 

Ndc80 complex - Expression and purification were performed according to the protocol described in 

reference19. 
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H3-containing mononucleosomes and CENP-A-containing mononucleosomes - Plasmids for the 

production of Xenopus laevis H2A, H2B, H3 and H4 histones were a kind gift of Prof. Daniela 

Rhodes’ laboratory at the Medical Research Council in Cambridge. Plasmids for the production of 

human CENP-A / H4 histone tetramer and Xenopus laevis H2A / H2B histone dimer were a kind 

gift of Prof. Aaron F. Straight’s laboratory at Stanford University. Plasmids for the production of 601 

- 167 bp and 601 - 145 bp DNA were a kind gift of Prof. Daniela Rhodes’ laboratory and Prof. Curt 

A. Davey’s laboratory at the Nanyang Technological University in Singapore, respectively. Xenopus 

laevis histone expression and purification, histone octamer refolding, DNA production and 

reconstitution of H3-containing mononucleosomes were performed according to the protocol 

described in reference151. The production of CENP-A-containing mononucleosomes was instead 

carried out according to the protocol described in reference152. 

Other purified recombinant proteins were a kind gift of other members of the laboratory. 

 

 

4.2 Antibodies 

 

Mouse monoclonal antibody against CENP-M (H00079019-M01) was purchased from Abnova 

Corporation. Rabbit polyclonal antibody against recombinant purified full-length human CENP-M 

was produced in house. Rabbit polyclonal antibody against CENP-I was a kind gift of Prof. Song-

Tao Liu’s laboratory at the University of Toledo. Goat polyclonal antibody against CENP-H (sc-

11297) was purchased from Santa Cruz Biotechnology. Mouse monoclonal antibody anti penta-His 

was from QIAGEN. Human anti-centromere antibodies serum was from Antibodies Inc. 

 

 

4.3 CENP-M1-171 crystallization and structure determination 

 

CENP-M1-171 (~10 mg/ml) was crystallized by sitting drop vapour diffusion using a Honeybee 

Cartesian robot and 96-well plates. Diffraction-quality crystals were obtained by optimizing the 

initial condition in hanging drops. The optimal reservoir buffer contained 100 mM Bicine pH 8.5, 11 

% MPD and 8 mM Spermidine. Crystals were transferred to a cryobuffer containing the reservoir 
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liquor supplemented with 15 % Glycerol and flash-frozen in liquid nitrogen. A selenomethionine 

(SeMet)-derivative of the protein was crystallized under similar conditions. X-ray diffraction data 

were collected with synchrotron radiation at beamline ID14-4, European Synchrotron Radiation 

Facility (Grenoble, France) for the native crystal, and beamline X06DA (PXIII), Swiss Light Source 

(Villigen-PSI, Switzerland) for the SeMet crystal. X-ray diffraction data were processed with xia2 

(version 0.3.3.1)160. Analysis of data quality and crystal defects was performed using 

phenix.xtriage129. SAD phases obtained using Phenix AutoSol129 yielded an interpretable 2 Å 

electron density map. Model building was carried out in Coot161, with the help of fragments built 

automatically by Phenix AutoBuild129, ARP/wARP162 and Buccaneer163. The model was then used 

for molecular replacement into the native dataset using Phenix AutoMR129. Iterative model building 

with Coot and refinement with phenix.refine129 yielded a final model covering the full asymmetric 

unit. The Collaborative Computational Project 4 (CCP4) suite164 was also used at several stages. 

The structure was illustrated with PyMOL (DeLano Scientific LLC). 

 

 

4.4 In vitro protein binding to adenine and guanine nucleotides 

 

N-methylanthraniloyl (MANT)-labelled nucleotides (ADP, ATP, GDP, GTP) (Pharma Waldhof) were 

employed and protein-nucleotide interactions were detected exploiting the environmental sensitivity 

of MANT, as its fluorescence quantum yield increases in nonpolar solvents and upon binding to 

proteins. Fluorescence data were recorded with a Fluoromax-4 spectrophotometer (Jobin Yvon), 

with excitation and emission wavelengths of MANT-nucleotides at 366 and 450 nm, respectively. 

Arl2, a member of the Ras superfamily of small GTPases, was used as control (kind gift of Dr. 

Mandy Miertzschke). 500 µl of 1 µM MANT-labelled nucleotides in CENP-M SEC buffer were used. 

After 7 min, when the fluorescence baseline signal was stabilized, 10 µM recombinant purified 

CENP-M or Arl2 was added and the fluorescence signal was monitored for 1 h. 
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4.5 GST-CENP-M (wt and mutants), CENP-I57-C, HisCENP-K and CENP-H 

coexpression in insect cells and GST-pull-downs 

 

The MultiBac baculovirus-based system was employed for multiprotein overexpression in insect 

cells159. 

A cDNA segment encoding human CENP-M isoform 1, the canonical one, was subcloned in pFG 

vector as a C-terminal fusion to GST, with an intervening 3C protease site. A synthetic cDNA 

(GENEART) encoding human CENP-I and codon optimized for expression in bacteria as well as 

insect cells was used. In particular, the segment encoding amino acids 57 - 756 (C-terminus) was 

subcloned in the second cassette of the same pFG vector. Mutant CENP-M constructs were 

created by site-directed mutagenesis using the QuikChange Mutagenesis kit (Stratagene). 

Constructs were sequence verified. 

A cDNA segment encoding human CENP-K was subcloned in pFH vector as a C-terminal fusion to 

His-tag, with an intervening TEV protease site, while a cDNA segment encoding human CENP-H 

was subcloned in pUCDM vector, without any tag. Constructs were sequence verified. The two 

vectors were then fused via in vitro Cre-loxP recombination. This same vector was used for the 

production of CENP-H / CENP-K complex, as detailed in a previous section. 

Viral production was then performed as in159. 

For each GST-pull-down experiment, 25 ml of freshly diluted Tna38 cells at a density of 1 * 106 

cells / ml in serum-free medium (Sf-900 II SFM, Life Technologies) were coinfected with 1 : 10 V2 

GST-CENP-M  / CENP-I57-C and V2 HisCENP-K / CENP-H for 72 h at 27°C with shaking. Cell 

pellets were resuspended in lysis buffer (20 mM Hepes pH 7.5, 300 mM NaCl, 1 mM TCEP) 

supplemented with protease inhibitor cocktail (Serva), lysed by sonication and cleared by 

centrifugation at 20000 g at 4°C for 30 min. The cleared lysate was applied to Glutathione 

Sepharose 4 Fast Flow beads (GE Healthcare) pre-equilibrated in lysis buffer, incubated at 4°C for 

2 h, washed with 60 volumes of lysis buffer and eluted with lysis buffer supplemented with 30 mM 

reduced Glutathione. Samples of total lysate, supernatant, beads before elution and elution were 

analysed by SDS-PAGE and Coomassie blue staining and by Western blotting. 
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4.6 Analytical size-exclusion chromatography (SEC) migration shift assays 

 

Analytical SEC experiments were performed on calibrated Superdex 200 5/150 or Superose 6 

5/150 columns (GE Healthcare). All samples were eluted under isocratic conditions at 4°C in SEC 

buffer at a flow rate of 0.2 ml/min for Superdex 200 5/150 or 0.1 ml/min for Superose 6 5/150. 

Elution of proteins was monitored at 280 nm. 100 µl fractions were collected and analysed by SDS-

PAGE and Coomassie blue staining. To detect the formation of a complex, proteins were mixed at 

the indicated concentrations in 50 µl, incubated for at least 2 h on ice and then subjected to SEC. 

For binding assays with nucleosomes, a SEC buffer containing 10 mM Hepes pH 7.5, 50 mM NaCl, 

1 mM TCEP was used. Also, buffers containing 100 or 200 mM NaCl were employed for the salt 

screening experiments, as indicated. 

For the other binding assays, a SEC buffer containing 10 mM Hepes pH 7.5, 150 mM NaCl, 1 mM 

TCEP was used when possible (namely, with CENP-M, CENP-H / CENP-K, HisCENP-I57-281, 

CENP-H / CENP-K / CENP-I57-281, CENP-H / CENP-K / CENP-I57-C / CENP-M, Mis12 complex, 

Ndc80 complex, Knl12000-2311, Zwint). A SEC buffer containing 300 mM NaCl was instead employed 

with proteins that were not stable in lower NaCl concentrations (specifically, CENP-C constructs, 

CENP-T / CENP-W, CENP-S / CENP-X, CENP-L / CENP-N, CENP-O / CENP-P / CENP-Q / 

CENP-U, CENP-R).  

 

 

4.7 CENP-M and microtubules cosedimentation assay 

 

Tubulin was purchased from Cytoskeleton Inc. and microtubules were polymerized according to the 

producer’s instructions. Briefly, 50 µM tubulin in tubulin buffer (80 mM PIPES pH 6.8, 1 mM MgCl2, 

1 mM EGTA) was incubated in the presence of 1 mM GTP for 30 min at 34°C, then supplemented 

with 0.5 mM Taxol and further incubated for 30 min at 34°C. 

For binding assays, microtubules and CENP-M were diluted in tubulin buffer supplemented with 10 

µM Taxol in a final volume of 25 µl. 2 µM CENP-M was employed in all binding reactions, while 

different microtubules concentrations were tested, as indicated. Reactions were incubated at room 

temperature for 10 min, transferred onto 100 µl of cushion buffer (tubulin buffer supplemented with 
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10 µM Taxol and 50 % Glycerol) and ultracentrifuged for 10 min at 90000 rpm in a Beckman 

TLA120.1 rotor at 25°C. Supernatant and pellet fractions were analysed by SDS-PAGE. 

 

 

4.8 Experiments of cross-linking coupled with mass spectrometry 

 

Experiments of cross-linking coupled with mass spectrometry were carried out essentially as in 

reference148, thanks to a collaboration with Dr. Franz Herzog’s laboratory at the Ludwig Maximilian 

University in Munich. 

 

 

4.9 Plasmids for mammalian protein expression, cell culture and 

immunofluorescence 

 

Plasmids - A cDNA segment encoding human CENP-M isoform 1, the canonical one, was 

subcloned in pcDNA5/FRT/TO-GFP-ires vector, a derivative of pcDNA5/FRT/TO vector generated 

in house. Mutant CENP-M constructs were created by site-directed mutagenesis using the 

QuikChange Mutagenesis kit (Stratagene). Constructs were sequence verified. 

Cell culture - Flp-In T-REx HeLa cells were a kind gift of Prof. Stephen Taylor’s laboratory at the 

University of Manchester. Stable Flp-In T-REx HeLa cell lines expressing GFP-CENP-M wt or 

mutant constructs were generated according to Invitrogen protocol and selected in DMEM 

(Euroclone) supplemented with 10 % TET-free Fetal Bovine Serum (Invitrogen), 250 µg/ml 

Hygromycin (Roche) and 5 µg/ml Blasticidin (ICN chemicals). HeLa cells were grown in DMEM 

supplemented with 10 % TET-free Fetal Bovine Serum and 2 mM L-glutamine. Protein expression 

was induced with 1 - 50 nM Doxycycline (Sigma) for 24 h. A treatment with 9 µM RO-3306 for 18 h 

was employed to arrest cells in a G2-like phase149. 

Immunofluorescence - HeLa cells were grown on coverslips pre-treated with 15 µg/ml poly(D)lysine 

(Sigma). 24 h after induction of protein expression, cells were fixed with 4 % paraformaldehyde in 

PBS for 10 min. Before incubations with antibodies, cells were permeabilized using 0.1 % Triton X-

100 in PBS for 10 min and treated with 2.5 % BSA in PBS as blocking agent. The primary 
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antibodies that were used are listed in the “Antibodies” section. Cy3- and Cy5-labelled secondary 

antibodies for immunofluorescence were purchased from Jackson Immuno Research Laboratories. 

Cells were imaged on a 3i MarianaTM system (Intelligent Imaging Innovation Inc.) equipped with a 

spinning-disk confocal Axio Z1 microscope (Zeiss) provided with a 63X/NA1.4 objective (Zeiss) and 

an ORCA-Flash 4.0 CMOS camera (Hamamatsu) and controlled by Slidebook 5.0 software 

(Intelligent Imaging Innovation Inc.). Images were acquired as 0.27 µm Z-sections and displayed as 

maximal intensity projections. 
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